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ABSTRACT

Virtualization technology is powering today’s cloud industry. Virtualization in-

serts a software layer, the hypervisor, below the Operating System, to manage mul-

tiple OS environments simultaneously. Offering numerous benefits such as fault

isolation, load balancing, faster server provisioning, etc., virtualization occupies a

dominant position, especially in IT infrastructure in datacenters. Memory manage-

ment is one of the core components of a hypervisor. Current implementations assume

the underlying memory to be homogenous and volatile. However, with the emergence

of NVRAM in the form of Storage Class Memory (SCM), this assumption remains no

longer valid. New motherboard architectures will support several different memory

classes each with distinct properties and characteristics. The hypervisor has to rec-

ognize, manage, and expose them separately to the different virtual machines. This

study focuses on building a separate memory management module for Non-Volatile

RAM in Xen hypervisor. We show that it can be efficiently implemented with a few

code changes and minimal runtime performance overhead.
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NOMENCLATURE

NV Non-Volatile

API Application Program Interface

VA Virtual Address

PA Physical Address

HDD Hard Disk Drive

SDD Solid State Drive

DRAM Dynamic Random Access Memory

ACPI Advanced Configuration and Power Interface

PML4 Page Map Level 4

GDT Global Descriptor Table

LDT Local Descriptor Table

NVM Non-Volatile Memory

ELF Executable and Linkable Format

SDK Software Development Kit

IMC Integrated Memory Controller
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1. INTRODUCTION

1.1 Motivation

Proliferation of smartphones and tablets is introducing a divide in the computer

industry. While mobile technology is burgeoning in the role of access points, com-

putationally intensive tasks are offloaded to the cloud [6]. As a result, the server

industry is growing at a tremendous pace. This has also led to the development of

associated technologies, the most prominent being virtualization [23].

Virtualization enables multiple operating system environments to run simulta-

neously on one hardware platform. It provides added security and isolation in the

form of an additional software layer below the OS (Operating System), called the

hypervisor [25]. This technology has become an industry standard for large server

farms. Fault isolation, centralized control, workload balance, and live migration of

machines are few of its many benefits [23].

Most virtualized systems today, are constrained by memory and I/O subsystems

[24] [31] [20], with CPU resources to spare. However, these limitations shall no

longer stay relevant with the upcoming radical changes in memory technologies. In

the past few decades, memory subsystem structure has been fairly consistent, with

regular upgrades in its size. However, new developments such as 3D memory stacks

[27] [19], Storage Class Memory [7] [14], etc., shall completely revolutionize memory

architectures.

Among these new technologies, Non-Volatile RAM (Random Access Memory) in

the form of SCM (Storage Class Memory), has the potential to overhaul memory

architecture in virtual machines. Introduction of non-volatile memory can reduce

the frequency of disk I/O operations, and diminish the memory footprint of disk
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caches. It is highly likely that persistent memory will play a dominant role in future

server farms. Thus, it is a natural and worthwhile initiative to inspect the possibility

of sharing such a resource in virtual machines, with significant opportunities for

performance gains in filesystems, boot procedures, crash recovery, etc [2] [3]. This

thesis is going to focus on some of these aspects. To the best of our knowledge, there

has been no prior work in this direction, and this work may be considered a first step

in enabling NVRAM (Non-Volatile RAM) sharing in virtualized environments

1.2 Overview

This work focuses on sharing non-volatile memory in virtualized environments.

Due to several contrasting properties between volatile and non-volatile memory, a

conventional Memory Management Unit (MMU) cannot be used to manage non-

volatile memory. Therefore, a novel design of an additional MMU is proposed to

facilitate non-volatile memory sharing. This thesis also showcases an implementation

of the non-volatile MMU in a popular open source hypervisor – Xen.

In Chapter 1, we offer a brief technical background of virtualization and memory

subsystem in a modern computer. Chapter 2 is dedicated to the internal architecture

of Xen, detailing its sub-components and various design philosophies. Chapter 3

features the design and implementation details of the proposed non-volatile MMU in

Xen. In Chapter 4, we present the specifics of the experimental setup along with the

results. Lastly, in Chapter 5, the merits and demerits of the system are discussed

with emphasis on future work.

1.3 Virtualization

Modern day computers are a combination of complex software and hardware

systems. Such a high level of engineering is made possible through concepts of

abstraction, where an upper layer interacts with the layer beneath it, using well
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defined interfaces, oblivious to the lower layer’s inner implementation complexity

and details.

A computer system can be viewed as a stack of several independent layers as

shown in Fig 1.1. Here the flexibility of each layer is constrained by the interfaces

defined both above and below it.

Figure 1.1: Conventional Application Stack

Virtualization provides a way to relax the above constraints, either in the form of

the entire system or a subsystem like memory, I/O, etc. It enables the mapping of a

virtual system, to real system resources thereby giving an illusion to the process/OS

of a custom virtual environment, different from the host machine [25].

Formally, virtualization may be defined as a mapping between a guest state (Si)

and a host state (S ′i), such that a sequence of operations, ek, modifying the guest state

from (Si) to (Sj), can be represented by some corresponding sequence of operations,
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e′k, which modifies the host state from (S ′i) to (S ′j) respectively [26] (Fig 1.2).

Figure 1.2: Equivalent State Mapping [26]

From an OS’s point of view, all hardware can be classified into three broad

categories (Fig 1.3).

1. CPU: A CPU is a highly complex piece of hardware abstracted for the OS in the

form of an Instruction Set Architecture (ISA). The ISA defines the actual hardware

software interface in a machine, converting software code into electrical signals that

percolate through the entire system. Every action performed by the software stack

(including controlling Memory and I/O), takes place through the available set of ISA

instructions.

2. Memory: Memory is a collection of byte-addressable memory elements that

can be used to store and retrieve data. Every ISA provides special instructions to

interact with memory.
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3. I/O: All devices apart from CPU and Memory, such as modem, printer, moni-

tor, etc., come under the class of I/O devices. These devices are essentially composed

of several specialized registers which can be programmed to perform device specific

instructions. Thus, from the CPUs perspective, there is not much of a difference

between I/O and memory, since both are a collection of byte addressable memory

elements. Interactions with an I/O device can be performed by either (optional) spe-

cial I/O instructions or standard memory instructions supported by the ISA. Due to

the vast variety of devices available from different manufacturers, individual device

drivers have to be developed and added to the OS separately.

Figure 1.3: Abstract Computer Model

For entire system virtualization, we have to virtualize all the subsystems. This

can be performed either in software, or by hardware. A software approach provides

higher flexibility at the cost of reduced performance when compared to a hardware
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solution. The following subsections delve further into each subsystem virtualization

specifics.

1.3.1 CPU Virtualization

CPU virtualization aims at providing the hypervisor direct control over the dis-

tribution of hardware resources amongst various VMs (Virtual Machines). Similar

work is performed at the application layer by the Operating System. To facilitate

such protection mechanisms, a typical ISA implements several privilege levels (pro-

tection rings), allowing a certain class of instructions to execute in a privileged mode

only. The ISA generally presents two levels – user level and supervisor level (Fig 1.4).

An attempt to execute a privileged instruction in an unprivileged mode triggers an

exception. It transfers control of execution to a specific supervisor level subroutine

(generally registered with the OS), which takes appropriate action maintaining the

security and protection of the system.

Figure 1.4: ISA Protection Rings

In the case of virtual machines, such a task becomes all the more challenging, as

these protection mechanisms have to be implemented at the OS level by the hyper-

visor. Pioneering work done by Popek and Goldberg [21], defined several constraints
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on the Instruction Set Architecture of a machine to provide efficient virtualization

where majority of the operations run natively on the CPU. The CPU instructions

are first classified in the following manner:

1. Privileged Instructions: The group of instructions that can only be run when

the CPU is in supervisor mode and will trap outside it.

2. Control Sensitive Instructions: Instructions that change the hardware config-

uration or resources of the system.

3. Behavior Sensitive Instructions: Any instruction whose output depends on the

current state or configuration of the machine.

They proposed that for any architecture to be efficiently virtualizable (in trap and

emulate model), all sensitive (behavior and control) instructions must be privileged

instructions. Any instruction, which either tries to modify hardware configuration or

whose output depends upon it, should transfer control of execution to the hypervisor.

