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Nomenclature 

IGain daily internal gain per dwelling unit (Btu/day) 

CFA conditioned floor area (ft2) 

Nbr number of bedrooms 

SLA specific leakage area (unitless) 

L effective leakage area (ft2) 

Reff  effective resistance of the slab (hr-ft2-oF/Btu) 

A area of the slab (ft2) 

F2 perimeter conduction factor (Btu/hr-oF-ft) 

Pexp  exposed perimeter (ft) 

Ueff effective U-value of the slab (Btu/hr-ft2-oF) 

Rus   actual slab resistance (hr-ft2-oF/Btu) 

Rslab resistance of 4in concrete (hr-ft2-oF/Btu) 

Rcarpet resistance of the carpet (hr-ft2-oF/Btu) 

Rfilm  resistance of the inside air film (hr-ft2-oF/Btu) 

Rsoil resistance of the soil (hr-ft2-oF/Btu) 

Rfic  resistance of the fictitious insulation layer (hr-ft2-oF/Btu) 

GI ground isolated 

EP modeled with EnergyPlus 

D2 modeled with DOE-2 

TR modeled with TRNSYS 

GCW ground coupled with Winkelmann’s slab-on-grade model 

GCS ground coupled with Slab model 

-eit- ground coupled by external iteration of EnergyPlus and Slab 

-iit- ground coupled by a single internal iteration of EnergyPlus and Slab 

-wtEv evapotranspiration flag of Slab is on 

-wotEv evapotranspiration flag of Slab is off 

GCT ground coupled with TRNSYS slab-on-grade model 

GCTh hourly TRNSYS slab/soil interface temperatures entered into EnergyPlus 

GCTm monthly TRNSYS slab/soil interface temperatures entered into EnergyPlus 

Qslab/zair heat transfer between the slab and the zone air 

Qsoil/slab heat transfer between the soil and the slab 

Qfm(s) monthly average floor heat flux(es) 

Tam(s) monthly average outside air temperature(s) 

Tg(s) monthly average deep ground temperature(s) calculated by DOE-2 using Kasuda approach 

[22] Tslab/soil(s) monthly average interface temperature(s) between the soil and the slab 

Tzair zone air temperatures 

Ueffective effective conductivity of the underground surface 

Qmod floor heat flux at 78°F steady state zone air temperature 

QLOADS floor heat flux at 70°F steady state zone air temperature 

Tmod 78°F constant zone air temperature  

TLOADS the 70°F default constant zone air temperature that DOE-2 LOADS uses 

 



 

February 2012 Energy Systems Laboratory, The Texas A&M University System 

 

1. Organization of the Report 

This report consists of two sections.  The first section is the introduction to the significance of the topic. 

The second section is a comparative analysis between DOE-2, EnergyPlus and TRNSYS programs for 

slab-on-grade heat transfer in empty sealed boxes in four U.S. climates.  

2. Introduction 

Ground coupled heat transfer (GCHT) through concrete floor slabs can be a significant component of the 

total load for heating or cooling in low-rise residential buildings.  For a contemporary code or above code 

house, ground-coupled heat losses may account for 30%–50% of the total heat loss [1].  Ground coupling 

is still considered a hard-to-model phenomenon in building energy simulation since it involves three-

dimensional thermal conduction, moisture transport, longtime constants and heat storage properties of the 

ground [2].  Over the years, many researchers worked on the development of slab-on-grade models.  

Some used simplified methods for slab-on-grade load calculations [3-5]; whereas others developed more 

detailed models [6].  For an uninsulated slab-on-grade building, the range of disagreement among 

simulation tools is estimated to be 25%-60% or higher for simplified models versus detailed models [2].     

This study compared EnergyPlus and DOE-2.1e (DOE-2) GCHT for slab-on-grade low-rise residential 

buildings. DOE-2 has been used for more than three decades in design studies, analysis of retrofit 

opportunities and developing and testing standards [7].  In 1996, the U.S.D.O.E.1 initiated support for the 

development of EnergyPlus, which was a new program based on the best features of DOE-2 and BLAST 

[8].  The shift from DOE-2 to EnergyPlus raised questions in the simulation community on the 

differences between these two simulation programs [9-11].  Ground coupled heat transfer is an area that 

EnergyPlus differs significantly from DOE-2.  EnergyPlus calculates z-transfer function coefficients to 

compute the unsteady ground coupled surface temperatures [12]; whereas DOE-2 sets the temperatures of 

the ground coupled surfaces as steady [13].  The slab-on-grade GCHT models of DOE-2 and EnergyPlus 

have been compared separately with other programs in order to maintain consistency among the results of 

current simulation tools for identical cases [2, 14-17].  EnergyPlus and DOE-2 have been compared with 

each other based on thermal loads, HVAC systems and fuel-fired furnaces using the test cases defined in 

ANSI2/ASHRAE Standard 140-20073, which were “effectively decoupled thermally from the ground” 

[17, 18].  This study extends the previous studies by comparing EnergyPlus and DOE-2 slab-on-grade 

heat transfer based on the results obtained from IECC4 [19] compliant residential buildings in four 

climates of the U.S.  In these comparisons, the TRNSYS slab-on-grade model is used as the truth standard 

for slab-on-grade heat transfer modeling.  The reliabilities of the DOE-2 and EnergyPlus slab-on-grade 

models are then discussed and recommendations are made for the building energy modelers.  

This study is divided in two sections.  In Section I, empty, adiabatic, ground coupled sealed boxes were 

modeled using DOE-2, EnergyPlus and TRNSYS programs in order to isolate the slab-on-grade heat 

transfer from other building load components and compare it between these three programs.  In these 

comparisons, the TRNSYS slab-on-grade model was assumed to be the truth standard for slab-on-grade 

heat transfer modeling.  The results of the DOE-2 and EnergyPlus slab-on-grade models were then 

evaluated based on the closeness of their results to those of the TRNSYS slab-on-grade model.   

In Section II, load components were added to the sealed boxes modeled in Section I to convert them into 

fully loaded IECC4 [19] compliant houses.  The effect of slab-on-grade heat transfer on thermal loads of 

these houses was then quantified and compared between the DOE-2, EnergyPlus and TRNSYS programs.  

