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This report considers a variety of models for changes to quantitative 

variables such as wealth, academic achievement, organizational size, intensity 

of intergroup hostility, etc. By quantitative we mean variables that may take 

on a continuum of values— usually the real numbers but sometimes only the non

negative real numbers. When this is so, no real interest attaches to 

any particular level as was true in the qualitative case just discussed.

Still, sociologists following Lazarsfeld's lead (see also Davis [1971]) have 

tended to collapse information on a continuum into a few broad categories, 

e.g., hreak the wealth distribution at the median. In recent years, 

under the influence of econometric methods this tendency has waned. 

Sociologists are now r.iore prone to u״e ru'vc of the informaticr con

tained in the distributions of such variables, that is, to analyze the 

joint distributions of q u ant i t ati ve variables. The so-called struc

tural equation approach has concentrated almost completely on such 

analysis (see Duncan (1975) for an overview of the principles involved).

There is nothing inherently static in the use of structural 

equation methods. In fact, in the fields in which they were developed -- 

biometrics and macro-economics -- they are routinely used to test dynamic 

hypotheses (though usually in discrete time formulations). Nonetheless, 

sociological usage of such methods has been almost wholly static. Even 

when data over time are analyzed, e.g., the pioneering study of status 

attainment by Blau and Duncan (1967), inferences do not concern the



otherwise deterministic model.

It might seem a simple matter to rectify this difference: formulate 

probabilistic models of change in quantitative variables. But this task is 

far from simple. The stochastic differential equations that result demand 

very delicate handling. Even an e l e m e n t a r y  treatment requires 

considerable mathematical sophistication. So we find ourselves on the 

horns of a dilemma. Our interest in synthesizing qualitative and 

quantitative analysis suggests that we use stochastic differential 

equations. But the shift to such models introduces a quantum leap in 

mathematical and statistical complexity. And we cannot guarantee that 

the additional complexity will pay off in terms of deeper insight into 

social process. Coleman (1964, 1968) apparently takes the view that 

it will not; he treats qualitative analysis probabilistically and 

quantitative analysis detenninistically.

One might argue that information about the sizes of changes 

may compensate for some lack of realism concerning randomness in the 

process. Moreover, if we keep a deterministic perspective, we can 

estimate models with widely available tools. In other words we find 

ourselves in a situation in which the likely costs of retaining a 

stochastic perspective are high and the convention wisdom holds that 

the gains are likely to be small. However, we are not convinced that 

the conventional cost and benefit calculations have much merit. We 

will argue•the case somewhat differently.
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The overriding issue concerns logical consistency in the handling 

of quantitative and qualitative outcomes. Consider studies of changes 

in socioeconomic status. Sociologists sometimes conceptualize and 

measure SES as a quantitative variable (see, for example, Blau and Duncan 

1967). Other times they think only of ordered status categories (see, 

for example, Duncan 1979). And surely the two conceptions are related. 

Suppose there is some underlying status continuum as in Figure 1.

Then the discrete state approach involves making cuts at various points 

on the continuum (say between "lower" blue collar and "upper" blue 

collar). Then status categories may be considered internes on the status 

dimension. And we simply name or number these categories and typically 

study transitions among them (e.g., father to son mobility). In such 

studies, randomness plays an essential role. Mobility among categories 

is almost always viewed as a stochastic process.

Suppose one were to make successively finer cuts as in Figure lb, 

producing more and more status categories. Certainly if transitions 

among course categories are governed by a stochastic process, moves 

among finer categories must also be stochastic. But the limit of this 

refinement procedure gives the continuous status variable. So by the 

above argument, transitions from one "level" of SES to another must 

also be governed by a stochastic process. Nothing in the "disaggregation" 

of status categories eliminates randomness. Thus as long as we retain 

the view that transitions among discrete states in social structure are 

stochastic, it is difficult to avoid the implication that changes in 

levels in a social structure are also stochastic.
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This concern for consistency is rather abstract in the context of 

current sociological practice and appears unlikely to sway opinions. 

There is at least one circumstance when it may bear directly on practice 

We seek to create a framework for building and testing models for 

systems of qualitative and quantitative outcomes, e.g., changes in 

marital status and changes in levels of earnings. But how can we 

defend a model that combines stochastic equations for change in discrete 

outcomes with deterministic equations for quantitative outcomes? 

Obviously we cannot.

To this point our argument has the flavor of an exhortation to 

pursue some difficult and joyless strategy because it is somehow the 

correct way. But there are positive benefits to be gained from pursuing 

this line. Foremost among them is possible added leverage in testing 

certain types of arguments about deep properties of social structure.

It is often noted (see, for example, Stinchcombe 1968) that social 

structure affects the variance of behaviors and outcomes as well as the 

mean and that some processes may be seen more clearly in variances.

Most social scientists find the shape of the income distribution (e.g., 

inequality) more interesting than its mean. We have argued (Hannan and 

Freeman 1977) that the evolution of size distributions of organizations 

tells much about the competitive nature of the niche structure that may 

not be observed directly. We suspect that it is often the case that 

theoretically important structural properties that are difficult to 

observe directly have implications regarding the distribution of some 

outcome.



It is with regard to these sorts of issues that a focus on random

ness pays off. Deterministic models cannot explain distributions 

(except in the weak sense that given some assumed initial distribution, 

a deterministic model can explain changes in the distribution). In the 

case of stochastic models for changes in quantitative variables, the 

fundamental equations concern the evolution of probability distributions. 

Thus they provide a natural context in which to pursue the study of dis

tributional properties of social structure.

For these reasons we choose to venture into the hazardous terrain 

of stochastic models for changes in quantitative variables. But we 

will keep our discussion at a very elementary level. And, we begin 

with deterministic models so that we may fix the general strategy in a 

simpler and more traditional framework.

