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ABSTRACT 

 

Polymer flood has achieved technical and commercial success, especially for its 

large-scale application in the Daqing oilfield in China. However, previous field tests 

indicated polymer flood was not economically successful for high temperature reservoirs 

when injected with high salinity, high hardness water. Novel thermal and salinity-

resistance polymers have been developed, and their properties are tested via 

comprehensive lab experiments, which encourage further development of polymer 

flooding in high-temperature and high-salinity reservoirs. 

To achieve a promising recovery effect, numerical simulation, including all 

significant physicochemical phenomena, must be carried out before field implementation 

to realize the reservoir response to polymer. An optimized recovery design, which 

minimizes costs and increases the process efficiency, should be proposed for reservoir 

models representing real harsh conditions including severe heterogeneity.  

In this work, the effects of shear thinning, thermal thinning, degradation of 

polymer/seawater solution to oil recovery performance in stratified reservoir are studied 

in various temperature conditions. Also supporting measures for polymer flood, such as 

mechanical water shutoff and in-depth profile control, are studied to evaluate their ability 

in harsh reservoir conditions. Thermal thinning and shear thinning properties of 

polymer/seawater solution were measured by a rheometer, and compared with published 

data. Degradation and adsorption properties of the polymers, as well as the gelation 
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reaction and resistance properties of the gel were summarized from literature review 

generating reasonable parameters for simulation.  

Simulation results indicate that thermal thinning of polymers has a marginal effect 

on the final oil recovery. Another property related to temperature, polymer thermal 

degradation, is obviously influenced by temperature, leading to decrease of the final oil 

recovery to different extent. Both water shutoff and in-depth profile control can improve 

waterflood. However deep profile control will be more efficient if polymer flood is applied, 

and the combination of in-depth profile control and polymer flood carried out with low 

injection temperature achieve the best recovery performance. 
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1. INTRODUCTION 

 

1.1 Oil Recovery 

Oil recovery processes are classified as primary recovery or primary depletion, 

secondary recovery or improved oil recovery (IOR), and tertiary recovery or enhanced oil 

recovery (EOR) (Gaillard et al. 2010). The driving force for primary recovery is natural 

energy. Its source includes bottom and edge water, solution gas, gas cap, and gravity. After 

primary recovery, for a while, natural energy will deplete and oil production will decline. 

Therefore the primary recovery is also called primary depletion. At this time, water or gas 

are injected to increase the energy of the reservoir, known as the secondary recovery. 

Waterflood is more popular due to its availability and efficiency. 

Even after extensive secondary recovery, large amounts of oil are still uncovered 

due to reservoir heterogeneity and trapping. Tertiary recovery or EOR involves the 

injection of gas, chemicals, hot water, or steam to recover the remaining oil. The injected 

fluids enlarge the sweep efficiency, decrease the mobility ratio, and/or decrease the 

residual oil saturation.  

Polymers are used in EOR to control the mobility ratio between the displaced fluid 

and displacing fluids as its main purpose. Polymer flood is now considered to be a 

technical and commercial success, especially since its large-scale application in Daqing 

oilfield in China, resulting in about 300,000 barrels of incremental oil per day (Wang et 

al. 2001). However there is a controversy about whether the polymer flood is an EOR 
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process or not. The fundamental feature of EOR distinguished from IOR is that it can 

significantly decrease the residual oil saturation. The conventional wisdom is that polymer 

does not reduce the residual oil saturation, because injection of polymer solution normally 

does not increase the capillary number enough to reduce the residual oil saturation under 

field conditions (Lake 2010). However, recent experiments (Wreath 1989; Lu 1994; Wang 

et al. 2001; Huh and Pope 2008) and field data (Putz et al. 1988; Wang et al. 2001; Xia et 

al. 2004) show the reduction of residual oil saturation caused by viscoelasticity of polymer 

also contribute to increment in oil recovery, even though this effect is not significant 

according to micro-scale experimental studies (Afsharpoor et al. 2014). In this study, the 

classification of polymer flood is not considered, and the viscoelasticity of polymer and 

gel is neglected. 

 

1.2 History of Polymer Flood in High Temperature Condition 

A synthetic water-soluble polymer, hydrolyzed polyacrylamide (HPAM) is widely 

used for polymer flood at moderate reservoir conditions, resulting in an incremental oil 

recovery factor of 10%-15% (Liu et al. 2009). When HPAM hydrolyzes in water, the 

negative charges in the carboxylate groups along the polyacrylamide chain make the chain 

stretch due to electrostatic repulsion (Nasr-El-Din et al. 1991; Lee et al. 2009). The 

extended polyacrylamide chain will enhance the viscosity of the displacing fluid, which 

also inhibits the physical entanglement of the solvated chains (Khan et al. 2009). Also, 

HPAM is feasible for reservoirs with temperatures as high as 100˚C if the concentration 

of Ca2+ is kept below 200 mg/L (Ikegami and Imai 1962). But HPAM degrades at high 
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temperature and will precipitate if excessive multivalent cations are present (Zaitoun and 

Potie 1983), leading to loss of viscosity enhancement. Although there are four main types 

of degradations affecting the viscosity (thermal, free radical, mechanical, and biological 

degradation), only thermal degradation is explored in this study. 

Polyacrylamide (PAM) can be modified with various functional monomers to 

protect them from degradation. The anionic monomer, 2-acrylamido-2-methylpropane 

sulfonate (AMPS), also named acrylamido-tertiary-butyl sulfonate (ATBS), will help the 

polymers increase their tolerance to salinity and divalent ions by substituting some of the 

AM moieties (Levitt and Pope 2008). Such copolymer can also tolerate temperature to a 

certain extent in seawater (Schramm 2000).  A typical product is AN125 from SNF 

Floerger. It hardly loses viscosity after 220 days of ageing at 100˚C with a calcium 

tolerance about four times as high as that of HPAM (Levitt and Pope 2008). Coreflood 

tests also proved it can be successfully used with seawater for temperatures as high as 

90˚C (Bataweel 2011). But, for higher temperature over 105˚C, AMPS polymer will meet 

serious problems of degradation and precipitation (Vermolen et al. 2011; Gaillard et al. 

