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1. Introduction

Tuma and Hannan (1978) have argued that analysis of event-histories 

offers substantial advantages for causal inference about change in discrete 

dependent variables. Their methodology involves the formal specification 

of continuous-time models of transition rates. The parameters of such 

models can be estimated by several alternative procedures: ordinary least 

squares, Kaplan-Meier least squares, maximum likelihood, and partial 

likelihood. In this paper we consider the relative merits of these 

techniques. We begin with a short discussion of the model and these 

various estimators. We then report Monte Carlo experiments that compare 

the two estimators with the best asymptotic properties. These experiments 

explore the issues of censoring, collinearity, misspecification, and 

confounding disturbances.

2. The Model

We assume that the investigator is interested in qualitative 

dependent variables (referred to generally as events) such as collective 

violence, mergers or divorces. For causal analysis, this investigator 

will want to determine the association between the values of certain 

exogenous variables for a unit and that unit's propensity to experience 

events (event rate). For example, a political sociologist may want to 

test the hypothesis that the rate of collective violence in nation-states 

increases with the power of the state when the level of economic development 

is held constant. If data containing the exact timing of events is 

available across units, then event-history analysis is appropriate.

Event-history analysis assumes an underlying model of event occurrence.
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To show this model we denote by t the waiting time until an event and by 

T the corresponding random variable. We define the survivor function 

G(t) by

G(t) = Pr {T > t} (1)

and the event rate (or hazard) by

(2) <lim Pr{t<T<t+At|t^T . ,
K)+ At־t' At'־r

where At is an increment of time.

Cox (1972) shows that by the product law of probability we can write 

G(t) as the product integral

t
exp { - / r(u)du } (3)

0

for the continuous time case, and for discrete time the survival function 

is given by

II U r > (4)r < t s s־

where rg = pr(T=t|Ti:t).

For causal analysis, we introduce a vector of exogenous variables 

for each of the i sample units and an unknown disturbance g(t) which affects 

all sample units equally. We let the rate depend on the exogenous variables



in a log-linear way. Specifically, we write

BXir±(t) = g(t)e (5)

where 3 is a vector of unknown coefficients used to assess the strength 

of the relationships.

If we return to the example of the political sociologist, we can show 

a complete specification of the model. We let represent state power 

and X2  the level of economic development. We then define the rate of 

collective violence for country i as

r±(t) = g(t)exp{3Q+ 3 1X li+ B 2X 2 i } (6)

where 3q is a constant and 3^ and 3^ measure the effects of X̂  and X  ̂

respectively upon the rate. Thus, the proposed hypothesis would be 

supported if the estimate of 3̂  is positive and significant.

One complicating factor of models such as (6) is that parameter 

estimation is not straightforward. Several techniques might be used but 

the better are not in the repertoire of most sociologists. The remainder 

of this paper explores selected issues involved in choosing between these 

alternative estimators. For clarity, the discussion focuses on the 

specification in (6), although our remarks apply to the more general model 

in (5) as well.

3. Estimation Procedures

The process described by the model might be estimated by any of several 

observable dependent variables. The most elementary procedure consists of
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employing a dummy variable that is 1 if an event occurs during a specif iced 

observation period and 0 otherwise. A second approach, called event-count 

analysis by Tuma et al. (1979), uses the number of events occurring during 

the observation period as the dependent variable. Finally, an alternative 

approach which Tuma and Hannan (197 8) label event-history analysis, uses t, 

the waiting time between events. In this paper, we restrict our attention 

to this final approach.

Ordinary Least Squares. Sociologists might be tempted to use familiar 

least squares estimation for event-history analysis. The motivation proceeds 

as follows. We first take the conditional expectation of t with respect to 

the rate when the X's are log-linear independent variables:

(7)E(t | r(t)) = exp (Sq+3 ^  + e*X2)

We next use a disturbance e to remove the operator E such that

(8)t = exp (Bq+ B ^  + &2x2) + e

or

** * * (9)In t = 3Q+B1X1 + 32X2 + e

The problem is to find the relationship between the parameters 0 in (9) 

and the coefficients B of the hazard (6). However, from (7) it follows 

that
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= exp (6*+e*x1 + e*x2) (io )

and solving for r(t) yields

r(t) = exp (־&o-glXl-62X2̂  '

Comparing (12) with the hazard rate (6) makes it obvious that A.

least squares estimation of this model then would use (9) for estimation 

and subsequently solve for the coefficients of interest.

While this estimation procedure for rate models is relatively straight­

forward, it is not recommended. Two critical problems arise in the application.
*First, the error term e is nonnormal and hence complicates estimation.

