Three Tasks Eor Use in Laboratozy

 Small.-Group Experimentsby
Thomas L. Conner

December: 1964

Three Tasks for Use in Laboratory Smal1-Group Experiments

1. Tatroduction

The design of laboratory experiments in order to construct and test formal models of socian processes coneronts fhe investigator with the responsibility of analyaing in more detail than is usual the nature of the activities experimental subjects exe to be asked to engage in. This analysis must often inciude prewamerimentol tests to see if the behavior of subjects engeged in these activities in the absence of expertmental manipulations can be characterized in a theorecically specisicd manmer. Accordingly, this paper reports on the development and test of thee exporinental tasks for use in such laboxatory experiments. Although they vere designed accozding to a pre-spectifiea bet of criteria related to the requiremente of a particulat sezies of experiments (Berger \& Snell, 1901; Dornbusch, et al., 1962), it was felt that the experimental requirements were general enough that the takks would be of interest and use to other investigators.

IT. Test Criteria

The basic form that each task was required to take was that of a series of discrete decision stages in which at each stage subjects would have to evaluate and choose between two mutually exclusive and exhaustive alternatives. It was necessary that esch choice, to the subject, be cssentially anbiguous in the sense that standards for choice be ill defined or unacessible; and that, consistent over indtudads and dectsion stages, there be no bies tomard one choice
alcernative rather than another. It was also necessary that it be possible to convince subjects that a particular sbility te associated with the making of "correct" choices. Finally, the chojce at each stage had to be uninfluenced by the choice at ony past stage. ${ }^{1}$

The above requircments were comon to all three tasks wich sere developed. However, two of the ehrce had to meer an additional requirement. Previous lack of success in creating tasks which mei the requirement of a lack of blas over findtviduals and decision stages raised the possibility that it matgh be necessaxy for the choices to be not only amiguons but as devoici of any "concent" as possible in the semse bech of observabla principles for choice and of subjective feellags about choices. Hence, two of the tasks were constructed with the aim of meeting this latter requircment as wall as those above. The thind task zemained "contentiful" though scill. sabiguous.

In nore precise terms, the above amonts to saying that if In each of a ceries of binary choices between choice alternativea Labeled (arbitrazily) A and B a subject is aslsed to evaluate and choose between A and E then theve exists a number phich io constant over individuals and over decietion stages which specities the probability that any particular subject will choose alterzative A. Earcher: is

$$
q=1-p
$$

va m number of subjects
n $=$ nunher of deession acages (hereafter called trials)

[^0]\[

$$
\begin{aligned}
x= & \text { number of choices of alternative } A \text { on any } \\
& \text { pariculat trial by all subjects } \\
y= & \text { number of choices of altemacive A by any } \\
& \text { particular subject over all trials }
\end{aligned}
$$
\]

then $1 t$ can be shown that x and y are binonially distributed with respective probability mass functions as follows:

$$
\begin{aligned}
& p(x)=\text { probability that on any particalar trial } \\
& \text { exactly } \mathrm{z} \text { choices wzill be A } \\
& =\binom{x}{x} p^{2 x} q^{\sin -x} \\
& p(y)=p r o b a b i l i t y \text { that any subject will make } \\
& \text { eanatly y choices which are A } \\
& =\binom{n}{y} p^{y} q^{n-y}
\end{aligned}
$$

The test of whether a particular eask fulfills the requirements staced above consists in obtaining from the above starementa a set of enpirieal consequences with can be shown to colncide with the data gathered from the actusl choices of a group of subjects. If every empirical consequence is in fact verified then the task is without much question assumed to qualify. It sould, horever, be unusual for there not to be sone particular consequence which either failed to be verified or which presented a borderinne decision. Such cases if they occur will be caxained individually to ascertain wether the failure might be attributed ,imply to sandom error of to some parcicalar cause, whether the sailure is even important, and whether some technique extsts for compensating for the failure.

The actual decision sbout verification or failuze to verify In a particuler case is further complicated by the inedequacy of wost criteria of evaluation. Statistical tests do eaist in most instances although it is dubious in many cases that the amsting
tests are really appropriate. This investigator fecis that the basic issue to be resolved in each inctance is at wint point must the investigator tesort to a subjective judgment. Some might feei that the choice of significance level is the proper place for such judgments. Others might feel that in ocas instances the appropriatenese of stetistical teses is sufficiencly doubtful as to necessitate, if possible, fudging the results theaselves dixectly. This infestigator lems toward the lacter opinion and gill act accordiugly, although for the sake of chose who feel differently the results of statistical tests will also be presented. The actual procedure thich was rollowed is outlined below.

To say that no bias exises in favor of one alcernacive zather than another is to say that p has the a priori value of 0.50 . Given the model above, the sest estimate of p is the acan proportion of A choices over all oubjects, all trials, which should approsimate 0. 50.

