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ABSTRACT 

Concerns about the substantial amounts of water and chemicals pumped into the 

subsurface during hydraulic fracturing are valid because long term effects of these 

stimulation actions are unknown at the present time. Although less than 1% of the 

hydraulic fracturing fluid composition is made up of the various chemicals, reactions are 

likely to occur when said chemicals are in contact with other elements from the rock.  

To reduce the amount of water being used in these fracture treatments, flowback 

from stimulated reservoirs are considered as base fluid to prepare additional fracture 

fluid. However, in order re-use the fluid, it must be treated appropriately since the 

produced waters are chemically altered. Hence, the changes that ensue in both the rock 

and fluid have to be studied and quantified where possible.  

Shale samples from the Barnett, Eagle Ford and Marcellus were exposed to a 

cross-linked gel composition for 1, 5, 10 and 30 days at simulated reservoir conditions 

(elevated temperature and pressure). Collected samples were sent to a commercial 

laboratory for analysis. Concentration of the cations, anions and dissolved metals in the 

fluid were measured before and after contact with the rock to establish any reactions that 

might have taken place.  

To uncover the effects of hydraulic fracturing treatment on the different rock 

types, the mineralogy was determined using X-Ray fluorescence (XRF). Also, tests of 

total organic content (TOC) were performed to ascertain what kinds of changes may 

have affected the elements within the rock. Differences in measured quantities of 
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cations, anions etc. confirm that chemical reactions occur. Furthermore, the variations 

observed between the base fluid and those exposed to the different shale types 

corroborate that the different composition of elements in the rocks can be correlated to 

the different concentrations of measured properties of the simulated flowback. 
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NOMENCLATURE 

BBL Barrels 

CEC Cation Exchange Capacity 

EF   Eagle Ford 

FF   Fracture Fluid 

HF  Hydraulic Fracturing 

ICP-MS Inductively Coupled Plasma-Mass Spectroscopy 

lb Pounds 

Mgal Thousand gallons 

TOC Total Organic Carbon 

XRD X- Ray Diffraction 

XRF X- Ray Fluorescence  
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1. INTRODUCTION 

Unconventional resources are those that, owing to low reservoir permeability or 

fluid properties cannot be produced at economic flow rates or in economic volumes 

unless the well is stimulated by a large fracture treatment, drilled horizontally, or treated 

with a special recovery method. (Holditch 2009). These previously avoided resources are 

fast becoming the solution to the increased demand for power generation and fuels. 

Advances in horizontal drilling, multilateral laterals and hydraulic fracturing (HF) 

technologies have revolutionized the oil and gas business. 

The major difference between conventional and unconventional resources is that 

conventional resources, though small in volume, are easy to produce from the reservoir, 

while unconventional resources (tight-gas sands, coal-bed methane, oil and gas shales, 

heavy oils and hydrates) are in large volumes, but are difficult to develop.  Today, 

unconventional resources play a huge role in the contribution to the energy needs; 

natural gas wells are able to produce economically, even in ultra-tight sands and shale 

formations, heavy oils are mined or produced with enhanced oil recovery methods and 

more efficient completion techniques to improve the economical production from shale 

oil wells are constantly being perfected daily. 

 For example, in 2009, the United States saw an increase in the annual oil 

production since 1991. 92% of the increase was attributed to production from shale and 

other tight formations in Texas and North Dakota (Ratner, 2013).  

As expected, with every advancement in technology, there are advantages and 

disadvantages. The success experienced by the Oil and Gas sector in increasing oil and 
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gas production from unconventional reservoirs via hydraulic fracturing, has also created 

a lot of negativity towards the practices of the industry. This process in particular, has 

been very misunderstood by outsiders and condemned as an extremely unsafe practice 

for the environment, health of the people and nation as a whole.  