Prentice (1973) shows that a transformation can be used to overcome this 

obstacle; however, it is rather cumbersome and tedious. The second defi­

ciency of ordinary least squares estimators for these models is that they 

cannot satisfactorily handle the censoring problem. When a sample unit 

does not experience an event, the technique does not provide advice 

regarding the appropriate estimation procedure. This deficiency severely 

restricts the research contexts where ordinary least squares estimators 

might be used with confidence. Consequently, we do not advocate use of 

this estimator for event-history analysis.

Miller’s Kaplan-Meier Least Squares. Miller (1976) has proposed a 

modified least squares estimator based on the Kaplan and Meier (1958) 

survivor function estimator. This procedure also uses the specification 

in (9) for estimation. However, we must first order the N sample units
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by waiting time in order of increasing magnitude and denote these observed 

cases with the index j, e.g. Then the parameter estimates are

obtained by minimizing the weighted sum of squares

W e )  (ln t (j) ־60־ B lX 1;j־ e2X 2;)>2 (12)

where t ^  takes on the value of the largest waiting time if censored
A

and the weight w.(ß) is derived from the Kaplan-Meier estimator F as j
follows

ndÜ/_"i
(13)(k)

where m. is the number of uncensored observations tied with t,... For a J (j)
more detailed explanation of this procedure, see Miller (1976).

For these models, Kaplan-Meier least squares estimation is preferable 

to ordinary least squares. Kaplan-Meier estimators are asymptotically 

consistent and normally distributed under fairly general conditions (Kaplan 

and Meier, 1958; Efron, 1967). The lack of parametric assumptions is also 

appealing. Despite these advantages, there is a serious practical obstacle 

to use of these estimators in empirical research: minimization of (12) is 

not straightforward. Multiple minima might be located at discontinuous 

rather than continuous points. To avoid this, a tedious and costly grid 

search must be utilized. Miller (1976) reports that such searching is 

impractical even for a model with only two exogenous variables. Extensions 

to more realistic models are also quite difficult. Although Miller (1976) 

proposes a method for extensions to nonlinear models, it is, we believe, more
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laborious than necessary. For these reasons we do not think sociologists 

will find Miller's Kaplan-Meier estimators practical for the estimation 

of rate models.

Maximum Likelihood. In previous research with rate models (Hannan 

et al., 1977) we have employed maximum likelihood estimators (MLE). When 

data on the exact timing of events is available, the likelihood function 

may be written as

N f <Z־ri<t>t’\a־’/ rl(t)tY־ 
L ־ ¿Iji“ ̂  j '־ ) <14>

where z is an indicator variable of unity if an event is observed and zero 

otherwise. The likelihood (14) cannot be solved explicitly for the parameters 

of interest but they are found instead by iteratively maximizing L.

Maximum likelihood estimators are asymptotically consistent and 

normally distributed under fairly weak regularity conditions (see Dhrymes, 

1970). The MLE technique also has been shown to have very good small 

sample properties when applied to time-independent data (Tuma and Hannan,

1978; Fennell, Tuma and Hannan, 1977). Moreover, the procedure is easily 

generalized to handle the more complicated models likely to arise in 

sociological studies of event histories (Tuma and Hannan, 1978). Thus, 

when the model can be specified with confidence, the MLE method can be of 

great value to sociologists.

Partial Likelihood. Cox (1972, 1975) developed a procedure to estimate 

rate models in which the disturbance function g(t) in (5) is unknown, but 

uniform in the population. His partial likelihood procedure is appealing 

because it offers a general nonparametric alternative to MLE. To use his



procedure we must again order the j waiting times in order of increasing 

magnitude. Then the partial likelihood function for (5) is defined as

(15)

where J is the number of uncensored observations, and R(tj) risk

set of those units which have not experienced an event after t ̂ . The 

parameters in (15) are estimated like those in any likelihood function.*

Partial likelihood estimators (PLE) are asymptotically consistent and 

normally distributed (Efron, 1977). Little is yet known about their 

small sample properties. We think the method is potentially fruitful 

for sociological research because it is fairly easy to implement and 
fairly general. Still, we have no basis upon which to compare PLE with

MLE; both estimators have good properties in the probability limit. For 

this reason, we turn next to a series of Monte Carlo experiments. These 

experiments compare the PL and ML estimators under various identical 

conditions in the hope of developing a preliminary guide to decisions 

regarding the use of these alternative estimators.

4. Small Sample Properties

We study first the small sample properties of partial likelihood 

estimators in a model with g(t)=l. We examine this estimator under 

conditions of three levels of censoring (uncensored, 60% censored, 80% 

censored) and two levels of collinearity between the exogenous variables 

(p=0.0, p=0.5). We have previously studied MLE under identical conditions 

and use these results for a comparison (Fennell, Tuma and Hannan, 1977).
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The simulation is structured as follows. We set g(t) in (6) equal 

to 1, thereby removing noise from the model. We set the parameters 

t0 anc* *־ resPectively. We generate pseudo-random

normal deviates to represent the X variables and compute a time value
2for each sample unit. We repeat this process 100 times for each 

sample of size 100.

