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ESTIMATION IN PANEL MODELS: 

RESULTS ON POOLING CROSS-SECTIONS AND TIME SERIES 

I. INTRODUCTION 

Panel designs, in which the same sample of units is observed at more than 

one point in time, are becoming increasingly more common in sociological re-

search. Yet, many of the central methodological issues which arise in such 

designs are not yet well understood. We address ourselves to three related 

issues: (1) alternatives in the formulation of panel designs, (2) estimation 

problems in conventional panel designs, and (3) estimation in "pooled" 

panels. The key design issue concerns the treatment of panels with multiple 

"waves" of observations. The estimation problems of interest arise due to the 

likelihood that errors in a panel design will be autocorrelated. A "pooled" 

model in which all waves are analyzed in a single model is advocated as a 

possible solution to both design and estimation problems for multi-wave panels. 

Since there is no treatment of "pooled" models in the sociological literature, 

we discuss the estimation issues in some detail. Finally, we present results 

of a Monte Carlo simulation of the behavior of alternative estimators for 

pooled models. 

II. PANEL MODELS IN SOCIAL RESEARCH 

The increased popularity of panel analysis reflects, in part, wider 

availability of comparable data over time and, in part, intellectual concerns 

in social science. We briefly consider two quite different motivations for 

adopting panel designs. 

The first, and perhaps most pervasive, attraction of panel designs is 

as a methodological strategy for unraveling reciprocal causation. It is 

widely known that the, presence of "causal loops" greatly complicates cross-



sectional analysis. -In particular, ordinary least squares regression is in-

appropriate for such cases. Researchers faced with suspected reciprocal 

causal structures are usually advised to use simultaneous equations estima-

tors (e.g., two-stage least squares). These procedures resolve the problem 

by using "instruments," i.e., variables which are not involved in the "feed-

back cycle" but which have causal effects on some but not all of the vari-

ables in the cycle.* If a set of instruments can be found which exhibit the 

proper pattern of relationships with variables in the model, simultaneous 

equations procedures will resolve the analytic difficulty caused by "feedback. 

But, the value of the instrumental variables strategy depends heavily on the 

researcher's knowledge of the relationships of instruments to variables in 
2 

the model. If one does not have such detailed knowledge of the behavior of 

the system, it is tempting to look for alternative solutions. 

It has apparently occurred to many social researchers to use longitudi-

nal (or intertemporal) variation to disentangle reciprocal causal effects. 

More precisely, it is suggested that lagged values of variables involved in 

feedback loops be treated as instruments. This is the logic underlying 

Lazarsfeld's famous sixteenfold table for panel analysis (Lazarsfeld, 1972; 

Boudon, 1968) and the "cross-lag correlation" design proposed by Pelz and 

Andrews (1964), and Campbell and Stanley (1963). In both cases one begins 

with a pair of variables, X and Y , assumed to causally affect each other. 

To evaluate the effect of X on Y , one regresses Y on lagged X and 

lagged Y and to evaluate the effect of Y on X , one regresses X on 

*-laggi_J Y and lagged X . In each case the lagged dependent variable is 3 

treated as an instrument. 

Duncan (1969, 1972) has correctly deflated the more overblown claims for 

the power of this method. He showed, for example, that in the presence of 



both lagged and instantaneous causal effects, the use of only lagged dependent 

variables as instruments will not suffice to identify the structure (i.e., 

yield a unique solution in terms of causal or structural parameters). Further, 

introducing lagged dependent variables gives rise to a number of estimation 

difficulties. As we will see below, lagged dependent variables are not proper 

instruments when the disturbances are autocorrelated. Yet, one should not 

overlook the possible advantages of the strategy of using lagged variables 

as regressors. The addition of inter-temporal variation cannot decrease one's 

knowledge of the causal structure. The central methodological problem of 

panel analysis is to exploit inter-temporal variation in such a way as to 

simplify causal inference. 

A closely related motivation for panel analysis arises from work with 

models containing unobservable variables. Such models confront measurement 

and other analytic difficulties by inserting into structural equations models 

both measured and unmeasured variables. The use of unobservables will ordi-

narily lead to problems of identification unless strong restrictions are 

placed on the model. One possibility that occurred to a number of sociolo-

gists (Heise, 1969; Blalock, 1970; Duncan, 1972; Hannan et al., 1974) is to 

measure the same variables at multiple points in time and presume that the 

causal relations under study are time-invariant. Under a limited number of 

conditions this strategy leads to identification of multi-variable, multi-

wave panel models containing unobservables. The main point for present pur-

poses is that this use of the panel design has essentially the same motiva-

tion as Lazarsfeld's: use temporal variation to eliminate identification 

problems. 
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A second, perhaps deeper, motivation for panel analysis is an interest in 

dynamics. Sociology has been overwhelmingly preoccupied with static models of 

social organization and social behavior. In recent years, however, the limita-

tions of a completely static approach have begun to make an impression, and a 

number of sociologists are experimenting with dynamic formulations. Dynamic 

models are typically analyzed in other sciences by the study of a single unit 

over many time periods. Unfortunately, many research areas in social science 

do not contain observational series sufficiently rich for time series analysis. 

Under at least some conditions one can study dynamics with short time 

series by analyzing panel observations. Coleman (1968) has made this clear in 

the following way. Consider the following differential equation: 

| | = a + bY + cX . (1) 

This equation relates the rate of change in some variable, Y , to its own 

level and to some causal variable, X , and is explicitly dynamic. To esti-

mate (1) it is necessary to relate it to observations made at discrete time 

intervals. The usual procedure is to integrate (1) to yield an expression: 

yt = <a/b)(ebAt - 1) + e b A t yfc_k + <c/b)(ebAt - 1) xfc_k . (2) 

This may be rewritten as 

yt = a* + b*yt_k + c*xt_k . (3) 

Coleman suggests collecting panel observations for at least two periods, say 

t and t-k , and estimating (3) by ordinary least squares. Then one can use 

(2) to transform estimates of (3) into estimates of the parameters of the dif-

ferential equation.** 
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The estimation form of Coleman's model is identical to that most fre-

quently used in estimating "cross-lag" correlations. The points of similar-

ity are the inclusion of lagged values of the dependent variables and the 

dependence on panel observations. Given these similarities, the dominant 

concerns of both strategies can be reasonably well represented by the follow-

ing two equation models (for N individuals at T time periods): 

yit " P0 + Plyi,t-1 + P2Xi,t-l + uit ' (i " 1 N; fc = ' 
(4) 

xit = + yi\, t-i + ¥ i , t - i + wit • -

Here the introduction of lagged dependent variables in both equations gives 

rise to the dynamic character of the model. Further, they serve as "instru-

ments" (or perhaps only "pseudo-instruments") for estimating and testing. 