The findings of this section provided the code users an insight to estimate and understand the thermal load 
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differences they will obtain if EnergyPlus replaces DOE-2 in energy code compliance calculations of 

low-rise slab-on-grade residential buildings.  

   

This report includes the results of the first section (Section I) of this study. 

 

 

 

3. Modeling of the sealed boxes 

An empty, ground coupled sealed box with dimensions of 20m x 20m x 3m was modeled with DOE-2, 

EnergyPlus and TRNSYS programs in hot-humid, hot-dry, temperate and cold climates of the U.S. with 

the building envelope features required by the International Energy Conservation Code (IECC) 2009.  

These sealed boxes were located in Austin, TX; Phoenix, AZ; Chicago, IL; and Columbia Falls, MT to 

represent the hot-humid, the hot-dry, the temperate and the cold climate respectively.  Table 1 lists the 

envelope features and Table 2 describes the construction materials of these boxes.  The zone air 

temperature was set to 23°C in these boxes throughout the year and their resulting ground coupling loads 

were compared between the results of DOE-2, EnergyPlus and TRNSYS programs.    

The sealed boxes modeled in this section had neither infiltration nor ventilation.  They had no windows, 

lights, equipment or occupants.  The walls and the ceilings were assigned as adiabatic surfaces and 

conductive heat transfer was allowed only through the floor.  The thermal storages of the sealed boxes 

were also negligible when compared to the slab-on-grade heat transfer.  Thus, the thermal loads of these 

boxes were driven exclusively by the slab-on-grade heat transfer.  In order to quantify the differences 

between the slab-on-grade models in this study, we, therefore, compared the total sensible thermal loads 

of these sealed boxes (Qsens) with each other.  The corresponding monthly average floor heat fluxes in 

each model were also plotted. 

 

 

Table 1. Features of the Building Envelope. 
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Table 2. Properties of the materials used in the building envelope. 

 
 

 

Three primary models were compared in this section.   

1) DOE-2 with Winkelmann’s slab-on-grade model (D2-GCW) 

2) EnergyPlus with the Slab model (EP-GCS) 
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3) TRNSYS with the TRNSYS slab-on-grade model (TR-GCT) 

There were two major reasons why the GCHT (Qfloor) differed between the above mentioned three 

models.  First, the DOE-2, EnergyPlus and TRNSYS programs calculated the heat transfer between the 

slab and the zone air (Qslab/zair) differently.  Second, Winkelmann’s model, the Slab model and the 

TRNSYS slab-on-grade model calculated the heat transfer between the soil and the slab (Qsoil/slab) 

differently.  In order to isolate the effects of Qsoil/slab and Qslab/zair calculation differences and to examine 

them separately, two intermediate models were introduced to the study.  These models were EnergyPlus 

with Winkelmann’s slab-on-grade model (EP-GCW) and EnergyPlus with the TRNSYS slab-on-grade 

model (EP-GCT).  Using these two intermediate models, the comparison process was then divided into 

two steps.  These steps were: 

Step 1: The same slab-on-grade model was used with different aboveground energy modeling programs 

and then the resulting Qsens were compared.  Thus, the effect of Qslab/zair calculation differences between 

programs were isolated and quantified with two comparisons:  

1) The EP-GCW model vs the D2-GCW model:  

-quantified the Qslab/zair calculation differences between EnergyPlus and DOE-2. 

2) The EP-GCT model vs the TR-GCT model:  

  -quantified the Qslab/zair calculation differences between EnergyPlus and TRNSYS. 

 

Step 2: The same above ground energy modeling program (EnergyPlus) was used with different slab-on-

grade models (Winkelmann’s, Slab and TRNSYS slab-on-grade models) and the resulting Qsens were 

compared.  Thus, the Qsoil/slab calculation differences between programs were isolated and quantified.  This 

step included two comparisons: 

1) The EP-GCW model vs the EP-GCT model:  

 -quantified the Qsoil/slab calculation differences between Winkelmann’s model and the TRNSYS 

slab-on-grade model.  

2) The EP-GCS model vs the EP-GCT model:  

  -quantified the Qsoil/slab calculation differences between the Slab model and the TRNSYS slab-on-

grade model. 

3.1. Winkelmann’s slab-on-grade model 

In this study, Winkelmann’s slab-on-grade model was used in DOE-2 (D2-GCW) and in EnergyPlus (EP-

GCW).  In order to apply this model in both programs, the perimeter conduction factors (F2) are selected 

from the list of Huang et al. [20] for the sealed boxes based on their floor insulation configuration and 

foundation depth.  These values were determined to be 1.33 W/m-K (0.77 Btu/hr.oF.ft) for the Austin, TX 

and Phoenix, AZ boxes, 0.64 W/m-K (0.37 Btu/hr.oF.ft) for the Columbia Falls, MT box and 0.85 W/m-K 

(0.49 Btu/hr.oF.ft) for the Chicago, IL box.  Using these F2 values, the effective resistance (Reff) values 

for the floors of these boxes were then calculated using the Equation 1.  

Reff = A/(F2 x Pexp) ………..(Equation 1) 

Then, the effective U-values of the floors (Ueff) were calculated using the Equation 2.  

Ueff = 1/Reff …………….... (Equation 2) 

Assuming that the air film resistance is 0.136m2-K/W (0.77 hr-ft2-oF/Btu), the actual slab resistance (Rus) 

was then calculated as 0.213m2-K/W (1.21 hr-ft2-oF/Btu) from the Equation 3.  

 Rus = Rslab + Rcarpet + Rfilm ………... (Equation 3)  
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The resistance of the 12 inch soil layer (Rsoil) was assumed as 0.176m2-K/W (1 hr-ft2-oF/Btu).  The 

resistances of the fictitious layers (Rfic) under the soil layers were then calculated using the Equation 4.  

       Rfic = Reff - Rus - Rsoil ……...... (Equation 4) 

The calculated Rfic values were directly entered into DOE-2 and EnergyPlus as inputs.  The Ueff values 

were, however, entered only into DOE-2.  The underground floor constructions were then modeled with 

three layers both in DOE-2 and EnergyPlus.  These layers were 1) the massless fictitious insulation layer 

with the Rfic resistance, 2) the 1 ft (0.3 m) soil layer and 3) the 4 in (0.1 m) concrete slab.  