Contrary to the norm, an operating system on a VM runs in de-privileged user

mode (Fig 1.5). Most of the operations run at native speeds without emulation, with

a penalty introduced for sensitive instructions which trap into the hypervisor.
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Figure 1.5: System Virtualization Model

According to the above definition, x86 is not a virtualizable architecture. It has

a set of 17 sensitive instructions that do not trap to the supervisor mode. Being

a predominant architecture in todays computers, significant efforts have been spent

producing several solutions.

1. Emulation is the most versatile solution, implemented entirely in software.

Here, the dynamic instruction stream is scanned for sensitive instructions, which are

then replaced by emulated operations. Emulation can also allow a code, compiled

for one ISA, to run on a host machine with a different ISA; though with a severe

performance penalty (since every instruction has to be emulated). Binary translation

may be viewed as an optimized version of the above, where emulated code segments

are cached aggressively, providing significant performance boost for re-entrant code

segments.

2. Paravirtualization is another solution, that relies on relaxing some tenets of
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virtualization by modifying the source code of operating system to replace sensitive

operations with hypercalls to the hypervisor. Unfortunately this trades off flexibility

with performance, as different Operating Systems have to be modified individually

and the OS source code may not always be available to the hypervisor. Xen is one of

the leading open-source hypervisors employing paravirtualization [4], now natively

supported by the Linux kernel (from Linux kernel 3.0 onwards).

3. With increasing demand for virtualization technology both Intel and AMD

have extended the x86 ISA to include extra features to support a hypervisor in an

additional ring at -1 level, as shown in Fig 1.6. As per the original requirements of

Popek and Goldberg, the OS executing in the ring 0 is oblivious to the presence of

the hypervisor, with the privileged instructions generating a trap to the hypervisor.

Additional level of memory virtualization is also introduced with the addition of

Extended Page Tables in hardware. Along with the above, several instructions were

added to the ISA to support a system call structure for the hypervisor, named hyper-

calls. It also provides a hardware concept of virtual CPUs with specific instructions

to store/restore the state to/from VMCS (Virtual Machine Control Structure). This

enables x86 to achieve the status of a virtualizable architecture with the support of

these extensions. Detailed explanation is provided in Section 1.5.
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Figure 1.6: Hypervisor Protection Rings

1.3.2 Memory Virtualization

Virtual Memory has been around for a long time, allowing multiple applications

to share the physical memory in the system. Each application is given a virtual

address space, that is mapped on to the available physical address space via page

tables maintained by the Operating System (Fig 1.7). Thus, applications do not have

to worry about runtime memory allocation, and can operate on a continuous address

space. On the downside, each memory reference now requires an address translation

through the page table structure. Many ISAs provide support for a hardware page

table walker, which performs the translation in hardware.
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Figure 1.7: Virtual Memory

In a virtualized environment, the system memory is shared among several guest

VMs. Thus, it leads to an additional address space.

1. Virtual address space: The address space as visible to applications.

2. Guest Physical address space: Individual VM Level or OS Level address space.

3. Real or Machine address space: The actual system memory address space.

Figure 1.8: Hypervisor Based Memory Layers

Translations from virtual address space to the machine address space require two

levels of paging (Fig 1.8):
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1. Operating System Page table: Translates from virtual to guest physical ad-

dresses.

2. Hypervisor Page table: Translates from guest physical to machine addresses.

Without additional hardware support, a clever software based solution is to main-

tain an additional shadow page table with the hypervisor, mapping virtual addresses

directly to machine addresses. This approach though avoids one level of paging,

causes frequent traps to the hypervisor, which are very expensive.

However, recent virtualization extensions added to the x86 architecture now sup-

port nested page tables, i.e. two levels of address translations in hardware. It pro-

vides far superior performance in comparison with the shadow page table approach.

In the event of a page fault due to an invalid entry in the guest OS page tables, the

hypervisor need not be involved. However, in the software based approach, the hy-

pervisor first catches the exception and forwards the event to the guest kernel for an

appropriate response. It results in two unnecessary context switches, which can be

avoided with nested page table support, where the exception is directly delivered to

the guest. Moreover, any update to the guest page tables in the former approach have

to go through hypervisor, either via hypercalls or exceptions. As evident, the shadow

page table based approach generates more context switches. On the downside, in the

hardware assisted nested page table approach a TLB (Translation Lookaside Buffer)

miss is quite expensive, as the hardware has to traverse a greater number of page

tables to resolve an address.

Frequent context switching is another common issue faced in virtualized systems.

To reduce its impact, the virtualization extensions provide tagged TLB entries, where

TLB entries are associated with a vCPU (virtual CPU) using a tag. Thus, every

context switch does not necessitate a complete TLB flush. It may be safely assumed

from the above that hardware extensions add a significant boost to most virtualized
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environments, especially for memory management.

1.3.3 I/O Virtualization

An I/O operation is typically controlled by programming special registers on the

device, and using DMA (Direct Memory Access) for data transfers. Since, device

speeds are extremely slow (relative to the CPU) it is best not to involve the CPU

for data transfers. Thus, DMA requests are moderated entirely by the northbridge

chipset (Fig 1.11). The CPU is notified of the completion of the DMA operation,

using an interrupt. Device virtualization mainly focuses on the following two aspects.

1. DMA

2. Interrupts

There are several ways to approach this problem. A direct method would be for

the hypervisor to manage all the devices directly, and then emulate them for each

Virtual Machine. It is a humungous undertaking requiring re-development of device

drivers separately for the hypervisor. An alternate and currently popular way is to

assign devices to specific privileged domains, which in turn, handle the I/O requests

of all the other domains. Herein arises a security issue, where DMA requests from the

driver domain can corrupt memory regions of other virtual machines. Traditionally

there exists no security checks in hardware to prevent devices from accessing memory

regions. As a result, the VM controlling a device, can potentially gain access to the

entire machine address space.

Newer extensions such as VT-d (from Intel [17]) can safeguard against such sit-

uations. VT-d implements IOMMU (I/O Memory Management Unit) that act as

an MMU for devices. The hypervisor can program page tables in the IOMMU map-

ping the device to the guest physical address space of a particular VM, maintaining

memory isolation for the other guests. Moreover, VT-d also includes functionality
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for remapping interrupts to a particular virtual CPU construct. It helps minimize

costly context switches and hypervisor interventions.

Newer ambitious approaches similar to PCI-e SR-IOV technology (Single Root

I/O Virtualization) [12], define certain standards for a device to divide itself into

smaller units. These smaller device units can then be directly controlled by indi-

vidual VMs without hypervisor intervention. The hypervisor maintains control of

the higher level functionality of the device, such as allocation of units to different

VMs. Unfortunately, due to the vast number of devices and manufacturers involved,

industry has not come to a common consensus, and the above approach is still in

the nascent stages of development.

1.4 Non-Volatile Memory

Traditionally a computer has two forms of data storage.

1. Main memory or RAM.

2. Secondary storage or Disk.

The key property of main memory is byte addressable data, while that of sec-

ondary storage is non-volatility – data is preserved in the absence of power. Tradi-

tionally main memory has been volatile, while disk storage lacks byte-addressability.

Moreover, disk storage is significantly slower than RAM, but has notable greater

capacity (Table 1.1). These factors have led RAM to serve as a cache for movement

of data to and from disk.
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Table 1.1: Comparison between HDD, SSD and DRAM (approx. values)

Property HDD SSD DRAM

Maximum Capacity 6TB 512GB 16GB

Data Retention >10 yrs 10 yrs 64ms

Write Endurance Unlimited 10000/block Unlimited

Read Latency 3ms 20us 50ns

Write Latency 3ms 200us 50ns

Cost ($/GB) 0.05 0.5 10

Write Bandwidth 150MB/s 500MB/s 10GB/s

The volatility of RAM leads to data loss on shutdown. In the case of a planned

shutdown, data residing on RAM is backed up on the disk. The system state is

restored on boot up by transferring all saved data back to RAM, generating an

illusion of persistence of data. However, the heart of the problem lies in the case of

unplanned power failures where all data present in the main memory is permanently

lost. Several approaches can be taken to safeguard against such a situation:

1. Software solution: – This method cannot eliminate data losses but tries to

minimize the effective data loss. Here, the OS maintains complex data structures

along with logging and check-pointing procedures to periodically transfer data to

disk. Since, disk speeds are significantly slower, heavy performance penalty is ob-

served. The frequency of the above mentioned procedures involves a constant trade-

off between performance and data integrity, where one has to be sacrificed for the

other. This issue is exacerbated in server farms, where client data safety is of utmost

importance.