2014). Therefore, the co-polymers or the ter-polymers with monomers of N-vinyl 

pyrrolidone (NVP) are prepared to provide tolerance to high temperature due to a 

neighboring effect between the AM and NVP units  (Hsieh et al. 1992; Fernandez 2005).  

Polymers with AMPS and NVP (<25 mol%) can maintain viscosity over 60 days at 105˚C. 

At 120˚C, with a higher NVP concentration of 35~50%, the polymer keeps stable in 

seawater for at least one year (Vermolen et al. 2011; Gaillard et al. 2014). However, the 

cost of NVP polymer is relatively high. The reactivity of NVP is lower than AM during 
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the polymerization process, leading to drifts of composition and low molecular weight, 

which means more dosage and cost is required to achieve the target viscosity (Gaillard et 

al. 2010). In this study, the reservoir temperature is 194˚F (90˚C), so the AMPS polymer 

AN125 is selected in consideration of effectiveness and economy.    

Simulation method is carried out to study polymer performance such as shear 

thinning, thermal thinning, retention, inaccessible pore volume and degradation in 

heterogeneous multilayered reservoir (Vela et al. 1976; Clifford and Sorbie 1985; Lee 

2011). To realistically describe reservoir response to polymer, the simulation study must 

include all significant physicochemical phenomena in the polymer-reservoir system.  

If large amounts of cool water, such as seawater with surface temperature, are 

injected into a hot reservoir, significant changes in temperature could be happen and 

calculations must take account of this (Brown et al. 1982; Sorbie et al. 1982). In a hot 

heterogeneous reservoir, the temperature distribution becomes uneven after cold water 

injected for several years. For such a reservoir, simulation results showed the final 

recovery factor for polymer with temperature-dependent degradation is between that of 

ideally stable polymer and polymer with non-temperature-dependent degradation (Sorbie 

and Clifford 1988). Besides the temperature influence on polymer, simulation study of an 

Indonesian oilfield showed the incremental oil recovery could also benefit from decrease 

in oil viscosity caused by injected geothermal hot water (Pederson and Sitorus 2001). The 

key is that the viscosity of oil will drop from 14cp to 2cp when temperature increases from 

110°F to 300°F. For 20 year hot water injection, incremental recovery factor can be 

increased by over 7.5%, compared to cold waterflood at the same injection rate. 
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By 2013, 481 polymer flood projects were reported, and only 13.5% of them were 

discouraging (Saleh et al. 2014).  In 2008, besides approximately 20 ongoing projects in 

China, there are one field project in India, one project in Argentina, and two in the US. 

Polymer flood contributed 22.3% of total production in Daqing Oilfield with an increase 

in ultimate oil recovery by 10%, because of its favorable conditions: Suitable reservoir 

heterogeneity (Dykstra-Parsons coefficient ranged from 0.4~0.7), low salinity and 

hardness (formation water TDS ranged from 3000 to 7000 mg/L) and low reservoir 

temperature (45˚C) (Dong et al. 2008). The upper temperature limit of polymer flood is 

commonly believed to be 70˚C. Almost all the polymer flood tests were carried out in 

reservoirs under 65˚C. For higher temperature condition, polymer flooding recovery 

performance is not very superior, especially when salinity is also high. A polymer flood 

field test in N.E.Hallsville Carane in America was carried out in 1965 with reservoir 

temperature of 109.4˚C, resulting in a 3.3% incremental recovery factor (Moore 1969). 

Another polymer flood was carried out in a thick reservoir of Shuanghe oilfield with 

reservoir temperature of 72˚C in 1994, resulting in a 10.4% incremental recovery factor, 

mainly thanks to the fine characterization of reservoir and use of high molecular weight 

polymer with thermal-oxidization stabilizers (He et al. 1998). Several pilot tests of 

polymer flood were carried out in Shengli Oilfield with reservoir temperature from 65˚C 

to 80˚C in different blocks (Gao 2014). Shengtuo block in Shengli Oilfield has the most 

harsh reservoir condition. The reservoir temperature is 80˚C, and the formation salinity is 

21,000 mg/L. A comb polymer called KYPAM was selected, dissolved in produced water 
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with salinity of 12,400 mg/L. Polymer slug injected was 0.25PV, resulting in an 

incremental oil recovery of 4.655%.  

 

1.3 History of Stratification Injection and In-Depth Pr ofile Control  

Polymer may break through very quickly due to existence of high permeability 

zone, resulting in poor improvement for sweep efficiency. Stratification injection, or 

separate layer injection, is a method to improve the sweep efficiency when cross flow does 

not occur between adjacent strata (Dong et al. 2008). According to theoretics and pilot 

application, the favorable conditions for this method include:  

1. The permeability differential among oil zones is over 2.5. 

2. The net pay with lower permeability should contain at least 30% of the total net 

pay. 

3. At least one meter barrier between layers, and consistent lateral continuity 

between wells. 

If good barrier does not exist, gel treatments or other types of profile control 

methods, which can divert injection fluid to un-swept areas (Nasr-El-Din et al. 1998), are 

considered to be valuable before implementation of a polymer flood (Sorbie and Seright 

1992). A major drawback of near-wellbore gel treatments is that displacing fluid bypasses 

the gel and flows back to the high permeability zone, resulting in little effect on decrease 

on water cut and increase on incremental oil recovery (Al-Adasani and Bai 2010). In-depth 
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profile control began popular in the later 1990s when an interlayer heterogeneity conflict 

dominated in most of mature oilfields. Large volumes of treatment are used and much 

more effective in improving the seep efficiency. The typical in-depth profile control 

systems are colloid dispersion gel (CDG), particle gels, and a polymer-crosslinker-retarder 

weak gel system. Gel formed by PAM-based polymer and Polyethyleneimine (PEI) 

crosslinker has been proved to be stable in 2% KCl at 100 ˚C (Al-Muntasheri et al. 2007). 

Recovery effects of polymer flood and in-depth profile control are compared in the 

aspect of polymer viscosity, oil viscosity, gel slug size, permeability contrast and vertical 

order of permeability (Okeke and Lane 2012; Seright et al. 2012). It is found that the in-

depth profile control prefers the reservoir with high permeability contrasts, high thickness 

ratio and low oil permeability. But such method may not have as high oil recovery and 

monetary value as polymer flood.  