3.2. The Slab model of EnergyPlus 

In this study, the Slab preprocessor of EnergyPlus was used with EnergyPlus version 5.0.0.031 (EP-

GCS).  In this version, EnergyPlus program is integrated with the Slab program.  EnergyPlus does a 

single internal automatic iteration with the Slab program (EP-GCSiit) for slab-on-grade buildings.  

EnergyPlus documentation, however, does not provide information on whether there are any internal 

adjustments in this combined model for quick convergence.   

In this study, in order to have full control over the iteration process, EnergyPlus was iterated with the Slab 

program externally by writing a code in Python (EP-GCSeit).  In these external iterations, first, the main 

EnergyPlus input file was run to obtain monthly average zone air temperatures. The zone air temperatures 

were then entered into the Slab input file and the Slab program was run. The monthly average ground 

temperatures calculated by Slab were then reentered into the main EnergyPlus input file and EnergyPlus 

was rerun with the new ground temperatures. EnergyPlus was iterated with Slab until the difference 

between the monthly average zone air temperatures calculated by the last two EnergyPlus runs were 

0.0001oC or lower.   

The course material for EnergyPlus [21] describes three different methods for iterating EnergyPlus with 

the Slab program (EP-GCSeit).  These methods differ only in the initial EnergyPlus run.  The first method 

recommended assigning 18oC for the monthly average ground temperatures in the initial run.  The second 

method recommended assigning a high insulation layer underneath the slab in the initial run.  The third 

method recommended simulating the slab as an interior surface in the initial run. In this study, test runs 

were made using all of these three methods.  The second method, where a high insulation layer is added 

underneath the slab in the first EnergyPlus run, was found to need fewer iterations to achieve a 

convergence of 0.0001oC.  Therefore, it was selected and used in the study.  A high resistance (500 m2-

K/W) insulation layer was placed underneath the slab in the initial EnergyPlus run.  The insulation layer 

was then removed in the later runs and the iteration was continued until the convergence (within 

0.0001oC) was achieved.   

For each climate, both the internally iterated and the externally iterated EP-GCS models were used in this 

study.  Each of these models was run with and without evaporative transpiration (evapotranspiration).  

Thus, the following four runs were done for each location.  

 

 -iitwtEv: EnergyPlus iterated with the Slab program internally considering evapotranspiration 

 -eitwtEv: EnergyPlus iterated with the Slab program externally considering evapotranspiration 

 -iitwotEv: EnergyPlus iterated with the Slab program internally disregarding evapotranspiration 

 -eitwotEv: EnergyPlus iterated with the Slab program externally disregarding evapotranspiration 
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In all of these runs, the floor model required two construction layers: 1) a 0.1m (4 in) concrete slab with a 

thermal resistance value of 0.076 m2-K/W (0.433 hr-ft2-oF), and 2) a massless carpet with a resistance of 

0.3 m2-K/W (1.702 hr-ft2-oF).  The physical properties of the slab and soil (SL) used in the Slab model are 

listed in Table 2.   

In order to reflect the typical user behavior, the default values of the Slab program were used for multiple 

parameters.  The surface albedo was assumed to be 0.379 with snow and 0.158 without snow.  The 

surface emissivity with/without snow was 0.9.  The surface roughness was assumed to be 0.03 with snow 

and 0.75 without snow.  The indoor convection coefficient was 9.26 upward and 6.13 downward.  The 

slab convergence was 0.1.  The distance from the edge of the slab to the domain edge and the depth of the 

region below the slab were assigned to be 15 m.  The annual average outside air temperature of each city 

was then entered as the deep ground temperature (TDEEPin) of that city.  These values were 20.1°C, 

22.5°C, 9.8°C and 12.1°C for Austin, Phoenix, Chicago and Montana respectively.  The ground surface 

heat transfer coefficient was automatically calculated by the program.   

3.3. The TRNSYS slab-on-grade model 

The ground coupled test cases were modeled in TRNSYS version 17-00-0019 (TR-GCT) by using the Type 

49 slab-on-grade model with the Type 56 multi-zone building model.  In order to compare the results of 

the TRNSYS slab-on-grade model with the other slab-on-grade models, the hourly (EP-GCTh) and the 

monthly average (EP-GCTm) slab/soil interface temperatures of the TR-GCT model were also entered 

into EnergyPlus.   

The TRNSYS slab-on-grade model is a finite difference model; therefore, the initial temperatures of the 

various soil nodes make a significant difference on the calculated heat transfer.  For this reason, it is 

necessary to run the model for multiple years until the ground temperature profiles of the last two years 

are within an acceptable convergence tolerance.  The IEA Task work [2] showed that, in TRNSYS runs, 

less than 0.2% change occurs after 5 years.  Based on this finding, all TRNSYS simulations were run for 5 

years and the results of the 5th run were presented.  

The node sizes of TRNSYS slab-on-grade model have been determined for the horizontal and vertical 

directions through a set of initial test runs.  The smallest node size along the perimeter of the slab was 

finally set to 0.1m.  The distance between the nodes was multiplied by a factor of 2 as the nodes expanded 

away from the slab perimeter.  The near-field far-field boundary was defined as “conductive” in all x, y 

and z axes.  In TRNSYS, deep ground temperature is assumed to be very close to the yearly average 

outside air temperature.  Therefore, the yearly average outside air temperatures were calculated for all 

four climates and entered into the Type 49 models as the deep ground (average surface soil) temperatures.  

In TRNSYS, the amplitude of the annual surface temperature profile of the soil is assumed to be equal to 

the half of the maximum monthly average outside air temperature minus one half of the minimum 

monthly average outside air temperature.  These values were calculated to be 9.3 deltaoC, 11.0 deltaoC, 

14.1 deltaoC and 14.1 deltaoC for Austin, Phoenix, Chicago and Columbia Falls respectively and entered 

into the Type 49 models.  The soil temperature was also assumed to be unaffected by the building at a 

distance of 15m beneath from the bottom of the footer in the vertical direction and 15m from the edge of 

the building in horizontal direction. 