2. Un-interruptible power source: – This solution comes at steep infrastructure
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costs of a backup power source, that lies idle for the most part.

3. Hardware solution: – Non-volatile RAM is a proposed hardware solution to

the above mentioned issues. It combines near RAM access speeds with data retentive

technologies to provide performance, as well as data integrity. Data movement on the

memory bus is several orders of magnitude faster when compared to disk, providing

persistence at little or no additional cost.

Out of these three possibilities, the software solution is most commonly applied to

current systems, due to the absence of an inexpensive alternative. Whereas, NVRAM

technology, though in its nascent stages, is the most promising solution in the future

systems. In conclusion, Non-Volatile memory is useful to safeguard against data loss

during unexpected power cuts.

1.4.1 Storage Class Memory

Research and innovation into devices have allowed a new class of memory tech-

nologies to spring up under the banner of Storage Class Memory that fall in the

NVRAM category. Some common examples are PCM (Phase change memory) [22],

STT-RAM (Spin Transfer Torque RAM) [13], ReRAM (Resistive RAM) [8] [9],

FRAM (Ferroelectric RAM) [5], MRAM (Magnetic RAM) [16] [11], etc. Each of

these devices have different properties in terms of power efficiency, speed, density,

and cost/bit, but are unified by the following common characteristics.

1. Byte Addressable Memory

2. Non-volatility

3. Significantly faster access times when compared to disks or SSDs.

Introduction of SCM will usher some changes in the motherboard architecture

(Fig 1.9). SCM memory can be placed alongside DRAM on the memory bus, and also

on a PCIe (Peripheral Component Interconnect Express) bus along with SSDs. With
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the growth and commercialization of different SCM technologies, SCM is expected

to replace/augment both DRAM and Flash memory from their dominant roles in

the near future.

Figure 1.9: SCM Based Motherboard Architectures [30]

1.4.2 NVDIMM

Non-volatile Dual Inline Memory Module (NVDIMM) [15] is another upcoming

technology under the banner of non-volatile RAM. As shown in Fig 1.10, it is simply

a conventional DRAM backed up by Flash memory. During normal operation, all

the write and read requests go to DRAM with the flash device remaining inactive.

However, in the event of loss of power (either during normal shutdown or an unex-
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pected power failure), a supercapacitor/battery kicks in to provide alternate power

for a short time period. During this time, dedicated hardware logic transfers all the

data from DRAM to flash memory, thereby making it non-volatile. The power on

procedure restores the state of DRAM from the data backed up in the flash memory.

NVDIMMs thus behave exactly like DRAM during runtime, only exposing the flash

memory in the reboot sequence.

Figure 1.10: NVDIMM Model

One of the key advantages is that NVDIMMs can function at DRAM speeds while

providing non-volatility through background operations. Another important benefit

is that both DRAM and flash are commercially mature technologies, combined simply

by some hardware glue logic.

1.5 E820 Memory Map

Devices external to the microprocessor can be broadly classified into two groups

1. I/O
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2. Memory

The microprocessor interacts with these two devices in a similar way. I/O devices

contain programmable registers, that act as an interface for the device, whereas

memory is just a bank of byte addressable memory elements. Both memory and

I/O read/write instructions are issued on the same bus, which are then forwarded

appropriately by the Northbridge chipset (Fig 1.11).

Figure 1.11: Intel Hub Architecture

In the nascent stages of microprocessor development, different companies went

with different I/O models. Intel included a separate I/O pin in its microprocessor

that separated memory and I/O addresses into two separate address spaces, effec-

tively providing an extra bit. For example, if the ISA supported 16 bit addresses,
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we get one 16 bit address space for I/O and another 16 bit address for memory,

which is the same as a 17 bit unified address space for both memory and I/O. Intel

also had to provide a separate set of I/O instructions to manipulate I/O registers

(called I/O ports) in its ISA. This address space segregation through an external

I/O pin simplified the address decoding logic in Northbridge chipset. Moreover,

then, addresses were just 16 bits wide, making the effective extra bit, a precious

resource addition. On the downside, the ISA became more bulky with separate I/O

instructions performing similar tasks as Memory instructions.

On the other hand, Motorola provided a Memory Mapped I/O (MMIO) model.

Here I/O registers and memory are mapped on to the same address space, each

occupying distinct addresses.

This eliminated the need for any separate I/O instructions to be included in the

ISA. However, as a result, the address decoding logic in the Northbridge chipset

became more complex. Where, in the previous case, the chipset just had to check

the value of one bit (I/O pin of the microprocessor), here, it had to decode the entire

address, to forward the instruction to the correct bus. Moreover, this design had to

share the address space between both memory and I/O.

In the long run, many of the disadvantages of MMIO mentioned above, disap-

peared, making it the dominant model used in today’s computers. With scaling

of transistor technology, hardware logic became inexpensive, and the Northbridge

could easily handle the additional hardware for complete address decode logic. The

address space also expanded from 16 bits to 32 bits and now on to 64 bits, which is

more than enough for both memory and I/O. This model had a major advantage of

preventing duplication of instructions at the ISA level. The vast plethora of memory

management instructions are more comprehensive and can be used in the same way

for I/O registers. Thus MMIO is more popular, with I/O ports, only supported for
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legacy reasons.

This begs the question now, that how does the OS know the division of the

address space between memory and I/O. The translation occurs at Northbridge and

differs from one motherboard to another. These hardware details are hidden in an

abstraction layer provided by BIOS (Basic Input/Output System), in the form of

E820 Memory Map [28], as shown in Table 1.2. This list is generated by BIOS on

raising a software interrupt 0x15, with EBX set to 0xE820.

Table 1.2: Sample E820 Table

Start Address End Address Code Translation

00000000 0009e800 1 (usable)

0009e800 000a0000 2 (reserved)

000e0000 00100000 2 (reserved)

00100000 7270a000 1 (usable)

7270a000 72822000 4 (ACPI NVS)

72822000 72a24000 1 (usable)

73561000 73577000 1 (usable)

73577000 74177000 2 (reserved)

74177000 741f3000 3 (ACPI data)

Physical address ranges are currently divided into 6 regions which are indicated

by the type field [28].

A brief description of the different types is as follows:

1. AddressRangeMemory: Available RAM
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2. AddressRangeReserved: Reserved by the system, generally contains I/O ad-

dresses.

3. AddressRangeACPI: Stores ACPI tables.

4. AddressRangeNVS: Not usable by the OS. This range is required to be saved

and restored across an NVS sleep.

5. AddressRangeUnusuable: Memory regions containing errors.

6. AddressRangeDisabled: Memory not enabled.

7. Other: Undefined. Reserved for future use.

An E820 memory map contains a list of valid addresses. It serves the following

basic services

1. Indicate the physical address space to the OS.

2. Indicating usable RAM regions.

3. Indicate I/O regions, corrupted memory regions, along with other reserved

regions.

The OS discover the system memory and I/O regions using the above table. With

the knowledge of the available memory space, the OS can create page tables and other

data structures, to use and share the memory. For the reserved I/O regions, there

are several self-discovery mechanisms like Plug and Play (PnP) to identify various

devices.

1.6 Intel VT Extensions

Popularity and demand for virtualization led Intel to introduce various features

for the x86 platform, in VT-x [18] and VT-d [17] extensions. These extensions

recognize the following additional modes of operation of the CPU.

1. VMX root: This is the highest level of privilege only accessible to a VMM.

2. VMX non-root: This mode is appropriate for guest VMs, containing all the
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typical privilege levels encountered by an OS in a non-virtualized environment.