2. Linear Models for Rates of Change

Sociologists usually model the effects of variables on the levels 

of other variables. Coleman (1968) proposed that we follow the lead of 

physical and biological sciences and model effects on rates of 

change. In this perspective the behavioral or fundamental relations 

are differential equations. In this section we explore possible sociologic 

interpretations of differential equation models for quantiative variables.

Since we wish to emphasize the relations between dynamic and static 

models, we direct attention first to dynamic models that imply the 
usual structural equation models as steady-state outcomes. We start with 

single equation models. In empirical work, the typical structural model 

has the form (excluding the disturbance term for the moment):



The "parent", dynamic model is

= a + bY(t) + c1X 1(t) + c2X2 (t) + . . . + c ^ C t ) ,  (2)

which we can see by setting (2) equal to zero, the condition that

holds in equilibrium. This gives:
Y = _  £  ^  £! X x(t) _  c2 X 2 (t) _  . . . _  £j X j (t) (3)
e b b  b b

Comparing (3) with ( 1 ) we see that the parameters of the static model 

may be thought of as composites of the parameters of an underlying dynamic 

model in much the manner that reduced-form parameters of a system of 

structural equations are composites of structural parameters.

As w e work extensively with models of the form of (2), it is 

important to explore the model in some depth. It holds that the rate 

of change in some outcomes depends linearly on its own level at the same 

moment and the levels of a set of exogenous variables also at the same 

moment. We could introduce some explicit lags in these effects.^ However, 

as the resulting differential-difference equations are more cumbersome, 

we will not so as to keep the exposition simple. Although we will pay 

particular attention to linear models such as ( 2 ) because of their 

tractability, we will also consider below in Section 6 some important 

non-linear models.

How does one motivate such a model for the study of social process? 

We will consider two different approaches: negative feedback and partial 

adjustment. Coleman (1968) motivates linear negative feedback models as 

follows. It is commonly found in repeated measurements of the same unit 

that those who were far above (or below) the mean on the first measurement 

tend to be closer to the mean on the second. Such a result, called 

regression towards the mean, may be an artifact of random measurement 

errors (see Lord and Novick, 1966).
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But the phenomenon also occurs in situations where measurement accuracy 

is very high. Is there any more fundamental principle involved? Consider 

equation (2). If b is positive, any system that begins above the equilibrium 

level will grow indefinitely; any that begins below equilibrium will decay 

to zero. That is, systems in which the feedback is positive are unstable.

And while many social processes may be unstable, surely some are stable. 

Stability requires that the feedback be negative. And negative feedback 

produces regression towards some criterion— perhaps reflected in the 

mean.
Does negative feedback have any unambiguous sociological interpreta

tion? Coleman offers two related interpretations. First, we may 

interpret negative feedback as characteristic of equilibrating systems.

In particular we may consider it a defining attribute of "functional" 

systems in which elements of social structure are retained through 

their beneficial consequences. Stinchcombe (1968) pursues this line of 

reasoning in depth. Second, we may treat the existence of negative 

feedback as evidence that we have omitted cycles of causation from the 

model. That is, negative feedback might be considered the consequence 

of effects of Y on say W which in turn affects Y. Coleman (1968: 440-1) 

argues:

...the variable acts as a surrogate for all the variables 

involved in cycles leading back to itself... this approach 

does not aid much in the development of theory, because it 

obscures the relationships of which the system is composed....

As the formal system becomes more complete, this [,negative 

feedback] coefficient should approach zero. Thus the size of 

the coefficient allows a way of evaluating the completeness



of any representation of the empirical system by a system 

of differential equations.

So we may take negative feedback as either a measure of ignorance or a 

systemic property of an equilibrating system.

Other researchers offer direct substantive interpretations of 

negative feedback effects. For example, Sorensen (1977) and Hallinan 

and Sorensen (1977) focus on the equilibrium relationship, (10.3), and 

adopt the following input-output imagery. If the X's are the input that 

persons bring to, say, the status attainment process or the learning 

process and the c's are fixed, variations in b will affect the outputs 

associated with any given level of inputs. So for example, if c^ 

is the effect of ability on the rate of learning in school, the payoff 

to ability varies as an inverse function of b. If, moreover, b varies 

among schools, these variations may be interpreted as structural 

effects on the opportunities for learning -- those with b close to 

zero provide the most favorable opportunity structure for learning.

In this view, b is interpreted as an index of opportunity, a property 

of the structure.

One might still argue, with Coleman, that opportunity connotes 

a set of unanlyzed micro-processes within structures. Our point is 

not to contend this issue but merely to show that, depending on one's 

substantive focus, the negative feedback effect may be interpreted 

positively as an interesting property of social structure. The latter 

view leads one to study variations from structure to structure.

So, for example, Freeman and Hannan (1975) used such an argument to 

motivate the comparison of negative feedback effects in growth rates



for numbers of administrators in growing and declining organizations.

There is a second broad approach to motivating linear differential 

equation models of social process: partial adjustment models. Suppose 

that the outcome of interest adjusts each period to the gap between
,}cits current level and some criterion. Denote the criterion by Y (t). 

Then full adjustment occurs when:

Y(t+At) - Y(t) - [Y*(t) ־ Y(t)] At 

or, letting At->0:

= Y*(t) ־ Y(t) .

