

A MULTI-FPGA NETWORKING ARCHITECTURE AND ITS IMPLEMENTATION

A Thesis

by

GABRIEL SCANNELL KNEZEK

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jyh-Charn (Steve) Liu

Committee Members, Duncan Henry M. Walker

 Sunil Khatri

 Radu Stoleru

Head of Department, Dilma Da Silva

May 2015

Major Subject: Computer Engineering

Copyright 2015 Gabriel Scannell Knezek

ii

ABSTRACT

FPGAs show great promise in accelerating compute-bound parallelizable

applications by offloading kernels into programmable logic. However, currently FPGAs

present significant hurdles in being a viable technology, due to both the capital outlay

required for specialized hardware as well as the logic required to support the offloaded

kernels on the FPGA. This thesis seeks to change that by making it easy to communicate

clusters of FPGAs over IP networks and providing infrastructure for common

application use cases, allowing authors to focus on their application and not the

procurement and details of interacting with a specific FPGA.

Our approach is twofold. First, we develop an FPGA IP network stack and bitfile

management system allowing users to upload their logic to a server and have it run on

FPGAs accessible through the Internet. Second, we engineer a programmable logic

interface which authors can use to move data to their application kernels. This interface

provides communication over the Internet as well as the scaffolding typically re-invented

for each application by providing I/O between application logic, even if spread across

different FPGAs.

We utilize Partial Reconfiguration to divide the FPGAs into regions, each of

which can host different applications from different users. We then provide a web

service through which users can upload their FPGA logic. The service finds a spot for

the logic on the FPGAs, reconfigures them to contain the logic, then sends back the user

their IP addresses.

iii

To ease development of the application pieces themselves, our framework

abstracts away the complexity of communicating over IP networks as well as between

different FPGAs. Instead we provide an interface to applications consisting simply of a

RAM port. Applications write packets of data into the port, and they appear at the other

end, whether that other end is across an IP network or another FPGA.

Finally, we then prove the feasibility and utility of our approach by implementing

it on an array of Xilinx Virtex 5 FPGAs, linked together with GTP serial links and

connected via Gigabit Ethernet. We port a compute-bound application based on regular

expression string matching to the framework, demonstrating that our approach is feasible

for implementing a realistic application.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Steve Liu, for his guidance,

support and patience throughout this process, as well as my committee members, Dr.

Walker, Dr. Khatri, and Dr. Stoleru.

Thanks also go to the department faculty and staff for their support and making

my time at Texas A&M University a great experience.

Finally, thanks to my family and close friends for their boundless

encouragement, patience, and belief in me.

v

NOMENCLATURE

API Application Program Interface

ARM Advanced RISC Machines

ARP Address Resolution Protocol

ASIC Application Specific Integrated Circuit

AXI Advanced Extensible Interface

CLB Configurable Lookup Block

CPU Central Processing Unit

CRC Cyclic Redundency Check

CUDA Compute Unified Device Architecture

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

FIFO First-In First-Out

GPU Graphics Processing Unit

GigE Gigabit Ethernet

HDL Hardware Description Language

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

I/O Input/Output

ICAP Internal Configuration Access Port

IOCTL Input/Output Control

vi

IP Internet Protocol

IP core Intellectual Property Core

JTAG Joint Test Action Group

KVM Kernel-Based Virtual Machine

LUT Look-Up Table

MAC Media Access Control

MPI Message Passing Interface

MUX Multiplexor

NFA Non-deterministic Finite Automata

NOC Network-on-Chip

OS Operating System

PC Personal Computer

PCIe Peripheral Component Interconnect Express

PHY Physical Transciever

PR Partial Reconfiguration

PROM Programmable Read Only Memory

RAM Random Access Memory

SATA Serial Advanced Technology Attachment

SDK Software Development Kit

SRAM Static Random Access Memory

TCP Transport Control Protocol

UDP User Datagram Protocol

vii

XML Extensible Markup Language

YAML Yet Another Markup Language

viii

TABLE OF CONTENTS

 Page

ABSTRACT .. ii

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

NOMENCLATURE .. v

TABLE OF CONTENTS .. viii

LIST OF FIGURES ... x

LIST OF TABLES .. xii

1. INTRODUCTION ... 1

2. BACKGROUND AND RELATED WORK ... 4

3. DESIGN OVERVIEW .. 11

3.1 Supporting Infrastructure ... 14

4. DESIGN .. 16

4.1 FPGA Application Interface ... 16

4.2 Interface to the FPGA Network ... 23

4.3 Framework Data Transport Overview .. 26

4.4 Off-Chip Communication Methods ... 28

4.4.1 Internet .. 28

4.4.2 Locally ... 32

4.5 Data Movement between Pieces and Off-Chip Links 34

4.5.1 Connecting Pieces and Off-Chip Links 34

4.5.2 Data Buffering ... 36

4.5.3 Switching ... 39

4.6 Routing Incoming Ethernet Packets to Pieces 43

4.7 Off-Chip Piece-to-Piece Routing ... 44

4.8 Application Piece Placement and Configuration.................................. 48

4.8.1 Placement Algorithm ... 48

ix

 Page

 4.9 Configuring the FPGA Network to Contain an Application 51

 4.9.1 Configuration Algorithm ... 52

 4.10 Partial Reconfiguration Engine .. 52

 4.10.1 Introduction to Partial Reconfiguration 53

 4.10.2 Technology Background ... 54

 4.10.3 Existing Implementations .. 56

 4.10.4 Our Design .. 57

 4.10.4.1 Piece Gating .. 57

 4.10.4.2 Architecture ... 59

5. IMPLEMENTATION AND EVALUATION .. 63

 5.1 Implementation Overview .. 64

 5.2 Data Movement through the Framework ... 66

 5.3 Ethernet Frontend ... 73

 5.4 ARP Resolution .. 76

 5.5 Inter-FPGA Serial Input Frontend .. 78

 5.6 Inter-FPGA Connection Topology ... 79

 5.7 First Level Mux .. 80

 5.8 Second Level Mux ... 81

 5.9 Piece-to-Piece Switch ... 82

 5.10 PR Slot Wrapper – Ethernet Portion .. 85

 5.11 PR Slot Wrapper – Piece-to-Piece Portion ... 88

 5.12 Client Interface ... 90

 4.12.1 Build System ... 92

 5.13 Evaluation ... 94

 5.13.1 Performance Metrics ... 94

 5.13.1.1 Logic Availability ... 98

 5.13.1.2 Reconfiguration Time ... 98

 5.13.12 Example Application ... 99

6. SUMMARY OF FUTURE WORK .. 105

 6.1 Security and Reliability .. 105

 6.2 Scaling to 10 Gigabit Ethernet ... 107

REFERENCES .. 109

APPENDIX A: INTRODUCTION TO HIGH-SPEED SERIAL CONNECTIONS 114

APPENDIX B: TECHNICAL DETAILS OF EXTENDING CES ACROSS

 MULTIPLE PIECES ... 117

x

LIST OF FIGURES

FIGURE Page

1 High-Level Operational Overview of the Proposed Multi-FPGA

 Architecture .. 23

 2 Data Interface between Architecture and Application Piece...................... 23

 3 Example Application Piece Interconnections... 25

 4 Example Application Piece Physical Placement .. 26

 5 Partitioned Multiple RAM Design with 2 Level Data Source MUX 39

 6 Example of Piece-to-Piece Routing Implementation 42

 7 Routing Application Data through Intermediate FPGA 47

 8 Packet Dataflow during PR Slot Gating ... 62

 9 Overview of Framework Implementation .. 65

 10 Detailed Overview of Framework Components ... 66

 11 Flow Control Model ... 70

 12 Go/Done Flow Control ... 71

 13 Go/Ready Flow Control ... 71

 14 Data Transport from Frontend to Application Piece 72

 15 Data Transport from Piece to Piece via Copying Module.......................... 73

 16 Frontend Module Dataflow Diagram ... 75

 17 Combined Verification Unit and PR Slot Wrapper Approach 82

 18 Data Flow through Switch Frontend to Piece .. 84

 19 Incoming Concurrent Packet Verification Engine 87

xi

FIGURE Page

 20 Sample Application Configuration File ... 91

 21 Example Inter-FPGA Relay Test Application ... 97

 22 CES String Matching Operation .. 101

 23 Pipelining Approach to Partitioning CES across Pieces 102

xii

LIST OF TABLES

TABLE Page

 1 RAM Interface Signals – Incoming Port .. 22

 2 RAM Interface Signals – Outgoing Port .. 22

1

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are a class of integrated circuit chips

known as programmable logic. Fundamentally, FPGAs consist of a large quantity of

identical look up tables (LUTs) and a matrix of wires interconnecting these LUTs. Both

the contents of the LUTs and the connection of wires in the matrix are quickly

programmable at runtime by downloading new configurations to the chip.

The ability to reprogram the elements of the FPGA gives rise to the name

programmable logic and allows FPGAs to implement a variety of digital logic circuitry.

Invented in the 1980’s, FPGAs have steadily increased in the amount of digital logic

they can implement, and are now widely used in industry and the subject of much active

research due to several unique features they enable. One application is in the design of

ASICs. FPGAs enable low-volume production runs of chip designs for prototyping and

debugging at a fraction of the cost of ASIC fabrication. Furthermore, the runtime re-

configurability of FPGAs is useful in situations where the final specification for the

digital design is still evolving or is in the process of standardization.

Another increasingly popular use is as a platform for accelerating compute-

bound parallelizable applications. With FPGAs, the parallelizable kernel of an algorithm

can be coded in a hardware description language, then duplicated across the logic fabric

of the FPGA many times. Such replication can often offer an order of magnitude or more

processing throughput as compared with CPU-based implementations.

2

Another platform for parallelizable application acceleration are General Purpose

GPUs (GPGPUs). These are GPUs in which the computation performed by the GPU’s

shader units can be programmed with arbitrary algorithms. Since GPUs contain many

shader units which run in parallel, by re-writing their application’s algorithms to run as a

shader, users can achieve similar parallel speedups. GPGPUs are often chosen for an

application accelerator platform over FPGAs even though their rigid shader structure

often imposes limitations which are nonideal for the algorithm being accelerated. This is

due to the fact that as compared with FPGAs, GPGPUs are cheaper and already present

in existing PCs, as well as the fact that GPGPU programming APIs provide mechanisms

for software to easily move data from their application running on the PC to the

accelerated kernel on the GPGPU. FPGAs, in comparison, are more expensive than

GPGPUs and have a single purpose as the application accelerator: since they aren’t

already usable as the graphics card for a PC, for a prototype, it can be a riskier purchase

to acquire a number of FPGAs for a single application which may or may not see

benefits. A bigger problem with FPGAs is the lack of supporting libraries and toolchains

to easily move data between the application running on a PC and the accelerated kernel

on the FPGA. The user is often presented with a blank slate, and must re-invent the

wheel. This is as opposed to GPGPUs, where several relatively mature programming

languages (CUDA, OpenCl, DirectX Compute Architecture) provide simple APIs to

transfer data and schedule the accelerated kernel for execution on the GPU.

The goal of this thesis is to change this current state of affairs by providing the

infrastructure to make it as easy to run pieces of an application on an FPGA in an

3

accelerated fashion as it currently is on a GPGPU. We do this in two ways. First, by

removing the high cost entailed in getting started with FPGAs through creating a cloud

computing architecture for FPGAs, allowing users to utilize as little or as much FPGA

resources as required only for the period of time their application is running. Second, by

creating interfaces for moving data between the majority of an application running on a

PC and the accelerator on the FPGA in the cloud that are easy to use and are high

performance, so the user only needs to focus on writing the application algorithm in

programming logic itself.

4

2. BACKGROUND AND RELATED WORK

The concept of offering computing resources accessible over a network is a trend

that has been ongoing in the PC industry for a long time. Popular examples of companies

which sell computing accessible over the Internet include Amazon’s EC2 service [1],

Google’s AppEngine [2], and Microsoft’s Azure [3]. For example, at the user's request,

Amazon EC2 provides IP connectivity to PCs hosted in their datacenters. Google App

Engine provides a different approach, closer to the model our thesis aims to provide for

FPGAs. Instead of offering access to PCs directly and requiring the user to manage OS

installation, application inter-PC communication, etc, App Engine restricts the user to

running their application in the form of a sandboxed Java application. In return for this

restriction, App Engine is provided an API for easily communicating with users via the

web, as well as managing I/O in the form of both persistent storage and communication

between application components.

Ken Eguro et al. also propose using FPGAs in a environment where shared

servers are accessible over the network, but for a different aim than our thesis. Instead of

offering access to a network of FPGAs for the purpose of commoditizing access to

parallel computing resources, they propose adding FPGA cards to traditional PC servers

in a datacenter. These FPGAs can then be accessed securely, sandboxed from other users

of the PC by applications with high security requirements [4].

Similarly, much research is being performed in the areas of linking FPGAs

together with serial-links, high-speed communication between PCs and FPGAs (either

through Ethernet or PC-local busses), on-chip routing architectures, and partial

5

reconfiguration. One such project is [5]. They describe a similar system to this thesis,

providing reconfigurable regions in FPGAs to clients running in virtual machines in the

cloud over Ethernet. In contrast to our approach, they tightly integrate their FPGAs into

an existing OpenStack cloud computing cluster, and require hardware accelerators

running on the FPGAs to deal with raw Ethernet frames instead of handling UDP in the

framework. Finally, they do not inter-connect the FPGAs together with a separate high-

bandwidth serial network for supporting accelerators which require more resources than

a single FPGA can provide.

Another project is [6]. This project connects FPGAs to PC servers in a cloud

computing infrastructure over the PCI Express (PCIe) bus. The servers are running the

para-virtualization software KVM, hosting multiple client operating systems. The

authors propose a system where the hypervisor treats the FPGA in a similar manner to a

network card. The FPGA contains a PCIe DMA engine for copying job information and

buffers between the PC’s memory and user accelerators running on the FPGA. Guest

virtual machines (VMs) interface with the FPGA accelerators using Linux IOCTLs

which move buffers of data between the guest VM and the FPGA. To provide a

complete system, they also briefly touch on an implementation for storing bitfiles

received from guest OSes and configuring them on to the FPGAs, although they do not

go into detail. The FPGAs themselves are partitioned into PR regions, each of which can

host different hardware pieces from different users simultaneously, with a management

agent in the hypervisor deciding which user accelerator is run at what time. This project

shares our ideas of providing abstract reconfigurable regions of programmable logic to

6

users and managing storage and placement of the programmable logic bitfiles. It

implements the concept of providing a simple buffer-based interface to software running

on a PC through which it communicates with the FPGAs. However, it is substantially

different from our approach in that it tightly couples the FPGAs to individual servers in

the cloud over the PC local bus PCIe, and does not provide provisions for spanning

hardware accelerators across multiple FPGAs. Also, the API provided to this project is

in the form of Linux IOCTLs specific to the KVM hypervisor. Our approach, while

potentially less straightforward to program, is much more general, and can be used with

any operating system or application supporting sockets.

With regard to inter-FPGA serial links, it’s becoming increasingly common to

build clusters of FPGAs linked together with high speed serial links. Some projects use

partial reconfiguration; others configure the entire FPGA with a single application. A

few projects are presented below; however, universally they focus on the acceleration of

a single application in an attempt to achieve high performance computing. Usually,

management of the FPGAs over Ethernet is neglected entirely from the discussion, and

in every case the goal is not on sharing the infrastructure among multiple applications

and users via the Internet.

One such project, Catapult [7], describes the experiences of a team in Microsoft

Research building a hardware accelerator system to increase the performance of Bing’s

search ranking algorithms. As part of that project, they construct a system with FPGAs

linked to one another via high-speed serial channels in a torus topology. Each FPGA is

connected to a single server in the datacenter via PCI Express (PCIe). Each FPGA hosts

7

a single application; in their model, an application is typically large enough to span

multiple FPGAs, so subdividing the FPGA into reconfigurable pieces was not a design

requirement of the project. The FPGA is not partially reconfigurable with new

applications. However, it follows a similar design as other projects which are

reconfigurable. Surrounding the application portion of the FPGA is service layer which

manages interactions with the PC, routing packets to other FPGAs and interactions with

on-board memory. Very brief treatment is given to the mechanism of routing between

FPGAs, but data is packetized and routing is determined statically by the non-FPGA

portion of the accelerated application. Their project does not focus on connecting the

FPGAs over Ethernet nor using PR regions.

Another project, the Reconfigurable Computing Cluster [8, 9], aims to use

FPGAs to build a cost effective supercomputer capable of executing a PetaFLOP of

computing. They have constructed a 64 node FPGA cluster using Virex4 FPGAs.

Similar to our design, they interconnect their FPGAs with serial links using the Aurora

protocol, and provide routing between pieces of computational logic both within a single

FPGA and across their network of FPGAs. However, their design is focused around

providing a cluster of FPGAs for high performance computing, not providing FPGAs as

a service for multiple users simultaneously. Their architecture is centered around the

PowerPC CPUs contained within each FPGA, with reconfigurable computing connected

as processor peripherals. Also, their primary means of exchanging data is via the serial

links; their Ethernet connection is used for administrative tasks. In contrast, our design

uses Ethernet as key means of communication between users and the FPGAs.

8

The Maxwell project focused on creating a grid of FPGAs in support of HPC

[10], from the University of Edinburgh. Similar to the Reconfigurable Computing

Cluster (RCC), they constructed a network of 64 FPGAs, interconnected with serial

links, and employ a hybrid CPU-FPGA compute structure. Unlike the RCC, they use

separate CPUs not embedded in the FPGAs: their grid consists of 32 Intel Xeon servers,

each of which hosts two FPGAs connected with PCI express. In their machine,

computation of their example applications occurs on these servers. Applications use an

MPI style interface to interact with offloaded computation kernels using software

libraries they have constructed called the Parallel Toolkit. Unlike the RCC, their inter-

FPGA links do not provide routing; the point-to-point connections between FPGAs are

directly exposed to the applications, which must implement their own routing if needed.

Similar to the RCC, the authors focus on the HPC aspects of their machine, devoting it

entirely to the service of a single application and avoiding details of configuration and

remote interaction.

A further application-specific 64-node cluster created by the University of

Cambridge is Bluehive [11]. In contrast to the previously mentioned systems, Bluehive

does not pair each FPGA with a hard or soft-core CPU. Instead, the entire FPGA is

dedicated to their neural network simulator. Like previous designs, they interconnect

their FPGAs with serial links, in this case with a 3-D topology. Custom System Verilog

logic provides routing among the serial channels. Although they have open-sourced

many aspects of the design, they have not set out to design a general purpose framework

nor one which can be dynamically reconfigured.

9

Finally, the Formic project [12] constructed their own development boards based

on Xilinx Spartan 6 FPGAs with the goal of reducing the cost of assembling multi-

FPGA clusters. Like previous designs, they constructed a 64 node cluster. Each board

contains 8 serial links, and are interconnected in a 3D configuration. They use this

cluster to prototype a new manycore CPU architecture. Reconfiguration and support for

multiple applications at once are not discussed.

Other current research focuses on providing Ethernet interfaces for applications

running on a single FPGA and on reconfiguring FPGA bitstreams remotely, but do not

address interconnecting FPGAs together. The SIRC project from Microsoft Research

[13] is one such approach, providing an interface for computational kernels running on

an FPGA to interface with applications on a PC via gigabit Ethernet. The PC, a kernel

mode driver, and user mode library provide a simple API through which applications can

control, configure the FPGA, and transfer data. RIFFA [14] implements a similar

concept, except using PCI express and shared memory, and with Linux driver support

instead of Windows. [15] has developed logic for fast partial reconfiguration using

compression and a DMA engine. Using their engine would be a potential future work for

reducing reconfiguration time in our framework.