Results. In Table 1 we report the Monte Carlo findings for the 

case in which P=0.0. Throughout our results we report both the mean bias 

and percent-bias of estimators over the 100 samples. We also report the 

variance and mean squared error (MSE).

We discuss first the behavior of PLE across censoring levels. As 

Table 1 shows, when the level of censoring increases, the quality of 

partial likelihood estimates deteriorates. Both the bias and variance 

of the estimator increase slightly as the level of censoring increases.

Figure 1 graphs these results. The curves in that figure give the 

frequency distributions of the estimator as interpolated from a histogram 

with intervals of .2. By comparing the curves in the figure, it is easy 

to see the effect of censoring on PLE; increased censoring shifts the 

central tendency (bias) of the estimator and increases dispersion (variance). 

Nonetheless, we think the estimator performs well considering that at the 

highest censoring level, 80% of the information on the timing of events 

has been lost.

The lower half of Table 1 reports findings for the MLE from our 

previous study using identical data. The direction of the bias in both 

estimators follows the same pattern at each censoring level; both estimators 

tend to overestimate the magnitude (absolute value) of the parameter. In
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causal analysis, this means the null hypothesis of no relationship will be 

rejected at times when it should be accepted. With uncensored data, MLE 

is less biased and has a lower variance than PLE. As Figure 2 shows, 

these differences are substantial. However, the relative performance of 

PLE improves with higher levels of censoring. At the 60% censoring level 

(see Figure 3), it is almost impossible to distinguish between the two 

estimators. This improved performance of PLE continues to the point that at 

80% censoring, the bias is actually smaller than for MLE. Despite this 

improvement in bias, however, PLE remains less efficient than MLE at all 

censoring levels. Table 1 shows that the difference is substantial enough 

to allow MLE to outperform PLE in terms of MSE under all conditions. In 

general, then, MLE appears to be the better small sample estimator when 

g(t)=l, that is when there is no time dependence.

In Table 2, we show PLE's and MLE's performances when the correlation 

between the exogenous variables is 0.5. As we can see from this table, the 

estimators perform very similarly. Both display a tendency to underestimate 

parameters for uncensored data and to overestimate parameters when censoring 

occurs. Despite these similarities, the quality of MLE retains a slight 

advantage in this experiment; its bias, variance and MSE are all lower than 

those for PLE.

We can also compare these findings to those in Table 1 without collinearity 

between the exogenous variables. As we can see by such a comparison, 

estimator performance is altered, although only slightly. The directional 

pattern of the bias remains the same. However, the magnitude of the bias is 

increased for low levels of censoring and actually decreased for high levels 

of censoring. Nonetheless, the variance and MSE only slightly change from the 

case in which p=0.0. We do not think these differences deserve much attention.
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5. Normal, Lognormal and Uniform Exogenous Variables

Sociologists often have data that is not normally distributed, e.g., 

income conforms more closely to a lognormal distribution. For this reason, 

we study the behavior of PLE and MLE when the exogenous variables have a 

normal, lognormal and uniform distribution.

We again use the model in (3) and fix g(t)=l. We rescale the 

parameters 3 ^ , to he -.4, -.1, .1 respectively. We then generated 

three data sets as before, each using as exogenous variables pseudo-random 

deviates drawn exclusively from either a normal N(0,1), lognormal A(0,1) or 

uniform U(0,1) distribution. We impose the censoring schemes used above 

and in each case draw values of the X’s so that and X^ are not correlated.

Results. Table 3 reports the Monte Carlo results for the model with 

normal exogenous variables and the rescaled parameters. For the most part 

these findings are similar to those in Table 1. MLE again outperforms 

PLE although the two are remarkably congruent, especially at the highest 

censoring level. The quality of the estimates remains good, although the 

percent-bias of rises because of rescaling. We do find several 

differences from Table 1 though. First, the directional pattern of the bias 

is lost. Estimators no longer consistently overestimate the effects of 

variables. Second, the impact of censoring is less severe. As censoring 

increases we can no longer predict a consequent increase in the absolute 

value of the bias. Thus the mean squared error of the estimates increases 

only slightly with censoring.

Table 4, which reports the quality of estimators for the same model 

with lognorrnal exogenous variables, contains no surprises. The size and 

direction of the bias conform closely to those for the model with normal



12

variables (especially Table 1) in all cases. Again MLE slightly outperforms 

PLE, although both are high in quality. These findings indicate the 

insensitivity of both estimation procedures to normal and lognormal 

parametric forms of the exogenous variables in the model. This robustness 

is encouraging.

