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ABSTRACT 

Evolution of Enzyme Specificity in the OSBS Family. (May 2013) 

Christine Michelle Jones 

Department of Biochemistry and Biophysics 

Texas A&M University 

 

Research Advisor: Dr. Margaret E. Glasner 

Department of Biochemistry and Biophysics 

 

 

In addition to their primary biological function, many proteins are at least moderately capable of 

catalyzing secondary, promiscuous activities that may have a major role in enzyme evolution. 

Mounting evidence supports the idea that new enzymes can evolve when natural selection 

optimizes these weak promiscuous activities. It is not known what features of promiscuous 

enzymes enable the evolution of new activities. The o-succinylbenzoate synthase (OSBS) family 

of proteins has a subfamily capable of conducting N-succinylamino acid racemase (NSAR) 

activity in vitro. Analysis of genomic operon context has indicated that many of these 

NSAR/OSBS proteins conduct the NSAR activity in vivo. A specific asparagine residue in the 

active site is conserved only in the NSAR subfamily and not the rest of the OSBS family and is 

suspected to function directly in the NSAR reaction. The residue was replaced in a member of 

the NSAR subfamily by the corresponding residue from a non-promiscuous OSBS via site-

directed mutagenesis. If the asparagine plays a direct role in the chemistry of the racemization, 

there should be a significantly larger effect on the NSAR activity relative to OSBS activity. 

Preliminary results, however, indicate that the effect on OSBS activity is much larger than 

anticipated. We were also interested in the extreme sequence divergence within the OSBS family 

as a whole. Generally, homologous enzymes that catalyze the same reaction share at least 40% 

sequence identity. Sequence identity within the OSBS family is as low as 15%. We hypothesize 
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that while OSBS activity was conserved, functionally important residues diverged within OSBS 

subfamilies. From the crystal structure of the OSBS from Thermosynechococcus elongatus, a 

member of the Cyanobacteria 1 subfamily, residues were selected for site-directed mutagenesis 

based on proximity to the active site and ability to orient ligand for binding and catalysis. 

Kinetics data from mutants indicates that these non-catalytic residues have significant impact on 

the efficiency of enzyme activity. 
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CHAPTER I 

INTRODUCTION 

A number of problems result from our limited understanding of protein evolution and the 

relationship between protein structure and function. Misannotation levels are extremely high in 

many public sequence databases, limiting their usefulness as a resource, because reliance on 

homology for determining function ignores the fact that many closely related or highly sequence 

identical enzymes have diverged in function
1,2

. This eliminates opportunities for applications in 

many fields in medicine and industry. Gaining a better understanding of enzyme evolution 

allows for improvements in both function prediction and in protein engineering. 

 

We use the o-succinylbenzoate synthase (OSBS) family as a model system to help us answer 

questions about the intersections of enzyme structure and function. The OSBS family is part of 

the enolase superfamily, a very diverse group of related enzymes
3
. Members of the enolase 

superfamily catalyze a number of distinct reactions, from epimerization to lactonization to 

dehydration
3,4

. But there is one feature shared by all members of the superfamily: a conserved set 

of active site residues that conduct a conserved partial reaction
3
 (Figure 1). Namely, a base 

abstracts a carboxylate α-carbon to form an enolate anion intermediate stabilized by a metal ion. 

While these conserved catalytic residues are responsible for conservation of the shared partial 

reaction, other residues in these proteins must be the determinants of specificity, by influencing 

factors like ligand orientation and binding
1
. Members of the OSBS family use this partial 

reaction to catalyze a dehydration reaction in Vitamin K biosynthesis (Figure 2). There are two 

primary reasons we are interested in the OSBS family as a model for enzyme evolution: 1) 
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members of the family are extremely sequence divergent, and 2) one subfamily of the OSBS 

family is catalytically promiscuous.  

 

 

 

 

Figure 1: The partial reaction conserved throughout the enolase superfamily. A base abstracts a proton from an α-

carbon of a carboxylate to form an enolate anion intermediate that is stabilized by a metal ion. 

 

 

 

 

Figure 2: The OSBS family catalyzes a dehydration reaction in the pathway for synthesis of menaquinone, or 

Vitamin K. The gene responsible for the OSBS function is menC. 
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Sequence Diversity 

Most homologous, isofunctional enzymes share around 40% sequence identity
5
. However, 

members of the OSBS family are extremely sequence divergent, with some members sharing as 

little as 15% sequence identity
1
. The only residues conserved throughout the family are those 

shared with the entirety of the enolase superfamily. One would expect residues that determine 

reaction specificity to be shared among homologous proteins that catalyze the same reaction. 

