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ABSTRACT 
 

Medial Axis-Biased Rapidly-Exploring Random Trees. (May 2012) 
 

Evan John Greco 
Department of Computer Science and Engineering 

Texas A&M University 
 

Research Advisor: Dr. Nancy M. Amato 
Department of Computer Science and Engineering 

 

RRTs (Rapidly-Exploring Random Trees) have shown wide applications in robotics.  

RRTs are a type of sampling-based motion planners that expand to fill the space starting 

from one or more root configurations.  RRTs are excellent at rapidly exploring open 

space in an environment, as well as finding configurations close to obstacles.  PRMs 

(Probabilistic RoadMap methods) are another class of sampling-based motion planners.  

One particular planner, Medial Axis PRM (MAPRM), constructs roadmaps on the 

medial axis, leading to paths with high clearance.  This work introduces a novel RRT 

variant, namely the Medial Axis RRT (MARRT) that constructs trees whose nodes and 

edges lie on (or near) the medial axis of the free configurations space.  This is achieved 

through the use of MAPRM-like techniques to retract sampled configurations to the 

medial axis of the free space.  We show MARRT successfully increases clearance along 

RRT paths for a broad spectrum of motion planning problems.   
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1CHAPTER IINTRODUCTIONMotion Planning is a known diÆ
ulty in roboti
s involving planning the paths ofrobots through many di�erent types of environments. These environments may bea workspa
e for manufa
turing robots, a disaster area in sear
h and res
ue, or evenenergy lands
apes in protein folding. Appli
ations of Motion Planning in
lude virtualreality (VR), protein folding, multi-agent systems, manufa
turing, prototyping, and
omputer aided design (CAD), among others.More pre
isely, Motion Planning (MP) algorithms address the problem of �nding asequen
e of valid (
ollision-free) states (
on�gurations) that take a moving obje
t,referred to as a robot, from an initial 
on�guration (Cstart) to a goal 
on�guration(Cgoal). Deterministi
 
al
ulation of the 
on�guration spa
e of an environment isknown to be P-Spa
e Hard [1℄ and generally infeasible, ex
ept for lowDOF problems,e.g., DOF < 5.The 
omplexity of motion planning led to the introdu
tion of sampling-based motionplanning. Sampling-based planners sample the environment for valid 
on�gurations,and may bias these 
on�gurations based on 
ertain parameters or algorithms [2℄[3℄.Within this 
lass of samplers lies tree-based and graph-based planners. Tree-basedplanners generally involve starting at some 
on�guration Croot and in
rementallygrowing towards some goal 
on�guration Cgoal, with ea
h root growing it's own 
on-ne
ted 
omponent (CC). One of the most 
ommon examples of a tree-based planneris the Rapidly-Exploring Random Tree (RRT) [4℄. RRTs are useful for single-queryThis thesis follows the style of the IEEE Transa
tions on Roboti
s andAutomation.



2problems in simple environments, where the goal is to explore free spa
e eÆ
iently to�nd a goal in real-time appli
ations. There are several RRT-based methods to solvingmotion planning problems, in
luding RRT-Conne
t [4℄ and OBRRT [5℄. Graph-basedplanners, su
h as the Probabilisti
 Roadmap Method (PRM) [6℄, randomly samplethe environment and 
reate a graph that 
an be queried for paths from one lo
ationto another, usually using a shortest-path algorithm su
h as Dijkstra's Single Sour
eShortest Path Algorithm.In general, sampling-based planners have diÆ
ulty 
reating roadmaps with high
learan
e. A PRM-based method that addresses this problem is the Medial-AxisPRM (MAPRM [3℄). MAPRM randomly samples the environment and retra
ts thesampled 
on�gurations to the medial axis of the free spa
e. This gives a roadmapwith high 
learan
e from obsta
les, whi
h as previously mentioned 
an be an impor-tant 
hara
teristi
 for paths. However, there is no su
h RRT-based method whi
hfully grows on the medial-axis.The primary 
ontribution of this work is a novel RRT variant, the Medial-AxisBiased Rapidly-Exploring Random Tree (MARRT). MARRT retra
ts RRT nodes tothe medial axis of the free spa
e, along with the 
onne
tions between them usingthe Medial Axis Lo
al Planner (MALP [7℄). In low dimensions, samples 
an betransformed to the Medial Axis at a low 
ost, while in higher dimensions we usean approximate method. In summation, the tree and its edges are all be on, ornear, the medial axis, and grow in the fashion of an RRT. The goal of MARRTis not ne
essarily to provide the most eÆ
ient planning algorithm, but to establishthe feasibility of a medial-axis biased RRT planner. A summary of the primary
ontributions of this paper are as follows:



3� Introdu
tion of a novel method, MARRT, that su

essfully grows RRTs on themedial axis of the free spa
e.� Detailed experimental evaluation in 2D and 3D environments with robots withDOF varying from 2 to 6.� Analysis of MARRT roadmap performan
e and evaluation of 
learan
e-relateddata 
ompared to other 
ommon RRT-based planners su
h as RRT [8℄ andOBRRT [5℄In order to analyze the performan
e of MARRT, metri
s su
h as path length, average
learan
e, node 
ount, and others are detailed. The experiments are designed tomeasure general roadmap 
hara
teri
s (e.g., 
learan
e) in the absen
e of a queryand query-based s
enarios, with both start and goal 
on�gurations being given. Theenvironments themselves 
ontain 
ompli
ated narrow passages that many plannershave trouble navigating, as well as open spa
es that 
an also be e�e
tively mappedusing the medial axis. Qualitative analysis is done by utilizing visualizations of 2Dexperiments. The results show a 
lear advantage produ
ed by MARRT in its abilityto 
reate paths that maximize 
learan
e.



4CHAPTER IIPRELIMINARIESIn this se
tion, some basi
s of motion planning will be explained, along with the twoalgorithms that inspire MARRT: RRT and MAPRM.A. Con�guration spa
eCon�guration Spa
e (Cspa
e) is the spa
e that in
ludes all poses and positions of aparti
ular robot subje
t to environmental 
onstraints. Ea
h point in the Cspa
e 
or-responds to a 
on�guration of the robot. Cspa
e is split into three primary subsets:Cfree, Cobs, and C
onta
t. All valid 
on�gurations are 2 Cfree, while 
on�gurationswith one or more dimensions partially or 
ompletely inside of an obsta
le are 2 Cobst.Conta
t 
on�gurations, parti
ularly useful in 
ases su
h as when roboti
 manipula-tors make 
onta
t with obje
ts (holding a glass, pi
king up a pa
kage, solderingpoints, et
.), o

ur where 
on�gurations and obsta
les tou
h.Sampling-based motion planning 
ame to be after it was shown that expli
itly 
al
u-lating the C-Spa
e of an environment is P-Spa
e Hard[1℄. To address this problem,sampling-based motion planning was developed.B. Sampling-based motion planningSampling-based planners are parti
ularly useful in motion planning. In sampling-based planners, di�erent algorithms use di�erent metri
s and methods in order tobias samples in a way that fa
ilitates the mapping of the workspa
e. In general,



5random 
on�gurations are sampled in the environment. Various methods have beendeveloped to �lter [9℄[10℄ or retra
t [2℄[3℄ samples to bias sampling towards di�erentarea of Cfree.As des
ribed in the introdu
tion, the primary basis of MARRT is the Rapidly-Exploring Random Tree (RRT [8℄, Figure 1) Algorithm 1 des
ribes the basi
 idea ofhow RRTs explore free spa
e. For a given number of iterations, RRTs randomly sam-ple a 
on�guration in the workspa
e, and extend the tree rooted at qstart a distan
eÆ towards the randomly sampled node. [8℄ des
ribes the introdu
tion of RRT-basedalgorithms to motion planning, as well as theoreti
al analysis that details the use-fulness of applying RRTs to the realm of motion planning. The authors formulatetheoreti
al and experimental results for 4 di�erent types of motion planning prob-lems: holonomi
, non-holonomi
, kinodynami
, and 
losed kinemati
 
hains.The primary fun
tion of the RRT is to in
rementally randomly explore spa
e. De-pending on the Æ value, RRTs 
an expand large distan
es eÆ
iently in Cfree. Par-ti
ularly appli
able to motion planning is RRT-Conne
t [4℄ whi
h grows 2 trees: onefrom Cstart and one from Cgoal. However, we adjust MARRT from the basi
 RRTalgorithm.
Fig. 1. RRT example.