Table 5 reports findings of uniform exogenous variables. The quality 

of both PLE and MLE is noticeably poorer in this case. Both the bias and 

percent-bias increase substantially over the two cases just considered. 

However, the most dramatic shift in estimator quality is that the variance 

of the estimates increases substantially. Further, the direction of the 

bias differs from previous patterns. Both PLE and MLE are now consistently 

upwardly biased except for the uncensored positive parameter. Frankly, we 

find these results somewhat baffling. In a similar though smaller study, 

Keeley (1975) found MLE yielded good quality estimates with uniform 

exogenous variables. We are uncertain why these results differ from his 

or from those for our previous models. However, we are consoled by the 

fact that uniformly distributed variables are rare in sociological research.

6. Random Gamma Disturbance

Event-history data are sometimes contaminated by disturbances that are 

ignored. For this reason, we next consider the quality of both PLE and MLE 

when noise is contained in the data and is ignored. First we consider a 

random disturbance that affects each sample unit differently. That is, we 

substitute a random gamma-distributed disturbance for g(t) in (6). We 

simulate data as before, except a pseudo-random deviate is drawn for each

individual and inserted in the place of g(t) before the waiting time is
3computed. Parameter estimates are then obtained by ignoring the simulated



13

disturbance.

Results. Table 6 presents findings for the behavior of both estimators 

when the gamma-distributed disturbance is present. As this table shows, 

the disturbance does not eliminate the overall high quality of the 

estimates yielded by both techniques. In all instances, the bias, 

variance and mean squared error remain low. Several new patterns are also 

noteworthy. First, the disturbance breaks any previous patterns concerning 

the direction of the bias and leaves instead an apparently random situation. 

Second, MLE again outperforms PLE. Third, as censoring increases, the two 

estimators differ less. Figures 4 and 5 show this convergence clearly.

In Figure 4 we show the distribution of the estimates for the uncensored 

data. The ML estimator is better, especially in terms of bias. In 

contrast, similar curves for the 80% censored data (see Figure 5) show 

the two estimators to be virtually indistinguishable. Thus while MLE 

outperforms PLE in all cases, these differences are quite small at high 

levels of censoring. Moreover, the high degree of robustness of both 

estimators is surprising in view of the random disturbance.

7. Time-Dependent Disturbances

Event-history data are more likely to contain time-dependent disturbances 
than simple random disturbances. This problem has been discussed in numerous 

substantive contexts. For examples of time-dependence in labor mobility 

studies, see Spilerman (1977), in family marital events see Glick and Norton 

(1971), and in organizational structure see Stinchcombe (1965).

These substantive concerns aside, we are interested in the case of 

time-dependent disturbances for methodological reasons. While we have 

extensively studied MLE with Monte Carlo methods, we have not explored
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time-dependence in small samples. It is important to know MLE's quality 

for a correctly specified model and for a misspecified model that ignores 

time-dependence. Moreover, the comparison with PLE is especially critical 

for this case since the partial likelihood procedure was developed precisely 

for estimation in this situation.

Our simulation proceeds in basically the same way as before. In this
ytexperiment however, we set g(t)=e . We explore two levels of time- 

dependence, weak and strong. Weak time dependence has y=.l and strong 

time dependence y=l. Two ML estimators and one PL estimator are obtained. 

The first ML estimator is the same one used in the above studies; for this 

model it represents a misspecified form in which the investigator ignores 

the time-dependence. The second ML estimator is for a correctly specified 

model containing y as well as and 8^' The estimator is the speci­

fication in (15), used throughout this paper.

Results. Tables 7 and 8 report the bias and percent-bias of the 

estimates from this experiment. We discuss these tables jointly. For the 

weakly time-dependent model, the quality of the estimates yielded by both 

PLE and MLE (correctly specified) is high. Under all levels of censoring, 

the bias of MLE remains fairly low. Furthermore, ML yields estimates of 

the time dependent parameter y with an exceptionally small bias. For PLE 

the results are even better. The estimates have in all but three instances 

a bias less than 5%. In addition, we note that the direction of the bias 

for both estimators is similar and congruent with the pattern in the time- 

independent results given in Table 1.

The results for the strongly time-dependent model exhibit similar 

patterns but with greater exaggeration. Thus the direction of the bias
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remains the same but is more pronounced since the size of the bias increases. 

Nonetheless, the magnitude of the bias does not change enough to merit 

reclassification of the estimates as other than high in quality.

In contrast, the performance of the misspecified MLE is less satisfactory. 

The bias of the estimates is high enough to warrant considerable concern, 

especially for the uncensored case. In addition, the pattern of the bias 

has changed. It is important to note, however, that the bias of the 

misspecified MLE is low at the highest censoring levels. In fact, in most 

cases it is considerably lower than the fully specified estimators at the 

comparable censoring level.