Social systems rarely adjust fully in any short period. So we generalize 

the adjustment model by introducing a parameter that indicates the 

fraction of the gap that is closed in each period. This gives the 

simplest partial adjustment model:

= k[Y*(t) ־ Y(t)] 0 <k £ 1 (4)

So far the model has two parameters, the adjustment parameter and 

the criterion, but no causal effects. However, the criterion generally 

depends on environmental conditions, that is oh levels of exogenous 

variables. That is, in general:

Y*(t) = fiX^t), . . . .  Xj(t),t)

To obtain a specification that gets us back to (2), assume that this 

dependence is linear and time-homogenous.
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Then by substituting (5) into (4), we obtain

(6)dYi’t') * * *= k[a + c ^ C t )  + . . . + ^ ( t )  - Y(t)]

= a + b Y(t) + c^ X^(t) + . . . +

where
*a = -ka

(7)b = -k
*

. , Jj = 1j

Thus the negative feedback model may also be viewed as a partial adjust

ment model where the criterion is a linear function of exogenous variables.

In this framework the parameter associated with the dependent variable, 

earlier called the negative feedback coefficient, has an important sub

stantive meaning. It conveys the speed of adjustment of the system to 

exogenous changes. When k is close to zero (but positive) the system ad

justs very slowly; it moves only a small fraction of the distance to the 

criterion in^.t. Larger k׳s imply faster adjustment in the time 

scale chosen for the analysis (years, days,, etc.) We argued in 

Chapter 3 that speed of adjustment depends on properties of structure, 

e.g., complexity of internal structure and density of connections with other struc

tures, etc. And one can often gain substantive insight by separating 

the effects of internal structure from effects of environmental properties

on speed of adjustment. Such separation can be achieved by designing



research that permits only one dimension (internal or external) to vary 

and estimating partial adjustment models for various conditions. For 

example, Nielsen and Hannan (1977) argued that educational organizations 

would adjust to changes in population and in levels of economic production 

more rapidly in wealthy nations than in poor nations. A comparison of 

estimates of k for rich and poor nations confirmed this hypothsis. We 

also exploited differences in complexity among levels of educational 

systems, primary, secondary, and university systems, to test for effects 

of structural complexity on speed of adjustment. Within either generalized 

environment (rich or poor), the more complex systems adjusted more slowly 

to exogenous changes that affect the long run levels of enrollments, as 

we hypothesized. This research, like that of Hallinan and Sorensen (1977) 

discussed above, gives direct substantive interpretation to the effects 

of levels of a variable on rates of change in the same variable.

Nielsen (1977) and Rosenfeld and Nielsen (1978) stress an implication 

of the partial adjustment interpretation of negative feedback. Consider 

the case in which the exogenous variables are constant over the history 

of the process, and individuals enter a system at the bottom at some 

initial time (t = 0) and then rise in the system in a manner that depends 

on their initial attributes, the X's. For example, we might consider 

the levels of earnings or status achieved by individuals in some social 

system in which individuals enter at different levels. Among other 

things we would be interested in how the parameters of the dynamic model 

determine the endurance of initial conditions, e.g., point of initial 

entry. To do this, solve (5) over the period (0,t) to obtain:



Y(t) = -a*(e'kt־l) + e“ktY(0) ־ c*X1 (e“kt-l) ־ . . . ־  cjx*(e"kt-l) (8)
-kt * * . •k -kt = e Y(0) - [a + c ^  + . . . + Cj X j] (e -1)

but the quantity in brackets is just the equilibrium level of Y(t),

Y . So we can write (8) as e
Y(t) = e־kt Y(0) ־ (e“kt-l) Ye (9)

■•let ■•let= e KC Y(0) + (1 ־ e KC) Ye

So the level of Y at any time is a weighted average of the starting level 

and the steady state. The weight given to history, that is to Y(0), goes to 

zero as t -»00 ־. But notice that the weight also depends on k, the speed of 

adjustment parameter. For k close to unity, the effects of history 

recede quickly. For k close to zero, the effects of history hold over much 

longer periodsi

Consider what this implies for mobility through status structures.

If two individuals with identical fixed characteristics enter the 

opportunity structure at different levels -- due to discrimination, luck, 

etc. -־ this initial difference will persist longer in systems that have 

high ,׳opportunity" in Sorensen and Hallinan's usage.

Of course most work with partial adjustment models gives priority 

to the causal effects of exogenous variables. And in the partial 

adjustment model consideration of such effects requires that we clarify
*the interpretation of what we have called the criterion, Y (t). This 

is sometimes equated with the equilibrium of the system (see Land 1970;

Hummon, Teuter, and Dorien 1975). From (4) it is clear that this 

interpretation fits the model. That is, setting (4) equal to zero
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gives Y(t) = Y (t) as the equilibrium relationship. Nonetheless.we judge 

that this interpretation is not helpful more generally. As we see below, 

both for many systems models and also for many nonlinear single equation 

models, no equilibrium exists, or it is at least problematic whether or not 

a system will reach equilibrium. In such cases, it is not useful to con

ceptualize causal effects in terms of equilibria. The treatment of the 

single equation case should be consistent with that of systems; therefore, 

we argue that Y (t) in (4) should not be defined as the equilibrium 

level of Y.
"/cThe alternative is to define Y (t) as a property of the structure -־ 

more properly of the interaction of the structure with a particular en

vironment. Then the c^ are to be thought of as a set of parameters of 
the process, not an outcome of the process.

For concreteness, consider the modern formalization of the concept 

of the niche of a species in some environment. If the reproductive success 

of some population is constrained by, say, N environmental factors (e.g., 

climate, food supply, density of various predators and competitors, etc.), 

then the set of points in this N-dimensional space within which reproductive 

success exceeds some minimum vaiue is called the niche (Hutchinson 1957).

We usually wish some compact representation of the niche and thus formulate 

functional representations of the dependence of reproductive success 

-- and thus population growth —  on the levels of environmental factors.