4. Results and discussion 

The results of the study are discussed in two sections: 1) The Sealed Boxes and 2) The Fully Loaded 

Houses.  The first section presents the results obtained for the adiabatic, ground coupled, sealed boxes and 

compares the three slab-on-grade models by isolating the ground coupling effect.  The second section 
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presents the results obtained for the fully loaded code-compliant houses and quantifies the significance of 

the discrepancies in slab-on-grade heat transfer modeling relative to the fully loaded building energy 

requirement.  This report includes the results for the sealed boxes.  The abbreviations used in this section 

are explained in the nomenclature section of this paper and the generation of the results from the program 

outputs is described below. 

The DOE-2 thermal loads presented in this study were obtained from the System Monthly Loads 

Summary (SS-A) reports of DOE-2 after “SUM” was assigned to the test houses as the “system-type”.  

Similarly, the thermal loads of the EnergyPlus houses were obtained from the “Zone/Sys Sensible 

Heating Energy” and “Zone/Sys Sensible Cooling Energy” reports of EnergyPlus after the “Ideal Loads 

Air System” was assigned to the test houses.  The DOE-2 monthly average floor heat fluxes were 

obtained by modifying the “underground floor conduction gain” values reported by DOE-2.  This 

modification was necessary due to the load calculation and reporting differences between DOE-2 and 

EnergyPlus.  In DOE-2, thermal loads are calculated in the LOADS subroutine based on a constant zone 

air temperature throughout the year [22].  The thermal loads calculated in the LOADS subroutine are then 

transferred into the SYSTEMS subroutine of DOE-2 where the variations in the zone air temperatures are 

taken into account [22].  The output for floor conduction heat gain is available only from the LOADS 

subroutine of DOE-2.  The values obtained from the LOADS subroutine of DOE-2, therefore, had to be 

multiplied by correction factors to obtain floor heat gain/loss values for the varying zone air temperatures.  

The resulting DOE-2 values then became comparable with EnergyPlus values.  The EnergyPlus results 

were generated by subtracting the “Opaque Surface Inside Face Conduction Loss” values from the 

“Opaque Surface Inside Face Conduction Gain” values for the ground coupled floor.   

4.1. Results for the sealed boxes 

For slab-on-grade floors, DOE-2, EnergyPlus and TRNSYS programs solve a heat balance on the inside 

surface of the floor [22, 23, 24].  In this heat balance, the heat transferred from the soil to the inside 

surface of the floor (Qslab/soil) is assumed to be equal to the heat transferred from the zone to the inside 

surface of the floor (Qslab/zair).  In all three programs, the heat is transferred between the soil and the slab 

(Qslab/soil) by conduction.  The heat transfer between slab and the zone air (Qslab/soil) then occurred by 

convection and radiation [22, 23, 24].  The methods and assumptions used to calculate the conduction, 

convection and radiation components of the slab-on-grade heat transfer; however, differed between 

programs.  In this section, the ground coupling loads of the slab-on-grade empty sealed boxes were 

compared between DOE-2, EnergyPlus and TRNSYS in order to isolate and quantify the slab-on-grade 

heat transfer calculation differences between these programs.  First the Qslab/zair (Step 1) and then the 

Qsoil/slab (Step 2) of the sealed boxes were compared between these programs.  

4.1.1. Step 1: Heat transfer between the slab and the zone (Qslab/zair) 

At this step, the Qslab/zair calculation differences between the EnergyPlus, DOE-2 and TRNSYS programs 

are quantified.  In order to explain these Qslab/zair differences, the inside convection and radiation models of 

these programs are compared (See Table 3).   
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Table 3. Differences between the calculations of DOE-2, EnergyPlus and TRNSYS programs for interior 

surface convection and radiation. 
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In DOE-2, the heat transfer between the interior surfaces and the zone air is modeled by assigning a single 

massless fictitious air layer to the inside surface of each building envelope construction [22].  This 

fictitious air layer is then assigned an invariant thermal resistance that accounts for the combined effect of 

the inside radiation and convection on the surface [22].  The combined radiation and convection heat 

transfer on each inside surface is then calculated as part of the building envelope conduction heat transfer 

calculations with a single 1-D conduction heat transfer equation.  For the inside film resistances (I-F-R) of 

the floors in the DOE-2 sealed boxes, the average of the cooling (0.92) and heating (0.61) mode air film 

resistances recommended by ASHRAE Handbook of Fundamentals were used.  

In TRNSYS, the standard Starnet model was used in this study.  In this model, each zone is represented 

with two nodes: 1) the Starnet node and 2) the zone air node [24].  The heat transfer between the inside 

surfaces and the zone air then occurs in two steps: 1) between the inside surfaces and the Starnet node and 

2) between the Starnet node and the zone air node.  The heat transfer between the inside surfaces and the 

Starnet node includes 1) the solar radiation and the long wave radiation generated from the internal 

objects such as people or furniture, 2) a combined convective and radiative heat flux, and 3) a user 

defined floor energy flow to the surface.  The “combined convective and radiative heat flux” component 

corresponds to the equivalent sum of 1) the radiative heat transfer between the inside surfaces, and 2) the 

convective heat transfer between the inside surfaces and the zone air.  The heat transfer between the 

Starnet node and the zone air node occurs only by convection.  This convection heat transfer represents 

the sum of the heat transfer to the zone air 1) by infiltration from outside, 2) by ventilation from outside, 

3) by convection from the internal gains (people, lights, equipment, etc.), and 4) by connective airflow 

from the neighboring air nodes.   

In the TRNSYS sealed boxes, there were no infiltration, no ventilation, no neighboring zone air node, no 

heat generating internal objects and no additional energy flow defined towards the floor.  Thus, the heat 

transfer between the slab and the zone air (Qslab/zair) included only the combined radiative and convective 

heat flux component between the slab and the Starnet node in these boxes.  The convective part of this 

combined heat flux was defined by entering the default TRNSYS convection heat transfer coefficient for 

interior surfaces (11 kJ/hr.m2K) for the floor.  Using this input, TRNSYS calculated a combined radiative 

and convective heat resistance as described by Seem [25]. 