Therefore, the goal of this project is to analyze the chemistry that occurs in the 

rock and hydraulic fracturing fluid components and determine what kind of interactions 

take place. This knowledge can be used not only to clarify the safety of the process, but 

also to bring to light any areas that need improvement. This will ensure safer practices 

are adopted and employed by the industry.  

 

1.1. Statement of Problem 

Multi-stage transverse hydraulic fracturing, in conjunction with directional 

drilling, are the two most important processes that have advanced the production of 

hydrocarbons from unconventional reservoirs. Concerns have been raised about this 

stimulation practice for two major reasons; the amount of water needed to create the 

artificial fractures (about 3-5 million gallons of water for a stage) and the ―harmful‖ 

chemicals being pumped into the ground (Adams et. Al, 2013; Shramko, et al., 2009). 

These are valid points as the need for fresh water to stimulate wells creates competition 

with other industries like agriculture, manufacturing etc. Also, contamination of drinking 

water aquifers from wells with poor cement jobs can pose a serious hazard to our 

communities and environment.  
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With this in mind, this work seeks to clarify the chemistry that occurs in the 

subsurface when the chemicals from the fracturing fluid contact the shale rock. The 

degradation of chemicals, alteration of minerals, exchange of ions and the resulting 

products of this interaction are of particular interest. Determining the chemical reactions 

that occur can aid in the treatment and re-use of fracture fluid, thereby reducing the need 

for fresh water. The effect of the chemical additives will be better understood and 

hopefully, more efficient fracture fluids can be created with the knowledge obtained. 

And most important, perhaps, the general public can be educated on the effects of the 

chemicals in the subsurface and their fears put to rest.  

With results from the experiments performed, recommendations can be made to 

the Oil and Gas industry that will help improve the effectiveness of the hydraulic 

fracturing process by minimizing unwanted chemical interactions, improving fracture 

conductivity and increasing the volume of flowback if desired. 

 

1.2. Literature Review 

Numerous studies have been conducted to determine shale-fluid interactions. The 

driving force behind such research is usually focused on shale and wellbore instability 

when water-based fluids interact with shales. This instability has been attributed to the 

―convective‖ and ―diffusive‖ movement of water and ions and changes in near-wellbore 

pressure. (Ewy, 2002) This weakens the mechanic properties of shale as the clays swell. 

Various solutions, such as use of oil-based fluids (when possible), inclusion of chemical 

additives such as surfactants, etc. have contributed to the success of stabilizing clays and 
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therefore, improving borehole stability. These changes have led to major improvements 

during drilling (Morton et al., 2009).  

However, other reasons for studying shale-fluid interactions such as the effect on 

gas production of wells (Osholake et al., 2011; Ezulike, 2013), formation 

damage/degradation (King, 2010; Flippen, 1997), proppant diagenesis (LaFollette et al., 

2011; LaFollette et al., 2010; Duenckel et al., 2012) are conducted to ensure that drilling 

and completion techniques do not adversely affect production from shales. More 

recently, environmental concerns and government regulations have led to more in-depth 

research on how to effectively dispose of and/or re-use flowback water (Rimassa et al., 

2009; Blauch et al., 2010).  

Chemical analysis of waters that return after hydraulic fracturing reveal very high 

levels of unexplainable salinity. The biggest impact of the salinity is finding economic 

methods for the disposal and/or reusability of flowback waters (Kaufman et al, 2008). 

This phenomenon is not fully understood and is currently being investigated in several 

research projects. Most significant are the results from Blauch et al.‘s work published in 

2009. This study utilized over 100 flowback samples from two wells in different parts of 

the Marcellus Shale play namely, the southwest and northeast regions. It was noted that 

the flowback from the Marcellus has high TDS in the form of soluble chloride salts 

(Blauch, 2009).  

Using mineralogical and inorganic geochemical analyses of the shale samples, 

Blauch attempted to ascertain if the salt origin and presence or absence of particular 

minerals could explain the existence of the high salinity. The authors concluded that the 
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resulting salinity could be as a results of ―primary dissolution of autochthonous salt‖, 

―primary dissolution of allochthonous salt‖, ―encroachment of basinal brine‖, 

mobilization of hypersaline connate fluid‖ or combinations of the former instances. 