Finally, a project from BYU takes the SIRC concept and extends it by

implementing a custom stream-based, reliable connection-oriented protocol layered on

top of raw IP/UDP datagrams [16]. This channel is exposed to logic using a standard

LocalLink port. Additionally, they provide remote access over Ethernet to the ICAP port

10

of the FPGA, and imply that it may be used for partial reconfiguration, although they do

not explicitly provide examples of such in the paper.

All these projects are more targeted at a single application running on a PC

communicating with a single computational kernel which consumes the entire FPGA;

they do not provide support for partial reconfiguration nor splitting the Ethernet channel

among multiple applications within the FPGA.

Several projects have implemented partial IP network stacks in programmable

logic, similar to our approach. [17] recognizes the need for FPGA TCP/IP processing in

hardware, but restricts his focus to designing high speed CRC verification elements. [18]

implements a TCP engine in an FPGA, and the authors employ similar concepts of

presenting an abstract byte-stream along with packet metadata to application logic.

However, their design uses a stream-based as opposed to packet-based architecture, and

their work appears to be limited to passive TCP reassembly for network intrusion

detection type systems.

11

3. DESIGN OVERVIEW

The main component of this thesis consists of constructing the framework

outlined in the introduction which allows users to focus on the implementation of their

accelerated application pieces rather than infrastructure. What would a system which

supports that style of computing look like? One simple solution would be to simply

place several FPGAs in a datacenter, connect their Ethernet ports to the Internet, and let

users reserve a number of instances. However, many user’s applications may not need an

entire FPGA, resulting in wasted space. It would be better if the resources of the FPGA

could be subdivided, similar to how an operating system allows multiple processes to

share a CPU. Alternately, they might require more logic than fits on a single FPGA.

With this model, the user would need to re-invent infrastructure to communicate

between pieces on different FPGAs by pulling the data back across the Internet to and

from each FPGA.

To solve both these problems, we propose dividing the FPGAs into identical

sized regions each of which we partially reconfigure independent of the others. We refer

to these regions in the thesis as PR slots. Applications are split into pieces of logic, each

of which fit within the space provided by an FPGA PR slot. These pieces from different

users can reside in different PR slots of the same FPGA simultaneously. Each PR slot

contains a uniform amount of FPGA resources (programmable logic, RAMs, and other

fixed hardware blocks provided by the FPGA) and is provided I/O interfaces allowing it

to communicate with the rest of the application across the Internet or with other pieces,

even if they are split across multiple FPGAs.

12

These I/O interfaces are provided in the form of RAM ports. Two ports are

provided: one for inter-piece communications, and one for external communication over

the Internet. Each RAM port provides the ability to read or write into a buffer containing

a packet of data. Separate from the RAM signals, an address line is used to select the

packet’s destination. Packets sent to the inter-piece port are automatically routed to the

correct destination piece, including any link multiplexing, by the framework in order and

error-free. The framework abstracts from the piece whether it is exchanging data with

another piece on the same or different FPGA. Packets sent to the Internet port are

encapsulated as UDP Ethernet packets and then automatically routed to the appropriate

destination externally. Every PR slot in the FPGA application is addressable via an IP

address from hosts on the Internet.

Once a user has created some programmable logic, they need a way to actually

run it on the FPGAs. We assume the following model: A user is running an application

on a PC accessible via the Internet, and has ported an accelerated kernel of that

application’s processing to programmable logic. This logic is divided into pieces which

fit into one or more of the framework’s PR slots, and these pieces may interact with one

another. All pieces of that accelerated kernel must be placed on the FPGAs and run

together for the kernel to operate properly. Once started, the user’s application interacts

with the kernel via the Internet, using IP/UDP to address one or more of the pieces

directly.

Working from that model, the framework provides a management service

component. This service allows the user to upload their pieces of programmable logic to

13

the FPGA network, start and stop them, and interact with the pieces via IP/UDP. When a

user directs the service to run their logic in the network, the management service

determines where to place the pieces on the FPGAs, how to interconnect them, then

communicates with the individual FPGAs to partially reconfigure them to contain the

pieces.

To allow the application pieces to communicate with one another even if spread

across multiple FPGAs, the FPGAs are interconnected with point to point high-speed

serial I/O channels, utilizing the serial transceivers built into modern FPGAs.

A A

AA

FPGA 1

A B

CB

FPGA 2

C

FPGA 3

Ethernet hub

A

Internet

B

C

FPGA
Manager

Figure 1: High-Level Operational Overview of the Proposed Multi-FPGA

Architecture

Figure 1 illustrates the general architecture of this thesis. In the example, three

users are running applications A, B and C in the FPGA network. Applications A and B

have already been placed into FPGA PR slots and are running. The portion of

14

application A which is running on the PC is sending UDP packets to one of its pieces

running on the FPGA. That piece in turn is communicating with one of the other pieces

of A located on a different FPGA via a direct serial link between FPGAs. The same

situation exists with application B, except the other FPGA piece is located on the same

FPGA. This fact is transparent to the application pieces. Finally, the user's PC

application for C is directing the FPGA network manager to start the FPGA pieces of C.

The manager is partially reconfiguring FPGA 3 to contain one of the pieces of C.

3.1 Supporting Infrastructure

For each PR slot, instantiations of PR slot wrapper logic modules allow

applications hosted in the PR slots to communicate with other pieces and over the

Internet by managing the flow of data in and out of the slots. For inter-piece

communication, the wrapper handles constructing the proper route for the destination

before transmission. For Internet communication, the wrapper contains logic for

constructing headers around the data suitable for Internet transmission, as well as

verification of incoming data. For both types of communications, the wrapper handles

buffering of received and transmitted data to ensure good performance.

For inter-piece communications, a switch connects each PR slot wrapper and the

serial links together, providing the pathway for data to move between pieces on a single

FPGA as well as off-chip through the serial links. Data destined for off-chip is

moderated by frontend modules which sit between the switch and the serial links and

provide conversion between packet-based data and the streaming interfaces exposed by

serial channels. Data from the Ethernet interfaces is not routed between FPGAs by the

15

framework, however, there is still only a single Ethernet frontend module and multiple

PR slots, so a mux and arbiter provides the data pathway between a PR slot wrapper and

the Ethernet frontend. This module handles initial processing of packets received from

the Internet to send them to the correct application piece’s PR slot wrapper.

A partial reconfiguration engine receives data from the Ethernet interface and

provides the means by which the FPGA is reconfigured in the network. This engine

takes packets of data it receives from the management service described below and

funnels them into the Internal Configuration Access Port (ICAP), reconfiguring the PR

regions of the FPGA with new bitstream data. The engine employs a two-phase arm/fire

protocol to ensure that even if packets are lost or duplicated, an uninterrupted contiguous

bitstream is written to the ICAP. It also manages placing PR regions into a safe state

before reconfiguration, so that errant packets from the network will not arrive at an

application while it is partially configured. It is implemented as a special case

application piece which isn’t reconfigurable, and it is connected to the Internet via a PR

slot wrapper just like user application pieces. Finally, the management service

component is implemented as a Web server running on a PC. It provides a web-based

user interface to clients, allowing them to upload their application pieces, start and stop

their applications, and obtain information about how to communicate with them via the

Internet. This manager performs placement and routing of the application pieces in the

FPGA network, and communicates with the PR engine on each FPGA to install and

remove application pieces.

16

4. DESIGN

This section of the thesis discusses the design process which led to the framework

summarized above. The design tradeoffs involved in each component are analyzed, and

justification of the chosen implementation is discussed. Exact details are left to the

implementation section.

4.1 FPGA Application Interface

The design discussion begins by investigating the interface the framework

presents to user logic running on an FPGA in the network in order to allow it to

exchange data. The framework needs to provide a fixed interface of some sort in order to

allow different applications to be partially reconfigured into the same area on the FPGA.

The primary goal of this interface is supporting logic which consumes chunks of

data from a main application via the Internet, transforms it in some way (potentially by

interacting with other pieces on the FPGA network), and then transfers that data back to

that main application for further processing. The initial design assumes that these

application pieces do not require communications with off-chip peripherals or otherwise

require access to the I/O pins of the FPGA. Rather, of primary importance is the ease

with which data can be transferred between the main application and the FPGA pieces,

and between application pieces on the FPGAs. Design goals of this data transfer

interface are for it to be easy to use, high bandwidth, and as low latency as practical.

Applications should not need to know or write complicated logic to configure routing

between pieces on different FPGAs; that should be transparent. A piece should simply

17

be able to write bytes into an interface and have them appear on the other end regardless

of the location.

An application’s pieces may need to communicate with multiple other pieces, as

well as several different hosts on the Internet. One way to provide this capability to the

piece would be to offer a single port through which all I/O flows, with the application

piece addressing each destination regardless of whether it is a host on the Internet or

another piece on the FPGA grid. Combining the inter-piece and Internet communications

into a single port has the advantage of reducing the number of signals comprising the

partial reconfiguration boundary, and that can be important in successful place-and-route

timing closure. On the other hand, it potentially limits bandwidth as all communications

flows through that single port, and requires the application piece to multiplex data from

different parts of the piece into that port.

Instead, this design provides two ports to the pieces. Two ports, so long as they

are full-duplex, allow a piece to accept data from the Internet through one port,

transform it, and send it out to another piece via the other port for further processing

simultaneously without requiring user logic to do multiplexing or buffering of the data

while waiting for a single port to become available.

The primary benefit of using two ports, however, is that it allows the application

pieces to use different addressing schemes for data sent to the Internet versus between

pieces. As part of making the interface easy for application authors, one design goal is to

make it such that the pieces do not have to dynamically update destination addresses of

hosts on the Internet or other pieces at runtime. They can hard-code the address of the

18

other pieces into their logic and the application functions correctly regardless of where

the framework puts the pieces. The framework achieve this by allowing the application

author to choose the IDs each piece uses to communicate with other pieces statically at

application upload time, and the framework will use these IDs for routing between

pieces.

Data from the Internet will likely arrive from IP addresses that are not known at

the point the logic is synthesized, so users may still have to dynamically store the IP

address of hosts in their pieces. However, we expect that in the common case, a piece

receives data from a host on the Internet, processes it (potentially with help of other

pieces), then sends the result back to the same host. To make that workflow possible

without the application needing to store the host’s IP address, while still providing the

flexibility for the application to send packets to arbitrary IP addresses if it needs to, as

part of the port we provide signals containing the IP address and UDP port of the

incoming packet, as well as require the application piece specify the outgoing IP address

and UDP port. This setup means that if a piece wishes to send packets as replies to the

sender, it can connect the incoming signals to the outgoing signals in loopback without

any additional work.

Another design decision is how reliable to make the interface presented to the

pieces. Some applications will require a reliable transport, ensuring data arrives without

error and in-order. If the framework does not provide this functionality, they will need to

build it into their pieces’ logic. On the other hand, this framework uses UDP for Internet-

based communications, and the Xilinx Aurora library for inter-FPGA communications.

19

Both of these technologies are unreliable without additional layers on top of them, and it

would be simplest and use the least logic to simply carry that unreliable abstraction as it

is to the application pieces, letting them build in reliability if they need it. This also has

the advantage of logic savings for applications that can tolerate occasional data loss

(real-time media processing applications, for example). This is the approach taken in this

framework.

Finally, there is the question of what type of data transfer interface the

framework should use in communicating with the application pieces. In FPGAs today,

I/O between modules typically occurs in the form of FIFOs, RAMs, or busses. On Xilinx

FPGAs, the LocalLink FIFO port has traditionally been used for many of Xilinx’s IP

cores, including the Ethernet MAC and Aurora serial protocols used in this design [19,

20]. Distributed and BlockRAMs naturally use a RAM port, while ARM’s AXI standard

is popular when a bus is required. Orthogonal to these types of interfaces, data transfer is

either stream based, with no enforced delineation between sequences bytes, or packet

based with start/stop framing provided and enforced by the framework.

Both the Ethernet MAC and Aurora libraries used for final handoff of data off-

chip use LocalLink. The framework could do the same, and delineate packets with start

and stop tokens. There is a limited number of serial and Ethernet links and multiple PR

slots, so some form of arbitration is needed to moderate piece access to these links.

Presenting a LocalLink interface to the pieces and connecting the exclusively to the links

would be one way to solve the arbitration problem. Off-chip links would stream data

directly into the application pieces. When the piece finished sending or reserving data, it

20

would release the link for use by other pieces, effectively performing circuit-switched

routing internal to the FPGA.

However, we predict that application pieces will need the flexibility of random

access to the data. If we present the data as a stream, the pieces will have to buffer it into

a RAM internally. If we think most applications are going to need this, it makes sense to

pull that complexity into the framework instead of making every application implement

it. Furthermore, if applications do want to consume the data as a stream, they can very

easily do so by feeding the address line with a counter. One example of an application

which is easier to write when there is a random access interface to the data is the

framework's own packet verification module, which jumps around the data in a packet to

read information about the various layers of the IP+UDP packet. Additionally, if the

application pieces process data slower than the data arrives from the Ethernet or serial

links, connecting the link to the pieces directly prevents the links from receiving data for

other pieces while the first piece processes the data. Storing the packets of data in RAMs

temporarily solves the problem by handing one RAM off to the first piece while the link

stores further data in another RAM. Finally, Ethernet forces the data to be delineated

into packets anyway, and we predict that these packets will be a good size for many

applications to use as units of work.

The downside to the framework buffering the packet into a RAM before

presenting it to the application is that applications are always paying the cost of latency

for the framework to buffer the entire packet before presenting it to them. Despite this,

one advantage is that the framework can perform the verification of the packet's integrity

21

in parallel such that applications which don't care or can checkpoint their state can start

using the packet immediately, as described in the Ethernet Network Stack section. For

all the above reasons, the framework presents a RAM port to the application pieces for

them to exchange data with other pieces and with hosts over the Internet.

In summary, therefore, linking one piece to another is a receive/transmit pair of

byte-wide RAM ports, along with an ID signal to specify the destination piece. The

framework automatically routes packets sent from this port to the correct destination

piece, including any link multiplexing, in order and error-free. However, it performs no

error correction (packets with errors are discarded). The framework abstracts from the

application piece whether it is exchanging data with another piece on the same FPGA or

a different one.

Additionally, each piece wrapper contains a pair of byte-wide RAM port for

exchanging data over the Internet. The data presented to this port is encapsulated as UDP

Ethernet packets of up to 1500 bytes in length. Packet data is automatically routed to the

appropriate destination externally and incoming data has its checksum verified, but

otherwise no guarantees of ordering or reliable delivery are made. In both the piece-to-

piece and Ethernet ports, partial flow control is provided in terms of backpressure

ready/go signals pairs within a given FPGA. However, no flow control is provided

across Ethernet links or serial links between FPGAs. A small FIFO buffers packets

received by the framework and waiting to be acknowledged by the application piece; if

the application cannot keep up with the rate of incoming data, the framework drops the

22

packets. Tables 1 and 2 list the signals provided to the application, and Figure 2

illustrates how they transfer data into and out of the piece.

Signal Direction Description

d[7:0] Input Byte-wide data from RAM. Reflects value of a signal after RAM_DELAY

clocks.

a[10:0] Output Indexes into RAM. Valid values are from 0 to len.

len[10:0] Input Length of packet in buffer. Valid from assertion of go until assertion of

done.

id[1:0] Input Source of the message as an application specific ID. Valid from assertion

of go until assertion of done.

go Input Edge-triggered handshaking signal. High for single clock when buffer

contains valid packet. Buffer contents valid until assertion of done.

done Output Edge-triggered handshaking signal. Piece asserts high for a single clock

when processing of buffer complete.

Table 1: RAM Interface Signals – Incoming Port

Signal Direction Description

d[7:0] Output Byte-wide data to RAM. Stored into RAM at index specified by a when

we high.

a[10:0] Output Indexes into RAM. Valid values are from 0 to len.

we Output Write-enable signal; data is latched into index specified by a when signal

is high.

len[10:0] Output Length of packet in buffer. Latched on assertion of go.

id[1:0] Output Destination of the message as an application specific ID. Latched on

assertion of go.

go Output Edge-triggered handshaking signal. High for single clock when framework

has completely processing of buffer. User logic must ensure buffer

contents valid until asserted.

done Input Edge-triggered handshaking signal. High for single clock when framework

has completely processing of buffer. Until assertion of done, all output

signals are ignored.

Table 2: RAM Interface Signals – Outgoing Port

23

PR piece

Data transfer

8
11

data
addr

rdy
len

Signaling Info

48
32
16
32

src mac addr
src ip addr

src udp port
src id

8
11

11

data
addr
we
len
rdy

go

48
32
16
32

dst mac addr
dst ip addr
dst udp port
dst id

Ethernet Port

Data transfer

8
11

data
addr

Signaling Info

2id

General

clk
rst

8
11

11

data
addr
we
len
rdy

go

2

Inter-Piece Port

go

11
rdy
len

go

11

Figure 2: Data Interface between Architecture and Application Piece

4.2 Interface to the FPGA Network

Another design consideration for this thesis is the means by which a user

interacts with the FPGA network to run their HDL application kernel on FPGAs. This

thesis adopts the model that the user contains a collection of FPGA logic pieces which

collectively work together to accelerate a single application. All of these pieces must be

placed and run as a unit for the application to be accelerated, but a user may have an

arbitrary number of logic piece collections. The user needs to be able to upload these

pieces to the FPGA network, then be able to start, stop, and interact with them over the

network.

Management of the applications in the FPGA network is done via a central entity

with a view of the entire network. This entity knows what applications are assigned

24

where and can manage placement globally as applications come and go. This

management entity runs on a PC; users interact with it as a web service using HTTP

calls. Users upload their application and a set of constraints about how their application

pieces communicate with one another. Once a user directs the framework to start the

application, the framework determines how to place the application pieces to best honor

the user’s constraints, then sends back to the user the IP addresses associated with the

pieces of their application. One key point to note here is that the management entity does

not moderate communication between the users in the Internet and the FPGAs

themselves; it only manages the placement of the pieces. Each FPGA contains enough of

a network stack to communication with the users directly over Ethernet, allowing the

network of FPGAs to scale without the management PC becoming the I/O bottleneck.

As part of uploading an application to the framework, the user describes how

many pieces an application contains and the connectivity required between these pieces

as a graph, with the pieces as nodes and the connections as edges. Even though the

framework provides the ability for pieces of an application to communicate with one

another, all pieces are not automatically connected to one another. Instead, the user

describes which pieces actually internetwork.

While any placement on the FPGA network where pieces can exchange data

fulfills the requirement described by the user, we can optimize the performance of

applications by more careful placement. We predict that among different applications,

and even within the pieces of a single application, certain pieces may need to exchange

large amounts of data, or do so with low and deterministic latency. Other pieces may not

25

care as much. For example, one piece may exchange compressed data with another

piece, which then uncompresses it before forwarding it on to other pieces. The links

between pieces handling uncompressed data will require more bandwidth than the link

with compressed data. It would be nice to use this information to inform our choice of

application piece placement.

Toward that end, we allow the user to specify, when the application is uploaded

to the FPGA, characteristics of the links between communicating pieces regarding their

bandwidth and latency needs. Initially, we will rely on applications being good citizens,

but in the future one could imagine incentivizing application authors to be honest by

charging a higher rate for applications with many low latency links or the like.

Currently, the framework provides only simple constraints for edges: each edge has a

bandwidth and latency requirement, and these are Boolean values. As an example, an

application could request one link between two pieces be a low latency, high bandwidth

link, while specifying that the remaining links can tolerate high latency, low bandwidth.

