MEDIAL-AXIS BIASED RAPIDLY-EXPLORING RANDOM TREES

A Senior Scholars Thesis
by

EVAN JOHN GRECO

Submitted to Honors and Undergraduate Research
Texas A&M University
in partial fulfillment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

May 2012

Major: Computer Science

MEDIAL-AXIS BIASED RAPIDLY-EXPLORING RANDOM TREES

A Senior Scholars Thesis
by

EVAN JOHN GRECO

Submitted to Honors and Undergraduate Research
Texas A&M University
in partial fulfillment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

Approved by:
Research Advisor: Nancy M. Amato
Associate Director, Honors and Undergraduate Research: Duncan MacKenzie

May 2012

Major: Computer Science

il

ABSTRACT

Medial Axis-Biased Rapidly-Exploring Random Trees. (May 2012)

Evan John Greco
Department of Computer Science and Engineering
Texas A&M University

Research Advisor: Dr. Nancy M. Amato
Department of Computer Science and Engineering

RRTs (Rapidly-Exploring Random Trees) have shown wide applications in robotics.
RRTs are a type of sampling-based motion planners that expand to fill the space starting
from one or more root configurations. RRTs are excellent at rapidly exploring open
space in an environment, as well as finding configurations close to obstacles. PRMs
(Probabilistic RoadMap methods) are another class of sampling-based motion planners.
One particular planner, Medial Axis PRM (MAPRM), constructs roadmaps on the
medial axis, leading to paths with high clearance. This work introduces a novel RRT
variant, namely the Medial Axis RRT (MARRT) that constructs trees whose nodes and
edges lie on (or near) the medial axis of the free configurations space. This is achieved
through the use of MAPRM-like techniques to retract sampled configurations to the
medial axis of the free space. We show MARRT successfully increases clearance along

RRT paths for a broad spectrum of motion planning problems.

v

TABLE OF CONTENTS

Page

ABSTRACT ...ttt ettt sttt et et et et et sbeeneeneeneas il

TABLE OF CONTENTS ..ottt sttt st v

LIST OF FIGURESc.ooiieiiiiieeeeeeee ettt A%

LIST OF TABLES ...ttt ettt ettt st vi
CHAPTER

I INTRODUCTION ..ottt sttt 1

I PRELIMINARIESooiiiiiieeeeeeee e 4

A. Configuration SPACE.........cecueerureeiuieniieeieeniieeieesieeereeseeeereeeee e 4

B. Sampling-based motion planningc..cceceveeveerieneniieneenennne. 4

C. Local planners...........coccueerieriieniieeieeiee et 8

11 MEDIAL AXIS RRT ...ttt 10

v RESULTS ...ttt sttt ebe 13

AL SEIUP ettt 13

B. ENVIFONMENTS ..ottt 14

C. Results and analysis........ccceeeeeeeiieniieiiienieeieeieee e 15

v CONCLUSION ...ttt sttt 25

REFERENCES ...ttt ettt sttt ettt este st b ene s 26

CONTACT INFORMATIONooiiiiiiiiiiiiiiiieeecee e 29

FIGURE

1

2

10

11

12

13

14

15

LIST OF FIGURES

Page
RRT example. ... 5
MAPRM example. ... 7
S-Tunnel with starting CFG points.oo... 16
S-Tunnel MARRT examples: left, center, and right starting
POSIEIONS. .« .ttt e 16
S-Tunnel RRT examples: left, center, and right starting po-
S 0} 1P 17
S-Tunnel OBRRT examples: left, center, and right starting
POSIEIONIS. .« ottt ettt ettt e 17
Average clearance in 2D environments............... 18
2D Maze examples: MARRT, RRT, and OBRRT................. 18
2D Z-Tunnel examples: MARRT (left), RRT (center), and
OBRRT (Tight). .. vt 19
3D average clearance data............. i i 20
3D Z-Tunnel environment.o 21
Minimum clearance for 3D environments. 21
3D Maze environment. i 22
Flange environment. i i 23

3D Maze Serial (9 DOF) examples: MARRT (left), RRT
(center), and OBRRT (right)..... ..., 24

vi

LIST OF TABLES

TABLE Page
I 3D environment experimental data. Clearance values are
averaged. Clearance variance is the average variance of each

roadmap’s clearance values. 21
II 3D environment serial experimental data. Clearance values

are averaged. Clearance variance is the average variance of
each roadmap’s clearance values.o.... 23

CHAPTER I

INTRODUCTION

Motion Planning is a known difficulty in robotics involving planning the paths of
robots through many different types of environments. These environments may be
a workspace for manufacturing robots, a disaster area in search and rescue, or even
energy landscapes in protein folding. Applications of Motion Planning include virtual
reality (VR), protein folding, multi-agent systems, manufacturing, prototyping, and

computer aided design (CAD), among others.