De-privileging an OS relies on extending the traditional framework between ap-

plications and OS, to OS and the hypervisor. Sensitive instructions that used to

cause traps to the OS would now trap to the VMX root. These transitions from

VMX non-root mode to VMX root mode are termed as VM exits (the reverse is

called VM entry). During a VM exit, the state of a guest machine (VM) is saved

to, and the state of the host machine (VMM) is restored from, a Virtual Machine

Control Structure (VMCS). VMCS is a hardware based memory structure (similar

to page table structures) containing various regions defining the CPU state and be-

havior. It provides a hardware realization to the term vCPU, which was just an

abstract concept earlier, realized entirely in software. Since, the CPU state is saved

to memory by hardware, it is much faster than prior software implementations of

storing registers individually. VMCS structures also provide flexibility of masking

VM exits on certain sensitive instructions. Interrupts may be remapped to a vCPU,

eliminating the need for the VMM to first catch and then deliver these events to

guests.

Typically, applications indirectly gain access to system resources via system calls

provided by the OS. These system calls were generally implemented using a software

interrupt, that would change the privilege level of the CPU and transfer control of

execution to a specific OS subroutine. To eliminate the overhead of a software inter-

rupt and allow faster transitioning, Intel added a SYSENTER instruction that results

in a jump to a specified address in the Model-Specific Registers (MSR). A similar

functionality has been extended to hypervisors, especially to support paravirtualiza-

tion. A special VMCALL instruction has been included in the VT-x extensions, that

unconditionally causes a VM exit passing the control over to the VMM, in VMX

non-root mode. It differs from SYSENTER function in the sense that it stores the
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guest CPU state to the VMCS structure before moving to the hypervisor, while the

SYSENTER instruction does not.

VT-d instructions provide virtualization extensions for devices. It includes facili-

ties such as IOMMU and interrupt remapping which when used in conjunction with

VT-x reduce the overhead for I/O operations in virtualized environments. IOMMU

has been easier to implement due to the incorporation of northbridge chipset inside

the CPU itself. Earlier, memory controllers used to reside on the northbridge chipset

external to the CPU. However, due to MOS scaling effects, memory controllers have

been moved to the CPU die, and it is a lot easier to support a memory management

unit for device memory accesses. VT-d extensions also provide for interrupt remap-

ping capabilities to vCPUs, rather than physical CPUs further minimizing hypervisor

intervention.

These extensions are still an ongoing development, with each revision providing

newer features and trying to close the gap between virtualized and non-virtualized

environments. Hypervisors are also continually evolving to making extensive use of

the added capabilities.
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2. XEN HYPERVISOR

Xen is an open-source hypervisor, that started as a project at University of Cam-

bridge. It uses paravirtualization in conjunction with hardware assisted virtualiza-

tion technologies to develop a VMM. Along with widespread adoption, it also boasts

of native support from Linux kernel.

2.1 Xen Architecture

Xen hypervisor follows a minimalist design policy with emphasis on security and

efficiency. This is extremely important as the hypervisor hosts multiple Virtual Ma-

chines and any bugs may compromise the entire system. Virtual machines are hosted

on custom environments called domains. Xen exposes very basic functionalities to

these domains having similar UNIX counterparts as shown in Table 2.1. Guest OSes

should contain relevant modifications to use these features.

Table 2.1: Comparison between Xen and Unix Architecture [10]

UNIX Xen

System Calls Hypercalls

Signals Events

File system Xenstore

POSIX shared memory Grant tables

Initially Xen was designed undertaking paravirtualization on x86, i.e. Guest

OS kernels were modified to be compatible with Xen. However, with the addition

of Intel VT-x and AMD SVM extensions to the x86 architecture, it is possible to
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support pure virtualization. Guests on newer machines can run in two modes – PV

(Paravirtual) guest or HVM (Hardware Virtual Machine) Guest. In HVM mode, Xen

can run guests without any source code modifications. On the other hand, running a

paravirtualized guest kernel in HVM takes the hybrid approach where the guest may

take advantage of hardware features (such as Nested Page Tables), in addition to the

performance boosts provided by paravirtualization techniques (such as hypercalls).

Guests can use the CPUID instruction to probe whether it is running directly on

hardware, or on top of Xen.

The trap and emulate model, for hypervisors, is very expensive in terms of CPU

cycles. Thus sensitive operations in a guest OS are typically replaced with hypercalls.

This is quite similar to system calls in UNIX. Typically system calls use interrupt

80h (or SYSENTER instruction) to transfer control to the kernel in ring 0 with

arguments either placed on the stack or in ISA registers. Hypercalls work in much

the same way utilizing interrupt 82h instead in PV mode. However, in HVM mode,

most interrupts are generally configured to be fed to the guest kernel instead of Xen.

To enter the hypervisor at ring -1, a special instruction, VMCALL, is used instead.

These two separate methods are unified in newer Xen versions via calling an

address at a certain offset in a special page mapped to the Guest OS’s address space.

The offset determines the specific hypercall command. In the above method, the

hypercall issue procedure remains the same from the Guest OS kernel’s perspective

whether in PV mode or in HVM mode. The implementation specifics are hidden in

the page mapped to the Guest VM.

In a Xen based system (Fig 2.1), memory and CPU resources are managed directly

by the hypervisor, but I/O devices are generally controlled using a privileged domain

(generally dom0). This domain runs at a higher privilege level where it is given direct

access to many hardware resources. In addition to handling I/O operations, it also
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hosts the Xen User Interface used for administrative tasks. Thus, its security is of

prime importance. Some of its responsibilities, such as hosting a device driver, may

be delegated to domU guests (Guest domains) running at a higher privilege level.

This feature is very useful in the case of a buggy device driver, as during any device

driver related fault, only the specific domU needs to be restarted instead of the entire

system. However, in the absence of IOMMU, DMA requests from this domain may

potentially affect memory regions allocated to other VMs.

Figure 2.1: Xen Architecture [10]

Memory sharing in Xen is enabled via Grant tables. Memory is shared or trans-

ferred among domains at page granularity. This feature is quite useful in many

situations such as networking among guests and implementing split device driver

model.

One of the features of Xen which makes it very popular is its I/O interface. Xen
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escapes the need to both emulate devices and develop separate device drivers with a

split device driver model. It is made up of the following.

1. Actual device driver.

2. Generic backend driver.

3. Generic frontend driver.

4. Ring buffer.

Typically, dom0 or a driver domain hosts the actual device drivers eliminating a

notable amount of redundant developmental work. A generic frontend device driver

is implemented in the guest domain at a much higher abstraction level which com-

municates with the backend device driver using ring buffers. The backend driver

deconstructs the I/O requests from the front end driver and forwards it to the actual

device driver. The requests are thus kept very simple avoiding device specific details.

Ring buffers handle data movement across domains using shared memory utilities

provided by Xen (Grant tables). A key advantage of this model is that a single split

device driver can cover a whole class of devices.

Time keeping is another important aspect of an Operating System, especially for

a scheduler. CPUs are shared amongst the running processes on a time sharing basis,

and thus it is of utmost importance that the Operating System has accurate CPU

clock information. Additionally, several user space applications also need wall clock

time information, which can be calculated from system time. Usually the above is

gathered using the CPU clock and network time information. However, in a virtual

machine the CPU clock does not reflect the system time, because different Operating

Systems share the same CPU. The hypervisor holds the responsibility to provide a

virtual machine with system time corresponding to the actual time the VM occupies

a CPU. In HVM domains, Xen receives support from the hardware extensions, while

in PV domain the above is performed entirely in software.
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2.2 Xen Control Interface

The control interface of Xen contains a combination of user space, and kernel

space code, through which hypercalls are issued. To host the interface, dom0 must

comprise of a compliant kernel (Linux, NetBSD, Solaris, etc.) containing requisite

modifications. The process stack, including and above the Xend daemon (Fig 2.2),

run as user space applications while the rest run at a higher privilege level.

Figure 2.2: Xen API [10]

Xen commands issued through any tool, are converted to XML-RPC messages

to communicate with the Xend daemon. Xend daemon forwards the command to

the kernel to issue hypercalls. In this chain of flow, the interface of Xend daemon

is standardized through the definition of Xen API. This allows development and

proliferation of user space management tools independent of changes lower in the

stack. The complete Xen Control Interface structure is presented in Fig 2.2. Xen

commands can be issued from a variety of user space tools such as xl, xm, libvirt, etc.
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Some tools (e.g. xm) written in python, have an additional overhead of a runtime

python environment. In contrast, xl is relatively lightweight using libxen library,

written in C, to generate XML-RPC messages.

