
  

QUANTITATIVE MICROBIAL RISK ASSESSMENT FOR LISTERIA 

MONOCYTOGENES ON FRESH-CUT LETTUCE AND FRESH-CUT 

CANTALOUPE 

 

A Thesis 

by 

MUSTAFA GUZEL  

 

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
  

MASTER OF SCIENCE 

 

Chair of Committee,  Elena Castell-Perez 

Committee Members, Rosana G. Moreira 
 Alejandro Castillo 
Head of Department, Stephen W. Searcy 
 

May 2015 

 

Major Subject: Biological and Agricultural Engineering 

 

Copyright 2015 Mustafa Guzel 



 

ii 

 

ABSTRACT 

The increase in foodborne illness outbreaks associated with fresh and fresh-cut 

produce can be attributed to ineffectiveness of current handling practices. This study 

describes the change on concentration of population of Listeria monocytogenes in two 

popular fresh-cut produces, romaine lettuce, and cantaloupe, from farm to table.    

 Listeria innocua was used as a surrogate for L. monocytogenes to experimentally 

evaluate the effectiveness of washing treatments  (water and chlorine) and develop 

growth curves under different storage temperatures (between 5 and 36oC). The findings 

confirm that both washing treatments were significantly more effective (p<0.05) on 

reducing L. innocua concentration in fresh-cut romaine lettuce than in cantaloupe. For 

instance, chlorinated water washing reduced L. innocua population by 0.98 log on fresh-

cut romaine lettuce compared to just 0.57 log on cantaloupe rind. Furthermore, the 

experimental data on L. innocua were used to test three predictive models to describe the 

growth of L. monocytogenes in both produce. All models (Baranyi and Roberts, 

Gompertz, and Logistic) provided good fit of the data. However, compared to the 

Baranyi and Roberts model, both Gompertz and Logistic models overestimated the 

growth rate at temperatures of 10°C and above. Results demonstrated that these models 

may be used to estimate the growth in fresh-cut produce during distribution, storage or at 

the market, and potential growth at a consumer level.  

Several scenarios were created to evaluate the impact of decontamination 

treatments, occurrence of cross-contamination, and temperature abuse on the population 

of L. monocytogenes. In general, expected annual listeriosis cases associated with fresh-
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cut cantaloupe were higher (around 17) than with fresh-cut romaine lettuce (<1).The 

time of consumption of the produce was the biggest issue regarding to ensuring the 

safety of the fresh-cut produce. Occurrence of temperature abuse and cross- 

contamination also increased the risk of listeriosis in both products. Among the 

intervention steps, irradiation treatment was the most effective, with 99.99% reduction 

on the expected number of annual cases of listeriosis for both produce.  
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CHAPTER I  

INTRODUCTION 

The demand for fresh and minimally processed products has increased in recent 

years due to health trends and the technological advancements in food packaging. 

However, the number of foodborne illnesses related to this food commodity has risen 

gradually with the increase in demand (Beuchat, 2002; Mukherjee et al., 2006; Hoelzer 

et al., 2012a). Among the fresh produces, green leafy vegetables raise the most concern 

regarding microbiological hazards. Indeed, they have been connected to multiple 

outbreaks of foodborne disease (FAO/WHO, 2008).  

Surveillance of fresh products and outbreak reports show that E. coli O157:H7, 

Salmonella, and Listeria monocytogenes are some of the most important pathogens 

associated with this commodity (Warriner et al., 2009; Franz et al., 2010; Tromp ,2010). 

According to the Center for Disease Control and Prevention (CDC) reports, 131 fresh 

produce related outbreaks occurred between 1996 and 2010, resulting in 1382 

hospitalizations and 34 deaths (USFDA, 2013b). Twenty-two percent of the foodborne 

illnesses between 1998 and 2008 were linked to leafy vegetables, and eleven percent was 

linked to fruits (CDC, 2013a). Primarily, lettuce was the most aforementioned 

commodity (Delaquis et al., 2007; Adavi, 2011).  

In the United States, 34 outbreaks related to melons occurred between 1973 and 

2011 (Danyluk et al., 2014). Moreover, in the last three years, two deadly outbreaks 

were linked to cantaloupe consumption. In 2011, a L. monocytogenes outbreak led to 

146 illnesses and 33 deaths, one of the deadliest foodborne outbreaks in the last 25 years 



 

2 

 

(CDC, 2012b). Although L. monocytogenes is not a common foodborne pathogen for 

fresh produce, the lethality ratio of L. monocytogenes (18%) is higher than common 

pathogens like Salmonella (<1%) (Painter et al., 2013). Consequently, the presence of L. 

monocytogenes in fresh products is a main concern to producers and processors (Lianou 

and Sofos, 2007; Koseki et al., 2011; Sant`Ana et al., 2012a). Therefore, studies on 

prediction of the occurrence of this pathogen in a particular type of food product is 

critical to establish proper handling and distribution practices to avoid potential 

foodborne illness. These studies can be based on actual experiments or via predictive 

models. 

When it is necessary to conduct experiments, L. innocua is often used as a 

surrogate for L. monocytogenes, and is preferred in laboratory experiments for several 

reasons. First, it is not pathogenic, so the health risks for laboratory personnel are 

minimal. In addition, L. innocua shows similar characteristics to L. monocytogenes, and 

sometimes is even referred to as a non-pathogenic variant of L. monocytogenes (Jay, 

2004). 

Predictive modeling can provide valuable information on the growth, decline, 

and survival of pathogens in foods during processing and storage (Whiting, 1995; Perez-

Rodriguez and Valero, 2013), and dynamic models  are useful to estimate the population 

dynamics of pathogens in food systems at time-varying temperature profiles (non-

isothermal conditions) (Puerta-Gomez et al., 2013). Furthermore, predictive modeling is 

a useful and powerful tool that is necessary to estimate the growth of pathogens in 

quantitative microbiological risk assessment. Quantitative microbiological risk 
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assessment (QMRA) is a relatively new concept in predictive microbiology, and it is 

drawing more attention day by day. QMRA facilitates scientists’ understanding of the 

impact of prevention strategies on the pathogen population in foods. Because the 

estimation of microbial risk naturally consists of variability and uncertainty, simulation 

methods such as Monte Carlo are generally used in QMRA (Danyluk and Schaffner, 

2011).  

Another benefit of QMRA is the evaluation of the effect of safety procedures on 

processing with risk assessment techniques that allow producers to estimate results 

before the product leaves the facility. Additionally, quantitative risk assessment methods 

are helpful to inform policy decisions that depend on the problem, the period, and the 

specific risk management questions to be addressed. These models are also useful to 

predict the microbiological shelf-life of perishable foods such as fresh-cut produce. 

The main objective of this study was to generate a quantitative risk assessment 

model of human health risk involving contamination of fresh-cut cantaloupe and fresh-

cut romaine lettuce with Listeria monocytogenes. The specific goals were: 

(1) To use growth data on L. innocua to predict the growth of L. monocytogenes 

on fresh-cut romaine lettuce and fresh-cut cantaloupe as a function storage temperature, 

and to compare the response of L. innocua to washing treatments on both produce. 

(2) To conduct quantitative risk assessments on the effect of intervention and 

handling steps to minimize the potential risk of contamination of the fresh-cut produce 

with L. monocytogenes. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Consumption of Romaine Lettuce and Cantaloupe in the U.S.  

Romaine lettuce (Lactuca sativa, var longifolia), also called Cos lettuce 

(originated from a Greek island; Kos) is a leafy green vegetable that is mostly eaten raw. 

Lettuce is a good source of antioxidants, as well as vitamin A and C. Although it has a 

very long history and is very popular in Mediterranean countries, In the U.S romaine 

lettuce started gaining popularity only in the late 80’s (de Vries, 1997; USDA, 2005). 

According to the U.S. Department of Agriculture (USDA) data, per capita use of 

romaine lettuce was 0.33 kg in 1985, 1.27 kg in 1995, and 3.49 kg in 2009. 

Correspondingly, while romaine lettuce consumption covered 2% of all lettuce 

consumption in 1985, this ratio increased to 27.4% in 2009 (USDA, 2011). This drastic 

increase in consumption can be linked to advances in food technology. Romaine lettuce 

was a member of raw agricultural commodities (RAC), which means it had to be washed 

properly before consumption. Today, romaine lettuce can be considered as a member of 

ready-to-eat (RTE) foods, which means it is pre-washed, and does not need further 

treatments at home. Lettuce is consumed by 40% of the U.S. population, and 85% of this 

population consumes lettuce as fresh (Hoelzer et al., 2012a). Considering the fact that 

romaine lettuce consumption covers 27.4% of total lettuce consumption, it can be 

concluded that romaine lettuce is consumed as a fresh leafy green by 9.31% of the U.S. 

population.  
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Cantaloupe (Cucumis melo L.) a popular member of melon family, is an 

important phytonutrient source (Castillo et al., 2009). Although melons are produced 

across the U.S., 80% of production is gathered in five states: California, Arizona, 

Georgia, Florida, and Texas. Cantaloupe is also good source of iron, potassium, fiber, 

antioxidants and vitamins A and C (Beaulieu and Lea, 2007). Per capita use of 

cantaloupe in the U.S. was 3.87 kg in 2010 (USDA, 2012). Cantaloupe is consumed by 

3.03% of the U.S. population as a fresh fruit (Hoelzer et al., 2012a). 

2.2 Foodborne Disease Outbreaks Associated with Fresh Produce  

It is well known that bacteria, viruses, and protozoan cause foodborne disease 

outbreaks in fresh produce epidemiologically; however, bacterial origin foodborne 

disease outbreaks linked to fresh produce have been commonly reported (Olaimat and 

Holley, 2012). Since the 90’s, There has been a sharp increase in the number of 

outbreaks linked to fresh produce in the U.S. While the ratio of outbreaks linked to fresh 

produce to total outbreaks was less than 1% in the 70’s, the number increased to 6% in 

the 90’s, and 13% in 2005 (Doyle and Erickson, 2008). A recent study suggests that 

fresh produce related outbreaks cover more than 40% of total outbreaks in the U.S. 

(Painter et al., 2013).  Although there is no clear connection, the number of foodborne 

outbreaks linked to fresh produce has increased in the past three decades with the 

increased consumption (Sivapalasingam et al., 2004; Lynch et al., 2009; Vadlamudi et 

al., 2012). Beside the increased consumption of fresh produce, changes in pre and 

postharvest processing, distribution, and consumption patterns are believed have 

significant roles in this increase (Beuchat and Ryu, 1997; Burnett and Beuchat, 2001; 
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Prazak et al., 2002; Lianou and Sofos, 2007; Lynch et al., 2009; Painter et al., 2013). 

Moreover, the improvements in pathogen identification methods and the increase in size 

of susceptible population may also play a role on the increase in the outbreaks (Tauxe, 

1997; Carrasco et al., 2010). Burnett and Beuchat (2001) reported that fresh produce, 

such as lettuce and cantaloupe had recently been linked to foodborne diseases.   

Incidence of listeriosis outbreaks are less than other pathogenic diseases. 21 

reported outbreaks linked to L. monocytogenes occurred between 1998 and 2008, 

whereas 870 Salmonella enterica and 206 E. coli outbreaks were reported in the same 

period (Painter et al., 2013). However, compared to other common pathogens, L. 

monocytogenes has a high mortality rate (Lianou and Sofos, 2007).  It was estimated that 

S. enterica caused more than one million illnesses annually, but only 1.8% of the 

patients were hospitalized, and among the hospitalized 1.9% resulted in death, while 1% 

of the patients were hospitalized, and less than 1% of them resulted in death in illnesses 

caused by E. coli. On the other hand, it was estimated that L. monocytogenes caused 

around 1500 illnesses 91% of which were hospitalized, and about 18% of 

hospitalizations resulted in death annually (Painter et al., 2013). The first reported 

listeriosis outbreak was in 1979. Tuna and chicken salad with leafy greens contaminated 

by L. monocytogenes caused 20 hospitalizations and five deaths (Ho et al., 1986). In 

total, 12 listeriosis outbreaks linked to fresh produce consumption occurred worldwide. 

Seven of these outbreaks happened in the U.S. resulted in 189 hospitalizations and 40 

deaths (Table 2.1). Recent listeriosis outbreak associated with cantaloupe was the 

deadliest foodborne outbreak in the last 25 years (Danyluk et al., 2014). With the 
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improvements in pathogen detection, sometimes outbreaks can be prevented by recalling 

the contaminated product.  

 

Table 2.1. Outbreaks of listeriosis associated with fresh produce consumption in the 
U.S. (Adapted from Hoelzer et al., 2012b). 

Year Source No. of 
cases 

No. of 
hospitalizations 

No. of 
fatalities 

1979 

Tuna fish and 
chicken salads with 
celery, lettuce, and 
tomatoes, cheese 

20 20 5 

 Frozen broccoli, 
cauliflower 7   

2001 Potato salad 56 1 0 

2006 Taco/nacho salad 2 0 0 

2010 Alfalfa sprouts 20 16 0 

2010 Celery 10 10 5 

2011 Cantaloupe melon 146 142 30 

Total  261 189 40 

 

However, even though recalls are very beneficial for public health, they are 

costly solutions. Romaine lettuce was recalled 15 times in the past three years, 12 of 

which were associated with L. monocytogenes. In the same time, cantaloupe was recalled 
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seven times, and L. monocytogenes was the reason for four of these recalls (USFDA, 

2014).  

2.3 Contamination of Cantaloupe and Romaine Lettuce 

2.3.1 Contamination of Cantaloupe with L. monocytogenes 

Cantaloupe can be contaminated with pathogens in the field, and during post-

harvest applications. However, when intact, the outer rind works as a protective layer 

against bacteria, and limits the accumulation in fruit flesh. Several studies showed that 

even though the bacterial load on the rind was high, only a limited number of bacteria 

were found in the flesh. On the other hand, fissures, cuts, scar tissues, and ground spots 

promote the internalization of pathogens (Castillo et al., 2009). The ground spot is the 

connected area of fruit to surface, and the rind of that area is thin. In addition to 

structural defects, insects may help pathogens to contaminate the fruit. Caldwell et al. 

(2003) reported that Salmonella could be introduced to fruit rind by a nematode. 

Moreover, Richards and Beuchat (2004) showed that temperature differential and 

surface characteristics of cantaloupe affects internalization of pathogens. Internalization 

can even occur through intact rinds (Bowen et al., 2006). The mesocarp tissue is highly 

susceptible. As a result, if the rind is damaged, bacteria can infiltrate into the flesh very 

quickly. Chimbombi et al. (2013) reported that Salmonella might infiltrate the 

cantaloupe flesh in 10 hours at 23oC. Moreover, a bacterial population of 4.2 log CFU/g 

was observed in a 50 mm depth in 30 hours at 23oC. In postharvest practices, the main 

sources of contamination are washing/sanitizing step, worker activities during handling, 

and the equipment used in postharvest. Contamination can occur by direct contact or 
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cross-contamination (Castillo et al., 2009). Castillo et al. (2003) surveyed cantaloupes in 

the U.S. and Mexico. In Mexico, Salmonella and E. coli in were isolated only in 

postharvest samples. In another microbiological survey conducted on cantaloupes, 

Salmonella were found in 16% of the samples taken from worker’s hands. In the same 

study, it was determined that 20.6 % of packed cantaloupes were contaminated by 

Salmonella (Espinoza-Medina et al., 2006). Recently, Chen et al. (2013) reported that L. 

monocytogenes was isolated from 5 of 425 fresh-cut cantaloupe samples.  

2.3.2 Contamination of Romaine Lettuce with L. monocytogenes  

Like cantaloupe, romaine lettuce can be contaminated with water, workers, and 

equipment and transporting vehicles (FAO&WHO, 2008).  Contamination can occur 

through direct contact or cross-contamination (Table 2.2). 

Water quality is an important pre harvest factor due to contamination risk of 

large surface area of romaine lettuce (WHO/FAO, 2008). Brandl and Amundson (2008) 

determined that leaf age also affects the presence of pathogens in lettuce. Pathogens 

inoculated on young leaves growth significantly faster compared to older leaves. It is 

suggested that higher nitrogen and carbon content of young leaves promotes pathogen 

growth. In addition, cutting/shredding process helps bacteria to penetrate into the 

stomata by increasing handling, damaging the structure, and increasing the attachment 

surface (Jay, 2006). Takeuchi et al. (2000) found that L. monocytogenes attached the cut 

edge of lettuce more than surface. Aruscavage et al. (2008) determined that survival rate 

of E. coli O157:H7 on damaged lettuce leaves was higher than the healthy ones. 
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Table 2.2. Preharvest and postharvest contamination points of minimally processed 
fresh produce (Adapted from Harris et al., 2003). 

Preharvest Postharvest 
Soil Harvesting equipment 

Irrigation water Human handling 

Inadequately composted manure Air 

Air Wild and domestic animals 

Wild and domestic animals Transport containers 

Human handling Wash and rinse water 

 Ice 

 Packing, sorting and cutting process equipment 

 Fruits, vegetables 

 Improper storage 

 Cross contamination 

 Improper handling after wholesale 

 Cooling water 
 

2.4 Listeria monocytogenes 

 L. monocytogenes is a gram-positive, facultative anaerobic, non-spore forming, 

oxidase negative, catalase positive, small, rod-shaped bacterium (Farber and Peterkin, 

1991). The genus of Listeria includes seven species, Listeria monocytogenes, Listeria 

innocua, Listeria ivanovii, Listeria welshimeri, Listeria grayi, Listeria murrayi, and 

Listeria seeligeri, all of which are widely distributed in nature. Although L. 

monocytogenes is the main pathogenic subspecies of Listeria, L. ivanovii, L. seeligeri 

also caused listeriosis very rarely (McLauclin et al., 2004). 

 Listeriosis is a severe disease caused by Listeria genus. Almost all of human 

listeriosis cases are foodborne (Adak et al., 2002).  Even though incidence of this disease 
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is a very small portion of all foodborne diseases, about 27% of foodborne disease deaths 

are linked to listeriosis (Mead et al., 1999).  In addition, listeriosis has a very high 

(approximately 20%) mortality rate (Gellin and Broome, 1989; Farber and Peterkin, 

1991). Listeriosis mostly occurs in infants, elderly, and pregnant women. Majority of 

listeriosis cases occur in the population groups who have an underlying condition, like 

immunosuppressed, AIDS, alcoholism, and diabetes (McLauclin et al., 2004). Since L. 

monocytogenes is widely distributed in nature, only way to control listeriosis is 

controlling L. monocytogenes contamination of food (Painter and Slutsker, 2007).  

L. innocua is often used as a surrogate for L. monocytogenes in the experimental 

stage. Omary et al. (1993) used L. innocua to determine the growth of L. monocytogenes 

in shredded cabbage. Houtsma et al., (1994) used L. innocua to show the growth of L. 

monocytogenes in the presence of different sodium lactate and sodium chloride levels. 

Furthermore, Francis and O’ Beirne, (1998) reported that L. innocua and L. 

monocytogenes show similar characteristics in lettuce under a range of conditions.  

In another study, Geysen et al. (2005) used L. innocua for expressing the effect 

of super atmospheric oxygen and carbon dioxide on Listeria monocytogenes growth. 

Murphy et al. (2000) used L. innocua M1 for cooking method validation of L. 

monocytogenes in thermal processing. Behrsing et al. (2003) used L. innocua to show 

the survivability and growth of L. monocytogenes on cantaloupe. Rod et al. (2012) 

described the effect of cold atmospheric plasma on L. monocytogenes in ready-to-eat 

meat by using L. innocua as a surrogate. Omac et al. (2015) modeled the growth of L. 
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innocua and L. monocytogenes in different temperatures (5 to 36°C), and found that L. 

innocua and L. monocytogenes showed growth patterns on baby spinach. 