We take the model in (4) as the methodological point of reference. All that 

follows is addressed to researchers who, for one reason or another, are inter-

ested in estimating models similar to (4). 

III. CONSTRUCTION OF MULTI-WAVE PANEL MODELS 

The sociological literature offers little in the way of didactic treat-

ments of the handling of multi-wave panels.^ Let us consider the major al-

ternatives in the context of a substantive example. Suppose a researcher, 

interested in the effects of ethnic heterogeneity on levels of political 

violence, collects observations for a sample of N nations for the years 

1950, 1955, 1960, 1965, and 1970. If the appropriate causal lag is five years, 

the data yield four usable lag periods: 1950-55, 1955-60, 1960-65, and 1965-70. 

The question is how to utilize all four "waves." 

» 
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' This situation seems to admit of three main alternatives (other than 

ignoring some of the data completely): 

A. Average observations over time and analyze the averages. For example 

in the regression of levels of violence on ethnic diversity, the dependent 

variable for each nation would be the average level of violence for five dif-

ferent periods, etc. Thus the 5N observations are compressed into N ob-

servations. Procedures like this always result in a loss of statistical effi-

ciency (i.e., increase the standard error of estimators). Further, grouping 

over time or over units gives rise in many cases to complicated aggregation 

problems (cf. Theil, 1954; Hannan, 1971). 

B. Conduct separate analyses for each lag period. For example, estimate 

the model for 1950-55 (with N observations), then again for 1955-60, and so 

forth. As in the previous case, this procedure sacrifices statistical effi-

ciency. It does, however, avoid aggregation problems. An advantage of this 

procedure is that it may uncover changes in the causal structure over time. 

If the nature of the relationship among variables is changing over time, esti-

mated causal effects will differ from period to period. Any such time non-

stationarity can be very damaging to inference. To check for such problems, 

one should conduct analysis in this form before moving to the alternative 

discussed below. If the causal structure does not appear to be constant over 

the entire period, there is no point in pooling observations. In such cases, 

the analyst must first attempt to identify the source of the change in causal 

structure and, if possible, modify the model to take its effects into account. 

There is a major difficulty that cannot be addressed within this and the 

previous strategy. The source of the difficulty is autocorrelation of dis-

turbances. Disturbances will tend to be autocorrelated if the variables 

omitted from the model are stable over time (cf. Heise, 1970). For example, 



we might expect the repressive power of the state to be relatively stable over 

the period of observation. If this variable were not included in the model, 

its presence in the disturbance would tend to make the errors autocorrelated. 

Whenever a lagged dependent variable is included in the model, the errors 

will be correlated with at least one of the regressors and ordinary least 

squares regression will be biased and inconsistent. The problem with the two 

approaches just discussed is that, although the analyst may acknowledge the 

existence of autocorrelation in the disturbances, he does not have enough in-

formation to test for such effects or to modify the analysis to take the prob-

lem into account. This limitation, together with the possibility of gains in 

efficiency when all the observations are used in a single model, are the 

main motivations for considering the next alternative. 

C. Pool the lag structures into a single model (more generally pooling 
g 

the time series of cross-sections). For example, conduct a least squares 

analysis on all 5N observations simultaneously. The data may be arranged 

such that the "pooled" dependent variable consists of the political violence 

scores for the first nation in 1955, 1960, 1965, and 1970, then the four scores 

for the second nation at those same times, and so on for all N nations. 

Observations for each independent variable are arranged analogously. More 

generally, there are NT observations for each regressor ( N individuals, 

or other elementary units, each measured at T points in time). 

Unlike the previous case, only a. single set of structural or causal param-

eters is estimated. The single set of parameters are substantively meaningful 

only if the analyst has reason to believe that the causal structure does not 

undergo change during the observation period. Whether or not it is desirable 

to employ such a strong hypothesis depends on the purposes of the analysis. 
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However, deductively oriented sociologists with abstract theoretical concerns 

ought to welcome the opportunity to formulate and test such "ahistoric" hypo-

theses. 

If restriction to a single set of causal parameters is appropriate, the 

pooling method yields a considerable gain in efficiency. It is immediately 

obvious, however, that one does not have 4N "independent" outcomes. Rather, 

the amount of independent variation lies somewhere between that contained in 

N and 4N independent observations. We shall see below the magnitude of 

autocorrelation of disturbances determines whether it is closer to N or 

4N . When the autocorrelation of disturbances approaches unity, one gains 

very little new information from each additional wave. When the autocorrela-

tion approaches zero, each new wave contains essentially as much new informa-

tion about the causal s tructure as the previous wave. 

Pooled models allow explicit consideration of autocorrelation problems. 

This is its main advantage over the other alternatives mentioned. To evaluate 

the potential contribution of pooled models we must proceed more formally. In 

the next section we state the conditions under which pooling is a useful pro-

cedure and collect analytic results on estimation in pooled models. In so 

doing, we will continue to contrast pooled models with the other two alterna-

tives considered here. 

IV. ANALYTIC RESULTS ON POOLED MODELS 

In this section we collect available analytic results on pooled models. 

The simplest models are considered first. The complications are introduced, 

first singly and then jointly. The models considered are those which arise 

in the "cross-lag correlation" and Coleman approaches. We begin with the fol-

lowing one-equation model: 



yit * P0 + eiyi,t-l + p2xi,t-l + Uit , (i - 1 N; t - 1,...,T) , (5) 

9 where the x. ,'s are stochastic, and the u. 's a r e unobservable distur-X y L™ 1 * » 
bances with 

uit " + vit ' a 1 1 i' t ' 

E^ - Ev i t = 0 , all i, t , 

IHjVfit * 0 , all i, i', and t , 

EMs-M*. 
r a2 , i « i' 

M- > 
0 , otherwise 

(6) 

E v i t v i ' f = 

r a2 , i - i' , t - t' v ' 
0 , otherwise 

E^iXi't * 0 ' a n d t ' 

E vit Xi't' = ° ' a L 1 a n d fc* ' 
j 

Ev. y.| = 0 , all i, i', and t . XC X y L™' JL 

With one exception, these are the usual least squares assumptions. The 

peculiar feature of this'model is the specification of the disturbance. It 

contains a unit-specific component ^ and the usual random component . 

In other words, the model contains an unobserved variable, , which is 

constant for each individual but varies across individuals. This term sum-

marizes all of the unobserved causes of Y which are relatively constant 

over time. In our substantive example, the factors summarized in ^ might 

include specific historical experiences such as the nature of the elite at the 

time of state formation, or perhaps features of the legal system. Whatever 
* r> 



the substantive context, it is quite likely that some such unobserved variables 

will be operating. To the extent that they remain constant over time, they 

will conform to the model outlined above. 