The xend daemon runs in the user space, thus minimizing dependence on a specific

kernel. On receiving messages, xend performs certain critical tasks such as access

control and issues hypercalls to the hypervisor through the kernel.

Sample commands for xl toolchain are illustrated below:

• Create or start a virtual machine: xl create <config filename>

• Shutdown a virtual machine: xl shutdown <domain id>

2.3 Xen Memory Model

Memory management is one of the core components of a hypervisor. With Xen

core, the available memory is shared dynamically amongst the different virtual ma-

chines. It also allows for thin provisioning, i.e., projecting more memory than the

available system RAM using ballooning techniques.

As a part of design philosophy, Xen does not swap pages out of memory itself.

Individual guest OSes are the best judges to identify cold pages and thus this job

is left over to them. Using the balloon driver, Xen is able to mount or release

memory pressure in a VM. When the hypervisor wants to reclaim pages from a VM,

it inflates the balloon driver in the virtual machine. The balloon driver requests

more memory from the OS, which swaps cold pages out and releases memory to the

balloon driver. The latter returns those freed up memory pages to the hypervisor

so that it can be allocated to an appropriate VM. During runtime, as the memory

requirement reduces, Xen deflates the balloon and releases memory back to the VM.

The balloon driver monitors a target memory value, set in Xenstore to dynamically

30



balance the actual memory allocated to the guest. This target memory value (set

through domain0) is usually smaller than the guest physical address space and reflects

the intended actual memory allocation for that domain.

2.3.1 x86 64 Memory Management

This subsection focuses on the memory management details for x86 64 machines.

While extending the x86 ISA to 64 bits, AMD cleaned up memory segmentation

controls, leaving a continuous flat address space with page level controls. In x86 64,

virtual memory is 64 bits wide, currently allowing only 48 bit sign extended addresses

[18]. A typical system looks similar to Fig 2.3, having 128TB + 128TB accessible

regions.

Figure 2.3: x86 64 Virtual Address Space
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Typically for most Operating Systems, a virtual address space is generally divided

into two parts

1. Kernel Space: This space is shared and common to all the applications. Kernel

space also contains a direct mapping of the physical address space (usually with an

offset).

2. Application Space: This space is specific to individual applications for appli-

cation data and code.

For Linux on x86 64 machines, the lower region goes to the application and the

upper region is occupied by the kernel. Mapping the kernel into the individual

application address spaces avoids the overhead of a context switch during a system

call. Moreover, many system calls pass arguments via a pointer to a user space

memory region, that is also accessible directly by the kernel, since the kernel is

mapped onto the process address space.
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Figure 2.4: Xen Virtual Address Layout Transformation

A similar framework is setup in-between Xen hypervisor and the individual VMs

(see Fig 2.4). The hypervisor reserves a portion of the kernel address space for itself.

This is done again to avoid context switches during hypercalls from a guest VM.

This address space is again subdivided into different regions.
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Table 2.2: Virtual Memory Regions [29]

Start Address End Address Description

1 0x0000000000000000 0x00007fffffffffff
[128TB, PML4:0-255] Guest-

defined use

2 0x0000800000000000 0xffff7fffffffffff
[16EB] Inaccessible: Only 48-bit

sign-extended VAs supported

3 0xffff800000000000 0xffff800000000000

[256GB, PML4:256] Read-only

machine-to-phys translation ta-

ble (GUEST ACCESSIBLE)

4 0xffff804000000000 0xffff807fffffffff

[256GB, PML4:256] Reserved for

future shared info with the guest

OS (GUEST ACCESSIBLE)

5 0xffff808000000000 0xffff80ffffffffff
[512GB, PML4:257] ioremap for

PCI mmconfig space

6 0xffff810000000000 0xffff817fffffffff
[512GB, PML4:258] Guest linear

page table

7 0xffff818000000000 0xffff81ffffffffff
[512GB, PML4:259] Shadow lin-

ear page table

8 0xffff820000000000 0xffff827fffffffff
[512GB, PML4:260] Per-domain

mappings (e.g., GDT, LDT)

9 0xffff828000000000 0xffff82bfffffffff
[256GB, PML4:261] Machine-to-

phys translation table

10 0xffff82c000000000 0xffff82c3ffffffff
[16GB, PML4:261]

ioremap()/fixmap area
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Table 2.2 continued

Start Address End Address Description

11 0xffff82c400000000 0xffff82c43fffffff

[1GB, PML4:261] Compatibility

machine-to-phys translation ta-

ble

12 0xffff82c440000000 0xffff82c47fffffff

[1GB, PML4:261] High read-

only compatibility machine-to-

phys translation table

13 0xffff82c480000000 0xffff82c4bfffffff
[1GB, PML4:261] Xen text,

static data, bss

14 0xffff82c4c0000000 0xffff82f5ffffffff
[197GB, PML4:261] Reserved for

future use

15 0xffff82f600000000 0xffff82ffffffffff
[40GB, PML4:261] Page-frame

information array

16 0xffff830000000000 0xffff87ffffffffff
[5TB, PML4:262-271] 1:1 direct

mapping of all physical memory

17 0xffff880000000000 0xffffffffffffffff
[120TB, PML4:272-511] Guest-

defined use.

As seen in Table 2.2, different regions, serve individual purposes, while the com-

plete machine memory is made directly accessible to Xen through region 16.

2.3.2 Hypercalls

Several hypercalls are provided to facilitate common memory management oper-

ations in Xen. Although in a pure virtualization environment, it is not necessary,

but hypercalls are included for performance gains.
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Page table management is one of the most expensive operations in a paravirtu-

alization approach. To prevent direct access to physical hardware, page tables of a

domain are generally marked as read only by the hypervisor. Any attempted modi-

fications by the guest VM would result in a trap to the VMM, which then emulates

the required operation.

Xen provides hypercalls for the guest to make the above procedure easier. It also

allows for multiple page table changes to be clubbed together, via the HYPERVI-

SOR mmu update hypercall. However, these operations are not relevant to the case

of an HVM guest. In x86 architecture, the VT-x (for Intel chips) and SVM (for

AMD chips) extensions allow the guest direct access to its own page tables. This

eliminates the scenario for traps altogether.

Thin provisioning is another important feature in a virtual machine. The bal-

loon driver negotiates the actual memory occupied by a domain with the hypervi-

sor. The popular commands used by it are XENMEM increase reservation, XEN-

MEM decrease reservation and XENMEM populate physmap. The first two are

used for runtime addition or removal of memory blocks behind the guest physi-

cal address space. While the third one is used for the initial mapping of the guest

address space during domain creation, for large memory requests. These commands

are executed through the HYPERVISOR memory op hypercall. Another important

command associated with this hypercall is XENMEM memory map. It can replace

the BIOS call to provide an E820 memory map to a paravirtualized guest. Though

not necessary for domU guests, it is one of the available ways to determine the initial

layout of guest physical address space.
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3. DESIGN AND IMPLEMENTATION

Conception of the proposed system revolves around the design of an additional

memory management unit in the hypervisor. Since NVM data has existence beyond

the lifetime of a VM, the conventional MMU cannot be used. A new Non-volatile

memory management unit is presented as a solution, for a popular hypervisor – Xen.

In this chapter, several features of Xen are described relevant to the x86 64 ISA

with VT-x extensions and Intel Hub Architecture, followed by requisite modifications

to incorporate the new MMU design.

3.1 Overview

Boot procedure on x86 demands that the CPU should first transition from real

mode to protected mode to access the entire address space. It should initialize the

necessary page table data structure and segment registers to perform the switch

while keeping interrupts masked during the transition process. After entering the

protected mode the processor has a lot more flexibility, but typically loses access

to BIOS calls. For the above mentioned reasons, bootstrapping on x86 is a quite

complex and tricky procedure. Typically, initialization of a MMU is one of the first

tasks for any kernel, and it involves a fair amount of bootstrapping code. It makes

this undertaking all the more challenging and interesting.

Booting can also designate either the host machine startup or just starting a

virtual machine. While the former is associated with the hypervisor taking stock

of the hardware resources, the latter involves sharing the same with a VM in a

secure manner. The major steps performed in a Xen based system from power on to

starting a new domain is summarized in the flowchart presented in Fig 3.1 and Fig

3.2. As evident from this figure this project can be broken down into two fundamental
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subdivisions.