Then the parameters that relate levels of environmental variables to 

fitness or reproductive success are called the parameters of the niche.

In the model we outlined, the ĉ  serve the same role as niche parameters.
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*And, the Y (t) obtained given some realized levels of the set of X^ 

would be called the carrying capacity of the environment for the par

ticular species. It is important to see that the niche parameters and 

the carrying capacity are substantively interpretable even in con

ditions under which the population will not reach the carrying capacity 

and the system will not hit the equilibrium.
*Of course, there are other ways to interpret Y (t) without relying 

on an equilibrium interpretation. One generic approach is to introduce 

the notion of the goal of a system. If we are considering a formal
*organization , Y (t) may be the objective to which the organization

is committed. Alternatively, if we wish to adopt rational utility
•kmaximization models, we might define Y (t) as the utility maximizing 

level of Y given preferences and objective constraints (prices, etc.)

In either case, we assume that purposeful actors or organizations run 

by purposeful ruling coalitions will seek to adjust outcomes to close
*the gap between the objective, Y , and reality, Y. Again, we stress that 

it is meaningful to use this conceptualization even when the objective 

is unreachable and no equilibrium exists.

10.3 Time Paths of Changes: Integral Equations

In a continuous-time formulation, rates of change are not observable. 

Thus the differential equations do not have direct empirical implications.

To work towards empirical implications we must solve the differential 

equations subject to some boundary conditions to obtain the more 

complicated integral equations. The latter describe the time paths 

of changes in observable quantities implied by the model. So an intermediate
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step in empirical work always involves obtaining such integral equations.

The solution to the linear differential equation in (2) when the 

exogenous variables are constant over the entire period of analysis has 

already been displayed in (8). Here we consider the general case.

Let us write the model more generally as

= a + bY(t) + f(t); (10)

and where f(t) is some function of time and the initial condition and 

Y< *0 Y ־ < 0 •
The solution of (10) obtained by integrating from tQ to t is

Y(t) ־ a(eb(t_t0 )-l) + eb(t-t0 )Y +J eb(s_t0 )f(s)ds (11)
b C0

Depending on the functional form chosen for f(t), this equation may be simplified 

further. For example, in the case in which the causal factor is constant 

over the period of interest, f(t) = X for all t, then

Y(t> - § (־b4t-l> + ־bAtY0 + f <2!) *(!-*“  (־
where we let At denote t-tQ as noted earlier. Notice that Y(t) is a 

linear function of lagged Y and of X, but that the coefficients are 

complicated functions of the dynamic parameters and of elapsed time. This 

suggests that we treat (12) as an estimation equation, that is estimate:

Y(t) = •P0 + P 1Yq + P 2X (13)

and use estimate of the P's to recover estimates of the dynamic para

meters, (see Coleman 1968).

This is a good opportunity to demonstrate the advantages of continuous

time models for processes in which there is no inherent lag structure.

Only in a continuous-time framework can one meaningfully compare estimates 

from studies that employ different time lags— due usually to differences in
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availability of data. For example, suppose one researcher analyzes data 

on earnings at points spaced one year apart and another researcher uses 

a data set in which the observations are spaced three years apart, if 

there is ho natural preference for any particular time lag in an 

analysis of growth in earnings we would want to convert the two analyses 

into the same metric. Such a conversion would be necessary if we wished to 

analysis of the factors affecting changes in earnings we would want 

to convert analyses with three year lags into the same, metric as 

analyses with one year lags. This would be necessary if we wished to 

contrast the process in the two populations studied. Such comparisons 

are possible for the model we are considering -- as well as for the 

remainder of the continuous-time models we consider. Note 

in comparing (12) and (13) that ln$^ = bAt. So if the same process 

holds in both systems studied, the natural logarithm of the autoregression 

term for a three year lag will be three times that for a one year lag.

If this ratio does not hold (within some sampling limits presumably), 

we would conclude that the parameters of the process differ across 

systems.

Alternatively, we can exploit the relations between ( 12) and (13) 

to use data with different lag structures to estimate a single dynamic 

model. We treat this important problem in Eart III.

An important complication in estimating integral equations is 

that the causal factors of interest are rarely constant over the study 

period. However, as long as we can represent the time-varying behavior 

of these factors by some reasonably simple function of time, we can move 

from (11) to some form suitable for empirical analysis. Coleman (1968) 

suggests that it is often reasonable to approximate the behavior of the 

causal variables as changing linearly from X(t^) to X(t). That is



(14)

(15)

(16) 

(17)

dX.(t) = _ . xft , _ ״ 
dt g * X(t0 X ־ ( 0

or X(t) = XQ + g(t-tQ)

Then the solution of the basic model is slightly more complicated:

Y(t) = a (ebAt-l) + ebAtY(t ) + c (ebAt-l)X(t_) + c (ebAt-l -1) AX(t) 
b U b 0 b bAt

where AX(t) = X(t) - Xq .
Note again that this model has a general form suitable for regression

2
analysis:

Y(t) = + P 1 Y(tQ) +-P2 X(tQ) + P.3AX(t) .

18

4. Linear Systems

Theoretical and empirical work often concerns systems of coupled 

processes. Consider a two equation model with negative feedback:

dYl(t) = aL + bn Y (t) + b Y2 (t) + c X(t) 
dt

dY2(t) = a2 + b21Y t(t) + b22Y2(t) + c2X(t)
dt

The only change from the model considered earlier is the presence of

what might be called cross-effect or coupling parameters, b^2 and b^. In

this model the level of Y^(t) affects both directly (through
dY ( •)negative feedback) and indirectly by affecting 2 and thus Y (t) f
d t

which in turn affects  ̂ . Consequently, the issue of stability is
dt

more complex in such models. It is not enough that feedback be negative 

as it was in the single equation case. The system in (16) and (17) 

has a stable equilibrium if and only if the sum of both ad

justment parameters is negative and the cycle of f e e d b a c k



is larger than the cycle of cross-effects: ^11^2 2 ^ ^12^21 ŝee 

1969) for an introductory treatment of stability conditions). If this 

condition holds changes dampen over time. Otherwise changes are 

amplified, and the system evolves towards zero or infinity.