More precisely, Motion Planning (MP) algorithms address the problem of finding a
sequence of valid (collision-free) states (configurations) that take a moving object,
referred to as a robot, from an initial configuration (Cly¢) to a goal configuration
(Cyoat). Deterministic calculation of the configuration space of an environment is
known to be P-Space Hard [1] and generally infeasible, except for low DOF problems,
e.g., DOF < 5.

The complexity of motion planning led to the introduction of sampling-based motion
planning. Sampling-based planners sample the environment for valid configurations,
and may bias these configurations based on certain parameters or algorithms [2][3].
Within this class of samplers lies tree-based and graph-based planners. Tree-based
planners generally involve starting at some configuration C),, and incrementally
growing towards some goal configuration Cyeq, With each root growing it’s own con-
nected component (CC). One of the most common examples of a tree-based planner

is the Rapidly-Exploring Random Tree (RRT) [4]. RRTs are useful for single-query

This thesis follows the style of the IEEE Transactions on Robotics and
Automation.

problems in simple environments, where the goal is to explore free space efficiently to
find a goal in real-time applications. There are several RRT-based methods to solving
motion planning problems, including RRT-Connect [4] and OBRRT [5]. Graph-based
planners, such as the Probabilistic Roadmap Method (PRM) [6], randomly sample
the environment and create a graph that can be queried for paths from one location
to another, usually using a shortest-path algorithm such as Dijkstra’s Single Source

Shortest Path Algorithm.

In general, sampling-based planners have difficulty creating roadmaps with high
clearance. A PRM-based method that addresses this problem is the Medial-Axis
PRM (MAPRM [3]). MAPRM randomly samples the environment and retracts the
sampled configurations to the medial axis of the free space. This gives a roadmap
with high clearance from obstacles, which as previously mentioned can be an impor-
tant characteristic for paths. However, there is no such RRT-based method which

fully grows on the medial-axis.

The primary contribution of this work is a novel RRT variant, the Medial-Axis
Biased Rapidly-Exploring Random Tree (MARRT). MARRT retracts RRT nodes to
the medial axis of the free space, along with the connections between them using
the Medial Axis Local Planner (MALP [7]). In low dimensions, samples can be
transformed to the Medial Axis at a low cost, while in higher dimensions we use
an approximate method. In summation, the tree and its edges are all be on, or
near, the medial axis, and grow in the fashion of an RRT. The goal of MARRT
is not necessarily to provide the most efficient planning algorithm, but to establish
the feasibility of a medial-axis biased RRT planner. A summary of the primary

contributions of this paper are as follows:

e Introduction of a novel method, MARRT, that successfully grows RRTs on the

medial axis of the free space.

e Detailed experimental evaluation in 2D and 3D environments with robots with

DOF varying from 2 to 6.

e Analysis of MARRT roadmap performance and evaluation of clearance-related
data compared to other common RRT-based planners such as RRT [8] and
OBRRT [5]

In order to analyze the performance of MARRT, metrics such as path length, average
clearance, node count, and others are detailed. The experiments are designed to
measure general roadmap characterics (e.g., clearance) in the absence of a query
and query-based scenarios, with both start and goal configurations being given. The
environments themselves contain complicated narrow passages that many planners
have trouble navigating, as well as open spaces that can also be effectively mapped
using the medial axis. Qualitative analysis is done by utilizing visualizations of 2D
experiments. The results show a clear advantage produced by MARRT in its ability

to create paths that maximize clearance.

CHAPTER II

PRELIMINARIES

In this section, some basics of motion planning will be explained, along with the two

algorithms that inspire MARRT: RRT and MAPRM.