1. Create an independent Memory Management Unit for the available Non-

Volatile RAM.

2. Provide guest domains access to the NVRAM region, in a secure and protected

manner.

Figure 3.1: Domain Creation Flowchart : System Boot
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Figure 3.2: Domain Creation Flowchart : DomU Boot

The first task requires modifications in the Xen kernel, with parts that deal with

the boot process. Since the modifications are at the highest privilege level, it is very

critical that the implementation be bug free, secure and efficient. Even minor bugs

may cause the entire system to crash.

On the other hand, the second job deals more with user level code, specific to

a toolchain. A notable part of domain creation focuses on emulation of firmware,
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performed mainly by various management tools. Only a small portion deals with

issuing hypercalls for resource allocation. Therefore, in this section most of the

implementation details reside in the Xen control interface with minor modifications

to the hypercall structure. Due to standardization of Xen API, many tools have

sprung up for VM management. This implementation picks up the xl toolchain,

which is the default tool supported by Xen community.

A basic outline of the implementation is presented below, in Fig 3.3, highlighting

the modifications in red.

1. Recognize the presence of NVRAM from E820 memory map provided by BIOS.

2. Create a separate NVRAM pool to manage the resource independently.

3. Create separate interface to specify DomU RAM and NVRAM requirements.

4. Generate virtual E820 memory map reflecting the separate NVRAM pool.

5. Map the virtual NVRAM space in domUs to the physical Non-volatile memory

present on the machine.

Figure 3.3: Modified Xen Architecture
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3.2 Challenges

There are several challenges faced during the design of the proposed system in

Xen. The most notable being the absence of a modular design for system memory.

Xen has been architected around volatile memory, and the notion of a homogeneous

memory is integrated quite deep in the system design. This makes it all the more

challenging to introduce another MMU. Moreover, a major portion of the initializa-

tion is done during the boot procedure, which is in itself quite a complex process for

x86. Along with the above virtualization being a relatively new technology lacks suf-

ficient documentation. Thus, even minor code changes turn into a grueling task. The

combination of the above issues makes the implementation an arduous but exciting

challenge.

3.3 Xen Boot Procedure

On system start, Xen boots up first to take stock of the hardware present. It

queries the BIOS for the E820 Memory map. Identifying the available memory

regions, Xen builds preliminary page tables and switches the machine to protected

mode. With paging enabled, the hypervisor can access the entire address space. It

follows by building free page lists.

Each machine page is identified by a data structure called page info presented

below [29]. This structure contains runtime administrative information about the

machine pages such as status, domain identifier, special page status, order, etc.

1

s t r u c t page i n f o

3 {

union {

5 s t r u c t p a g e l i s t e n t r y l i s t ;

paddr t up ;
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7 u in t 64 t shr hand l e ;

} ;

9 /∗ Reference count and var i ous PGC xxx f l a g s and f i e l d s . ∗/

unsigned long coun t i n f o ;

11 /∗ Context−dependent f i e l d s f o l l ow . . . ∗/

union {

13 /∗ Page i s in use : ( ( c oun t i n f o & PGC count mask ) != 0) . ∗/

s t r u c t {

15 /∗ Type r e f e r e n c e count and var i ous PGT xxx f l a g s and

f i e l d s . ∗/

unsigned long t yp e i n f o ;

17 } i nuse ;

/∗ Page i s in use as a shadow : coun t i n f o == 0 . ∗/

19 s t r u c t {

unsigned long type : 5 ; /∗ What kind o f shadow i s t h i s ? ∗/

21 unsigned long pinned : 1 ; /∗ I s the shadow pinned ? ∗/

unsigned long head : 1 ; /∗ I s t h i s the f i r s t page o f the

shadow? ∗/

23 unsigned long count : 2 5 ; /∗ Reference count ∗/

} sh ;

25 /∗ Page i s on a f r e e l i s t : ( ( c oun t i n f o & PGC count mask ) ==

0) . ∗/

s t r u c t {

27 /∗ Do TLBs need f l u s h i n g f o r s a f e t y be f o r e next page use ?

∗/

boo l t n e e d t l b f l u s h ;

29 } f r e e ;

} u ;

31 union {

/∗ Page i s in use , but not as a shadow . ∗/

33 s t r u c t {
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/∗ Owner o f t h i s page ( zero i f page i s anonymous ) . ∗/

35 pdx t domain ;

} i nuse ;

37 /∗ Page i s in use as a shadow . ∗/

s t r u c t {

39 /∗ GMFN of guest page we ’ re a shadow o f . ∗/

pdx t back ;

41 } sh ;

/∗ Page i s on a f r e e l i s t . ∗/

43 s t r u c t {

/∗ Order−s i z e o f the f r e e chunk t h i s page i s the head o f .

∗/

45 unsigned i n t order ;

} f r e e ;

47 } v ;

49 union {

u32 t lb f l u sh t imes tamp ;

51 s t r u c t {

u16 n r v a l i d a t e d p t e s ;

53 s8 p a r t i a l p t e ;

} ;

55 u32 shadow f lags ;

pdx t next shadow ;

57 } ;

} ;

An array of these structures is initialized for all the machine pages, as shown

in Fig 3.4. This array of struct page info occupies the region 15 of Xen virtual
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address space identified in Table 2.2. Xen modifies this data structure to indicate

any changes to the machine page. With predefined virtual address space regions for

both the page info structures and the machine pages, a pointer to this structure can

be used to calculate the virtual address of the corresponding page and vice versa.

Figure 3.4: Struct Page info array to Machine Page Mapping [29]

On system boot up, all the machine pages are free, without any domain af-
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filiations. The Memory Management Unit builds a memory pool data structure

heap[MEMZONE][ORDER] to manage and assimilate all the free pages. This heap

data structure (Fig 3.5) represents the free memory pool in Xen, arranging all the

pages by MEMZONE and ORDER. Here MEMZONE divides the entire machine

address space into different zones based on the position of the first non-zero bit in

the address. This is necessary for special DMA memory requests for devices with

fewer address bits. In each ZONE the pages are sorted by the order of the contiguous

available pages up to a maximum of 1GB.

Figure 3.5: Memory Pool – heap Data Structure

Each location in the 2-D array contains a list of the pages (actually their corre-
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sponding page info data structure) representing contiguous memory regions of the

corresponding order and memzone. Memory requests are honored at page granularity

by alloc heap pages and its wrapper functions, which extracts contiguous pages from

the above heap data structure following a buddy system allocation. Pages returned

by any domain are added to the memory pool using the free heap pages function call.

This function coalesces any adjacent free regions, if available, and adds the memory

pages back to the heap data structure. These pages are first scrubbed clean of all

information before adding to the pool, protecting the security across domains. The

pool is always aggregated to the highest order during these return requests.

Once the memory pool is ready, Domain 0 is given an appropriate amount of

memory and the kernel image is copied. The hypervisor follows to build a CPU pool

out of the available cores. It initializes VMCS and other associated data structures

and hands control over to Domain0 Linux kernel. It is the responsibility of dom0

now to initialize all I/O devices using their appropriate drivers.

3.3.1 Design Modifications

To enable sharing NVRAM across separate VMs, we have to first recognize it

as a memory region. Currently the firmware (BIOS) marks that section with code

90. Due to lack of standardization, this code is subject to change and presently not

recognized by Xen. Therefore, the hypervisor treats it as an unrecognized address

space. Xen inhibits from either writing to or reading from these addresses.

The first task should be to recognize the memory region, and mark it as Non-

Volatile RAM. A separate code word is added to the list of recognized E820 codes,

to that effect. After identifying the region, a new NV memory pool is added in the

form of an additional data structure nvm heap. This structure is quite similar to the

heap data structure explained earlier except that it stores the pages of non-volatile
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memory. The E820 entries are examined one by one and the appropriate memory

pools are populated, i.e. volatile RAM pool (identified by structure heap) is filled

with RAM pages and non-volatile memory pool (identified by structure nvm heap)

is filled with NVRAM pages.