It is quite natural to extend the model to incorporate time-specific ef-

fects. These are effects which vary from period to period but which are con-

stant across units within any period. For example, level of political violence 

in every polity might be affected in the same way by widespread economic booms 

or busts. More generally, the introduction of time-specific error components 

is likely to be useful whenever all (or most) units are affected by environ-

mental variations in the same sorts of ways. 

As long as the time-specific effects behave similarly to the defined 

above, no additional analytic issues arise when both types of effects are in-

cluded. Consequently, there is no need to complicate the algebra in the dis-

cussion which follows by including time-specific terms. 

The model stated in (5-6) contains what amounts to a factor-analytic struc-

ture for the disturbances (Goldberger, 1973a: 17). In particular, disturbances 

for the same unit are correlated at the same magnitude no matter how distant 

they are in time. Unfortunately we do not yet have sufficient experience 

with panel analysis utilizing varieties of estimation technologies over a 

wide enough class of substantive situations to know how appropriate this 

error specification will be to researchers. This assumption may be unrealistic 

in long time series (where the more usual autoregressive scheme will probably 

be more appropriate). In relatively short series, as commonly found in panel 

analysis, the assumption may be a good approximation. One aim of this paper 

is to stimulate interest in examination of such problems. 

It will be convenient to employ matrix expressions for (5-6): 

Zt = + "t » ( 7 ) 



where 

yt = ^yll'y12 ylT'y21' * ** " *" 'yNl' * * * 'yNT^ ' * 

Zt-1 " ( y10' yll'" , , yl,T-l' y20 y 2 , T - l " " , y N 0 " " , y N , T - l ) l » 

*t-l = <xio»xii»"*» 1 0 » » U f • • ' xi } T_i» x20 *2,T-1 *N0*''' 'XN,T-1) ' 

and 

"t = 'ui2'*'*'UlT,U21'*"*'U2T'""*,UN1'* *"'UNT^' ' 

Qt • Ci»y t_ 1» x
t_ 1) » {where ' is an NT x 1 vector of ones} , 

J ™ ( ' % ' ̂ ' 

Further, 

Euu* = 

A 0 
0 A 

where 

• • 

0 0 . . . A 

, an (NT x NT) matrix , (8) 

2 2 2 2 2 2 a = a + a , p = cr /(a + a ) , and A p, v K -

P P 

, a (T x T) matrix 

(9) 

It is helpful in presenting available analytic results to begin with spe-

cial cases of (7) before considering the model in its entirety. We begin with 
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the case in which the lagged dependent variable does not appear in the model 

(i.e., = 0) . 

Case 1: ^ = 0 

When the lagged dependent variable does not appear in the model, it is 

.reasonable to expect that the disturbances will be uncorrelated with regres-

sors. As we have formulated the model in (6) this will be the case. Conse-

quently, the ordinary least squares estimator (OLS) of J30LS = ^ ^tZt 

is consistent. 

To consider the efficiency of OLS we must refer to the variance-covariance 

matrix of the disturbances, Eu u* . OLS is efficient if and only if —t—t 
2 

E ut^t = a * ' *-s» t*ie variance-covariance matrix of disturbances has 

constant variance and all zero covariances. Clearly, by (8-9), OLS is effi-

cient if and only if p = 0 . 

At this' point it is natural to search for a consistent estimator which 

avoids the problem in the disturbances. The existence of such an estimator is 

suggested by the fact that we can transform (8) in such a way as to produce 

"well-behaved" disturbances. What we need is to find a matrix fi which when 

applied to (7) yields 

Q- 1 / 2 y t - a 1 / 2
 S t | + o 1 / 2 u t , (10) 

E[ff 1 / 2 u^u* n 1 / 2 ] = o 2 i . (11) 

Nothing in the causal structure has been changed and we can apply ordinary 

1n*st spires to (10r>. Because of (11) OLS applied to the transformed model 

is now an efficient estimator. The gain in efficiency relative to OLS ap-

plied to (7) arises -from the explicit consideration of correlated errur. 

-12-



The procedure suggested in (10) is an application of the widely useful 

generalized least squares (GLS) approach to estimation. The application of 

GLS to pooled models is commonly advocated in the econometric and biometric 

literatures (Nerlove, 1971; Searle, 1971). 

Since we will make continued reference to the GLS estimator, we need a 

somewhat more formal representation. The GLS estimator is defined as 

JGLS - « t £ : 1 i t f f 1 If (12) 

where 

n 1 = 

A"1 o 
0 A -1 

and (cf. Hannan and Young, 1974) 

0 
0 

0 0 . . . A -1 

A = (l/rj)(IT - _U'/T) + (l/ipCM'/T) , (13) 

where T| = (1 - p) , § = (1 - p) + Tp , and J_ is a (T x 1) vector of 

ones. 

The form of the GLS transformation (13) can be intuitively motivated as 

follows. The peculiar feature of pooled models is the use of both cross-

sectional (between-unit) and longitudinal (within-unit) variation to estimate 

causal parameters. The richness of the data presents an implicit choice: 

how to weight one type of variation relative to another. Generalized least 

squares uses p to weight the two types of information. To see this, con-
-1/2 sider the case where p = 0 . Then A * —x an(* observations are 
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transformed in (10) by an identity transformation. GLS reduces to OLS where 

cross-sectional and time series variation are weighted proportionately to N 

and T (see Maddala, 1971). At the other extreme, when p = 1 , 

vations over time for each unit (as in the first of the broad approaches 

discussed in Section III). The result is a regression on grouped observa-

tions where all of the weight is placed on cross-sectional variation. In 

cases where p takes on a value 0 < p s 1 , GLS weights time series varia-

tion inversely to p . Such a weighting seems appropriate since p measures 

"redundancy" in the time series. The more redundancy, the lower the weight 

attached to longitudinal variation. 

The gain in efficiency of GLS relative to OLS arises because GLS uses a 

weighting based on population or sample information rather than an arbitrary 

weighting (cf. Goldberger, 1973b). Such a gain can be realized only if p 

is known a priori or can be estimated from sample data in a consistent (or 

unbiased) manner. There are no realistic cases where sociological research-

ers will have prior knowledge of p . So we turn to a discussion of proce-

dures for estimating p . 

The most widely used procedures for estimating p involves introducing 

dummy variables for each unit into (7): 

where y is an ((N-l)x 1) vector containing the ^ , and = (, »• • • 

and is an (NT x 1) vector with ones corresponding to observations on 

unit i and zeroes elsewhere. We point out below that estimates of y can 

be used Lo construct a useful estimator of p . But before moving to that 

discussion, we consider (14) more closely. Notice that the y.'s that give 

It is easy to show that this transformation averages obser-

yt - QfcS + Ay + V (14) 
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rise to the correlation of disturbances have been shifted out of the distur-

bance. The remaining portion of the disturbance, ^ > well-behaved. In 

particular, Ev^j. = ovI . So OLS applied to (14) is an asymptotically effi-

cient estimator (cf. Amemiya, 1967). We refer to this estimator as least 

squares with dummy variables (LSDV). 