As an example, consider an application consisting of the pieces shown in Figure 3:

Piece 0 Piece 1

Piece 2

Piece 3

Piece 4

High bandwidth, low
latency

From network To network

Figure 3: Example Application Piece Interconnections

26

Then, the management entity could place the application pieces on the FPGA

network as shown in Figure 4, ensuring high-bandwidth links are on the same FPGA,

while allowing pieces with non-critical links to be placed on different FPGAs:

FPGA #1

Piece 0 Piece 1

FPGA #2

Piece 2

Piece 4Piece 3

Our application

Other existing applications

Slower
inter-
FPGA
links

Figure 4: Example Application Piece Physical Placement

4.3 Framework Data Transport Overview

Having defined the interface provided to the application pieces as well as concept

of pieces communicating over the Internet and with one another on different FPGAs, the

next portion of the design deals with questions surrounding how to adapt LocalLink

interfaces to RAMs, as well as how to arbitrate access among the multiple application

pieces’ access to the limited number of Ethernet and serial off-chip links. It also

discusses the related question of routing data. The first point of discussion is connecting

the application pieces to Ethernet (for Internet access) and GTP serial transceivers (for

inter-FPGA data transport). Both of these interfaces use LocalLink, a FIFO streaming

interface. Next, we address the question of data arriving from the Internet and

determining the correct application piece to receive that data. Similarly, when one

27

application piece wants to send data to another, how do we figure out where to send it?

What addressing scheme does one piece use to communicate with the other?

The way we solve LocalLink to RAM conversion is as soon as possible, data

from off-chip links is converted from LocalLink and placed in a RAM buffer, which is

henceforth used as the unit of data transfer internal to the framework. The modules

which convert to and from LocalLink are called off-chip frontends, accepting LocalLink

on one end and presenting a RAM port on the other. Each application piece is connected

to a piece wrapper, which hosts the RAMs used by the piece for sending and receiving

data. These piece wrappers abstract from the piece the details of getting the data to its

destination, sending and receiving data from other pieces, the inter-FPGA serial links, or

Ethernet as required. Arbitration is performed by a switch communicating with each off-

chip link and piece wrapper. The switch arbitrates access to the incoming RAM ports of

each of the wrappers and frontends.

Routing is different for the Ethernet network versus the inter-FPGA network. For

Ethernet, each PR slot is assigned an IP address, and as the frontends receives incoming

packets, it chooses a PR slot based on the IP address of the packet. For inter-FPGA links,

we wanted the applications to be able to communicate without worrying about exactly

where the other pieces were placed on the FPGA grid. Therefore, when uploading the

application, the user assigns an ID to each piece which the piece uses when sending data

on its inter-piece port. When placing the pieces, the framework calculates a source route

between each piece of the application and stores these routes in the piece wrappers. As a

28

buffer of data travels from wrapper to switch to frontends, each element removes an

address from the front of the packet and uses it as the next destination.

4.4 Off-Chip Communication Methods

This section examines the different possibilities for connecting FPGAs together

and to users of the framework. Interconnecting FPGAs is treated separately from

connecting the FPGAs to users. Users interact with the FPGAs using the standard

Ethernet/IP/UDP protocol stack, while inter-FPGA communications are shunted to

point-to-point serial links as an optimization.

4.4.1 Internet

For this architecture, we choose to connect the FPGAs to the users on the Internet

by connecting them directly to an Ethernet network and implementing a network stack in

FPGA logic. This is as opposed to connecting a subset of FPGAs to a PC using PCIe or

other local-PC communications protocols, then making the PC responsible for proxying

data to/from the Internet. This simplifies the design of our FPGA network, as we don’t

need to a pair a PC with every few FPGAs. Most FPGAs of sufficient size to be

interesting for use in accelerating algorithms contain hardware Ethernet MACs capable

of Gigabit Ethernet, and existing FPGA IP cores provide good support for low-level

Ethernet functionality. Gigabit Ethernet is ubiquitous, and fast enough to prevent the link

to users from being the bottleneck.

Using Ethernet as a communications transport for FPGA designs is not a new

idea; however, Ethernet alone has several problems which make it problematic as the

sole I/O pathway between users and the FPGAs. FPGA hardware handles sending raw

29

Ethernet data, but does not handle higher level protocols and routing. Raw Ethernet data

won’t route across the Internet, and would require a PC to relay the data for each FPGA.

That is the problem we are trying to avoid by connecting the FPGAs to Ethernet in the

first place. Therefore, on top of Ethernet, our design implements a minimal Internet

Protocol v4 and User Datagram Protocol (IP/UDP) stack in FPGA logic. IP is a

prerequisite for communicating over the Internet, while implementing support for UDP

allows users to communicate with the FPGAs using standard PC applications without

requiring them to install drivers or have administrative privileges to send and receive

other IP protocols. At the same time, UDP is still low-level enough to be simple to

implement in HDL (as opposed to TCP). It’s also flexible enough that applications can

implement additional functionality on top of it in their piece’s HDL, if required.

One problem with Ethernet is that unlike technologies designed for local-PC

communication such as USB or PCI Express, where the link is engineered to provide

such low error rates that for practical purposes errors may be ignored, Ethernet networks

are expected to occasionally encounter errors which must be handled reasonably. Errors

can occur in two forms. In the first case, packets can be lost in the network, such that

they never arrive at the FPGA or PC. The other is that data is occasionally corrupted. To

detect this situation, all three layers (Ethernet MAC, IP and UDP) provide checksums

protecting their header fields and data contents.

For incoming packets, the Ethernet network stack accepts Ethernet packets,

decodes them to determine if they contain IP/UDP frames destined for the FPGA, and

checks them for validity before delivering them to the application pieces. It also

30

constructs correct IP and UDP headers around outgoing buffers of data from application

pieces. Verifying and constructing correct checksums merits additional design

considerations because both operations require making a pass over the entire packet of

data, potentially a time consuming operation.

One simple approach would be to read the entire packet into a buffer first, then

verify the checksums. If there are no errors, deliver it to the application piece. This

requires reading the packet twice: first for computing the checksum, then by the

application piece for its purposes. Pipelining this packet verification prevents reducing

total framework throughput, but increases the latency before the application piece can

begin using the packet of data. However, since we are implementing the network stack

in HDL, we can take advantage of the dual port ability of on-chip BlockRAMs to verify

the packet concurrently with the application using it. Once a packet arrives the

framework assumes it’s valid and immediately hands it off to the application piece for

processing. In parallel it begins verifying the integrity of the packet; once finished, it

notifies the application piece about the packet's validity. In this way, application pieces

have a choice. They can wait for the packet to be verified, incurring latency. Or, if they

are stateless or have a means of check pointing and restoring their internal state, then can

start operating on the data immediately, reverting to the last checkpoint in the rare case

where the packet is corrupt. This later approach is what we use in this prototype.

The above discussion assumes that the entire packet must be streamed into a

RAM before the framework can validate the checksum. Future work could investigate

the possibility of verifying the checksums of the packet while it is being streamed into

31

the application piece’s RAM, such that the application knows the integrity of the packet

as soon as it is ready for processing. One potential downside of validating the packet

checksum in-line while streaming the packet data in from the Ethernet MAC is that the

checksum logic needs to be able to run as fast as the rate of incoming data. For Gigabit

Ethernet this isn’t a problem, but for faster line rates, our approach may have the

advantage of allowing many slow application + verification units to process the

incoming data stream in parallel.

Although the Ethernet framework detects corrupt packets and informs the

applications of this fact, as a consequence of choosing UDP it is up to the applications to

detect lost packets if it is important to them. Due to the large bandwidth delay product at

gigabit rates, stop and wait error ARQ will be insufficient for most applications where

data loss is important, and they will need to implement some form of error detection

utilizing sequence numbers. To support those applications, the framework adds an

additional pseudo-protocol on top of UDP in the form of a 4-byte sequence number

which the framework automatically removes prior to passing the data onto the

application piece. This number is made available as a separate signal to the application

without it needing to extract the bytes from the incoming packet manually.

The logic required to verify the checksum of the Ethernet, IP, and UDP protocols

is called the packet verification unit. For this design, we pair one verification unit with

each PR slot. Paring a verification unit with a PR slot tightly couples them together,

simplifying the control logic. A unit never verifies packets for more than a single app

piece, and its paired app piece need look at only a single unit for validity information

32

regarding the packet it is processing. Paring a verification unit with a PR slot also fits

well with realistic physical limitations of FPGAs. In particular, both the unit and app

piece are implemented on the same FPGA, in close proximity to one another. It is

therefore a reasonable first approximation to assume that as Ethernet line rates scale

higher, both the unit and piece will experience similar limitations on clock speed and

will be able to process incoming packets at about the same rate. (If the common usage

pattern turns out to be application pieces which perform significant amounts of

computation and process a relatively small bandwidth of network traffic, as future work

it may make sense to re-visit this decision decouple the packet verification units such

that a smaller number of them handles verification for multiple PR slots.)

4.4.2 Locally

With the framework providing the ability for applications, divided into logical

pieces, to communicate with one another through RAM-based ports, one important

design question is how to move data between pieces when they are located on different

FPGAs. We would like the method chosen to be high bandwidth, ideally allowing pieces

to exchange data as fast as they can send it out the port of their piece interface, and with

as little latency as possible between sending and receiving a message.

Before delving into possible designs, it's worth considering what the application

experience would be like if we do nothing. If an application was too big to fit on one

FPGA, software running on the user’s PC would be responsible for capturing the data

from one piece and presenting it to others. Aside from the complexity imposed on the

users with this approach, we expect the bandwidth from the user’s PC to the FPGA

33

network to be a limited subset of that available from inter-FPGA serial links.

Alternately, we could still use the existing Ethernet link designed for communicating

with users, but build facilities into the framework to allow inter-piece communication

without the user manually transferring the data over the Internet. This would ease the

task of the application author from having to manually transfer data to a PC over the

Internet and back again, probably improving bandwidth limitations. However, it would

send inter-FPGA traffic through the same single Gigabit Ethernet link also carrying data

back to the user’s PCs. Of course, we could improve this situation by utilizing additional

Ethernet links for handling inter-FPGA traffic. However, then we would run into the

problem that most FPGAs have a limited number of Ethernet MACs. Furthermore, using

Ethernet forces whatever interface we present to the applications for inter-FPGA data

transfer to be packet-based due to the design of Ethernet, as well as carry a fixed

overhead in the form of the Ethernet header for each packet sent. Finally, most Ethernet

switches employ a store-and-forward approach to relaying messages, increasing latency

for these data transfers.

On the other hand, FPGAs typically do contain a large number of high-speed

serial transceivers on the silicon. These transceivers are capable of transporting data

faster than Gigabit Ethernet, and the quantity available on most FPGAs opens up

interesting topological structures for inter-connecting FPGAs by utilizing more than one

physical link. This can increase inter-piece bandwidth and reduce congestion. For those

reasons, this design uses high-speed serial transceivers to link FPGAs together over a

separate network from the Ethernet link, and uses this second network to carry inter-

34

piece traffic between FPGAs. These serial transceivers provide a low level interface

analogous to that of an Ethernet PHY, and used directly require the consumer to deal

with clock drift between boards and as a consequence the need to provide flow control or

deal with occasional data loss, as well as framing to distinguish one message from

another. A plethora of protocols of varying complexity and hardware logic implementing

those protocol exist to make these serial transceivers easier to use. For this

implementation we chose to use Aurora, which is a protocol and IP core developed by

Xilinx which handles clock skew and framing, and presents a LocalLink interface for

sending and receiving data. For more information about high-speed serial links, see

Appendix A.

4.5 Data Movement between Pieces and Off-Chip Links

4.5.1 Connecting Pieces and Off-Chip Links

In order to allow multiple pieces and off-chip links to communicate with one

another, some form of arbitration is needed to moderate access to the receive ports of

each of these entities. With the Ethernet network, the design is simpler because there is

only a single off-chip link and we have made the decision that pieces may only

communicate with hosts on the Internet over this link, not with one another. Therefore,

the only contention is when multiple pieces try to send packets at the same time. We can

handle that case with a single 1 to N arbiter. For the piece-to-piece network, things are

more complicated because any piece or off-chip link can want to send data to any other

piece or off-chip link at the same time. Additionally, unless we implement a fully-

connected graph of links connecting the FPGAs to one another, we must decide whether

35

to allow communications only between pieces on adjacent FPGAs connected directly to

one another via a serial link, or whether to allow piece’s data to route through one or

more intermediate FPGAs. Restricting communications to adjacent FPGAs is simpler,

but breaks the abstraction of the applications not having to care about the physical layout

of their pieces, which we felt was unacceptable.

One possibility for arbitration is to use a stream-based protocol for connecting

pieces and links together, then allow sending pieces to request exclusive access to their

destination for as long as they have data to send. This approach fits nicely with the

LocalLink interface used for the Ethernet and serial IP cores. This effectively circuit-

switched routing approach to arbitration is also nice in that it allows low jitter between

entities once the connection is granted, but is more complicated to implement across

multiple FPGAs than a packet switched system, and makes it hard to ensure fairness

between multiple pieces and links unless some means is provided of revoking access to

the sender after some timeout. However, having a timeout somewhat diminishes the

advantage of exclusive access in the first place. The potential fairness problems are

magnified if the circuit is established across multiple FPGAs (a requirement if pieces are

allowed to be placed anywhere in the FPGA network and the network is not fully

connected), as a single channel between two pieces can hold-up the serial links spanning

multiple FPGAs. In practice, as the network grows, the FPGA chips will not have

enough serial interfaces to implement a fully connected network, and we shouldn’t rely

on this requirement as we design the framework.

36

Instead, we could create a packet switched system, choosing at the receiving

FPGA of each serial link where to send the packet next. This avoids the complexity of

reserving a circuit across multiple FPGAs, and by limiting the message size of the

packets, allows the framework to deal with fairness issues by employing scheduling

algorithms on the sending side FPGA of each serial link (for example, round-robining

each piece’s packets). For this framework we chose this approach, and transfer data

between pieces, whether locally or on different FPGAs, as packets.

4.5.2 Data Buffering

Having made the decision to use a packet switched system to arbitrate the flow of

data between pieces and off-chip links, we need some mechanism for storing the packets

of data as they move through the framework, because our application interface specifies

that pieces have random access to incoming data as if it were in a RAM. For this data

storage, the framework uses FPGA-internal RAMs, called BlockRAMs on the Xilinx

chips used for our prototype, for buffers as the data flows through the framework. They

are 18 kilobits large and can be partitioned in a variety of data widths and depths. One

supported configuration, 9 bits wide and 2,000 elements deep, is well suited for Ethernet

frames, which normally consist of up to 1500 bytes of data.

We considered other ways of storing the data, including Distributed RAM (RAM

implemented using FPGA logic cells) as well as off-chip SRAM or DRAM. However,

using Block RAM as opposed to Distributed RAM conserves logic fabric for application

access. External DRAM or SRAM would require designing a memory controller to

arbitrate access to multiple application pieces simultaneously, and such complexity was

37

beyond the scope of this prototype. Utilizing Block RAMs does have the disadvantage of

making timing more challenging, as the place and route algorithm is not always able to

locate the Block RAM and the logic using it physically close to one another on the

FPGA. The Ethernet MAC and Aurora serial modules send and receive data through a

LocalLink FIFO, which streams data sequentially. Since these modules do not access

data randomly, we can add pipeline stages between these module and the RAMs as

needed to meet timing without incurring performance issues. Because of this sequential

access, it is not important that we locate the RAMs near to these modules. On the other

hand, we want to provide random access to the data for the application pieces. The closer

we can place the RAMS to the PR slots, the fewer cycles of delay the pieces will

experience between presenting an address and receiving the data from the RAMs.

Block RAMs have the ability to be configured as true dual-port RAMs, which

means they can be simultaneously read and written to by two different elements in the

design. Therefore, the simplest architecture for moving data from the off-chip links to

application pieces is to utilize a single RAM with one port connected to the off-chip link

and the other port connected via a multiplexor (mux) to the destination application piece.

Since only a single piece can be consuming data at any given time (because there is only

a single RAM) the mux would be controlled by a chip-select line indicating which piece

is active. This approach, while simple, is inadequate as incoming data cannot be received

concurrently with an application processing data, and the design can never achieved

100% utilization of the off-chip link.

38

Adding sufficient BlockRAMs for buffering more packets can alleviate the

utilization issues of the off-chip links. However, allowing the off-chip links to connect to

any RAM requires a wide mux, which has the disadvantage of requiring a large amount

of FPGA logic and routing resources. On the other end of the buffer, each application

piece needs to be able to connect to whichever buffer contains its next piece of data,

requiring more wide muxes. Worse, allowing any application piece to connect to any

RAM means that at least some of the pieces will have poor spatial locality with a RAM

they need to use, decimating the possible clock speed of the design unless pipeline stages

are inserted.

Since routing constraints effectively partition the location of RAMs such that

only a subset can be used by an application piece without inserting pipeline stages to

meet timing closure, it makes sense to design for these constraints. A subset of RAMs

and an application piece become logically grouped together, and the RAMs are

considered to belong to the piece. Instead of a wide mux connecting the incoming off-

chip link to all the RAMs, and additional wide muxes connecting the RAMs to all the

pieces, we break up the muxes. Connecting the Ethernet interface is a two-level mux

structure. Then, a single mux connects the RAMs to the pieces, as illustrated in Figure #

below.

For this initial implementation, this design allocates two RAMs for each

application piece. This is sufficient for the application to achieve 100% utilization of the

port so long as it processes packets at least as fast as they arrive. Figure 5 illustrates how

39

the framework connects these two RAMs with muxes to the application logic and the

rest of the framework:

Figure 5: Partitioned Multiple RAM Design with 2 Level Data Source MUX

Because of all the advantages just described, the partitioned multiple RAM

buffer approach is what we use for the internal routing of off-chip link packets to pieces.

4.5.3 Switching

At this point we have discussed the rationale for choosing a packet switched

system for moving data between application pieces and off-chip links, then elaborated on

the system of BlockRAM memories used to store those packets. Here, we discuss the

design of the switching infrastructure used to connect the piece and off-chip links’ RAM

ports together appropriately.

The design for receiving data from off-chip links as described thus far can be

broken down into 5 modules. A frontend module receives data from off-chip, providing

an adapter between LocalLink used by the IP core and the RAM ports used by the rest of

Data

Source

(Ethernet

MAC)

Data Sink

(Application

Tile)

RAM

RAM

MUX

MUX

Data Sink

(Application

Tile)

RAM

RAM

MUX

MUX

MUX

40

the framework. Then, a switch routes the data from the frontend to the appropriate

piece’s RAMs based on some routing field in the packet. For Ethernet, this is the

packet’s destination IP address, and for serial it is the next hop in the source route. Third,

a second level mux/RAM stage buffers packets waiting to be processed by the piece. A

PR slot wrapper module contains this second level mux/RAM for a PR slot, and for

Ethernet, the packet verification module. When the application piece is ready, the PR

slot wrapper connects the appropriate buffer to the piece for processing. This design is

duplicated twice; once for the Ethernet network, and once for the inter-FPGA serial

network.

There is only a single Ethernet link, and application pieces cannot send data from

one piece to another over this network. Therefore, a simple 1-N mux is sufficient for

routing incoming Ethernet data to pieces. However, the Ethernet's outgoing port, and

every piece's incoming port are potentially contended by multiple senders at once. For

Ethernet, all pieces are sending to the same Ethernet frontend, and a single arbiter in the

frontend can manage access to the pieces. The piece-to-piece network is similar to the

outgoing path of the Ethernet network but in both directions, now there are multiple off-

chip serial links, and every piece and link can send data to each other. (Data received

from links can not only be delivered to application pieces, but also to other links, so that

inter-piece data can be routed through intermediate FPGAs.) Every application piece’s

incoming port is potentially contended by multiple senders at once. The 1-N first level

mux is no longer sufficient.

41

There are several different approaches we could take for connecting the

application pieces and serial links. An internal shared bus connecting all the endpoints

together is one simple option, and it avoids the complexity of building muxes. However,

multi-drop input/output signals in FPGAs tend to be slow and limit overall system

timing. Busses also have the problem of shared bandwidth unless the bus runs faster than

the piece and serial link ports (which is unlikely, given the aforementioned problem of

multi-drop signals on FPGAs) or is very wide. If it runs faster or slower, there’s also the

issue of crossing clock domains to move data to and from the bus.