Although L. innocua has been used as a surrogate in a number of studies, it does 

not necessarily show the same characteristics with L. monocytogenes in all instances 

(O`Bryan et al., 2006). Rodriguez et al. (2006) showed that L. innocua is not a suitable 

surrogate for L. monocytogenes under e-beam radiation. Friedly et al. (2008) found that 

under thermal conditions L. innocua M1 behaved differently than L. monocytogenes in 

hamburger patties. Hence, before using L. innocua as a surrogate in a new matrix, 

validation is required. 

2.5 Survival and Growth of Listeria monocytogenes  

 The growth of L. monocytogenes on fresh produce is affected by several factors 

such as temperature, water activity, pH, and microbial competition. L. monocytogenes is 

a psychotropic pathogen and can grow under low temperatures (Warriner et al., 2009). 

Koseki and Isobe (2005) determined the minimum growth temperature of L. 

monocytogenes on lettuce as -4.26oC. In addition, L. monocytogenes can grow between 

pH 4.1 to 9.6 (Monsalve, 2008). L. monocytogenes and other pathogens survive and 

grow in fresh produce in several ways. The netted surface of cantaloupe may enhance 

the attachment ability of bacteria. Ukuku and Fett (2002) reported that L. monocytogenes 

can survive on the cantaloupe rind 15 days at 4°C, and the organism can grow within 4 

hours at 20°C.  Annous et al. (2005) observed biofilm formation on the rind surface of 

cantaloupe, two hours after inoculation with two different Salmonella isolates (S. 

enterica sv. Poona, S. enterica sv Michigan). Biofilms are groups of bacteria that attach 
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both to the surface and to themselves by producing polymeric materials. Attachment 

surface, presence of different bacteria, and strain difference may affect the formation of 

biofilms (Jay et al., 2006). Biofilm formation not only protects bacteria from harm but 

also may help bacteria to reach non-contaminated areas (Castillo et al., 2009).  

Naturally existing microbiota in fresh products is believed to have an effect on 

the growth of L. monocytogenes. Initial microbial load present in lettuce is determined 

between 4 and 6 log CFU/g. (Carrasco et al., 2008). Carlin et al. (1996) reported that 

when endive leaves treated with 10 % hydrogen peroxide, L. monocytogenes grew very 

quickly on endive leaves because the number of native microorganisms on endive leaves 

decreased. Similarly, Ukuku et al. (2004) reported that L. monocytogenes attached to 

cantaloupe rind in greater numbers when native microflora is reduced. Francis and 

O`Beirne (1998) showed that varying the population of natural microbiota in shredded 

lettuce did not affect the growth of L. innocua, while the lactic acid bacteria (LAB) and 

Enterobacter spp. reduce the growth.  It can be concluded that presence of specific 

competitive bacteria like LAB and Enterobacter spp. may play more important role than 

total initial population (Carrasco et al., 2008). Koseki and Isobe (2005a) also found that 

natural microbiota of iceberg lettuce has no effect on L. monocytogenes. Johnston et al., 

(2009) determined that the natural microbiota of fresh cut lettuce showed inhibitory 

effect on E. coli O157:H7. Acid production or antimicrobial peptides were associated 

with microbial antagonism. 
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2.6 Decontamination Methods for Fresh Produce 

In 1998, the FDA released a guide that described the main reservoirs of pathogen 

contamination, methods for pathogen control, and methods to decrease the risk of 

pathogen contamination (USFDA, 1998). Most of the times, washing treatment is the 

only control point for fresh fruit and vegetables. Although a vast number of 

antimicrobial and chemical solutions were tested as a disinfection agent, chlorine is the 

most used component in the sanitation process. Chlorine is applied to wash water 

between 100 ppm and 200 ppm (Beuchat, 1998; WHO, 1998). Even though washing 

treatments are convenient for reducing the microbial population, microbiota of fresh 

vegetables cannot be eliminated by these treatments (Zhang and Farber, 1996; 

FAO/WHO, 2008; Carrasco et al., 2010). In addition, reusing washing water may cause 

cross contamination, and increase the microbial load of the product.  

With current and widely used disinfection methods, microbial load of fresh 

produce can be reduced between 2 and 3 log units (Gil et al., 2009). However, as the 

pathogens are not removed, the growth will continue during shelf life. This problem may 

lead the manufacturers having to recall these kinds of products, and cost increases. In 

2011 and 2012, seven recalls associated with romaine lettuce occurred. Four of these 

recalls related with potential L. monocytogenes contamination (USFDA, 2013c). As a 

result, manufacturers should be aware of the microbial shelf-life and the possible 

pathogens that may be present in the product. Lastly, manufacturers are in need of 

developed and improved disinfection methods.  
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2.6.1 Washing and Sanitizing Treatments  

Among the chemical sanitizers, chlorine is the most widely used sanitizer in the 

industry. Acidic electrolyzed water, sodium hypochlorite, peroxyacetic acid, aqueous 

chlorine dioxide, water, and organic acid solutions (citric, acetic, or lactic acids) are 

some other disinfection agents that can be used in washing treatment step (James, 2006; 

Yuk et al., 2006).  Rodgers et al. (2004) compared the effectiveness of several sanitizers 

including peroxyacetic acid, chlorinated trisodium phosphate, chlorine dioxide, and 

ozone on L. monocytogenes in whole and shredded lettuce. In shredded lettuce, it was 

found that peroxyacetic acid (80 ppm) caused 4.6 log reductions. Similarly, chlorinated 

trisodium phosphate (200 ppm chlorine) reduced the population by 4.6 logs. Chlorine 

dioxide was more effective than these two treatments, resulted in 4.7 log reduction, 

whereas ozone treatment was the most effective (3 ppm) reduced the L. monocytogenes 

population more than 5 logs. Exposure times (5 min) were same for all the treatments. 

For whole lettuce, all treatments were more effective compared to shredded lettuce, 

where L. monocytogenes population was reduced more than 5 logs. It is proposed that 

cutting/shredding process decreases the sanitizer effectiveness by creating more 

attachment surfaces to bacteria, and increasing the organic matter content in wash water 

(Rodgers et al., 2004). 

In a similar study, effectiveness of chlorinated trisodium phosphate, ozone, 

peroxyacetic acid, and chlorine dioxide on L. monocytogenes on whole cantaloupe were 

evaluated. In 5 minutes exposure time, all sanitizers reduced the L. monocytogenes 

population more than 4.9 log CFU/g (Rodgers et al., 2004). In another study, Ukuku et 



 

16 

 

al. (2005) mixed H2O2 (1%), sodium lactate (1%), citric acid (0.5%), and nisin (25 

µg/mg) and observed 3 to 4 log CFU/g reduction on L. monocytogenes population 

inoculated on cantaloupe rind. What is more, after that treatment L. monocytogenes was 

not detected on fresh cut pieces. In the same study, researchers also observed the effect 

of H2O2 (2.5%) alone. Researchers reported that treating cantaloupe rind with H2O2 

(2.5%) alone was less effective than treating with cocktail. Also, L. monocytogenes was 

detected on fresh cut pieces when cantaloupe rind was treated with H2O2 (2.5%) (Ukuku 

et al., 2005). In a similar study, Ukuku and Fett (2002) treated L. monocytogenes 

inoculated cantaloupe rinds with H2O2 (5%) and 1000 ppm chlorine. L. monocytogenes 

was consistently absent on fresh-cut pieces when the rind was treated, and consistently 

found when the rind was untreated, or washed only with water. Palekar et al. (2004) 

made a similar observation; when cantaloupe rinds were treated with chlorine, the 

bacteria count inside the flesh was less than cantaloupes treated only with water. 

Mahmoud et al. (2008) treated whole cantaloupe with chlorine dioxide gas (5 mg l-1) and 

achieved 3 log CFU reduction of L. monocytogenes. 

Ozone is probably one of the most studied control methods. The effect of the 

ozone treatment on L. monocytogenes in lettuce has been studied extensively (Koseki et 

al., 2001; Rodgers et al., 2003; Koseki and Isobe, 2005; Yuk et al., 2006; Olmez and 

Akbas, 2008). Ozone (O3) is a highly reactive oxidant showing inhibitory effect against 

not only wide range of bacteria, but also pesticides and chemical residues (Rodgers et 

al., 2003). In addition, unlike chlorine, temperature and pH has no influence on the 

effectiveness of ozone (Yuk et al., 2006; Olmez and Akbas, 2008). Furthermore, ozone 
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degrades spontaneously to oxygen, and leaves no residue on the product. Since ozone is 

a highly reactive compound, it can also affect the sensory quality of the product 

negatively. To minimize this effect, optimization of ozone treatment is necessary (Olmez 

and Akbas, 2009). 

Several promising treatments have been developed in the last decades due to 

ineffectiveness of current disinfection methods. Cold atmospheric plasma is a new 

disinfection method that can efficiently reduce the pathogens in vegetables. Critzer et al. 

(2007) showed that cold atmospheric plasma reduce the L. monocytogenes population on 

lettuce by 1, 3 and 5 log CFU/25 cm2 in 1,3, and 5 minute exposure times respectively. 

However, there are some downsides of this treatment. First, effect of the reactive 

compounds created by cold atmospheric plasma may also damage the product. Hence, 

this treatment may reduce shelf life. In addition, although atmospheric plasma is highly 

effective against the pathogens on product surface, it may not eliminate the internalized 

pathogens effectively. Lastly, feasibility of atmospheric plasma has not been tested 

industrially yet. Despite these drawbacks, atmospheric plasma is a new technology that 

is still being developed, and has not reached its full potential (Perni et al., 2008). 

2.6.2 Irradiation 

Ionizing radiation can be obtained with gamma rays, X-rays and electron beams. 

Unlike surface treatments, irradiation can penetrate the tissues, and eliminate the 

internalized bacteria (Gomes et al., 2011). Gomes et al. (2009) showed that when lettuce 

was treated with ionizing radiation up to 1 kGy it was possible to reduce the E. coli 

O157:H7 population by 3-4 logs. Although irradiation is an effective control measure 
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against the pathogens, it also affects the overall product quality when used in higher 

doses. Castell-Perez et al. (2004) reported that e-beam irradiation at higher than 1.5 kGy 

dose affects the quality attributes of fresh-cut cantaloupe negatively. Han et al. (2004) 

showed that irradiation affects the overall quality of whole romaine lettuce at doses 1.5 

kGy and higher.   

The effect of irradiation on bacteria is influenced by intrinsic and extrinsic 

factors. An example of intrinsic factors is the product composition. For example, 

required dose for 1 log reduction of L. monocytogenes was found around 0.5 kGy in 

meat products (Zhu et al., 2005). However, in lettuce the D10 value was just 0.17 kGy 

(Mintier and Foley, 2005). Subgroups of food commodity can also affect the radiation 

sensitivity. Niemira (2003) observed the changes in radiation sensitivity of L. 

monocytogenes and Salmonella in four different lettuce types (Green leaf, Red leaf, 

Boston, and Iceberg). Although radiation sensitivity of Salmonella affected by lettuce 

type, the sensitivity of L. monocytogenes was stable. In addition to intrinsic factors, 

extrinsic factors influence the effectiveness of irradiation treatment. In fresh produce, the 

interior atmosphere of package, and temperature are some of the parameters that 

influence the radiation sensitivity. Niemira and Fan (2005) reported that produce and 

pathogen type, produce condition (whole, peeled, cut), and the atmosphere in the 

package have an impact on the efficiency of irradiation. On the other hand, Moreira et al. 

(2012) proved that handling, exposure, dose uniformity, and processing parameters are 

crucial factors for effectiveness of irradiation treatment. In that study, when does 
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uniformity ratio changed from 1.1 to 1.4, D10 values of fresh products changed up to 

53%. 

Large size of cantaloupe, outer rind and penetration issues, make the treatment of 

whole cantaloupe with e-beam irradiation a challenge. Kim et al. (2010) reported that for 

1 kGy dose on whole cantaloupe, 3.3 and 3.5 log CFU reduction of Salmonella was 

observed at 0.2 cm and 0.4 cm depths respectively. As a result, irradiation treatment 

should be carried out after packaging of fresh-cut pieces. L. monocytogenes has a 

radiation D10 value (D10 = 0.15 kGy) on fresh-cut cantaloupe (Rodriguez et al., 2006). 

Mahmoud (2012) showed that X-Ray irradiation with a dose of 1 kGy reduced the L. 

monocytogenes population by 4.1 log CFU 5cm-2. Moreira et al. (2012) reported that 

D10 values for E. coli spp. and Salmonella typhimurium (LT2) on fresh-cut cantaloupe 

are 0.21 and 0.15 kGy respectively. 

2.7 Predictive Microbiology 

 Microbial growth is the main reason of food spoilage and food poisoning. As a 

result, understanding the growth patterns and influential factors on growth is crucial 

(Peleg and Corradini, 2011). Some of these influential factors as; temperature, pH, water 

activity, antimicrobials, organic acids, competitive microbiota, sodium nitrite, and 

sodium chloride. Different models can be derived to predict the growth as a function 

time, temperature and commodity characteristics. These models can be helpful in 

determining the optimal process and storage conditions to control L. monocytogenes 

growth (Hoelzer et al., 2012a) 
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Predictive models can be divided into three groups; Survival/inactivation models, 

boundary models, and growth models (Perez-Rodriguez and Valero, 2013). Based on 

their development, predictive models can also be divided into three groups;  

2.7.1 Primary Models 

Marks (2008) defined the primary models as the description of population change 

as a function time under specific conditions. Perez-Rodriguez and Valero, (2013) 

indicated that primary models should explain the microbial growth accurately with the 

fewest of variables. 

Monsalve (2008) characterized microbial growth curve by four main phases as 

follows: (1) the lag phase or the adaptation period described as an adjustment period 

throughout which bacterial cells adapt themselves to get advantage of the new 

environment and initiate exponential growth; (2) the exponential or logarithmic phase 

defined as the grow of microorganisms in their environment until they reach a maximum 

population level; (3) the stationary phase defined as the time when the growth rate of 

microorganisms equals the death rate of microorganisms; and (4) the death phase stated 

as the period when the microbial population starts to decrease because of reduced 

concentration of nutrients or physiological sate of cells. 

2.7.1.1 The Logistic Model 

 A three parameter logistic model was used to predict the growth of L. 

monocytogenes in fresh-cut cantaloupe (Fang et al., 2013). Fujikawa et al. (2004) 

reported that although bacterial growth curves are generally sigmoid on a semi-

logarithmic plot, the logistic model generates a convex curve consisting of a 
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monotonously increasing portion and stabilizing one, without a lag phase at the initial 

period. Therefore, for fitting the bacterial growth data, the equation of logistic model 

was modified as follows (Chowdhury et al., 2007): 

𝑦(𝑡) = 𝐶 + (𝐴/(1 + exp(−𝐵(𝑡 − 𝑀))))   (2.1) 

herein, C is the initial level of inoculation (log CFU/g); A represents the difference 

between the maximum and minimum growth values (log CFU/g); M is the time (hours) 

at which the slope of the sigmoidal growth reaches a maximum value; and B represents 

the maximum growth rate relative to the amount of growth at time M.   

2.7.1.2 Gompertz Model 

Isothermal microbial growth can be described with a sigmoidal function (Peleg 

and Corradini, 2011). Gompertz model is probably the most used empirical based 

sigmoidal function in predictive microbiology (Marks, 2008). The Gompertz model was 

used to describe the growth of L. monocytogenes in lettuce (Ding et al., 2010). The 

Gompertz growth model is given as follows (Gibson et al., 1988):  

𝑁(𝑡) = 𝐶 + 𝐴 ∗ exp(− exp(−𝐵(𝑡 − 𝑀)))   (2.2) 

herein, C is the value of the lower asymptote (log CFU/g); A is the asymptotic term 

(log10), M is the time at which the slope of the sigmoidal growth reaches a maximum 

value and the B is the maximum growth rate relative to the amount of growth at time. 

2.7.1.3 Baranyi and Roberts Model 

Baranyi and Roberts model was used in many studies regarding to fresh produce 

to estimate the growth of L. monocytogenes (Koseki and Isobe, 2005a; Ding et al., 2010; 

Puerta-Gomez et al., 2013a; Danyluk et al., 2014). In several studies, this dynamic 
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model was successfully implemented for a variety of growth conditions such as 

temperature, pH, and water activity. DMFit Excel Add-In software (Norwich, UK) is 

used to fit the model. Baranyi and Roberts (1994) described the differential equation that 

used in the Baranyi model as: 

𝑑𝑥

𝑑𝑡
= 𝛼(𝑡) ∗ µ𝑚𝑎𝑥 ∗ 𝑢(𝑥) ∗ 𝑥  (0≤ t < ∞; 0 < x) 

 (2.3) 

where, α(t) is a process of adjustment function (CFU/g); u(x) is the indication of the 

inhibition function as it explains the transition of the growth curve to the stationary 

phase (CFU/g); µmax is the maximum growth rate (h-1). 

 The logarithm of the solution of Eq. (1), y (t) = ln (x(t)), can be expressed as: 

𝑦(𝑡) = 𝑦𝑜 + µ𝑚𝑎𝑥 ∗ 𝐹(𝑡) − ln(1 +
𝑒µ𝑚𝑎𝑥𝐹(𝑡)−1

𝑒
(𝑦𝑚𝑎𝑥−𝑦𝑜)

)  

 (2.4) 

𝐹(𝑡) = 𝑡 +
1

𝑣
𝑙𝑛(𝑒−𝑣𝑡 + 𝑒−ℎ𝑜 − 𝑒(−𝑣𝑡−ℎ𝑜))   

 (2.5) 

herein, y(t) is the natural logarithm of the population at time t (ln CFU/g); yo 

represents the initial population number (ln CFU/g); ymax is the maximum population (ln 

CFU/g); ho stands for µmax*tlag, where tlag is the lag time (hours); µmax is the maximum 

specific growth rate (1/hours); v is the rate of increase of the critical substrate. After the 

inoculation, it is assumed that the critical substrate grows at the same specific rate as the 

cells in the exponential phase, v= µmax.  
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2.7.2 Secondary Models for the Maximum Growth Rate 

Secondary models estimate the changes in the parameters of primary models with 

the intrinsic and extrinsic effects such as temperature, pH, and water activity (Perez-

Rodriguez and Valero, 2013). These models predict the changes in the parameters of 

primary models such as the maximum specific growth rate and lag time. 

2.7.2.1 Square-Root Models 

Secondary models were suggested by Ratkowsky et al. (1982), who determined a 

linear relationship between the square root of the maximum growth rate and temperature.  

√µ𝑚𝑎𝑥 = 𝑏 ∗ (𝑇 − 𝑇𝑚𝑖𝑛)     (2.6) 

herein, b represents a regression coefficient (oC-1*h-1/2); T represents the intercept of the 

predicted function and the temperature axis (oC); Tmin represent the notional minimum 

temperature below which maximum growth rate is equal to 0 (oC). 

Then, this model was developed to cover the whole temperature growth range 

(Perez-Rodriguez and Valero, 2013). 

√µ𝑚𝑎𝑥 = 𝑏 ∗ (𝑇 − 𝑇𝑚𝑖𝑛)(1 − 𝑒𝑐(𝑇−𝑇max))   (2.7) 

herein, c is a parameter (oC); Tmax is the theoretical maximum temperature at which 

growth can be observed (oC). 

2.8 Quantitative Microbial Risk Assessment (QMRA) 

Quantitative microbial risk assessment (QMRA) is a systematic approach to 

evaluate information from different sources concerning the fate of pathogens in food 

chain and determine the size of public health risk (Perez-Rodriguez and Valero, 2013). 