A. Configuration space

Configuration Space (Cjspace) is the space that includes all poses and positions of a
particular robot subject to environmental constraints. Each point in the Cgpgce cor-
responds to a configuration of the robot. Cjpee is split into three primary subsets:
Ctree, Cops, and Cooprace- All valid configurations are € Cly.e, while configurations
with one or more dimensions partially or completely inside of an obstacle are € Cg;.
Contact configurations, particularly useful in cases such as when robotic manipula-
tors make contact with objects (holding a glass, picking up a package, soldering

points, etc.), occur where configurations and obstacles touch.

Sampling-based motion planning came to be after it was shown that explicitly calcu-
lating the C-Space of an environment is P-Space Hard[1]. To address this problem,

sampling-based motion planning was developed.

B. Sampling-based motion planning

Sampling-based planners are particularly useful in motion planning. In sampling-
based planners, different algorithms use different metrics and methods in order to

bias samples in a way that facilitates the mapping of the workspace. In general,

random configurations are sampled in the environment. Various methods have been
developed to filter [9][10] or retract [2][3] samples to bias sampling towards different

area of Cyyce.

As described in the introduction, the primary basis of MARRT is the Rapidly-
Exploring Random Tree (RRT [8], Figure 1) Algorithm 1 describes the basic idea of
how RRTs explore free space. For a given number of iterations, RRTs randomly sam-
ple a configuration in the workspace, and extend the tree rooted at ¢y q-+ a distance
d towards the randomly sampled node. [8] describes the introduction of RRT-based
algorithms to motion planning, as well as theoretical analysis that details the use-
fulness of applying RRTs to the realm of motion planning. The authors formulate
theoretical and experimental results for 4 different types of motion planning prob-

lems: holonomic, non-holonomic, kinodynamic, and closed kinematic chains.

The primary function of the RRT is to incrementally randomly explore space. De-
pending on the § value, RRTs can expand large distances efficiently in Cjye.. Par-
ticularly applicable to motion planning is RRT-Connect [4] which grows 2 trees: one
from Cyy4¢ and one from Cyoy. However, we adjust MARRT from the basic RRT

algorithm.

Fig. 1. RRT example.

Algorithm 1 Rapidly-Exploring Random Tree
Input: Environment e, Start Configuration g¢, Step Size 0, Num Iterations n

Output: Roadmap R

R.insert(qstart

fori:=1..ndo
Grand < GetRandomC fg(e)
Gnew < NearestNeighbor(R, ¢ranad)
ExtendT owardN ode(Gnew, Grand; 9)
AddToRoadmap(qnew)

end for

return R

An additional study done by Kuffner et al. [11] introduces the concept of RRT-
Connect. RRT-Connect is a bidirectional planner as discussed in [8], comprising of
two trees, with one beginning at gy and one at Xy,,. Each tree grows towards each
other using a greedy heuristic, with a connection between the two being attempted
at each step. Once the two trees meet (i.e. a connection between a node in the gsqrt
tree and a node in the ggoq tree is created), a path can be derived from the tree using
a simple path finding algorithm. Additionaly, some analysis revealed that RRTs are

indeed probabilistically complete, i.e. probability of finding a path approaches 1.

Another RRT-based sampler, OBRRT [5] exploits information gained about obsta-
cles in order to bias the growth of the tree. Influenced by OBPRM[2], OBRRT
incrementally chooses growth methods based on user-provided weights, and grows
based on these methods. These methods include constructing vectors from randomly

sampled configurations, or to randomly choose vectors based on workspace obstacles

and then choosing to randomize orientation or position, among others.

/

4

\

Fig. 2. MAPRM example.

#

Algorithm 2 Medial Axis PRM
Input: Environment e

Output: Roadmap R

done = false

while !done do
Qeurr < GetRandomC fg(e)
PushToMedial Axis(qeyrr)
AddT oRoadmap(qeyrr)
Connect(R, Geyrr, ---)

end while

return R

There have been several techniques proposed that utilize the medial axis for motion
planning. This can be desireable since the medial axis maximizes clearance from ob-

stacles and hence can contain ‘safe’ paths. One of the first is the Medial-Axis PRM

(MAPRM) [3]. MAPRM allows nodes to be on the medial axis without its explicit
computation. In particular, as shown in Algorithm 2 and Figure 2, in MAPRM, a
random configuration is sampled, and then it is pushed to the medial axis of the free
space. As with any PRM variant, MAPRM can create multiple connected compo-
nents, and requires methods to connect them together if a fully-connected roadmap
is desired. The expense of this algorithm is dominated by the PushToMedial Axis()
function, especially in higher dimensions where an approximate version is required.
The expense of this function comes primarily due to the cost of collision detection
calls, of which many are required in order to locate a point sufficiently close to the

medial axis.