Some conclusions from Blauch‘s flowback studies of Well A can be seen in 

Figures 1.1—1.4. There is an increase in dissolved constituents the later the flowback is 

collected. An increase in sodium, calcium and iron were also observed in latter stages of 

flowback and these two former ions are said to be the most prevalent cations. The 

increase in calcium can be attributed to the decrease in alkalinity and pH. The formation 

of barium sulfate scale and the low solubility of barium sulfate could explain the abrupt 

increase in barium levels during later collections of flowback.  
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Figure 1.1 – Blauch‘s concentration of cations in well A. Namely sodium, calcium, 
magnesium, barium, potassium, iron, strontium). The trends discussed above are evident 
in the graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Blauch‘s concentration of anions in well A. Namely chloride, sulfate and 
alkalinity as CaCO3.  
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Figure 1.3 – Blauch‘s concentration of the total suspended solids (TSS) in well A. The 
concentration increases the later the flowback sample collection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 1.4  – Blauch‘s decrease in the pH value and specific gravity in well A.  
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For Well B, flowback was collected at random times over 55 days. A lot more 

data was collected, hence a lot of variation is observed in graphs (Figures 1.5-1.7). 

Although the strontium levels in Appalachian Basin Marcellus wells are usually high, 

Well B had much higher levels than Well A. Also, the barium levels measured in this 

well were significantly higher than those in Well A. 

 

 

 

Figure 1.5  – Blauch‘s concentration of cations in well B.  Namely sodium, calcium, 
magnesium, barium, potassium, iron, strontium. Most concentrations show an initial 
increase and then a decrease after Day 20. 
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Figure 1.6  – Blauch‘s concentration of anions in well B. Namely chloride, sulfate and 
alkalinity as CaCO3. Concentrations increase initially, then a decline is observed around 
Day 44, after which the concentrations begin to increase again. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 – Blauch‘s total dissolved solids (TDS) in well B. Generally, TDS increases 
and reaches a maximum at Day 20.  
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In Lafollette‘s 2010 study on Proppant Diagenesis, experiments using static 

temperature and pressure bombs were carried out in a laboratory on shale, proppant and 

fracture fluid to determine the physical and chemical changes that occurred to the 

proppant. Hayneville shale samples, ceramic proppants and broken high pH borate cross 

linked gelled water were used in the experiments. Tomball, Texas tap water was used as 

the base for the fracture fluid. The results from experiments published (Figures 1.8 - 

1.11) show general trends in the cation, anion and physical properties concentrations 

from shale/fracture fluid interactions.  

 
 

 

Figure 1.8  – Lafollette‘s concentration of cations. Namely sodium, calcium, 
magnesium, barium, potassium, iron, boron, silicon. An initial increase in noted in 
sodium, calcium and silicon concentrations. However, the potassium, magnesium and 
boron concentrations decrease over time. There is no change observed in the barium and 
iron concentrations. *Day 0 on the graph indicates the baseline. 
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Figure 1.9  – Lafollette‘s anion concentrations. Namely chloride, sulfate, carbonate, 
bicarbonate, alkalinity as CaCO3. With the exception of carbonate, there is an increase in 
all concentrations. The decrease in carbonate is as a result of the fracturing fluid buffer. 
*Day 0 on the graph indicates the baseline. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10  –  Rapid increase in TDS in the first 30 days (Lafollette). Then a slight 
decrease over the next 30 days is obseved. *Day 0 on the graph indicates the baseline. 
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Figure 1.11  –  Decrease in the pH and specific gravity (Lafollette). *Day 0 on the graph 
indicates the baseline. 
 