QMRA is as a predictive and decision-making tool and aims to determine the data gaps 
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in the database and requirement of additional information (Montville and Schaffner, 

2005). The QMRA approach includes four components: (1) hazard identification, (2) 

exposure assessment, (3) hazard characterization (Dose-response assessment), and (4) 

risk characterization (Perez-Rodriguez and Valero, 2013). These four components are 

described in detail in Chapter IV. 

To this date, available QMRA models for the listeriosis risk associated with fresh 

and fresh-cut produce throughout the supply chain are very limited. In the U.S., the 

preliminary QMRA framework for risk linked to ready to eat food from farm to 

consumption contributed with initial risk estimates for L. monocytogenes was conducted 

by USFDA (2003).  

Carrasco et al. (2010) determined the risk of L. monocytogenes in ready-to-eat 

lettuce salads from farm to table in Spain. In that study, the estimated number of 

listeriosis cases was 102 and 105 for low and high risk subpopulations respectively. 

Tromp et al. (2010) assessed the risk of E. coli 0157:H7, Salmonella, and L. 

monocytogenes in ready to eat vegetables including lettuce consumed at salad bars, 

based on modeling supply chain logistics in the Netherlands. That study showed that the 

risk of listeriosis-induced fetal mortality in the perinatal population raised from 1.24*10-

4 (fixed storage time) to 1.66*10-4. Similarly, Franz et al. (2010) assessed the risk of E. 

coli 0157:H7, Salmonella, and L. monocytogenes in leafy green vegetables consumed at 

salad bars in Netherlands. They estimated the average number of cases per year linked to 

the consumption of leafy greens at salad bars were 166, 187, and 0.3 for E.coli 0157:H7, 

Salmonella, and L. monocytogenes respectively. Puerta-Gomez et al. (2013b) assessed 
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risk of contamination of ready-to-eat spinach with Salmonella in U.S., and found that 

irradiation was the most effective means to reduce the number of contaminated samples 

from 84% to 0.1%. Ding et al. (2013) determined risk of L. monocytogenes on lettuce 

from farm to table in Korea. That study found that the final contamination levels of L. 

monocytogenes at restaurant and home were -1.50 log CFU/g and -0.146 log CFU/g 

respectively. They also estimated the average number of annual listeriosis cases varied 

from 559 to 817, depend on the different r-values employed in the exponential dose-

response model. Recently, Chen et al (2013) conducted a risk assessment framework for 

fresh-cut cantaloupe. Although the study covered only senior population, annual 

estimated cases were found as 2.39.  
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CHAPTER III 

MODELING GROWTH OF LISTERIA INNOCUA ON FRESH-CUT 

CANTALOUPE AND FRESH-CUT ROMAINE LETTUCE  

3.1 Introduction 

Growth of pathogens is the most common cause of food poisoning. This is the 

reason why growth patterns of selected bacteria have been studied extensively. These 

patterns are often described with mathematical models which are valuable tools for 

manufacturers to develop process controls to reduce the risk of pathogen contamination 

in fresh and processed foods. These predictive models can also provide an estimate of 

the product’s shelf- life based on microbial safety. 

Fresh produce can be contaminated with pathogens in field or post-harvest 

applications. As mentioned in Chapter II, although the prevalence of L. monocytogenes 

in fresh produce is relatively lower than other common pathogens, a higher mortality 

rate makes this pathogen a serious problem. Furthermore, the lack of heat treatment in 

the process, and the ability of L. monocytogenes to grow at low temperatures dictate the 

need for researchers to understand the growth behavior and treatment response of this 

pathogen. 

Despite its feasibility for laboratory experiments, L. monocytogenes cannot be 

safely studied in every environment because of the risk of exposure of vulnerable 

individuals. As a result, the use of a surrogate organism is a convenient way to 

understand the behavior of this pathogen in foods and food processing environments 

(Milillo et al. 2012). L. innocua is usually used as a surrogate for L. monocytogenes due 
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to their close genetic relationship (Guo et al., 2013). Recently, Omac et al. (2015) 

validated the use of L. innocua as a surrogate of L. monocytogenes for growth modelling 

in baby spinach leaves. In the current study, due to the lack of access to a biosafety level 

two (BSL2) lab, L. innocua was used as a valid surrogate of L. monocytogenes to obtain 

growth data in fresh-cut romaine lettuce and fresh-cut cantaloupe. 

 Therefore, the objectives of this study were to; (1) predict the growth of L. 

innocua on fresh-cut romaine lettuce and fresh-cut cantaloupe as a function of storage 

temperature by using different primary models, (2) compare and validate the goodness of 

fit of the primary models by using statistical validation tools, (3) determine the effect of 

washing treatments on the reduction L. innocua on both produces and, (4) develop and 

validate dynamic models for prediction of growth of L. innocua under different storage 

temperatures. These results were used as input in the quantitative risk assessment model 

(Chapter IV). 

3.2 Materials and Methods 

3.2.1 Food Material 

  Fresh-cut romaine lettuce (Lactuca sativa, var longifolia) was purchased from a 

local grocery store. All products had the same self-life date to ensure uniformity. The 

product was stored in the original package at 5°C for no longer than 24 hours prior to the 

experiments. All products were examined before experiments and the hearts showing 

signs of wilt and decay were discarded. 5-g of produce was weighted and dispensed into 

sterile stomacher bags (18 oz. Whirl Pak® bag) before inoculation. This procedure is 

similar to that described by Puerta-Gomez et al. (2013). 
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 Whole cantaloupes (Cucumis melo), free of visual defects, were randomly 

purchased from a local grocery store in the summer season and stored at 5°C for less 

than 24 hours. Before the experiments, each cantaloupe was washed with tap water for 3 

minutes and then the rind and the core were removed with a sterile knife. The fruits were 

subdivided into 5-g cubic shaped portions and dispensed into a sterile stomacher bag (18 

oz. Whirl Pak® bag) before inoculation. 

3.2.2 Initial Natural Microbiota Enumeration 

Aerobic mesophilic bacteria were enumerated by spread plating on Tryptic Soy 

Agar (TSA) incubated at 36°C for no more than 48 hours. Yeasts and molds were 

quantified by spread plating on Sabouraud Dextrose Agar (pH 5.6, adjusted with 0.1% 

citric acid) after 5 days of incubation at 20°C (VWR International, Model 1510E, IL, 

USA).  Plate counts of total aerobic organisms, yeasts, and molds will be evaluated only 

at the beginning of every experiment.  

3.2.3 Inoculation and Preparation of Fresh-Cut Cantaloupe and Fresh-Cut Lettuce 

For each produce, 5-g portions were distributed into sterile stomacher bags (18 

oz. Whirl Pak® bag), and an initial inoculum (0.5 ml) were injected. The initial bacteria 

load was 102 CFU/ml L. innocua in order to mimic natural contamination (Omac et al., 

2015). To dispense the inoculum uniformly, stomacher bags were shaken gently for 30 

times. Different sampling times were determined for each temperature (5, 10, 25, 30, and 

36oC). For each sampling time, four bags of inoculated samples were prepared. The 

experiment will be performed in triplicate. The samples were put in an incubator, and 

maintained at constant temperature (5, 10, 20, 30, and 36oC). The samples were held in 
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incubator for 16 days, 12 days, 60 hours, 48 hours and 36 hours at 5, 10, 20, 30, and 36 

oC respectively.  

3.2.4 Bacterial Cultures  

Rifampicin resistant (80 µg/ml) culture of L. innocua (NRCC B33076) was 

obtained from Dr. Carmen Gomes’ stock laboratory (Department of Biological and 

Agricultural Engineering, Texas A&M University) stored at -80°C. A loop was used to 

take a single inoculum from the frozen culture. Optimal temperature for incubation of L. 

innocua is around 37°C (Ryser and Marth, 2007). Inoculum was put onto Tryptose 

Phosphate Broth (TPB; Difco, Detroit, MI), on which the inoculum was incubated for 24 

hours at 36°C. Next, the inoculum was taken with a loop and streaked on Oxford 

Listeria-selective agar supplemented with 80 µg/ml of rifampicin (OLR) in order to 

obtain single colony isolates. Inoculum was incubated at 36 °C for 24 h, and this process 

was repeated through two successive transfers on (OLR). Obtained colonies were 

rifampicin resistant. These colonies were kept on a TSA slant at 5°C, and, were used in 

90 days. 

3.2.5 Inoculum Preparation  

The inoculum in TSA slant was taken with a loop, and transferred to TPB test 

tubes. The inocula in TPB tubes were incubated at 36°C for 18 hours. After 18 hours, 

incubated inocula were centrifuged (3000 X g for 15 min) and washed with Difco 

buffered peptone water for three times consecutively. Afterwards, each pellet was 

suspended in 0.1% peptone water (PW). To determine the initial concentration, the 

OD600 of the cell suspensions was adjusted to 0.5 of absorbance for bacterial preparation. 
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Serial dilutions of the suspension were made in test tubes of 9 ml PW, in order to verify 

initial concentration will be 107 CFU/ml. Subsequently, the suspension was plated on 

OLR, and incubated at 36°C until countable visible black colonies obtained. To acquire 

102 CFU/ml of L. innocua and strains, series of dilutions of initial population in PW 

were prepared. 

3.2.6 Washing and Sanitizing Treatments 

In this study, romaine lettuce was washed after cutting, and cantaloupe was 

washed as whole to simulate standard industrial practices. Four bags of romaine lettuce 

samples (5-g per 18 oz Whirl Pak® bag) with different initial inoculum loads (103, 104, 

and 105 CFU/ml) of L. innocua were washed with tap water for 10-minutes at room 

temperature. During the treatment, the washing solution was sometimes stirred to 

increase the water contact.  Then, four different bags of samples (5-g per sample in 18 oz 

Whirl Pak® bag) with same initial loads as for the water washing treatment were treated 

with 200 mg/liter of chlorinated water at pH 7.0 (reduced with 0.1 N of HCI) for 10-

minutes at room temperature. Similarly, the solution was stirred occasionally during the 

treatment.  After the treatment, each 5-g sample was placed in an 18-oz. stomacher bag 

and kept at 5oC for 2 hours (Omac et al. 2015). Then, the number of microorganisms 

remaining on the surface of the products was determined by using microbial 

enumeration methods.  

Washing of cantaloupe was carried out as described by Vadlamudi et al. (2012).  

500 ml bacterial solutions were prepared as described above and transferred into a bowl 

containing 4500 ml % 0.1 peptone water solution to produce 5 liters of solution. Whole 
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cantaloupes were submerged into the solution for 3 minutes, and gently agitated with 

gloves. After every sample, gloves were changed to eliminate the risk of cross 

contamination. The fruit samples were allowed to dry at room temperature in a biosafety 

cabinet (Labconco Purifier Logic Class II Type 2, Kansas City, MO) for 2 hours prior to 

the washing treatments. Sanitizers were prepared as described before. All samples 

(including those subject to chlorine washing) were washed for 3 minutes under tap 

water. After that, chlorine washing samples were submerged into 5 liters of a 200 

mg/liter chlorine solution, and rotated for 5 minutes. Next, five samples were collected 

with a sterile cork borer (1 cm2 area), and a sterile scalpel and placed inside an 18 oz 

Whirl Pak® bag (Nasco, Fort Atkinson, WI) containing 99 ml 0.1 % of PW. Series of 

dilutions were prepared to enumerate the L. innocua cells. The colonies were divided by 

5 to determine the count in CFU/cm2. 

3.2.7 Microbial Enumeration 

Microbial enumeration was conducted as described by Omac et al. (20015). Each 

5-g sample of fresh produce inoculated with L. innocua was hand pummeled with 45 ml 

of Difco buffered peptone water (BPW; Difco, Detroit, MI) in an 18 oz Whirl Pak® bag 

until samples were reduced to small pieces, allowing the internal structure to be exposed. 

Samples of 1 ml from the original Whirl Pak® bag and 0.1 ml from serial dilution in 0.1 

% of PW were plated in duplicate (0.1 ml) on Oxford Listeria-selective agar 

supplemented with 80 µg/ml of rifampicin for Listeria innocua enumeration. Plates were 

incubated for 24 h at 37oC. After incubation, visible colonies were enumerated with the 

use of a magnifier counter (detection limit was 10 CFU/g of sample). 
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3.2.8 Isothermal Growth Data 

In order to assess bio-kinetic growth temperatures at different levels of initial L. 

innocua inoculum and natural microbiota, growth data of Listeria innocua were 

determined at five different temperatures (5, 10, 20, 30 and 36C) were Four samples (18 

oz. stomacher bags) were prepared for each sampling time. Each of the inoculated 

samples was placed in an incubator (VWR International, Model 1510E, IL, USA), and 

maintained at constant temperature. After waiting 10 min for temperature stabilization, 

all samples were taken from the stomacher bags to calculate the initial inoculum using 

microbial enumeration techniques. Three independent replications were carried out at 

each temperature.  

3.2.9 Microbial Growth Models 

3.2.9.1 Primary Model  

In this study, Baranyi-Roberts (Eq. 2.4), Gompertz (Eq. 2.2), and Logistic (Eq. 

2.1) models were evaluated to determine their feasibility to describe the four main 

growth phases, i.e. lag, acceleration, deceleration, and stationary. DMFit Excel Add-In 

software (Norwich, UK) and SigmaPlot software (Systat Software Inc. San Jose, CA) 

were be used to fit the models (Chapter II, Section 2.7.1) 

 Statistical analysis were run to validate the acceptability of the models. Hence, 

the ability of the model to accurately predict the growth of L. innocua in both produces 

as a function of temperature was evaluated by the root mean square error (RMSE) and 

coefficient of determination (R2). RMSE value is the difference between observed and 
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predicted data and values close to zero are desirable as they indicate that predicted 

values are very close to the observed values. R2 was calculated as follows, 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
       (3.1) 

Where, SSR is the sum of squares of residuals and SST is the total sum of squares. The 

root mean squared error (RMSE) was calculated as, 

𝑅𝑀𝑆𝐸 = √
𝑆𝑆𝐸

𝑁−𝑝
       (3.2) 

Herein, N is the number of observations, and p is the number of model parameters. The 

above statistical quantities were calculated at each storage temperature after fitting the 

growth data into Eqs. (2.1), Eq. (2.2), and Eq. (2.4) (Chapter II, section 2.7.1).  

3.2.9.2 Secondary (Dynamic) Models 

 The modified Ratkowsky equation  (Eq. 2.6, Chapter II) was used to describe the 

effect of temperature on the maximum growth rate, max (log CFU/g/h), by,  

√𝜇𝑚𝑎𝑥 = 𝑏 ∗ (𝑇 − 𝑇𝑚𝑖𝑛)     (2.6) 

Herein, the parameter Tmin represents the theoretical minimum temperature at which the 

target bacterium can grow, and the parameter b is a regression coefficient. Equation (2.6) 

represents the microbial growth rate up to the optimum growth temperature for any 

temperature change (e.g., a dynamic model). 

 To predict lag time, tlag, an inverse Ratkowsky-type model was used, (from Eq. 

2.7, Chapter II), 
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𝑡𝑙𝑎𝑔 = (𝑐 ∗ (𝑇 − 𝑇min))
−2      (3.3) 

Where c is a regression coefficient. 

3.2.9.3 Validation of Dynamic Models 

 Three validation tests were performed: (1) Bias Factor (Bf), (2) Accuracy Factor 

(Af), and (3) the standard error of prediction expressed as a percentage (%SEP). 

The bias factor is a measurement of the model prediction bias that computes the 

differences between the means of actual and predicted values (Ding et al., 2010),  

𝐵𝑓 = 10(
∑ log(

𝑂

𝑃
)/𝑛)𝑛

𝑖=1       (3.6) 

The accuracy factor measures the accuracy of calculation as the proximity of 

predicted values to the actual values (Ding et al., 2010), 

𝐴𝑓 = 10(
∑ |log(

𝑃

𝑂
)|/𝑛)𝑛

𝑖=1      (3.7) 

The Standard Error of prediction is a relatively typical deviation of the mean 

prediction values, 

%𝑆𝐸𝑃 =
100

𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑂)
√
∑(𝑂−𝑃)2

𝑛
     (3.8) 

where, O is the observed value; P is the predicted value; and n is the number of 

observations and predictions. 

3.2.10 Statistical Analysis  

 Data analysis for comparison between the products and washing treatments was 

performed using SPSS software (version 20.0 for Windows, 2011). Statistical 

differences between variables were analyzed for significance by one-way ANOVA using 
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Tukey`s multiple range tests. In addition, growth models for both produces were 

compared by independent sample t-test. Statistical significance was determined at the 

P<0.05 level. 

3.3 Results and Discussion 

3.3.1 Effect of Washing Treatments on Reduction of L. innocua Population 

Since cantaloupes were washed as whole to simulate industrial practices, the log 

reduction in L. innocua population on the surface of the cantaloupe was determined as 

log CFU/cm2. As expected, chlorine washing was significantly more effective (p<0.05) 

than water washing for both products (Table 3.1). Furthermore, the level of initial 

population load had no effect (p>0.05) on the effectiveness of the chlorine washing 

treatment of romaine lettuce. Due to uncertainty of attachment of L. innocua to 

cantaloupe surface, the effect of initial population level could not be tested. The 

reduction of L. innocua population on cantaloupe rinds was significantly lower (p<0.05) 

than on fresh-cut romaine lettuce, probably due to the different contact surfaces. For 

instance, Annous et al (2005) reported that the netted surface of cantaloupe provides 

pathogens greater attachment surfaces thus reducing the effectiveness of sanitizers. 
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Table 3.1. Effect of washing treatment on the log-reductions of L. innocua inoculated 
on fresh-cut romaine lettuce and whole cantaloupe at room temperature. 

  Population  
Reduction (log CFU/g)1 

Produce Initial population load 
(log CFU/g)1 Water only Chlorinated water 

Fresh-cut 

romaine lettuce 

3 0.63a 
2(0.17) 

0.89b 
(0.04) 

4 0.55a 
(0.16) 

1.05b 
(0.11) 

5 0.53a 
(0.05) 

1.01b 
(0.12) 

Cantaloupe surface 

4.4 
(0.67) 0.18c 

(0.15) 
0.57d 
(0.19) 

 
1: Reduction and initial population load in cantaloupe surface is determined as log 
CFU/cm2  
2: means are values of 8 replication; Standard deviation 
a,b,c : Means within a column or row, which are not followed by a common superscript 
letter are significantly different (P<0.05). 

 

A considerable amount of literature has been published on the effect of washing 

treatments on fresh-cut vegetables. In the case of leafy greens such as lettuce, for 

example, Beuchat et al. (2004) inoculated different amounts of L. monocytogenes onto 

romaine lettuce, then compared water only and chlorinated water treatments. The authors 

observed reductions of 0.38 and 1.05 logs in populations treated with water and chlorine, 

respectively. Another study found that washing with chlorine (200-ppm, 10 min) 

reduced L. monocytogenes on shredded lettuce by 1.7 CFU/g (Zhang and Farber, 1996). 

Likewise, Burnett et al. (2004) determined the reduction of L. monocytogenes population 

on cut iceberg to be 0.6 and 1.76 log CFU per lettuce piece for water and 200 ppm 
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chlorine, respectively. Omac et al. (2015) inoculated different loads of L. monocytogenes 

onto fresh baby spinach leaves and confirmed that washing with chlorine was more 

effective with 0.97, 1.05 and 0.87 log CFU/g reductions for 103, 104, and 105 log CFU/g 

population initial loads, respectively. All these findings corroborate the suggestion of 

Matthews (2009) that chemical sanitizers generally reduce the bacteria population 

between 1 and 2 logs in fresh vegetables. 