In the EnergyPlus inside heat balance equation, the heat transfer between the inside surfaces and the zone 

air includes four heat transfer components.  These are: 1) the shortwave radiation from solar and internal 

sources, 2) the long wave radiation exchange with other surfaces in the zone, 3) the long wave radiation 

from internal sources and 4) the convective heat exchange with the zone air [23].  In the EnergyPlus 

sealed boxes modeled in this study, there were no windows (no solar gains) and no internal sources.  

Thus, the Qslab/zair included only two components: 1) the long wave radiation heat exchange between the 

floor and the other surfaces, and 2) the convective heat exchange between the floor and the zone air.  For 

the radiation component of the Qslab/zair, EnergyPlus used a matrix of exchange coefficients between pairs 

of surfaces, which was developed by Hottel and Sarofim [26].  For the convection component, the default 

“detailed” inside convection model of EnergyPlus was selected.  This model recalculated the convective 

heat transfer coefficients (h) at each time step based on the orientation of the surface and the temperature 

difference between the surface and the zone air, which resulted in varying convection coefficient (h) 

values during the simulation [23].   

In this study, Winkelmann’s ground temperatures and underground construction were entered into DOE-2 

(D2-GCW) and EnergyPlus (EP-GCW), and the resulting ground coupling loads in these two models were 

compared.  The results showed that the EP-GCW model calculated slightly (0.1-0.3 W/m2) lower floor 
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heat fluxes than the D2-GCW model throughout the year (Figures 1 through 4).  This variation resulted in 

slightly (0.2-0.4 GJ) lower annual ground coupling loads in the EP-GCW models than in the D2-GCW 

models (see the I-a arrows in Figure 5). 
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Figure 1. Monthly average floor heat fluxes of the Austin sealed box. 
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Figure 2. Monthly average floor heat fluxes of the Phoenix sealed box. 
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Figure 3. Monthly average floor heat fluxes of the Chicago sealed box. 
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Figure 4. Monthly average floor heat fluxes of the Columbia Falls sealed box. 
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Figure 5. Cooling, heating and total thermal loads of the sealed boxes. 

Among the radiation and convection models used in this study, those of EnergyPlus were the most 

detailed models.  The D2-GCW models showing close floor heat fluxes to those of the EP-GCW models, 

therefore, indicated that the simple combined radiation and convection model of DOE-2 makes good 

estimations for Qslab/zair when the inside air film resistance (I-F-R) of 0.136 m2-K/W (0.77 hr-ft2-°F/Btu) is 

used for the floor.  Besides the differences between the inside radiation and convection models of DOE-2 

and EnergyPlus programs, there were two other factors that caused the 0-0.2 W/m2 heat flux variation 

between the D2-GCW and EP-GCW models.  First, the zone air temperatures (Tzair) fluctuated in DOE-2 

throughout the year; whereas they were constant at 23°C in EnergyPlus all year (Figure 6).  Second, 

DOE-2 assumed that the inside surface temperatures of the floor (Tis) are equal to zone air temperatures 

[22]; whereas EnergyPlus calculated the Tis at each time step as part of its inside heat balance calculations 

[23].  These differences in interior boundary conditions between the D2-GCW and EP-GCW models 

caused these two models to have different slab-soil interface temperatures (Tslab/soil).  Figure 7 shows the 

Tslab/soil of the D2-GCW and EP-GCW models for the sealed boxes. 
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Figure 6. Monthly average inside surface temperatures (Tis) and zone air temperatures (Tzair) of the 

Winkelmann floors of the sealed boxes. 
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Figure 7. The slab-soil interface temperatures (Tslab/soil) of the sealed boxes. 

The Qslab/zair calculation differences between EnergyPlus and TRNSYS programs were also quantified in 

this study.  The Tslab/soils of the TR-GCT models were entered into EnergyPlus (EP-GCT) and the variation 

in the ground coupling load was quantified.  The results showed that the EP-GCT models calculated 5-14 

GJ lower ground coupling loads than the TR-GCT models with a 0-1.2 W/m2 monthly average variation 

(See Figures 1 through 4 and I-b arrows in Figure 5).  The monthly average differences between the EP-

GCT and TR-GCT fluxes were particularly higher in the cold (0.6-1.2 W/m2) and temperate (0.8-1.4 

W/m2) climates than in the hot-humid (0-0.8 W/m2) and hot-dry (0-0.6 W/m2) climates.  Thus, the annual 

ground coupling load difference between the EP-GCT and the TR-GCT models ended up being higher in 

the cold (11 GJ) and temperate (14 GJ) climates than in the hot-humid (5 GJ) and hot-dry (5 GJ) climates.  

An intermediary model was introduced between the EP-GCT and TR-GCT models, the EP-GCTint, in 

order to further analyze the high ground coupling load variation between these two models (See Figure 5).  

This intermediary model had the same interior convection coefficients with the TRNSYS (TR-GCT) 

model, but it did the interior radiation heat transfer calculations using the detailed interior radiation 

algorithm of the EnergyPlus (EP-GCT) model.  Thus, it allowed us to isolate and compare the radiation 

and convection heat transfer components of the ground coupling load difference between the EP-GCT and 

the TR-GCT models.  The EP-GCTint models showed closer ground coupling loads to the TR-GCT 

models (within -12%) than to the EP-GCT models (within +50%) in all four climates.  This result showed 

that the high variation between the ground coupling loads of the EP-GCT and TR-GCT models was 

caused primarily by the differences in the inside convection heat transfer calculations of the EnergyPlus 

and TRNSYS programs.  This difference was explained by the 63%-88% higher convective heat transfer 

coefficients used in TRNSYS than those calculated by EnergyPlus.  Figure 8 presents the monthly 

averages of the inside convection heat transfer coefficients of the EP-GCT models in comparison with 

those of the TR-GCT models. These findings revealed that the surface convection properties (particularly 

the h value) of the floor can have a significant effect on the calculated ground coupling load in low load 

conditions.   
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Figure 8. The convection coefficients of the TRNSYS floors. 

4.1.2. Step 2: Heat transfer between the soil and the slab (Qsoil/slab) 

At this step, the conductive heat transfer between the soil and the slab (Qsoil/slab) is compared between 

Winkelmann’s model, the Slab model and the TRNSYS slab-on-grade model for the sealed boxes modeled 

in EnergyPlus.  Below are the compared models. 