In cases where N is moderately large, calculation of LSDV by direct 

methods will be either costly or impossible within conventional regression 

programs. An alternative approach is more generally useful. Express all 

observations as deviations from each unit's mean and apply OLS. The estimates 

of p are identical to those obtained using (13) directly and (1 can be re-

covered by operations analogous to those used in recovering the constant in 

regressions with deviation scores (see Hannan and Young, 1974). 

The results of LSDV can be used to calculate p as follows. To estimate 
2 p we need an estimate of a • Nerlove (1971) suggests 

N N 

> ~ s J - Z ^ X v n ) 2 / n • 
i»=l i=l 

2 

An obvious estimator of a^ is the sum of squared residuals from the LSDV re-

gression divided by NT . Then 

P = • <15> 

Nerlove chose p in (15) over a maximum likelihood estimate to avoid 

negative values of p (which are implausible in most applications). Unfor-

tunately the estimator in (15) is upwardly biased (at least in small samples) 

with the magnitude of the bias inversely related to p . 

Recall that GLS requires consistent estimates of p . The bias in p 

does not, however, appear to unduly damage the resulting GLS estimators 
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(Amemiya, 1967). We study this issue further below. To acknowledge the fact 

that we are using estimates of p rather than the true values, it is more 

precise to refer to this estimator j^g L S = W t ^ S t ^ " 1 St^f1 It as modlfied 

generalized least squares (MGLS). 

We are interested in comparisons between MGLS and LSDV. Amemiya (1967) 

has proven for the limiting case of N •» 1 that GLS and LSDV are both asymp-

totically efficient. But, the weighting of cross-sectional and time series 

variation seems more arbitrary than in MGLS (Maddala, 1971; Nerlove, 1971). 

Further, since one loses a degree of freedom in the stimation of each in 

LSDV, LSDV appears to "waste" degrees of freedom relative to GLS. Nerlove1s 

(1961) simulation also suggests that GLS is more efficient than LSDV in small 

samples. We investigate the small sample behavior of the two estimators below. 

Only one further issue remains to be discussed for the case = 0 . We 

have assumed throughout that disturbances are uncorrelated with lagged X . In 

many substantive cases this will not be true. When lagged X is correlated 

with ^ , OLS is inconsistent but both MGLS and LSDV are consistent. Since 

the correction for p "cleans" the equation of this specification bias, the 

choice among the estimators involves not only efficiency but also consistency 

considerations when the factor denoted may be correlated with the regressor. 

Case 2: p2 = 0 

Since the (J-̂ 's affect y^t at every period, it is clear that the lagged 

dependent variable is correlated with the disturbance. OLS applied to this 

model is inconsistent and (for p > 0), f^ is biased upwards. OLS gives 

"credit" to lagged y for the causal effects of ^L . The stronger the ef-

fects of [ĵ  relative to lagged y , the greater the upward bias. In most 

realistic cases the upward bias is quite high. 

-16-



Since both MGLS and LSDV take ^ into account (LSDV directly and MGLS 

via p ), they are both consistent estimators of . Again, both estimators 

are asymptotically efficient and choice between the two depends on knowledge 

of finite sample properties. 

Case 3: ^ ^ o , P2 ^ 0 

The "full" model does not introduce new complications. It is worth point-

ing out that the presence of ^ tends to lessen upward bias in a esti-

mated by OLS (Malinvaud, 1971:558). And, if , 32 and p are all positive, 

and will be negatively correlated (Johnston, 1971:161). So upward bias 

in OLS estimates of will tend to bias ^ downward. This means that OLS 

applied to (7) will ordinarily lead one to overstate the lagged effects of the 

dependent variable and understate the effects of other (positively correlated) 

independent variables. As in Case 2, both MGLS and LSDV are consistent and 

asymptotically efficient estimators for this case. 

The full model admits another approach to estimation. Inconsistency in 

OLS estimates arises only from the correlation of |J, and . Since we have 

assumed xfc ^ to be uncorrelated with p, , ^ is a proper "instrument" for 

yt ^ . Instrumental variables (IV) estimators for and a r e calculated 

by first regressing ^ on x
t 2

 an(^ then substituting yfc ^ , the predicted 

or "fitted" values from the first stage, into (7). Then OLS applied to this re-

vised model is IV and gives consistent estimators. Since the IV estimator does 

not correct for the correlated errors, IV is less efficient than either MGLS 

or LSDV.^ For these reasons, IV has little to recommend for the model defined 

here. 

In all three cases analytic considerations lead to a clear-cut choice of 

MGLS or LSDV over OLS (or IV). But analytic results may not be directly useful 
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for social researchers working with small samples. Both MGLS and LSDV are 

asymptotically efficient (meaning that they attain the minimum possible vari-

ability in an infinite sample). But it is important to know how the two com-

pare in moderate and small samples. Further, the consistency results are also 

large-sample results. It is conceivable that OLS may out-perform MGLS and 

LSDV in terms on bias and mean squared error in small or moderate samples. 

Nerlove (1971) applied a maximum likelihood procedure to a model similar 

to (8) with very disappointing results. While there is not reason to expect 

the method of maximum likelihood to be useful in small samples, Nerlove's 

method may not have been optimal. We are conducting further work in this 

area but for the moment, we omit any treatment of maximum likelihood. 

Case 4: Continue to focus on (7) but assume that (7) is one equation in a 
two-equation system composed of (7) and = Yq + yfc + x

t
 + w 

The addition of this second equation to (7) completes the "cross-lag" struc-

ture so widely used in social research. Our concern is with properties of esti-

mators of and when (7) does not stand alone but is embedded in the 

full causal structure. The main consequence is to complicate the role of x
t ^ • 

Because of the causal feedback, xfc ^ will no longer be uncorrelated with ufc 

(in fact, x can be written as an explicit function of ). OLS will no 

longer necessarily understate the causal importance of Xj. ^ > as in Case 3. 

Rather, it becomes much more difficult to evaluate complications arising in OLS. 

Since neither GLS nor LSDV applied to (7) correct for the correlation of ^ 

with ufc , neither are consistent estimators. 

This latest complication is an instance of the familiar simultaneous equa-

tions bias (see Goldberger, 1973a: 4). No single-equation method (such as OLS, 

MGLS, LSDV, or even "true" GLS) copes with the problem. As mentioned earlier, 



a number of simultaneous equations estimation procedure are available for such 

situations. 