Separate NVM allocator functions nvm alloc heap pages and nvm free heap pages

are defined which operate on the nvm heap data structure. Similar to the volatile

memory management function counterparts, these functions just manipulate the NV

memory pool data structure and do not create any additional page table mappings.

Since all pages are accessible via direct mapping and Xen does not perform swapping,

page table modifications are not needed. The structure, page info, is also modified

by adding a separate flag to differentiate between volatile and non-volatile pages.

With the above mentioned modifications in place, Xen is able to boot up, iden-

tify the available Non-volatile memory and allocate/de-allocate NVRAM pages on

demand. A basic non-volatile memory management unit has been setup. It still

requires an interface for domains to specify non-volatile memory requirements and

request non-volatile memory through the NV MMU. The next section discusses a

guest domain creation procedure, where modifications are added to utilize the above

infrastructure.

3.4 Guest VM Boot Procedure

Booting on bare metal x86 can be quite different from the virtual environment

provided by Xen. An x86 CPU starts in 16 bit real mode, with BIOS providing

basic essential functions such as hardware information, address space resolution and

I/O device drivers. During the boot up procedure, the OS builds page tables and

transitions the CPU to protected mode. At this point generally BIOS interrupt

calls are unavailable so the OS device drivers are used for I/O. Most of the above
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functionalities are unavailable in a VM in Xen because the hypervisor boots up first

transitioning the machine into protected mode. This poses a problem as the CPU

state is totally different in a VM to what an Operating System is expecting.

A guest in Xen can boot in two available modes PV and HVM. Both of them solve

the above issue in separate ways. In PV mode, the OS kernel is modified to allow

booting in protected mode. Due to unavailability of BIOS, boot time information

is passed to the guest using shared memory pages. There are two types of shared

memory pages.

1. Start info page: These pages are mapped to the guests address space by Xen. It

provides necessary information such as total available memory (essentially the E820

memory map), number of virtual CPUs, console connection, and data structures

regarding Xenstore. For boot purposes, Xen explicitly provides only a console device.

Any other device must be mapped by the guest kernel using Xenstore services.

2. Shared info pages: A guest kernel needs to explicitly map these pages to

its own address space for accessing dynamic runtime information about the virtual

machine such as wall clock time, architectural information and event channels. This

data is continually updated to reflect the status of the virtual machine.

Information provided through these channels helps in replacing BIOS functional-

ity in PV guests.

HVM mode, on the other hand, is supposed to run unmodified OSes, thus it

has to forgo some of the performance benefits of the PV mode and emulate certain

devices. Emulation is not optimal because every abstract action is first converted to

device specific commands by the guest OS device driver, and these commands are

intercepted by Xen. The device emulator reconverts these device specific commands

back to the abstract actions that are forwarded to the actual device driver for com-

pletion. The Xen split device driver model in PV guests generally runs at a higher
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level of abstraction avoiding most of the redundant work observed in emulation.

BIOS is emulated by borrowing code from Bochs emulator. It forms the front

end in a split device driver model, with the back end handled by code borrowed

from QEMU, which is used to emulate devices in HVM mode. Xen starts a domain

from the BIOS start point in the virtual 8086 mode present in x86. This mode is

actually intended for running legacy application in real mode, alongside protected

mode applications. Since it was designed for userspace code, the boot code of an OS

(containing a good amount of sensitive instructions) result in numerous traps which

have to be handled individually by Xen.

In a hybrid approach, Paravirtualized guests can take the benefit of paravirtu-

alization techniques as well as hardware accelerators while running in HVM mode.

The guest can specify a location in its ELF header where the hypercall page can

be loaded. It can also execute the CPUID instruction to determine whether it is

running on top of Xen or bare metal hardware. If running on Xen, the guest may

choose to switch over to Xen specific device drivers, and also map the hypercall page

during runtime. However, all these functions are typically performed after the kernel

boots up, thus BIOS and QEMU emulator are generally needed during boot-up.

Starting a domain begins with defining a configuration file that includes the disk

storage, memory, vCPU and other parameters. The command xl create ¡filename¿

performs certain administrative tasks in the userspace domain and then fires up

the domain. Initially, the xl tool parses the configuration file to identify resource

requirements, most important of them being memory. If sufficient memory is not

available, then an attempt is made to free up memory by communicating to Xen

the additional memory requirement via Xenstore. This would typically result in

Xen inflating the balloon drivers. In the event of still not meeting the memory

requirement, the xl tool aborts the domain creation process with an error.
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On the other hand, if the memory requirements are met, the tool issues a hy-

percall (via xend) to build necessary data structures (VMCS and internal Xen data

structures) for domain management. The management tool also creates a guest

physical address space and sends a hypercall for appropriate memory allocation and

page-table mappings. The hypervisor, on receiving this hypercall, allocates pages

via the associated functions mentioned in the previous section. It also builds up the

hypervisor page tables to map the guest physical pages to actual machine pages. If

all is successful then a virtual E820 memory map is created, and the new VM is

booted with emulated firmware using code borrowed from Bochs and QEMU.

3.4.1 Design Modification

The overall objective of this section is to create an interface for configuration

and allocation of Non-volatile memory. Current work focuses on extending this

functionality only for HVM guests. Here, implementation details lie in three areas

xl management tool, Bochs emulator, and hypercall structure.

First and foremost, a parameter is added to the configuration file facilitating the

specification of the non-volatile memory requirement in Megabytes. This parameter

is read by the tool chain, which then creates additional guest physical address space

for NVRAM. Actual memory allocation is performed at this point using hypercalls to

notify the hypervisor of the guest physical page numbers with emphasis on allocation

of contiguous memory blocks to minimize TLB entries. The x86 64 architecture

provides page mapping in the sizes of 1GB, 2MB and 4KB. The allocator moves in

descending order for memory requests to satisfy the requirement. A flag is added

to the hypercall argument to differentiate between volatile and non-volatile memory

requests. If the flag is set, the hypervisor pulls pages out of the NVRAM pool, else

it uses the RAM pool for the purpose.
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The above procedure completes one of the most critical portions of domain cre-

ation. Allocations of both volatile and non-volatile memory are complete and Xen

is left with the task of firmware emulation. The toolchain creates virtual E820 table

mappings, with an added region to indicate NVRAM with code 90. This completes

the boot procedure and the virtual machine is equipped with non-volatile memory.

When the VM is turned off, the hypervisor reclaims both RAM and NVRAM pages

and adds them to their respective memory pools.
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4. EXPERIMENTAL SETUP AND RESULTS

The experimental setup consists of a server chassis [1], provided by Viking Tech-

nologies with the configuration shown in Table 4.1.

Table 4.1: Setup Machine Configuration

Component Specification Quantity

CPU E5-2640 2

Motherboard X9DRH-iF Ver 1.02 1

RAM DDR3 RDIMM 1 x 4GB

NVRAM DDR3 ArxCis NVDIMM 2 x 4GB

SSD SATADIMM 100GB

OS Fedora 17 (x86 64) -

Kernel 3.5.1 -

Hypervisor Xen 4.1.5 -

NVRAM SDK ArxSDK 1.3 -

The BIOS present on this machine marks the NVRAM area with a code of 90

and it occupies the address space from 6GB to 14GB. The software development kit

ArxSDK 1.3, provided by Viking Technologies, was used for testing the read/write

speeds and operation of NVRAM region.

Mainly two components of the ArxSDK was used for profiling purposes.

1. Driver: The driver code programs the Integrated Memory Controller to query

for the presence of NVDIMMs. It stores relevant information such as the start
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address, size, and number of NVDIMMs, allowing a host of ioctl commands for

additional programming of the IMC.

2. Test Code: This code obtains the available NVRAM physical address space

from the driver and maps the former to its own address space using the mmap

system call. It proceeds to write data sequentially to this region and read it back.

It reports the amount of time taken to complete the whole test as a rough measure

of throughput.

The driver code was modified to remove most of the above mentioned function-

ality, since access to the IMC and other privileged commands are not available to a

guest domain. Performance measurements were taken using the perf profiling tool,

but without any significant advantage. The perf tool collects hardware performance

counters such as TLB misses, L1 cache misses, L2 cache misses, etc., but these mea-

surements are not available in a guest domain in Xen.