[12] presents details on MAPRM for a three-dimensional free-flying rigid body, outlin-
ing that the algorithm is theoretically guaranteed to sample more nodes in a narrow
passage than uniform random sampling. Experimentally, the work displays a large

advantage over uniform sampling.

In both [3] and [12], sampling is limited to R?, d < 3 space, as exact computation of
translating a random configuration to the medial axis is feasible. This is not true for
higher dimensions. This led to the development of a general framework for MAPRM
[13] allowing for an approximation of the medial axis for higher-dimension problems

(R, d > 4).

C. Local planners

In PRMs, roadmap edges correspond to, typically valid, trajectories connecting the
start and the end configuration of the edge. These trajectories are typically validated

using some simple, deterministic planner referred to as a local planner (LP). The most

common local planner used in PRMs is the straight line local planner. In the straight-
line LP, the intermediate configurations at some problem dependent resolution along
the straight line in configuration space connecting the start and the end points of
the edge are all tested for validity; if they are all valid then the edge is determined
to be valid and an edge is added to the roadmap representing that connection. The
straight-line LP is simple and convenient. However, it is not sufficient for our uses

since we are interested in paths that lie on the medial axis.

In this work we will use the recently introduced medial axis LP (MALP) [7] in which
as the edge itself is pushed to medial axis. MALP works by recursively splitting a
straight line connection in half, and pushing the midpoint of each bisected straight
line to the medial axis. The recursion stops when the vertices and edges are all
within some user provided threshold destance of the medial axis. As shown in [7],
the cost of MALP can vary greatly depending on the level of accuracy desired. From
our experience, the desired accuracy is typically achieved within 4 or 5 levels of

recursion.

10

CHAPTER III

MEDIAL AXIS RRT

In this section we describe Medial Axis RRT, or MARRT, which is a variant of the
standard RRT algorithm that grows a tree on the medial axis from a specified initial
configuration. There is also a variant MARRT-Connect that is analogous to the
RRT-Connect algorithm which specifies both a start and a goal configuration and

attempts to grow the tree from the start until it can be connected to the goal.

Algorithm 3 Medial Axis RRT
Input: Environment e, Local Planner [p, Start Configuration ¢, Step Size 0,

Max Iterations n
Output: Roadmap R

R.insert(qstart)

fori=1..ndo
Qeurr < GetRandomC fg(e)
Gnearest <— GetNearestNeighbor(R)
Jeurr < getRRT Node(e, R,0) //with respect to step size
PushToMedial Axis(qeurr)
Ip.Connect(R, qeyrr, €, --)

end for

return R

MARRT, in Algorithm 3, begins similarly to the other related algorithms — the start
configuration ¢+ is added to the roadmap and will serve as the root of the tree.
Inside the main loop, a random configuration is sampled. As with MAPRM, this

node can be in gyree OF Gopt-

11

After the node is sampled, the nearest neighbor in the tree must be found based on
some distance metric (e.g. Euclidean). There are several variables in determining
what distance metric is sufficient for which application [14]. This is the same as is

done in standard RRT.

Next, the newly sampled node is moved to within a user-defined distance ¢ away
from the closest neighbor in the tree rooted by gsar¢- In RRT, this node is required
to be in gfre and is the final expansion step. In MARRT, the expansion is done in
the same way, except that after the expansion the node is then pushed to the medial
axis. The choice of ¢ is problem dependent. As discussed later, if the trajectory
consists of long straight-line portions, then larger values of § may be useful. Indeed,
given the nature of the medial axis which maximizes clearance, MARRT may be able

to use larger values of § than other RRT variants.

In MARRT, as in MAPRM, PushToMedial Azis() is the main step in creating a
roadmap with nodes on the medial axis. As previously mentioned, PushT oM edial Axis()
can be done in an exact fashion assuming the robot’s DOF is less or equal to 3. After
the configuration is pushed to the medial-axis of the free space, a connection will
need to be made to it from the tree. This will be obtained by using a local planner.
In the case of MARRT, the use of the Medial Axis LP [7] will be the default choice.
MALP modifies the edges between nodes in the roadmap such that this path lies on
the medial-axis. By having the nodes as well as the edges on the medial axis, every

entity of the roadmap will have high clearance, as it is one of the primary goals of

MARRT.