In the case at hand, however, no statistical procedure will resolve the 

difficulty as the model stands. All of the causal variables are involved in 

the feedback and thus every regressor is correlated with the two disturbances. 

No "instruments" exist for consistent "first-stage" estimation as was described 

for Case 3. 

Suppose that a proper instrument for ^ does exist. That is, suppose 

that the analyst can find a variable, z , that is correlated with ^ , but 

is uncorrelated with the disturbance . We make reference again to the in-

strumental variables method. In the first stage, regress x
t ^ on z to 

produce xt ^ into (7) and use OLS. 

If there were no correlated errors in (7), use of IV would eliminate all 

inconsistency. But the errors in (7) are correlated and the lagged dependent 

variable will continue to be correlated with the disturbance. Only if p, = 0 

will IV give consistent estimates. 

It is, however, true that IV corrects for the "feedback" or simultaneity 

aspect of the estimation problem. It seems natural, then, to combine IV with 

one of the methods which corrects for the pooled disturbance correlations, 

MGLS or LSDV. In fact, both composite estimators, IV-MGLS and IV-LSDV, are 

consistent. Neither IV-MGLS nor IV-LSDV are maximally efficient. In general, 

estimators that make use of restrictions sequentially are less efficient than 

those that use them simultaneously.^ It will be important to develop applica-

tions of more efficient estimators for this case. In what follows, we restrict 

our attention to the two "synthetic" estimators IV-GLS and IV-LSDV. 

To summarize this section, we note first that pooling cross-sections in 

the "full" cross-lag model involves both the "time series" bias discussed earlier 
» 
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and "simultaneous equations bias." The combination of the two types of bias 

has not (as far as we know) been discussed in the literature. None of the 

widely used estimators (OLS, LSDV, MGLS, or IV) are consistent in this case. 

We find that a combination of IV and LSDV or IV and MGLS leads to consistent 

estimation. Neither synthetic estimator is asymptotically efficient. 

Throughout the discussion of, the four cases we have relied on large-sample 

theory. As we mentioned earlier, it is important for empirical researchers to 

obtain some information about the behavior of such estimators in small and 

moderate sized samples. Two issues are important here. We want to compare the 

efficiency of the various consistent estimators in finite samples. And we also 

want to compare the performance of the consistent estimators with those of in-

consistent estimators (e.g., OLS) which may have smaller mean squared error in 

small samples (cf. Hurd, 1972). Since these issues have not yet been dealt 

with analytically, we turn next to a Monte Carlo simulation. 

V. STRUCTURE OF THE SIMULATION 

A. The Model 

The following model allows us to study both types of bias discussed above: 

It + ' (16) 

*t-i = £ t-i Y 4 3 t - r 

where the ut behave as specified in (3), and 

2// 2 ^ 2 . 
P • V ( C V + av> * 

C o v ( uit Wi,t-l ) =* > E ^ t = C TwI ' 

Although we have not simulated the full cross-lag model, allowing the disturbances 
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from the two equations to be correlated ( l|t ^ 0 ) introduces exactly the same 

type of simultaneous equations bias as was identified in the discussion of 

Case 4. 

We chose to restrict our attention to panels with five waves and fifty 

observations per wave, i.e., T = 5 , N = 50 . Two of the parameters of the 

model, a n d Y » a r e fixed (at unity) and the remaining parameters were 

varied as follows: 

p - 0 , . 25 , . 5 , .75, .9 , .95 , 

y - 0 , . 5 , .9 , 

* • 3, .8 . 

For each of the thirty-six combinations of values of p , \ji , and , we gen-

erated one hundred samples with N • 50 , T =» 5 . The properties of the 

samples is the focus of our investigation. Further details of the simulation 

and the routines used for calculating estimators are presented in Young, 

Nielsen and Hannan (1974). 

B. The Estimators 

The estimators studied are those described above. Here we restate the main 

asymptotic results (and note methods of calculation where they are not obvious). 

1. Ordinary least squares (OLS) applied to (18). Consistent and efficient 
when p * 0 and ty • 0 ; inconsistent, otherwise. 

2. Least squares with individual constants (LSDV) applied to (18) by 
introducing dummy variables for each unit. Consistent and asymptoti-
cally efficient when ty • 0 ; inconsistent otherwise. 

3. Modified generalized least squares (MGLS) applied to (18) with p cal-
culated as in (15) from an LSDV first stage. Consistent and asymp-
totically efficient when \(i • 0 ; inconsistent otherwise. 

4. "True" generalized least squares (GLS) applied to (18) using known 
values of p . Minimum variance consistent estimator. 

5. Instrumental variables (IV) applied to (18) with Xt-1 replaced by 
"fitted values" from a regression of Xt-1 on -5t-l • Consistent 
when p • 0 ; inconsistent otherwise. 

-21-



6. IV-LSDV by applying LSDV to (18) in which xt_i has been replaced by 
fitted values. Consistent but not asymptotically efficient regardless 
of values of p and \}r . 

7. IV-MGLS by applying GLS to (18) with xt-1 replaced by fitted values 
and using p calculated from IV-LSDV estimates of ut . Consistent 
but not asymptotically efficient. 

VI. FINDINGS 

We report our findings in three forms. First, for each combination of p 

and ty we calculate mean errors (ME) for each estimator. For example, the mean 
A 

error of ^ is 1Q() 

i-1 

The ME is a summary of tendency toward directional error. Second, we likewise 
A 

compute mean squared errors (MSE) : the MSE of is 
100 

1 Y 2 
ioo L (Si " M • 

i=l 

The MSE summarizes both absolute amount of error and the variability of the 

estimator. 

Third, to simplify the reporting of tendencies in the behavior of the 

estimators we present results of regressions of mean squared errors on the 

parameter values. The regressions take the following form: 

MSE - r̂ j + T^p + + TT3(p*\jO . 

The multiplicative term (p*\p) is introduced as a simple device for locating 
12 

interaction effects. 