Alternately, we could interconnect the pieces and links by creating a fully

connected N-N switch such that every piece and serial link’s incoming port is moderated

by a 1-N mux and arbiter. This approach has advantages of being simple to design

compared to a crossbar switch, as well as never blocking communications between

pieces or links due to limitations of the routing architecture. However; it suffers from the

problem experienced by all fully-connected networks: the number of edges grows

exponentially with the number of nodes. For large numbers of serial links or application

pieces, this can quickly overwhelm the routing resources of the FPGA.

To mitigate the exponential wiring growth, a crossbar switch could be used

instead of a fully-connected one. This comes at the cost of some blocking probability, as

well as increased implementation complexity. Alternately, a Network on Chip could be

used, with pieces and links connected to routers, and the routers linked together. This

doesn’t really mitigate the problem of wiring explosion; it just controls it by adding a

42

layer of indirection in the form of routers. In return for controlling the number of wires,

latency is increased due to the hops through the routers.

For this design, since the number of serial links and number of PR slots hosting

application pieces are both expected to be small (only a few of each), we implement a

fully-connected switch.

Figure 6 illustrates how this works for the example of a serial link wanting to

send a message to an application piece located in PR slot 1. The PR slot number is

broadcast to all PR slot wrappers connected to the switch. Each slot checks if the number

matches its own, and if so, generates a want signal to its receive port arbiter. Once the

port is free, the grant signal is generated, and remains until the serial link no longer

requests that PR slot number. Once granted, the serial link copies data into PR slot

wrapper 1’s receive port.

Lin
k 1

Tile 2

Arbiter

w
an

t
gran

t

w
an

t
gran

t
...

w
an

t
gran

t
Tile 2

Rx

...

Off-Chip Link 1

==1?

G
ran

t

R
e

ad
y

ID

R
A

M

Tx

Piece 1

...
Grant from Piece 2

Figure 6: Example of Piece-to-Piece Routing Implementation

43

4.6 Routing Incoming Ethernet Packets to Pieces

In our architecture, the purpose of the Ethernet interface is for data transport

between application pieces on the FPGA to the user’s PC applications. Because the

framework is never acting as an intermediate router for Ethernet packets destined to

another FPGA, routing packets from the Ethernet network is relatively simple because

all packets either originate from or are destined for the local FPGA. The framework

really only has one routing task: when an incoming packet is received, determine which

application piece receives the data.

One option for achieving this routing would be to broadcast the first portion of

the packet to all PR slots and let the application pieces choose whether to accept the

data. In addition to requiring an arbiter if multiple pieces claim the packet, this also

pushes complexity to the application pieces. However, such an approach could be a

simple way to load balance data among identical application pieces without the

application on either the PC or FPGA framework needing to manage it.

The other option is to have the framework route packets and deliver them to the

appropriate application piece itself, based on some routing field. One option would be to

use a range of bytes from the packet payload as the routing field. Although protocol

agnostic, it requires that the framework parse extra information to make its routing

decision, and requires cooperation from the application running on the user’s PC to

insert this routing information. Another approach is to utilize the fact that these packets

will be Ethernet + IP + UDP. Each of these protocol layers carries information that can

be used to route packets. Furthermore, the communications architecture must already

44

read these headers in the process of verifying the packet integrity. Ethernet MAC

addresses are not globally routable on the Internet. Both IP addresses and UDP ports,

however, are good candidates for a routing field, as both are easily set from a PC based

application using the standard Berkley sockets API. Of the two, using IP addresses has

the advantage of leaving the entire UDP header untouched for potential application

usage, so that is what we use for this thesis: each PR slot is assigned a unique IP address,

and only packets with the PR slot’s destination IP address are forwarded to the slot.

The RAM port provided to the application piece is offset to index into the data

payload of the UDP packet past the 4 byte sequence number. Then, as part of application

piece’s Ethernet port, we pass the source and destination IP addresses, UDP source and

destination ports, and the sequence number as signals. In what we expect to be the

common case where an application piece accepts data from Internet, performs

processing, then returns the result back, the piece can simply connect the source and

destination IP and sequence number signals together internally and allow the framework

to handle all details of routing the data correctly with the correct sequence number, while

still retaining the flexibility to send to other destinations if needed.

4.7 Off-Chip Piece-to-Piece Routing

Another important design question is how we multiplex packets from multiple

application pieces onto a single serial link between FPGAs. As discussed previously, it

would be simplest to require that application pieces which wish to communicate with

one another be located in one specific PR slot on each FPGA which is connected to the

serial link. However, one of the goals of this framework is to abstract the limits of a

45

single FPGA from the application. Pieces should be able to communicate with one

another regardless of their location in the FPGA network, and their physical location

should be transparent to the pieces.

As described in the application piece interface section, we want to allow

application pieces to communicate with one another by an addressing scheme

independent of the actual location of the pieces on the FPGAs. This address goes from 0

up to the number of other pieces a piece communicates with, as specified in the

application configuration provided when the user uploads the application. As described

in the Piece to Piece Mux section, pieces and serial interfaces are connected to one

another through a fully-connected switch. If pieces were only communicating with other

pieces on the same FPGA, we wouldn’t really need any routing; each PR slot wrapper

would just present an address to the switch to send data to the correct destination

application piece, and it could do this by keeping a mapping between the application’s

virtual address for the piece and the corresponding input into the switch required to

reach that piece.

Things are more complicated, however, when pieces are allowed to communicate

across FPGAs. In addition to feeding the switch the right signal to send packets to one of

the serial interfaces, the PR slot wrapper also needs a way of telling the serial frontend

on the other FPGA what to do with the packet from there (in other words, what address

to feed its switch when receiving the incoming packet.)

The way we solve this in this framework is by using a simple form of variable-

length source routing. Once the pieces of an application have been placed onto the

46

FPGA network and the application started, they are fixed for the lifetime of the

application. Furthermore, connections between application pieces are specified as part of

the application configuration and are also static. Because pieces of an application are

placed by a central entity with fully knowledge of the entire network, it’s possible to

determine all the routes between the pieces up front.

Each PR slot wrapper contains all the routing information needed to reach every

other PR slot holding that application’s pieces. After placing application pieces, for each

piece the framework calculates the route to each other reachable application piece using

source routing. These source routes are then programmed into the wrapper, which keeps

these routes as a mapping of application specific destination IDs to the source route

required to reach them. This route is variable length depending on how far away the

destination piece is (on the same FPGA or multiple FPGAs away). When the packet is

transmitted, if the packet’s destination is a piece on another FPGA, the wrapper appends

this variable length route to the beginning of the contents of the outgoing packet before

forwarding it to one of the serial links. As the packet of information flows from one link

to the next the first address in the source route identifies the next destination. This has

the advantage that the framework, including the serial links and FPGAs which are only

relaying packets, do not need to have any intelligence in determining where to send the

packet next: they simply examine the next hop in the source route. Before passing the

packet along, each serial frontend module removes one address from the front of the

route such that by the time it reaches the destination only the message remains. The last

47

entry in the source route is not an address for routing the packet, but indicates the source

piece which sent the packet, so that the receiver knows the address of the sender.

Figure 7 illustrates an example topology, followed by the source route generated

by the framework for this topology:

 PR Slot 0 (Source) -> Off-Chip Link 1 (Hop 0) -> Hop 1 -> PR Slot 3 (Destination)

Slot 0 Slot 1

Slot 3Slot 2

Mux

Off-
Chip

1

Off-
Chip

0

Slot 0 Slot 1

Slot 3Slot 2

Mux

Off-
Chip

1

Off-
Chip

0

Slot 0 Slot 1

Slot 3Slot 2

Mux

Off-
Chip

1

Off-
Chip

0

 [Hop 1] [Dest] [Src ASID] [Data buffer contents]

 [0] [4] [0]

Figure 7: Routing Application Data through Intermediate FPGA

The routing code is prepended to the data buffer upon transmission. Hop 0 is

directly specified by the source piece’s PR slot wrapper, as it directly controls the local

FPGA's switch, directing the packet to Serial Link 1 link. Hop 1 and destination are IDs

of the PR slot wrappers and serial link frontends in the framework used as input to the

switch on each subsequent FPGA. Upon receiving a message, each serial link frontend

removes the first byte of data from an incoming LocalLink frame and presents it to the

piece-to-piece switch as the destination ID. When the switch is ready, it then copies the

LocalLink stream into a RAM, similar to the Ethernet frontend module. In this way, as

the message travels from one FPGA to another, the serial link frontends peel the source

48

routing addressing information on each hop, until when the message arrives at the

destination, only the source ID remains.

In the case of a message which remains inside the domain of a single FPGA and

is sent directly from one piece to another, the packet contains only the source ID, as

there is no inter-FPGA communication and therefore no need to encode any source

routing information inband.

Such an approach does have the disadvantage that the route is static and cannot

dynamically change to accommodate traffic between links or if a link fails. In practice,

link bandwidth is not infinite, and the best route in terms of bandwidth and latency

available to the endpoints may change dynamically depending on the link utilizations.

However, dynamically updating the routes in response to changing traffic conditions is

left as a future work.

4.8 Application Piece Placement and Configuration

4.8.1 Placement Algorithm

By sub-diving the FPGA into smaller PR regions, and providing a way for

application pieces in those regions to communication between each other, we face a

place and route problem in determining where to place application pieces such that they

are as close to each other as possible. Especially important is that pieces which the user

has indicated require high bandwidth communication between one another are situated

so to make that possible. This situation is not unlike that faced by the FPGA tools when

placing and routing LUTs onto FPGA fabric. In our framework as in FPGA tools, the

challenge is to determine interconnect and placement of our nodes well enough that the

49

constraints on their edges are honored acceptably, while avoiding the inconvenient fact

that optimal placement is NP-complete.

From a correctness point of view, so long as application pieces which have an

edge between them are able to exchange data with one another, pieces may be placed

anywhere there exists space for them on the FPGA grid. Our framework has an

advantage that poor routing only affects performance; not correctness. Edge constraints

supplied by the user when uploading the application are only hints to the framework on

which the application must not rely. There is more bandwidth between pieces on the

same FPGA than there is between pieces on separate FPGAs, due to the need to

potentially share serial links with other applications. Additionally, in realistic

configurations of this architecture, the FPGAs will not be interconnected to one another

with a complete graph of serial links. Therefore, some placements of application pieces

will require the piece data to route through intermediate FPGAs to reach its destination

piece. We would like to avoid that situation if possible, as it increases contention on the

intermediate FPGAs serial links.

Therefore, the lowest latency and highest bandwidth occur when two pieces are

placed on the same FPGA. In that case, each piece gets its own dedicated channel

between each other, with the only sharing occurring if a piece communicates with

several other pieces and has to share its outgoing interface. If that is not available, the

second best option is on different FPGAs which are as close to each other as possible;

that is, they route through few other FPGAs. The situation becomes more complicated if

we take the congestion of the links between the FPGAs into account. The optimal route

50

can change dynamically depending on the other traffic on the FPGA network, and we

would need a way to update the routing between pieces dynamically at runtime as the

situation changes. On the other hand, if we consider only each pair of pieces in isolation

and assume all links are unloaded, we can determine the good locations to place an

application once when the application is uploaded. This is what we do for the initial

implementation.

Our placement algorithm operates statically, when a user requests the framework

start an application. It operates in two stages. First, it looks through the application

description to determine which pieces communicate with one another, and which of

those links require high-bandwidth or low-latency. It groups the pieces which

communicate with each other via these links into clusters, and attempts to place the

clusters first. Attempting to place variable length low-latency clusters of application

pieces on the FPGA network constitutes a bin packing problem. If possible, we want to

fit each cluster completely on an FPGA, and for that we employ a best fit decreasing

greedy algorithm. If that’s not possible, we choose the FPGA where the most of the

application’s pieces would fit, then branch out in circles from that FPGA, placing the

pieces where there is space. The idea here is to ensure that if a high bandwidth cluster

won’t fit completely on an FPGA, at least most of it will, and the rest will be close to

that FPGA and not have to route through many other FPGAs. Finally, after we’ve placed

all the important clusters, whatever is left is placed using a first fit strategy. The rationale

here is that since these pieces communicate with other pieces only in a low bandwidth

fashion that can tolerate some latency, they won’t be overly affected by where they end

51

up. A future work could potentially improve the situation by still attempting to place

these remaining application pieces as close to the other pieces as possible.

This algorithm works as follows:

1. Walk graph of application pieces, building a list of all clusters of pieces

connected by low-latency edges.

2. Sort list of clusters.

3. Starting with the largest cluster, walk through all FPGAs in the network,

attempting to find one with enough free PR slots to place the application cluster.

4. If none are found; choose the FPGA with the largest number of free PR slots.

5. Place as much of the cluster as possible.

6. If pieces still remain in the cluster, place pieces on nearby FPGAs, minimizing

distance from original FPGA in terms of number of hops. Do this by recursively

attempting to place remaining pieces in a breadth first search traversal of the

FPGA network outward from the original FPGA.

7. Go back to #3 until all clusters have been placed.

8. The remaining pieces of the application are connected to pieces with links

tolerating high-latency. Employ a first-first algorithm.

4.9 Configuring the FPGA Network to Contain an Application

Once an application’s pieces have been placed and the source routes between the

pieces determined, the framework then configures the FPGAs which will hold those

pieces. Ordinarily, an entire FPGA must be programmed at once, and while the FPGA is

being programmed, execution of all logic on the FPGA stops. Since our design partitions

the FPGA into PR slots, each of which can contain a different application, this would

mean that programming one application would temporarily interrupt processing of other

applications. Instead, to avoid this, we use a technique called partial reconfiguration.

52

4.9.1 Configuration Algorithm

For each FPGA which will contain an application piece:

1. Disable the PR slots which will contain the application from communicating with

the framework.

This causes the PR slot wrappers to ignore any messages sent from the piece in

the PR slot to Ethernet or other pieces on the framework. Messages send to the

piece from other pieces on the framework are discarded. This prevents erroneous

messages generated during partial reconfiguration of the piece from disrupting

other applications on the FPGA network.

2. Program the source routes into the PR slot wrapper.

3. Using partial reconfiguration, download the application piece into the PR slot.

One all application pieces have been downloaded, for each FPGA:

4. Enable the PR slots which were previous disabled.

5. Notify the user that the application has started.

4.10 Partial Reconfiguration Engine

The Partial Reconfiguration (PR) engine is the component which is responsible

for taking application bitstreams from the management application via the Ethernet

network and applying them to the local FPGA on which it is running. This entails

several challenges. First, the reconfiguration engine is running on the FPGA being

reconfigured: care must be taken to program the FPGA correctly, for faulty bitstreams

could override the logic of the engine itself, making recovery impossible. Second, data

obtained over the Internet can be corrupt, out of order, or lost entirely. The engine must

successfully hide these imperfections and present an intact data stream to the FPGA for

successful partial reconfiguration.

53

4.10.1 Introduction to Partial Reconfiguration

SRAM based FPGAs, which include the majority of FPGAs manufactured by

corporations like Xilinx and Altera (including the Virtex 5 series FPGAs used in this

thesis), must be configured to implement a specific logic design each time the FPGA is

powered on. This is a consequence of the fact that SRAM is used to store the

configuration state in the FPGA and it does not retain information when powered down.

In systems using these types of FPGAs, generally a non-volatile external memory

element, such as a PROM or Flash chip is used to hold the FPGA configuration

bitstream, which is automatically loaded onto the FPGA at system power-on. For initial

development or debugging, the FPGA contains a JTAG port, which a developer uses to

download temporary configuration bitstreams from a PC to the FPGA.

Normally, the entire FPGA is programmed, or re-programmed with a single

bitstream at a time, overwriting whatever logic design was previously implemented on

the FPGA. During this reconfiguration process, which can range from hundreds of

microseconds to several seconds, the FPGA is held in reset mode, and all user-

implemented logic on the FPGA stops, or is in an undefined state.

Partial reconfiguration (PR) is the process by which only a portion of the FPGA

is reconfigured. PR provides several advantages over normal FPGA reconfiguration.

Since only a portion of the FPGA is modified, reconfiguration time can be shorter. Also,

PR has the advantage that the unmodified portion of the FPGA can remain active,

allowing the FPGA itself to initiate the reconfiguration in response to changing

operational or processing demands.

54

4.10.2 Technology Background

Existing designs use two predominant interfaces to control the reconfiguration:

JTAG via the SystemACE peripheral chip [21], and the ICAP [22].

SystemACE is a chip designed to make it easier for engineers to deploy an FPGA

design with multiple logical bitstreams, or a design which must be field-upgradable. It

does so by providing a bridge between a CompactFlash card containing FPGA

configuration bitstreams and the FPGA itself, accessed via JTAG. The ability of the

SysACE chip to read CompactFlash cards is not particularly useful in assisting with PR.

However, SysACE also provides an external bus interface to the chip, designed to allow

external microcontrollers to control the configuration operations of the SysACE.

This external microcontroller interface can then be connected to I/O pins of the

FPGA, allowing the FPGA to reconfigure itself in a round-about fashion through this

external SysACE chip. This approach has the advantage of being the oldest, and most

well-tested approach to PR. The SysACE chip is already widely used for normal FPGA

configuration, is well tested, and reliable. Furthermore, debugging is in some respects

easier, as external logic analyzers can be attached to view the contents of the control

lines to and from the SysACE chip, and the SysACE chip itself can report when errors

occur in the PR process.

There are several downsides of the SysACE chip approach, however. The first is

that the SysACE chip is an extra part which must be included in the design. If the user is

working with a pre-designed development board which does not include a SysACE chip,

they have no choice but to use ICAP. Also, communicating with the SysACE chip

55

involves all the problems associated with FPGA-external peripherals: FPGA I/O pins

must be sacrificed, timing issues must be addressed, and an interface to a new command

set must be implemented by the user’s design in the FPGA. Furthermore, the current

generation of SysACE chips run at a maximum speed of 33MHz, and given that the

command protocol involves substantial overhead, only a fraction of this speed can be

used for actual configuration bitstream data. Therefore, the theoretical reconfiguration

speed achievable using SysACE is much lower than ICAP.

The ICAP is a clone of the Xilinx FPGA SelectMAP port, except that it is

located inside the FPGA as a hard-core logic block, and as such it requires no I/O ports

for user logic to access it. It is conceptually a very simple interface: running at 100 MHz,

ICAP provides a 32-bit wide input port, a clock, and an enable signal. Each rising clock

edge, if enabled, the ICAP reads a word of the configuration bitstream. The user’s design

simply feeds the entire configuration bitstream into the ICAP, at which point

reconfiguration is complete. No start, stop or confirmation signal is given or received.

The ICAP port has the advantage of being potentially very simple to operate: the

lack of external I/O ports and an extremely simple command protocol can result in less

user logic required to support PR. The high clock rate, as well as lack of protocol

command overhead can also potentially result in significant speedups in PR

reconfiguration times. Also, unlike SysACE, using the ICAP does not require an external

peripheral chip. The ICAP, however, lacks good documentation, and provides no status

signals, which would potentially enable the designer to detect, troubleshoot, or recover

from errors.

56

4.10.3 Existing Implementations

Partial Reconfiguration (PR) has been an active area of research for a number of

years now, as a consequence, several FPGA-autonomous PR implementations already

exist. The eMIPS project, in conjunction with the NetBSD operation system, provides a

PR controller as part of their operating system application loader. Applications binaries

can optionally include a PR bitstream for the eMIPS hardware accelerator slot. The

eMIPS CPU contains a peripheral, which provides access to the SystemACE controller

and ICAP port. The operating system loader then uses that peripheral to load the PR

bitstream into the FPGA reconfiguration region when the application is executed [23,

24].

Xilinx also provides reference implementations which utilize the SystemACE

controller and ICAP in conjunction with their MicroBlaze CPU to provide PR [25, 26].