The two-equation coupled partial adjustment model is:

dY1 (t) = k^[Y*(t) - Y^t)] (18)
dt

19

(19)

(20)

dY2(t) = k [Y*(t) ־ Y (t)] 
dt *

Yx(t) = f1(Y2 (t),X,t)

Y*(t) = f2(YL(t),X ,t) (2D

If the dependence of the criterion on observable variables is linear and

time-homogenous as we assumed above, i.e.,
ic i< •k 1c7C 7C X  /  O O \

Yl(t) = al + blY2 (t) + clX(t)
* * * * / o *a \Y2 (t) = a2 + b2YL(t) + c2X(t) (23>

then by substituting (22) and (23) into the partial adjustment model 

in (18) and (19) we obtain equations with the same form as the coupled 

feedback system in (16 and 17).

Again the only difference from the single equation case discussed 

earlier is the effect of levels of endogenous or dependent variables on the 

criterion of every other dependent variable. Such effects have straightforward 

interpretation in a variety of conceptual schemes. Two of the most famous 

applications of ouch models in the social sciences are Simon's (1957: Ch. 3) 

formalization of Homans' (1950) account of small group process and 

Richardson's (1960) model of arms races. These models have been much 

discussed in the sociological literature —  see Blalock (1970), for example.



These systems models also fit the types of interpretations we have 

considered above. Suppose, as mentioned earlier, that the criteria are 

set by rational utility maximization. Then this model holds that the 

optional level of investment in some quantity Y^, say, depends on the 

current level of investment in Y2• For example, consider the allocation 

of time between work in the market and other activities. Let Y^(t) and 

Y2 (t) be the hours per week of work of female and male heads of the family. 

Then the model holds that under some form of utility maximizing, the 

optimal labor supply of each spouse depends in part on the current labor 

supply of the other.

Or, suppose Y^ and Y refer to two goals of some organization 

(e.g., quality of medical care and quality of scientific production in 

a university hospital). Then the model holds that the target on each 

dimension shifts according to current outcomes on the other dimension.

Thus even this simple linear model may induce a rather complicated 

dynamic interdependence among goals and outcomes. Though we suspect 

that real organizations use even more complex decision-structures, this 

is a potentially useful starting point for analysis of the behavior of 

goal seeking structures with multiple goals. This strategy has the parti

cular advantage of leaving goals unmeasured and thus avoids serious 

methodological difficulties that beset comparative studies of measured 

deviations from goals (see Hannan and Freeman 1977b).

The situation is more interesting when the model is applied to inter

acting systems or subsystems. For example, let the Y's denote levels of 

success (e.g., size of organizations, profits, etc.) of several potentially 

interacting systems or subsystems such as firms in a market, occupational
*classes in an organization, etc. Then the b 's record the intensity and



direction of the consequences of the interactions. The pattern of these
*Hf ^

coefficients is most important. When and b^ are both negative, then 

systems are said to compete; this is the case of pure competition. When 

both are negative, we refer to the pattern of interaction as mutualism.

When one is positive and the other negative we have the sort of relation

ship that characterizes predatoir-prey and host-parasite interactions.

This latter case typically gives rise to cycles of success. Wilson and 

Bossert (1971: 129-36) provide a lucid elementary treatment of the dynamics 

of such interactions. Hannan and Freeman (1978) analyze the interactions 

of growth in the sizes of personnel components in organizations, interpreted 

from the perspective of competition theory.

5. Integral Equations for Linear Systems

As before we must integrate over some period (that corresponds to 

servation times) to obtain an equation with all observable variables, 

the system (or multiple equation) case we must employ matrix notation.

Let y(t) be the vector [(Y^(t),. . . , Y^(t)]'and A be the N by N

matrix whose ijth entry is the effect of Y^(t) on dY^(t)/dt. Then a

general model parallel to that used for the single equation case is

dy(t) = A y(t) + f(t) 
dt

As before we solve the initial value problem with y ( t ^ ) = yq. The 

solution (see Braun 1975: 484) is
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y(t) = e A(t't0 ) y0 + J eA(s_t0)f(s)ds

This has the same general form as (1 1) but now we have to evaluate the
AAtanti-log of a matrix: e . The quantity is defined as

eAAt = i + AAt + A2 (At) 2 + . . . (26)

ob-

For

(24)

(25)
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However, only in exceptional cases can e be expressed in closed form.

There is nonetheless a feasible strategy for estimating a system 

of linear equations in observables and using estimates of parameters 

to recover estimates of dynamic parameters. For simplicity we consider the 

case in which there is only one fixed exogenous variable, i.e., f(t) = X.

Then the relevant equations in observables are

Y!< t) -  e01 + 0״  Y l ( 0) + . . . + f!1H YH(0) + y
V ‘ S0N + B1N V ־ < °>  + • • • + V °>  + V

or in matrix form:

y(t) - ;Py(0) + YX (27)

Now the real problem is to take estimates of P and y and estimate A 

(estimation of causal effects is straightforward once we get A). We will only 

sketch the general strategy here. Readers who have not encountered these 

materials previously are advised to consult a text on differential 

equations. We find Braun (1975: Chapter 3) particularly lucid.

Bellman (1970: Chapters 10-11) presents in compact form the necessary 

results for the simple case we consider as well as for less well behaved 

cases.