6Algorithm 1 Rapidly-Exploring Random TreeInput: Environment e, Start Con�guration qstart, Step Size Æ, Num Iterations nOutput: Roadmap RR:insert(qstartfor i = 1:::n doqrand  GetRandomCfg(e)qnew  NearestNeighbor(R; qrand)ExtendTowardNode(qnew; qrand; Æ)AddToRoadmap(qnew)end forreturn RAn additional study done by Ku�ner et al. [11℄ introdu
es the 
on
ept of RRT-Conne
t. RRT-Conne
t is a bidire
tional planner as dis
ussed in [8℄, 
omprising oftwo trees, with one beginning at qstart and one atXgoal. Ea
h tree grows towards ea
hother using a greedy heuristi
, with a 
onne
tion between the two being attemptedat ea
h step. On
e the two trees meet (i.e. a 
onne
tion between a node in the qstarttree and a node in the qgoal tree is 
reated), a path 
an be derived from the tree usinga simple path �nding algorithm. Additionaly, some analysis revealed that RRTs areindeed probabilisti
ally 
omplete, i.e. probability of �nding a path approa
hes 1.Another RRT-based sampler, OBRRT [5℄ exploits information gained about obsta-
les in order to bias the growth of the tree. In
uen
ed by OBPRM[2℄, OBRRTin
rementally 
hooses growth methods based on user-provided weights, and growsbased on these methods. These methods in
lude 
onstru
ting ve
tors from randomlysampled 
on�gurations, or to randomly 
hoose ve
tors based on workspa
e obsta
les



7and then 
hoosing to randomize orientation or position, among others.

Fig. 2. MAPRM example.Algorithm 2 Medial Axis PRMInput: Environment eOutput: Roadmap Rdone = falsewhile !done doq
urr  GetRandomCfg(e)PushToMedialAxis(q
urr)AddToRoadmap(q
urr)Conne
t(R; q
urr; :::)end whilereturn RThere have been several te
hniques proposed that utilize the medial axis for motionplanning. This 
an be desireable sin
e the medial axis maximizes 
learan
e from ob-sta
les and hen
e 
an 
ontain `safe' paths. One of the �rst is the Medial-Axis PRM



8(MAPRM) [3℄. MAPRM allows nodes to be on the medial axis without its expli
it
omputation. In parti
ular, as shown in Algorithm 2 and Figure 2, in MAPRM, arandom 
on�guration is sampled, and then it is pushed to the medial axis of the freespa
e. As with any PRM variant, MAPRM 
an 
reate multiple 
onne
ted 
ompo-nents, and requires methods to 
onne
t them together if a fully-
onne
ted roadmapis desired. The expense of this algorithm is dominated by the PushToMedialAxis()fun
tion, espe
ially in higher dimensions where an approximate version is required.The expense of this fun
tion 
omes primarily due to the 
ost of 
ollision dete
tion
alls, of whi
h many are required in order to lo
ate a point suÆ
iently 
lose to themedial axis.[12℄ presents details on MAPRM for a three-dimensional free-
ying rigid body, outlin-ing that the algorithm is theoreti
ally guaranteed to sample more nodes in a narrowpassage than uniform random sampling. Experimentally, the work displays a largeadvantage over uniform sampling.In both [3℄ and [12℄, sampling is limited to Rd , d � 3 spa
e, as exa
t 
omputation oftranslating a random 
on�guration to the medial axis is feasible. This is not true forhigher dimensions. This led to the development of a general framework for MAPRM[13℄ allowing for an approximation of the medial axis for higher-dimension problems(Rd , d � 4).C. Lo
al plannersIn PRMs, roadmap edges 
orrespond to, typi
ally valid, traje
tories 
onne
ting thestart and the end 
on�guration of the edge. These traje
tories are typi
ally validatedusing some simple, deterministi
 planner referred to as a lo
al planner (LP). The most



9
ommon lo
al planner used in PRMs is the straight line lo
al planner. In the straight-line LP, the intermediate 
on�gurations at some problem dependent resolution alongthe straight line in 
on�guration spa
e 
onne
ting the start and the end points ofthe edge are all tested for validity; if they are all valid then the edge is determinedto be valid and an edge is added to the roadmap representing that 
onne
tion. Thestraight-line LP is simple and 
onvenient. However, it is not suÆ
ient for our usessin
e we are interested in paths that lie on the medial axis.In this work we will use the re
ently introdu
ed medial axis LP (MALP) [7℄ in whi
has the edge itself is pushed to medial axis. MALP works by re
ursively splitting astraight line 
onne
tion in half, and pushing the midpoint of ea
h bise
ted straightline to the medial axis. The re
ursion stops when the verti
es and edges are allwithin some user provided threshold destan
e of the medial axis. As shown in [7℄,the 
ost of MALP 
an vary greatly depending on the level of a

ura
y desired. Fromour experien
e, the desired a

ura
y is typi
ally a
hieved within 4 or 5 levels ofre
ursion.