Table 9 gives the variance of the estimates for this model. We notice, 

as usual, that estimator variance increases with censoring in all situations. 

Again PLE outperforms the properly specified MLE for this time-dependent 

model, although the overall quality of both estimators is good. The increase 

in time dependence apparently causes increased variance and hence loss of 

efficiency, but this effect is slight. The most surprising result of 

Table 9, however, concerns the misspecified ML estimator. At all censoring 

levels and for each parameter, this estimator gives more efficient estimates 

than either of the other two techniques.

We summarize these experiments with both a descriptive statistic and 

plots of the distribution of the estimators. Table 10, which presents 

the mean squared error, again shows the high quality of both PLE and the 

correctly specified MLE under all levels of censoring. Further, the ML 

estimator of y , the parameter describing time dependence is quite good.

The quality of estimators deteriorate only slightly, as time dependence 

increases in strength. In general, both techniques yield high quality
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estimates for this model with PLE consistently giving slightly more efficient 

and less biased estimates.

The performance of the misspecified MLE relative to the other two 

estimators is best displayed by Figures 6 and 7. In Figure 6, we notice 

that for the uncensored data, the misspecified MLE is extremely biased even 

though it remains efficient. But with 80% censored data (see Figure 7), it 

is difficult to distinguish between estimators. Moreover, the higher peak 

of the misspecified MLE in Figure 7 suggests that it is actually the best 

estimator in this context. The mean squared error in Table 10 reenforce 

this impression. Thus without advocating the use of a misspecified 

estimator, we must at least remark in conclusion that for these models 

misspecification of time dependence is much less severe than misspecification 

of the vector of exogenous variables, especially with highly censored 

data (see Fennell, Tuma and Hannan, 1977).

8. Conclusion

We began this study in search of the most appropriate estimators to 

be used in event-history analysis. We discussed two least squares proce­

dures but dismissed them on theoretical and pragmatic grounds. This left 

two likelihood procedures from which to choose. We had previously 

advocated and studied ML estimators of such models. However, the partial 

likelihood procedure offered an attractive nonparametric alternative. 

Unfortunately, statistical theory offered little information concerning 

small sample properties. So we embarked on a series of Monte Carlo 

experiments designed to compare the procedures under a variety of 

conditions. Our primary finding is that the two procedures yield
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remarkably similar estimates, especially at high levels of censoring. Thus 

we find it difficult to recommend unequivocally one technique over the 

other. Instead our results suggest the MLE is slightly superior for 

time-independent data with or without random disturbances. In contrast,

PLE performs slightly better when the rate is time-dependent. As with all 

Monte Carlo studies these findings have limited scope as we have considered 

only a single general model and a limited number of combinations of 

parameters. Nonetheless, we have found no evidence that these estimators 

perform poorly in moderately small samples.
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FOOTNOTES

*The constant g(t) can also be estimated (see Oakes 1972). However, since 

our concern here is strictly with causal analysis, we ignore this issue.
2A "fast normal random deviate generator" was used to produce single-precision 

pseudo-normal (0,1) random numbers. This method follows Marsaglia's 

rectangle-wedge-tail algorithmn as described in Knuth (1969). The 

Marsaglia method uses the following distribution:

X 2

F(x) = f e V dv x - 0
0

which gives the distribution of the absolute value of a normal deviate.

The time of a change t was generated as follows

_ -ln(U(0,1))
exp(B0+B1X 1 + 32X2)

where U(0,1) represents a uniformly distributed variable on the range 0 to

1 and X̂  and X2 are standard normal deviates.
3The gamma distributed deviate is generated with a rejection technique 

due to Johnk (1964) and developed by Phillips and Beightler (1972).

The simulated distribution is

a-1
f(y; a,b) = — -- - exp (-y/b)

r (a)b

where y> a and b are always positive. We chose the parameters a and b so 

that the disturbance has mean 1 and variance 1/3.
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Table 1. Quality of Estimators: Log-Linear Rate Model with Normally-
Distributed Exogenous Variables (p=0.0; N=100; No. of Samples=100).

PARTIAL LIKELIHOOD ESTIMATES
Mean Squared

Bias %-Bias Variance Error

Uncensored

TO o II -4 60% Censored - - NOT ESTIMATED --

80% Censored

Uncensored -.024 -2.4% .020 .021

6 I ־  -1 60% Censored -.026 -2.6% .030 .031

80% Censored -.064 -6.4% .053 .068

Uncensored .002 .2% .017 .017

*2 = 1 60% Censored .004 .4% .029 .029

80% Censored .042 4.2% .056 .058

MAXIMUM LIKELIHOOD ESTIMATES

Uncensored .013 .3% . 0 1 1 . 0 1 1

TO o II -4 6CK Censored -.008 -.2% .071 .033

80% Censored -.085 -2.1% .228 . 107

Uncensored o1 -1.4% .013 .013

*1 = - 1 60% Censored -.027 -2.7% .027 .028

80% Censored -.066 -6.6% .055 .059

Uncensored -.007 -.7% .013 .013

IIC
V
|

c
n

1 60% Censored .002 .2% .026 .026

80% Censored .045 4.5% .052 .054



Table 2. Quality of Estimates: Log-Linear Rate Model with Normally-
Distributed Exogenous Variables (N=100; No. of Samples100־).