Each guest domain is equipped with 3.5GB of non-volatile RAM for this test with

the cache set to Write Back mode. The results presented in Fig 4.1 compares three

cases

1. Test running on 1 guest domain.

2. Tests running on 2 guest domains simultaneously.

3. Test running on the bare Linux (the same version 3.5.1) without the hypervisor.

One run of the test code writes a predetermined sequence to the whole 3.5GB

non-volatile memory area and then reads it back. This code is run five times and the

CPU time taken in the whole procedure is recorded as a single reading. Each case is

tested multiple times (>14 times), and a very low standard deviation is observed in

the results as indicated by the error bars.
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Figure 4.1: Comparison of Read/Write Performance of Bare Linux vs Single VM and
vs Two VMs

In the graph presented in Fig 4.1, it can be observed that there is a visible

overhead ( 12% as compared to bare Linux case) for operating in a virtualized en-

vironment. However, there is hardly any difference observed between the cases of

running a single VM versus that of running two VMs. This can be explained by the

fact that system time in a virtual environment is quite different from the wall clock

time. For a guest domain, the vCPU time increases only as long as the guest domain

occupies that resource. When it is swapped for another virtual machine, the vCPU

clock corresponding to the domain is stopped. Thus from the perspective of a virtual

machine, the performance should remain similar irrespective of the number of VMs

running on the machine. The higher time cost observed in a virtual environment

as compared to a bare Linux can be attributed to a combination of hardware and

software factors such as higher penalty for TLB misses and overhead for operating

on top of Xen.

54



Several screenshots are attached below which present various stages of the NVM

sharing. Fig 4.2 displays part of the original E820 Memory Map generated by the

BIOS and received by Xen. The whole list is quite long supporting numerous reserved

regions for MMIO devices. In the last line, NVRAM, indicated with code 90, can be

seen occupying the address space from 6GB to 14GB.

Figure 4.2: Machine E820 Memory Map

Fig 4.3 shows the Xen kernel level logging messages on the creation of a domU

with the 892MB of RAM and 3.5GB of NVRAM. The virtual E820 layout generated

by Bochs code shows the various regions, with holes introduced for I/O devices.

NVRAM is mapped from 4GB to 7.5GB, in consideration with the Arxcis SDK 1.3

which requires the non-volatile memory to be placed above 4GB in aligned blocks of

512MB. This proves beneficial in several ways

1. A separate driver need not be developed, allowing reuse of existing framework.

2. Several Linux kernel versions change the unrecognized code 90 (or 0x5A in
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hexadecimal) in the E820 table to code 2, marking it as an I/O space, thereby making

NVRAM discovery process extremely difficult. This ordeal can be avoided altogether

by placing the non-volatile memory above 4GB, since, chipsets typically place I/O

devices just below the 4GB mark. Therefore, any I/O region found above 4GB can

be assumed to be non-volatile memory.

3. Aligning the NVM region on the gigabyte boundary and placing it above 4GB

(avoiding the virtual MMIO hole introduced by Bochs), reduces the fragmentation

of the NVRAM address space. This allows for superpage allocations of 1GB pages

in the hypervisor page tables, reducing the total number of page table entries and

potential TLB misses.

Figure 4.3: DomU Boot Up Kernel Messages

The actual page allocation is visible in Fig 4.4. Since the RAM address space is
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fragmented, it contains a combination of 2MB and 4KB pages to satisfy its request.

However, NVRAM occupies a contiguous address space comprising of three, 1GB

pages and 256, 2MB pages.

Figure 4.4: DomU Page Allocation
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5. CONCLUSION AND FUTURE WORK

Sharing non-volatile memory in a virtual environment opens up several new chal-

lenges and design problems. The main issue is that until now there was no notion of

different forms of main memory. Memory was treated as a uniform device, and ev-

erything else is left as I/O. NVRAM breaks the conformity, by adding a completely

different memory device. Thus it requires a new NV memory management suite,

alongside the traditional volatile memory management modules. The two, though

share similar jobs and have several contrasting features. It calls for a modular design

of memory management units similar to that present for I/O devices. In a virtual

environment, the need is even more important, as memory and I/O subsystems are

considered to be a bottleneck. Introduction of NVRAM would ease the pressure on

I/O disk ops, and memory used as disk cache.

This work can be considered as a first step in that direction, which brings several

interesting research questions. NVRAM has both the properties of disk storage and

volatile memory. What direction should it follow while sharing the resource, disk or

memory? The answer is found in a combination of the two. Since non-volatile mem-

ory is a precious resource (like RAM), therefore it cannot be permanently allocated

to VMs (like disk space), even when they are not operational. The hypervisor needs

to implement a dynamic memory pool which grants NVRAM requests on machine

boot up and reclaims them back when the machine is no longer operational. It also

has to follow the same thin provisioning schemes as main memory, implementing a

balloon driver to retrieve memory back.

All these memory like operations brings us to the main difference between volatile

and non-volatile memory. In one case, where volatile data ceases to exist as soon as
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the machines are powered off, non-volatile RAM on the other hand preserves data.

This data needs to be preserved between reboot cycles for a VM. The same needs to

follow for entire system (including the hypervisor) reboots too. While data retention

during entire system reboots is taken care of in hardware, mapping of non-volatile

resources should also be maintained. These issues again can be broken down into

two separate simpler tasks.

1. Preserve the non-volatile data for VMs even after the VM is powered off.

2. Maintain the hypervisor page table mappings across a system reboot.

When a VM is created, its non-volatile data needs to be restored to its state before

power down. Additionally, during a shutdown procedure, NVRAM pages need to be

reclaimed, as it is a critical resource. Thus, the data has to be shipped to disk.

The above requirement is very similar to the save state and restore state features

offered for virtual machines. Here all the data present in main memory is written to

a file on disk. The memory state is restored from a file on disk, during the restore

procedure. The same procedure can be followed for NVRAM region thereby not

wasting memory when the VM is non-operational. The file location can be specified

in the VM configuration file. This solution seems to be efficient and straightforward

as far as the first task is concerned. However, the second task is quite demanding

and tricky.

Since main memory does not expect presence of any valid data during the boot

procedure, the available memory regions are usually initialized from scratch. The

same procedure is followed for the current implementation of NVRAM memory ini-

tialization in the hypervisor. Although we still retain persistent data, the respec-

tive mappings of memory pages are lost. It is very important to emphasize again

that non-volatile memory proves superior to volatile memory only during unplanned

power failures. For all other cases, there is no added benefit of NVRAM over RAM
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except for faster boot up times. During a planned reboot cycle, volatile RAM regions

can also preserve data by saving the state on disk during shutdown and restoring it

on start up. Many operating systems provide a similar feature called as hibernate.

Therefore, the main task at hand is to restore the system state in NVRAM after

start up, if the power is lost at a random point in runtime.

This issue is not completely new, and filesystems have solved a significant part of

the problem. A separate NVRAM area can be set aside by the hypervisor for main-

taining metadata structures. On system boot up, the NV memory manager would

need to read the metadata and recreate the NVRAM memory mappings present

before the system was powered off. This state restoration should incorporate page

allocations and hypervisor page table mappings of all virtual machines, along with

their data, because the system needs to guarantee their data persistence for power

failures during random runtime conditions. It can be troublesome because just after

power up, a VM does not have any existence except its config file and disk space,

while the NVRAM area still remains active.

One possible solution is to divide NVRAM metadata section into several sections,

with each running VM occupying one section. The hypervisor is also provided with

a separate section for storing its relevant data structures. The VMs store their

hypervisor page tables in this metadata section along with the location of a file

where the contents are to be paged out if the VM is turned off. The file location

can be specified and passed through the config file associated with that domain.

Xen, in its metadata section, can store all the data structures pertaining to the

non-volatile memory management unit, such as page struct, nvm heap, etc. During

the startup process, the hypervisor would read the metadata to determine the state

of NVRAM and the amount of free memory available in the NV memory pool.

Therefore, instead of rebuilding the data structures, Xen would just need to update
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the associated memory pointers. In the event of an improper system shutdown,

several VMs may not have exited properly and could still be occupying the allocated

non-volatile memory. As a part of boot up operations, the hypervisor can page out

those NVRAM regions to the associated files on disk to free up redundant space and

restore the system state using the method outlined before.
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