Many papers also describe utilizing PR in their designs, although the exact

implementation is not described and reference code not provided.

Unfortunately, existing implementations of PR described previously have

drawbacks that make them unsuitable for use in our architecture in performing network

PR. The eMIPS PR module is integrated with the OS application loader, and even if

repurposing the PR logic proved feasible, eMIPS, being a prototype system, consumes

an unacceptably large amount of logic resources and performs PR slower than desired

for our architecture. (in the 10’s of seconds.) Similarly, while not integrated as part of an

OS loader, the Xilinx MicroBlaze reference implementations still depend on the

MicroBlaze CPU, which also consumes a relatively large amount of FPGA logic fabric.

57

Also, since PR operates under control of the CPU, the maximum speed, while faster then

eMIPS, is still limited. Finally, in using either of these systems, an adaptation layer

would be needed to move data from our architecture into their CPU based systems.

4.10.4 Our Design

Our architecture is already designed to split the FPGA into multiple PR slots,

which can host application logic, each individually addressed from the Ethernet network.

Given such a structure, the PR controller can be implemented as just another, slightly

special, application piece. Instead of being partially reconfigurable itself, the PR

controller piece is built statically into the design. Also, depending on the means of

performing PR (SysACE or ICAP), the piece needs signals to either the SysACE I/O

pins or the ICAP internal connection point.

4.10.4.1 Piece Gating

Before a PR slot can reconfigured, it must be disabled. Disabling a PR slot is not

a simple as might first appear. First, network nodes using the application piece in the PR

slot will be disrupted. From the point of view of the FPGA architecture, the simplest

approach to assume that network nodes have coordinated with the existing application

piece such that they aren’t sending any data to it, and it isn’t sending any data to either

the Ethernet or piece-to-piece networks such that all traffic has ceased before

reconfiguration begins. Except in the most controlled environments, where it can be

guaranteed no packets will be sent to the piece during reconfiguration, the architecture

still must make provisions for the inadvertent stray packet. The problem stems from the

fact that during reconfiguration, the application on the piece cannot acknowledge the

58

reception of incoming packets. Left unchecked, unacknowledged packets will build up

first in the buffers for the PR slot itself, then deadlock the entire incoming Ethernet

pipeline, blocking packets destined to the PR controller. At this point, the entire

framework is stuck, as the reconfiguration process cannot complete to allow the new

application piece to acknowledge the outstanding packets, clearing the pipeline.

One solution could be to have some sort of watchdog timer, which if the pipeline

stalls for a certain amount of time resets all or part of the FPGA, throwing out all

packets. This would work since network nodes and other pieces are already supposed to

stop sending packets to a piece before the framework starts reconfiguration, so this is

just an additional safeguard that they’re doing the right thing.

A more robust solution would be that while the PR slot is being reconfigured, the

framework “drains” the PR slot. This can be done in one of several ways. One approach

is to go into a special mode where upon reconfiguration, whatever in the PR slot

wrapper’s buffers are drained, and then the PR slots wrapper’s buffers are bypassed

altogether. Once bypassed, incoming packets are immediately acknowledged with a

dummy acknowledgement.

An alternate approach is to leave the PR slot wrapper’s buffers connected in the

framework, but instead disconnect the packet ready and acknowledgement signals from

the reconfigured application piece itself, and fake a done signal as soon as a go is

received. In this method, additional power is used storing the data in the buffers, but this

may be outweighed by the simplified design since an extra sequential state machine is

not needed to handle draining the buffer before going into this mode.

59

A final question that arises is how to make the transition from reconfiguration

mode back to active mode, in the face of these stray packets. In the simplest case, any

remaining packets are fed to the new application if they are in the pipeline after it is

activated; it is up to the application to discard non-applicable packets. Alternately, the

architecture could ensure packets are flushed before activating the new piece, but this is

probably of dubious benefit, as there is always the possibility during operation that an

application may receive an invalid packet, and therefore most applications must employ

at least a minimal level of validity checking.

4.10.4.2 Architecture

Our engine uses ICAP instead of the SysACE chip due to simplicity and

performance. ICAP requires no cross-domain clocks; it can simply be driven at the same

rate as the rest of the design’s logic. Furthermore, there is no interface protocol; raw

bytes of bitstream data are fed into the port each clock cycle. The ICAP port requires no

module-external connections, as it is instantiated in HDL as a black box, which the

router connects to the appropriate FPGA-internal hard-core logic element during the

place and route phase. For this reason, the PR controller is implemented as a standard PR

application, and shares almost all the scaffolding in common with application pieces. It

shares the same two-level buffer hierarchy, and is routed by the first level MUX as

another IP addressed PR slot. Similarly, the second level dual-buffer MUX and parallel

verification unit structure is the same as PR pieces. The only difference is the final

connection to the application logic module is hard-coded in HDL, as opposed to being

60

provided by a PR module, and external signals provided for enabling or disabling PR

slots before and after reconfiguration.

Internally, the PR controller divides up application control by destination UDP

port. The PR controller is divided into two modules: one which performs the actual

reconfiguration by feeding data from network packets into the ICAP, and the other

which enables or disables PR pieces. In this prototype implementation, the protocol is

kept extremely simple. No checking is performed to ensure parameters are valid, and no

authentication is performed. PR pieces must be disabled prior to reconfiguration, then re-

enabled once again after reconfiguration is complete. The PR controller does not enforce

the ordering of this sequence of events; instead, it relies on the PC performing the

reconfiguration to ensure this constraint is not violated.

The module of the PR controller responsible for enabling or disabling PR pieces

is the gate controller, as it operates by gating dangerous signals from the pieces residing

in the PR slots which may cause invalid state to be injected into the static portion of the

design. The protocol for interfacing with the gate controller is very simple: hosts send a

single packet to the PR controller IP address, with the UDP port of the gate controller

(1235 in our implementation), with a single byte payload. The bits of this byte enable or

disable up to 8 PR slots, where a 0 is enabled, and a 1 is disabled. (This unconventional

representation stems from the fact that a 1 indicates the PR slot’s signals should be

gated). The low order bit corresponds to PR slot 0, and so forth. If the framework has

fewer than 8 PR slots, the high order bits are ignored. Every packet addressed to the PR

61

controller is echoed back to the sender with the same payload. Therefore, the sender

confirms completion of this command by receiving the exact packet back.

The actual gating of a PR slots is the responsibility of the PR slot itself. Each PR

slot wrapper contains a gate_slot signal, which the PR controller asserts. Implementation

of the gate controller is very simple; the first byte of the packet payload is copied into a

register, the bits of which are used to drive the gate_slot signals for the PR slots of the

design. Figure 8 illustrates the data flow of incoming packets of data during normal

operation versus during PR.

The actual reconfiguration is performed using the reconfiguration controller

module of the PR controller, which is addressed by another UDP port (1234). The ICAP

is configured to operate in 8-bit mode. Then, the PC performing reconfiguration simply

sends packets containing the FPGA bitstream data to the reconfiguration controller. The

controller then copies data from the packet payload, byte by byte, directly into the ICAP

controller, up to the length of the packet, then sends an acknowledgement packet back to

the host with the same data in the payload. The reconfiguration controller does not invert

the bits in the byte; but rather relies on the sending host to format the bits appropriately.

62

PR Application
tx

PVM

controller

M

M

1st level MUX

2nd level MUX/BUF

Tile

Ethernet
Frontend

mem_a

mem_b

control

PR
controller

tile_gates=0

rx

gate

l

o

o

p

godone

tx
buf

go

done
cntl

PR Application
tx

PVM

controller

M

M

1st level MUX

2nd level MUX/BUF

Tile

Ethernet
Frontend

mem_a

mem_b

control

PR
controller

tile_gates=1

rx

gate

l

o

o

p

godone

tx
buf

go

done
cntl

Normal Packet Processing Dataflow

Gated Tile Packet Processing Dataflow

Figure 8: Packet Dataflow during PR Slot Gating

63

5. IMPLEMENTATION AND EVALUATION

To test the feasibility of the design described in the previous section, we

constructed a prototype implementation using Xilinx FPGA XUPV5-LX110T Virtex 5

development boards. This section describes the details of that implementation, including

experiences constructing the design not appropriate for the general design section. The

development boards we used have a single Gigabit Ethernet transport and two SATA

connectors for connecting signals from GTP transceivers off-board. Therefore, the

implementation utilizes a single Ethernet link, and a daisy-chain inter-FPGA serial

topology. The design was written primarily in Verilog HDL, and synthesized, placed and

routed using the Xilinx ISE 14 software.

The design consists of four reconfigurable PR slots, distributed in area on the

chip so as to contain roughly the same number of FPGA resources (CLBs, BlockRAMs,

and DSP48). We linked three FPGAs together to form our test network. Each PR slot is

represented by a static IP address hard-coded into the design at HDL synthesis regardless

of the application piece currently active in a particular PR slot. All FPGAs in the

network live on the same subnet, and we split their tiles on nibble boundaries to reduce

the amount of logic required for the comparators in the network frontend. For this

prototype, the four PR slots of the first FPGA take the IP addresses 192.168.1.[16-19],

and the PR controller the IP address 192.168.1.20.

One goal in implementing this framework was to have it be able to sustain

processing as fast as the Gigabit Ethernet interface could send data, if the application

pieces can handle it. At the same time, we wanted to minimize complexity in the RAM

64

interfaces and keep the clock rate of the design low enough that application authors

would not have trouble place and routing their logic. Processing a byte at a time, Gigabit

Ethernet runs at a 125 Mhz clock rate. That is the rate we settled on for this design, using

byte-wide interfaces for the RAMs.

5.1 Implementation Overview

The components of the implementation closely follow the general separation of

responsibilities as laid out in the design section. These consist of BlockRAMs for

buffering the data, two frontends, PR slot wrappers, a piece-to-piece switch, and the

application pieces. The following figure shows the Verilog modules of the

implementation at a high level. As implied in the design section, moving data from the

Ethernet frontend to the pieces is simpler than in the piece-to-piece network; instead of a

fully-connected switch, a single mux routes data to and from the tiles indicated in the

diagram below as the first-level mux. Most of the framework, and all user application

pieces are in a single clock domain driven off of the Gigabit Ethernet transmission clock.

As described later, the serial interfaces require their own clock due to jitter requirements,

but that clock also runs at 125 Mhz, in sync with the main design. Finally, the receive

path of the Gigabit Ethernet PHY is driven by a clock provided by the PHY which also

runs at 125 Mhz. The Xilinx Ethernet MAC sample code provides a clock domain

crossing FIFO to bring incoming Ethernet data into transmit clock domain of the rest of

the framework. Figure 9 illustrates how these components relate to one another to form

the framework described in this thesis.

65

FPGA

PR slot

Ethernet frontend Serial frontend

Application
piece

Piece-to-piece switchEthernet first-level mux

Ethernet PR slot
wrapper

Block
RAM

Block
RAM

Piece-to-piece PR slot
wrapper

Block
RAM

Block
RAM

FIFO FIFO

PHY RX GTP NormalClock legend

Figure 9: Overview of Framework Implementation

More specifically, the Figure 10 illustrates the flow through the implemented

framework for data received over the Ethernet interface.

66

Ethernet

MAC

F
IF

O

PR slot

app
piece

BRAM
buffer

BRAM
buffer

m
u
x

m
u
x

RAM interface

Header builder

valid

data stream

IP address

First-

level

mux

data

to additional

PR slots

F
IF

O

Reconfiguration

controller

reconfiguration

bitstreams

tile bitstream

First-

level

mux

from additional

PR slots

BRAM
buffer

BRAM
buffer

m
u
x

m
u
x

MAC

Quick checker

IP UDP

Ethernet frontend

Second-level

mux

PR slot wrapper

v
a

lid
protocol information

MAC

Packet verifier

IP UDP

Figure 10: Detailed Overview of Framework Components

5.2 Data Movement through the Framework

As data moves through the framework, it is buffered by BlockRAMs. Different

components of the framework use different interfaces to place and retrieve data to and

from these buffering RAMs. Data flow to the application piece is designed to be

convenient for the application, and not require the application use logic space for storing

packet data. Therefore, the PR slot wrappers hold the RAMs which buffer packet data

for the pieces, and the framework passes the RAM signals across the PR interface. The

application piece reads incoming data by supplying an outgoing address line and

receiving the data back, with a length signal letting it know how much data is available.

67

For transmitting data, the piece supplies an address, data, and write enable signal along

with a length.

As data moves through the framework, it is either pushed from one module into a

RAM hosted in another, or pulled from the other module’s RAM by the destination

module. Pushing data from one module to another uses a writing RAM port, with the

address, data and write enable signals flowing from source to destination module. When

pulling data from the source module into the destination, there is no write enable signal,

and address and data lines flow in opposite directions. In the above example, the

application pulls incoming data and pushes outgoing data.

For application pieces, pulling and pushing incoming and outgoing data makes

sense, because the PR slot wrappers host the BlockRAMs so they can just connect the

piece’s signals to the RAMs directly. For the rest of the framework, it’s less clear what

type of interface to use. One straightforward case is receiving data from a serial or

Ethernet frontend into the RAMs stored in the wrappers. Here, it makes sense to use a

RAM push interface because the frontends take the data streaming in from the off-chip

links and write it into RAM buffers.

Less obvious is what to use for sending data from a wrapper to a frontend.

Sending data out the off-chip links is accomplished through IP cores which manage the

physical and data-link layers of the links. These cores use the LocalLink interface, which

provides flow control if the core needs to slow down the rate of outgoing data. The

Ethernet core doesn’t use this due to fixed size packets with an inter-frame gap sufficient

to absorb any clock rate difference between the sender and the receiver, but the Aurora

68

core does. As discussed in the design section, one possibility is to keep using LocalLink

for the outgoing interface between the PR slot wrappers and the off-chip link frontends.

In addition to the problems with fairness mentioned previously, that approach has the

problem that the LocalLink interface specifies one cycle turnaround for flow control

signals, which has detrimental effects on the clock rate as the signal are routed from a

central frontend to far reaching parts of the FPGA where the wrappers are located. Using

a RAM interface instead and letting the frontend modules provide the LocalLink to

RAM adaptation makes it easy to pipeline the signals as needed.

With a RAM interface, one possibility is to keep the design orthogonal and

provide a push interface from the PR slot wrapper to the frontend. This has the

significant advantage of making it straightforward for one application piece wrapper to

send to another: the sending wrapper simply pushes data into the receiving wrapper just

as if it were arriving from an off-chip frontend. Unfortunately, the RAM interface is not

ideal for streaming data. It does not require the sender write data sequentially, and it

provides no means of flow control to have the sender temporarily pause. Ethernet in

particular provides no provision for pausing a frame of data mid-transmission.

Therefore, the Ethernet frontend module would be forced to contain an extra BlockRAM

to buffer the outgoing data in its entirety until the sender was done before beginning to

stream it off-chip. This buffering would ensure the frontend had access to the data as

soon as it was required to send it off-chip as well as deal with flow control from the IP

core, but requires an additional scarce BlockRAM buffer for each frontend. It also adds

latency to the transmission path.

69

Due to the above reasons, for this design we decided to break orthogonality and

have the frontends pull data from the wrappers, in the same manner as the application

pieces. This lets the frontends deal with flow control without having to make another

copy of the packet. However, it does mean that sending data from one wrapper to

another is no longer trivial, as their interfaces are not compatible --- something needs to

pull data from one wrapper and push it into the other. We solve this problem by having

copier modules sit in the middle of the piece-to-piece switch. When one wrapper

indicates its destination is another wrapper on the same chip, these copier modules

stream the data out of one wrapper’s RAM and into the other.

This thesis uses two forms of control for handing off Block RAMs between

different parts of the design, as illustrated in Figure 11. In most cases the design uses

edge signaling based on a go/done signal pair, each of which is asserted for one clock

cycle, as shown in Figure 12. The second level mux uses this form of flow control to

hand off control of RAMs to the PR slot wrapper, as does the PR slot wrapper to hand

off control to the application piece. Once the sending module issues the go signal to the

destination module, ownership of the data in the RAM is transferred to the destination

module until the destination replies back with a done signal. In the interim, the sending

module maintains internal state that the destination module owns the RAM and does not

modify the RAM contents or issue another go signal until it receives the done.

In some cases we use a modified form of this flow control where the done signal

is replaced by a level triggered ready signal, with the contract that this signal falls to low

within a certain number of clock cycles after the module receives a go signal, and

70

remains low until the module has competed processing and is ready to relinquish control

of the RAM. This form of flow control is illustrated in Figure 13. Both the Ethernet

frontend and the serial frontend use this hybrid flow control for feeding data into the PR

slot wrappers. The Ethernet frontend also uses this type of flow control for transmitting

data from the pieces.

sending
module

receiving
module

RAM

a

d

we

a

d

go

done

Figure 11: Flow Control Model

71

0 1 2

a b c

0 1 2

a b c

send_a

send_d

send_we

go

done

recv_a

recv_d

Sender
owns RAM

Receiver owns
RAM

Figure 12: Go/Done Flow Control

0 1 2

IP or piece ID

a b c

0 1 2

a b c

send_a

send_d

send_we

id

ready

go

recv_a

recv_d

Sender owns
RAM

Receiver owns RAM

Figure 13: Go/Ready Flow Control

72

When moving data to or from the Ethernet / Serial frontends, the flow is as

illustrated in Figure 14:

incoming

RAM

ctrl

a

d

go

done

d

we

go

done

aa

d

ready

go

d

we

go

ready

a

SwitchFrontend Tile interface App piece

to other
pieces

from other
frontends

outgoing

RAM

ctrl

Figure 14: Data Transport from Frontend to Application Piece

Conversely, when sending data from one piece to another, the copying logic is

illustrated in Figure 15:

73

RAM

ctrl

a

d

go

done

d

we

go

ready

a

Switch Tile interface App piece

RAM

ctrl

a

d

go

done

SwitchTile interfaceApp piece

d

go

ready

a

copier
we

Figure 15: Data Transport from Piece to Piece via Copying Module

5.3 Ethernet Frontend

This design uses the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC IP core

for Ethernet connectivity. This IP core consists of an Ethernet MAC embedded on the

FPGA, as well as sample Verilog which interfaces with this MAC and provides data

through the streaming Xilinx LocalLink port. On the other hand, application pieces

communicate with packetized data through RAM ports. As described in the design

section, the Ethernet frontend provides an adapter between the Ethernet MAC and its

LocalLink port and the first level mux (and therefore the application pieces) and their

RAM ports. Additionally, the Ethernet frontend provides the first level mux information

on where to route incoming packets.

74

The incoming side of the Ethernet frontend works as follows. When the Ethernet

MAC indicates a packet is ready, the frontend reads enough of the packet to obtain the

IP header, but does not feed the data to the first level mux yet, instead temporarily

buffering it in a small FIFO. This is done because the information on where to route the

packet is contained in the packet itself, in the IP header. After obtaining the routing

information, the frontend then stalls the Ethernet MAC FIFO until the first level mux

indicates it is ready to accept data by asserting its rdy signal, as described in the flow

control section previously. In order to determine where to route the packet, the frontend

contains just enough logic to determine that the incoming Ethernet frame is IP/UDP, and

appears to be sent to one of the PR slots on this FPGA, but does not checksum the data.

The packet verification module in the Ethernet PR slot wrapper will perform a more

rigorous check once the data is delivered to one of its BlockRAM buffers. Figure 16

below visualizes the components comprising the frontend and the general flow of its

operation.

75

controller

1st level MUX

LL
2

mem

LL
FIFO

header reader

simple
checker

Frontend Module

g
o

rdy

LL data LL data

pkt mem bus

done

go

e
n
a
b
le

d

e
n
a
b
le

d

E
th

M

A
C LL data

ip

v
e
r

ty
p

e

u
d

p

m
a
c

p
kt

va

lid

rst

ip

FIFO

to tiles

Figure 16: Frontend Module Dataflow Diagram

76

5.4 ARP Resolution

In order to allow application pieces in our framework to send data to arbitrary IP

addresses, we need a way to determine the MAC address associated with an IP address.