 

1.4 Mechanisms of Polymer Flood 

Polymer solution can increase the volumetric sweep efficiency in heterogeneous 

reservoirs, and some of the oil trapped in low permeability regions will be displaced 

(Figure 1.1). Thus the final oil recovery will be increased within economic limit. On the 

other hand, polymer solution can also increase fraction of oil in produced fluids with 
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relatively high mobile oil saturation in homogeneous reservoirs, which means more oil 

will be recovered with in same period, compared to waterflood with low viscosity.  

  

 

Figure 1.1: Sweep of displacing fluid in heterogeneous reservoir 
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2. A REVIEW OF CMG STARS SIMULATOR AND MODEL 

DESCRIPTION 

 

2.1 General Description of the Simulator 

CMG_STARS is a three-phase multi-component thermal and steam additive 

simulator. The version used for this study is 2013.13. It supports two-dimensional and 

three-dimensional configurations with grid systems of Cartesian, corner point, cylindrical 

and variable depth/variable thickness (STARS User’s Guide). All blocks are treated in a 

fully implicit manner. The polymer models of STARS include Viscosity vs. Polymer 

Concentration, Viscosity vs. Shear Rate, Adsorption, Permeability Reduction, 

Inaccessible Pore Volume and Effect of Salinity on Viscosity. STARS can history match 

laboratory coreflood data with very good agreement (Goudarzi et al. 2013).  

 

2.2 Mass Conservation Equations 

A conservation equation is constructed for each component of a set of identifiable 

chemical components that completely describe all the fluids of interest.  

The general equation is  

Rate of change of accumulation = Net rate of inflow from adjacent regions + Net 

rate of addition from sources and sinks 

The following are the separate terms for fluid flow. 

The accumulation term for a flowing and adsorbed component i: 
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The flow term of flowing component I between two regions is 

 

The volumetric flow rates are 

 

a. T is the transmissibility. 

b. Dji (j=w,o,g) are the component dispersibilities in the three phases and are again 

the product of geometric factors and component dispersion coefficients. 

c. The potential at a grid node is Φj = pj - λjgh. 

The well source/sink term for flowing component i is: 

 

The reaction source/sink term for component i is: 

 

The aquifer source/sink term for water component is: 
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qaqw is a volumetric water flow rate through a block face k to/from the adjacent 

aquifer. 

The following are the separate terms for energy flow. 

The accumulation term for energy is: 

 

The flow term of energy between two regions is 

 

Κ is the thermal transmissibility at the interface between the two regions 

The well source/sink term for energy is: 

 

The reaction source/sink term for energy is: 

 

a.  S'ki is the product stoichiometric coefficient of component I in reaction k. 

b.  Ski is the reactant stoichiometric coefficient of component I in reaction k. 

c.  Hrk is the enthalpy of reaction k. 

d.  rk is the volumetric rate of reaction k, calculated from a model for reaction 

kinetics. 

The heat loss source/sink term for energy is: 
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a. HLk is the rate of heat transfer to the region of interest through block face number 

k, from the adjacent formation. The heat transfer rate and heat accumulated in the 

overburden are calculated using an analytical solution for an infinite overburden. 

Heat flow back into the reservoir block may occur. 

b. HLv is the rate of heat transfer calculated from a convective model. 

c. HLc represents a constant heat transfer model. 

The aquifer source/sink term for the energy is: 

 

a. HACV is a rate of heat transferred by convection to/from the adjacent aquifer. 

b. HACD is a rate of heat transferred by conduction to/from the adjacent aquifer. 

In summary, the (spatially discretized) conservation equation of flowing 

component I is: 

 

where nf is the number of neighboring regions or grid block faces. 

And the (spatially discretized) conservation equation of energy is 
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The phase transmissibilities Tj are 

 

 

2.3 Boundary Condition 

The boundary condition assumed is no convective, no dispersive, and no thermal 

flux through all boundaries. 

 

2.4 Modeling of Polymer Properties 

2.4.1 Polymer Solution Viscosity at Zero Shear Rate 

The nonlinear mixing option partitions all the components into two groups:  key 

components and those are not.  The saturations (xi) of these two groups sum to 1. 
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To accomplish nonlinear mixing via alternate weighting factors, xi is replaced with 

f i(xi) for each i=S and with N·xi for each i≠S, where N is a normalizing factor derived as 

follows. 

 

Thus the nonlinear mixing rule for viscosity is calculated as: 

 

The function fi(xi) has three possible distinct ranges of xi values: 

 

 

2.4.2 Shear Thinning 

A simple power law relation or a tabular input is available in STARS for modelling 

shear-rate-dependent viscosity relation. 

The lab and modelling data from literature showed that the shear thinning effect is 

unobvious when divalent ions have the concentration as high as that in seawater (Kang et 

al. 2013). So the shear thinning effect is not modeled in this study. 
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2.4.3 Thermal Thinning 

As temperature increases, the viscosity of polymer solution decreases. At higher 

temperature, the interaction among moieties becomes weaker, and the polymer chain tends 

to be more coiled. The solvation effect also becomes weaker, leading to a thinner water 

membrane around polymer molecular and smaller polymer bulk volume. Additionally, the 

viscosity of water also decreases (Al-Shammari et al. 2011). All these factors contribute 

to decreasing viscosity as the temperature increases. 

Either a viscosity correlation contains two parameters or a tabular input is available 

for modelling temperature-dependent viscosity relation. The tabular input is used for this 

study. The parameters are obtained from lab experiments. 

 

2.4.4 Polymer Adsorption and Resistance Factor 

The retention of polymer has two mechanisms: mechanical entrapment and 

adsorption processing. Both of them depend on rock permeability. For sandstone, the 

permeability has a positive correlation to porosity. Lower permeability region means the 

pore there is smaller, which can entrap more polymer. And the surface area at that region 

is also bigger and can adsorb more polymer (Choi et al. 2014).  

The Langmuir adsorption isotherm gives the adsorbed moles of component per 

unit pore volume as 
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where xnacl is the salinity of the brine, and ca is the mole fraction of component. 

At high concentrations (large ca) the maximum adsorption is (tad1 + tad2 *xnacl)/tad3. 