10CHAPTER IIIMEDIAL AXIS RRTIn this se
tion we des
ribe Medial Axis RRT, or MARRT, whi
h is a variant of thestandard RRT algorithm that grows a tree on the medial axis from a spe
i�ed initial
on�guration. There is also a variant MARRT-Conne
t that is analogous to theRRT-Conne
t algorithm whi
h spe
i�es both a start and a goal 
on�guration andattempts to grow the tree from the start until it 
an be 
onne
ted to the goal.Algorithm 3 Medial Axis RRTInput: Environment e, Lo
al Planner lp, Start Con�guration qstart, Step Size Æ,Max Iterations nOutput: Roadmap RR:insert(qstart)for i = 1:::n doq
urr  GetRandomCfg(e)qnearest  GetNearestNeighbor(R)q
urr  getRRTNode(e; R; Æ) //with respe
t to step sizePushToMedialAxis(q
urr)lp:Conne
t(R; q
urr; e; :::)end forreturn RMARRT, in Algorithm 3, begins similarly to the other related algorithms { the start
on�guration qstart is added to the roadmap and will serve as the root of the tree.Inside the main loop, a random 
on�guration is sampled. As with MAPRM, thisnode 
an be in qfree or qobst.



11After the node is sampled, the nearest neighbor in the tree must be found based onsome distan
e metri
 (e.g. Eu
lidean). There are several variables in determiningwhat distan
e metri
 is suÆ
ient for whi
h appli
ation [14℄. This is the same as isdone in standard RRT.Next, the newly sampled node is moved to within a user-de�ned distan
e Æ awayfrom the 
losest neighbor in the tree rooted by qstart. In RRT, this node is requiredto be in qfree and is the �nal expansion step. In MARRT, the expansion is done inthe same way, ex
ept that after the expansion the node is then pushed to the medialaxis. The 
hoi
e of Æ is problem dependent. As dis
ussed later, if the traje
tory
onsists of long straight-line portions, then larger values of Æ may be useful. Indeed,given the nature of the medial axis whi
h maximizes 
learan
e, MARRT may be ableto use larger values of Æ than other RRT variants.In MARRT, as in MAPRM, PushToMedialAxis() is the main step in 
reating aroadmap with nodes on the medial axis. As previously mentioned, PushToMedialAxis()
an be done in an exa
t fashion assuming the robot's DOF is less or equal to 3. Afterthe 
on�guration is pushed to the medial-axis of the free spa
e, a 
onne
tion willneed to be made to it from the tree. This will be obtained by using a lo
al planner.In the 
ase of MARRT, the use of the Medial Axis LP [7℄ will be the default 
hoi
e.MALP modi�es the edges between nodes in the roadmap su
h that this path lies onthe medial-axis. By having the nodes as well as the edges on the medial axis, everyentity of the roadmap will have high 
learan
e, as it is one of the primary goals ofMARRT.



12Algorithm 4 Medial Axis RRT-Conne
tInput: Environment e, Lo
al Planner lp, Start Con�guration qstart, Goal Con�gu-ration qgoal, Step Size ÆOutput: Roadmap RR:insert(Cstart)done = falsewhile !done doq
urr  GetRandomCfg(e; robot)qnearest  GetNearestNeighbor(R)q
urr  getRRTNode(e; R; Æ) //with respe
t to step sizePushToMedialAxis(q
urr)lp:Conne
t(R; q
urr; e; :::)if lp:Conne
t(R; qgoal; e; :::) thendone = trueend ifend whilereturn RWe also de�ne another version of the algorithm, MARRT-Conne
t (Algorithm 4),that is similar to RRT-Conne
t and is designed to grow the tree from the start
on�guration qstart to a goal 
on�guration qgoal. In this 
ase, we initially add bothqstart and qgoal to the roadmap. Then, on
e the newly expanded node is added tothe roadmap, a 
onne
tion from the roadmap to qgoal is attempted in order to �nd apath from qstart to qgoal.