Suppose that the endogenous portion of the system

dy(t) _ Ay(t) ; (28)
dt

where = yo*

has distinct roots (N independent solutions). Denote the characteristic 

roots or eigenvalues of A by . . . , Now make a change of

variable, Z(t) = Ly(t) where L is a constant nonsingular matrix. Then 

the equation for Z(t) is



Our objective is to chose L such that the system of equations will break 

into N independent equations of the type that we know how to handle. That 

is we need to find L such that

“l

L _1AL = u>0 0

because then (29) decomposes into N independent equations of the form: 

dZ (t)
W-. Z.(t) ; i = 1, . . . , N ־ ---

U (t-t )Each of these equations has solution: Z^(t) = e i 0 Zq .

But we know that M■. = A. . since the roots of L '*'AL are the same as those l l
of A. It then follows that the columns of L must be the 

characteristic vectors or eigenvectors of A. It is then easy to show that

N



So the strategy is clear. Comparing (27) with (25) we see that

B., = eA*'t V .  So we estimate B and solve for the eigenvalues of B.• If

they are all distinct, the strategy just outlined goes through. We can
A

calculate the elements on the main diagonal of e ^ 1" ,"Ô  as e j ̂  ,'(P
r• A A

where \ is the jth root of B. Then by finding the eigenvectors of B 

we can use (30) to solve for the off-diagonal elements.

If the roots are not distinctjWe must use a more complex procedure. 

Braun (1975: 466-7) outlines the procedure by which we can usually form N 

independent solutions to (28) from j <N distinct eigenvalues. Thus 

the general strategy may still be applied.

Finally there is the case of complex roots. For each complex 

root we obtain two solutions to (28). However, as long as A is real, 

these complex roots must appear in conjugate pairs. In this case we 

can always construct another fundamental set of solutions to (28), all 

of which are real-valued. The method is outlined in Boyce and Di Prima 

(1969: 7.8). Thus, again the general strategy may also be applied to 

this case, after some manipulation. Readers wishing to handle the more 

complex possibilities mentioned in previous paragraphs should consult the 

references cited.
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6. Comparisons With Some Widely Used Alternative Models

In this section we contrast the linear models just discussed, par

ticularly the partial adjustment model, with some models that are widely

used in the social and biological sciences. Such comparisons afford a
3

deeper understanding of the utility of linear models as well as the 

need to consider nonlinear generalizations.

We begin with the simplest model for the diffusion of some item 

(information, a disease bearing organism, a cultural trait, etc.) 

through a fixed population. Suppose that the item diffuses from a fixed 

source and that individual carriers cannot transmit it. Then the usual 

model for the rate of diffusion is (Coleman 1964):

= v[N - X(t)] (3 1 )

where X(t) is the number of carriers at time t and N is the (fixed) size 

of the population at risk of acquiring the item. The model holds that in 

each period of fixed length the same fraction v of those still at risk 

will acquire the item.

This model of diffusion from a source in a fixed population bears 

a striking similarity to the partial adjustment model. However, the 

latter is more general in two important respects. First, in the diffusion model 

the ceiling N is a fixed parameter. In the partial adjustment model, 

the criterion or target may be treated as a variable affected by 

environmental parameters and is subject to its own dynamics. Only when 

the environmental parameters are fixed is the criterion also a fixed para

meter in the partial adjustment model. The second difference concerns applica

bility to decline processes. In the diffusion model, negative growth

25



is not defined; by definition the number acquiring the item cannot 

exceed the population size. In the partial adjustment model decline 

is well defined. Environmental variations may drive down the criterion 

in any period. Then the partial adjustment model implies adjustment 

down towards the new lower criterion.

While the model of diffusion from a constant source sometimes fits 

well (Coleman, Katz and Menzel 1966), time paths of diffusion often 

exhibit an S־shape. That is, the i n i t i a l  rate of diffusion is small, 

t h e n  speeds up at some point, and f in ally approaches some ceiling 

asymptotically. A simple process that generates such dynamics can be 

formed by combining diffusion from a constant source with transmission 

between individuals (see, for example, Bartholomew 1973: 298-307). To 

include transmission between individuals in the model under discussion, 

define w as the intensity of transmission between individuals or the 

strength of the inter-individual transmission process. At any time t 

there are N-X(t) individuals who have not yet acquired the item and X(t) 

who have. Of the N(N-l)/2 pairs of individuals that might be formed, X(t)[N-X(t)] 

consists of one bearer and one non-bearer. If the pairs form at random in the 

population, the effect of transmission between individuals on the rate 

of transmission will be equal to wX(t)[N-X(t)]. Thus a model that 

combines the two processes has the form:

= [v + wX(t)][N - X(t)] (32)

And this is simply a form of the well known logistic model.

26



In line with our previous discussion it is natural to generalize 

this model to the case in which the criterion depends on exogenous 

variables. This gives a logistic model with

= [v + wX(t)][X*(t) ־ X(t)] (33)

The most important thing to notice about this model is the manner in 

which it generalizes the adjustment process. In the linear partial ad

justment model, the speed of adjustment is constant. In the logistic 

model, it is state-dependent. That is, the speed of adjustment, v + w(t)
 ,rises from approximately v when X(t) is very small to v + wX (t)־*־

as long as w is positive.

It is instructive to build a logistic model from an alternative 

perspective. A somewhat simpler form of the logistic model is the 

standard elementary model for the growth of a closed population in a 

finite environments The model is motivated as follows (for a fuller 

discussion, see Lotka 1925; Wilson and Bossert 1971: 16-19, 93-104).