PARTIAL LIKELIHOOD ESTIMATES (p=.5)

Bias %-Bias Variance
Mean Squared 

Error

Uncensored

IIoCQ -1 60% Censored —  NOT ESTIMATED —
80% Censored

Uncensored -.027 -2.7% .021 .021

B1 = -1 60% Censored -.029 -2.9% .040 .041

80% Censored -.038 -3.8% .050 .051

Uncensored .010 1.0% .021 .021

e2 ־ 1 60% Censored .010 1.0% .038 .038

80% Censored .021 2.1% .053 .053

MAXIMUM LIKELIHOOD ESTIMATES (p=.5)

Uncensored .013 .3% .011 .011

IIoCO. -.4 60% Censored COr-Hof -.3% .029 .029

80% Censored -.024 -.6% .049 .059

Uncensored opHo1 -1.0% .014 .014

el ־ -.1 60% Censored -.027 -2.7% .036 .037

80% Censored -.030 -3.0% .045 .046

Uncensored -.008 1 00 S'S .017 .017

IICM
CQ. .1 60% Censored .008 .8% .035 .035

80% Censored .016 1.6% .051 .051



Table 3. Quality of Estimates: Log-Linear Rate Model with Normally-
Distributed Exogenous Variables (p=0.0; N=100; No. of Samples=100).

PARTIAL LIKELIHOOD ESTIMATES

Bias %-Bias
Mean Squared 

Variance Error

Uncensored

1NOea 60% Censored 

80% Censored

NOT ESTIMATED —

Uncensored -.026 -26.0% .015 .016

el = - 1 60% Censored -.026 -26.0% .019 .020

80% Censored -.024 -24.0% .020 .021

Uncensored -.008 -8.0% .018 .018

32 = .1 60% Censored .001 1.0% .025 .025

80% Censored -.001 -1.0% .026 .026

MAXIMUM LIKELIHOOD ESTIMATES

Uncensored .016 4.0% .011 .011
•a;1'IIoCÛ 60% Censored -0- -0- .020 .020

80% Censored -0- -0- .021 .021

Uncensored -.019 -19.0% .014 .014

3! ־ .-1 60% Censored -.025 -25.0% .018 .019

80% Censored -.023 -23.0% .019 .020

Uncensored -.008 -8.0% .016 .016

32 = .1 60% Censored .002 2.0% .025 .025

80% Censored -.001 -1.0% .026 .026



Table 4. Quality of Estimates: Log-Linear Rate Model with Log Normally-
Distributed Exogenous Variables (p=0.0; N=100; No. of Samples100־).

PARTIAL LIKELIHOOD ESTIMATES

Bias %-Bias
Mean Squared 

Variance Error

Uncensored

(5q = -.4 40% Censored — NOT ESTIMATED —
50% Censored

Uncensored -.009 -9.0% .004 .004
= -.1 40% Censored r־'»*

-
H

o1 -17.0% .010 .010

50% Censored -.022 -22.0% .012 .012

Uncensored .006 6.0% .004 .004

$ 2  = •1 40% Censored .005 5.0% .006 .006

50% Censored .006 6.0% .006 .006

MAXIMUM LIKELIHOOD ESTIMATES

Uncensored .001 .3% .033 .033

= -.4 40% Censored .019 4.8% .056 .056

50% Censored .020 5.0% .061 .061

Uncensored -0- -0- .003 .003

3̂  = -.1 40% Censored -.017 -17.0% .009 .009

50% Censored -.021 -21.0% .011 .011

Uncensored .007 7.0% .004 .004

$2 = .1 40% Censored .005 5.0% .006 .006

50% Censored .007 7.0% .006 .006



Table 5• Quality of Estimates: Log-Linear Rate Model with Uniformally-
Distributed Exogenous Variables (p=0.0; N=100; No. of Samples=100).