The maximum adsorption after flooding for a long time depends on the values of 

both key words ADMAXT (maximum adsorption) and ADRT (residual adsorption for a 

particular component) that specified. ADRT can take any value between zero and the 

ADMAXT value. 

When ADRT equals zero (the default value), it models a completely reversible 

adsorption, i.e. when the concentration of the adsorbing component becomes less than that 

at which the maximum adsorption occurs, some of the adsorbed component gets desorbed 

and goes back into the aqueous phase. When the concentration of the adsorbed component 

becomes zero, then complete desorption occurs. On the other hand, if ADRT equals the 

ADMAXT value, then the adsorption is completely irreversible, i.e. once adsorbed the 

component does not get desorbed into the aqueous phase even when the component's 

concentration in the aqueous phase reduces. Any value of ADRT that lies between 0 and 

ADMAXT models a partially reversible adsorption.  

Adsorption or mechanical entrapment can cause blockage which amounts to a 

reduction in the effective permeability. This is accounted for by the permeability reduction 

factors 

RKW = 1 + ( RRF-1 ) * AD(C,T)/ADMAXT 

RKO = 1 + ( RRF-1 ) * AD(C,T)/ADMAXT 
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RKG = 1 + ( RRF-1 ) * AD(C,T)/ADMAXT 

which affects the permeabilities AKW(I), AKO(I), AKG(I) as 

AKW(I) = AK(I) * krw/RKW(I) 

where AK(I) is standard block permeability. 

Considering the temperature effect on polymer adsorption is very small, compared 

with other effect such as thermal thinning and degradation, the modeling of polymer 

adsorption in this study is simplified. The parameters used are same as those in CMG 

sample case for sandstone, and there's no difference for layers with various permeability. 

The retention of polymer is irreversible. 

 

2.4.5 Degradation 

Degradation is assumed to be a first-order chemical reaction, and modeled with 

the Arrhenius Equation.  The reactants is polymer, and the resultant is water. The reaction 

rate depends on activation energy and reaction frequency factor. 

 

2.5 Relative Permeability Model 

Multiphase relative permeabilities are modeled based on Corey-type functions.  

Krw = Krwiro * ((Sw - Swcrit)/(1.0 - Swcrit - Soirw))^Nw 

Krow= Krocw  * ((So - Sorw  )/(1.0 - Swcon  - Sorw ))^Now 

Krog= Krogcg * ((Sl - Sorg  )/(1.0 - Sgcon  - Sorg ))^Nog 

Krg = Krgcl  * ((Sg - Sgcrit)/(1.0 - Sgcrit - Soirg))^Ng 
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2.6 Gel Modeling 

2.6.1 Gelation Reaction 

Similar as polymer degradation, the modeling of gelation reaction is also based on 

Arrhenius Equation. The reactants are polymer and crosslinker, and the resultant is gel. 

The reaction rate depends on activation energy and reaction frequency factor. 

 

2.6.2 Gel Retention and Resistance Factor 

The same model as polymer retention is used for gel retention. Gel retains on rock 

surface and slows down water phase flow velocity. The degree of water velocity slowing 

down is determined by the resistance factor of gel. A Langmuir-type isotherm is conducted 

and the process is irreversible. 

 

2.7 Thermal Parameters 

Yoshioka and Dawkrajai (Dawkrajai et al. 2006; Yoshioka et al. 2007) simulated 

the temperature change when fluids flowed to the wellbore during the depletion recovery 

and water coning. The temperature change was determined by the elevational geothermal 

temperature change and Joule-Thomson effect. The maximum change of temperature was 

around 2F. The value of heat capacity and thermal conductivity in the paper is similar to 

that in Sorbie’s polymer flood study (Clifford and Sorbie 1985; Sorbie and Clifford 1988), 

which is the default value given by CMG. 
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2.8 Basic Assumption for Modeling 

Very low fluid compressibility and thermal expansion are set to minimize the 

change of fluid volume due to temperature variation, making the comparison of recovery 

effect easy.  

There is no heat transfer at boundary. The model with heat transfer at boundary 

has been tested and found this effect is negligible. Another study carried out by Xingru 

Wu (Wu et al. 2013) modeled the thermal retardation for water injection. It mentioned that 

heat conduction from overburden and underburden is neglected since it is a second order 

effect. The heat conduction from the overburden and underburden can be approximated 

by an error function using a concept of thermal penetration depth. It’s a slow process 

compared with the conduction heat transfer. Thus the heat transfer is not modeled for this 

study. However, this effect could be significant for extremely high temperature contrast 

condition such as steam flood. 

Retention and resistance factor is constant for all the rocks. Although for sandstone, 

retention of chemicals depends on the pore size and structure of rocks, the difference could 

be neglected for this study. 

 

2.9 Detail of Model in this Study 

A cuboid reservoir model is built with parameters obtained from literatures about 

highly stratified Brent sands in the North Sea (Sorbie et al. 1982; Clifford and Sorbie 1985; 

Sorbie and Clifford 1988). The well pattern in this study is different from that in literatures, 

which was line pattern. Although the line pattern and inverted 9-spot pattern can make the 
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incremental recovery a little bit higher than the 5-spot pattern, the line pattern has a poorer 

connectivity, and the inverted 9-spot pattern has worse injection capacity (Dong et al. 

2008). Therefore, the 5-spot pattern with one injector in the center and four producers in 

the corners appears attractive for polymer flood, which is used for this study (Figure 2.1).  

To model a stratified reservoir with high permeability contrast, 5 layers have 

different permeability. From bottom to top, layer 1 and 5 have permeability of 12 md and 

thickness of 40ft. Layer 2 and 4 have permeability of 60 md and thickness of 30 ft. And 

layer 3 in the center has permeability of 600 md and thickness of 37 ft (Figure 2.2). The 

porosity of each layer has a correlation to permeability, ranging from 0.16 to 0.24. This 

correlation is generated from the sandstone model used in North Sea. The relative 

permeability curves are shown in Figure 2.3. Other critical parameters for this model are 

demonstrated in Table 1.  
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Figure 2.1: 5-Layer 5-Spot Synthetic Reservoir Model 
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Figure 2.2: Permeability of each layer. 
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Figure 2.3: Relative permeability curves used for this study. 
 