Typically this is done using ARP. (Our prototype only supports IPv4.) In our framework

we use a simpler approach which avoids the need to create an ARP engine in HDL.

Instead, we observe the MAC address associated with IP addresses that send incoming

data to the pieces, and cache them in an array. Then, when an application piece wants to

send data, we look and see if we have the MAC address associated with the IP address

cached in our array. If so, we use that MAC address as the destination for the packet. If

we don't, we use the Ethernet broadcast address as the destination, with the hope that we

will be able to cache the MAC address if that IP address replies back with data. This

cache consists of a BlockRAM with enough space to hold 32 elements of IP address /

MAC address pairs. When an application piece wants to send a packet out to the

Internet, its PR slot wrapper queries the MAC address cache for a lookup. Multiple

wrapper’s requests are arbitrated by a module which latches each request from the

wrappers, and then services them in round-robin. Entries in the cache can be marked

permanent such that they can never be evicted by new IP addresses. These permanent

addresses are placed in the BlockRAM’s COE file and contained in the FPGA bitstream

of the framework. We use these permanent entries for containing the MAC addresses of

the server responsible for partially reconfiguring the PR slots, as well as the gateway

router to the rest of the Internet.

77

When a lookup comes in the MAC address cache iterates through each pair

which contains a valid entry, and checks to see if it matches the specified IP address.

Because the framework must run through the entire packet of data to calculate the

checksum for the IP and UDP layers, the MAC address cache has plenty of time to find a

MAC address associated with an IP address. Therefore, we opt for the simplest

implementation and simply iterate through each entry looking for a match.

New entries are added to cache by the incoming Ethernet frontend. Each time the

frontend receives a packet, it notifies the MAC address cache of the existence of a new

IP / MAC address pair. If the IP address belongs to one of the permanent entries, the

cache is done. Otherwise, if there is space in the array, it adds this pair to the first free

entry. Finally, if the array is full we use a free running counter as a random number

generator to choose which array element to evict. As a future work, it would be possible

to add usage counters to implement a form of least recently used eviction. However, at

that point it's probably better to spend the effort implementing an ARP resolver. The

received packet notifications present the only real constraint on the speed of the MAC

address cache. Ethernet packets must be at least 64 bytes long, so we know we have at

least 64 cycles to process one notification before another one can arrive. Since the cache

may need to iterate through the entire array to determine if the IP address is already

present, in addition to some overhead, we chose to make the array size 32 elements long

to avoid having to drop notifications because the cache took too long.

78

5.5 Inter-FPGA Serial Input Frontend

For inter-FPGA communication, this design uses Xilinx GTP serial transceivers

and the Xilinx Aurora IP core, which wraps the GTP transceivers and presents them as a

LocalLink port. This is the same interface used by the Ethernet MAC, and this module

serves the same purpose as the Ethernet frontend of streaming the data into and out of

the LocalLink port to and from the RAMs used by the rest of the design. Due to the low

jitter requirements of the GTP transceivers, they are driven off a different clock from the

rest of the design, and data from the application pieces needs to cross clock domains to

interface with them. This is achieved with a small LocalLink FIFO [27].

Because the two sides of a high-speed serial link do not share a common clock,

data arriving from the other chip will appear slightly faster or slower than the local

chip’s clock. Aurora handles this by providing back-pressure through the LocalLink

port. The way this is implemented is such that that Aurora can pause the LocalLink

stream mid-packet. This is inconvenient because, the same as with the Ethernet data

transfers, access to the RAMs is pipelined and data is a few cycles delayed behind the

address fed to RAM. If Aurora pauses the data transfer mid-packet (as opposed to simply

delaying the start of the next packet), this module will be a certain number of clock

cycles ahead in the RAM, and will need to rollback by this many and re-prime the

pipeline before starting again. This makes transmitting data more complicated than for

Ethernet, where the MAC does not need to temporarily interrupt the data flow, because

any differences in clock speed between the two sides of the link are absorbed by

Ethernet’s Inter-Frame Gap.

79

Aurora also supports flow control on the receiving side, pausing the sender on

the other FPGA. This could be useful for dealing with the situation where the receiving

app piece processes data slower than the sending piece, or in the case of congestion. For

this prototype we handle the problem the same way we do with Ethernet: we ignore it. If

the incoming piece-to-piece switch is not ready to accept the data, it is dropped. It is up

to the applications to detect and retry the data, and implement flow control if they desire.

In practice, the small FIFO used for crossing clock domains provides a small amount of

buffer to applications which are slow to process incoming packets before they are

dropped.

As described in the PR Slot Wrapper – Piece to Piece section, the switch on

each FPGA which accepts incoming piece-to-piece data and decides where to route it

requires the destination address be fed to it as a sideband signal. However, the variable

length source route is embedded in the incoming data stream. Therefore, this module

strips the first byte off the front of the packet as it writes the data into the RAM and

presents it to the switch as the destination address, in this way peeling the source route as

the packet travels from one FPGA to another.

5.6 Inter-FPGA Connection Topology

Having decided to use high-speed serial links separate from the Ethernet

interface to the Internet, one design question is what structure to use in connecting the

FPGAs in our network together. A full-mesh point-to-point structure would be simplest

from the point of view of routing messages from one application piece to another, and

would provide the most available bandwidth, but scales poorly, especially considering

80

that the number of high-speed serial transceivers available for implementing the links of

the mesh, while more than Ethernet MACs, is still typically in the single or double

digits. Prior work in this regard have used a ring topology (IBM) or partially-connected

mesh (Reconfigurable Computing Cluster) or a torus (Catapult).

In practice, the topology chosen is based on the connectivity offered by our

development boards. Our development board contains two SATA connectors designed

for carrying serial traffic, and so for this prototype implementation we daisy-chain the

FPGAs together in a ring. This also eases routing because if we assume the links contain

enough capacity, there’s only a single optimal direction to route packets from one board

to another — out whichever serial link gets the packet closer to the destination. The

HDL code allows more than two serial endpoints, however, so future work could extend

this to denser topologies with custom boards.

5.7 First Level Mux

The first level mux connects the Ethernet frontend to the appropriate second level

mux feeding a particular PR slot wrapper, and does so based on the packet’s destination

IP address. Both receive and transmit memory signals are switched between the frontend

and a PR slot wrapper. In the incoming (receive) direction, go/ready flow control is used

between the frontend and the wrapper, and this mux switches the go and ready signals

along with the RAM signals to the appropriate port based on the IP address the frontend

provides.

In the incoming direction, the mux simply connects memory signals to the

appropriate PR slot wrapper without requiring any arbitration. In the outgoing direction,

81

multiple PR slot wrappers provide data to the Ethernet frontend, and this module also

acts as the arbiter. The outgoing (transmit) direction also uses go/ready flow control, and

the mux currently implements a simple round-robin arbiter by cycling through each PR

slot wrapper and pulsing its rdy signal, then checking if the wrapper has data to send as

indicated by the go signal.

In the floorplan of the design on the FPGA, this module and the piece-to-piece

switch are the most timing critical as they route data from physically separate parts of

the design. All logic signals through this mux are registered, because without registration

we could not achieve timing at 125 MHz (Gigabit Ethernet line rate). This extra cycle of

delay causes no performance concerns in practice, as the memory buffers are located in

the second level mux near the PR slots, so the only module which incurs a pipeline delay

is the frontend, which sequentially streams data out of the Ethernet MAC.

5.8 Second Level Mux

In our design, the first level mux or piece-to-piece switch simply routes incoming

and outgoing data to and from the correct PR slot wrapper. At the wrapper, a second

mux handles buffering the data and presenting it to the application piece in the correct

order. The actual Block RAMs are located in this second level mux module. The

implementation follows the design as described in the On-Chip Routing section,

including the use of two buffers to allow pipelining. One difference in the actual

implementation from that of the design presented earlier allows the packet verification

module to run concurrent with the application piece. For both the packet verification

module and the application piece to access the buffer concurrently, each must use one of

82

the two ports of the Block RAMs. However, that requires sharing one of the ports with

the input from the Ethernet MAC which fills the RAM with data. An additional mux

placed in front of one of the RAM’s ports makes this possible. With this modification,

the buffer architecture now appears as shown in Figure 17:

Figure 17: Combined Verification Unit and PR Slot Wrapper Approach

This dual-RAM system is only used on the receive side. For transmission, only a

single RAM is used per PR slot. This was a deliberate design tradeoff in our prototype

system, designed to save Block RAM resources, and was based on the observation that

our sample applications consume more data from the host PC then the return back.

Therefore, transmission of reply packets takes little time compared to receiving new

data, reducing the effect of the blocking.

5.9 Piece-to-Piece Switch

The piece-to-piece switch interconnects the serial frontends and the piece-to-

piece ports of the PR slot wrappers within a single FPGA, and provides the means for

Data

Source

(Ethernet

MAC)

Data Sink

(Application

Tile)

RAM

RAM

MUX

MUXMUX

Data Sink

(Packet

Verification

Module)

Data Sink

(Application

Tile)

RAM

RAM

MUXMUX

Data Sink

(Packet

Verification

Module)

83

application pieces to send messages to one another. In this implementation it is an all-

way switch with each piece and frontend able to connect to each other with no blocking.

This simpler to design, but does consume a large amount of FPGA resources.

The switch contains 8 connections: two connections to serial frontends for either

side of the ring of FPGAs and six connections to PR slot wrappers. Only four of the

wrapper connections connect to PR slots hosting applications; the other two connect to

copying modules used when data routes through an intermediate FPGA on the way to its

final destination. Each connection consists of an incoming and outgoing RAM port, with

different interfaces for the wrapper versus serial ports. The wrapper’s incoming RAM

port pushes data from the switch to the wrapper, and the outgoing port is a pull interface.

The frontend’s connection’s, conversely, use a pull interface for their incoming port and

a push interface for outgoing. When one wrapper wants to send data to another wrapper,

the ports are no longer compatible, and internally the switch contains a copying module

which pulls data from one wrapper’s port and pushes it into the others’. There is a copier

instance for each edge in the switch which connects one PR slot to another.

Figure 18 illustrates the operation of switch. In front of each of the incoming

RAM ports for the pieces is a mux which switches the group of RAM signals incoming

from other pieces and frontends. This mux is controlled by an arbitration system

consisting of a priority arbiter, ID matcher modules, and piece-to-piece copiers. Unlike

in the Ethernet network, here we use a priority arbiter instead of round robin for

implementation simplicity. Each other piece or serial frontend connected to the switch

has the ability to generate a want signal into this arbiter, which signals the mux.

84

a

d

we

go

rdy

frontend0_a

frontend0_d

frontend0_we

frontend0_go

frontend0_rdy

piece1_a

piece1_d

piece1_we

piece1_go

piece1_rdy

frontend0_want
fro

ntend
1

_w
an

t

Piece 0 incoming

priority
arbiter

Frontend 0 Outgoing

frontend0_go

frontend0_rdy

ID
matcher

frontend0_id

frontend0_mine

ID
matcher

frontend1_id

frontend1_mine

frontend0_a

frontend0_d

frontend0_we

piece0_mine

piece1_mine

piece1_go

piece1_rdy

Figure 18: Data Flow through Switch Frontend to Piece

The want signals are generated in two different ways. Both serial frontends and

pieces present a destination address which instructs the switch which piece they want to

send data to. Addresses from the serial frontends are fed to ID matcher modules for each

piece in parallel. The ID matcher for the piece with that address generates the want

signal to its local arbiter. Because there are two off-chip links and therefore two serial

frontends in our design, each piece contains two ID matchers to generate want signals

85

for the two different serial frontends to its arbiter. Want signals from other pieces are

handled by the copier modules. Because another mux already must connect the piece’s

outgoing port to the correct copier, the copier already knows which other piece is the

destination, and generates the want signal directly.

The address, data and write enable lines from the serial frontends incoming port

are connected to each piece’s mux in parallel, as they all flow in one direction from

frontend to piece. Even though the frontend does not use them currently, the switch

provides backpressure on the frontends through the rdy signal, and as a result, another

mux connects the rdy signal into the frontend to whichever piece indicated a matching

ID.

As a consequence of the means of data movement through the switch, where

frontends push data into and pull from the pieces, one frontend cannot directly send data

to another frontend when a packet needs to relay through an intermedia FPGA. The way

we solve this in this framework is to employ two additional PR slots whose only job is to

receive data from one frontend, then transmit it out the other.

5.10 PR Slot Wrapper – Ethernet Portion

The PR slot wrapper encapsulates the second level mux, the application piece,

and the supporting logic including the packet verification engine, completing the data

transport architecture.

The most significant portion of this module is the packet verification engine,

which, concurrently while the application is operating on the data, computes the packet’s

IP and UDP checksums, then compares them against the correct values stored in the

86

packet’s headers. The packet verification engine is designed in a layered fashion. Each

protocol is verified by a separate HDL module, each of which use the same memory

signals to access the packet contents. As part of the verification process, each

verification module outputs a signal indicating the length of its header in the packet. This

signal is used by the verification engine to automatically offset the address line of the

next signal. In this manner, different packet formats can be supported with minimal

effort, simply by connecting a different set of verification modules together in the

verification engine.

The wrapper also provides a packet construction engine. When given MAC, IP,

and UDP source and destination signals as well as a packet buffer with a data payload

located at an appropriate offset, it constructs packet headers for outgoing data. This

includes checksum calculations, allowing the packet to then be transmitted out the

Ethernet interface. The engine works in a similar fashion to the packet verification

module.

87

PHY

FPGA boundary

TEMAC

F
I
F
O

Protocol Processing Unit

FIFO
to

buffer

buffer

mac
verify

MAC

ip
verify

done

valid

IP

udp
verify

UDP

id
extract

ID

to PR
tiles

protocol

information

valid

data

Figure 19: Incoming Concurrent Packet Verification Engine

Figure 19 shows the operation of the verification engine and its modular

nature.Signals crossing the PR boundary are automatically buffered by asynchronous

partition pins in the latest Xilinx ISE 13 software, and do not require any special

handling different from ordinary signals between non-PR modules. Nevertheless, this

prototype registers all signals crossing the PR boundary. Since the packet RAMs reside

outside the PR slot, this adds one cycle to memory accesses made by the application

piece. The tradeoff for this increased latency is easier timing closure for both the static

design and application pieces, as timing closure only needs to be completed up to the

registers, which the tool has the freedom to place close to the edge of the PR slot.

Experimental experience while developing this prototype has shown that the Xilinx tools

have more difficulty with timing closure in the face of immovable PR regions as

compared to a completely static design.

88

5.11 PR Slot Wrapper – Piece-to-Piece Portion

The Piece-to-Piece portion of the PR slot wrapper serves the same role in the

design as the Ethernet portion of the wrapper by moving data to and from off-FPGA

serial links to the application pieces, but with a few changes specific to the serial links.

First, because the Aurora interface provides verification of data integrity as it travels

across the serial links, this module doesn’t need a verification unit to calculate packet

checksums; if the data arrives at this module at all, it is intact. Second, the piece-to-piece

port is used to send data that is routed between application pieces, and this module

contains the logic to add the source routes to packets before they are sent to the piece-to-

piece switch. This is implemented by an array of fixed-length registers of sufficient

length to store the longest source route needed to reach any other application piece in the

FPGA network. There is an entry in this array containing a source route for each

possible application specific ID. The implementation uses a 2-bit id signal for these IDs,

chosen as a tradeoff between allowing a sufficiently connected graph of application

pieces to be useful and minimizing the number of registers needed to hold the source

routes. For simplicity, the source route consists of a sequence of bytes, each of which

represent a serial front end or PR slot wrapper on an FPGA. This allows up to 256

addressable entities on an FPGA chip, although the current prototype only uses 8 (4

application pieces, 2 copying modules, and 2 serial front ends).

The reconfiguration controller provides the source route values stored in this

register. As part of programming the application pieces onto the FPGAs, the

configuration server sends the routes to the reconfiguration controller, which unpacks

89

the data in the Ethernet packet and directs this module to update the source route for one

of its application specific IDs with the new source route information. Because these

source routes are variable length, the exact length is determined by an end of line

sentinel, similar to C-style strings.

When the application piece initiates transmission of outgoing data, this module

appends the source route to the beginning of the application’s data. Since the transmit

RAM is hosted in the slot wrapper, and since data is pulled from the slot wrapper by the

serial frontends or copying modules, adding this variable length source route is simple to

implement with a mux which switches between presenting the source route or the actual

RAM contents, offset by the length of the source route, depending on the address

provided. As an optimization, the first destination of the route is not added to the packet

of data directly, but instead presented to the piece-to-piece switch as a sideband signal.

This is because the first hop for a packet after leaving this module is to the piece-to-

piece switch, which decides whether to send it to another piece on the FPGA or off-chip

through one of the serial links. If this module added the first route to the packet, the first

thing the switch would have to do is to pop that destination back off the front of the

packet in order to determine where to route the packet locally.

90

5.12 Client Interface

The entity which provides access to the FPGA network is a webserver

implemented in Python using the web.py framework, and users interact with the service

using HTTP GET and POST requests containing XML data. Users upload applications

as ZIP files consisting of the pieces of their application, synthesized to fit in each of the

4 possible locations on the FPGA, along with a YAML configuration file. The uploaded

application is stored locally. Once an application has been uploaded, users request the

webserver start an instance of that application. In turn, the webserver finds a space for

the instance on the FPGA network and partially reconfigures the pieces over the Ethernet

network.

To describe the interconnections between application pieces, a configuration file

authored in the YAML language accompanies the bitfiles of the application. As an

example, the application described as the example in the Interface to the FPGA

network section is described to the framework by the config file shown in Figure 20.

91

Figure 20: Sample Application Configuration File

One the webserver starts the instance, the user can list the IP addresses associated

with the pieces of the started instance in order to communicate with them. The entire

webserver is single threaded and handles a single client request at a time, avoids locking

concerns with multiple clients initiating conflicting partial reconfigurations of the same

FPGA. For simplicity, the portion which controls partially reconfiguring the FPGAs over

the network runs in-process with the webserver. However, as future work, the webserver

name: Sample Application 1

pieces:

 - id: 0 # Used to link pieces together below

 user_accessible: Yes

 - id: 1

 user_accessible: No

 connections:

 # Endpoints can be specified from either piece

 # (they are automatically bidirectional)

 - endpoint: 1

 latency: low

 speed: high

 - endpoint: 2

 latency: high

 speed: low

 - endpoint: 3

 latency: high

 speed: low

 - id: 2

 user_accessible: No

 connections:

 - endpoint: 4

 latency: high

 speed: low

 - id: 3

 user_accessible: No

 connections:

 - endpoint: 4

 latency: high

 speed: low

 - id: 4

 user_accessible: Yes

92

could be modified to take a per-FPGA lock which is only used when the reconfiguration

process is actually occurring.

5.12.1 Build System

One problem with providing multiple identical regions on the FPGA where user

logic can be partially reconfigured is that the user's logic needs to be synthesized, placed

and routed for each possible location, so that no matter where a free spot exists on the

network, the framework can place the user's logic in it. There are research projects to be

able to place and route a design into one partially reconfigurable region, then quickly

transform it to fit into other identical regions [28]. However, these solutions are not

commercially supported by FPGA vendors. Instead, for this framework we require each

application piece to be place and routed for each of the four PR slots on the FPGA. To

ease the burden this imposes on application authors, we constructed a build system based

on Python and the cog.py preprocessor which allows users to define each PR application

piece once, and have the build system implement it in each of the four PR slots. The

build system automatically pre-processes the source code to have the appropriate module

declaration for each PR slot, then automatically synthesizes, places and routes the logic

for each region. When the build process is finished, each application piece is place and

routed in each possible PR slot on the FPGA, and is ready to upload to the framework.