The assumption of independence of trials meanc that the proportion of a choices, controling for the fmaidately previous choice or for any pattern of previous choices is also on extiante of p. The meaz proportion of A responses over all subjectis and triala considering only the iramediatcly previous response is the only quantity which will be extainet here and it will be discussed in terms of an "ageregate transition matriz" in thich the sows of the matrizs give the proportion of each kind of choice on trial ntl given that the choice on trial a vas of one particular type. Sucha astrix is shom belom:

Independence specifies chat the rows of the maeria be identical. A \sum^{2} test for independence in a 4 -fold table is supposed to roughly indicate whether they are in fact identical.

The use of the term "aggregate" incicates that the above matrixs can be considered to be the end product of the combination of a sct of more than one other similar matrixes. One ouch sot specifies a separate one-s cep aratix for cach choice of n (i.e., the choice on trial 2 given the choices on erial 1, the choice on trial 3 given the choices on trisi 2, etc.). Another such set gnecisies a particular matrix 乍or each subject ignoring when the eranoitions occurred. The examination of the aggregate matrix to test independence assumes that both sets are statistically homogencous. If either assumption is in doubt, theze is a test for independence which does not assume homogeneity (Goodmen, 1962). This teat involves the computation of x^{2} for each matrix in a set and then sumang these values over all matrizes in the set. This sum is also distributed as X^{2} with degrees of freedom equal to the aum of degrees of freedon of each of the separate X^{2} values. However, the examination of the aggregate matriz is the preferable procedure if the assumption of homageneity is a reasonable one.

The assuaption that x and y sre binomially disczibuted will be exsinned by obtaining fzoa the specified distribution of $p(z)$ and $p(y)$ the distribution of the number of trials on whin x choices weze A
and the disexibution of the number of subjects who chose A y times. The a petori distribution for the former is given by $n p(x)$ and the a priorl distribution for the latker is given by $\operatorname{mp}(y)$. These theoretical disiributimas can be compared to the cbscrved distzhbutions using a x^{2} eest.

15I. Description of the Tasits
A. The "Weaning Insight" test

In the Meaning Insight rest (abbreviated 41 in later sections) subjects were eaked to choose which of two primitive, non-English words (actually artificial vords) had the same meaning as an English word which was presenced. They were inctructed to maine this choice on the basis of the sound of the primitive words and the weaning of the English word. For example, in the get of words shom below each subject would be asked to choose which word. A (KUL) or B (TIMI), has the same maning as the Englich word "bear".

BEAB

A B
RUL TUM
Subjects were led to believe that the artificial words were phonetically spelled words from an actual language or languages. They were aiso led to believe that individuals differed in their ability (i.e., Heaning Insight Ability) to intuitively choose the proper word. The choice of such an unusual kind of task was motivated in part by the requirement that subjects should have no pre-experimental estimate of their own ability based on previous performance in other activities.

It was intended that subjeces who took the test would have Seelings of assoctation between the Rnglish word and the primitive words
and it was hoped that these feciings would be balanced between the items in each primitive word pair. This latter reguirement is an especially difficult one to meet as there do not nov exist any proven or objective criteria for balancing the words. Hence, it was decided to construct a large number of the word sets by use of some informal phonemic-semsntic criteria to be described below and pretesé them with the intention of selecting those sets which empiricallv seemed co display a lack of bias. This select group of word sets was then pretested again to see if they met the critexia explicated previously in section II. The aecond precest is the one reported on heze.

The informal phonemic-semantic criteria for word set construction were based loosely on the work of Charles B. Oegood, James J. Jenkins, Mallace A. Rusacll, and George J. Suci. These were utilized solely in the hope of perhsps increasing the yield of acceptable word sets. There was no serious theoretical interest in the criteria themselves.

With respect to the English words, the meaning of each word was rated as positive or negative on each of a set of five dichotomous dimensions listed below with the arbitrarily selected positive aspects listed fizst.

```
strong - weak
1arge - small
heavy - light
hard - soft
East - slow
```

In the example given, "bear" would be rated as strong, large, heavy, hard, and East. Py contiast, the word "Eesther" would be rated as
weak, small, light, soft, and slow.
The attempt was then made to characterize the phonemic
aspects of the vowels and consonancs of the axtifteial words ueing the same dichotomous dimensions. Artificial words were then matched and selected to associate both positively and negatively with the
 in a word were both rated (compared to other consonanes) as strongo small, cofts slow, and neither heavy nor light. The conconants t and k were rated as weak, mall, light, hasd, and East. The vowel u appears in both words and hence its rating is irrelevant. The details of the ratings are umportant and are diseussed only to generally indicate how the word sets were constructed. In the Einal analysis the eapirical results of the pretest alone were wat would be used to decide the usefulness of the task.