12

Algorithm 4 Medial Axis RRT-Connect
Input: Environment e, Local Planner [p, Start Configuration gy, Goal Configu-

ration ggeq, Step Size d
Output: Roadmap R

R.insert(Csiart)

done = false

while !done do
Geurr < GetRandom(C f g(e, robot)
Gnearest <— GetNearestNeighbor(R)
Qeurr < getRRT Node(e, R,0) //with respect to step size
PushToMedial Axis(qeyrr)
Ip.Connect(R, qeyrr, €, -..)
if Ip.Connect(R, qgoal, €, -..) then

done = true

end if

end while

return R

We also define another version of the algorithm, MARRT-Connect (Algorithm 4),
that is similar to RRT-Connect and is designed to grow the tree from the start
configuration ¢y, to a goal configuration gy, . In this case, we initially add both
Ustart aNd (goqr to the roadmap. Then, once the newly expanded node is added to
the roadmap, a connection from the roadmap to o is attempted in order to find a

path from start tO dgoal -

13

CHAPTER IV

RESULTS

In this section, experimental setup, results, and analysis are provided.

A. Setup

MARRT was implemented in C++ in the Probabilistic Motion Planning Library
(PMPL), developed in the Parasol Lab at Texas A&M University. PQP [15] is used
for Collision Detection. The experiments themselves ran on a cluster consisting
of 24 IBM x335 servers with 4GB RAM and (2) 2.4GHz Intel Xeon CPUs each.
The operating system for the cluster is CentOS 5.4, with Rocks 5.0 as the clustering
software. Visualization is done with Vizmo [16], an in-house developed tool developed
by Parasol Lab that displays sampled configurations, bounding boxes, paths, and
other useful information pertaining to motion planning. Results were averaged over

10 random seeds.

When considering the effectiveness of MARRT, it is important to note that the
clearance of the resulting roadmap is the main benefit of the algorithm. With this

in mind, there are several clearance-based metrics of note:

e Minimum Path Clearance: When navigating environments that may be
dynamic or approximated, having a small chance of an unexpected collision is
important. RRT paths should have low path clearance, while MARRT should

have high path clearance.

e Average Roadmap/Path Clearance: In addition to knowing the mini-

14

mum clearance, knowing the average is a good way to see just how safe the
roadmap is as a whole in terms of avoiding collisions. As a whole we compare

the entire tree’s ability to retain clearance for MARRT.

In addition to these metrics, standard motion planning performance metrics including
collision detection (CD) call totals and roadmap node count are reported for problems

involving queries.

B. Environments

The experiments are split into 2 main sections: 2D and 3D environments. The
2D environments are meant to provide a qualitative analysis on how the different
RRTs grow, and how they perform when presented with narrow passages. In the 2D
analysis, all methods are given a ¢ value of 5% of the environment’s resolution, based
on a given distance metric (in all cases in this paper, standard euclidean). In the 3D
environments, an emphasis is given on the RRT's solving queries. To enable better
performance in all planners, a maximum ¢ value is used (that is, at each iteration,

the algorithms are allowed to be as greedy as possible when attempting to expand).

The 2D environments include S-Tunnel (Figure 3), 2D Maze (Figure 8), and 2D
Z-Tunnel (Figure 9). S-Tunnel presents a 2-DOF robot that needs to navigate a
winding narrow passage in order to complete the query. The 2D Maze presents a
relatively complicated maze that has 2 solutions. The beginning node starts in the
very middle of the maze, which allows for an interesting view into how the various
RRT-based methods perform in such an environment over a set number of iterations.

The 2D Z-Tunnel environment provides an in-between in difficulty compared to the

15

other two 2D environments, in that it has a z-shaped narrow passage while also

forcing the methods to navigate additional corners in order to solve the query.

The 3 3D environments are called 3D Z-Tunnel (Figure 11), 3D Maze (Figure 13),
and Flange (Figure 14). The 3D Z-Tunnel presents a 3-Dimensional Z-shaped narrow
passage. In order to see how the RRT's are able to navigate while inside the narrow
passage, the starting configuration is placed in the center, with the goal configuration
at one of the ends of the passage. The 3D Maze environment includes a series of
tubes that must be navigated in order to reach the goal. As with Z-tunnel, the
starting configuration is placed in the middle of the environment. Finally, the Flange
environment simply requires the methods to plan the motion of a tube that is stuck in
a constricting obstacle. This environment requires subtle translations and rotations
of the tube before it can be extracted from its constricting obstacle. The 3D Maze

environment is also used for the 9 DOF serial robot experiment.