1. ty « 0 

First we consider the "pure" pooling problem. That is, we examine those 

conditions in which there is no simultaneous equations bias. Our simulation 

at this point corresponds closely with Nerlove's (1971). However, he set N • 25 

and T = 10 , while we have N = 50 and T = 5 . Few social science panel in-

vestigations yield even'five waves of observations. 
.V -J I - -22-



Attention should be focused on the single-equation methods (OLS, LSDV, 

and MGLS). First, notice the very poor performances of OLS estimates of both 

^ and g2 . Tables 1 and 2 make clear the very strong effect of p on the 
13 behavior of OLS. But the tendency is more marked for estimates of P^ than 

Table 1. 
A 

MEAN ERROR OF ESTIMATE FOR ft 
(lp - 0) l 

6 - .8 I 
P - 0 .25 .5 .75 .9 

OLS 
* 

.00 .09 .13 .16 .17 

LSDV -.13 -.10 -.07 -.04 -.02 

MGLS -.06 -.02 .00 .01 .01 

P = .3 
l 

P = 0 .25 .5 .75 .9 

OLS .00 . 12 .23 .33 .38 

LSDV -. 12 -.10 -.08 -.05 -.02 

MGLS -.07 -.04 -.02 -.01 .00 

* 
Figures have been rounded; values listed as . 00 actually range between .0003 and 
.0049. 
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Table 2. MEAN ERROR OF ESTIMATE FOR $ 
bp = 0) 2 

.8 

p = 0 .25 .5 .75 .9 

OLS .01 -.03 -.04 -.05 -.06 

LSDV * 
.00 .00 .00 .00 .00 

MGLS .01 .00 .00 .00 .00 

.3 

P « 0 .25 .5 .75 .9 

OLS .01 -.02 -.04 -.05 -.06 

LSDV -.01 -.01 .00 .00 .00 

MGLS .01 .00 .00 .00 .00 

Figures have been rounded; values listed as .00 actually range between .0003 and 
.0049. 

for as expected. OLS estimates of (3̂  are biased upwards and estimates 

of respond with a smaller downward movement. As we noted above, the posi-

tive correlation of ^ and xfc ^ yields a negative correlation between 

and ^2 • Thus any factor which biases upwards will bias f^ downward 

and the reverse. While results for parameter values • .8 and = .3 are 
» 
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qualitatively the same, the latter case produced, much greater upward bias in 

estimates of . These results are consistent with those reported by 

Malinvaud (1971). 

Turn next to a consideration of the estimators designed to deal with the 

pooled model. MGLS always has smaller mean error than LSDV. The difference 

between the two estimators is small for ^ but quite large in estimating 

Examination of mean errors in Table 1 shows that LSDV appears to overcor-

rect for the presence of autocorrelated error in the sense that estimates of 
A 

undershoot the mark. The likely explanation is that LSDV attributes to 

the individual dummy variables jj, part of the causal effect of the lagged % . 

There is a slight tendency for MGLS as well to underestimate . The 

explanation certainly differs from that which applies to LSDV: attention should 

be focused on the role of p from (15) in MGLS. As may be seen in Table 3, p 

Table 3. MEAN ERROR OF ESTIMATE OF 
0f> =» 0) 

$ = .8 l 
p = 0 .25 .5 .75 -9 

MGLS .32 .32 .22 .20 

B 3 .3 l 
P = .25 .5 .75 .9 

MGLS .23 .22 .15 .07 -02 

t - 2 5 -



is biased upwards. The upward bias in p decreases with increases in p , 

and the downward bias in the MGLS estimates of decreases with increasing 

p . This latter observation is consistent with the explanation that upwardly 

biased p values produce an overcorrection which will lead to underestimates 

of PL • 

Table 4 summarizes the quality of the one-equation estimators for the pure 

pooling problem. The OLS, LSDV and MGLS estimators have the same rank-order 

of quality as found in Tables 1 and 2. The true GLS estimator is shown as a 

benchmark, since it is asymptotically efficient and consistent, and it employs 

the "true" value of p . Two items of interest may be found in estimates from 

the GLS estimation. First, the low values of the mean squared error indicate 

low amounts of sampling error in the simulation. Second, bias in the estima-

tion of p appears to have little effect upon the quality of the MGLS estima-

tor, since the differences between GLS and MGLS are small. 

Table 4. M E M SQUARED ERROR AVERAGED OVER ALL CONDITIONS 
(where p t 0, if' = 0, # of cases = 1000) 

A A 

3 6 l 2 

OLS .059 .005 

LSDV .005 .001 

MGLS .003 .001 

GLS .002 .001 

It is simple to summarize our findings for the pure pooling case. Modi-

fied generalized least squares consistently outperforms LSDV. Both MGLS and 



> 

LSDV are far superior to OLS. The use of the convenient p from (15) does 

not appear to incur great costs, particularly with high true values of p . 

Presumably most sociological investigators do face high p values. 

2. in + 0 

We next introduce simultaneous equations bias into the structure just 

examined. Since our attention is focused on the estimation of panel models 

we do not investigate "pure" simultaneous equations bias but only the combina-

tion of the two sources of error. 

In broad terms we find that allowing \|t t 0 , that is, introducing simul-

taneous equations bias involving xfc ^ , produces very large magnitudes of 

error, particularly in estimates of • ^ comparison of the single-equation 

estimators in Tables 4 and 5 shows that the presence of the simultaneity problem 

Table 5. MEAH SQUARED ERROR AVERAGED OVER ALL CONDITIONS 
(where p i 0, ip 1 0, # of cases = 2000) 

6 3 1 2 

OLS .038 .144 

LSDV .003 .124 

MGLS .001 .131 

IV .065 .156 

IV-LSDV .074 .266 

IV-MGLS .019 .089 

» -27-



produces relatively small changes in the average mean squared error of , 

but quite large increases in the MSE of P2 • There exists no benchmark esti-

mator comparable to GLS in Table 4 with which to compare the results of this 

part of the simulation. Here GLS is no longer consistent, as already noted. 

One could construct an IV-GLS estimator using fitted values of and known 

"true" values of p , but this estimator is not asymptotically efficient. This 

latter estimator would thus not allow one to distinguish between the potential 

inefficiency of an IV estimator and sampling error within the simulation. 

We begin with another contrast of the single-equation methods. First, OLS 

is inferior over the range of parameter values to MGLS and to LSDV (in Table 5). 

Thus, the choice among single-equation methods is between MGLS and LSDV. Both 

estimators, in these cases, tend to underestimate 3]_ and overestimate p2 » 

as may be seen in Tables 6 and 7. But, LSDV underestimates 6j_ more than does 

MGLS while MGLS overestimates g2 more than does LSDV. 

The behavior of the estimators over combinations of p and i[r is at least 

as interesting as the gross comparisons between estimators. It is most conve-

niait to focus on the regression results presented in Tables 8 and 9. Since re-

sults of regressions for the case • .3 were similar to those for 3j_ • -8 , 

only the latter are presented here. 