How do proteins that show so little sequence similarity catalyze the same reaction? We 

hypothesize that while function is conserved, functionally important residues have diverged 

between OSBS subfamilies. Our hypothesis is that different subfamilies are using different sets 

of non-catalytic, functionally important residues to bind and orient the ligand for catalysis. To 

test this hypothesis, we have divided the OSBS family into eight subfamilies in which the 

members share >40% identity
6
 (Figure 3). We are determining which residues affect OSBS 

activity in representative members of each subfamily. 
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Figure 3
6
: The OSBS family has been divided into eight subfamilies based on a 40% sequence identity cutoff.  

 

 

 

To determine which residues may be important for substrate specificity in the Cyanobacteria 1 

subfamily, I examined the crystal structure of the OSBS from Thermosynechococcus elongatus. 

Six residues were chosen for mutation based on their proximity to the substrate binding site 

(Figure 4). Site-directed mutagenesis yielded five of the chosen mutants. The five mutants were 

subjected to a complementation assay, but results were obscured by a poor expression system. 

Two of the mutants have since been measured for enzyme activity relative to the wildtype. One 

of the mutants had no significant effect on activity, while the activity of the other was drastically 

reduced. 
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Figure 4: Mutations selected for T. elongatus OSBS. Position of OSB in the active site was modeled by aligning T. 

elongatus OSBS (PDB: 2OZT) to Thermobifida fusca OSBS bound to OSB (PDB: 2QVH). 
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Promiscuity 

According to the traditional view of protein evolution, a gene duplication or amplification event 

is followed by the accumulation of mutations in either duplicate gene, and eventually the 

functions of the two proteins diverge (Figure 5). The problem with this model is that deleterious 

mutations are much more common than advantageous mutations, so the duplicate gene would 

more likely lose function altogether. It is also relatively unlikely that this model is the 

mechanism for the evolution of all proteins, since evolution would have to go through a series of 

low-likelihood events to create a function de novo.  There is a more promising alternative model
7
 

(Figure 6). In this model, promiscuous activity serves as raw material for evolution. Promiscuous 

proteins are proteins capable of catalyzing at least two distinct chemical reactions in the same 

active site, only one of which tends to be physiological. If both activities contribute to the fitness 

of the organism, the enzyme can undergo selection toward both functions and become 

bifunctional. If a gene duplication event occurs, each activity can be optimized in one of the two 

paralogs. Recent evidence indicates that many proteins are likely to exhibit promiscuous 

activities
7
, which means a lot of raw material with which to develop new function exists in 

nature.  

 

Many members of the Firmicutes subfamily (Figure 3) are catalytically promiscuous for N-

succinylamino acid racemization, or NSAR
8
 (Figure 7).  NSAR is a step in the pathway for 

converting D-amino acids to L-amino acids
9
. In the biochemically characterized promiscuous 

NSAR/OSBS enzymes, the NSAR and OSBS reactions are catalyzed at similar rates in vitro
9
, so 

the only way to determine which activity is the biological function of a particular enzyme is to 
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look at where its gene is located within the organism’s genome. If the gene is located near other 

genes in the Vitamin K biosynthesis pathway, we expect it to function as an OSBS in vivo. On 

the other hand, if it is located near genes that function in the D-amino acid to L-amino acid 

conversion pathway, its biological activity is most likely NSAR. Examination of the genome 

context of the genes from the NSAR/OSBS subfamily (data not shown) and other previous work
9
 

reveals that some of these NSAR/OSBS proteins are likely to be bifunctional in vivo, while most 

are more likely to only be responsible for one of the two activities
8,9

.  We are using the 

Firmicutes NSAR/OSBS subfamily (Figure 3) to help elucidate what features of promiscuous 

proteins are utilized for the evolution of new activities. 
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Figure 5: The traditional model of protein evolution states that gene duplication is followed by accumulation of 

mutations, which eventually leads to functional divergence in the two paralogous proteins. 
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Figure 6: The newer model of evolution states that the gene for a promiscuous protein can undergo duplication, and 

the existent promiscuous function can be optimized in one or the other paralog. The end result is the same, but the 

process of developing a new function is higher likelihood. 
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Figure 7: N-succinylamino acid racemization, or NSAR, is an additional activity exhibited by many catalytically 

promiscuous members of the Firmicutes NSAR/OSBS subfamily. 