C. Results and analysis

The experimental results show a pervasive and consistent increase in overall clear-
ance for MARRT. First, we show and analyze the qualitative results for the 2D

experiments as shown in Figure 3, Figure 8, and Figure 9.

1. 2D Environments

The initial experiment involves a qualitative analysis of the coverage of MARRT
versus RRT and OBRRT. The experiment consists of 3 separate starting positions

with no queries, as we are interested in the manner of the growth of the RRTs. The

16

first position, as shown in Figure 3, is in the bottom left of the environment, while
the other two starting positions are in the center and top right of the environment.

2,000 nodes are sampled.

Right CFG
[
Left CFG
8

Fig. 3. S-Tunnel with starting CFG points.

& N\
N L

»
o

N

- /
iy % NS if

-~

Fig. 4. S-Tunnel MARRT examples: left, center, and right starting positions.

The MARRT graphs, as shown in Figure 4, show a relatively even coverage of the
space while maintaining high clearance. The starting position of the tree makes little
difference in the trees that are grown, which is in contrast to the performance of the
other two methods. This may be explained when considering the high connectivity
of nodes on the medial axis, especially in low DOF environments (in this case, only

two).

17

Fig. 5. S-Tunnel RRT examples: left, center, and right starting positions.

RRT, as seen in Figure 5, performance inconsistently when compared to MARRT.
RRT grows evenly in the center starting position, with an even distribution of nodes
throughout the environment. However, imbalances are visible when the starting

configurations are moved to the top right or bottom left of the environment.

Fig. 6. S-Tunnel OBRRT examples: left, center, and right starting positions.

Similarly to RRT, OBRRT displays an uneven distribution of nodes based on the
location of the root configuration, as seen in Figure 6. While not as drastic as RRT,

OBRRT fails to achieve the symmetric coverage of MARRT.

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Average Roadmap Clearance

Average Roadmap Clearance
in Different 2D Environments

_,,,,,,,,,,,,,,,,,,,,,,,,,,, e L — e ~ MARRTE==m
NI IIIN EERERER - RRT ===
_ OBRRT

2D-Maze 2D-Z-Tunnel 2D-S-Tunnel

Fig. 7. Average clearance in 2D environments.

Fig. 8. 2D Maze examples: MARRT, RRT, and OBRRT.

18

In the 2D Maze environment, we see that, in Figure 8, the general paths are similar.

However, the quality of these paths in terms of clearance vary greatly. For MARRT,

high clearance is obtained throughout the entire map, while both OBRRT and RRT

construct maps that go near the walls of the narrow passages. Overall distance that

can be traversed in the workspace favors RRT, but MARRT can traverse near as far,

while retaining a high clearance roadmap.

19

Fig. 9. 2D Z-Tunnel examples: MARRT (left), RRT (center), and OBRRT (right).

In Figure 9, we can see that all 3 methods managed to map the overall workspace.
The main difference is in the clearance of the overall roadmaps. MARRT maps the
entire available free space, with nodes that have high clearance. RRT and OBRRT
have a larger coverage of the free space, but the clearance values are low, as shown

in Figure 7

2. 3D (6 DOF) Experiments

We now move to analyzing the results for the 3D environments. For these environ-
ments, a quantitative approach is taken. For each environment, queries are assigned
(¢start and ggoqr), and tree generation halts when the trees are able to connect to the
goal configuration. The results of the experiments can be viewed in Figure 10 as well

as Table I.

In terms of clearance data, MARRT produces higher clearance roadmaps and paths,

which is the primary objective of the method.

20

In the 3D Z-Tunnel environment (Figure 11), the largest discrepancy is in the path
length of each method. MARRT produces a path that is several times larger than
both RRT and OBRRT. This may be explained by a type of back-tracking that is
possible with a medial-axis based algorithm, especially when producing a tree. When
sampling in a tight narrow passage, it is possible that the nearest neighbor can change
from an out-most branch to an inner branch, resulting in a suction effect that can
limit outward growth. One way to address this artifact of the method would be to
iteratively smooth and then re-push the path to the medial axis. Another reason the
MARRT paths are longer is because paths on the medial axis are inherently longer
than those that are allowed to cut corners, which is a natural trade-off between path

length and path quality.