 

 

Table 2-1: SUMMARY OF RESERVOIR MODEL INPUT PARAMET ERS 

Length, L ft 930 

Width, W ft 930 

Height, H ft 177 

Number of grids in x, y, z 31 x 31 x 5 
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Table 2-2 Continued 

Cell dimensions in x direction, ft 30 

Cell dimension in y direction, ft 30 

Cell dimension in z direction, ft 40, 30, 37, 30, 40 

Components simulated Water, oil, polymer, gel, xlinker 

Initial Reservoir Pressure, psi 3700  

Initial Reservoir Temperature, °F 194 

Porosity 0.16, 0.19, 0.24, 0.19, 0.16 

Initial Water Saturation 0.25 

Relative Permeability Curve Type Water wet 

Residual water saturation, fraction 0.25 

Residual oil saturation, fraction 0.22 

Endpoint relative permeability of water 0.3 

Endpoint relative permeability of oil 0.9 

Relative permeability exponent of water 2 

Relative permeability exponent of oil 3 

Heat capacity of rock, Btu/ft3-°F 35 

Thermal conductivity of rock, Btu/ft-day-°F 44 

Thermal conductivity of water, Btu/ft-day-°F 8.6 

Thermal conductivity of oil, Btu/ft-day-°F 1.8 

Injection Rate, PV/year 0.11 
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3. SHEAR THINNING AND THERMAL THINNING STUDY 

 

3.1 Background 

Polymer solution is a non-Newtonian fluid. Its viscosity is dependent on shear rate. 

Additionally, temperature also affects the viscosity. The reason for the above phenomena 

is that the macroscopic viscosity depends on the microscopic shape of molecular chain, 

which could be affected by shear rate and temperature.  

 

3.2 Materials and Equipment 

Co-polymer acrylamide and 2-acrylamido 2-methyl propane sulfonate (AMPS), 

which is called AN-125, were used as received from SNF Floergre (Cedex, France) in 

solid form. The molecular weight is 6x106, and the degree of hydrolysis is 20-30%.  

The water used in all experiment was prepared from a water system with resistivity 

greater than 18 MΩ-cm at 25˚C. Sodium chloride, magnesium chloride, calcium chloride, 

sodium bicarbonate, sodium carbonate and sodium sulfate used to prepare seawater were 

an analytical grade. 

Grace Instrument M5600 HPHT Rhometer was used for measuring viscosity. The 

rheometer uses a bob-and-cup arrangement for rheological property determination. The 

liquid is placed inside an annulus between the two cylinders (bob and cup), where the cup 

(outer cylinder) is rotated at a set speed that determines the shear rate. The liquid between 
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the two cylinders exerts a drag force (torque) on the bob (inner cylinder), which is 

measured and converted to a shear stress.  

The M5600’s unique frictionless bob shaft construction and advanced sensor 

design enables the measuring of small changes in shear stress instantly by non-

mechanically transmitting a zero friction rotational torque signal from the pressure 

containment area. The outer cylinder (sample cup) is driven by a stepper motor at speeds 

from 0.0001 – 1,100 rpm. The thermocouple probe measures the sample temperature at 

the tip of the bob shaft. All electronics and other sensitive components are protected from 

the influences of both the sample fluid and its vapor. (Operation Manual of M5600). 

 

3.3 Experimental Procedure 

Synthetic seawater was used to prepare polymer solutions using compositions 

shown in Table 3-1. 

 

Table 3-1: SEAWATER COMPOSITION 

Ions Concentration, mg/L 

Na+ 16,877 

Ca2+ 664 

Mg2+ 2,279 

HCO3- 193 

Cl- 31,107 
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Table 3-2 Continued 

SO42- 3,560 

TDS 54,680 

 

Polymer powder were weighted and mixed with seawater by a stirrer for 90 

minutes.  The concentration of polymer solutions was 1000, 2000, 3000, 4000 and 5000 

ppm. 

Rheology and viscosity measurements of all polymer/seawater systems were 

conducted at 300 psi. The viscosity of polymer solutions with various concentrations as a 

function of shear rate was measured over a range of 0.1 to 1000 s-1, which included shear 

rates 0.1 – 10 s-1 encountered in chemical flooding (Nasr-El-Din et al. 1991). The viscosity 

was measured by increasing the shear rate. Shear rate changed when temperature kept 

stable at 194°F.  

The viscosity of polymer solutions with various concentrations as a function of 

temperature was measured over a range of 78°F to 194°F at the shear rate of 100 s-1. 

 

3.4 Lab Results and Discussion 

3.4.1 Shear Thinning Effect 

The rheology curves of polymer/seawater solution with different concentration are 

showed in Figure 3.1.  
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Figure 3.1: Viscosity vs shear rate for different concentration. The viscosity kept 
constant from 100 s-1 to 1000 s-1. 

 

Due to the limitation of the measurement range of this rheometer, only data ranging 

from 100~1000 s-1 is accurate for polymer solution. It is clear that the viscosity nearly 

does not change with shear rate for all solutions. The reason is that the both temperature 

and salinity are high. At such a condition, the interaction among moieties becomes weaker, 

and the polymer chain tends to be more coiled. The solvation effect also becomes weaker, 

leading to a thinner water membrane around polymer molecular and smaller polymer bulk 

volume. Additionally, the viscosity of water also decreases (Al-Shammari et al. 2011). All 
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these factors contribute to decreasing viscosity as the temperature increases. This results 

is in accordance with that in published paper (Figure 3.2). 

 

 

Figure 3.2: Rheology curves for different concentration tested by MCR 301 
Rheometer. It also elucidates the viscosity of polymer/seawater solution at high 

temperature does not change too much when shear rates changed (Han et al. 2012). 
 

3.4.2 Thermal Thinning Effect 

The viscosity of 5000 ppm polymer/seawater solution were tested at 100s-1 with 

temperature increasing from 78°F to 194°F, shown in Figure 3.3. For polyacrylamides, 

the viscosity as a function of temperature scales roughly with the viscosity of water. Upon 

cooling down, the polymer solution viscosity will increase again, following a similar, but 

slightly lower curve (Vermolen et al. 2011).  
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Figure 3.3: Viscosity vs temperature for crude oil, seawater and 5000 ppm 
polymer/seawater solution. The viscosity of crude oil, seawater and polymer 

solution decrease with temperature increase. 
 