 

 

 

Since catalytic residues are conserved in all subfamilies, but only the NSAR/OSBS proteins also 

catalyze a chemically distinct reaction, other residues within the enzymes must be responsible for 

varying reaction specificities. Sequence analysis suggests that an asparagine residue in close 

proximity to a conserved catalytic lysine may be responsible for these differing activities
3
. The 

asparagine is conserved within the NSAR/OSBS subfamily, but replaced by other, generally 

hydrophobic amino acids (such as valine and leucine), in the other subfamilies. The asparagine is 

also conserved in the Dipeptide Epimerase family (part of the enolase superfamily), which 

catalyzes a similar racemization reaction. We hypothesize that this asparagine functions in the 

NSAR reaction by lowering the pKa of an adjacent catalytic lysine to allow it to participate in the 

abstraction of a proton from the substrate during racemization (Figure 8). I mutated the 
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asparagine in an NSAR/OSBS from Amycolatopsis sp. T-1-60 to valine, which is the residue at 

the corresponding position in the non-promiscuous OSBS from Escherichia coli. My data 

indicate that OSBS activity is much lower in the mutant.  

 

 

 

 

Figure 8: Conserved asparagine at position 261 in Amycolatopsis sp. T-1-60 NSAR/OSBS (PDB: 1SJA
10

). The 

lysines highlighted in blue are involved in abstraction of the proton from the α-carbon (highlighted in green) of N-

acetylmethionine (shown here in black) during racemization.  
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CHAPTER II 

METHODS 

Site-directed mutagenesis and plasmid purification  

Site-directed mutagenesis was performed using the QuikChange mutagenesis protocol with a 

two-stage polymerase chain reaction (PCR). Primer sequences are included in Table 1. The 

templates used for mutagenesis were the menC genes from T. elongatus subcloned into a 

pET15b vector and Amycolatopsis sp. T-1-60 cloned into pET17b (Novagen).  

 

 

 

Table 1: Primer sequences for mutagenesis. Reverse primers are reverse complement to the 

forward. 

Target Mutation Primer Sequence (forward) 

T. elongatus W23A GCGCAGGGCGTGGCGCGCTCTCGTTCTGG 

T. elongatus G295A CCTGCCACGCACTTGCGTTCGGTGTGGACC 

T. elongatus C109A CCGTGGCCAATCGCGGCACTCCTGGGCTCCG 

T. elongatus S269A CGCAACGTCTGGTTTTCGCGAGTGCCCTCGAGGG 

T. elongatus V298A CCACGCACTTGGCTTTGGGGCGGATCGCTGGAGAAGCGC 

Amycolatopsis N261V CCAAATCGTGGTGATCAAACCGGGC 
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Plasmid obtained from PCR were purified (Qiagen), transformed by electroporation at 1500 V 

into E. coli DH5a cells, and then plated and incubated at 37° C for 16 hours on solid LB media 

with added carbenicillin. Liquid LB media cultures of single colonies taken from these plates 

were incubated in a shaker for approximately 12 hours and then centrifuged (4° C, 3000 rpm) 

and pelleted. From these pellets, the plasmids were purified using the Quick Plasmid Miniprep 

Kit from Invitrogen. Purified plasmids were sequenced in both directions to confirm the mutated 

sequence (Eton). 

 

Protein purification                                                                                                                                  

Amycolatopsis mutants were expressed in E. coli strain BW25113 (menC::kan) (gift from Dr. 

John Gerlt, University of Illinois). This strain was converted into a DE3 strain to express T7 

RNA polymerase using the λDE3 lysogenization kit from Novagen. Expressing the mutants in 

the menC
−
 strain ensured that the purified proteins would not be contaminated with wild-type 

OSBS. These mutants were plated and incubated at 30° C for 16 hours in liquid LB media with 

added carbenicillin and kanamycin. Cultures were pelleted, resuspended with 20 mM Tris, pH 8 

and 5mM MgCl2, and lysed. Lysed cells were again pelleted, and the supernatant was injected 

onto a 20 mL HiTrap
TM

 16/10 DEAE FF (GE) to separate by charge. Fractions were run on an 

SDS-PAGE gel, and fractions with the most pure protein were combined, then run on 3, 5 mL 

HiTrap
TM

 Phenyl FF column (GE) connected in series. Fractions containing the most pure 

protein from this purification were concentrated and used for enzyme kinetics.  
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Enzyme kinetic assays                                                                                                                                  

Preparations of purified protein were tested for OSBS activity using varying concentrations of 

the substrate 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) under different 

pH conditions, and analyzed with a spectrophotometer. Change in absorbance of SHCHC at 310 

nm over time was recorded. From these data, the initial rate of reaction for each concentration of 

SHCHC was determined. These data were fitted to the Michaelis-Menten equation to determine 

Km and kcat using Kaleidograph.  