The number of studies on the effect of sanitizers on the population of L. 

monocytogenes in cantaloupe are limited compared to fresh-cut lettuce. The lack of 

studies on this pathogen can be explained by the fact that L. monocytogenes is not as 

common on cantaloupe as other pathogens such as Salmonella.  However, due to recent 

outbreaks, an increase in treatment studies should be expected. Ukuku and Fett (2002) 

inoculated L. monocytogenes onto cantaloupe rinds and then treated the samples with 

1000 ppm chlorine resulting in more than 2 log CFU/g reduction. Although our results 

differ from that study, this inconsistency may be due to the difference in free chlorine 

level. In current study, free chlorine level was 5 time less than Ukuku and Fett (2002).  

3.3.2 Growth Models of L. innocua  

3.3.2.1 Fresh-Cut Romaine Lettuce 

All the three models (Baranyi-Roberts (Eq. 2.4), Gompertz (Eq. 2.2) and Logistic 

(Eq. 2.1) yielded RMSE and R2 values that indicate their goodness of fit (Tables 3.2 to 

3.4).The  Logistic model yielded 0.993 R2 value while the other models provided 0.98 

R2. In case of RMSE, the Baranyi-Roberts model provided the lowest RMSE value, but 

the difference between the models was not significant (p>0.05). Overall, it can be said 
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that all models fitted the data well for both products at all temperatures (Figures A.11 to 

A.19, Appendix A). 

 

Table 3.2 Estimated maximum population density, maximum growth rate, and lag 
time of L. innocua inoculated on fresh-cut romaine lettuce by using 
Baranyi-Roberts model (Eq. 2.4). 

Temperature 
(oC) 

byo 
(log 

CFU/g) 

cymax 
(log 

CFU/g) 

dµmax 
(log 

CFU/g/hr) 

etlag 
(Hours) R2 

fRMSE 
(log 

CFU/g) 

5 2.34 
±0.005g 

4.96 
±0.007 

0.011 
±0.0005 

57.86 
 0.983 0.1 

10 2.36 
±0.06 

5.65 
±0.3 

0.02 
±0.001 0 0.975 0.16 

25 2.02 
±0.03 

6.71 
±0.07 

0.265 
±0.03 0 0.962 0.3 

30 2.81 
±0.09 

6.97 
±0.11 

0.314 
±0.03 0 0.971 0.23 

36 2.73 
±0.52 

7.73 
±0.31 

0.314 
±0.043 0 0.989 0.163 

byo: Initial population density  (log CFU/g) 
cymax: Maximum population density  (log CFU/g) 
dµmax: Maximum growth rate (log CFU/g/h) 
etlag: Lag time  (hours) 
fRMSE: Root mean square root (Eq. 3.2) (log CFU/g) 

 

At 5oC, the three models yielded similar (p>0.05) values of the maximum 

population density (ymax) and maximum growth rate (µmax) (Tables 3.2-3.5). At 10oC 
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however, each model provided a different (p<0.05) maximum growth rate (µmax). Also, 

the difference in maximum population density (ymax) estimated by Gompertz (Eq. 2.2) 

and Logistic (Eq. 2.1) models was significant (p<0.05). Perni et al. (2005) reported that 

when L. monocytogenes was grown in liquid media, Gompertz and Logistic models 

provided significantly different growth rates than Baranyi and Roberts model. Authors 

suggested that since Gompertz and Logistic models were empirical models, they might 

be affected by the absence of lag time. At 25oC, the µmax calculated with the Baranyi and 

Roberts model was significantly lower than other models (p<0.05) whereas there was no 

difference among the models in terms of ymax (p>0.05). At 30oC, the Logistic model 

estimated significantly higher ymax values (p<0.05). The maximum growth rates (µmax) 

provided by Baranyi-Roberts and Logistic models were also different (p<0.05) at this 

temperature. Lastly, there was no difference among the three models at 36oC. Lag time 

was not observed above 5oC, suggested that L. innocua can begin exponential growth 

after a very short lag or no lag time. Although the Baranyi and Roberts model yielded 

significantly lower lag time than other models (p<0.05), when compared with the raw 

data, this estimation was more realistic compared to the other models. 

As expected, both maximum growth rate and maximum population density 

increased significantly (p<0.05) with an increase in temperature. The effect of 

temperature was more drastic at 10oC and above. This result is explained by the fact that 

L. innocua is mesophilic, and grows much faster when the temperature approaches the 

optimum conditions which is 37oC (Lasagabaster and de Maranon, 2014).  
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Table 3.3. Estimated maximum population density, maximum growth rate, and lag 
time of L. innocua inoculated on fresh-cut romaine lettuce by using 
Gompertz Model (Eq. 2.2). 

Temperature 
(oC) 

byo 
(log 

CFU/g) 

cymax 
(log 

CFU/g) 

dµmax 
(log 

CFU/g/hr) 

etlag 
(Hours) R2 

fRMSE 
(log 

CFU/g) 

5 2.398 
±0.025g 

4.85 
±0.2 

0.014 
±0.0015 

150.53 
 0.995 0.065 

10 2.01 
±0.1 

5.83 
±0.3 

0.023 
±0.0005 0 0.991 0.71 

25 2.22 
±0.43 

7.035 
±0.23 

0.314 
±0.0022 0 0.991 0.14 

30 2.74 
±0.067 

7.11 
±0.12 

0.4 
±0.05 0 0.99 0.15 

36 2.58 
±0.38 

7.85 
±0.33 

0.53 
±0.14 0 0.998 0.68 

byo: Initial population density  (log CFU/g) 
cymax: Maximum population density  (log CFU/g) 
dµmax: Maximum growth rate (log CFU/g/h) 
etlag: Lag time  (hours) 
fRMSE: Root mean square root (Eq. 3.2) (log CFU/g) 

 

Overall, these results match with previous studies. For instance, Koseki and 

Isobe (2005a) and Carrasco et al (2008) determined similar ymax values for L. 

monocytogenes on iceberg lettuce for temperatures between 5 and 25oC. Lu et al. (2007) 
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found bacterial growth rate on fresh-cut lettuce 0.0176, 0.043, and 0.0613 log CFU/g/h 

at 0, 4, and 25oC respectively.  

 
 
 

Table 3.4. Estimated maximum population density, maximum growth rate, and lag 
time of Listeria innocua inoculated on fresh-cut romaine lettuce by using 
Logistic Model (Eq. 2.1). 

Temperature 
(oC) 

byo 
(log 

CFU/g) 

cymax 
(log 

CFU/g) 

dµmax 
(log 

CFU/g/hr) 

etlag 
(Hours) R2 

fRMSE 
(log 

CFU/g) 

5 2.40 
±0.004g 

4.97 
±0.08 

0.013 
±0.0013 158.66 0.996 0.06 

10 2.41 
±0.01 

5.99 
±0.33 

0.025 
±0.0002 0 0.993 0.72 

25 2.05 
±0.01 

7.03 
±0.09 

0.33 
±0.023 0 0.994 0.14 

30 2.98 
±0.01 

8.3 
±0.04 

0.45 
±0.04 0 0.996 0.1 

36 2.60 
±0.35 

7.88 
±0.31 

0.43 
±0.05 0 0.999 0.68 

byo: Initial population density) (log CFU/g) 
cymax: Maximum population density  (log CFU/g) 
dµmax: Maximum growth rate (log CFU/g/h) 
etlag: Lag time  (hours) 
fRMSE: Root mean square root (Eq. 3.2) (log CFU/g) 
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Fang et al. (2013) reported close growth rates at 25, 30, and 35oC for L. 

monocytogenes on RTE lettuce. Wang et al. (2013) stated that µmax values for L. 

monocytogenes growth on cabbage were between 0.008 and 0.320 log CFU/g/h at 4-

30oC. Omac et al. (2015) reported that there is no difference between the growth of L. 

innocua and L. monocytogenes in fresh baby spinach. Although same experiments 

should be conducted with L. monocytogenes, these findings are encouraging and 

supports the idea that L. innocua can be used as a surrogate for L. monocytogenes in 

modeling studies of pathogen growth in fresh produce. 

3.3.2.2 Fresh-Cut Cantaloupe 

Like romaine lettuce, there was no difference in maximum growth rate (µmax) and 

maximum population density (ymax) values at 5oC for L. innocua in fresh cut-cantaloupe 

(Tables 3.5 to 3.7).  

Similar to romaine lettuce, at 10oC, Baranyi and Roberts model provided 

significantly lower (p<0.05) maximum population density (ymax) than the other models 

(p<0.05). This difference can be associated with the absence of lag stage. As L. innocua 

immediately began to grow exponentially at 10oC, empirical models might 

overestimated the parameters. 
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Table 3.5. Estimated maximum population density, maximum growth rate, and lag 
time of L. innocua inoculated on fresh-cut cantaloupe by using Baranyi 
and Roberts model (Eq. 2.4). 

Temperature 
(oC) 

byo 
(log 

CFU/g) 

cymax 
(log 

CFU/g) 

dµmax 
(log 

CFU/g/hr) 

etlag 
(Hours) R2 

fRMSE 
(log 

CFU/g) 

5 2.39 
±0.06g 

5.30 
±0.1 

0.017 
±0.005 80.73 0.997 0.042 

10 2.36 
±0.1 

7.45 
±0.09 

0.037 
±0.04 0 0.989 0.18 

25 2.60 
±0.09 

7.17 
±0.06 

0.27 
±0.02 0 0.976 0.23 

30 3.04 
±0.08 

8.09 
±0.038 

0.31 
±0.03 0 0.974 0.26 

36 2.81 
±0.02 

8.34 
±0.087 

0.37 
±0.018 0 0.99 0.18 

byo: Initial population density) (log CFU/g) 
cymax: Maximum population density) (log CFU/g) 
dµmax: Maximum growth rate log CFU/g/h) 
etlag: Lag time) (hours) 
fRMSE: Root mean square root (Eq. 3.2) (log CFU/g) 

 

 

Similarly, at 25oC, maximum population densities (ymax) estimated by Baranyi-

Roberts and Logistic models were different (p<0.05), whereas there was no difference in 

maximum growth rate (µmax). Finally, there was no difference between the model 



 

44 

 

parameters at 36oC. Like fresh-cut romaine lettuce, lag time was observed only at 5oC. 

This result emphasize the fact that maintaining the cold chain is crucial in the fresh-cut 

cantaloupe processing and storage, as the pathogen grows immediately in higher 

temperatures. Fang et al. (2013) also reported that when the growth of L. monocytogenes 

was modeled on fresh-cut cantaloupe, the lag time was not observed at 8oC and above.  

 

Table 3.6. Estimated maximum population density, maximum growth rate, and lag 
time of Listeria innocua inoculated on fresh-cut cantaloupe by using 
Logistic Model (Eq. 2.4). 

Temperature 
(oC) 

byo 
(log 

CFU/g) 

cymax 
(log 

CFU/g) 

dµmax 
(log 

CFU/g/hr) 

etlag 
(Hours) R2 

fRMSE 
(log 

CFU/g) 

5 2.46 
±0.04g 

5.37 
±0.12 

0.02 
±0.04 91.37 0.996 0.07 

10 2.51 
±0.14 

8.06 
±0.09 

0.051 
±0.007 0 0.99 0.25 

25 2.75 
±0.03 

7.42 
±0.1 

0.32 
±0.026 0 0.995 0.11 

30 2.98 
±0.01 

8.30 
±0.03 

0.45 
±0.04 0 0.994 0.14 

36 3.05 
±0.01 

8.53 
±0.09 

0.47 
±0.03 0 0.989 0.21 

byo: Initial population density  (log CFU/g) 
cymax: Maximum population density  (log CFU/g) 
dµmax: Maximum growth rate  (log CFU/g/h) 
etlag: Lag time  (hours) 
fRMSE: Root mean square root  (log CFU/g 
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Results from this study show consistency with previous studies, in which lag 

time was not observed above 5oC (Fang et al., 2013; Danyluk et al., 2014). Also, Li et al. 

(2013) showed that unlike L. monocytogenes, Salmonella and E. coli O157:H7 did not 

grow on fresh-cut cantaloupe at low temperatures. Although Salmonella grew much 

faster than L. monocytogenes at 20oC and above, our results were expectedly higher at 

lower temperatures. This study confirms that Listeria spp. is a bigger problem in fresh 

produce at lower temperatures. When differences in the model parameters as a function 

temperature were examined, it was seen that maximum growth rate (µmax) and maximum 

population density (ymax) values increased significantly as the temperature increased with 

some exceptions. There was no difference in maximum growth rate (µmax) values at 30oC 

and 36oC.  Although maximum population density (ymax) was increased with time, this 

increase was not significant, and values were mostly stable at 10oC and above. These 

results are consistent with similar studies. Fang et al. (2013) reported that on fresh cut 

cantaloupe maximum population density was of L. monocytogenes was similar between 

10oC and 40oC. In that study, maximum population density was calculated 8±0.5 log 

CFU/g which is similar to the value sued in this study.  

To assess the differences in product-based model parameters, an independent 

sample t test was conducted at each temperature. Unsurprisingly, at every temperature, 

the maximum population density of L. innocua in fresh-cut cantaloupe was higher 

(p<0.05) than in fresh-cut romaine lettuce. Similarly, maximum growth rate (µmax) of L. 

innocua was higher (p<0.05) in fresh-cut cantaloupe compared to romaine lettuce except 
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at 25oC and 30oC. At these temperatures, while there was a difference between the 

growth rates, that difference was not significant (p>0.05).  

 

Table 3.7. Estimated maximum population density, maximum growth rate, and lag 
time of L. innocua inoculated on fresh-cut cantaloupe by using Gompertz 
Model (Eq. 2.2). 

Temperature 
(oC) 

byo 
(log 

CFU/g) 

cymax 
(log 

CFU/g) 

dµmax 
(log 

CFU/g/hr) 

etlag 
(Hours) R2 

fRMSE 
(log 

CFU/g) 

5 2.46 
±0.026g 

5.36 
±0.13 

0.02 
±0.004 86.84 0.996 0.07 

10 2.45 
±0.13 

7.98 
±0.09 

0.047 
±0.007 0 0.991 0.19 

25 2.71 
±0.06 

7.30 
±0.12 

0.3 
±0.03 0 0.99 0.16 

30 2.93 
±0.014 

8.27 
±0.025 

0.47 
±0.13 0 0.992 0.17 

36 2.80 
±0.04 

8.53 
±0.053 

0.45 
±0.03 0 0.99 0.2 

byo: Initial population density) (log CFU/g) 
cymax: Maximum population density  (log CFU/g) 
dµmax: Maximum growth rate  (log CFU/g/h) 
etlag: Lag time  (hours) 
fRMSE: Root mean square root (Eq. 3.2) (log CFU/g) 
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Because L. innocua is a mesophilic bacterium, it is possible that at the optimum 

temperature range the differences in growth media do not play a significant role. 

Although the differences in model parameters related to the food product can be related 

to many variables, the most likely reasons are the differences in pH and sugar content 

(Hoelzer 2012b).  

3.3.3 Secondary (Dynamic) Growth Models  

3.3.3.1 Fresh-Cut Romaine Lettuce 

The effect of temperature on maximum growth rate (µmax) described by 

Ratkowsky model (Eq. 2.13) is shown in Figure 3.1. Baranyi and Roberts model was 

modified to find a lag time at higher temperatures (Table 3.8). In addition, the 

coefficients of Eq. (3.4) and Eq. (3.5) are presented in Tables 3.9 and 3.10, respectively. 

 Ding et al. (2010) reported the b coefficient of the Ratkowsky model as 0.014 

for Gompertz model. Sant’ana et al. (2012) determined the coefficient as 0.0144 for L. 

monocytogenes in ready to eat lettuce. In another study, the coefficient b was found to be 

0.016 after growth of L. monocytogenes was modeled with Baranyi and Roberts model 

in lettuce (Koseki et al., 2005). Among the three primary growth models, the Baranyi 

and Roberts model provided the value closest that that found in the literature (b= 0.015, 

Table, 3.8). The reason for differences among the predictive growth models is discussed 

in Section 3.4.5. 
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Table 3.8. The b coefficient of Eq. (2.13) a used to predict the values of maximum 
growth rate as a function of temperature L. innocua inoculated in fresh-cut 
romaine lettuce. 

Primary Growth Model 
bb 

(log CFU/g/hr/oC) 
cTmin (oC) R2 

Baranyi and Roberts 0.0152 -4.26 0.93 

Gompertz 0.0179 -4.26 0.954 

Logistic 0.0177 -4.26 0.93 

a√𝜇𝑚𝑎𝑥 = 𝑏 ∗ (𝑇 − 𝑇𝑚𝑖𝑛) 
bb : coefficient of Eq. (2.6)  
cTmin : Minimum growth temperature of L. monocytogenes (oC) (Koseki and Isobe, 
2005a) 

 

The goodness of fit of the secondary models was evaluated with R2 values. R2 

values of the µmax were 0.93, 0.95, and 0.93 for Baranyi and Roberts (Eq. 2.4), Gompertz 

(Eq. 2.2), and Logistic (Eq. 2.1) models respectively. These results indicated that all 

primary models successfully described the pathogen growth. However, as temperature 

increased, the difference between the growth rates provided by Baranyi and Roberts 

model and others are also increased (Figure 3.1), which suggested that R2 values alone 

might not be enough to determine the goodness of fit, and further validation tools are 

needed.  
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Figure 3.1. Effect of temperature on the maximum growth rate (µmax) of L. innocua in 
fresh-cut romaine lettuce (Eq. 2.13) 
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Blue: Baranyi Model (2.4) 
Black: Logistic Model (2.1) 
Red: Gompertz Model (2.2) 
 

3.3.3.2 Fresh-Cut Cantaloupe 

Like in the case of fresh-cut romaine lettuce, the Ratkowsky model (Eq. 2.13) 

was used for secondary modeling of all primary growth models of the pathogen in fresh-

cut cantaloupe (Table 3.9). The effect of temperature on maximum growth rate (µmax) 

was shown in (Figure 3.2). 
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Figure 3.2. Maximum growth rate (µmax) of L. innocua on fresh-cut cantaloupe as a 
function of temperature (Eq. 2.13) 
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Blue: Baranyi Model (Eq. 2.4) 
Black: Logistic Model (Eq. 2.1) 
Red: Gompertz Model (Eq. 2.2) 

 

R2 values of the µmax were 0.97, 0.95, and 0.97 for Baranyi and Roberts, 

Gompertz, and Logistic models respectively. Although R2 values were slightly lower 

than fresh-cut romaine lettuce, the models were in the ‘good fit’ range. However, the gap 

the between Baranyi and Roberts, and the other models increased with the temperature. 

This pattern was similar to fresh-cut romaine lettuce model.  
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Table 3.9. The b coefficient of Eq. (2.6)a used to predict the values of maximum 
growth rate as a function of temperature L. innocua inoculated in fresh-cut 
cantaloupe. 