Similar properties are also found for other thermal-resistance polymers (Figure 

3.4).  
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Figure 3.4: Viscosity of a 6000 ppm n-VP Polymer 3 solution in 200 g/l NaCl brine 
as a function of temperature (red dots), compared to the water viscosity (blue 

triangles).(Vermolen et al. 2011) 
 

3.5 Simulation Input Description 

A tabular input which indicates the relation between viscosity of fluids and 

temperature is used to model the thermal thinning effect. The input parameters are 

obtained from lab experiments and literatures.  

 

3.6 Simulation Studies of Thermal Thinning in Homogenous Temperature 

Condition 

15 cases in total were run to study the recovery performance of polymer flood in 

various even temperature condition.  5 temperature conditions were tested, including 78°F, 
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100°F, 120°F, 160°F and 194°F. To achieve an even temperature condition, the injection 

temperature was same as the reservoir temperature. Base cases of waterflood were 

simulated as benchmarks. For polymer flood cases, a 0.33 PV of seawater pre-flush slug 

was injected firstly, following by a 0.53 PV polymer seawater solution slug. The 

concentration of polymer used were 3000 ppm and 5000 ppm for each temperature 

condition. After polymer flood slug, a post-flush of seawater continued for 0.16 PV. 

Figure 3.5 shows the injection scheme. 

 

 

Figure 3.5: Injection scheme of homogeneous temperature cases. 
 

Recovery effect is showed as recovery factors for waterflood and incremental 

recovery factors for polymer flood in Figure 3.6. For waterflood, the oil recovery factors 

are around 38% for all the cases. This is because the viscosity of both oil and seawater 

decreases with temperature increase. The offset keeps the mobility ratio of displacing 

phase and displaced phase stay akin. For polymer flood, the recovery factors for cases 

with same concentration are similar, due to the offset of mobility increase in both polymer 
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solution and crude oil. For 3000 ppm cases the incremental recovery factors are around 

13%, while for 5000 ppm cases the incremental recovery factors are around 16%. Besides, 

it clearly shows that flood process with higher polymer concentration obtains higher final 

oil recovery factor. 

 

 

Figure 3.6: Waterflood recovery factor and polymer flood incremental recovery 
factor at even temperature conditions. 
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3.7 Simulation Studies of Thermal Thinning in Heterogeneous Temperature 

Condition 

To study the recovery performance of polymer flood in uneven temperature 

condition caused by cool water injection, 6 cases were run. 3 cases with different polymer 

flood timing were carried out in an even temperature condition to study influence of timing 

of polymer injection (Figure 3.7).  The injection of polymer was after the pre-flush slugs 

of 0.23, 0.34 and 0.45 PV, respectively for design 1, 2, and 3. The polymer slugs were 

0.56 PV for all the designs. Post waterflood followed was 0.76, 0.65 and 0.54 PV, 

respectively. The total injection volume of the whole process is same for the three designs. 

The reservoir temperature is set to be 78°F, same as the injection temperature. Thus the 

temperature will not change. 

 

 

Figure 3.7: Injection scheme of heterogeneous temperature cases. 

 

Another 3 cases were carried out to study the cool effect. Compared to the previous 

3 cases in even temperature condition, these 3 cases had the same injection schemes, and 
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the only difference was the reservoir temperature. For the latter cases, the initial reservoir 

temperature was 194°F, and it was cooled down by injected seawater unevenly.  

Recovery factors for even temperature condition are showed in the left of Figure 

3.9. They are around 55% and no obviously different. It means the polymer injection 

timing hardly affects the final recovery factors in even temperature condition. In other 

words, for the same fraction of polymer slug in the total injection process, different oil 

saturation and distribution at the timing of polymer injection does not affect final recovery 

factor.  

For cases with uneven temperature condition, the simulation results of cross 

sections indicate that temperature in high permeability layer is lower than that in the low 

permeability layers, because more water flushes the high permeability layer (Figure 3.8). 

And temperature in near well regions is lower than that in deep reservoir, due to longer 

sweeping time in near well regions. Additionally, with a larger pre-flush slug, more blocks 

are cooled to lower temperature.  
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Figure 3.8: Temperature profiles for design 1 & 3 at the end of waterflood 

 

The recovery factors of polymer flood in uneven temperature condition are shown 

in the right of Figure 3.9, which are also around 55%.  It demonstrates that temperature 

difference does not affect the final recovery factor, also because decline trend of viscosity 

0.45 PV WF 

0.23 PV WF 
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is similar for both polymer solution and crude oil, no matter that the viscosity of polymer 

solution in low temperature region is double of that in high temperature region. 

 

 

Figure 3.9: Recovery factors for polymer injection at different time. 

 

3.8 Summary 

Higher polymer concentration led to higher oil recovery. More polymer dissolved 

in the seawater will increase the water phase viscosity, thus deceases its mobility. 

In reservoirs with high temperature, seawater flood before polymer injection 

cooled the reservoir unevenly. 
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Temperature difference caused by seawater flush does not obviously affect the 

final oil recovery factor, although lower temperature can largely increase viscosity of 

polymer solution. 
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4. THERMAL DEGRADATION STUDY 

 

4.1 Background 

Synthetic polymer degrades with high temperature and high oxygen concentration 

condition, which is the main reason for failure of polymer flood in high temperature 

reservoir. In this section the degradation behavior for AN125 is summarized from 

literature, and modeling parameters are generated. Then the effect of thermal degradation 

to polymer flood performance is studied by simulation method. 

 

4.2 Simulation Input Description 

Viscosity of AN125 solution with concentration of 1850 ppm decreases from 12 

cp to 6 cp within 48 days at 221°F, which is the half-life of AN125 at this temperature 

(Figure 4.1). At 248°F, the viscosity of AN125 decrease to 50% of the initial within 15 

days (Figure 4.2). Based on the two half-lives at two different temperature, the activation 

energy and reaction frequency factor of degradation reaction is calculated, based on the 

Arrhenius Equation. 
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Figure 4.1: AN125 solution degradation curve at 221°F (Gaillard et al. 2014). The 
precipitation of polymer is considered as degradation in modelling.  