 

 

 

 

 

 

 

 

 
 
 
 
Similarly, Hayes characterized the flowback from the Barnett and Marcellus 

Shale plays. Concentrations of cations, anions and other general chemistry measures 

were collected at different time periods. Hayes concluded that flowback water was a 

constitution of elements of produced water and the additives from hydraulic fracturing. 

The work further broke down the chemistry and composition of produced water using a 

very detailed flowchart (Figure 1.12)  
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Figure 1.12  –  Hayes, 2011 complex breakdown of produced water constituents.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
The flowback sampling and analysis in this study was taken from 19 different 

locations in the Marcellus Shale and 5 locations in the Barnett Shale. The samples were 

taken at days 0, 5, 14 and 90. Day 0 samples were the raw water before any chemical 

additives were added and raw water with chemical additives before the addition of 

proppant. Water chemistry analysis of this study is reported with ranges and median 

values of the each measurement. 
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Figure 1.13  –  Decrease in pH values over time (Hayes, 2011) 
  

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1.14 – Increase in TDS over time (Hayes, 2011) 
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Hayes also explains that the high values recorded for the hardness of the water 

(17,700 and 34,000 mg/L for day 5 and 14 respectively) can be credited to the 

abundance of soluble calcium which is formed due to the low carbonate concentrations 

(i.e. low to modest alkalinity of the water with values of 50 and 327 mg/L for day 5 and 

14 respectively).  

Originally, high salinity was attributed solely to the dissolution of minerals in the 

rock by the fracture fluid but after studying and analyzing the results from four separate 

studies in the Marcellus Shale (Dresel, 1985; Dresel and Rose; 2010; Pennsylvania 

Department of Environmental Protection (PA DEP); Hayes, 2009 and Blauch et al., 

2009), Haluszczak et al concluded that salinity ―trends and relationships in brine 

composition indicate that  

(i) increased salt concentration in flowback is not mainly caused by 

dissolution of salt or other minerals in rock units,  

(ii) the flowback waters represent a mixture of injection waters with 

highly concentrated in situ brines similar to those in the other 

formations, and 

(iii) these waters contain concentrations of Ra and Ba that are commonly 

hundreds of times the US drinking water standards.‖ (Haluszczak, 

2012). 
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1.3. Objectives of Research 

The objective of this research is to determine how the mineral components of 

shale interact with the chemicals in the fracture fluid. To achieve this, the project is 

broken down into these parts: 

1. Shale characterization to determine the relationship between the minerals, 

cation exchange capacity (CEC) and total organic content of the rock and 

how it is affected by the chemicals found in the fracture fluid. 

2. Shale-fluid interaction tests to understand how/if any chemical or mineral 

components are degraded, altered or generated in both the shale sample and 

fluid sample. Fluid samples will be analyzed using inductively Coupled 

Plasma-Mass Spectroscopy (ICP-MS) and Total Organic Carbon (TOC) 

measurements while the shale samples will be analyzed using X-ray 

diffraction (XRD), X-ray Fluorescence (XRF) and TOC before and after 

exposure to the fracture fluid. 

3. Different shale plays will be compared to establish any correlation between 

the effect of the different chemicals on the clay content, amount of metals, 

abundance of certain elements etc. in the rock. 
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1.4.  Outline of Thesis 

  Section  2: This chapter will give a background on shales. The minerals that 

make up the rocks and the different clay compositions for each shale play studied in this 

work will be discussed. Chemicals that make up the fracture fluid will be presented and 

each component analyzed and the effects of hydraulic fluids on shale will be looked at 

briefly.   

Section  3: Experimental procedures and the methodologies for the Shale-Fluid 

interaction test will be explained in great details in this chapter. Methods used by the 

various independent laboratories for procedures such as XRD, XRF, etc. will also be 

presented. 

Section  4: In addition to the results from the Shale-Fluid interaction tests, the 

results for the mineralogy for each shale type will be presented. 