13CHAPTER IVRESULTSIn this se
tion, experimental setup, results, and analysis are provided.A. SetupMARRT was implemented in C++ in the Probabilisti
 Motion Planning Library(PMPL), developed in the Parasol Lab at Texas A&M University. PQP [15℄ is usedfor Collision Dete
tion. The experiments themselves ran on a 
luster 
onsistingof 24 IBM x335 servers with 4GB RAM and (2) 2.4GHz Intel Xeon CPUs ea
h.The operating system for the 
luster is CentOS 5.4, with Ro
ks 5.0 as the 
lusteringsoftware. Visualization is done with Vizmo [16℄, an in-house developed tool developedby Parasol Lab that displays sampled 
on�gurations, bounding boxes, paths, andother useful information pertaining to motion planning. Results were averaged over10 random seeds.When 
onsidering the e�e
tiveness of MARRT, it is important to note that the
learan
e of the resulting roadmap is the main bene�t of the algorithm. With thisin mind, there are several 
learan
e-based metri
s of note:� Minimum Path Clearan
e: When navigating environments that may bedynami
 or approximated, having a small 
han
e of an unexpe
ted 
ollision isimportant. RRT paths should have low path 
learan
e, while MARRT shouldhave high path 
learan
e.� Average Roadmap/Path Clearan
e: In addition to knowing the mini-



14mum 
learan
e, knowing the average is a good way to see just how safe theroadmap is as a whole in terms of avoiding 
ollisions. As a whole we 
omparethe entire tree's ability to retain 
learan
e for MARRT.In addition to these metri
s, standard motion planning performan
e metri
s in
luding
ollision dete
tion (CD) 
all totals and roadmap node 
ount are reported for problemsinvolving queries.B. EnvironmentsThe experiments are split into 2 main se
tions: 2D and 3D environments. The2D environments are meant to provide a qualitative analysis on how the di�erentRRTs grow, and how they perform when presented with narrow passages. In the 2Danalysis, all methods are given a Æ value of 5% of the environment's resolution, basedon a given distan
e metri
 (in all 
ases in this paper, standard eu
lidean). In the 3Denvironments, an emphasis is given on the RRTs solving queries. To enable betterperforman
e in all planners, a maximum Æ value is used (that is, at ea
h iteration,the algorithms are allowed to be as greedy as possible when attempting to expand).The 2D environments in
lude S-Tunnel (Figure 3), 2D Maze (Figure 8), and 2DZ-Tunnel (Figure 9). S-Tunnel presents a 2-DOF robot that needs to navigate awinding narrow passage in order to 
omplete the query. The 2D Maze presents arelatively 
ompli
ated maze that has 2 solutions. The beginning node starts in thevery middle of the maze, whi
h allows for an interesting view into how the variousRRT-based methods perform in su
h an environment over a set number of iterations.The 2D Z-Tunnel environment provides an in-between in diÆ
ulty 
ompared to the



15other two 2D environments, in that it has a z-shaped narrow passage while alsofor
ing the methods to navigate additional 
orners in order to solve the query.The 3 3D environments are 
alled 3D Z-Tunnel (Figure 11), 3D Maze (Figure 13),and Flange (Figure 14). The 3D Z-Tunnel presents a 3-Dimensional Z-shaped narrowpassage. In order to see how the RRTs are able to navigate while inside the narrowpassage, the starting 
on�guration is pla
ed in the 
enter, with the goal 
on�gurationat one of the ends of the passage. The 3D Maze environment in
ludes a series oftubes that must be navigated in order to rea
h the goal. As with Z-tunnel, thestarting 
on�guration is pla
ed in the middle of the environment. Finally, the Flangeenvironment simply requires the methods to plan the motion of a tube that is stu
k ina 
onstri
ting obsta
le. This environment requires subtle translations and rotationsof the tube before it 
an be extra
ted from its 
onstri
ting obsta
le. The 3D Mazeenvironment is also used for the 9 DOF serial robot experiment.C. Results and analysisThe experimental results show a pervasive and 
onsistent in
rease in overall 
lear-an
e for MARRT. First, we show and analyze the qualitative results for the 2Dexperiments as shown in Figure 3, Figure 8, and Figure 9.1. 2D EnvironmentsThe initial experiment involves a qualitative analysis of the 
overage of MARRTversus RRT and OBRRT. The experiment 
onsists of 3 separate starting positionswith no queries, as we are interested in the manner of the growth of the RRTs. The



16�rst position, as shown in Figure 3, is in the bottom left of the environment, whilethe other two starting positions are in the 
enter and top right of the environment.2,000 nodes are sampled.