 

 

Figure 4.2: AN125 solution degradation curve at 248°F (Vermolen et al. 2011). 
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4.3 Simulation Studies of Temperature Influence 

The modeling of polymer degradation behavior is verified through simulation of 

static processes. 4000 ppm polymer flood was injected to a core at very high rate and 

stopped. Then both injection and production were shut in for 500 days. This process was 

carried out at different temperature. Simulation result shows that the half-life at 221°F 

(Figure 4.3) and 248°F (Figure 4.4) are exactly the same as that indicated in literatures. 

 

 

Figure 4.3: Polymer mass fraction declined due to degradation at 221°F. 
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Figure 4.4: Polymer mass fraction declined due to degradation at 248°F. 
 

The half-lives of polymer degradation at other temperature was also calculated 

(Figure 4.5). At 194°F, the half-life is 94 days, while at 78°F, it is 19,317 days. It means 

at lower temperature as 78°F, polymer solution does not significant lose viscosity through 

the whole flood process.  
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Figure 4.5: Simulation result showing that half-life of polymer declines with 
temperature increase. 

 

A total of 4 polymer flood cases were run to study how degradation of polymer 

affects the final oil recovery factors, including 2 injection temperature of 78°F and 194°F, 

and 2 polymer concentration of 3000 ppm and 5000 ppm. All reservoir temperature is 

194°F. The simulation results for these cases with degradation are compared to the cases 

with non-degradation.  

The loss of final recovery factors with in varying degrees are observed (Figure 

4.6). The reduction of recovery factor equals to recovery factor of non-degradation case 

minus recovery factor of degradation case. For same polymer concentration, higher 

injection temperature of 194°F makes bigger amount of polymer to degrade, leading to 

more reduction in recovery factor, compared to lower injection temperature of 78°F.  
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Figure 4.6: Reduction of recovery factor due to degradation.  

 

The final recovery factor are also shown in Figure 4.7. With the injection 

temperature of 194°F, when polymer concentration is increased from 3000 ppm to 5000 

ppm, the incremental oil recovery is 0.7%. On the other hand, with the injection 

temperature of 78°F, when polymer concentration is increased from 3000 ppm to 5000 

ppm, the incremental oil recovery is 1.8%. This demonstrates that if we want to increase 

polymer concentration to obtain higher recovery factor, higher injection temperature will 

make this method less efficient. 
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Figure 4.7: Recovery factor of polymer flood at different concentration and 

temperature with degradation. 
 

4.4 Summary 

After the literature survey and simulation study, the following conclusion can be 

drawn:  

1. High temperature accelerates the polymer degrade, resulting in loss of viscosity 

and low incremental recovery factor.  

2. When temperature is high, even more polymer is injected to maintain high 

viscosity during flood process, degradation makes the additional polymer useless. 
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5. WATER SHUTOFF AND IN-DEPTH PROFILE CONTROL 

 

5.1 Background 

High temperature is a favorable condition for the application of in-depth profile 

control. A weak gel system used as a nontarget in-depth profile control is modeled to study 

its potential for enhancement of polymer flood. As a comparison, the recovery effect of 

water shutoff is also studied. To realize the actual condition, polymer retention effect is 

included.  

 

5.2 Simulation Input Description 

Because water shutoff is a process to seal high permeability layers at near well 

region, so it is simulated as shutting in both injector and producers at high permeability 

layer. The effect is like there is no perforation on the wells at the third layer. 

Polymer flood with concentration of 3000 ppm is also simulated, including the 

degradation and retention effect. The modeling of retention is discussed in the following 

section.  

 

5.3 Polymer Retention Modelling 

The Langmuir adsorption isotherm is used to model the polymer retention, as 

mentioned in 2.4.4. The maximum adsorption capacity is 3.38*10-8 lbmol/ft3. The residual 

adsorption level is set to the same value to model irreversible retention. Parameters of 
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Langmuir isotherm are set as tad1=16.3 lbmol/ft3, tad2=0, and tad3= 3.12149*108. The 

resistance factor of polymer is 1.2 for all the rock. 

 

5.4 Simulation Studies of Resistance Caused by Polymer Retention 

Result shows that maximum adsorption of 3.38*10-8 lbmol/ft3 is quickly reached 

after polymer injected (Figure 5.1). Because the fluid flow rate is higher in layers with 

higher permeability, so more polymer are trapped on the rock there. The adsorbed polymer 

causes resistance to water phase flow (Figure 5.2). 
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Figure 5.1: Polymer adsorption (lb/ft3) at the beginning of polymer flood. 
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Figure 5.2: Resistance factor changes due to polymer adsorption. 

 

 
Resistance to water flow will decrease the mobility of water, resulting in the 

decrease of water cut and increase of final oil recovery (1.2%). Generally, retention of 

polymer does not affect the oil recovery performance significantly (Figure 5.3). It is 

because the sandstone surface does not adsorb a large amount of polymer, which does not 

obviously influence polymer solution viscosity. On the other hand, the adsorbed polymer 

cannot make strong resistance to water phase flow, contributing little in improving 

mobility ratio.  
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Figure 5.3: Oil recovery factors and water cut of polymer flood with adsorption 

effects and without adsorption effects. 
  

5.5 Comparison of Water Shutoff, In-Depth Profile Control, and the 

Combination of In-Depth Profile Control and Polymer Flood 

4 cases in total were run for the comparison. All the cases have the same pre-flush 

slug of 0.33 PV and the same total injection of 1.03 PV. The reservoir temperature is 

194°F. For water shutoff case, the injection temperature is 78°F. After pre-flush, the 

production and injection at high permeability layer were shut in, while the injection and 

production rate is kept same as before. For in-depth profile control cases, two injection 

temperature were tested: 78°F and 194°F. After pre-flush, 3000 ppm polymer and 850 

ppm crosslinker were injected simultaneously for 0.018 PV, followed by 0.68 PV post 
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waterflood. For the combination of in-depth profile control and polymer flood case, the 

injection temperature is 78°F. After the profile control slug of 0.018 PV, a chasing 

polymer flood followed for 0.54 PV. The polymer slug size is same as that in the simple 

polymer flood in 5.3. After polymer flood, a post waterflood of 0.14 PV was injected to 

keep the total injection pore volume as same as that in other cases (Figure 5.4). 