Section  5: In this chapter, results from the previous chapter will be discussed, 

parallels between shale mineralogy and the resulting concentrations of cations and 

anions will be drawn in an attempt to understand the chemistry that occurs during the 

interaction of rock samples and fracture fluid. Finally, recommendations for future work 

will be presented. 
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2. BACKGROUND 

2.1.  Shales 

Shale is a type of clastic sedimentary rock. They are the most abundant type of 

sedimentary rocks in the world (about 60% of sedimentary rocks). Generally, the term 

shale is used to classify rocks that are clay rich. However, the more accurate way to 

describe shales is as a mudstone because it is composed of very fine grains (silt) and clay 

sized mineral particles (less than 2 microns) which are compacted as it is buried. Shales 

are formed when sediments carried by rapid moving waters are deposited in river 

floodplains or at the body of a large body of water (lakes, ocean etc.). 

Shales are relatively soft and are described as fissile and laminated. When 

exposed to water, shale becomes mud. The fissile nature and lamination of shale 

distinguishes it from other mudstones. The laminated nature of shales means it is made 

up of thin layers. Fissile means that the rock splits into thin pieces along the laminations.  

Depending on the organic matter contained in shales, the color varies from gray to 

black (Figure 2.1). The darker the shale, the more organic matter it contains. Black 

shales are common source rocks for oil and gas while gray shales can act as a seal for a 

reservoir rock in a petroleum trap (Hyne, 2012).  

Shales are made up of 50-60 wt. % clay minerals. The major clays found in shale are  

 Chlorite; (Mg,Fe)3(Si,Al) O10(OH)2·(Mg,Fe)3(OH)6  

 Illite; (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] 

 Kaolinite; Al2Si2O5(OH)4  

 Smectite;(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O 
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Figure 2.1 – Different colors of shales (www.geology.com) 
 

 

 

 

 
 
 
 
Initially, shales were considered only as source rocks in conventional petroleum 

systems due to the extremely low permeability (nanodarcies) of such rocks. However, in 

the early 1990s, shale gas pioneers began to experiment on ways to release the gas 

locked in the tiny pore spaces of shale. By the end of that decade, some companies had 

successfully developed completions methods for drilling and producing natural gas from 

shale reservoirs economically (King, 2012). The major breakthrough was employing HF 

techniques safely and successfully in such unconventional reservoirs (Coulter, et al., 

2004). 

Shale gas and shale oil, according to the resource triangle (see Figure. 2.2), are 

considered unconventional resources because of the vast resource concentrations in low 

quality reservoirs which require special technology and stimulation in order produce the 

natural resource in economic quantities. From Figure. 2.3, the importance of 

unconventionals for meeting future energy needs can be seen; as majority of the natural 

resources fall within that category.  Hence, developing such reserves is very important 

for providing affordable energy worldwide. 

 

http://www.geology.com/
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Figure 2.2 – Resource triangle with conventional and unconventional resources. 
(Canadian Society of Unconventional Gas, 2003). 

 

 

 

 

Figure 2.3 – Projection of natural gas production in the United States by its source (EIA 
2011). 
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2.2. Shale Plays 

 As mentioned earlier shale the most common type of sedimentary rock. In this 

United States, there are numerous shale basins that have been developed and natural 

resources are being produced economically on a daily basis. See (Figure 2.4).  

 In this study, shale from three different plays in the United States were used; the 

Barnett Shale  and the Eagle Ford Shale both located in Texas and the Marcellus Shale 

with is located mainly in Pennsylvania with some parts of the basin also in New York, 

Maryland, Virginia and some parts of Ohio. 

 
 
 
Figure 2.4 –  The shale basins in the lower 48 states of the United States. 
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2.2.1.  Barnett Shale 

The Barnett shale is located in North Texas (Figure 2.5). This shale formation 

covers about 6,400 square miles, and lies about 8000ft below the ground‘s surface. It 

holds an estimated 43.4 trillion cubic feet of natural gas (enough natural gas to power all 

homes presently in Texas for the next 200 years) (Energyfromshale.org, 2013).  