Fig. 3. S-Tunnel with starting CFG points.

Fig. 4. S-Tunnel MARRT examples: left, 
enter, and right starting positions.The MARRT graphs, as shown in Figure 4, show a relatively even 
overage of thespa
e while maintaining high 
learan
e. The starting position of the tree makes littledi�eren
e in the trees that are grown, whi
h is in 
ontrast to the performan
e of theother two methods. This may be explained when 
onsidering the high 
onne
tivityof nodes on the medial axis, espe
ially in low DOF environments (in this 
ase, onlytwo).
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Fig. 5. S-Tunnel RRT examples: left, 
enter, and right starting positions.RRT, as seen in Figure 5, performan
e in
onsistently when 
ompared to MARRT.RRT grows evenly in the 
enter starting position, with an even distribution of nodesthroughout the environment. However, imbalan
es are visible when the starting
on�gurations are moved to the top right or bottom left of the environment.

Fig. 6. S-Tunnel OBRRT examples: left, 
enter, and right starting positions.Similarly to RRT, OBRRT displays an uneven distribution of nodes based on thelo
ation of the root 
on�guration, as seen in Figure 6. While not as drasti
 as RRT,OBRRT fails to a
hieve the symmetri
 
overage of MARRT.
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Fig. 7. Average 
learan
e in 2D environments.

Fig. 8. 2D Maze examples: MARRT, RRT, and OBRRT.In the 2D Maze environment, we see that, in Figure 8, the general paths are similar.However, the quality of these paths in terms of 
learan
e vary greatly. For MARRT,high 
learan
e is obtained throughout the entire map, while both OBRRT and RRT
onstru
t maps that go near the walls of the narrow passages. Overall distan
e that
an be traversed in the workspa
e favors RRT, but MARRT 
an traverse near as far,while retaining a high 
learan
e roadmap.
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Fig. 9. 2D Z-Tunnel examples: MARRT (left), RRT (
enter), and OBRRT (right).In Figure 9, we 
an see that all 3 methods managed to map the overall workspa
e.The main di�eren
e is in the 
learan
e of the overall roadmaps. MARRT maps theentire available free spa
e, with nodes that have high 
learan
e. RRT and OBRRThave a larger 
overage of the free spa
e, but the 
learan
e values are low, as shownin Figure 7 2. 3D (6 DOF) ExperimentsWe now move to analyzing the results for the 3D environments. For these environ-ments, a quantitative approa
h is taken. For ea
h environment, queries are assigned(qstart and qgoal), and tree generation halts when the trees are able to 
onne
t to thegoal 
on�guration. The results of the experiments 
an be viewed in Figure 10 as wellas Table I.In terms of 
learan
e data, MARRT produ
es higher 
learan
e roadmaps and paths,whi
h is the primary obje
tive of the method.



20In the 3D Z-Tunnel environment (Figure 11), the largest dis
repan
y is in the pathlength of ea
h method. MARRT produ
es a path that is several times larger thanboth RRT and OBRRT. This may be explained by a type of ba
k-tra
king that ispossible with a medial-axis based algorithm, espe
ially when produ
ing a tree. Whensampling in a tight narrow passage, it is possible that the nearest neighbor 
an 
hangefrom an out-most bran
h to an inner bran
h, resulting in a su
tion e�e
t that 
anlimit outward growth. One way to address this artifa
t of the method would be toiteratively smooth and then re-push the path to the medial axis. Another reason theMARRT paths are longer is be
ause paths on the medial axis are inherently longerthan those that are allowed to 
ut 
orners, whi
h is a natural trade-o� between pathlength and path quality.
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213D MazeMethod Nodes Collision Dete
tion Calls Roadmap Clearan
e Path Length Path Clearan
e Clearan
e Varian
eMARRT 1167.1 133099 0.0109656 264.5 0.0145652 2.24012e-05RRT 1386.6 17881 0.00245215 77.7 0.00557842 1.41861e-05OBRRT 4104.8 35966.7 0.0015525 64.6 0.0073481 4.94818e-06FlangeMethod Nodes Collision Dete
tion Calls Roadmap Clearan
e Path Length Path Clearan
e Clearan
e Varian
eMARRT 146.8 289510 0.0268746 81.7 0.0384039 0.000697416RRT 1605 6484.14 0.0522617 56.8571 0.0423998 0.00161294OBRRT 1115.11 6343 0.031549 53.556 0.0434707 0.00110043D Z-TunnelMethod Nodes Collision Dete
tion Calls Roadmap Clearan
e Path Length Path Clearan
e Clearan
e Varian
eMARRT 647 71617.7 0.00821397 540.1 0.0203978 2.78616e-05RRT 332.1 6731 0.00133686 108.1 0.00316082 1.18155e-06OBRRT 92.1 83217.3 0.00132918 138.9 0.00331836 2.40437e-06Table I3D environment experimental data. Clearan
e values are averaged. Clearan
evarian
e is the average varian
e of ea
h roadmap's 
learan
e values.