Average Roadmap Clearance
in Different 3D Environments

0.045

(O]

% 0.0 MARR T
s) ' —
& 0035 N _ OBRRTEmmm
O

© 003

g 0025

E 0.02

& 0.015

% 0.01

£ 0.005

= 0

3D-Maze Flange 3D-Z-Tunnel

Fig. 10. 3D average clearance data.

21

3D Magze
Method Nodes Collision Detection Calls Roadmap Clearance Path Length Path Clearance Clearance Variance
MARRT 1167.1 133099 0.0109656 264.5 0.0145652 2.24012e-05
RRT 1386.6 17881 0.00245215 7.7 0.00557842 1.41861e-05
OBRRT 4104.8 35966.7 0.0015525 64.6 0.0073481 4.94818e-06
Flange
Method Nodes Collision Detection Calls Roadmap Clearance Path Length Path Clearance Clearance Variance
MARRT 146.8 289510 0.0268746 81.7 0.0384039 0.000697416
RRT 1605 6484.14 0.0522617 56.8571 0.0423998 0.00161294
OBRRT 1115.11 6343 0.031549 53.556 0.0434707 0.0011004
3D Z-Tunnel
Method Nodes Collision Detection Calls Roadmap Clearance Path Length Path Clearance Clearance Variance
MARRT 647 71617.7 0.00821397 540.1 0.0203978 2.78616e-05
RRT 332.1 6731 0.00133686 108.1 0.00316082 1.18155e-06
OBRRT 92.1 83217.3 0.00132918 138.9 0.00331836 2.40437e-06
Table I
3D environment experimental data. Clearance values are averaged. Clearance

variance is the average variance of each roadmap’s clearance values.

Minimum Roadmap Clearance

0.0025

0.002

0.0015

0.001

0.0005

Fig. 11. 3D Z-Tunnel environment.

Minimum Roadmap Clearance
in Different 3D Environments

3D-Maze

Flange

3D-Z-Tunnel

Fig. 12. Minimum clearance for 3D environments.

22

In the 3D Maze environment (Figure 13, Figure 12), similar results to 3D Z-Tunnel
are obtained. In total, the clearance values clearly favor MARRT, while path length
follows a similar pattern that was shown in the 3D Z-Tunnel results. MARRT solved
the query with fewer nodes than RRT and OBRRT as well, because it took longer

steps toward the goal.

Fig. 13. 3D Maze environment.

The Flange environment (Figure 14) presents a different challenge than the other
environments, in that it requires a large object to be removed from a constraining
obstacle. This is also the only environment where not all methods solved the problem
with 100% efficiency. MARRT performed the best, solving 100% query attempts.
OBRRT performed with 90% efficiency, while RRT solved the query with only 70%
efficiency. MARRT was also far more efficient in terms of node count with 146.8

nodes on average being required.

23

Fig. 14. Flange environment.

3. 38D Maze Serial

3D Maze

Method Collision Detection Calls Roadmap Clearance Clearance Variance
MARRT 7.86312e06 0.00319565 1.08712e-05
RRT 54503.4 0.00214199 1.52141e-05
OBRRT 69656.2 0.00154734 7.2189e-06
Table II

3D environment serial experimental data. Clearance values are averaged. Clearance

variance is the average variance of each roadmap’s clearance values.

In order to show the generic nature of MARRT, a 9 DOF experiment was run on
the 3D Maze environment. The experiment consists of a robot with 3 rotational
joints, 3 rotational degrees of freedom, and 3 translational degrees of freedom, all
of which combine to a 9 DOF robot. The experiment does not have a query; the
roadmap consists of 5,000 nodes of free growth from the starting configuration, which
is located in the center of the environment. The experiments show a qualitative
advantage for MARRT, as MARRT is able to navigate through the narrow passage
to the open areas above and below. Displayed in Figure 15, MARRT is the only
method of the 3 that is able to move out of the medial axis. With the extra degrees
of freedom, utilizing the medial axis is especially helpful. In the case of RRT and

OBRRT, randomly sampling configurations to expand to becomes more difficult, as

24

the randomization of additional parameters lowers the ability that a configuration
in Cfpee may be sampled. While MARRT comes out ahead qualitatively, its largest
hindrance is the number of collision detection calls. This is due to the use of MALP
in higher degrees of freedom. The experiments were run with 5 random rays per
medial axis calculation, which, when combined with MALP and a higher degree of
freedom, leads to very high numbers of collision detection calls, visible in Table II.
However, the average roadmap clearance is also higher for MARRT, which when

combined with the qualitative advantage, gives MARRT an edge.