 

 
Figure 2.5 – Location of the Barnett Shale. ( AAPG) 

 

 
 

The Barnett Shale is a Mississippian aged shale with quartz and clay as the 

primary minerals. Depending on the location, it lies at depths between 6800-9000ft and 

this shale thickness increases from 100 to 1000ft in the northeast direction (Coulter, 

2004). It is bounded on the bottom in some areas by the Viola/Simpson limestone and in 

others by the Ellenburger dolomite which is a water bearing formation (Frantz, 2005). 

On top is the Marble Falls Limestone, which creates a good barrier for hydraulic fracture 

attenuation. The proved reserves in this play according to the U.S. Energy Information 
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Administration (EIA) are 32.6 trillion cubic feet (Tcf) of gas and 118 million barrels of 

oil (MMBoe).  

The Barnett is considered a naturally fractured, tight gas formation with 

permeabilities in the micro to nano-Darcy range; with an average permeability of .25µD. 

The porosity is low and is usually in the 1-6% range. (Coulter , 1976.) Like most shales, 

the Barnett is heterogeneous. Its pressures gradients are between 0.45-0.52 psi/ft., and it 

is considered slightly over pressured. The total organic content (TOC) in this shale play 

is between 4-8%, with an average value of 4.5%. The mineral composition of the Barnett 

is typically 45% quartz, 20-40% illite clay, 8% dolomite and calcite, 7% feldspar, 5% 

pyrite and 3% siderite (Frantz et al., 2005). This play produces several types of 

hydrocarbons including dry and wet gas, oil and condensate. The average temperature of 

the Barnett is 200°F and the pressure is about 4,000 psi. 

Wells in the Barnett are completed using multiple fracture stimulations. The 

lower and upper Barnett zones have to be perforated and fractured independently. Each 

well on average is stimulated with about 3 to 5 million gallons over the 2000-3800 ft. 

horizontal lateral (Nicot et al, 2014). To complete the average well in the Barnett costs 

about $2.8 million. 

The Barnett Shale was one of the most active producers of natural gas in the mid 

to late 2000s. However, the due to the enormous success of efficiently producing natural 

gas from this unconventional play; an imbalance between supply and demand was 

created. This achievement eventually worked against the industry when the price of 
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natural gas plummeted from about $15.78/Mcf in 2005 to an all-time low of $2.32Mcf of 

gas (Meyer, 2010).  

For this study, outcrop was quarried from the surface in San Saba, Texas (Figure 

2.6). 

 
 
 

Figure 2.6  – The Barnett outcrop sample used for the experiments in this study.  

 

 
 
 

2.2.2. Eagle Ford Shale 

 The Eagle Ford formation is one of the hottest plays in the United States at the 

moment. As a result of the vast reserves of both shale oil and shale gas, the Eagle Ford is 

projected to produce the more hydrocarbons (especially oil) than other shales. As of 

July, 2014, the Energy Information Administration (EIA) reported that 1.6 million 

barrels of oil and 79 MMcf of gas are produced daily. This shale play is in the Maverick 

basin, located in the Southern part of Texas and it covers an area of about 5000 square 
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miles (Figure 2.7). The Eagle Ford holds an estimated recoverable reserves of 700 

million barrels (the recovery factor is a mere 6% and OOIP is pegged at 28 Billion BOE) 

(EagleFordShale.com). The OGIP is estimated between 140-200 Bcf per section. 

 

 

Figure 2.7 – The location of the Eagle Ford Shale. 