PARTIAL LIKELIHOOD ESTIMATES

Bias %-Bias Variance
Mean Squared 

Error

Uncensored

I*IIoCÛ 40% Censored 

50% Censored

NOT ESTIMATED —

Uncensored .042 42.0% . 143 .145

Bj = - . 1 40% Censored .029 29.0% .224 .225

50% Censored .022 27.0% .225 .225

Uncensored -.014 -14.0% .142 .142

B2 = .1 40% Censored .023 23.0% .211 .212

50% Censored .038 38.0% .210 .211

MAXIMUM LIKELIHOOD ESTIMATES

Uncensored .001 .3% .093 .093
•1IIo00. 40% Censored -.022 -5.5% .159 . 159

50% Censored -.023 -5.8% . 155 .156

Uncensored .038 38.0% .129 . 130

rHrIIHCÛ 40% Censored .025 25.0% .225 .226

50% Censored .018 18.0% .224 .224

Uncensored -.030 -30.0% .124 . 125

B2 = •1 40% Censored .022 -22.0% .210 .210

50% Censored .037 -37.0% .210 .211



Table 6. Quality of Estimates: Log-Linear Rate Model with Normally-
Distributed Exogenous Variables and Random Gamma Disturbance in
the Rate (p=0.0; N=100; No. of Samples=100).

PARTIAL LIKELIHOOD ESTIMATES

Bias %-Bias
Mean Squared 

Variance Error

Uncensored

B0 A־ = 60% Censored — NOT ESTIMATED —

80% Censored

Uncensored .168 16.8% . 027 .055

B!= 1־ 60% Censored .078 7.8% .034 .040

80% Censored -.013 -1.3% .067 .067

Uncensored -.193 -19.3% .023 .060

e2 = i 60% Censored -.110 -11.0% .031 .043

80% Censored -.062 -6.2% .053 .057

MAXIMUM LIKELIHOOD ESTIMATES

Uncensored -.375 -3.4% .022 .163
<■1IIoCCL 60% Censored -. 127 -3.2% .039 .055

80% Censored -. 147 -3.7% .089 .111

Uncensored -.020 -2.0% .029 .029

3!= -1 60% Censored .044 4.4% .032 .034

80% Censored -.030 -3.0% .068 .069

Uncensored -.019 -1.9% .029 .029

e2 = i 60% Censored -.078 -7.8% .032 .038

80% Censored -.042 -4.2% .054 .056



Table 7. Bias of Estimates: Time Dependent Log-Linear Rate Model with Normally-Distributed
Exogenous Variables (p=0.0; No. of Samples=100).

MODEL WITH WEAK TIME DEPENDENCE
Misspecified Maximum Likelihood Partial Likelihood

MLE Estimator Estimator
N=100 N=50 N=100 N=50 N=100

Uncensored 1.364 -.042
= -4 60% Censored .645 -.058 NOT ESTIMATED

80% Censored .234 -.173

Uncensored .511 NOT -.041 -.026 -.026
B -1 60% Censored .080 ESTIMATED -.053 -.043 -.034

80% Censored -.024 -.097 -. 147 -.079

Uncensored -.514 .037 .032 .019
= 1 60% Censored -.093 .030 .046 .014

80% Censored -.006 .057 .129 .039

Uncensored .004
= . 1 60% Censored .005

80% Censored .023

MODEL WITH STRONG TIME DEPENDENCE

Uncensored 2.806 -.134 -.085a — Д 60% Censored 2.022 -.223 -.115 NOT ESTIMATED
80% Censored 1.129 -.783 -.325

Uncensored .709 -.047 -.042 -.026 -.028
= -1 60% Censored .269 -.069 -.056 -.041 -.040

80% Censored -.018 -.274 -.145 -.240 -. 131

Uncensored -.713 .062 .040 .032 .015
- 1 60% Censored -.283 .068 .045 .039 .017

80% Censored -.050 .243 . 104 .200 .057

Uncensored .047 .028
־ 1 60% Censored .077 .036

80% Censored .234 .093



Table 8. Percent-Bias of Estimates: Time Dependent Log-Linear Rate Model with Normally-
Distributed Exogenous Variables (p=0.0; No. of Samples=100).

MODEL WITH WEAK TIME DEPENDENCE
Misspecified Maximum Likelihood Partial Likelihood

MLE Estimator Estimator
N=100 N=50 N=100 N=50 N=100

Uncensored 34.1% -1.1%
= -4 60% Censored 16.1% -1.5% NOT ESTIMATED

80% Censored 5.9% -4.3%

Uncensored 51.1% NOT -4.1% -2.6% -2.6%
=׳ -1 60% Censored 8.0% ESTIMATED -5.3% -4.3% -3.4 %

80% Censored -2.4% -9.7% -14.7% -7.9%

Uncensored -51.4% 3.7 % 3.2% 1.9%
= 1 60% Censored -9.3% 3.0% 4.6% 1.4%

80% Censored -.6% 5.7% 12.9% 3.9%

Uncensored 4.0%
־־ .1 60% Censored 5.0%

80% Censored 23.0%

MODEL WITH STRONG TIME DEPENDENCE

Uncensored 70.2% -3.4% -2.1%
= -4 60% Censored 50. 1% -5.6% -2.9% NOT ESTIMATED

80% Censored 28.2% -19.6% -8.1%

Uncensored 70.9% -4.7% -4.2% -2.6% -2.8%
־ -1 60% Censored 26.9% -6.9% -5.6% -4.1% -4.0%