Consider first MSE in estimates of §j_ . As in the case iji » 0 , OLS 

reacts differently to increases in p than does LSDV and MGLS. As p in-

creases, MSE (in ) for OLS increases but the corresponding MSE for LSDV and 

MGLS decreases. One would expect that an estimator such as OLS which does not 

correct for an. analytical difficulty such as p would do increasingly worse in 

the face of greater values of p . Further, increases in ty do not have a 

pari.i«,iiiariy strong direct effect on any of the three single-equation estima-

tors. But, the combined effects of p and ty cannot be completely accounted 
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Table 6. MEAN 
($ = 1 

ERROR OF 
• .8) 

ESTIMATE FOR 
A 

\jj m 0 0 0 0 0 

P m 0 .25 .5 .75 .9 

OLS .00 .09 .13 .16 .17 
LSDV -.13 -.10 -.07 -.04 -.02 
MGLS -.06 -.02 .00 .01 .01 
IV .00 .10 .14 .17 .18 
IV-LSDV -.30 -.28 -.27 -.25 -.24 
IV-MGLS -.17 -.14 -.12 -.10 -.09 

* = .5 .5 .5 .5 .5 

P = 0 .25 .5 .75 .9 

OLS -.02 .07 .11 .14 .15 
LSDV -.12 -.10 -.08 -.05 -.03 
MGLS -.07 -.04 -.02 -.01 -.01 
IV .00 . 10 .14 .17 .18 
IV-LSDV -.33 -.32 -.31 -.28 -.26 
IV-MGLS -.20 -.17 -.15 -.13 -.11 

= .9 .9 .9 .9 .9 
P - 0 .25 .5 .75 .9 

OLS -.03 .05 .09 .12 . 14 
LSDV -.09 -.08 -.07 -.05 -.03 
MGLS -.06 -.04 -.04 -.03 -.03 
IV .00 . 10 < .14 .16 .18 
IV-LSDV -.36 -.34 -.33 -.31 -.28 
IV-MGLS -.22 -.19 

t 

-.17 

-29-

-. 15 -.12 



A 

Table 7. MEAN ERROR OF 
(6i - .8) 

ESTIMATE FOR 82 

= 0 0 0 0 0 
P - 0 .25 .5 .75 .9 

OLS .01 -.03 -.04 -.05 -.06 
LSDV .00 .00 .00 .00 .00 
MGLS .01 .00 .00 .00 .00 
IV -.02 -.24 -.32 -.37 -.38 
IV-LSDV .62 .59 .56 .52 .50 
IV-MGLS .37 .31 .27 .23 .21 

4> - .5 • .5 .5 .5 .5 
P = 0 .25 .5 .75 .9 

OLS .43 .37 .29 .19 .11 
LSDV .41 .35 .29 .21 .13 
MGLS .43 .38 .31 .22 .14 
IV -.03 -.24 -.33 -.38 -.40 
IV-LSDV .69 .67 .64 .59 .55 
IV-MGLS .42 .36 .32 .28 .24 

rp « .9 .9 .9 .9 .9 
P = 0 .25 .5 .75 .9 

OLS .77 .69 .57 .41 .25 
LSDV .74 .65 .53 .38 .24 
MGLS .77 .67 .54 .38 .24 
IV -.04 -.25 -.33 -.38 -.41 
IV-LSDV .71 .69 .66 .62 .57 
IV-MGLS .43 .38 .34 .30 .26 
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Table 8. REGRESSION OF MEAN SQUARED ERROR IN $ Oil THE PARAMETERS 
(// of cases = 1800, 3 = .8) 1 

Mean Squared 2 
Error in; R 

OLS = .0002 + .0309p + .0027^- .0131(p*\|0 .92 
(.0003) (.0004) (.0005) 

LSDV = .0171 - .0189p - .0088ij> + .0114(p*iJO .68 
(.0004) (.0004) (.0006) 

MGLS = .0032 - .0038pf+ .0003^ + .0005(p*iJ,)T .45 
(.0002) (.0002) (.0003) 

IV = .0024 + .0325p - .0008^f + .0013(p*i|>)f .83 
(.0005) (.0005) (.0008) 

IV-LSDV = .0919 - .0383p + .0481^ - .0235(p*ij>) .33 
(.0033) (.0038) (.0057) 

IV-MGLS - .0293 - .0211p + .0213^ - .0156(p*iJ/) .36 
(.0016) (.0018) (.0028) 

'Null hypothesis it = 0 not rejected at .001 level. 
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Table 9. REGRESSION OF MEAN SQUARED ERROR IN 3 ON THE PARAMETERS 
of cases = 1800, £ = .8) 

l 

Mean Squared 2 
Error in: R 

OLS - -.0419 + ,0414p + .6612\J> - .6529(p*i|>) .92 
(.0055) (.0060) (.0092) 

LSDV - -.0377 - .0388p + .6043^ - .6013(p*i|j) .92 
(.0048) (.0052) (.0080) 

MGLS = -.0381 + .0383p + .6380^ - .6539(p*iJ>) .93 
(.0047) (.0052) (.0079) 

IV = .0378 +:.1408p + . 0202^ + .0142(p*^)f .19 
(.0120) (.0132) (.0202) 

IV-LSDV = .4471 - .1366p + .191(ty - .0997( p^) t .10 
(.0311) (.0343) (.0523) 

IV-MGLS = .1667 - .1124p + .0098^ - .0536(p*^)'i" .15 
(.0139) (.0154) (.0234) 

'Null hypothesis it = 0 not rejected at .001 level. 
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for by the two additive effects. That is, p and i|f "interact" to produce 

consequences which cannot be anticipated from consideration of the distinct 

effects of each. And, these interaction effects are opposite in sign for OLS 

as opposed to LSDV and MGLS. Combinations of high p and \|j values decrease 

MSE (of ) for OLS but increase MSE for the other two estimators. This 

means that the quality of the LSDV and MGLS estimators are damaged by the 

.joint presence of the two analytic difficulties (autocorrelation and simul-

taneity) while that of OLS is actually improved. But, recall that LSDV and 

MGLS are still superior to OLS even at high levels of p and i|f . In other 

words, while the differences between OLS and either MGLS or LSDV decrease as 

p and \|t increase, the ranking of the estimators does not change. 

Estimation of f^ involves a very different pattern. Increases in both 

p and \|i increase mean squared error for all three estimators. But the i|i 

effects are many magnitudes greater. Surprisingly, we find strong negative 

interaction effects for all three estimators. In fact, the slopes of the inter-

action effects are in each case similar in magnitude to those of ty . This is 

quite interesting because it suggests that the biasing effects of simultaneity 

can be considerably offset by the presence of autocorrelation. In other words, 

although each problem is damaging in isolation from the other, the combination 

of the two tends to be less damaging to inference than at least the pure simul-

taneity. Examination of Table 7 makes this plain. 

Next, consider the instrumental variables (IV) estimator. It is consistent 

only when p = 0 . Tables 8 and 9 show that increases in p increase the MSE 
A A 

for both and ^ f°r IV estimator. It seems reasonable that IV is 

sensitive to increases in the problem for which it does not correct (i.e., 

increases in p ). Conversely, IV is designed to deal with nonzero values of 

i(f , and the MSE of the IV estimator does not appear to depend systematically on 

either \|i or ( p*ijt )*. 