This build system follows the file system structure suggested by the Xilinx

Partial Reconfiguration User Guide [29]. The user places any logic pieces as subfolders

of the Source\pr folder. Each one of these subfolders is automatically pre-processed by

the build script into appropriate subfolders suitable for synthesis and place and route.

93

The build system then generates the xpartiton.tcl script outlined by the User Guide

which controls the actual synthesis and implementation.

In order for application pieces to work reliably when reconfigured onto the

FPGAs in the network, it must have been implemented against the same static design

corresponding to what is running on the FPGAs in the network. We achieve this very

simply by shipping the build system as an SDK which includes the already-implemented

bitfiles of the static portion of the design. By generating their logic against this pre-

existing bitfile, users ensure their PR logic pieces are compatible with the framework

running on the FPGAs. Updates to the base framework can be achieved by periodically

releasing new bitfiles as updates to the SDK, then slowly introducing the new version to

an increasingly larger subset of the FPGAs in the network until all users have had a

chance to recompile their applications against the design.

Before incurring expenses running their logic in the network, users will want a

way to validate that it operates correctly. We provide two options for this. First, the build

system is able to consume Ethernet data captured from Wireshark [30] and automatically

generate Verilog test harnesses which inject those packets into a simulated version of the

static portion of the framework plus the user’s logic pieces. As part of this process, the

build system generates appropriate ModelSim scripts such that the simulation can be run

with only a single command.

Second, for cases where simulation is not sufficient, by shipping the static bitfiles

used by the framework, the user can purchase a single development board of the kind

94

used in the network, then verify their design locally with the identical bitfile as will run

in the network.

5.13 Evaluation

Using the prototype implementation previously described, we conducted

evaluations to determine the usability and performance of the framework. This section

provides performance metrics of I/O bandwidth and logic utilization, as well as

experience implementing an actual application. We measured three performance metrics

about our framework. First, we measured the bandwidth available to application pieces

when communicating over the Internet as well as between pieces on the same or

different FPGAs. Second, we measured the amount of FPGA logic occupied by the

framework which is unavailable to applications and can be considered overhead of using

our framework. Finally, we obtained a rough idea of application deployment speed,

encompassing uploading an application piece to the web service and partially

reconfiguring the FPGAs.

Next, to gain experience implementing and running non-trivial real applications

on this framework, we ported the regular expression string matching hardware described

in [31] to application pieces in our framework. Although regular expressions are an

active research topic due to their ubiquity in many aspects of technology, we chose this

application due to previous experience implementing the initial version.

5.13.1 Performance Metrics

In order to test the I/O bandwidth performance of our implementation, we created

an echo application piece in Verilog and a C program running on a PC. The PC

95

application creates random packets of data consisting of the maximum size possible

which fit in an Ethernet frame, 1472 bytes of UDP payload, and sends these packets to

one of the application pieces on the FPGA. The piece is simple; when it receives a

packet from the network, it copies the data from the incoming RAM port to the outgoing

RAM port, then signals the framework to transmit the data back to the sender. The PC

application uses the standard sockets sendto() API to send UDP packets to the piece.

In order to avoid introducing variability into these benchmark results which are

designed to test the performance of the framework, we connected the test PC and the

FPGAs together on an isolated Gigabit Ethernet network. The PC application measures

how fast it can send data without packet loss. Although these tests were conducted on a

local network, the small amounts of delay in the operating system network stack and

Ethernet switch are enough to prevent pure stop-and-wait from utilizing more than a

fraction of the link’s bandwidth. Therefore, the PC application is architected to allow as

many packet as needed to be in flight between the application and the FPGAs to achieve

maximum performance.

To do this, it uses two OS threads. One thread sends UDP packets non-stop in a

loop, with a configurable delay between each packet. As described in the design section,

by convention the first four bytes of each packet are reserved for the sequence number.

For each packet sent, the application increments the sequence number. The other thread

receives incoming packets and compares the sequence numbers. If there is a gap in the

sequence, the thread notes the packet loss event in a global variable. Periodically, the

sending thread checks for packet loss, and if there hasn’t been any, decreases the delay

96

until loss occurs, thereby determining the maximum bandwidth that can be sent before

loss.

Using this application on a PC running Ubuntu 14.10 AMD64 with an Intel Core

i7-2860QM CPU nominally running at 2.50GHz, sending packets to a single application

piece on the FPGA, we can sustain 333 Mbps in both directions reliably before packet

loss occurs.

This result is substantially lower than that theoretically possible on a Gigabit

Ethernet network. To discover where the bottleneck lies, we modified the application to

send, in round-robin, a packet to the IP address of each of the four PR slots which were

configured with the echo application, as well as verify the sequence numbers for each

slot separately. Using all PR slots of an FPGA, we could sustain 980 Mbps --- almost the

entire bandwidth possible across the Gigabit Ethernet link.

This shows that the bottleneck is sending data to a single application piece, but

that if all 4 pieces are used, the framework can effectively saturate the Ethernet link. One

question these results raise is the reason that a single PR slot can only sustain 333 Mbps.

As noted earlier in the implementation section, in order to save BlockRAM resources,

the outgoing path of the Ethernet framework only uses a single RAM which is shared

between the application piece and the framework. As a result, the transmit path of any

single application piece can only sustain at best 500 of the 1000 theoretical Mbps of the

Ethernet link because while the framework is sending data from the RAM, the

application cannot be filling it with new data. This is as opposed to the incoming path

which uses two RAMs to avoid this problem. The rationale behind this decision was the

97

thought that many applications consume more data than they transmit back out over the

network (for example, processing a large incoming chunk of data, but only sending a

small status or result packet back), removing or lessening the impact of this bottleneck.

This still doesn’t fully explain why a single application piece cannot achieve 500 Mbps,

and it remains a future work to investigate further.

Finally, to test the performance of the inter-FPGA serial links, we modified the

Verilog code slightly into two variations. One variation copies data from the Ethernet

application piece port into the inter-piece port and vise-versa. The second echoes data

received from the inter-piece port back out, incrementing the address. This results in the

system as shown in Figure 21:

FPGA #3FPGA #2FPGA #1

Management Interface

PR Slot 0

192.168.1.16

192.168.1.20

Relay App
Piece A

PR Slot 1

192.168.1.17

PR Slot 2

192.168.1.18

PR Slot 3

192.168.1.19

Management Interface

PR Slot 0

192.168.1.32

192.168.1.36

PR Slot 1

192.168.1.33

Relay App
Piece B

PR Slot 2

192.168.1.34

PR Slot 3

192.168.1.35

Management Interface

PR Slot 0

192.168.1.48

192.168.1.52

Relay App
Piece C

PR Slot 1

192.168.1.49

PR Slot 2

192.168.1.50

PR Slot 3

192.168.1.51

Serial links

Eth
ern

et links

Figure 21: Example Inter-FPGA Relay Test Application

With this configuration, we repeated the first experiment again, sending packets

as rapidly as possible to the one piece on FPGA 1. Again, we were able to sustain 333

Mbps without loss - the same rate as if the packets were echoed back a single FPGA, but

echoed across 3 FPGAs.

98

5.13.1.1 Logic Availability

On the XC5VLX110T FPGAs we used for our implementation, we have

configured the PR slots to occupy 54% of the slices in the FPGA. This isn’t a great

result, as it means that almost half of the FPGA is lost to overhead from the point of

view of the applications. However, this is a preliminary result chosen with a rough

estimate of the space required for the framework, as partial reconfiguration artificially

constrains the placer and router, requiring some slack compared to ideal usage

requirements. According to PlanAhead resource utilization metrics, the framework uses

only 30% versus the 46% we have allocated, so there is substantial room for

optimization of the size of our PR slots. Furthermore, the largest contribution to

framework utilization by a large factor is the piece-to-piece switch, utilizing 29% of all

LUTs comprising the framework. Therefore, one low hanging fruit for improving the

amount of logic available to the application pieces will be to rewrite that module to be

more efficient.

5.13.1.2 Reconfiguration Time

The final metric in our evaluation is the speed with which we can reconfigure a

PR slot on the FPGA. With a Python program using stop-and-wait flow control, we were

able to reconfigure a piece in 320 milliseconds. This figure could be significantly

improved by using a sliding window flow control protocol (even a window size of 2

would significantly help). However, even at current speeds the reconfiguration time is in

the same order of magnitude as many interaction with web services, and is probably low

enough not to be a bottleneck for users.

99

5.13.2 Example Application

In order to qualitatively evaluate the framework’s ability to simplify

implementing accelerated portions of computational algorithms, we ported an FPGA

regular expression matcher to our framework. Regular expressions are a language for

string matching, and today are ubiquitous due to their ability to expressively describe

complex text matching patterns. Due to their ubiquity, ways to improve their

performance are an active area of research. The CES regular expression parser used here

is an NFA-based regular expression scanner which focuses on avoiding state explosion

inherent in NFA-based engines when matching regular expressions with many or large

constrained repetitions as well as fast reconfiguration for matching different regular

expressions. CES works by transforming the regular expression into primitives

consisting of character classes with a constrained repetition qualifier. For the common

case of a string of text, each character in the string is transformed into a character class

containing a single character with no repetition. Each of these character class primitives

are implemented by a hardware module on the FPGA called a CCR.

Each CCR is fed as input an enable signal, the current character of the incoming

symbol stream, and a one bit signal indicating whether the character is in the CCR’s

character class. Internally, the CCR contains configurable logic which generates as

output a match and activation signal. This activation signal is then chained to other

CCR’s enable signals to enable matching longer regular expressions. Text input to the

system matches the regular expression if the final CCR’s match signal is true. The

aforementioned workings of CCR are illustrated in Figure 22.

100

CCR

CCR CCR CCR CCR

CCR

Shared state -> characters of string to be matched
“abcd”, etc

Match signals generated by CCRs
Division between pieces

Figure 22: CES String Matching Operation

The authors of CES demonstrated the feasibility of the CCR-based approach by

building a CES scanner using a Virtex 5 FPGA. In their paper, the authors were able to

achieve high processing throughput; saturating the gigabit Ethernet link used for

communications. One limitation of the implementation, however, was scalability: the

length of a regular expression CES can match is limited by the number of CCRs which

can fit on a single FPGA. The flexibility provided by our framework provides a solution

to overcome this restriction. As longer rulesets are required, we can utilize more

application pieces in the FPGA network to implement them, even if they span multiple

FPGAs.

To implement the CES matching engine in our framework, we partition the graph

of CCRs into multiple groups, each of which is small enough to fit in a framework

application piece. Match and activation signals which span from one group to the other

101

are captured as the string is run through one group, then transported to the next group or

back to the user on the Internet using the RAM ports provided by our framework.

In order to distribute the CES grid across multiple pieces, we do need to resolve a

few details involving capturing internal state which is normally shared among all CCRs.

Specifically, the design of CES requires each character of the incoming string be

broadcast to every CCR element simultaneously each clock cycle. Then, each CCR must

look up from memory whether the current character is contained in the CCR’s character

class. Finally, each CCR may then modify its activation signal for subsequent CCRs.

This activation signal propagates asynchronously along the chain of CCRs each clock

cycle. Splitting the CCRs across pieces in our framework requires maintaining the

coherency of this asynchronous activation signal across all CCRs.

As a first step in solving this problem, we place a restriction in regular

expressions that they may not contain back references. With this restriction in place, the

interconnections between activation signals among the CCRs of the CES can be

represented as a directed acyclic graph (DAG), where each CCR is a vertex and the

directional activation signals flowing from one CCR to another the edges. Information

never flows backwards from one CCR to a previous one. By splitting the CCRs into

pieces, we are partitioning the graph into one or more cuts. Each piece can be viewed as

having two cuts in the graph: a sink cut and a source cut. The sink cut accepts as input a

character string to be matched and activation signals associated with each character in

the string, generated by the previous group’s CCRs. These are replayed into the CCRs in

the downstream group sequentially. As the incoming string and activation signals are

102

being replayed into this new group, the outgoing activation signals crossing the source

cut are captured along with the character which generated them, the same as with the

previous group. These are then sent to next group, and so on. This behavior is visualized

in Figure 23.

CCR CCR CCR

H e l l o

H H

0

H 0 0 e ...

H 0 e 1 ...

Division between pieces

Initial string to be matched,
fed to first FPGA

Each clock, character
and activation

signals are stored in
a buffer to transmit

to next piece

One transmitted to the next
FPGA in the chain, the

character and activation
signals are replayed into the

CCRMs of this piece

H 0 e 1 ...

Match information is
gathered into a

separate buffer and
sent back to the user

over the Internet

so
u

rc
e

sin
k

cut

Figure 23: Pipelining Approach to Partitioning CES across Pieces

The string and activation signal information is serialized into a buffer until the

buffer is full, then transported between pieces using the inter-piece application port. The

match process begins by the user’s computer sending a match string to the first piece in

the chain, which receives this information from the Ethernet port instead of the inter-

piece port. Similarly, the last FPGA in the chain is configured with a special state signal

103

indicating that it should capture match information instead of activation state. Its results

are then directed back to the computer for processing.

In addition to the FPGA hardware, CES as a complete system consists of a user

application which communicates with the CCR modules over the network to configure

them with information about the regular expressions, as well as feed them candidate

strings and obtain any match results. Since the initial implementation of CES resided

solely on a single FPGA, the user application only needed to map a regular expression to

available CCRs on the FPGA and update the CCR’s character class and repetition

information to configure a regular expression on the framework. Then, the app simply

sent a packet containing the string to match to the FPGA and awaited the reply.

Converting CES to run on our framework requires also requires some

modifications to this user app, which must do slightly more work. Now, when provided a

regular expression to match, the app determines the number of FPGA app pieces

required to fit the hardware CCR modules which match the regular expression. Once the

app has determined the number of pieces required, it then maps the regular expression

character classes to CCRs, the same as in the initial implementation. The new modified

app, however, knows which pieces needs to communicate with another to connect the

CCRs within the pieces together. Using this information, the app creates a configuration

file listing the number of pieces it requires and makes a web service call to the

framework, uploading the CES piece and config file and asking the framework to start

an instance of the CES pieces on the FPGA network. The framework returns a list of IP

addresses of the pieces.

104

From here, the PC application proceeds similar to the initial implementation,

configuring each of the CCRs. Finally, to match a string, the app sends the string to the

first app piece, the same as before. However, the first app piece relays match and string

information to subsequent pieces, so the final result comes from the last piece in the

chain. The current app only matches the entire regular expression provided; it does not

allow matching subsets of the regular expression. As a result, information about whether

a string matched the regular expression comes only from the last CCR module matching

the regular expression. This CCR is by definition in the last piece of the chain, and

therefore the app also looks to the last piece in the chain for match information.We

constructed the aforementioned application using Python 2.5.

105

6. SUMMARY OF FUTURE WORK

6.1 Security and Reliability

One aspect of the PR controller which is not handled in this framework is

security and access control. The PR controller on the FPGAs currently implements no

authentication or encryption. If a packet is addressed to the controller, it assumes it must

be legitimate and accepts the data. We ignore the problem for our prototype

implementation, but this is not a problem in practice, as the only entity in our framework

which should interact with the PR controllers on the FPGAs is the management web

server. The typical implementation will be to place the FPGAs and the management

server in their own trusted subnet behind a router, preventing attackers from the Internet

from spoofing packets from the Internet. Then the only threat is from a user creating a

malicious piece of logic which spoofs packets from the server. Although we do not

currently do so in our prototype, it would be easy to have the framework keep track of

the IP address of each PR slot and prevent application pieces from originating packets

from other IP addresses.

The larger, more challenging problem is ensuring that network nodes do not feed

invalid bitstreams to the PR controller. As an example, an authorized client could

accidentally feed a bitstream for the wrong PR slot, which would potentially disrupt

another user. While this scenario may be disruptive, the worst case scenario is where a

malicious client feeds a bitstream which purposely corrupts parts of the static design of

the architecture. Due to the fact that contents of FPGA bitstreams are typically kept

proprietary, it is not possible to completely verify that the bitstream only modifies the

106

proper PR slot. In a sense, this lack of protection is analogous to the early days of

multitasking PC operating systems, where programs had to simply be trusted not to

corrupt the address space of other programs.

Xilinx does partially document the bitstream to such a degree that it is possible to

determine which part of the FPGAs logic fabric will be affected at a coarse level by the

next segment of the stream. Future work should scan user bitstreams to ensure that they

only modify the proper PR slot. This validation would help catch users uploading pieces

compiled against old versions of the framework when the size of the PR slots changes

from one revision to the next, as accepting user pieces from a different version could

result in corrupting the static portion of the design. This validation alone, however, is not

sufficient to prevent malicious bitstreams from affecting other users on the FPGA, for

two reasons. First, by default the place and route algorithm may route portions of static

logic through PR slots. This is true even if we direct the router to completely avoid the

PR slots, at least for certain long interconnects with the Xilinx ISE 14 software. As a

result, an application piece could theoretically intercept another piece’s data.

More realistically, one application piece could cause denial of service to other

application pieces. This is true in the current prototype even without using invalid

bitstreams. In developed of the prototype, the biggest source of bugs stemmed from bugs

in applications loaded into one of the PR slots, which deadlocked or failed to respond to

incoming packets. If a piece deadlocks or drops packets for more than a few packets, the

entire network processing pipeline can deadlock, rendering the entire FPGA unusable to

network nodes. One potential solution is to implement a watchdog process in an external

107

chip, which checks that the static design is still operating properly, and if not, directs the

SysACE chip to reconfigure the entire FPGA from a known good bitstream.

Future work on this needs to take into account security. For the moment, it’s

probably more realistic to devote a single FPGA per customer (but still with multiple

applications) to avoid the possibility of cross-customer attacks. In particular, the

framework does not perform any validation to ensure the users are compiling against the

correct version of the static design as what’s running on the FPGAs. Even leaving aside

for the moment the issue of an attacker intentionally providing corrupted bitstreams, if

the size of the PR slots changes from one revision to the next, accepting user pieces from

a different version could result in corrupting the static portion of the design.

6.2 Scaling to 10 Gigabit Ethernet

We designed and built our prototype implementation to handle gigabit Ethernet

because that is what the evaluation boards which were available to use at the time used.

However, most modern computers are able to process a gigabit of network traffic

without issue and before too much longer the Ethernet link could start being a bottleneck

for high-performance applications, and an important next step for the design is to be able

to run at 10 gigabit speeds. The design currently pushes the limits of timing at 125 MHz,

and can therefore just barely handle gigabit throughput processing a byte at a time.

Reduction in semiconductor process size for future FPGAs will help the clock rate

somewhat, but is unlikely to provide a 10-fold improvement. Therefore, the framework

will need to move toward processing multiple bytes of data each clock cycle. Extending

the RAM ports throughout the framework to 64-bits wide would provide an 8-fold

108

reduction in required clock speed to still process Ethernet data at line rate. Moving to 10

gigabits, this would require a 156.25 MHz clock. With optimizations to the design,

combined with higher clock speeds of new FPGAs, this is probably achievable.

However, with the wider RAM ports, the routing resources occupied by the piece-to-

piece switch will become unacceptably large, and it will need to be re-designed to

something more efficient, probably a crossbar switch with some blocking probability.

109

REFERENCES

[1] Amazon.com Inc., “EC2”, http://aws.amazon.com/ec2. 2014.

[2] Google Inc., “Google App Engine”, https://developers.google.com/appengine.

2014.

[3] Microsoft Corporation, “Windows Azure”, http://www.windowsazure.com.

2014.

[4] K. Eguro and R. Venkatesan, "FPGAs for trusted cloud computing," presented at

the Proc. 2012 22nd Int. Conf. Field Programmable Logic and Applications,

Oslo, pp. 63-70.

[5] S. Byma, J.G. Steffan, H. Bannazadeh, A.L. Garcia and P. Chow, "FPGAs in the

Cloud: Booting Virtualized Hardware Accelerators with OpenStack," Proc. 2014

IEEE Symp. Field-Programmable Custom Computing Machines, Boston, MA,

USA, pp. 109-116.