 The TRNSYS slab-on-grade model with EnergyPlus (EP-GCT) 

 The Slab model with EnergyPlus (EP-GCS) 

 Winkelmann’s slab-on-grade model with EnergyPlus (EP-GCW) 

The ground coupling load differences between these three models were quantified and explained for the 

sealed boxes by referring to their primary assumptions and the calculation methods.  The results are 

shown in Figure 5 with column 2.  This analysis was started by examining the parameters that affected the 

conductive heat transfer between the soil and the slab (Qsoil/slab).  These parameters were: 1) the inside 

surface temperatures of the floor (Tis), 2) the ground temperatures that the slab was exposed to (Tslab/soil), 

and 3) the overall heat transfer coefficient of the floor without the air film (Ufloor).  The Ufloor was assigned 

as 2.647 W/m2-K in all of the three slab-on-grade models.  The calculated inside (Tis) and outside 

(Tslab/soil) temperatures of the slab, however, differed significantly between these models.   

The inside temperatures (Tis) of the EP-GCT, EP-GCS and EP-GCW floors depended on the assumptions 

and calculation methods of the aboveground heat transfer calculator program (which in this case is 

EnergyPlus) for inside convection and radiation (see Step 1). Since the aboveground heat transfer 

calculator program was the same in all of the three models compared at Step 2, the differences in the Tis 

of these models were triggered primarily by the ground temperatures (Tslab/soil) that the slabs were exposed 

to.  The soil-slab interface temperatures (Tslab/soil) of these floors then depended on the assumptions and 

the calculation methods of the slab-on-grade models used to simulate the floor, the soil and the heat 

transfer between them.   

Among the studied slab-on-grade models, the TRNSYS slab-on-grade model was the most detailed one 

(see Table 4).  This model assumes that the slab and the soil consist of cubic nodes which have six unique 

heat transfers to analyze.  A simple iterative analytical method then solves the interdependent differential 

equations of a 3-D finite difference soil model at each time step.  In this study, the soil-slab interface 
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temperatures (Tslab/soil) of the test houses modeled in TRNSYS (TR-GCT) were entered into EnergyPlus 

hourly (EP-GCTh) and monthly (EP-GCTm). The ground coupling loads obtained with these two 

coupling methods were found to be very similar (within 6%) in all studied climates (Figure 5).  This 

finding showed that ground temperatures do not show significant hourly variation and; therefore, monthly 

coupling of aboveground and belowground heat transfer calculations are reasonable. This finding was in 

agreement with an important assumption of the Slab model, which states that the time scales of the 

ground heat transfer processes are much longer than those of the building heat transfer processes (Table 

4).   Thus, the monthly average floor heat fluxes (Qfms) were used to compare the slab-on-grade models 

with each other in this step of the study. 

In the EP-GCT models, it was observed that there is a clear relationship between the Qfms and the 

monthly average outside air temperatures (Tams) (Figures 1, 2, 3, 4 and 9).  This relationship, however, 

varied depending on the insulation configuration of the floor.  For the uninsulated floors in the hot-humid 

and hot-dry climates, for instance, the peak Qfms and the peak Tams occurred in the same month in the EP-

GCT models (Figures 1 through 4).  The maximum floor heat gains occurred in the hottest month (July) 

and the maximum floor heat losses occurred in the coldest month (January) (Figures 1 and 2).  This was 

explained with the two assumptions of the TRNSYS slab-on-grade model.  First, the average surface soil 

temperature was assumed to be equal to the annual average air temperature in TRNSYS.  Second, the 

amplitude of the soil surface temperature was assumed to be equal to the one half of the maximum 

monthly average air temperature minus one half of the minimum monthly average air temperature.  The 

vertical floor insulation used for the temperate and cold climates delayed the peaks of the Qfms in the EP-

GCT models and the time delay between the peaks of the Qfms and Tams in this model increased with 

increasing insulation depth in these climates (Figures 3 and 4).  For instance, in the EP-GCT models that 

had 2 ft deep insulation in Chicago, the maximum Qfm to the ground occurred one month later than the 

minimum Tam (Figure 3).  In the EP-GCT models that had 4 ft deep insulation in Columbia Falls, 

however, the maximum Qfm to the ground occurred two months later than the minimum Tam (Figure 4).   
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Figure 10. The monthly average precipitation (P), ground temperatures (Tg) and outside air temperatures 

(Tam) in Austin, Phoenix, Chicago and Montana. 
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The Slab model of EnergyPlus was the second most detailed slab-on-grade heat transfer model discussed 

in this study and it used a numerical method to solve a boundary value problem on the 3-D heat 

conduction equation and produced monthly slab-soil interface temperatures.  These temperatures were 

then entered into EnergyPlus as the exterior boundary temperatures of the floor and were used in the 

aboveground 1-D heat conduction calculations of EnergyPlus.  This coupled EnergyPlus-Slab model was 

represented with “EP-GCS” in this study.   

Our results showed that, for the sealed boxes at 23°C constant zone air temperature, the internal (EP-

GCSiit) and external (EP-GCSeit) iterations of EnergyPlus and Slab programs showed exactly the same 

ground coupling loads in all climates (Figure 5).  The Slab program gave an error for the required 

insulation configuration for temperate climates (0.6m deep R-10 vertical insulation) by reporting a 

contradictory error note (Figure 3).  The error note indicated that an invalid insulation depth was entered 

for the slab, whereas the entered insulation depth (0.6m) was one of the values suggested by the program.  

When all available insulation depths were tried for this climate (0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3), it was 

found that the Slab model could not model the R-10 vertical insulation with depths less than 1m.  This 

error was attributed to an internal limitation of the Slab model for providing convergence.  It was 

determined that it is necessary to overcome this limitation before the EP-GCS model is used for 

residential code compliance in temperate climates.   