The overall performance of the IV estimator is in sharp contrast with the 

single-equation methods, as may be seen by a return to Table 5. Although OLS, 

LSDV, MGLS, and IV are all inconsistent when p ^ 0 and f ^ 0 , they differ 

considerably in quality. The IV estimator is the least efficient of the four 

methods. 

Finally, we turn to the estimators which are consistent when both p 0 

and ty ^ 0 , IV-LSDV and IV-MGLS. The most important result is the astounding 

contrast between IV-LSDV and IV-MGLS. While IV-MGLS has by far the lowest 
A A 

average MSE for and ^ across conditions, IV-LSDV has the highest MSE 
A A 

averages for both (3̂  and ^ • Thus, over the combinations of parameter 

values studies, IV-LSDV has nothing to recommend it. At the same time IV-MGLS 

is clearly superior to all other methods studied in the condition p / 0 , 

M O . 

Despite the radical differences in quality, IV-LSDV and IV-MGLS appear to 

have qualitatively similar performances in the face of changes in parameter 

values. Both IV-LSDV and IV-MGLS systematically underestimate ^ and over-

estimate > as n^y be seen in Tables 6 and 7. In each case, according to 

Tables 8 and 9, p has a negative effect, ty a positive effect, and ( p*i|f ) 

an insignificant effect. 

VII. CONCLUSIONS 

The cross-lag panel model is of central importance to research which fo-

cuses upon dynamic causal processes. This model involves lagged X , recipro-

cal causation and lagged dependent variables. Most often, the estimation of 

panel roo^e1/; involves both time series and simultaneous equations problems. 

Social researchers attracted to the cross-lag model must learn to deal with the 

combination of the two problems. 



We began with the premise that multi-wave data such as that used in the 

cross-lag panel model can often be best exploited when pooled into a single 

estimation. We limited our attention to pooling of cross-sections where there 

are individual-specific but not time period-specific components to error. 

This model of error components deals with stability in disturbances due only 

to time-invariant properties of sample units. It is likely to be a good ap-

proximation when the omitted unit-specific causes of Y change considerably 

more slowly than X and Y . 

Whether pooling results in improved inference depends on at least three 

things. It depends on the stability of the causal processes over all waves 

of observations. It depends on one's ability to model the peculiar error 

characteristics of pooled data. And, finally, it depends on one's ability 

to design and modify statistical models to cope with the complicated error 

structures. Our research focused on the third issue. 

The disturbance structure of a pooled model makes OLS inappropriate even 

when there is no reciprocal causation (i.e., no possibility of simultaneous 

equations bias). In this restricted case, both LSDV and MGLS are consistent 

and asymptotically efficient estimators. Choice between the two (and between 

either and the inconsistent OLS) depends on their small-sample properties. 

Our simulation yields results which agree with Nerlove's (1971) simulation even 

though here N = 50 and T = 5 , while he used N =» 25 and T = 10 . We 

find, in particular, that the performance of OLS is poor enough to cast doubt 

on the many published panel studies which do not correct for autocorrelation. 

Further, while both LSDV and MGLS surpass OLS, the modified generalized least 

squares procedure is superior. In fact, MGLS estimates, using biased estimates 

of p , are quite close to those of "true" GLS. 
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We also analyzed the intersection of the autocorrelation problem with 

simultaneity. Both IV-LSDV and IV-MGLS procedures are consistent but not 

asymptotically efficient estimators for the "full" cross-lag model. Since 

the behavior of the two "synthetic" estimators has apparently not been pre-

viously studied, we have no a priori information concerning their small sample 

behavior. We find the IV-MGLS procedure vastly superior to IV-LSDV over the 

whole range of parameter combinations. Further, the IV-MGLS procedure very 

plainly outperforms the inconsistent estimators studied. 

Our results offer strong support for the view that application of the 

modified generalized least squares approach to panel estimation is preferable 

to the available alternatives. This appears to be true both when MGLS is 

used to correct for the "pure" pooling problems and when MGLS is used in com-

bination with an instrumental variables estimator to deal with the combination 

of time series and simultaneous equations complications. 

FOOTNOTES 

good nontechnical discussion of the identification problem in both sta-
tic and dynamic models is presented by Blalock (1969: Chapters 4-5). 

2 
It appears that one pays a very heavy price for using "imprc; ̂ r" instru-

ments. More precisely, instrumental variables methods seem to sutler more 
seriously from specification error than do the more straightforward ordinary 
least squares procedures. See, for example, the simulations reported by 
Blalock, Wells, and Carter (1970) and Hurd (1972). 

3 
Whether or not a lagged dependent variable will serve as a useful instru-

ment for unraveling patterns of reciprocal causation depends entirely on the 
autocorrelation of disturbances. When the disturbances are uncorrelated, the 
lagged values are perfectly appropriate instruments. 

4 
The usual assertion is that at least thirty time periods must be observed 

for meaningful time series analysis. 

arc assuming here that X is fixed over time. For other cases, see 
Coleman (1968). 
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Coleman's method involves substituting ordinary least squares estimates 
of (3) into (2). This procedure involves non-linear operations on the estimators. 
Unfortunately, least squares estimators do not retain optimal statistical proper-
ties under such transformations. Maximum likelihood estimation is clearly 
preferable. 

^Recently a number of researchers (Duncan, 1972; Kenny, 1973; Hannan, 
Rubinson and Warren, 1974) have applied path analysis to the estimation of multi-
wave panels containing unobservable variables. But even three-wave panels pro-
duce unwieldy algebraic structures. We fear that this work has done nothing 
to encourage researchers to employ multiple waves. 

g 
The pooling of cross-sections and time series has been discussed for some 

time in the econometrics literature. See, for example, Kuh (1959), Balestra 
and Nerlove (1966) , Wallace and Hussein (1969), Maddala (1971) and Nerlove 
(1971). We rely heavily on this literature in the analytic discussion that 
follows. 

9 
It is more usual to begin with a framework in which the are 

fixed. But, our point of reference is with the cross-lag model in which x^t 
is necessarily a stochastic variable. All of the same results hold at least 
for special cases when we allow the to be stochastic but we must evalu-
ate not expectations but the limits of probability distributions (denoted plim). 

^Note that also IV wastes a whole wave of observations in the first 
stage. This exacerbates the inefficiency of IV. 

^Estimators which use constraints sequentially are termed "limited-
information" estimators while those that use them jointly are called "full-
information methods." The latter are always more efficient than the former 
when the constraints hold in the population. 

12 2 2 2 Other regression equations containing terms in p , ty and (p*i|0 
were also examined. These equations did not change the analysis below and are 
therefore not reported here. 

13 
Results for P= .95 were so similar to those for p^ ~ .9 that they 

are not shown in Tables 1, 2, 3, 6, 7. 

I 
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