80% Censored -1.8% -27.4% -14.5% ■24.0% -13.1%

Uncensored -71.3% 6.2% 4.0% 3.2% 1.5%
= 1 60% Censored -28.3% 6.8% 4.5% 3.9% 1.7%

80% Censored -5.0% 24.3% 10.4% 20.0% 5.7%

Uncensored 4.7% 2.8%
- 1 60% Censored 7.7% 3.6%

80% Censored 23.4 % 9.3%



Table 9. Variance of Estimates: Time Dependent Log-Linear Rate Model with Normally-Distributed
Exogenous Variables (p=0.0; No. of Samples=100).

MODEL WITH WEAK TIME DEPENDENCE
Misspecified Maximum Likelihood Partial Likelihood

MLE Estimator Estimator
N=100 N=50 N=100 N=50 N=100

Uncensored .003 .055
־־ -4 60% Censored .036 .177 NOT ESTIMATED

80% Censored . 120 .292

Uncensored .004 NOT .018 .047 .020
=־ -1 60% Censored .018 ESTIMATED .032 .095 .030

80% Censored .054 .063 .216 .063

Uncensored .005 .016 .031 .016
= 1 60% Censored .028 .038 .076 .037

80% Censored .060 .074 .184 .069

Uncensored -0-
« .1 60% Censored .002

80% Censored .010

MODEL WITH STRONG TIME DEPENDENCE

Uncensored .001 . 184 .132
= -4 60% Censored .023 .424 .237 NOT ESTIMATED

80% Censored .154 2.074 .531

Uncensored .002 .044 .021 .047 .020
= -1 60% Censored .012 .088 .030 .082 .030

80% Censored .064 .503 .083 .455 .088

Uncensored .002 .033 .016 .031 .017
■־ 1 60% Censored .016 .079 .036 .070 .033

80% Censored .069 .375 . 102 .337 .091

Uncensored .015 .010
= 1 60% Censored .064 .028

80% Censored .525 .184



Table 10. Mean Squared Error of Estimates: Time Dependent Log-Linear Rate Model with 
Normally-Distributed Exogenous Variables (p=0.0; No. of Samples100־).

MODEL WITH WEAK TIME DEPENDENCE
Misspecified Maximum Likelihood Partial Likelihood

MLE Estimator Estimator
N=100 N=50 N=100 N=50 N=100

Uncensored 1.863 .057
= ־4 60% Censored .452 .180 NOT ESTIMATED

80% Censored .175 .332

Uncensored .265 NOT .020 .048 .021
*= -1 60% Censored .024 ESTIMATED .035 .097 .031

80% Censored .055 .072 .238 .069

Uncensored .269 .017 .032 .016
= 1 60% Censored .037 .039 .078 .037

80% Censored .060 .077 .201 .071

Uncensored -0-
= .1 60% Censored .002

80% Censored .011

MODEL WITH STRONG TIME DEPENDENCE

Uncensored 7.875 .202 .139
= -4 60% Censored 4.111 .474 .240 NOT ESTIMATED

80% Censored 1.429 2.687 .607

Uncensored .505 .046 .023 .048 .021
= -1 60% Censored .084 .093 .033 .084 .032

80% Censored .064 .578 . 104 .513 .105

Uncensored .510 .037 .018 .032 .017
= 1 60% Censored .096 .084 .038 .072 .033

80% Censored .072 .428 .113 .377 .094

Uncensored .017 .010
= 1 60% Censored .070 .029

80% Censored .580 .193
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FIGURE 2

C0MPARIS0N 0F ALTERNATIVE 
ESTIMAT0RS F0R UNCENS0RED DATA
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FIGURE 3
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FIGURE 4

EFFECT 0F SIMULATED DISTURBANCE 
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(TRUE VALUE 1.0 ־ ־ ) (TRUE VALUE - 1.0)

RH0-O.O¡ N=100; N0. 0F SAMPLES-100

AB
S0
LU
TE
 
FR
EQ
UE
NC
Y



ABS0LUTE 
FREQUENCY

FIGURE 5

EFFECT 0F SIMULATED DISTURBANCE 
0N ESTIMATES 0F 80% CENS0RED DATA
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(TRUE VALUE - 1.0־) (TRUE VALUE 1.0 ־)

RH0-O.O; N-100; N0. 0F SAMPLES-100
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FIGURE 7

C0MPARIS0N 0F ESTIMAT0RS F0R 
TIME-DEPENDENT 80X CENS0RED DATA
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