When the evapotranspiration flag was off, the EP-GCS models (EP-GCSwotEv) exhibited 0.3-1 W/m2 

higher Qfm peaks to the ground and 0.2-1.4 W/m2 higher Qfm peaks into the space when compared to the 

EP-GCT models (Figures 1, 2 and 4).  This was primarily because the EP-GCSwotEv models showed 

lower minimum ground temperatures in winter and higher maximum ground temperatures in summer by 

0.1-0.7°C when compared to the EP-GCT models (Figure 7).  Consequently, the EP-GCSwotEv models 

showed 2.0-4.4 GJ higher annual ground coupling loads than the EP-GCT models for identical sealed 

boxes (Figure 5).   

It was observed that, for the uninsulated floors in the hot climates, the peaks of the Qfms in the EP-

GCSwotEv model were a month delayed when compared to the peaks of the Tams.  Since the peak Qfms of 

the EP-GCT models occurred at the peak outside air temperatures in these climates, the Qfms of the 

GCSwotEv models was also a month late when compared to those of the EP-GCT models.  This was 

because the Slab model of EnergyPlus shifted the ground temperatures by a phase lag to account for the 

effect of the soil thermal mass [6].  For the insulated floor in the cold climate, however, the peak Qfms of 

the EP-GCSwotEv and the EP-GCT models occurred in the same months (Figure 4). 

In the finite difference calculations of the Slab model, insulation is represented by an additional surface 

resistance on the exterior of the floor cells [6].  This additional resistance reduces the peak heat gains and 

losses through the floor resulting in smaller peak to peak amplitudes in the insulated conditions of the 

same floors.  Our results showed that the peak to peak amplitudes of the Qfms in the EP-GCSwotEv 

models were 1.5 times higher than those in the EP-GCT models for both the insulated and uninsulated 

floors (Figures 1, 2 and 4). 

According to Bahnfleth [6], ground surface condition is the most significant boundary condition for the 

floor heat transfer and evaporative transpiration (evapotranspiration) is a significant parameter for this 

boundary.  The Slab program models a potential evapotranspiration case which accounts for a number of 

naturally occurring situations, most often through the action of vegetation [6].  In this case, grasses and 

other similar ground cover, when well watered, are assumed to transpire moisture into the atmosphere at 

near the potential rate even when the ground surface is relatively dry [6].  According to Bahnfleth [6], the 
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evapotranspiration model of Slab takes these processes into account and brackets the range of boundary 

evapotranspiration effects.   He claims that this model is, therefore, a useful asymptotic model that does 

not require specification of moisture conditions at the surface [6].  Figure 9 shows the annual total 

precipitation of the four cities studied in this paper.  It was realized that although the weather file showed 

zero annual precipitation for Columbia Falls, the Slab model identified a difference in ground coupling 

load with the use of evapotranspiration model (Figure 5).  This result supported Bahnfleth’s statement by 

showing that the evaporative transpiration case modeled by the Slab model is independent from the 

precipitation level.  

In our runs for the sealed boxes, evapotranspiration decreased the mean ground temperature several 

degrees below the mean zone air temperatures resulting in higher heat losses from the floor (Figures 1, 2, 

4 and 7).  For the floors located in Austin, Phoenix and Columbia Falls, a drastic decrease occurred in the 

Tslab/soil values in July and August, which happened to be the hottest months (Figures 7 and 9).   This result 

showed that the peak floor heat losses observed in the EP-GCSwtEv models (see Figures 1, 2 and 4) in 

summer were triggered by the high outside air temperatures.  This finding also explained the peak 

basement heat losses that Andolsun et al. [11] obtained in summer using the Basement preprocessor of 

EnergyPlus in an earlier study.   

The EP-GCSwtEv models showed significantly higher Qfms when compared to the EP-GCT models 

(Figures 1, 2 and 4).  In earlier test runs, it was also observed that Slab program often resets the slab 

thickness to a higher value to achieve the user-defined internal convergence. This problem resulted in 

inconsistent slab thicknesses between the aboveground and belowground models of EnergyPlus.  These 

findings showed that the Slab model of EnergyPlus needs urgent improvements.  Particularly the 

evapotranspiration model of Slab needs to be validated through experimental studies. Thus, it was 

determined that it is important to avoid using the Slab model in residential code compliance calculations 

until the necessary validations and improvements are made on this model.  

Winkelmann’s method was a simplified slab-on-grade heat transfer modeling method based on the earlier 

findings of Huang et al. [20].  Huang et al. [20] did 2-D finite difference calculations in 1980s to calculate 

the daily heat fluxes at each interior node point of a representative one-foot vertical section of the 

foundation and surrounding soil.  They then derived the total heat fluxes through the 28 x 55 feet 

foundation of the prototypical house by multiplying the fluxes at each node point of the vertical section 

by the length of that nodal condition.   The resultant foundation fluxes for the 65 different below grade 

configurations in the 13 cities were stored in utility files [19].  These fluxes were stored for 123 three-day 

periods of the year to fit the memory limitations of the Function feature in the LOADS subprogram of 

DOE-2.1C.  Linear interpolations were then done between the sequential three-day average fluxes in 

DOE-2 in order to produce smoothly varying fluxes for each hour [19].   

Huang et al. [20] determined the daily floor heat fluxes for each foundation configuration by assuming 

70°F constant zone air temperature all year.  The 70°F was the default indoor air temperature that DOE-2 

LOADS uses (TLOADS).  Huang et al. [20] also found that there is a linear relationship between the 

variation in underground heat flux (ΔQ= Qmod-QLOADS) and the variation in the constant zone air 

temperature (ΔT= Tmod-TLOADS).  They defined this relationship as a linear function the slope of which 

equaled to the effective conductivity of the slab (Ueffective).  They then calculated the Ueffective value of each 

slab configuration using Equation 7. 