 

 

Figure 5.4: Injection scheme of water shutoff case, in-depth profile control case, 
and combination of in-depth profile control and polymer flood case. 

 

Simulation result indicates that water shutoff can increase the final recovery factor 

by 5.3%. It also shows that after implementation of water shutoff, water cut largely 

decreases immediately. But it increases sharply after a short while (Figure 5.5). The 

reason is that although the high permeability layer is sealed at the near well region, cross 

flow occurs at deep reservoir, which makes high permeability layer to become a water 
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channel. It allows flow injected and produced in lower permeability region to pass 

through. This phenomena is shown as change of water saturation in Figure 5.6.  

 

 

Figure 5.5: Oil recovery factor and water cut of waterflood case and water shutoff 
case. 
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Figure 5.6: Change of water saturation at high perm layer. A: Beginning of water 
shutoff. B: 5 months later. Water saturation decreases because oil from neighbor 

layers is driven to this layer. C: 1.5 years later. Water saturation increases because 
connection between layers make it to be a water channel again. 

 

The function of gel as an in-depth profile control chemical is realized as its 

adsorption on rock to resist water phase flow in this study. The Langmuir adsorption 

isotherm is used to model the gel adsorption. The maximum adsorption capacity is 0.0276 

lbmol/ft3. The residual adsorption level is set to the same value to model irreversible 

adsorption. Parameters of Langmuir isotherm are set as tad1=276 lbmol/ft3, tad2=0, and 
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tad3= 10,000. The resistance factor of polymer is 19.25 for all the rock. All adsorption 

parameters except resistance factor are obtained from CMG example case. The resistance 

factor is calculated from literature (Al-Muntasheri et al. 2007; Al-Muntasheri et al. 2008; 

Al-Muntasheri et al. 2009). 

For in-depth profile control cases, the incremental recovery factor for 78°F 

injection temperature is 7.4%, which is higher than that for 194°F injection temperature, 

3.3%. The reason is that different temperature field causes different gel production and 

distribution. With 78°F injection temperature, the temperature at near well region is low, 

which is an unfavorable condition for gelation reaction. When the slug of polymer and 

crosslinker propagates to deep reservoir, high temperature there accelerates the reaction. 

So more gel is distributed at deep reservoir in high permeability layers (Figure 5.7), which 

weakens the water crossflow there. With 194°F injection temperature, the temperature at 

near well region is high, thus most of the gel is produced and assemble there. Severe 

crossflow still occurs from low permeability layers to high permeability layers in deep 

reservoir (Figure 5.8). Fluid production rate at high permeability layer also demonstrate 

that more amount gel distributed at deep reservoir leads to a better sealing effect (Figure 

5.9). After injection of polymer and crosslinker slug, for 78°F case, production rate at high 

permeability layer decreases, while for 194°F case, production rate does not has obvious 

change. 
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Figure 5.7: Injector cross-section profile shows the amount of gel adsorbed on the 
rock with injection temperature of 78°F. 

 

  

Figure 5.8: Injector cross-section profile shows the amount of gel adsorbed on the 
rock with injection temperature of 194°F. 
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Figure 5.9: Liquid production rate at high permeability layer of one producer. 

 

High injection temperature may also cause injectivity problem, because plenty of 

gel seals injection flow at near well region. For injection temperature of 78°F, the injection 

pressure increases to 1.7 times of its initial during gel reactants injection, and keeps to 

1.03 times of its initial during the followed waterflood. For injection temperature of 194°F, 

the injection pressure increases to 3.7 times of its initial during gel reactants injection, and 

keeps to 1.4 times of its initial during the followed waterflood (Figure 5.10). 
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Figure 5.10: Injection pressure for in-depth profile control cases with injection 
temperature of 78°F and 194°F. 

 

Oil recovery performance of the combination of in-depth profile control and 

polymer flood is simulated, and compared to waterflood, water shutoff, simple in-depth 

profile control and simple polymer flood. For all the cases, the reservoir temperature is 

194°F, and injection temperature is 78°F. The incremental oil recovery factor for the 

combination method is the highest (14.3%), and it is even higher than the sum of 

incremental oil recovery factors of simple in-depth profile control (7.4%) and simple 

polymer flood (5.9%). Additionally, there’s still potential for more oil recovery for the 
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combination method, because the water cut at the end of process is the lowest, compared 

to other methods (Figure 5.12). 

 

 

Figure 5.11: Recovery factor of waterflood case, water shutoff case, in-depth profile 
control case, 3000 ppm polymer flood case, and the combination application of in-

depth profile control and 3000 ppm polymer flood case. 
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Figure 5.12: Water cut at the end of the process of waterflood case, water shutoff 
case, in-depth profile control case, 3000 ppm polymer flood case, and the 

combination application of in-depth profile control and 3000 ppm polymer flood 
case. 

 

5.6 Summary 

Polymer adsorption was modeled and the assistant methods to polymer flood such 

as water shutoff and in-depth profile control were studied. Based on the results obtained, 

the following conclusions can be drawn: 

1. Polymer adsorption slightly increases the final recovery factor, due to its 

resistance to water phase flow. 

2. Water shutoff can increase the final recovery factor, but crossflow still occurs 

in deep reservoir. 

3. Lower injection temperature is preferred for application of in-depth profile 

control, because it can make more gel distributed in deep reservoir. 
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4. In terms of final recovery factor and water cut, the combination method of in-

depth profile control and polymer flood has the best recovery performance. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

In the aspect of polymer thermal thinning, high temperature has no obvious effect 

on oil recovery. It is because the change of mobility ratio of displacing fluid and displaced 

fluid is marginal. But considering polymer thermal degradation and gel distribution, 

injection fluid with lower temperature is preferred, which can defer the polymer 

degradation, and build favorable temperature gradient for gelation.  

Both near-well water shutoff and in-depth profile control can improve waterflood. 

However in-depth profile control will help polymer flood be more efficient without 

causing severe injectivity problem. Thus the combination of in-depth profile control and 

polymer flood achieves the highest recovery performance in high temperature reservoir. 
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