Let r denote the so-called intrinsic or natural rate of increase of a 

population. By definition r equals the difference between the birth 

and death rates when there are no environmental constraints (i.e., r reflects only 

physiological constraints). We write this as r = b^ ־ d^. In a period of 

length At, the increase (or decrease) in population size is then given by 

X(t + At) ־ X(t) = rX(t) 

or letting At 0 (־־

= rX(t). (34)

That is, the per capita growth rate is constant:

1 dX(t)
X dt = r
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This is just the usual compound interest model that generates exponential 

population growth. To see this integrate (3 4) with the initial con

dition X(0) = Xq to obtain

X ( t ) = e rt,X0 (35)

Thus, the population either grows exponentially when r is positive or

declines to zero when r is negative.
But when the environment contains finite resources, or the carrying

capacity is finite, the population cannot expand exponentially for any ex

tended period. New members of the population must compete with existing 

members for scarce resources and the rate of reproduction falls below the 

physiological maximum. For a number of reasons both birth rates and death 

rates ordinarily depend on the density of the population. More precisely, evolu

tion tends to favor species with density-dependent vital rates. The rate of 

natural increase r introduced earlier is the difference between the physiological 

maximum birth rate b^ and death rate d^. Let us introduce the simplest form of

density dependence. Let the birth rate be b^- k^X(t) and the death rate be
d + k,X(t). That is, the addition of each member of the population decreases 

0 d
the birth rate by k^ and increases the death rate by k^. The growth model becomes:

- ld0 + k dx(t»)x<t)

As before, we let b^ - d^ = r. The steady-state population under 

this model is

bQ_~j|o = k
K  + kd

usually called the carrying capacity. Letting K denote the carrying capacity, 

the model may be written in its more common form:



Alternatively, if one does not wish to define model parameters in 

terms of the steady-state, one may simply postulate the model in (36).

The term in brackets varies between zero and one. It is zero when the 

population size hits the carrying capacity and population growth stops.

If the carrying capacity falls below the population size, the term in 

brackets is negative and the growth rate is consequently negative.

When the population is very small, the term in brackets is close to one 

and population growth is approximately exponential.

Note that the model for logistic population growth may be re

written in the same form as the model for diffusion with inter-individual 

transmission with w = r/K (and, of course, v = 0). Clearly both models 

contain an element missing from the linear partial adjustment model, 

namely, . interactions among units in the population. Below we consider 

this difference more thoroughly.

Logistic models may be analyzed by the methodology we propose. As 

usual we must form an integral equation, solving (36) subject to the 

initial condition X(0) = X^. This gives:

X(t) = rX
------  -r(t-t37) ־ )־־ )r X״ + (r - rX_) e V
K U IT

And (37) may be estimated by maximum likelihood, as we show in Chapter lli.

The logistic growth model differs from the linear partial adjustment 

model in that it contains the multiplier:

*ill
K

Clearly as the population size approaches the carrying capacity the multiplier 

approaches unity and the two models converge. Thus they imply similar 

dynamics in the neighborhood of carrying capacities. But when the population 

is far from the carrying capacity, the growth rate of the logistic model
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is smaller than in the partial adjustment model (and, by implication, 

the model of diffusion from a constant source. Nonetheless, the linear 

and logistic models imply similar dynamics in decline (see Lotka 

1925: 6 8 ). The relationships are sketched in Figure 2. We see that 

both models imply negative exponential decline to the carrying 

capacity of criterion. But the dynamics of growth differ. The logistic 

model has an S-shaped growth path with maximum rate of growth at K/2.

The growth path for the partial adjustment model is concave (from the 

origin) with maximum rate of growth at the origin. Thus choice between 

the two models matters most in the study of systems far below their 

carrying capacities. For such systems, the logistic gives smaller growth

There is another useful approach to modeling processes that have 

S-shaped growth paths. Consider again the simple growth model of (34):

We modified this model to obtain the logistic model by making r, the intrinsic 

rate of increase, dependent on the state of the process. Under some 

circumstances it may be substantively more meaningful to make r 

time-dependent. That is, assume that the growth "constant" evolves over 

the history of the process. One particular form of evolution of Lhe 

growth "constant" gives analytically tractable results. Suppose the

rates than the linear -- see Figure 2 .

= r X(t).

growth rate declines exponentially with time, i.e.

(38)a0 < ׳

Then, with initial condition r(0) = r^, we have

(39)
and substituting this in the growth model (34) gives



= r0־fft X(t) (40)

This has solution, with X(0) = Xq ,
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X(t) = XQ exp |T~0(1 - e41) , ^ ( ^ (־

the so-called Gompertz growth law. This gives S-shaped growth to the ceiling,
r״ //yXq e w/ (we see this by letting t -? c»in (41). However, unlike the

logistic model, the process does not have a symmetric S-shape.

We can write the process model (34) and (38) in a form that shows more

clearly its relation with models discussed previously. Let us see X(t) to

denote the carrying capacity under the Gompertz law, i.e., the population
r0 '■'׳ /cysize at which the growth rate is zero. As noted above, X(0) = Xq e .

4Then it follows that the Gompertz law is also the solution of:

= o׳ X(t) log [X(t)/X(t)] (42)

That is, it is the usual exponential growth model with a multiplier.

When X(t) is small, the multiplier is large and positive. As the
r v

population approaches X, the multiplier approaches zero. Finally, in
A /

this formulation, decline is well defined. If the population exceeds X,

the multiplier —  and thus the growth rate -- is negative.

When X(t) takes on only positive values and the natural logarithm

of X(t) is well defined, we can show the relationship of the Gompertz

model to the linear partial adjustment model in still another way. Let

Y(t) = log X(t). Then (42) becomes

deX(t> , log [־i(t)/־Y(t)]
dt

eY(t)dY = o׳eY(t) [Y(t) - Y(t))] 
dt

or dY(t) = Q׳ [Y(t) - Y(t)]
dt

So for positive variables, the Gompergz growth law expresses linear 

partial adjustment in the (natural) logarithmic scale.