 

Ueffective= (Qmod-QLOADS)/[(Tmod- TLOADS)xA]     (Equation 7) 
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In Winkelmann’s method, these Ueffective values are currently entered into DOE-2 as an input and used in 

the SYSTEM subprogram in DOE-2.  In SYSTEMS, the U-effective values correct the floor heat fluxes 

calculated in DOE-2 LOADS to account for the constant zone air temperatures different than 70°F.  For 

slabs, the floor heat transfer calculations of Winkelmann’s model are complete after this correction, and 

no further correction is made to take the varying indoor temperatures into consideration.  In the sealed 

boxes modeled in this study, the zone air temperatures were set to 23°C (73.4°F) all year.  Thus, the 

possible errors Winkelmann’s slab-on-grade model for varying zone air temperatures were avoided for 

these boxes.  There was, however, another limitation of Winkelmann’s slab-on-grade model, which was 

still valid for the sealed boxes. The 2-D finite difference calculation of Huang et al. [20] was made on a 

rectangular prototype building with unequal sides; therefore, the obtained Ueffective values were expected to 

be somewhat off for the square slabs of the sealed boxes modeled in this study.  When Winkelmann’s 

slab-on-grade model was used in EnergyPlus (EP-GCW), the same underground construction layers used 

in the D2-GCW model was assigned to the floor.  Thus, the resistances of the fictitious layer, soil, slab 

and carpet were identical to those in the D2-GCW model.  Only the air film resistances of the EP-GCW 

models were different than those of the D2-GCW models due to the varying inside convection coefficients 

in EnergyPlus. 

For the uninsulated sealed boxes in Austin and Phoenix, the EP-GCW models showed 3.6 GJ and 4.5 GJ 

higher ground coupling loads when compared to the EP-GCT models respectively (Figure 5).  For the 

insulated floors in Chicago and Columbia Falls, however, the ground coupling loads of the EP-GCW 

boxes were 6.6 GJ and 8.7 GJ lower than those of the EP-GCT models respectively (Figure 5).   

It was observed that, for the uninsulated floors in the hot climates, the EP-GCW models showed very 

similar (with a maximum of 0.5°C difference) soil-slab interface temperatures (Tslab/soil) to those of the 

EP-GCT models with a two month time delay (Figure 7).  This then caused the Qfms of the EP-GCW 

models to be similar (with a maximum of 0.6 W/m2 difference) but two month delayed when compared to 

those of the EP-GCT models (Figures 1 and 2).  These delayed Tslab/soils and Qfms in the EP-GCW models 

were attributed to the deep ground temperatures (Tgs) calculated by DOE-2 using Kasuda correlation [22].  

Figure 9 shows that these deep ground temperatures (Tgs) were two months delayed when compared to 

the monthly average outside air temperatures (Tams).  These findings indicated that if an internal back 

shifting is done on the floor heat fluxes of Huang et al. [20], significant improvement can be obtained in 

annual ground coupling loads under constant zone air temperatures.  It was also observed that, for the 

insulated floors, the EP-GCW models made close estimates for the peak months (with a maximum of 1 

month shift) to those of the EP-GCT models (Figures 3 and 4).  The peak months of the EP-GCW models 

approached those of the EP-GCT models with increasing insulation depth.  

The peak to peak amplitudes of the EP-GCW and EP-GCT heat fluxes were closer for the insulated floors 

than for the uninsulated floors (Figures 1, 2, 3 and 4).  For the uninsulated floors in hot-humid and hot-

dry climates, the peak-to-peak amplitudes of the EP-GCW fluxes were 1.4 times higher than those of the 

EP-GCT fluxes (Figures 1 and 2).  For the insulated floors in temperate and cold climates, however, the 

EP-GCW models showed identical peak to peak amplitudes with the EP-GCT models (Figures 3 and 4).  

This finding showed that, the peak to peak amplitudes of the heat fluxes calculated by Huang et al. [20] 

for uninsulated floors need to be reduced by ~1.4 times for better ground coupling load estimations under 

constant zone air temperatures.   
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5. Summary and conclusions 

Early studies have shown that the current energy modeling tools calculate dissimilar results for the slab-

on-grade heat transfer.  This study quantifies the discrepancies between DOE-2 and EnergyPlus slab-on-

grade heat transfer for International Energy Conservation Code (IECC) compliant low-rise 20m x 20m x 

3m residential buildings with unconditioned attics in four U.S. climates (hot-humid, hot-dry, cold, and 

temperate).  For the modeling of the slab-on-grade heat transfer, Winkelmann’s slab-on-grade model was 

used with DOE-2 and the Slab model was used with EnergyPlus.  The reliabilities of these models were 

then discussed by comparing their results with those of a more detailed TRNSYS slab-on-grade model.   

The study included two steps.  In the first step, the effect of ground coupling was isolated by modeling 

empty slab-on-grade sealed boxes at 23°C constant zone air temperature in four U.S. climates with the 

IECC required insulation configurations.   The ground temperatures calculated by Winkelmann’s (GCW), 

Slab (GCS) and TRNSYS (GCT) slab-on-grade models were entered into EnergyPlus and the resulting 

ground coupling loads were compared.  At the second step, load components (i.e. wall heat transfer, 

ceiling heat transfer to/from an unconditioned attic, windows, doors, shades, lights, equipment and 

infiltration) were added to these boxes to convert them into fully loaded IECC compliant houses.  

Discrepancies between the results of the obtained models were then quantified and explained both for the 

ground isolated and the ground coupled conditions.  This report includes the results obtained for the 

sealed boxes modeled in hot-humid, hot-dry, temperate and cold climates. 

For the sealed boxes, the floor heat fluxes of the GCW and GCS models differed from those of the GCT 

slab-on-grade models in the magnitudes, the peak months and the peak-to-peak amplitudes of the floor 

heat fluxes. 

 Magnitudes: The GCS models without evaporative transpiration showed much less variation in 

annual ground coupling loads (2-4 GJ) from those of the GCT models than the GCW models did 

(4-9 GJ).  The GCS models with evaporative transpiration, however, showed significantly (23 GJ-

74 GJ) higher annual ground coupling loads than those exhibited by the GCT models.  

 Peak Months: For the uninsulated floors in the hot climates, the peaks of the floor heat fluxes in 

the GCW and GCS models were two months and one month delayed respectively when compared 

to those of the GCT models.  For the insulated floors in the cold climate, however, all three 

models had identical peak months.  

 Peak to Peak Amplitudes: The GCS floor heat fluxes showed 1.5 times higher peak-to-peak 

amplitudes than those of the GCT floor heat fluxes did for all floor configurations and climates.  

The peak-to-peak amplitudes of the GCW models were 1.4 times higher than those of the GCT 

models for the uninsulated floors in the hot climates and identical to the GCT models for the 

insulated floors in the temperate and cold climates.  
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