Model 
bb 

(log CFU/g/hr/oC) 
cTmin (oC) R2 

Baranyi-Roberts 0.0159 -4.26 0.972 

Gompertz 0.018 -4.26 0.959 

Logistic 0.0182 -4.26 0.97 

a √𝜇𝑚𝑎𝑥 = 𝑏 ∗ (𝑇 − 𝑇𝑚𝑖𝑛)  
bb : The coefficient of Eq. (2.6)  
cTmin : Minimum growth temperature of L. monocytogenes (oC) (Koseki and Isobe, 
2005a) 

 

It can be said that regardless of growth media, Gompertz and Logistic models 

overestimated the parameters at high temperatures. Furthermore, for Baranyi and 

Roberts model, R2 values of the tlag model were evaluated for both products, and found 

0.95 and 0.92 for cantaloupe and lettuce respectively. With the high R2 values it can be 

argued that the Ratkowsky model successfully describes the relationship between the 

maximum growth rate (µmax) and temperature. This model also provides valuable 

information on pathogen growth under fluctuating temperatures by estimating specific 

growth rates. 
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Table 3.10. Coefficients of aEq. (2.7) used to predict the values of lag time as a 
                    function of temperature for L. innocua 

Product 
bc  

(1/hours*oC) 
cTmin (oC) R2 

Cantaloupe 0.115 -4.26 0.953 

Romaine Lettuce 0.11 -4.26 0.921 

a: 𝑡𝑙𝑎𝑔 = (𝑐 ∗ (𝑇 − 𝑇min))
−2 

 bc : Coefficients of  aEq. (2.7) 
cTmin : Minimum growth temperature of L. monocytogenes (oC) (Koseki and Isobe, 
2005a) 

 

Danyluk et al. (2014) determined the coefficient (b) for L. monocytogenes in 

fresh-cut cantaloupe as 0.0186. The authors used a Baranyi and Roberts model to predict 

the growth curves. Although coefficient (b) of Ratkowsky model is slightly higher than 

fresh-cut romaine lettuce, this small difference has a significant impact in specific 

growth rates. Moreover, compared to chemical properties, higher sugar content and 

lower acidity makes cantaloupe a more suitable host to L. innocua than fresh-cut 

romaine lettuce (Hoelzer et al., 2012). A similar difference was observed in the lag time 

(tlag) modelling coefficients. Although the difference between the coefficients is 0.005 

(1/h/ oC), significant differences were observed when lag time (tlag) was estimated in 
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different temperatures. The differences between the growth rate (µmax) and lag time (tlag) 

coefficients were also discussed in the next chapter. 

All in all, modelling of L. innocua provided similar results with L. 

monocytogenes reported in literature. Also, the current study determined that L. innocua 

shows a very little or no lag time at 10°C and above temperatures. Danyluk et al. (2014) 

also reported that when the growth of L. monocytogenes was modeled in fresh-cut 

cantaloupe, no lag time was observed.  

3.3.4 Model Validation 

To evaluate the overall performances of the dynamic models, the maximum 

growth rate (µmax) values of L. innocua for both products obtained from the primary 

models were compared with the predictions obtained with the secondary models. 

For fresh-cut romaine lettuce, the bias factor (Bf) values were 1.00, 1.10, and 

0.98 in the same order (Table 3.11). Ross et al. (1996) and Valero et al. (2007) 

recommended that the bias factor (Bf) should range from 0.90 to 1.05 to be considered as 

good for determining the growth parameters. Similarly, Ding et al. (2010) proposed that 

Bf values in range of 0.7o to 1.15 were considered as ‘acceptable’. The results of this 

study indicated that the Baranyi and Roberts, and Logistic models provided good fit of 

growth data while the Gompertz model was only in the ‘acceptable’ range. 
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Table 3.11. Validation indices of developed models for maximum growth rate of L. 

innocua in fresh-cut romaine lettuce. 

Growth Model Bf (Eq. 3.6) Af (Eq. 3.7) %SEP (Eq. 3.8) 

Baranyi and 
Roberts 1 0.96 10.2 

 Gompertz 1.1 1.05 8.84 

 Logistic 0.98 1.01 8.86 

 

Standard error of prediction is the percentage of the difference between the 

dynamic model and primary model. %SEP values were 10.2, 8.8, and 8.8 for Baranyi 

and Roberts, Gompertz, and Logistic models, respectively. Although all growth models 

could be fit the experimental data very well, the Logistic model gave the best results. 

This result was rather unexpected. A possible explanation is that although at high 

temperatures Logistic model overestimated the parameters, the model gave the closest fit 

to experimental data at 5°C. The accuracy factor (Af) values were 1.01, 1.05, and 1.03 in 

the same order. Af values should be close to 1.0 to provide good fit of the data (Ding et 

al., 2010). Hence, the Af values for all tested models were in good fit range for both 

products. Omac et al. (2015) found the Af values of Baranyi and Roberts model as 1.43 
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and 1.37 for L. monocytogenes and L. innocua respectively. These results indicated that 

model performance might be affected from growth media as well. Ding et al. (2010) 

found Af value 1.1 for Gompertz model of L. monocytogenes growth in iceberg lettuce. 

According to accuracy factor Baranyi and Roberts model provided the overall best fit. 

 

Table 3.12 Validation indices of developed models for maximum growth rate of L. 

innocua in fresh-cut cantaloupe. 

Model Bf (Eq. 3.6) Af (Eq. 3.7) %SEP (Eq. 3.8) 

Baranyi and 
Roberts 0.96 1.03 9.6 

 Gompertz 1.09 1.15 10.1 

 Logistic 0.95 1.04 8.9 

 

For fresh-cut cantaloupe, the bias factor (Bf) and the standard error of prediction 

(%SEP) of the predictive models were 0.96, 1.09, and 0.95 and 9.6, 10.1, and 8.9 for 

Baranyi-Roberts, Gompertz, and Logistic, respectively (Table 3.12). Secondly, the 

accuracy of the models (Af) in fresh-cut cantaloupe were 1.03, 1.15, and 1.04, 

respectively. Like in the case of fresh-cut romaine lettuce, the Baranyi and Roberts 

model provided the best bias and accuracy factor values, while the %SEP value of 
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Logistic model was the best among the models. These results suggested that %SEP value 

might be affected by the model performance at specific temperature points and might not 

be a good validation tool alone. 

As mentioned Section 3.4.4.1., Baranyi and Roberts model yielded results similar 

to previous studies (Koseki and Isobe, 2005; Ding et al., 2010; Sant’ana et al., 2012). 

Moreover, the ‘b’ coefficient of the Ratkowsky model obtained from the Baranyi and 

Roberts model was the lowest, suggesting a more realistic growth estimation. Although 

all three models provided good fit overall, the bias and accuracy factors indicate that the 

Baranyi and Roberts model predicts values closest to the actual data. At high 

temperatures (10 to 36°C), both Gompertz and Logistic models overestimated the 

growth rate and maximum population density, probably because of the lack of adequate 

stationary phase at higher temperatures. This confirms the report by Buchanan et al. 

(1997) who observed that, compared to Baranyi and Roberts model, Gompertz model 

tends to overestimate the maximum population density when the stationary phase has 

limited data points. Perez-Rodriguez and Valero (2013) also reported that empirical 

models like Gompertz and Logistic models, overestimate the growth rate systematically. 

Hence, the findings from this study are consistent with the previous studies on the 

overestimation issue with Gompertz and Logistic models. Especially for the specific 

growth rates obtained from dynamic models, dramatic differences may occur between 

the models. Based on this analysis, the Baranyi-Roberts model was chosen to estimate 

the growth of the pathogen for use in the Quantitative Risk Assessment model (Chapter 

IV).  
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3.4 Conclusions 

Washing treatments reduced the L. innocua load in fresh-cut romaine lettuce 

around 1 log CFU/g. On the other hand, the treatments caused around 0.50 less log 

reduction in cantaloupe, probably due to the different surface characteristics of the 

produces. Chlorine washing was more than 300% effective than washing with water only 

in reducing microbial load on fresh-cut cantaloupe, whereas chlorinated water resulted in 

71%  more log reductions than water only washing in fresh-cut romaine lettuce. 

As expected, L. innocua grew faster as the incubation temperature increased. The 

highest increase in maximum growth rate (µmax) was observed between 10 and 25oC. 

The lag time was not observed at 10oC and above, suggesting L. innocua can start 

exponential growth immediately on fresh-cut produce. 

The three models evaluated in this study provided a good fit of the growth data. 

Moreover, all models provided similar growth rate (µmax) and maximum population 

density (ymax) values to those obtained on previous modeling studies on L. 

monocytogenes.  

 The secondary models provided good estimates of the growth parameters L. 

innocua in both products. Additionally, the validation results show that these models 

could provide reliable estimates for growth of L. innocua as a function of temperature. 

However, among these models, the Baranyi-Roberts model provided the closest 

estimation to observed data. Gompertz and Logistic models overestimated the 

parameters at temperatures 25oC and above.  
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CHAPTER IV 

QUANTITATIVE MICROBIAL RISK ASSESSMENT FOR LISTERIA 

MONOCYTOGENES ON FRESH-CUT ROMAINE LETTUCE AND FRESH-CUT 

CANTALOUPE 

4.1 Introduction 

 In recent years, the occurrence of L. monocytogenes in fresh produce has gained 

interest because of their increased susceptibility to contamination by this pathogen 

(Garrido et al., 2010). The assessment of the risk caused by this pathogen is very 

important due to the high mortality rate of the illness (20 to 40%) and widespread nature 

of the pathogen in foods and the environment (Carrasco et al., 2010).   

In 2003, the Food and Drug Administration (FDA) and the Center for Food 

Safety and Applied Nutrition (CFSAN) published a quantitative microbial risk 

assessment (QMRA) study of listeriosis for 23 categories of RTE products containing 

vegetables. In that study, vegetables were categorized as relatively low risk groups (<1 

case/year). However, it also suggested that additional investigations for the subdivision 

of the vegetables category into several different groups were needed because of the high 

uncertainty caused by the diversity of the products. Since then, several relevant studies 

on QMRA for E. coli 0157:H7, Salmonella and L. monocytogenes in fresh produce were 

published (Franz et al., 2010; Tromp et al., 2010; Carrasco et al., 2010; Danyluk and 

Schaffner, 2011; Chen et al., 2013; Ding et al., 2013; Puerta-Gomez et al., 2013b; 

Sant’ana et al., 2014; Omac et al., 2015). However, to this date, there is no published 

study focused on the risk of listeriosis associated with fresh-cut romaine lettuce and 
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fresh-cut cantaloupe for the whole U.S. population. Scallan et al. (2011) reported that L. 

monocytogenes is one of the major reasons of foodborne deaths in the U.S. As a result, 

produce-specific QMRA studies are needed to have a better insight the impacts of 

decontamination methods, cross contamination and temperature abuse.  

Hence, the objective of this study was to conduct quantitative risk assessments to 

evaluate the effectiveness of intervention and handling steps on the potential risk of 

illness of listeriosis associated with fresh-cut romaine lettuce and fresh-cut cantaloupe. 

Experimental growth data from a suitable surrogate were used in the development of the 

model. 

4.2 Risk Assessment Methodology and Data Sources 

4.2.1 Hazard Identification  

Codex Alimentarius (1999) defined hazard identification as “the identification 

and biological, chemical, and physical agents capable of causing adverse health effects 

and which may be present in a particular food or group of foods.” 

Listeriosis, caused by L. monocytogenes, is a rare disease but often leads to 

serious illnesses or even death. L. monocytogenes can grow in a wide temperature rate (-

0.4 to 45C), a wide pH range (4.39 – 9.4), and water activity as low as 0.92 (ICMSF, 

1996).  The incidence of listeriosis in the United States was 2.9 cases per 100,000 people 

for 2009 and 2011 (CDC, 2013). Painter et al. (2013) reported that L. monocytogenes 

causes around 1500 illnesses, 91% of which were hospitalized, and about 18% of 

hospitalizations resulted in death annually. Recently, a L. monocytogenes outbreak 
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associated with cantaloupe caused 32 deaths in 146 confirmed illnesses (Danyluk et al., 

2014). Therefore, it is crucial to evaluate the safety measures at all stages in the food 

chain to prevent or reduce L. monocytogenes contamination in fresh produce. 

4.2.2 Hazard Characterization 

Hazard characterization is the evaluation of the unfavorable health effects linked 

with the identified hazard (Codex Alimentarius (1999). Hazard characterization is 

assessed with a dose – response relationship. Dose-response models consist of three 

major components, the pathogen, the environment, and the host (Mclauchin et al., 2004).  

Dose-response can be defined as the possibility that occurrence of adverse health 

effects in a specified category of costumers who are exposed to a certain level of 

pathogen and/or toxin. A biological end-point of dose response model can vary such as 

infection, morbidity, mortality, or specific diseases caused by L. monocytogenes (Brown 

and Springer, 2002). Two models are generally used to quantify the dose-response 

relationship; (1) the threshold model and (2) the non-threshold (single hit) model. While 

the threshold model assumes that bacterial cells can cause illness after they reach a 

certain population level, the non-threshold model implies that a single bacterium can 

cause illness. A threshold model of L. monocytogenes is not available for humans due to 

ethical concerns and the severity of listeriosis. As a result, a dose-response relationship 

is generally acquired from foodborne outbreaks, animal experiments, and surveillance 

data (FAO /WHO, 2008). Based on those data, several models were developed to 

calculate probability of illness associated with L. monocytogenes. Some of these models 

(Exponential, Beta-Poisson, and Weibull-Gamma) were evaluated by the FDA (2003), 
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which reported that all the models provided a close fit. In the current study, a Weibull-

Gamma (W-G) model for probability of illness was used to estimate the infectivity of L. 

monocytogenes. The main assumption in W-G model is that every single cell has a very 

small, but finite probability of causing illness (Farber et al., 1996; Lindqvist and Westöö, 

200 0; FAO/WHO, 2008; Carrasco et al., 2010). This model is described by the 

following equation: 

𝑃𝐼 = 1 − [1 + (𝐷𝑏)/𝛽]−𝛼         (4.1)  

where, PI is the probability of illness for individuals exposed to a certain dose (D), D is 

the number of L. monocytogenes ingested (CFU/serving), b is a parameter which 

determines the shape of the dose-response curve, and α and β are the gamma distribution 

parameters which describe the heterogeneity of host or pathogen. The values of α, b, and 

β were determined from previous studies (Lindqvist and Westöö 2000; Carrasco et al., 

2010).  

 Equation (4.1) assumes that the probability of infection for the whole population 

is the same. This approach may be faulty because obviously immunologically 

compromised populations are more susceptible to invasive listeriosis infection. 

Moreover, these populations represent 20% of total population in the USA (Bemrah et 

al. 1998). Therefore, two β values, one for high risk groups and one for low risk groups, 

were used. For both subpopulations, α = 0.25 and b = 2.14, while β =1015.26 for low risk 

groups and β =1010.98 for high risk groups which include pregnant woman, elderly, and 

newborn (Bemrah et al., 1998; Carrasco et al., 2010).  
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In the present study, data on serving size of fresh-cut cantaloupe were collected 

from the studies published by Hoelzer et al. (2012a) and Chen et al. (2013), while 

information on serving size of fresh-cut romaine lettuce was taken from Carrasco et al. 

(2010) and Hoelzer et al. (2012b). For both products, serving size was defined by 

cumulative probability distributions. Therefore, the output of the exposure model was 

determined as the ingested dose in colony-forming units (CFU) for serving size for both 

products.  

The annual illness cases associated with L. monocytogenes in the U.S. for each 

product were estimated as follows. First, the population of the U.S. (reported as 

308,745,538 in 2010 by Howden and Meyer, 2011), was divided into two fractions 

according to their susceptibility. The first group included the high-risk individuals 

(pregnant women, the elderly, and children) and it was assumed to be 20 percent of the 

total population (Bemrah et al. 1998; Carrasco et al., 2010). Hence, 80 percent of the 

population consisted of the healthy intermediate age sub-population (low-risk group). 

Second, for each produce, consumption percentage data were collected from Hoelzer et 

al. (2012a), who estimated the U.S. consumption of romaine lettuce and cantaloupe as 

9.81%, and 3.03%, respectively. Although these numbers covered both fresh and fresh-

cut produce, no reduction was made in the numbers to obtain a more conservative risk 

output. Finally, per capita consumption of cantaloupe (3.87 kg, USDA, 2012) and 

romaine lettuce (3.49 kg, USDA, 2011) were established. Then, the total number of 

annual servings of fresh-cut romaine lettuce (Eq. 4.2 and 4.3) and fresh-cut cantaloupe 

(Eq. 4.4and 4.5) were calculated as: 
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𝐶 = 𝑃 ∗ 0.0981 ∗ 0.20 ∗ 3490    (4.2) 

𝐶 = 𝑃 ∗ 0.0981 ∗ 0.80 ∗ 3490    (4.3) 

𝐶 = 𝑃 ∗ 0.0317 ∗ 0.20 ∗ 3870    (4.4) 

𝐶 = 𝑃 ∗ 0.0317 ∗ 0.80 ∗ 3870    (4.5) 

𝑆𝑁 =
𝐶

𝑆𝑆
       (4.6) 

Herein, P is the population of the U.S.; SN is the number of annual servings; C is the 

annual consumption (g) of each product consumed in the U.S.; and SS is serving size (g). 

Annual consumption data were also calculated assuming the whole population was in the 

high risk group in order to observe and compare the differences between low and high 

risk estimations. 

 Next, the estimated cases of listeriosis for each population group per year were 

calculated as (Danyluk and Schaffner, 2011): 

𝐸𝐶𝐿 = 𝑃(𝐷) ∗ 𝑆𝑁      (4.7) 

Herein, ECL is the estimated number of cases of listeriosis. 

4.2.3 Exposure Assessment 

Exposure assessment is “the qualitative and/or quantitative evaluation of the 

likely intake of biological, chemical, and physical agents via food, as well as exposures 

from other sources if relevant” (Codex Alimentarius, 1999). The appropriate exposure 

model involves several areas such as pathogen prevalence and concentration in raw 
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produce, impact of the control measures during processing, distribution, handling, post-

retail growth, and the amounts of food eaten. Since covering all these steps from farm to 

fork is impossible, assumptions, estimations, and models based on accurate and 

sufficient data are needed.  

Fresh-cut romaine lettuce was assumed to be contaminated with L. 

monocytogenes during harvest by an unknown source. Between harvesting and 

consumption, a processing stage which includes disinfection treatments, packaging, 

storage and transportation, and display for sale at markets was applied. Because of the 

lack of data and difficulties in estimations, it was assumed that fresh-cut cantaloupe was 

contaminated with L. monocytogenes after washing treatments. Postharvest 

contamination and cross-contamination scenarios were estimated based on previous 

studies (Schaffner, 2004; Perez-Rodriguez et al., 2011; Ding et al., 2013). Since L. 

innocua was assumed as the surrogate for L. monocytogenes, the growth of L. innocua 

was determined by laboratory experiments and growth models described in Chapter III 

(Sections 3.4.3., 3.4.4). Additional information regarding the supply chains of each 

product is provided below. 

4.2.3.1 Description of the Exposure Assessment for Fresh-Cut Romaine Lettuce 

Romaine lettuce is one of the most consumed leafy green vegetables in the 

United States. More than 90 percent of total production is produced in California and 

Arizona. Since L. monocytogenes is ubiquitous in the environment, contamination 

sources may vary and it may occur through soil, insects, water, and animals. In the field, 

romaine lettuces are machine harvested. After harvesting, a cooling process is needed, 
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and this process is influenced by the outside temperature. Rediers et al. (2009) reported 

that endive needed 3 hours of cooling on a warm day (14-35oC), and 2 hours of cooling 

were needed on a moderate day (5-19oC) to cool endive to 10oC. Koseki and Isobe 

(2005b) also determined that the required cooling time for iceberg lettuce was 3 hours on 

moderate conditions. Romaine lettuces are then sent to the processing facility for 

washing (water and chlorine) treatment.  After being minimally processed in the facility, 

fresh-cut romaine lettuce is transported to markets (Figure 4.1). Because the produce are 

packaged, it was assumed that there was no additional contamination point. Also, based 

on USFDA (2008) recommendations, it was assumed that produce were transported in 

refrigerated trucks between 0 and 5°C. Hence there was no temperature abuse during 

transportation. Temperature range is the most important factor in the entire process 

because the growth rate of L. monocytogenes is highly affected by temperature (Chapter 

III, 3.4.3).  
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Figure 4.1 Flow chart of fresh-cut romaine lettuce. 