Two further exarales of word sets from the tese are givea below.

SUDDEN
A B
TO-RA
PA-20

SHAES

A
2EM-PA

B
BEM-SA

Each such word set was-photographed and a 35 man. slide made. There slides vere projected in timed sequence for the pretest allowing 10 acconds for eramination of the words. At the and of each 10 seconds subjaces were inarructed to marit ansior oheets and the olide was removed from the ocrecm. Responses from the answer sheets were later punched onto IBM cards for enalysis.
B. The "Relational Insight" tests

Two other tests similar to the Meaning Insight test mere devised. As noted previously these teses neze to be devoid of "content", which
mesme that subjects were to have minimal feelings of association between the choice alternatives A and B and the single couparison stimulus. The Helational Insight tests utilized iceographic chasscters from anclent Japanese and phonetic speliinge of ancient Japanese words. Subjects were Instructed to match the sound or sounds of the Jgpancee word or words with the form of the ideograpaic character or characters. (The actual inseractions to subjeces were phrased as a matchiag of "sounds and gymbols") The real meanings of the words and characters were declared to be frrelevant to correct matching and subjects weze instructed not to attempt to deduce meanings. An example of the first ceat using two ticographs and one wosd (1delled RI2) is show below.
mazula

(A)

(B)

Suibjects were to pick an ideograph, A or B which soemed to be "corzectly" matched with the sound of the Japanese word.

An example of the second test using two worcs and one ideograph (1abelled RII) is also shomiz below.
> azaiseru
(A)

amamuk

(il)
In this cest subjects were to choose one of the words, A or B, which rastched the ideograph. Hocice that in both caces the ideograph pairs or the word pairs are matched in some respects and unatched in others. This matching was cone according to purcly dutuitive cziterie。

As in the previous test subjects vere instructed that some Individuals were betcer able to relate (because of "talational Insight" ability) the forms of the ideographs with the sounds of the words. Both tests, as before, were photographed and pretested twice in the seme manner as the feaning Insigit test. The second of the pretests is reported on here.
IV. Results of the Rretests

As indicated previously, a select subsamplo of slides from each of the three tacks was chosen on the basio of an initial pretest and then shown to groups of subjecte in a second pretest to ascertain whether the casks met ail of the criteria specified in section II. The numbey of olides tested for each tagk is given below.

Relational Insight, two ideographs (RX2): 61
Relational Insigite, one ideograph (RI1): 39
Neaning Insight (kIt): 37
The firgt data to be preaented concerns the eseimate of p for the three tasks. In the table below the mean proporition of A choices over all gubjects, all tifals is given for sach tack. For comparison purposes. the same estiaste from the initial pretest is given both for the entire see sad the gelect subset.

	entire set Eirst pretest	select gubset first protest	select subset second pretest
812	. 49 ($\mathrm{F}=151590$)	. 49 (1310.492$)$. 49 (7385750)
RII	. $49(4 \times 5087897)$. 49 ($\mathrm{N}=7449)$. 49 ((1833306)
ML	. 51 ($6=21.439)$. 47 ($\mathrm{H}=18251$)	. 52 (l - 3600)

TABLE I
Estitastes of p from nean proportion of A responses over all subjects, all crials.

There acem to be no large departures fromprevious yesults of from the a priori figure of .50 in the above table. Hence, in this case the binomial model is taken to be confirmed.

The question of the independence of trials, as previously discussed, can be dealt with in two ways. The first is the examination of the aggregate transition matriss for each cask. These are given below. Beside each matrix is the value of x^{2} for the usual test for independence in a 4 -Sold table.
A B
aI2

In each case the \mathbb{z}^{2} values are such as to require a rejection of the binomial model. This conclusion rust be eempered, however, by the Eact that in dealing with sample sizes of this size it is very easy
to obtain significant x^{2} values. Should it be the case that the model fits the data in ail other respects, whatever departures from independence these values indicate could easily be ignored.

The second way of dealing with che question of indepandence examination of the matrixes which were combined to produce the aggregate matris. Recail that there are two different sets of such natrixes. The first mentioned was the set winch includes a matrix for each particular one-step transitian. The sum of f^{2} values fos these matrixes together with the degrees of freedom and catimated significauce level ame given belou for each task.

	$\sum x^{2}$	d.E.	sig. level
RI 2	95.93	60	.002
RI 1	40.45	38	.37
MI	51.60	36	.04

TABLD 2
Sura o§ x^{2} values of one-step tranaition patrises for each particular transition.

The second set of matrises included a matrix for each particular subject ignoring when the transitions occurred. The gum of x^{2} values for these astrines together with the degrees of freedon and estimated aignificance level are given below for each task.