 

Complementation 

Plasmids with correct mutations (as well as the wildtype strain) were transformed into the same 

E. coli strain BW25113 (menC::kan) as used in protein expression and purification and then 

plated on solid LB media with added carbenicillin and kanamycin and grown overnight. Single 

colonies from these plates were selected for 1 mL overnight cultures in liquid LB with added 

carbenicillin and kanamycin. 1:20 dilutions of these cultures were made with liquid menC 

minimal media (described below) and then 2 μL of the dilution added to anaerobic tubes 

containing liquid menC minimal media supplemented with carbenicillin and kanamycin.  

Anaerobic cultures were incubated at 37° C, and measurements of optical density at 600 nm were 

made approximately every 3 hours.  

 

Liquid menC minimal media was made by adding 10.49 g KH2PO4, 5.44 g K2HPO4, 2 g 

(NH4)2SO4, 29.6 μL 1M MnSO4  H2O, 415.3 μL 1M MgSO4, 3.4 μL 1M CaCl2,                   
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0.125 mg FeSO4  7 H2O, 1 g casamino acids (acid hydrolysate), 1 mg thiamine HCl, 5.1 g 

trimethylamine N-oxide, 6.64 mL 50% glycerol, and H2O to a final volume 1 L.  
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CHAPTER III 

RESULTS 

Sequence divergence 

From the crystal structure of OSBS from Thermosynechococcus elongatus, six residues were 

selected for mutation to alanine (Figure 4). The crystal structure for the T. elongatus OSBS does 

not include the native ligand, so the ligand from a similar protein (the OSB from Thermobifida 

fusca) was modeled in using a sequence/structure alignment with the program Chimera. Residues 

were chosen based on a loose assessment of proximity to the bound ligand or ability to contact 

the ligand during binding (entry into the active site). Of these six, five were successfully 

obtained from site-directed mutagenesis. These five mutants – C109A, G295A, W23A, V298A, 

and S269A – were subjected to complementation to determine whether a significant difference in 

growth between any of the mutants and the wildtype could be observed. No significant 

difference between any of the mutants and the wildtype was seen (data not shown). 

Unfortunately, the vector used for the expression of the mutant and wildtype proteins is designed 

for overexpression – meaning that any differences in OSBS activity as a result of mutation would 

be masked and compensated by the sheer amount of protein produced during growth.  

 

In order to more directly examine the effects of mutation on activity, activity assays were carried 

out by Denis Odokonyero and summarized here (Table 2). Activity assays measured the change 

in absorbance of the substrate during initial catalysis.  W23A and G295A were the only mutants 

included in preliminary data. While W23A saw effectively no change, there was an 



20 

approximately 80-fold decrease in activity for G295A compared to the wildtype. Mutation of the 

residue corresponding to G295 in E. coli OSBS, G288, is known to have an approximately 500-

fold decrease in activity compared to wildtype (Table 2). 

 

 

 

Table 2: Activity data from wildtype T. elongatus and E. coli OSBS, as well as mutants. 

OSBS kcat (s
-1

) Km (μM) kcat/Km (M
-1

s
-1

) 

*T. elongatus WT 80 78 1.0 x 10
6
 

*T. elongatus G295A 3.5 304 1.0 x 10
4
 

*T. elongatus W23A 33 29 1.1 x 10
6
 

**E. coli WT 24 12 2.0 x 10
6
 

**E. coli G288A n.d. n.d. 3.8 x 10
3
 

*Courtesy of Denis Odokonyero. **Courtesy of Wan Wen Zhu
6
.  

 

 

 

Catalytic promiscuity 

To determine whether a specific conserved asparagine in the Firmicutes NSAR/OSBS subfamily 

was responsible for the chemistry of the NSAR reaction, I mutated the residue to valine, a 

residue conserved in non-promiscuous members of the OSBS family, and then conducted 

kinetics experiments in an attempt to determine the effects of mutation on OSBS and NSAR 

activities. Compared to wildtype Amycolatopsis NSAR/OSBS, the mutant N261V appeared to 
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express less well (data not shown). During protein purification, the peak for the mutant was 

significantly smaller than for wildtype. After concentration and storage, the protein began to 

visibly precipitate and aggregated within a few days. Preliminary results indicate that OSBS 

activity in the mutant is significantly lower than for wildtype (Figure 9), with very little activity 

detected at the highest protein concentration I was able to use (Figure 10). The corresponding 

residue in a non-promiscuous OSBS (E. coli OSBS), V233, has no significant effect on OSBS 

activity when mutated to asparagine (Table 3). 
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Figure 9: Activity data for wildtype Amycolatopsis, courtesy of Andy McMillan. 
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Figure 10: Activity data for N261V in Amycolatopsis NSAR/OSBS. 