Fig. 11. 3D Z-Tunnel environment.
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22In the 3D Maze environment (Figure 13, Figure 12), similar results to 3D Z-Tunnelare obtained. In total, the 
learan
e values 
learly favor MARRT, while path lengthfollows a similar pattern that was shown in the 3D Z-Tunnel results. MARRT solvedthe query with fewer nodes than RRT and OBRRT as well, be
ause it took longersteps toward the goal.

Fig. 13. 3D Maze environment.The Flange environment (Figure 14) presents a di�erent 
hallenge than the otherenvironments, in that it requires a large obje
t to be removed from a 
onstrainingobsta
le. This is also the only environment where not all methods solved the problemwith 100% eÆ
ien
y. MARRT performed the best, solving 100% query attempts.OBRRT performed with 90% eÆ
ien
y, while RRT solved the query with only 70%eÆ
ien
y. MARRT was also far more eÆ
ient in terms of node 
ount with 146.8nodes on average being required.
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Fig. 14. Flange environment.3. 3D Maze Serial3D MazeMethod Collision Dete
tion Calls Roadmap Clearan
e Clearan
e Varian
eMARRT 7.86312e06 0.00319565 1.08712e-05RRT 54503.4 0.00214199 1.52141e-05OBRRT 69656.2 0.00154734 7.2189e-06Table II3D environment serial experimental data. Clearan
e values are averaged. Clearan
evarian
e is the average varian
e of ea
h roadmap's 
learan
e values.
In order to show the generi
 nature of MARRT, a 9 DOF experiment was run onthe 3D Maze environment. The experiment 
onsists of a robot with 3 rotationaljoints, 3 rotational degrees of freedom, and 3 translational degrees of freedom, allof whi
h 
ombine to a 9 DOF robot. The experiment does not have a query; theroadmap 
onsists of 5,000 nodes of free growth from the starting 
on�guration, whi
his lo
ated in the 
enter of the environment. The experiments show a qualitativeadvantage for MARRT, as MARRT is able to navigate through the narrow passageto the open areas above and below. Displayed in Figure 15, MARRT is the onlymethod of the 3 that is able to move out of the medial axis. With the extra degreesof freedom, utilizing the medial axis is espe
ially helpful. In the 
ase of RRT andOBRRT, randomly sampling 
on�gurations to expand to be
omes more diÆ
ult, as



24the randomization of additional parameters lowers the ability that a 
on�gurationin Cfree may be sampled. While MARRT 
omes out ahead qualitatively, its largesthindran
e is the number of 
ollision dete
tion 
alls. This is due to the use of MALPin higher degrees of freedom. The experiments were run with 5 random rays permedial axis 
al
ulation, whi
h, when 
ombined with MALP and a higher degree offreedom, leads to very high numbers of 
ollision dete
tion 
alls, visible in Table II.However, the average roadmap 
learan
e is also higher for MARRT, whi
h when
ombined with the qualitative advantage, gives MARRT an edge.

Fig. 15. 3D Maze Serial (9 DOF) examples: MARRT (left), RRT (
enter), andOBRRT (right).



25CHAPTER VCONCLUSIONIn 
on
lusion, we introdu
ed a novel algorithm, Medial Axis RRT (MARRT), whi
hsu

esfully grows RRTs with high 
learan
e. When 
ompared to RRT and OBRRT,MARRT provides attra
tive roadmaps. These roadmaps would be safer to navigatefor a robot under un
ertainty. For future work an exploration into ways to fo
us theexpand step to eÆ
iently bias the roadmap towards a goal 
on�guration 
ould betaken, a high DOF analysis, and potentially how to limit the 
ollision dete
tion 
allsrequired by the PushToMedialAxis operation.
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