 

 

 
 This basin was formed during the Cretaceous period and has a very high 

carbonate (>70% in some areas) and low clay content (Martin et al, 2011). The high 

carbonate content has made HF a lot easier since the formation is very brittle (Arguijo et 

al., 2012). The location of the shale in the subsurface can be as shallow as 5,000ft below 

or as deep as 18,000ft and its thickness varies between 50 and 300ft and becomes 

shallower in the northwest direction. The Austin Chalk formation sits atop of it and Buda 

lime is below the Eagle Ford. (Shelley et al., 2012) 

Energyfromshale.org 
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Porosity in the Eagle Ford ranges from 3-15%, with the typical value of about 

11% and its permeability is between 0.0001 and 0.03 mD in most areas. This play is 

considered moderately over-pressured with pressure gradients varying between 0.4 and 

0.7 psi/ft. The average total organic carbon (TOC) is 5% and the approximate 

mineralogy over the Eagle Ford is 50% calcite, 20% clay and 20% quartz (Martin et al, 

2011). The typical reservoir temperature is ranges from 280 to 350°F and pressures are 

between 8,000—11,000 psi (with the average pressure gradient of 0.65 psi/ft). 

(Jaripatke, et al., 2013). 

Wells in the Eagle Ford are predominantly horizontal wells with the number of 

fracture stages ranging between 12 and 21 ( Centurion et al., 2011) and 4-5million 

barrels of water are used per well. (Centurion et al., 2012). The fracture fluids used in 

this play are slick water, high temperature gels and crosslinked fluids. (Cook et al., 

2014). The average cost to drill and complete a well is $4.8 million. 

Outcrop shale used for this study was obtained from the surface at Del Rio, 

Texas.  
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Figure 2.8 – Eagle Ford shale outcrop used for this project. 
 

 

 

 

 

 

 

 

 

 
 

2.2.3. Marcellus Shale 

The Marcellus Shale is middle aged Devonian shale that contains limestone beds 

and concentrations of pyrite (FeS2) and siderite (FeCO3). The primary minerals in this 

play are mixed clays (40-70%), quartz (20-56%) and calcite (0.3-15% ) (Belvalkar et al., 

2010). Although the major area of production of this shale is in Pennsylvania, it was first 

discovered as an outcrop in Marcellus, New York in 1839.  It covers an area 54,000 

square miles and spans New York, Maryland, West Virginia and Ohio. The shale lies at 

depths between 6000-8000ft and the average shale thickness of is about 350ft. It is 

bounded on the bottom in northwestern New York by the Onondaga Limestone and in 

Western Pennsylvania by the Selinsgrove Limestone. On top are the Mahantango 

Formation and Tully Limestone. 
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Figure 2.9 – The location and extent of the Marcellus shale. 
 

 

 

 

 

 

 

 

 

 

 
 
 
The Marcellus Shale is the largest shale gas play in North America. This play has 

faults, fractures and variable shale, carbonate lithology. The original gas in place (OGIP) 

is estimated to be about 500 Tcf with 50 Tcf of that believed to be recoverable (Hayes, 

2009). The formation reservoirs have an average permeability of 1 micro Darcy. The 

porosity usually ranges from 4-8%.  Its pressures gradients are between 0.45-0.52 psi/ft., 

and it is considered slightly over pressured. The total organic content (TOC) in this shale 

play is between 4-8%. This play produces dry and wet gas. The average temperature of 

the Marcellus is 130°F and the pressure is about 4,000 psi. 

The cost to complete the average Marcellus well is roughly $3.5-4 million. 

(Belvalkar et al., 2010).  Wells in this play are completed using crosslinked gel fracture 
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fluids. Approximately, 3-5 million gallons of water is used to complete a well (Arthur, et 

al., 2010). 

For this study, outcrop was mined from about 30-40ft below the surface (as per 

information provided by Kocurek Industries, Figure 2.10) and the thermal maturity in 

Eastern Pennsylvania ranges between 3.0 and 3.5. 

 

 

 

Figure 2.10 – Marcellus Outcrop used for the experiment. 
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2.3. Mineralogy 

2.3.1. Mineralogy Analysis 

Minerals in the rocks used in this project are classified into three major groups; Clays, 

Carbonates and Others which consist of mainly Quartz and other silicate minerals, K-

Feldspar, Plagioclase, Pyrite, Barite, Fluoroapatite and Gypsum.  