Field Production/Harvesting 

Chemical Sanitation 
(Chlorine (200 ppm), Ozone (2 ppm), 

Peroxyacetic acid (100 ppm) 

Cutting/Shredding 

Packaging  

Retail Store(48h) 
(0-5°C) 

Storage (2-24 h)/ 
Transportation 

Irradiation (1kGy) 

Home Storage (2-
336h) (0-5°C) 
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Since time and temperature are critical parameters affecting microbial growth, 

they should be clearly defined. This study assumed that fresh-cut romaine lettuce had 14 

days shelf-life at the temperature distribution used of the study (Section 4.2.3.8). Even 

though it was assumed that cold chain was maintained during transportation and display, 

sometimes temperature fluctuations can occur accidentally (Koseki and Isobe 2005b; 

Ding et al., 2013). The FDA recommends that display temperature should not be above 

5oC (USFDA, 2010). However, fluctuations may occur during the display of fresh-cut 

produce (Jacxsens et al., 2002; Nunes et al. 2003; Koseki and Isobe 2005b; Ding et al., 

2013). In the current study, temperature distribution described by Nunes et al. (2003) 

was used. In that study, the temperature in retail display for fresh-cut fruits and 

vegetables was 3.76°C with a standard deviation 0.89°C. The data were fitted to a 

normal distribution.   

Several scenarios were prepared to evaluate the likely impact of different 

prevention steps, time, temperature abuse, and cross-contamination on fresh produce 

(Tables 4.1 and 4.4). Since fresh-cut cantaloupe and fresh-cut romaine lettuce have 

different post-harvest applications as described above, different scenarios were created 

and evaluated for each product. 

4.2.3.2 Scenario Analysis of Fresh-Cut Romaine Lettuce 

 The first scenario (1) was called “baseline” which comprises standard procedures 

from harvesting to consumption without temperature abuse or cross-contamination. This 

scenario was also used for comparison with other scenarios to see the effects of the risk 

management options. The second scenario (2) comprises baseline plus irradiation 
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treatment (1 kGy, Mintier and Foley, 2005). The third scenario (3) was designed to 

investigate the impact of ozone treatment. In this scenario, baseline was created with 

ozone treatment (2 ppm) instead of chlorine (Olmez and Akbas, 2008). Effectiveness of 

alternative treatment methods were evaluated in the fourth (4) and fifth (5) scenarios. 

The sixth (6) scenario was the potential cross-contamination point during processing. In 

scenario seven (7), the effect of temperature abuse was evaluated. Product was left at 

room temperature (20°C) for 24 hours, instead of immediately placing it inside a 

domestic refrigerator. Lastly, the consumption time was set to 336 hours (14 days) to 

elucidate its impact on the potential risk (eighth (8) scenario.) 

 

Table 4.1. ‘What if’ scenarios for fresh-cut romaine lettuce 

Number Scenario 

1 Baseline 

2 Baseline + Irradiation 

3 Ozone 

4 Peroxyacetic acid 

5 Atmospheric plasma 

6 Cross contamination 

7 Temperature abuse (at home) – 20oC for 24 h 

8 Consumption time (336 hours after packing) 

 

4.2.3.3 Prevalence and Initial Level of Listeria monocytogenes in Fresh-Cut 

Romaine Lettuce 

Initial contamination level of L. monocytogenes in the fresh products after 

harvest is determined by prevalence and initial level values. These values are essential to 
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create a baseline for QMRA.  Contamination mechanism is not entirely clear although 

lettuce and cantaloupe can be contaminated with L. monocytogenes in many different 

ways, like contamination through soil, insects, processing environment, or handling 

mistakes (Beuchat, 1996).  

There are extensive amount of surveys regarding the prevalence of L. 

monocytogenes in lettuce. Tang et al. (1994) reported that prevalence of L. 

monocytogenes in lettuce as 3.6% in Kuala Lumpur. Sant’ana et al. (2012a) showed that 

prevalence of L. monocytogenes in lettuce was 2% in Brazil. Ding et al. (2013) detected 

L. monocytogenes in 5.88% of lettuce samples in Korea. In the present study, data from 

14 previous surveys were used to create a reliable prevalence input (Table 4.2). The 

prevalence data was described by using beta and pert distributions. The initial 

concentration shows the level of L. monocytogenes contamination in romaine lettuce 

after harvest (Table 4.3). This input was taken from Gombas et al. (2003) and described 

with a cumulative probability distribution. In that study, first, authors determined the 

prevalence of L. monocytogenes on bagged salads, then they determined the 

concentration of positive samples.  
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Table 4.2. Prevalence of L. monocytogenes in vegetables.  

Source Food 
Number 

of 
Samples 

Prevalence (%) 

Number 
of 

positive 
samples 

Gombas et al., 
2003 

Bagged 
salads 2966 0.74 22 

Heisick et al., 
1989b Cabbage 92 1.1 1 

Prazak et al.,  
2002 Cabbage 130 1.5 2 

Lin et al.,  1996 Vegetables 
salads 63 1.6 1 

Velani and 
Roberts, 1991 

Salad 
vegetables 108 1.8 2 

Carrasco et al., 
2010 

Salad 
vegetables 263 2.3 6 

Carrasco et al., 
2010 Lettuce 28 3.6 1 

FDA/CFSAN, 
2003 Vegetables 9223 3.6 332 

Legnani et al., 
2004 

Raw 
vegetables 43 6.9 3 

Francis and 
O’Byrne 

2006 

Romaine 
Lettuce 80 11.8 9 
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To describe the effects of prevention methods, cross contamination, and 

temperature abuse, a relative growth rate was used (Tromp et al., 2010). Relative growth 

rate (RG in %) is described as the percent change from one point to another, and 

calculated as; 

𝑅𝐺 = ((𝑦𝑡 − 𝑦0) ∗ 100)/𝑦0     (4.8) 

Herein, yo is the initial concentration density (log CFU/g); and yt is the concentration of 

the pathogen at time t (log CFU/g). 

4.2.3.4 Washing and Sanitizing Treatments 

Unlike fresh-cut cantaloupe, fresh-cut romaine lettuce can be washed after the 

cutting step. Moreover, when the sanitizing studies on fresh-cut romaine lettuce and 

whole lettuce were examined, there was little or no difference between the log 

reductions of L. monocytogenes populations. Furthermore, washing the lettuce right after 

cutting it may reduce the potential of cross-contamination from the cutting equipment. In 

the current study, washing treatment data for fresh-cut romaine lettuce were determined 

from actual experiments (Chapter III, 3.4.1.). The reduction in L. monocytogenes 

population was calculated as 1.55 log CFU/g and all the results were fitted to a normal 

distribution. Detailed explanation of the washing procedure and growth data results were 

provided in Chapter III (Sections 3.3.6 and 3.4.1, respectively). 
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Table 4.2. Prevalence of L. monocytogenes in vegetables (continued). 

Source Food 
Number 

of 
Samples 

Prevalence (%) 

Number 
of 

positive 
samples 

De Simon et al., 
1992 

Vegetable 
salads 103 7.8 8 

Harvey and 
Gilmour, 1993 

Raw 
vegetables 66 10.6 7 

Olaimat and 
Holley, 2012 Radish 132 14.4 19 

Arumugaswamy 
et al., 1994 

Leafy 
vegetables 22 22.7 5 

Heisick et al., 
1989b Radish 68 36.8 25 

Sant’ana et al. 
2012 Lettuce 152 1.97 3 

Ding et al. 2013 Fresh-cut 
Lettuce 68 5.88 4 

Szabo et al. 2000 Fresh-cut 
Lettuce 120 2.5 3 
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       Table 4.3. Initial concentration of L. monocytogenes in lettuce (Adapted from 
Gombas et al., 2003). 

Concentration (Log 
CFU/25 g 

Number of 
positive 
Samples 

f(x)a F(x)b 

0-0.4 17 0.77 0.77 

0.4-1.4 1 0.04 0.82 

1.4-2.4 1 0.04 0.86 

2.4-3.4 2 0.09 0.95 

3.4-4.4 1 0.04 1 

af(x): prevalence f(x) = i/n(+1) where ‘i’ is the number of positive samples and ‘n’ is the 
total number of samples 
bF(x): Cumulative frequency  
 

4.2.3.5 Cross-Contamination 

Fresh-produces are packaged after washing and sanitizing before being 

transported to retail stores. Cross-contamination is the biggest issue in this process as 

there are numerous surfaces such as conveyors, handling equipment, sorting tables, and 

containers in contact with the produce (Johnston et al., 2006; FAO/WHO, 2008). Cross-

contamination is the transfer of bacteria from one food item to another by handling 

oversights, water washing, and packing equipment (Ding et al., 2013). Johnston et al. 

(2006) determined that the population of E. coli increased by 0.16 log CFU/g during the 

packaging of cabbage. The authors suggested that cross contamination was the most 
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possible explanation. The contamination loads of pathogens on various kinds of surfaces 

range from 2.12 to 7.43 log CFU/g (Chen et al., 2001). Moreover, FDA investigations on 

recent listeriosis outbreaks linked to cantaloupe, revealed that pathogens which caused 

the outbreaks existed in the packaging environment (USFDA, 2012; USFDA, 2013). 

These studies emphasize that, in the absence of hygiene and equipment sanitation rules, 

the possibility of cross-contamination increases. Several studies have predicted the onset 

of cross-contamination from different surfaces and different equipment with various 

mathematical models (Hoelzer et al., 2012c). However, Perez-Rodriguez et al. (2011) 

demonstrated that there was no agreement between these studies, and results may vary. 

In the current study, the effect of cross contamination on probability of illness, PI, (Eq. 

4.1) was described using a uniform distribution from previous studies (Chen et al., 2001) 

followed by a transfer coefficient described by Ding et al. (2013). Transfer coefficient is 

the percent of cells transferred from one surface to another (Perez-Rodriguez et al., 

2008). It is an empirical model that depends heavily on source, recipient, and number of 

observations (Hoelzer et al., 2012c).  

4.2.3.6 Alternative Intervention Steps 

Since thermal sanitation methods like pasteurization and sterilization are not 

applied to minimally processed fresh and fresh–cut products, and washing treatments 

have a limited effect on microbial quality, alternative methods have gained popularity in 

recent years (Gil et al., 2009). The current study assessed the effect of several 

intervention treatments, including irradiation, atmospheric plasma, ozone, and 

peroxyacetic acid on the probability of illness. 
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The impact of electron beam and gamma irradiation on reduction and 

decontamination of L. monocytogenes in different types of lettuce has been studied 

extensively (Niemira et al., 2002; Han et al., 2004; Mintier and Foley, 2005; Niemira, 

2006; Niemira, 2007; Niemira, 2008). All these studies show that irradiation of romaine 

lettuce at 1 kGy can effectively reduce L. monocytogenes population. However, above 1 

kGy, the quality parameters such as texture, flavor, and color were affected negatively 

from the treatment (Prakash et al., 2000; Han et al., 2004). In the current study, the effect 

of an e-beam irradiation step was evaluated from currently available experimental data 

(Mintier and Foley, 2005). According to that study, the D10-value of Listeria spp. in 

fresh-cut romaine lettuce was 0.17 kGy and the survival of L. monocytogenes was 

calculated as: 

𝑆𝑖𝑟𝑟 =
𝑁

𝑁𝑜
= 𝑒−𝐷 𝐷𝑜⁄ = 𝑒−2.303𝐷/0.17 = 𝑒−13.54𝐷   (4.9) 

herein, No refers to the initial number of microorganisms (CFU/g), N refers to the 

number of remaining microorganisms (CFU/g) after exposure to dose D (in kGy), Do is 

the mean lethal dose (in kGy), or the dose required to reduce the survival fraction S to 

1/e (i.e., 37%) and D10 is the radiation D-value or required dose for 90% reduction of the 

microbial population.In the present study, the radiation treatment was set up as exposure 

to 1.0 kGy at room temperature (~21oC) using an electron beam (Han et al., 2004).  

Critzer et al. (2007) found that 3 min exposure of inoculated lettuce to 1 atm 

uniform glow discharge plasma resulted in 3 log reduction in the L. monocytogenes 

population. Peroxyacetic acid is another alternative treatment method approved by FDA. 
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Hellstrom et al. (2006) reported that 1.7 log CFU/g reduction was observed in the 

population of L. monocytogenes when 100 ppm peroxyacetic acid was applied to fresh-

cut lettuce. Olmez and Akbas (2009) optimized ozone treatment for lettuce, and found 

that 2 min exposure of 2 ppm ozone resulted in 1.5 log CFU/g reduction, and was the 

optimal condition for maintaining product quality. All in all, all of these sanitizing 

methods are either equally or more efficient than chlorinated water. Table 4.3 shows the 

'what if' scenarios related to these alternative treatments.  

4.2.3.7 Time and Temperature Distribution of Fresh-Cut Romaine Lettuce 

In the current study, the time and temperature distributions were examined under 

two different segments; (1) transportation and retail store conditions and (2) home 

storage. For the first segment, time distribution data were taken from Jacxsens et al. 

(2002). The time distribution was assumed to begin when the product left the processing 

facility and it ended with the actual purchase. Temperature distribution data were 

acquired from Nunes et al. (2003).  

The time distribution of home storage data used in this study was reported by 

Danyluk and Schaffner (2011). Home temperature distribution information was taken 

from the study conducted by Pouillot et al. (2010). The effect of temperature and 

consumption time on the probability of illness (Eq. 4.1) was evaluated by creating “what 

if” scenarios (Section 4.3.1). 

4.2.3.8 Growth of Listeria monocytogenes in Fresh-Cut Romaine Lettuce 

The growth of L .monocytogenes in fresh-cut romaine lettuce was estimated by 

using the Baranyi model (Eqs. 2.3 and 2.4, Chapter II). Ratkowsky equation then was 
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used to define the model parameters as a function of temperature. (Eqs. 3.3 and 3.4, 

Chapter III).  

4.2.3.9 Description of the Exposure Assessment for Fresh-Cut Cantaloupe 

Cantaloupe is a crucial crop in Texas, harvested mostly in Uvalde County and the 

Rio Grande Valley. The climate of these areas have been determined as continental, 

semi-arid, and subtropical-sub humid. The range of temperatures in these areas is 

between 3-17oC in January and 22-37oC in July (Puerta-Gomez et al., 2013a).  

Cantaloupes are sent to the processing facility for washing treatment. Castillo et al. 

(2009) emphasized that the washing treatment is generally applied in multiple steps. To 

prevent cross-contamination, in every step, fresh water should be applied in every step, 

and water quality parameters such as pH and organic load should be monitored. 

Disinfectants, chlorine (100-200 ppm) and ozone (up to 5 ppm), are typically used in 

these steps. Disinfectant level should be monitored carefully. After that, a de-watering 

belt removes the wash water and sanitizers, and the produce. Figure 4.2 shows the flow 

chart of the cantaloupe processing and distribution steps. Cantaloupes are then stored 

and transported to retail stores in refrigerated trucks in order to limit bacterial growth. 

Fresh-cut fruits are usually stored from 0.5 days 12 days in at-home refrigerators, and 

generally consumed within 4 days (USFDA, 2003).  
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Figure 4.2 Flow chart of fresh-cut cantaloupe chain 

 

Field Production/Harvesting 

Chemical Sanitation 
(Whole Fruit) 

Cutting 

Packaging 

Retail Store (8-
72h) (3.7°C) 

Storage/ 
Transportation 

Irradiation (1kGy) 

Home Storage (12 
- 240h) (3.4°C) 
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4.2.3.10 Scenario Analysis for Fresh-Cut Cantaloupe 

The first scenario (1) was similar to that considered for fresh-cut romaine lettuce; 

again, a baseline was created without temperature abuse and cross-contamination. The 

effect of irradiation treatment (1 kGy target dose) on the probability of illness (PI) was 

evaluated in the second (2) scenario (Rodriguez et al., 2006). Using current data from the 

literature, the third (3) scenario examined the effect of cross-contamination after the 

cutting step. The effect of temperature abuse at home was evaluated in the fourth 

scenario (4) for 24 hours at 20°C). Lastly, the fifth (5) scenario assessed the effect of 

time of consumption on the probability of illness. Unlike the case for fresh-cut romaine 

lettuce, the maximum consumption time was set as 240 hours (10 days) according to a 

study conducted by Chen et al. (2013). 

 

Table 4.4. ‘What if’ scenarios for whole cantaloupe 

 

 

 

Number Scenario 

1 Baseline 

2 Irradiation 

3 Cross contamination 

4 Temperature abuse (home) (20 °C for 24 hours) 

5 Consumption time (240 hours after packaging) 
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4.2.3.11 Prevalence and Initial Level of Listeria monocytogenes in Fresh-Cut 

Cantaloupe 

 Unlike the case for fresh-cut romaine lettuce, initial concentration and prevalence 

data regarding to L. monocytogenes for fresh-cut cantaloupe are very limited. Several 

studies on Salmonella (Castillo et al. 2004; Duffy et al. 2005; Espinoza-Medina et al. 

2006) and E. coli (Castillo et al. 2004) were not used in the current study to determine 

the prevalence because of the concern that increased prevalence and the initial 

population of L. monocytogenes might result in an unrealistic increase in the risk of 

listeriosis. Therefore, prevalence and initial contamination data were obtained from 

Chen et al. (2013). In that study, five of 425 samples were found to be contaminated 

with L. monocytogenes. In addition, the initial concentration of L. monocytogenes in 

fresh-cut cantaloupe was determined by a normal distribution in which the mean was -

0.97 log CFU/g and standard deviation was 0.003 log CFU/g (Chen et al., 2013). 

4.2.3.12 Washing and Sanitizing Treatments 

In this study, the effect of washing and sanitizing on the reduction of L. 

monocytogenes population in fresh-cut cantaloupe was not evaluated. As mentioned in 

section 4.3.3.11, there are hardly any studies on prevalence and initial concentration of 

L. monocytogenes in fresh-cut cantaloupe, while there is no such study in whole 

cantaloupe. In industrial production of fresh-cut cantaloupe, the cutting process is carried 

out after washing the fruits (Figure 4.2). Although there are some studies on the 

internalization of pathogen into the fruit’s flesh (Chimbombi et al. 2013) and possible 

cross-contamination of fresh-cut cantaloupe during cutting (Ukuku and Fett, 2002; 
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Ukuku et al. 2012; Vadlamudi et al. 2012), there is no reliable way to link the pathogen 

concentration in whole cantaloupe with that in fresh-cut cantaloupe because of limited 

data. Since the only prevalence and initial concentration data belong to fresh-cut 

cantaloupe, it was assumed that the product was already subjected to washing 

treatments.  

4.2.3.13 Cross-Contamination of Fresh-Cut Cantaloupe 

 Pathogens most likely contaminate the cantaloupe flesh during the cutting 

practices (Beuchat, 1996). However, as the prevalence data used in this study was on 

fresh-cut product, it was assumed that even if cross-contamination occurred during the 

washing or cutting steps, contamination level was covered in initial concentration data. 

In the current study, the most likely cross contamination points were identified as the 

packaging and handling steps. In addition, it was assumed that there was no additional 

cross contamination points after production (i.e., during transportation and retail).  

4.2.3.14 Irradiation of Fresh-Cut Cantaloupe 

Since chemical sanitizing agents are always used on the whole cantaloupe, 

irradiation would be the only option to reduce the pathogen load on the fresh-cut 

produce. In this study, the effect of irradiation treatment on L. monocytogenes population 

was evaluated in scenario (2) using data from Rodriguez et al. (2006). According to that 

study, the D10-value of L. monocytogenes was 0.15 kGy. Therefore, the survival of L. 

monocytogenes was calculated as: 

𝑆𝑖𝑟𝑟 =
𝑁

𝑁𝑜
= 𝑒−𝐷 𝐷𝑜⁄ = 𝑒−2.303𝐷/0.15 = 𝑒−15.35𝐷   (4.10) 
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Herein, No refers to the initial number of microorganisms (CFU/g), N refers to 

the number of remaining microorganisms (CFU/g) after exposure to dose D (in kGy), Do 

is the mean lethal dose (in kGy), or the dose required to reduce the survival fraction S to 

1/e (i.e., 37%) and D10 is the radiation D-value or required dose for 90% reduction of the 

microbial population; a value of D equal to 1 kGy was selected because irradiation at 

this dose level does not affect the quality of the fruit (Castell-Perez et al., 2004).  