Fig. 15. 3D Maze Serial (9 DOF) examples: MARRT (left), RRT (center), and
OBRRT (right).

25

CHAPTER V

CONCLUSION

In conclusion, we introduced a novel algorithm, Medial Axis RRT (MARRT), which
succesfully grows RRT's with high clearance. When compared to RRT and OBRRT,
MARRT provides attractive roadmaps. These roadmaps would be safer to navigate
for a robot under uncertainty. For future work an exploration into ways to focus the
expand step to efficiently bias the roadmap towards a goal configuration could be
taken, a high DOF analysis, and potentially how to limit the collision detection calls

required by the PushToMedialAxis operation.

1]

3]

26

REFERENCES

J. H. Reif, Complexity of the mover’s problem and generalizations. In Proc.

IEEE Symp. Foundations of Computer Science (FOCS), pp. 421-427, 1979.

N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo, OBPRM:
An obstacle-based PRM for 3D workspaces. In Robotics: The Algorithmic
Perspective, Natick, MA, pp. 155-168, A.K. Peters, Proc. Third Workshop on
Algorithmic Foundations of Robotics (WAFR), Houston, TX, 1998, 1998.

S. A. Wilmarth, N. M. Amato, and P. F. Stiller, MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space. In Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2, pp. 1024-1031, 1999.

J. J. Kuffner and S. M. LaValle, RRT-Connect: An efficient approach to single-
query path planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp.
995-1001, 2000.

S. Rodriguez, X. Tang, J. M. Lien, and N. M. Amato, An obstacle-based rapidly-
exploring random tree. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp.
895-900, 2006.

L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE

Trans. Robot. Automat., vol. 12, no. 4, pp. 566-580, August 1996.

K. Manavi, S. Thomas, and N. Amato, Enhanced local planning for medial axis

roadmaps. Tech. Rep., Texas A&M University, 2011.

8]

[10]

[11]

[12]

[13]

[14]

[15]

27

S.M. LaValle and J.J. Kuffner Jr., Rapidly-exploring random trees: Progress
and prospects. In Proc. Int. Workshop on Algorithmic Foundations of Robotics
(WAFR), 2000.

V. Boor, M. H. Overmars, and A. F. van der Stappen, The Gaussian sampling
strategy for probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), vol. 2, pp. 1018-1023, May 1999.

D. Hsu, T. Jiang, J.H. Reif, and Z. Sun, Bridge test for sampling narrow
passages with probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pp. 4420-4426, 2003.

J.J. Kuffner Jr. and S.M. Lavalle, Rrt-connect: An efficient approach to single-
query path planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2,
pp. 995-1001, 2000.

S. A. Wilmarth, N. M. Amato, and P. F. Stiller, Motion planning for a rigid
body using random networks on the medial axis of the free space. In Proc. Ass.

for Computing Machinery (ACM), pp. 173-180, 1999.

J. M. Lien, S.L. Thomas, and N. M. Amato, A general framework for sampling
on the medial axis of the free space. In Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), pp. 4439-4444, 2003.

N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo, Choosing
good distance metrics and local planners for probabilistic roadmap methods. In

Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 630637, 1998.

S. Gottschalk, M.C. Lin, and D. Manocha, Obbtree: A hierarchical structure for

rapid interference detection. In Proc. Ass. for Computing Machinery (ACM),

28

pp- 171-180, 1996.

[16] A. Vargas E., J.M. Lien, and N.M. Amato, Vizmo++: a visualization, author-
ing, and educational tool for motion planning. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pp. 727-732, 2006.

Name:

Address:

Email Address:

Education:

CONTACT INFORMATION

Evan John Greco

¢/o Dr. Nancy M. Amato

Department of Computer Science and Engineering
3112 TAMU

Texas A&M University

College Station, TX, 77843

egreco@neo.tamu.edu

B.S., Computer Science, Texas A&M University, Dec 2012
Undergraduate Research Scholar

29