[6] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K.Wang,

“Enabling FPGAs in the cloud,” Proc. 11th ACM Conf. Computing Frontiers,

Cagliari, Italy, 2014, pp. 1-10.

[7] A. Putnam., A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides, J.

Demme, H. Esmaeilzadeh, J. Fowers, G.P. Gopal, J. Gray, M. Haselman, S.

Hauck, S. Heil, A. Hormati, J.-Y Kim, S. Lanka, J. Larus, E. Peterson, S. Pope,

A. Smith, J. Thong, P.Y. Xiao and D. Burger, "A reconfigurable fabric for

accelerating large-scale datacenter services," 41st Annu. Int. Symp. Computer

Architecture, Minneapolis, MN, USA, 2014, pp. 13-24.

110

[8] R. Sass, W.V. Kritikos, A.G. Schmidt, S. Beeravolu and P. Beeraka,

"Reconfigurable Computing Cluster (RCC) Project: Investigating the Feasibility

of FPGA-Based Petascale Computing," Proc. 2007 IEEE Symp. Field-

Programmable Custom Computing Machines, Napa, CA, USA, pp. 127-140.

[9] A.G. Schmidt, W.V. Kritikos, R.R. Sharma and R. Sass, "AIREN: A Novel

Integration of On-Chip and Off-Chip FPGA Networks," Proc. 2009 IEEE Symp.

Field Programmable Custom Computing Machines, Napa, CA, USA, pp. 271-

274.

[10] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A.

Trew, A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain and G.

Genest, "Maxwell - a 64 FPGA Supercomputer," Proc. 2007 NASA/ESA Conf.

Adaptive Hardware and Systems, Edinburgh, UK, pp. 287-294.

[11] S.W. Moore, P.J. Fox, S.J.T. Marsh, A.T. Markettos and A. Mujumdar,

"Bluehive - A field-programable custom computing machine for extreme-scale

real-time neural network simulation," Proc. 2012 IEEE Symp. Field

Programmable Custom Computing Machines, Toronto, Canada, pp. 133-140.

[12] S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou, D. Tsaliagkos, M.

Katevenis, D. Pnevmatikatos and D. Nikolopoulos, "Formic: Cost-efficient and

Scalable Prototyping of Manycore Architectures," Proc. 2012 IEEE Symp. Field

Programmable Custom Computing Machines, Toronto, Canada, pp. 61-64.

111

[13] K. Eguro, "SIRC: An Extensible Reconfigurable Computing Communication

API," Proc. 2010 IEEE Symp. Field Programmable Custom Computing

Machines, Charlotte, NC, USA, pp.135-138.

[14] M. Jacobsen, Y. Freund and R. Kastner, "RIFFA: A Reusable Integration

Framework for FPGA Accelerators," Proc. 2012 IEEE Symp. Field

Programmable Custom Computing Machines, Toronto, Canada, pp. 216-219.

[15] S. Liu, R. Pittman and A. Forin, “Minimizing partial reconfiguration overhead

with fully streaming DMA engines and intelligent ICAP controller”, Proc. 18th

ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, Monterey, CA, USA,

2010, pp. 292-292.

[16] P. Lieber and B. Hutchings, "FPGA Communication Framework," Proc. 2011

IEEE Symp. Field Programmable Custom Computing Machines, Salt Lake City,

Utah, USA, pp. 69-72.

[17] W. Lu, "Designing TCP/IP Functions In FPGAs," M.S. thesis, TU Delft, Delft,

The Netherlands, 2003.

[18] D. Schuehler and J. Lockwood. “A Modular System for FPGA-Based TCP Flow

Processing in High-Speed Networks,” 14th Int. Conf. Field Programmable Logic

and Applications, Leuven, Belgium, 2004, pp. 301-310.

[19] Xilinx, Inc., “LocalLink Interface Specification,” 2005.

Available: http://www.xilinx.com/products/intellectual-

property/LocalLink_UserInterface.htm

112

[20] Xilinx, Inc., “Aurora,”

Available: http://www.xilinx.com/

products/design_resources/conn_central/grouping/aurora.htm

[21] Xilinx, Inc., “System ACE CompactFlash Solution,”

Available: http://www.xilinx.com/support/documentation/data_sheets/ds080.pdf

[22] Xilinx, Inc., “Chapter 5: About Design Elements,” Virtex-5 Libraries Guide for

HDL Designs, pp. 153-155, 2011.

Available: http://www.xilinx.com/

support/documentation/sw_manuals/xilinx13_2/virtex5_hdl.pdf

[23] N. Pittman, “Extensible Microprocessor without Interlocked Pipeline Stages

(eMIPS), the Reconfigurable Microprocessor,” Master’s thesis, Dept. Computer

Science and Eng., Texas A&M Univ., 2007.

[24] Microsoft Research, eMIPS, 2013.

Available: http://research.microsoft.com/en-us/projects/emips/default.aspx

[25] Xilinx, Inc., “XPS SYSACE (System ACE) Interface Controller (v1.01a) Data

Sheet,”

Available:

http://www.xilinx.com/support/documentation/ip_documentation/xps_sysace.pdf

[26] Xilinx, Inc., “LogiCORE IP AXI HWICAP,” 2011.

Available: http://www.xilinx.com/support/

documentation/ip_documentation/axi_hwicap/v2_00_a/ds817_axi_hwicap.pdf

113

[27] Xilinx, Inc., “Parameterizable LocalLink FIFO,” 2007.

Available:

http://www.xilinx.com/support/documentation/application_notes/xapp691.pdf

[28] J.Carver, N. Pittman, and A. Forin, "Relocation of FPGA Partial Configuration

Bit-Streams for Soft-Core Microprocessors," Workshop Soft Processor Systems,

17th Int. Conf. Parallel Architectures and Compilation Techniques, Toronto,

Canada, 2008.

[29] Xilinx, Inc., “Partial Reconfiguration User Guide,” 2013.

Available:

http://www.xilinx.com/

support/documentation/sw_manuals/xilinx14_5/ug702.pdf

[30] “Wireshark: Go deep.,” 2015.

Available: http://www.wireshark.org/. [Accessed: February 20, 2015]

[31] H. Wang, S. Pu, G. Knezek and J.C. Liu, "MIN-MAX: A Counter-Based

Algorithm for Regular Expression Matching," IEEE Trans. Parallel and

Distributed Systems, 2013, pp. 92-103.

[32] A. Athavale, High-Speed Serial I/O Made Simple. San Jose, CA: Xilinx

Connectivity Solutions, 2005.

Available At http://www.xilinx.com/publications/archives/books/serialio.pdf

OTHER CONSULTED SOURCES

“Virtex-5 FPGA Configuration User Guide”,

Available: http://www.xilinx.com/support/documentation/user_guides/ug191.pdf

114

APPENDIX A

INTRODUCTION TO HIGH-SPEED SERIAL CONNECTIONS

Exchanging data between FPGAs is typically performed via custom point to

point electrical interfaces connected directly to the FPGAs. Traditionally, these links

were composed of parallel interfaces with multiple data wires latched by a common

clock signal. Certain interfaces intended for use within a single circuit board still use this

approach, notably DRAM interfaces to the memory controller on a PC or SoC system.

However, as bandwidth (and correspondingly clock speeds) increase, it suffers from the

problem of skew, where differences in impedance or length between data lines and the

clock result in bits of data arriving at different times relative to the clock signal.

Most present-day designs which need to exchange data between different pieces

of silicon transfer data serially, using transitions in the data bits themselves to convey

clock information. These interfaces embed the clock and the data together, and are

widely used for transferring large volumes of data between logic located on different

pieces of silicon. Xilinx provides a good introduction to high-speed serial I/O [32], but

in summary, it involves using one or more differential-signaled, combined clock-and-

data serial channels to convey data instead of a parallel interface and a separate clock.

High-speed serial entails more than simply taking a parallel interface and

serializing it into bits. Due to the fact that clock and data are combined, as well as the

high speeds involved, transceivers must deal with clock recovery and differences in

clock rates between chips. Combining clock and data in a single signal is achieved using

one or more bit-stuffing protocols which ensure frequent transitions in the signal. The

115

receiver uses these transitions to regenerate the sender clock. Popular serial physical

layer standards are 8b10b or 64b65b. 8b10b, utilized by the Xilinx development boards

used in this thesis, works by inserting two extra bits for every byte to ensure sufficient

transitions in the received signal even if the data has no bit transitions. Since each

endpoint of the serial link encodes their data with a local free-running clock, another

challenge is dealing with the fact that the clocks will run at slightly different rates, over

or underflowing the receivers at the other end. In 8b10b, these clock rate differences are

handled by reserving a certain percentage of the bandwidth of link for idle data (one of

the symbols in 8b10 is chosen as a “comma” symbol which denotes the idle state), and

inserting idle symbols when difference in clock rates between the two endpoints exceeds

a threshold.

The serial transceivers provided in hardware by FPGA vendors, including the

GTP transceivers provided by Xilinx on our prototype FPGAs, are typically very low

level. They usually provide 8b10b serialization and de-serialization, but not much more

than that. To create a usable interface for transferring data from HDL logic, the designer

needs to add clock compensation (inserting or removing commas from the datastream to

deal with clock rate differences), some form of clock domain crossing (usually a FIFO)

to deal with the fact that serial transceivers are usually driven from a different clock than

the rest of the design, as well as error detection and recovery. To make interfacing with

these serial transceivers easier, a variety of protocols, and libraries implementing them,

exist which operate on top of the raw hardware and implement the first few layers of the

OSI model.

116

At the data-link layer, one popular protocol is Aurora, defined by Xilinx. It

provides one or more uni-directional lanes of data presented as a LocalLink interface on

either end, provides flow control, error detection (but not error recovery), and idle

management (comma-insertion). Another widely used protocol is PCI Express. It also

defines data-link layer specification for sending packetized data across serial links (as

well as providing additional higher layers of the OSI model). On top of these data link-

layer protocols are OSI layer 3-7 type protocol suites. PCI Express fulfills this role as

well, providing transaction layer routing and quality-of-service. Another example is

RapidIO, which provide routing and application layer primitives including mailbox slots

and packetized data transfer.

For this framework we considered all of the above options. PCI Express is a

mature serial specification widely used in the PC ecosystem, but contains a large amount

of complexity stemming from its design as a local PC bus architecture which isn’t

needed for our framework. The same concern about complexity and overhead is true

with RapidIO. In the end we chose to use Xilinx’s Aurora, since our prototype uses

Xilinx FPGAs and because it adapts the serial transceivers to an interface we’re already

using for the Ethernet interfaces without providing more features our framework doesn’t

need. It also consumes a smaller amount of FPGA logic compared to PCI Express and

RapidIO.

117

APPENDIX B

TECHNICAL DETAILS OF EXTENDING CES ACROSS MULTIPLE PIECES

In order to determine how to split a CES across multiple FPGAs, an

understanding of the individual components of the CES and the data flow between them

is required. CES is composed of one or more CCR modules. Each CCR contains the

logic to match characters from an incoming string against a single regular expression

character class. By interconnecting many CCRs together, the CES gains the ability to

match an entire regular expression. Each clock cycle, the next character from the string

being matched is presented to the CES, and each CCR therein. In response to this

character and its internal state, the CCR outputs a match signal and activation signal.

The match signal indicates whether the sub-regular expressing ending with this CCR has

been satisfied for this character. The activation signal drives an input on subsequent

CCRs, and is used to modify their internal state in response to this CCRs processing of

the incoming character. The activation signal provides the mechanism for chaining

multiple CCRs together to implement a regular expression consisting of many CCR

elements.

The CES, composed of interconnected CCRs, can be represented more formally

as a graph, with nodes representing CCRs, and directed edges representing the activation

signals from one CCR to another. Additionally, each CCR node consumes an additional

input edge consisting of shared state common among all CCRs; this shared state is the

incoming character to be matched. Each CCR node also produces additional output

edges that do not connect to subsequent CCRs consisting of the match signal indicating a

118

regular expression match. Shared state input is synchronous to each clock cycle; a new

character is presented each cycle, which affects the values of the edges from one CCR to

another, as well as the match signals. Activation signals, represented by the edges

interconnecting CCRs, are asynchronous along an entire path of CCRs; a change in the

activation signal of the first CCR in a path may induce changes in every subsequent

CCR’s state and outputs within the same clock cycle. Finally, in the absence of back-

references this is a directed acyclic graph, because no CCR depends on the value of a

downstream CCR, and CCRs do not modify the global shared state; they only consume

its value.

Problem

CES as currently designed relies on operating with all elements contained within

a single clock domain, no pipelining between CCRs, and with low routing delays

between CCRs. Global shared state must propagate to each CCR, and asynchronous

activation signals must traverse multiple CCRs all within a single clock cycle. This

requirement is achievable with good performance when the entire CES design is

contained on a single FPGA, as routing delays are low and synchronization of a

relatively high-speed clock is possible. However, for large regular expressions, the size

of the CES network exceeds that of even large FPGAs. A system is needed to partition

the CES network across multiple FPGAs in a manner that maintains correctness and

performance.

Splitting the CES network into pieces and placing each piece on a separate FPGA

is analogous to making one or more cuts in the graph of CCR nodes, placing each

119

subgraph on a different FPGA, and transporting the values of the edges crossing the cut

from one FPGA to another using some off-board I/O technology.

Several properties of the CCR graph combine to make this process not entirely

straightforward. Excluding for a moment the shared state among CCRs, if the

combinatorial logic within each CCR was separated by a register at the boundary of each

CCR, it would be straightforward to treat the added delay caused by off-board I/O as if it

were a long pipeline stage in the edges of the CCR nodes crossing the cut. The different

subgraphs could concurrently process different characters, and the data from one

subgraph would arrive at the next subgraph after a delay. Unfortunately the activation

signals connecting CCR nodes are asynchronous, and not captured by a register at the

output of each CCR. These activation signals effectively group an entire path of CCRs

into the same combinatorial logic group.

In addition to the asynchronous nature of the activation signals, another problem

preventing straightforward separation of subgraphs across different FPGAs comes in the

form of shared state present to all CCRs in the CES graph. This shared state is the

current character of the string being processed, and must be fed into each CCR

concurrently, as each CCR in a path uses both this shared state and the activation signals

of previous CCRs to determine its match and activation signals. In addition to the

difficulties involved in distributing shared state among multiple FPGAs, if different

subgraphs are pipelined from one another by the long delay induced by the cut in the

graph, some of the subgraphs will see incorrect versions of the shared state relative to

the activation signals they receive from the upstream subgraph.

120

A similar problem to that of the shared state exists for the match signals

generated by each CCR node; these signals are generated relative to the current character

input as shared state to the CCRs, and are incorrect if delayed as a result of a long

pipeline.

Solution

There are several ways to solve the problems described in the previous sections.

One approach is to avoid solving the problem by synchronizing together the clocks of all

FPGAs implementing the different subgraphs, passing the signals crossing the subgraph

cuts asynchronously, and distributing the shared state to all FPGAs concurrently within

one clock cycle. Then, shared state is visible to all FPGAs simultaneously, and changes

created via an asynchronous signal on one FPGA are manifest on other FPGAs before

the clock cycle ends. The practicality of this approach is improved by the fact that edges

crossing the cut are directional, as is shared state; data does not need to move backwards

from one FPGA to its predecessors.

This approach has a practical limitation, however, of requiring the global clock

signal to be as slow as the worst-case time for signals to cross the intra-FPGA

boundaries. If the time required for signal to cross FPGA boundaries is substantially

slower than on-chip wire delays, then the performance cost of a global synchronized

clock with no pipelining will be significant.

Another approach, the one chosen by this thesis, is to decouple the clocks

between subgraphs, and solve the problems involved in pipelining signals across the cuts

in the graph. The problem of global shared state can be solved by treating it as if it were

121

a signal generated by the first subgraph, which must be passed across the cut and

pipelined in the same manner as activation signals from CCRs. Pipelining the shared

state along with the activation signals in effect delays its presence to downstream

subgraphs such that it appears along with the activation signals created in response to

that shared state.

The issue with asynchronous activation signals can be solved by treating the

pipelining process as merely extending one long clock cycle, which begins on one

subgraph and is completed on the next. In other words, so long as sufficient time is given

for the value of the asynchronous activation signal on one side of the cut of the

subgraphs to reach a steady value, it is possible to snapshot its value and represent it to

the inputs of the downstream subgraph, so long as the global shared state which induced

its value is concurrently presented to the downstream subgraph.

In a system with no cycles, the pipeline delay can be arbitrarily long because no

signals feedback. Because the CES system uses Ethernet, which has a very long latency,

and high fixed overhead per packet, a batching strategy can be employed simulating a

very long pipeline where enough clock cycles are captured to fill an Ethernet packet

before sending the date across the cut to the next FPGA.

The final problem is each CCR generates additional data in the form of match

signals which do no cross graph cuts, but instead flow into an external entity (the PC

receiving the results of the regular expression match). These match signals are only valid

in the context of the characters of shared state which induced their generation, and this

paring needs to be maintained for all CCRs in all subgraphs.

122

The straightforward solution would be for each clock cycle to pair the match

signal from each CCR in a piece with the character it is matching from the string of

incoming data, and send that data back to the user’s computer. The problem with this

approach is it consumes a larger amount of bandwidth, since for every piece, every

character is accompanied by a bit of match information for each CCR in the CES.

However, we can improve the situation by taking advantage of the fact that often, we’re

only interested in the match signal from the last CCR in the CES, as this CCR is the one

which indicates if the string matched the entire regular expression. In that case, only the

last piece needs to send match information back to the PC, making the extra bandwidth

manageable.

	Abstract
	Acknowledgements
	Nomenclature
	Table of Contents
	1. Introduction
	2. Background and Related Work
	3. Design Overview
	3.1 Supporting Infrastructure

	4. Design
	4.1 FPGA Application Interface
	4.2 Interface to the FPGA Network
	4.3 Framework Data Transport Overview
	4.4 Off-Chip Communication Methods
	4.4.1 Internet
	4.4.2 Locally

	4.5 Data Movement between Pieces and Off-Chip Links
	4.5.1 Connecting Pieces and Off-Chip Links
	4.5.2 Data Buffering
	4.5.3 Switching

	4.6 Routing Incoming Ethernet Packets to Pieces
	4.7 Off-Chip Piece-to-Piece Routing
	4.8 Application Piece Placement and Configuration
	4.8.1 Placement Algorithm

	4.9 Configuring the FPGA Network to Contain an Application
	4.9.1 Configuration Algorithm

	4.10 Partial Reconfiguration Engine
	4.10.1 Introduction to Partial Reconfiguration
	4.10.2 Technology Background
	4.10.3 Existing Implementations
	4.10.4 Our Design
	4.10.4.1 Piece Gating
	4.10.4.2 Architecture

	5. Implementation and Evaluation
	5.1 Implementation Overview
	5.2 Data Movement through the Framework
	5.3 Ethernet Frontend
	5.4 ARP Resolution
	5.5 Inter-FPGA Serial Input Frontend
	5.6 Inter-FPGA Connection Topology
	5.7 First Level Mux
	5.8 Second Level Mux
	5.9 Piece-to-Piece Switch
	5.10 PR Slot Wrapper – Ethernet Portion
	5.11 PR Slot Wrapper – Piece-to-Piece Portion
	5.12 Client Interface
	5.12.1 Build System

	5.13 Evaluation
	5.13.1 Performance Metrics
	5.13.1.1 Logic Availability
	5.13.1.2 Reconfiguration Time

	5.13.2 Example Application

	6. Summary of Future Work
	6.1 Security and Reliability
	6.2 Scaling to 10 Gigabit Ethernet

	References
	Appendix A Introduction to High-Speed Serial Connections
	Appendix B Technical Details of Extending CES Across Multiple Pieces
	Problem
	Solution