4.2.3.15 Time and Temperature Distribution of Fresh-Cut Cantaloupe 

 Similar to the study on romaine lettuce, the time and temperature distributions 

started right after the product left the facility. For the transportation step, data were taken 

from Puerta-Gomez et al. (2013b) and subjected to uniform distribution. Temperature 

distribution in the retail step was obtained from Nunes et al. (2003).  

 Domestic refrigerator temperature distribution was assumed as 3.4°C with a 

standard deviation of 2.4°C (Chen et al., 2013). Home storage time reported by Chen et 

al. (2013) was at least 0.5 day with a maximum of 10 days. These data were subjected to 

a uniform distribution to create an even time profile. Like romaine lettuce, the effect of 

temperature abuse and consumption time on the probability of illness (PI) was evaluated 

in scenarios (4) and (5) respectively. 

4.4 Risk Characterization 

Risk characterization was defined by Codex Alimentarius (1999) as; “the process 

of determining the qualitative and/or quantitative estimation, including attendant 

uncertainties, of the probability of occurrence and severity of known or potential adverse 

health effects in a given population based on hazard identification, hazard 
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characterization, and exposure assessment.” In other words, risk characterization is a 

combination of hazard identification, exposure assessment, and hazard characterization. 

In the current study, after the population of L. monocytogenes in fresh-cut romaine 

lettuce and fresh-cut cantaloupe was evaluated with the exposure assessment, Weibull-

Gamma dose-response model was used to obtain the risk characterization part of risk 

assessment. Different scenarios were built based on assumptions and previous studies, 

and the QMRA was created in an Excel (Microsoft, Redmond, WA) spreadsheet to 

evaluate the risk by using Monte Carlo simulation. 

4.5 Monte Carlo Simulation  

The Monte Carlo simulation, an alternative to analytic techniques, expresses a 

powerful and accurate method for including both the stochastic and epistemic 

uncertainty of a problem (Hald et al., 2004).  A single point is spontaneously chosen 

from each of the likelihood distributions assigned to each input parameter including 

epistemic uncertainty in Monte Carlo simulation. These spontaneously chosen single 

points are then used to compute a mathematical solution, as described by the risk 

assessment model. Several software programs use this simulation to achieve stochastic 

models which are impossible to solve analytically. Stochastic model, which is described 

as a probability distribution of possible values, provides all the information available for 

each input variable (Vose, 2000). In this study, each risk assessment model was 

simulated three times using the @RISK software (Palisade Corp. New Field, NY) with 

10,000 iterations.  
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4.6 Results and Discussion 

4.6.1 Quantitative Risk Assessment for Fresh-Cut Romaine Lettuce 

In scenario (1), the median prevalence of L. monocytogenes on fresh-cut romaine 

lettuce was 11%, while the minimum and maximum values were 3% and 25% 

respectively (Figure 4.3). Median of initial concentration was estimated -0.1 log CFU/g, 

while the maximum value was as high as 5 log CFU/g (Table 4.5). Although these 

distributions were left-skewed, these results showed that in rare occasions, L. 

monocytogenes level on fresh-cut romaine lettuce would be very high. After the washing 

treatment, pathogen concentration was -1.65 log CFU/g which means that the population 

of L. monocytogenes in fresh-cut romaine lettuce was decreased by 97% with sanitizing 

treatments (Eq. 4.5). The simulation indicated that the temperature at retail store was 

between 0.2°C and 7.1°C. Although the temperature fluctuation was high, the median 

time in retail store was estimated has 54 hours. Considering the fact that lag time (tlag) of 

L. monocytogenes is very high at 5°C (Chapter III, Table 3.2), pathogen level is constant 

at this stage. However, these results also showed that there would be enough time for the 

pathogen population to reach 7-8 log CFU/g level in the case of temperature abuse.  

After data taken from Danyluk and Schaffner (2011) distributed, in the home 

storage stage of risk assessment, the time range before last consumption was found 

between 73 hours and 340 hours with a mean of 189 hours (Table 4.5). According to this 

distribution, on average, fresh-cut romaine lettuce is consumed 6 days before the end of 

shelf-life.  
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Figure 4.3. Probability distribution of the prevalence of L. monocytogenes on  fresh-

cut romaine lettuce. 

 

Growth of L. monocytogenes on the leafy green was simulated using the 

experimental data presented in Chapter III. When combined with the temperature 

distribution, the median growth rate was 0.022 log CFU/g/h, which means that on 

average, the growth rate of L. monocytogenes was 0.52 log CFU/g per day (Table 4.5). 

This relatively low increase in the bacterial population could be attributed to low 

temperature distribution. Equation (3.8) yielded a lag time (tlag) 99 hours for L. 

monocytogenes. As mentioned in Chapter III, growth rate and lag time was heavily 

dependent on temperature. After the growth model was combined with initial 

concentration, time, and temperature distributions, pathogen population at time of 
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consumption was 0.5 CFU/g. According to Eq. (4.8), the relative growth of L. 

monocytogenes in fresh-cut romaine lettuce was 36.7%. This result showed that if time 

and temperature could be maintained well during the product chain, the pathogen 

population would be very low at the point of consumption. According to serving size 

distribution, minimum and maximum consumption was 25g and 150g respectively, 

while the average consumption was 48.25g.  Additionally, the cumulative distribution 

was left-skewed, which suggests that consumption rates are generally low. When serving 

size data was combined with the final number of pathogen population, it was found that 

pathogen level per serving was 25 CFU.  

For each subpopulation, probability of illness values (PI) were calculated using 

Eq. (4.1). The PI values for susceptible and healthy populations were 2.69x10-9 and 

1.41x10-13, respectively. When these data were combined with information on 

prevalence, the actual exposure probability was 3.5x10-10 and 1.65x10-14 for susceptible 

and healthy populations, respectively. The cumulative frequencies of log probability of 

illness for both subpopulations are presented in Figure 4.4. The probability of illness 

values were surprisingly low which suggest that, unless cross-contamination or 

temperature abuse occur, common washing practices might be sufficient for controlling 

the pathogen in fresh-cut romaine lettuce. Indeed, after PI was multiplied by the 

population (Eq. 4.7) even when the entire population was considered as susceptible, 

estimated annual illness was 0.4 cases per year. Similar to a current study, FDA/CFSAN 

(2003) reported that predicted median cases of listeriosis for total U.S. population 

consuming vegetables on per annum are 0.2.  



 

87 

 

 
 Figure 4.4. Log probability of illness (PI) for both subpopulations, Scenario (1) 

       Red line: Healthy Population 
       Blue line: Susceptible population 
 

As mentioned in Section 4.3.3.6, on average, the washing treatment was less 

effective than other sanitizing methods (irradiation, peroxyacetic acid, and ozone) 

evaluated in this study, expected annual illnesses were less than 1 in scenarios (2)-(5). 

Among those scenarios, irradiation had the biggest impact on L. monocytogenes 

population (Scenario (2)). According to Eq. (4.8), the population of L. monocytogenes 

was reduced by 99.999% after exposure to ionizing radiation (1 kGy at room 

temperature). Even at the time of consumption, the relative growth of L. monocytogenes 

was -99.995%. Similarly, results were obtained in a QMRA for L. monocytogenes in 

baby spinach leaves showed that L. monocytogenes population at the time of 

consumption was 99.99% less when produce was irradiated (Omac et al., 2015). 
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Table 4.5. Model parameters and calculated values for eight scenarios of the probability of illness in fresh-cut romaine 
lettuce. 

Model Parameter 
Scenario # 

1 2 3 4 5 6 7 8 

Water washing 
(log CFU/g) 

0.58 0.58 - - - 0.58 0.58 0.58 

Chlorine washing 
(log CFU/g) 

0.974 0.974 - - - 0.97 0.974 0.974 

Cross-contamination (log 
CFU/g) 0 0 0 0 0 4.77 0 0 

Irradiation dose (kGy) 0 1 0 0 0 0 0 0 

Temperature abuse 
(oC, hours) 

0 0 0 0 0 0 20oC, 24 h 0 

Home Storage Temperature 
(oC) 4.44 4.44 4.44 4.44 4.44 4.44 4.44 4.44 

Time (hours) 189 189 189 189 189 189 189 336 

L. monocytogenes 
concentration at 

consumption (CFU/g) 
0.53 1.5x10-5 0.67 0.38 0.02 0.63 0.83 11.74 

Log probability of illness 
(Susceptible) -10.7 

-12.36 -10.56 -11.05 -12.04 -10.64 -9.6 
-8.09 

Log probability of illness 
(healthy) -14.52 -16.63 -14.61 -14.91 -15.29 -14.53 -13.94 -12.18 
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After the irradiation step, cold atmospheric plasma was the second best treatment 

which reduced the L. monocytogenes population by 99.08% (Scenario (5)). At time of 

consumption, the level of L. monocytogenes was 91.93% less than the initial 

concentration. Unlike these two treatments, the effectiveness of ozone (Scenario (3)) and 

peroxyacetic acid (Scenario 4) was similar to the effect of using chlorinated water. 

After ozone treatment, the relative growth rate was s -77%. In fact, pathogen 

population at the time of consumption was 28% higher than baseline. However, this 

difference did not affect expected annual illness value (Table 4.5). These results 

highlight that at the recommended dose (2 ppm) ozone might not be a good alternative to 

chlorinated water. In terms of food safety, increasing the exposure time or dose might 

increase the effectiveness of the treatment. On the other hand, peroxyacetic acid was 

more effective than chlorinated water and ozone treatments. Relative growth rate after 

peroxyacetic acid treatment was -87%.  However, Kitis (2004) reported that 

peroxyacetic acid was an expensive compound. Furthermore, peroxyacetic acid shares 

similar disadvantages to other chemical sanitizers such as chlorinated water. These 

sanitizers are surface decontaminants, and offer no solution against internalized 

pathogens. When all treatment scenarios are compared, it can be argued that irradiation 

of fresh-cut romaine lettuce at 1 kGy is the most effective option in terms of food safety. 

Cross-contamination (Scenario (6)) was not a critical issue for the safety of fresh-

cut romaine lettuce. A possible explanation is that the transfer coefficient was very low 

(0.002), so even when contamination occurred, there was only 0.1 CFU/g increase in the 

population of L. monocytogenes at the time of consumption. At the time of consumption, 
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the pathogen level (0.63 CFU/g) was nearly identical to the baseline. As a result, no 

change was observed on the number of expected annual illnesses. However, it should be 

considered that the transfer coefficient is empirical, and may not cover the rare cases in 

which contamination might be very high (Perez-Rodriguez et al., 2011).  

 
Figure 4.5. Log probability of illness for scenarios #1- #8 for susceptible 

subpopulation 
#1: Baseline 
#2: Irradiation 
#3: Ozone 
#4: Peroxyacetic acid 
#5: Cold Atmospheric plasma 
#6: Cross contamination 
#7: Temperature abuse 
#8: Consumption time (336 hours) 
 

Temperature abuse made a major impact on expected annual illness numbers. A 

rapid increase was observed in L. monocytogenes population during the temperature 
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time of consumption was 56% higher. In addition, the growth rate increased from 0.022 

log CFU/g/h to 0.148 log CFU/g/h. As a result, the median of expected annual illness for 

the susceptible population was around 6 cases. A possible explanation is that lag time 

and growth rate are highly temperature-dependent, and at higher temperatures, these 

parameters would be higher. 

Surprisingly, consuming fresh-cut romaine lettuce at the end of the shelf-life 

caused the highest annual illness numbers (Scenario (8)). The median of expected annual 

illness was 29 cases. Moreover, with the assumption of the entire population being 

susceptible to illness, the expectation increased to 128 annual cases. Correspondingly, 

the highest relative growth (442%) was observed in this scenario. These results can be 

explained by the high lag time of around 100 hours, as long as the temperature 

distribution was not altered (scenario (7)). As explained above, the mean consumption 

time was 189 hours. It can be argued that because of the long lag time, the pathogen 

level was steady for more than half of the consumption time. After that, due to a low 

temperature distribution, the grow rate was very limited, and did not have an impact on 

the pathogen population at the time of consumption. However, when consumption time 

increased to 336 hours (14 days or end of shelf-life), this allowed for the pathogen level 

to increase to very high values. These results verified that consumption time is one most 

important parameters regarding the safety of the leafy green.  

4.6.2 Quantitative Risk Assessment for Fresh-Cut Cantaloupe 

 When both produces were compared, on average, prevalence of L. 

monocytogenes on fresh-cut cantaloupe (1.3%) was almost 10 times lower than on fresh-
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cut romaine lettuce (11%). In a similar fashion, the mean initial concentration of L. 

monocytogenes on fresh-cut cantaloupe (0.1 CFU/g) was about 20 times lower than on 

fresh-cut romaine lettuce (2.16 CFU/g) (Figure 4.6). 

 

 

 
 

Figure 4.6. Probability distribution of the initial concentration of L. monocytogenes 
on  fresh-cut cantaloupe. 

 

Unlike fresh-cut romaine lettuce, the shelf-life of fresh-cut cantaloupe was 10 
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average, fresh-cut cantaloupe was consumed after 5 days from leaving the processing 

facility. Temperature distribution yielded a growth rate of L. monocytogenes on fresh-cut 

cantaloupe as 0.048 log CFU/g/h, approximately 118% higher than on fresh-cut romaine 

lettuce. As stated in Chapter III, higher sugar content and milder pH values made the 

fresh-cut cantaloupe a better medium for the growth of pathogen. Furthermore, lag time 

was 87 hours, suggesting that pathogen levels on produce were stable throughout that 

period.  

 Pathogen level at the time of consumption was 10.72 CFU/g, about 20 times 

greater than on fresh-cut romaine lettuce (0.5 CFU/g).  Due to the high growth rate, the 

relative growth of L. monocytogenes population was 9905% at the point of consumption 

(Eq. 4.8). Combined with the median serving size, the relative growth of L. 

monocytogenes population was 112.5g, and pathogen level per serving was 1206 CFU/g. 

The PI values (Eq. (4.1)) for the susceptible and healthy populations were 1.03x10-5 and 

5.40x10-10, respectively (Table 4.6). These findings confirm that the probability of 

illness is highly affected by the type of produce. For example, the PI associated with 

susceptible subpopulation of romaine lettuce consumers (2.69x10-9) was close to the 

healthy subpopulation of fresh-cut cantaloupe consumers. The expected annual illness 

for the baseline was 17 cases (Table 4.6). When the entire population was assumed as 

susceptible, the expected case number increased to 69. Although the prevalence, initial 

concentration and consumption time were lower than for fresh-cut romaine lettuce, 

expected cases per year increased to 17. These results indicate that the medium (ie, 

produce type) had a huge impact on the risk of illness associated with L. monocytogenes.  
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Figure 4.7. Comparison of log probability of illness for the baseline (#1) of both 
produce 

  

Irradiation was the only prevention step evaluated in this study because of the 

assumption mentioned in Section 4.2.3.12. Implementation of an irradiation step reduced 

the pathogen population to more than 99.99%. Even at the time of consumption, the 

relative growth of L. monocytogenes was -99.75%. As a result, for all subpopulations, 

the number of expected cases per year was less than one. Considering the effect of 

irradiation on fresh-cut romaine lettuce, in terms of food safety, irradiation is probably 

the best solution available to reduce the onset of a breakout due to consumption of 

Listeria-contaminated items. 
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Table 4.6. Model parameters and calculated values for five scenarios of the 
probability of illness in fresh-cut cantaloupe. 

Parameters 
Scenarios # 

1 2 3 4 5 

Initial concentration 
of L. 

monocytogenes (log 
CFU/g) 

-0.97 -0.97 -0.97 -0.97 -0.97 

Cross-
contamination 
levels (CFU/g) 

0 0 0.002 0 0 

Irradiation dose 
(kGy) 0 1 0 0 0 

Temperature abuse 

(oC & hours) 
0 0 0 20oC, 

24h 0 

Median Home 
Storage 

Temperature (oC) 
3.4 3.4 3.4 3.4 3.4 

Median Time 
(hours) 140 140 140 140 240 

L. monocytogenes 
concentration at 

consumption 
(CFU/g) 

10.72 2*10-4 10.75 42.77 258 

Log probability of 
illness (Susceptible) 

 

-6.86 -12.7 -10.56 -3.91 -12.04 

Log probability of 
illness (healthy) -11.1 -16.8 -14.61 -8.18 -15.29 

Estimated Annual 
Case  17 <1 68 54 6685 

 

Unlike the case of fresh-cut romaine lettuce, cross contamination had a big 

impact on the risk for foodborne illness from consumption of fresh-cut cantaloupe. 
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Although the assumed transfer coefficients were the same as with romaine lettuce, the 

number of expected cases per year increased to 68. Likewise, when the entire population 

was assumed to be immunologically compromised, the expected number increased to 

223 cases. The pathogen level also increased from 0.107 CFU/g to 0.109 CFU/g with 

cross-contamination. This result shows that even an increase on pathogen level of 0.002 

CFU/g can impact public safety. Furthermore, it can be said that the magnitude of the 

effect of cross-contamination highly depends on the type of produce. In terms of risk 

assessment, it is crucial to understand the growth patterns of pathogen on specific 

products.  

Temperature abuse also caused a big increase in expected annual illnesses. The 

number of expected cases per year was 54 for the entire population and 220 for the 

susceptible population. Although the growth rate increased to 0.38 log CFU/g/h from 

0.053 log CFU/g/h in a 24 hours period, the effect of temperature abuse was almost the 

same as cross-contamination. This result highlights the importance of cross-

contamination as a critical issue regarding the onset of foodborne illness due to 

consumption of Listeria-contaminated fresh-cantaloupe. Preventing the cross 

contamination should a priority target for producers. 
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Figure 4.8. Log probability of illness for scenarios (1)- (5) for a susceptible   
subpopulation  

         #1: Baseline 
         #2: Irradiation 
         #3: Cross contamination 
         #4: Temperature abuse 
         #5: Consumption time (336 hours or 14 days) 
 
 

Like in the case of fresh-cut romaine lettuce, the highest increase in annual cases 

occurred when the consumption time was set to 240 hours (10 days). Simulation results 

showed that at the time of consumption pathogen population was 2313% higher than the 

baseline. Consequently, the number of cases of expected illnesses per years was 6685 
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and 31000 for general and susceptible populations, respectively. These results confirm 

that L. monocytogenes could pose a serious problem in fresh produce even under 

refrigeration temperatures. Although consumption time was not in conjunction with 

temperature abuse or cross-contamination, expected annual case numbers were more 

than 100 times higher than any other scenarios used in this study. It can be argued that 

apart from the initial pathogen concentration, time is singlehandedly the most important 

factor on the risk of listeriosis. This scenario may vary for other common pathogens like 

Salmonella as they do not grow as well under refrigeration temperatures. 

4.7 Summary   

 This study showed that the quantitative risk assessment model can be used to 

evaluate the effect of intervention steps on the prevention of listeriosis due to 

consumption of fresh produce. The chemical treatments had similar low impact on 

pathogen load reduction, which suggests that other alternative treatments such as 

irradiation should be implemented. Irradiation was the most effective means to reduce 

the pathogen level on both fresh-cut produces because the estimated annual cases of 

listeriosis were reduced by more than 99% when this step was added to a typical fresh-

cut produce processing and distribution chain. This study also showed that cold 

atmospheric plasma might be a good alternative treatment of fresh-cut romaine lettuce to 

reduce the potential of illness associated with Listeria. 