So far we have considered three modeling strategies. The first, 

linear partial adjustment, assumes that adjustment to environmental conr1 

ditions is independent of both the state of the system and of time (except, 

of course, as the environmental conditions themselves change over time).

The first generalization of this model introduces an elementary form 

of state-dependence in the adjustment parameter. When the adjustment 

parameter is made to depend linearly on the state of the system we 

obtain a logistic growth model. The second generalization introduces 

time dependence, namely the growth constant is assumed to decline 

exponentially with time. Presumably this reflects unobserved causal 

processes. In fitting the Gompertz law to age at first marriage in a 

cohort, Hernes (1972) assumes that attractiveness as a mate declines 

exponentially with age. Pitcher, Hamblin and Miller (1978) in modeling 

the diffusion of violent events assume that the rate at which individuals 

become inhibited from engaging in violence declines exponentially —
5

as individuals learn of the costs incurred by those engaging in violence.

More generally, the rate at which violent acts are initiated by decline 

over time in some bounded system either because the technology of repression 

becomes more effective or because the state concedes the matter under dispute. 

On this interpretation, time dependence summarizes the unobserved

actions of the state. And it is then preferable to shift towards model

ing the response to violence explicitly. This strategy leads to a system 

conception of the process. One of the main drawbacks of the Gompertz model is 

the difficulty in generalizing the model to handle systems of interacting
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units or populations. The logistic does not suffer such limitations.

And we now turn attention to the system case for the logistic model.

The simplest possible extension of the logistic model, 
the so-called Lotka-Volterra equations, forms the basis of almost all

theoretical work in population and community ecology. This model

introduces interdependence in exactly the same manner as we did above

for the linear partial adjustment model: the effect of the sizes of

other systems (populations in this case) affects only the carrying

capacity for a given system. Formally, let X = (X^...,XN>' be the sizes

of N interacting populations. For the ith population, assume that the

growth rate has the form:

* .׳ .

(38)X. (t) - X.(t)
Kt(t)

= r.
dX£(t)

dt i

and that the carrying capacity is given by:

X j V ) K.(t) - + • .+ *,.!(t) + 1 ־  i+1<״ X1+ + . . . +(t׳1

+ «a  V t ) .  (39)

Though this may appear a simple generalization, it is not. The system of 

equations is known to have a solution, but the solution has not been found, 

even for the case N = 2. Nevertheless we can derive a number of interesting 

and important qualitative conclusions from this model. Possible sociological 

applications of these qualitative results are explored in Hannan and Freeman 

(1977a) and Hannan (1979). However, we cannot employ the general empirical 

analysis strategy outlined to this point. Since we cannot write a closed 

solution to even a small Lotka-Volterra system, we cannot write direct



estimation equations. Instead we show approximate the system with more 

tractable equations. We choose to begin with the linear partial adjustment 

model as an approximation since it may be analyzed by available methods.

As we noted above, the approximation is reasonably good when systems are 

not very far below carrying capacity.

The foregoing analysis suggests that there is much merit in pursuing 

applications of linear charge models. Not only do linear models fit 

some general sociological perspectives, they also may approximate some 

interesting classes of nonlinear charge models. With this motivation, 

we henceforth restrict attention largely to linear models.

7. Conclusion

We have suggested that the linear structural equation systems so 

often analyzed by sociologists may profitably be viewed as steady state 

outcomes of continuous-time change models. Moreover, temporal analysis 

of systems out of equilibrium to estimate parameters of such change models 

affords deeper sociological insight into social structural processes than 

is given by conventional static structural equation analysis. For example, 

it permits separation of the effects of environmental variations on out

comes from the effects of internal structural arrangements on the speed 

of adjustment. More generally it permits us to relax or discard the 

assumption that social systems operate close to equilibria.

We concentrated on linear differential equation models as they give 

rise to simple estimation equations. We showed that such models have rich 

sociological grounding. In particular we reviewed two interpretations of such 

models, negative feedback and partial adjustment.
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We then addressed the so-called system case, models for changes in 

levels of several interdependent variables. The "solutions" of such systems 

cannot be expressed in closed form. However, as long as the matrix of co

efficients of the endogenous part of the system are distinct, we can form 

estimators of the parameters of the change model. The approach we outlined 

involves solving the characteristic equations and obtaining eigenvalues and 

eigenvectors of the endogenous portion of the system. We use this approach 

repeatedly in subsequent chapters.

We argue that sociologists not confine their attention to linear 

models for the study of change. And we treat the common non-linear 

generalizations of the negative feedback or partial adjustment models.

In particular, we showed that the typical S-shaped path of changes in levels may 

be obtained by either the logistic model or the Gompertz model. The 

first generalizes the linear model by introducing state-dependence in 

parameters. The Gompertz model introduces a simple form of time-dependence 

in the parameters. Thus these two simple generalizations suggest a range of 

strategies for extending the simple models that occupy us in most of the 

remaining chapters. However, even these simple complications give very 

unwieldy integral equations that make estimation more difficult. In 

fact, the widely analyzed generalization of the logistic to the system case does 

not even have a known solution. Thus it cannot be estimated directly.

More complex approxmation strategies, beyond the scope of this report, 

must be used to obtain empirical estimates of such systems. It is for 

this reason, and not because we think that linear models are natural, 

that we focus so much attention on the linear case.
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Figure 2. Logistic growth and decline curves illustrated (adopted 
from Lotka (1956:68).