 

 

Table 3: Activity data from Amycolatopsis and E. coli wildtype OSBS, as well as mutants. 

OSBS kcat (s
-1

) Km (μM) kcat/Km (M
-1

s
-1

) 

*Amycolatopsis WT 83 314 2.6 x 10
5
 

Amycolatopsis N261V 0.07 236 3.0 x 10
2
 

**E. coli WT 24 12 9.6 x 10
5
 

**E. coli V233A 94 99 2.0 x 10
6
 

*Courtesy of Andy McMillan. **Courtesy of Wan Wen Zhu
6
.  
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CHAPTER IV 

CONCLUSIONS 

Sequence Divergence 

Preliminary data includes the kinetics data for only two of the five mutants – G295A and W23A. 

These two mutants were prioritized over the others for different reasons. G295A has a 

corresponding residue in Escherichia coli (part of the γ-Proteobacteria 1 subfamily) for which 

we already had data
6
. This corresponding residue – G288 in E. coli OSBS– has a drastic effect 

on activity when mutated to alanine
6
 (Table 2). The approximately 500-fold difference in activity 

may be due to a steric conflict encountered when glycine, a very small amino acid, is replaced 

with alanine, a slightly larger amino acid (Figure 11). The methyl side chain on alanine is 

probably displacing the ligand from the proper orientation for binding and preventing efficient 

catalysis. We have determined that G295A in T. elongatus OSBS also has a significant effect on 

activity relative to the wildtype. In this case, the activity drops by around 80-fold (Table 2). We 

believe that this drop in activity is also due to steric conflict, although the less drastic difference 

in activity compared to the effects of G288A in E. coli may be due to the differences in 

orientation of the ligand within the different OSBS's. G295 may be located further from the 

bound ligand, which would give more flexibility in terms of chemistry and activity when 

changing the residue to become slightly larger. 
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Figure 11
6
: G288A in E. coli dramatically lowers OSBS activity, likely due to steric conflict when glycine is 

changed to alanine. 

 

 

 

W23A was prioritized for assay because of its specific position within the active site. Tryptophan 

has a relatively large side-chain, and in the case of W23 in T. elongatus OSBS, this side chain is 

present in a loop that 'caps' the active site during binding and catalysis. We hypothesized that 

since the side-chain juts into the active site and toward the ligand, it may play a role in closing or 

restricting the active site. Data from kinetics (Table 2) indicates that the mutation to alanine has 

no significant effect on OSBS activity, with perhaps even a slight increase in activity. This could 

be due to the fact that switching the large amino acid tryptophan with the small amino acid 

alanine opens the active site and allows for the substrate to more easily move into position for 

catalysis. 
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Preliminary results from mutants in T. elongatus OSBS have shown interesting results in terms 

of the importance of non-catalytic residues for function. Further analysis, with data from more 

mutants, is necessary for any significant conclusions, but it is obvious from these and other 

experiments that the structure of the active site is intricate and complicated and that some non-

catalytic residues are more essential for specificity than others. 

 

Catalytic Promiscuity 

To determine whether an asparagine conserved in the Firmicutes NSAR/OSBS subfamily is 

involved in the chemistry of the promiscuous function, I mutated it to the corresponding valine 

residue from a non-promiscuous OSBS and then conducted kinetics experiments. We had 

expected mild to moderate changes in OSBS activity, with significantly higher effects on NSAR 

activity. My results (Table 3) indicate that OSBS activity in Amycolatopsis NSAR/OSBS N261V 

has been significantly affected by the mutation. The deviation from expectations may be due less 

to a direct reliance on N261 for OSBS chemistry and more to an issue of folding or stability. 

This idea is supported by the expression levels and swift, visible precipitation of the mutant upon 

purification. It is interesting to note that the corresponding mutation in a non-NSAR OSBS from 

E. coli, V233N, has been shown to have very little effect on OSBS activity, with around only a 

2-fold decrease in efficiency relative to wildtype
6
 (Table 3). This reinforces the idea that 

different groups within the OSBS family are utilizing different residues in distinct manners.  

 

Further experimentation will be done to determine the exact effects on both OSBS and NSAR 

activity. At higher protein concentration it should be easier to accurately detect the lower activity 
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of the mutant. If so, we can vary the pH of the reaction mixture to determine the role of N261 in 

NSAR chemistry. 
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