Although the prevalence (10 times) and initial concentration (20 times) were 

lower in fresh-cut cantaloupe, the risk of illness associated with L. monocytogenes was 

40 times higher than fresh-cut romaine lettuce. Moreover, cross contamination in fresh-
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cut cantaloupe increased the expected annual illness to 68 cases. These findings 

demonstrate that pathogen growth rate is more critical than prevalence and initial 

pathogen concentration. When temperature abuse occurred at 20°C, the risk of listeriosis 

due to consumption of both produces increased. Therefore, in the summer season, the 

effect of temperature abuse can be dramatically higher. As a result, temperature 

distribution should be monitored closely in the production and retail stages, and the 

produce should be kept in the refrigerator at home. However, consumption time 

scenarios revealed that even when produce stored in refrigerated temperature, the risk of 

listeriosis increased with time. Indeed, the ability of L. monocytogenes to grow at lower 

temperatures makes the pathogen is a serious problem. The current study showed that 

preventing initial contamination, and implementing irradiation would be most effective 

options on reducing the risk of listeriosis associated with fresh-cut produce. 
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CHAPTER V 

CONCLUSIONS 

This research focused on the quantitative microbial risk assessment of illness 

from Listeria monocytogenes due to consumption of fresh-cut romaine lettuce and 

cantaloupe. In terms of washing the produce with chlorinated water (200 ppm) was more 

effective (p<0.05) than washing only with water. In addition, the effect of washing 

treatments was more significant (p<0.05) on fresh-cut romaine lettuce than on fresh-cut 

cantaloupe.   

Experimental data on Listeria innocua were used to obtain growth curves at 

different temperatures (5-36oC). As expected, the growth of L. innocua was highly 

affected (p<0.05) by temperature. Three different primary growth models were evaluated 

for goodness of fit. The maximum growth rate of L. innocua on fresh-cut cantaloupe was 

significantly higher than on fresh-cut romaine lettuce at 5 oC and 10oC (p<0.05). Lag 

time was not observed at temperatures of 10oC and above. All the primary models 

provided accurate descriptions for maximum growth rate and maximum population 

density of L. innocua. However, at higher temperatures, the Gompertz and Logistic 

models overestimated these parameters. Because the suitability of the surrogate was 

validated by Omac et al. (2015) and the lack of access to BSL2 facilities, the growth 

patterns of the surrogate were used to predict the growth of the pathogen in the risk 

assessment study. 

The second part of this research dealt with the quantitative microbial risk 

assessment (QRAM) for growth of L. monocytogenes in both produces. Growth data 
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from the surrogate served as input for the QRA model. The risk of illness per year 

associated with L. monocytogenes on fresh-cut cantaloupe (around 17) was significantly 

higher than on fresh-cut romaine lettuce (around 0.4) because cantaloupe is a more 

suitable media for the pathogen.  

Cross-contamination and temperature abuse throughout the processing and 

distribution chain increased the risk of illness due to consumption of fresh-cut 

cantaloupe by altering the concentration and growth rate of the pathogen in the fruit. 

Consumption time was the most important risk factor for both types of produce.  

 When temperature abuse occurred at 20°C, the risk of listeriosis due to 

consumption of both produces increased. Therefore, in the summer season, the effect of 

temperature abuse can be dramatically higher. As a result, temperature distribution 

should be monitored closely in the production and retail stages, and the produce should 

be kept in the refrigerator at home. 

Although the prevalence (10 times) and initial concentration (20 times) were 

lower in fresh-cut cantaloupe, the risk of illness associated with L. monocytogenes was 

40 times higher. Moreover, cross contamination in fresh-cut cantaloupe increased the 

expected annual illness to 68 cases. These findings demonstrate that pathogen growth 

rate is more critical than prevalence and initial pathogen concentration.  

In summary, fresh-cut produce should be periodically controlled in the 

processing system to prevent cross-contamination. Furthermore, the records of time and 

temperature should be regularly kept during the farm to table chain to monitor 

temperature abuse. 
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CHAPTER VI 

RECOMMENDATIONS FOR FURTHER STUDY 

Recommendations for future research focus on validation of Listeria innocua as a 

surrogate for L. monocytogenes in several types of produce, and the quantitative risk 

assessment for L. monocytogenes in fresh-cut produce Therefore, it is recommended to: 

 Test L. innocua under different environmental conditions (i.e. temperature) and 

in several commodities to establish its suitability as a surrogate for L. 

monocytogenes. 

 Increase the accuracy of the dynamic models by including all parameters which 

affect the growth of L. innocua and L. monocytogenes in leafy green vegetables. 

 Collect data regarding prevalence and initial concentration of L. monocytogenes 

in fresh-cut cantaloupe and fresh-cut romaine lettuce. 

 Conduct surveys regarding retail and home storage time and temperature. 

 Develop a cross-contamination model to describe the effect of cutting process on 

the transfer of L. monocytogenes in fresh-cut cantaloupe and fresh-cut romaine 

lettuce and other commodities. 

 Collect data regarding consumption of each commodity by subpopulation in the 

U.S. 
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APPENDIX A 

Figure A.1. The observed growth of Listeria innocua on fresh-cut romaine lettuce at 
5oC by fitting Baranyi and Roberts, Gompertz, and Logistic models 
(Eqs. 2.1, 2.2, and 2.4). 
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Figure A.2. The observed growth of Listeria innocua on fresh-cut cantaloupe at 5oC 
by fitting Baranyi and Roberts, Gompertz, and Logistic models (Eqs. 
2.1, 2.2, and 2.4). 
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Figure A.3. The observed growth of Listeria innocua on fresh-cut romaine lettuce at 
10oC by fitting Baranyi and Roberts, Gompertz, and Logistic models 
(Eqs. 2.1, 2.2, and 2.4). 
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Figure A.4. The observed growth of Listeria innocua on fresh-cut cantaloupe at 10oC 
by fitting Baranyi and Roberts, Gompertz, and Logistic models (Eqs. 
2.1, 2.2, and 2.4). 
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Figure A.5. The observed growth of Listeria innocua on fresh-cut romaine lettuce at 
25oC by fitting Baranyi and Roberts, Gompertz, and Logistic models 
(Eqs. 2.1, 2.2, and 2.4). 
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Figure A.6. The observed growth of Listeria innocua on fresh-cut cantaloupe at 25oC 
by fitting Baranyi and Roberts, Gompertz, and Logistic models (Eqs. 
2.1, 2.2, and 2.4). 
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Figure A.7. The observed growth of Listeria innocua on fresh-cut romaine lettuce at 
30oC by fitting Baranyi and Roberts, Gompertz, and Logistic models 
(Eqs. 2.1, 2.2, and 2.4). 
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Figure A.8. The observed growth of Listeria innocua on fresh-cut cantaloupe at 30oC 
by fitting Baranyi and Roberts, Gompertz, and Logistic models (Eqs. 
2.1, 2.2, and 2.4). 
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Figure A.9. The observed growth of Listeria innocua on fresh-cut romaine lettuce at 
36oC by fitting Baranyi and Roberts, Gompertz, and Logistic models 
(Eqs. 2.1, 2.2, and 2.4). 
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Figure A.10. The observed growth of Listeria innocua on fresh-cut cantaloupe at 
36oC by fitting Baranyi and Roberts, Gompertz, and Logistic models 
(Eqs. 2.1, 2.2, and 2.4). 
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Figure A.11. The observed growth Listeria innocua on fresh-cut romaine lettuce and 
fresh-cut cantaloupe at 5oC. 
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Figure A.12.  The observed growth Listeria innocua on fresh-cut romaine lettuce and 
fresh-cut cantaloupe at 10oC. 
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Figure A.13. The observed growth Listeria innocua on fresh-cut romaine lettuce and 
fresh-cut cantaloupe at 25oC. 
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Figure A.14. The observed growth Listeria innocua on fresh-cut romaine lettuce and 
fresh-cut cantaloupe at 30oC. 
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Figure A.15. The observed growth Listeria innocua on fresh-cut romaine lettuce and 
fresh-cut cantaloupe at 36oC. 
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Figure A.16. Maximum growth rate of L. innocua on fresh-cut romaine lettuce leaves 
as a function of temperature. 
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Blue: Baranyi Model (2.4) 
Black: Logistic Model (2.1) 
Red: Gompertz Model (2.2) 
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Figure A.17. Maximum growth rate of L. innocua on fresh-cut cantaloupe leaves as a 
function of temperature. 
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Blue: Baranyi Model (2.4) 
Black: Logistic Model (2.1) 
Red: Gompertz Model (2.2) 
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Figure A.18. Lag time of Listeria innocua on fresh-cut romaine lettuce as a function 
of temperature. 
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Figure A.19. Lag time for Listeria innocua on fresh-cut romaine lettuce as a function 
of temperature. 
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Figure A.18. Maximum population density of Listeria innocua on fresh-cut romaine 
lettuce as a function of temperature. 
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Figure A.19. Maximum population density for Listeria innocua on fresh-cut 
cantaloupe as a function of temperature. 
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Table A.1 Overview of simulation variables and parameters for fresh-cut romaine 
lettuce. 

Unit Variable Value Source 

Percent 
Prevalence of contamination lettuce 0.113333333 Table 4.1 

Log 
CFU/g 

Initial Concentrations 0.3354 Table 4.2 

 
Washing log Reductions   

Log 
CFU/g 

Water 0.5845 Experimental 

Log 
CFU/g 

Chlorine 0.974 Experimental 

Log 
CFU/g 

Cross Contamination -1.2  

Log 
CFU/g 

Pathogen concentration after washing 

treatments -1.2231  

kGy 
Irradiation Dose 1kGy Mintier and Foley 

CFU/g 

Pathogen concentration after 

irradiation   

Log 
CFU/g 

Pathogen concentration after 

disinfection treatments -1.223100 Calculated 

LN CFU/g 

Pathogen concentration after 

disinfection treatments -2.816292 Calculated 

 Transportation and Retail Storage 

Hours 
Transportation time 14 Jacxsens et al 2002 

oC 
Temp, retail 3.76 Nunes et al 2003 

Hours 
Time, retail 108 Omac et al. 2013 
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Hours 
Total time 61 

Uniform 

Distribution 

 Home storage 

oC 
Temp, home, mean 4.06 Pouillot et al 2010 

oC 
Temp, difference from mean 2.31 Pouillot et al 2011 

oC 
Temp, above or below mean 1 

Probability 

Calculations 

oC 
Home temp used 6.37 

Probability 

Calculations 

oC 
Temperature for used  5.065 

Probability 

Calculations 

Hours 
Min. time to first  27.12 

Danyluk and 

Schaffner 2011 

Hours 
Max. time to first  68.16 

Danyluk and 

Schaffner 2011 

Hours 
Min. time to first from farm to home 88.12 

Danyluk and 

Schaffner 2011 

Hours 
Max. time to first from farm to home 129.16 

Danyluk and 

Schaffner 2011 

Hours 
Time to first from farm to home 128.3302406 

Danyluk and 

Schaffner 2011 
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Hours 
Min. time to last 41.52 

Danyluk and 

Schaffner 2011 

Hours 
Max. time to last 191.04 

Danyluk and 

Schaffner 2011 

Hours 
Min. time to last from farm to home 102.52 

Danyluk and 

Schaffner 2011 

Hours 
Max. time to last from farm to home 252.04 

Danyluk and 

Schaffner 2011 

Hours 
Time to last 250.6444535 

Danyluk and 

Schaffner 2011 

Hours 
Time to used if first is after last 0  

Hours 
Time from uniform ditribution 189.487347  

Hours 
Time selected for consumption 189.487347  

 Growth  
log 
CFU/g/hr 

Growth model b parameter 0.0159 Eq 2.4 

oC 
Growth model Tmin parameter -4.26 Koseki et al (2005) 

1/Hours 
Maximum growth rate 0.021983252 Calculated 

 
tlag c parameters 0.011 Model 

 
Lag time model Tmin parameter -4.26 Koseki et al (2005) 

Hours 
tlag 95.04230244 Calculated 

 
F(t) 99.18752086 Calculated 

 
ymax A1 parameters 0.0826 Model 
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ymax A2 parameters 4.6568 Model 

LN CFU/g 
ymax 11.68811421 Calculated 

Log 
CFU/g 

ymax 5.076083504 Calculated 

LN CFU/g 
y(t) 

-6.358315E-

01 Calculated 

Log 
CFU/g y(t) 

-2.761381E-
01 Calculated 

Log 
CFU/g Limit level of if >ymax -0.276138132 Calculated 

Serving and dose-response 

g 
Serving size 48.25 Carrasco et al 2010 

CFU/g 
Level non Log 0.529495005 Calculated 

 Level per serving 25.54813401 
S.Size * Pathogen 

Level 

 
a-value 

2.50E-01 Weibull Coefficient 

 
b-value 

2.14 Weibull Coefficient 

 
healthy 

95499258602 Weibull Coefficient 

 
elderly 

1.8197E+15 Weibull Coefficient 

 
Probability of illness (healthy) 

2.69E-09  

 
Probability of illness (elderly) 

1.41E-13  

susceptible 
Probability of illness (exposure) 

3.05E-10 PI*Prevalence 

healthy 
Probability of illness (exposure) 

1.60E-14 PI*Prevalence 

susceptible 
Log Probability of illness 

-9.52E+00 Log(PI) 

healthy 
Log Probability of illness 

-1.38E+01 Log(PI) 

 
Annual Serving 

22280593990 Population * S. Size 
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susceptible 
Risk Output 

6.79 PI*Annual Serving 

healthy 
Risk Output 

3.57E-04 PI*Annual Serving 
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Table A.2. Overview of simulation variables and parameters for fresh-cut cantaloupe 

Unit Variable Value Source 

Percent 

Prevalence of contamination 

lettuce 0.0655 

Chen et al 2013 

FDA 2003 

Log CFU/g 
Initial Concentration -0.97 Chen et al 2013 

 Washing log Reductions 

Log CFU/g 
Water  N/A 

Log CFU/g 
Chlorine  N/A 

Log CFU/g 
Cross Contamination   

Log CFU/g 

Pathogen concentration after 

washing treatments -0.97  

kGy 
Irradiation Dose   

CFU/g 

Pathogen concentration after 

irradiation   

Log CFU/g 

Pathogen concentration after 

disinfection treatments -9.70E-01  

LN CFU/g 

Pathogen concentration after 

disinfection treatments -2.233508  

 Transportation and Retail Storage 

Hours 
Transportation time 14 Omac et al 2013 

oC 
Temp, retail 3.76 Nunes et al 2003 

Hours 
Time, retail 40 Omac et al. 2013 
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Hours 
Total time 27 

Uniform 

Distribution 

 Home storage   

oC 
Temp, home, mean 3.4 Chen et al 2013 

oC 
Temp, difference from mean 2.41 Chen et al 2014 

oC 
Temp, above or below mean 1 

Danyluk and 

Schaffner 2011 

oc 
Home temp used 5.81 

Danyluk and 

Schaffner 2011 

oC 
Temperature for used 4.785 

Danyluk and 

Schaffner 2011 

Hours 
Min. time to first 27.5 

Danyluk and 

Schaffner 2011 

Hours 
Max. time to first 68.16 

Danyluk and 

Schaffner 2011 

Hours 

Min. time to first from farm to 

home 54.5 

Danyluk and 

Schaffner 2011 

Hours 

Max. time to first from farm to 

home 95.16 

Danyluk and 

Schaffner 2011 

Hours 
Time to first from farm to home 94.1833137 

Danyluk and 

Schaffner 2011 
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Hours 
Min. time to last 41.52 

Danyluk and 

Schaffner 2011 

Hours 
Max. time to last 240 

Danyluk and 

Schaffner 2011 

Hours 

Min. time to last from farm to 

home 68.52 

Danyluk and 

Schaffner 2011 

Hours 

Max. time to last from farm to 

home 267 

Danyluk and 

Schaffner 2011 

Hours 
Time to last 264.8062849 

Danyluk and 

Schaffner 2011 

Hours 
Time to used if first is after last 0 

Danyluk and 

Schaffner 2011 

Hours 
Time from uniform distribution 179.4947993 

Danyluk and 

Schaffner 2011 

Hours 
Time selected for consumption 179.4947993 

Danyluk and 

Schaffner 2011 

 Growth 
log 
CFU/g/hr 

Growth model b parameter 0.0254 Eq. 2.6 

oC 
Growth model Tmin parameter -4.26 Koseki et al (2005) 

1/Hours 
Maximum growth rate 0.052781846 Eq. 2.6 

 
tlag c parameters 0.0115  
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Lag time model Tmin parameter -4.26 Koseki et al (2005) 

Hours 
tlag 92.42451428 Eq. 2.4 

 
F(t) 87.25914121 Eq. 2.4 

 
ymax A1 parameters 4.42 Model 

 
ymax A2 parameters 0.18 Model 

LN CFU/g 
ymax 13.49257861 Eq. 2.4 

Log CFU/g 
ymax 5.859752435 Eq 2.4 

LN CFU/g 
y(t) 2.372176358  

Log CFU/g 
y(t) 1.030223E+00  

Log CFU/g 
Limit level of if >ymax 1.030223E+00  

 Serving and dose-response 

g 
Serving size 112.5 Hoelzer et al 2012b 

CFU/g 
Level non Log 10.720699 Calculated 

 
Level per serving 1206.078637 

S.Size * Pathogen 

Level 

 
a-value 0.25 Weibull Coefficient 

 
b-value 2.14E+00 Weibull Coefficient 

 
healthy 95499258602 Weibull Coefficient 

 
elderly 1.8197E+15 Weibull Coefficient 

 
Probability of illness (healthy) 1.02819E-05 PI 
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Probability of illness (elderly) 5.40E-10 PI 

susceptible 
Probability of illness (exposure) 6.73E-07 PI*Prevalence 

healthy 
Probability of illness (exposure) 3.53E-11 PI*Prevalence 

susceptible 
Log Probability of illness -6.17E+00 Log(PI) 

healthy 
Log Probability of illness -1.05E+01 Log(PI) 

 
Annual Serving 3.56E+09 Population * S. Size 

susceptible 
Risk Output 2400.579058 PI*Annual Serving 

healthy 
Risk Output 1.26E-01 PI*Annual Serving 
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Table A.3. Estimated number cases of listeriosis associated with fresh-cut romaine 
lettuce consumption based on healthy and susceptible populations 

 The estimated cases of listeriosis per year 

Scenarios Healthy Susceptible 

#1 <1 <1 

#2 <1 <1 

#3 <1 <1 

#4 <1 <1 

#5 <1 <1 

#6 <1 <1 

#7 <1 6 

#8 29 128 

#1: Baseline 

#2: Baseline + Irradiation 

#3: Ozone 

#4: Peroxyacetic acid 

#5: Cold Atmospheric Plasma 

#6: Baseline + Cross contamination  

#7: Baseline +Temperature abuse (20oC, 24h)  

#8: Baseline + Consumption time (334 hours)  
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Table A.3. Estimated number cases of listeriosis associated with fresh-cut cantaloupe 
consumption based on healthy and susceptible populations 

 The estimated cases of listeriosis per year 

Scenarios Healthy Susceptible 

#1 17 69 

#2 <1 <1 

#3 68 223 

#4 54 220 

#5 6685 31000 

#1: Baseline 

#2: Baseline + Irradiation 

#3: Baseline + Cross contamination  

#4: Baseline +Temperature abuse (20oC, 24h)  

#5: Baseline + Consumption time (334 hours)  

 