	$\sum x^{2}$	d.£.	sig. level
RI2	119.32	96	.05
RI1	85.83	87	.52
MI	105.45	100	.34

table 3

Sum of x^{2} values of one-step trensicion matrixes for each particulaz subject.

There would ecer to be no clear conclusion one could dzaw from these terts as they give inconsistent results. The agregate matrizes indicate one=step dependence for all three tasks. The sum of X^{2} values for the separate one-step matrizes indicetes that oniy RI2 and MI dieplay one step dependence. The aum of f^{2} valuss for separate subject matrixes indicates that only hal displays one-step dependence. Theso tests, of course, are not independent rests and this further complicates the cese. Perhaps the safest way to approach the problea is to ask tho following questions: if it veze the case that a one-step dependence exises, what kind would it be and how aight it be explained? With respect to the former question, the aggregote transition matrizes in each case indicate that the aisection of dependence, if it exists, Is toward too mach alternation. With reapect to the 1 atter question. it must be realled that the labels A and Baze arbitrarily assigred. Hence, either there is something intainsic in each task which produces the dependence and the assigment of labels happens to colncide; or, more probably, there is come mall intrinstc bias in binary choice
sequences in general toward too mach alternation. This latter explanation is the one which the investigator prefers, but, of course, any position at this point is speculation. In any event the evidence for one-step dependence is not overwhelming and for the present is not regarded as a serious problea.

The final set of data to be discussed is probably the most important although so far little has been said about it. The tasks really stand or fall on the distributions of $n p(x)$ and mp(y). Graphs 1-3 show the distribution of x vi.np(x) for each task. The dotted lines indicate a prioni binomial distributions and solid lines indicate observed distributions. Here clearly theze is a failure of agrement with the predictions of the binomisl model, although aI2 certainly comes the closest to fitting. The X^{2} goodness of fit test in each case gives a significance level beyond . 001 . Casual inspection of the graphs is also quite convincing in support of a lack of fit.

A reasonable explanation for this failure would be a lack of homogeneity and/or consiotency from alide to slide. That is, p may not be constant over decision stages. If this were the case then it would have berious consequences for the inferpretation of the results of any experiment. It is also possible that this lack of homogeneity could partially account for whatever indication of one-step dependeace there was in the data examined previously.

The question which now arises is, given the above, what can be done, in terms of the criteria specified in section II, to salvage the tasks. The one solution which seems feasible is to randomize the order of presentation of the slides for each experiment
which is carried out. This increases within trial variability and would have to be compensated for by increasing the aize of the sample of subjects who participare. No other solution, however, seens immediately obvious.

The final data are givea in Graphs $4-6$ which show the distribution of y vs. $\operatorname{mp}(y)$ for each tesk. In each case the a priori distribution (cotred line) is elosely watched by the observed distribution (solid line). None of the z^{2} values is large enough to indicate a lack of Eit. Hence in this case the prediction of binoralal model is Eaken as confirmed.

V. Conclusions

The pretest of the three tasks cannot be said to have been completely successeul. All three failed the same sraportant test, the distribution of x va. $n p(x)$. Fortunately, however, a method erists (randowizing order of glide presentation) for compensating for this Eailure, and hence all three would seen to be at least usable. The queation of which task is preferable would not sean to be decideable on the basis of the data given, alchough leming Insight eeemed to come out worge than at least one of the other tasks on most tests. Other criteria mill more than likely have to be invoked in the final analysis.

The fact that the presest in some reapects is inconclusive stems from two msin facts. The first is that the job of constructing tasks which aeor: rigid ast of criteria is far fromeasy. The second, encountered throughout the analygis, is that the investigator is often faced with probloms of evaluation for which there are no clanr criteria or reacy solutions. Orly continued work and thought can reduce this margin of inconclugiveness.

GRAPH 1
x vs. $\operatorname{np}(x)$ for RI2: $x^{2}=28.43, p<0001$

GRAPH 2

x vs. $n p(x)$ for RII; $x^{2}=46.39, \quad p<0,01$

$0-39$
$40-42$
$43-45$
$46-48$
$49-51$
$52-54$
$55-57$
$55-60$
$61-100$

GRAPH 3

x vs. $\operatorname{np}(x)$ for $M i ; x^{2}=61.21, p<001$

GRapiz 4
y vo mo(y) Por RI2; $X^{2}=18.20, \quad .50<p<0$

GRAPH 5
y TSo mpo (y) for RII: $x^{2}=2.700 .95<0 \leqslant 098$

GRAPH 6
y V5: mp(y) for $\operatorname{mI}: x^{2}=12400 \quad .10<p<20$

[^0]: ${ }^{1}$ With respect to this last requirement, it is clear that nost of the tasts in use in learniag expeniments would be inappapziate.