2.3.1.1. Clays 

Clays are very abundant in the earth and are widely used in different industries such 

as manufacturing and agriculture. 97 % of all petroleum reservoirs contain some form of 

clays. Clay minerals are hydrous aluminum phyllosilicates with varying amounts of 

other mineral such as magnesium, sodium, iron etc. Phyllosilicates are parallel ―sheet 

silicates‖ (Si2O5). Furthermore, clays form in the presence of water and as such, the 

sheets of silicate have water or a hydroxyl group attached to it; this is why they are 

considered to be hydrated (Kerr, 1955).  

Clay minerals are usually less than two microns in size and are a common 

component of sedimentary rocks. They generally have a large surface area (~100m2/g) 

and usually carry a net negative charge. The clay mineral group in this study is made up 

of chlorite, kaolinite, smectite, illite/mica and mixed interstitial clays. 

Kaolinite, illite and chlorite has the tendency to disperse in freshwater and clog pore 

throats, while smectite is known as the swelling clay and has the ability to imbibe 

freshwater and swell up to a thousand (1000) times its volume. Due to these 

characteristics of clays, reservoirs containing these minerals have to be treated specially. 
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For example, freshwater is not used in drilling such formations and hydrochloric acid 

(HCl) should not be used in formations containing >10% illite. 

2.3.1.2. Carbonates 

Calcium carbonate, CaCO3, is the major component in carbonates. These rocks 

can be formed in many different environments provided water is present. Generally, they 

are found in abundance in chemically precipitated sedimentary rocks and these minerals 

are formed by precipitation from water.  Calcite (CaCO3), dolomite (CaMg(CO3)2) and 

siderite (FeCO3) are the three main minerals that form carbonates. Dolomite is produced 

by diagenesis and is magnesium rich while siderite is an iron ore (Bots et al., 2012). 

 Calcite and dolomite are generally denser rocks with density values of 2.71 g/m3 

and 2.85 g/m3 respectively. Multiple factors affect the dissolution or precipitation of 

calcite by groundwater such as pH, temperature and other dissolved ion concentrations. 

Also, calcite has retrograde solubility which means that it is less soluble in water as the 

water temperature increases. In addition, only calcite with low magnesium 

concentrations is stable at surface temperatures and pressures. Examples of carbonate 

rocks include limestone, dolostone, chalk etc.  

According to Rodriguez-Blanco, 2008,  ―Calcite forms from a poorly ordered 

precursor (amorphous calcium carbonate, ACC). The crystallization process occurs in 

two stages; firstly, the ACC nanoparticles rapidly dehydrate and crystallize to form 

individual particles of vaterite; secondly, the vaterite transforms to calcite via a 

dissolution and reprecipitation mechanism with the reaction rate controlled by the 

surface area of calcite. The second stage of the reaction is approximately 10 times slower 
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than the first. However, the crystallization of calcite has been observed to be dependent 

on the starting pH and presence of Mg in solution. A neutral starting pH during mixing 

promotes the direct transformation of ACC into calcite. Conversely, when ACC forms in 

a solution that starts with a basic initial pH, the transformation to calcite occurs via 

metastable vaterite, which forms via a spherulitic growth mechanism. In a second stage 

this vaterite transforms to calcite via a surface-controlled dissolution and 

recrystallization mechanism. Mg has a noteworthy effect on both the stability of ACC 

and its transformation to crystalline CaCO3, resulting in the formation of calcite directly 

from ACC, as this ion unstabilizes the structure of vaterite.‖ 

2.3.1.3. Others 

Quartz is silicon dioxide, SiO2, which is the simplest form of silicates.  This white, 

hard mineral can be found in sedimentary, igneous and metamorphic rocks. It is the 

second more abundant mineral in the Earth‘s crust. In nature, quartz forms relatively 

easily when silica rich solutions and oxygen are present. It does not require a particular 

temperature or pressure to form making it a very stable mineral. Also, quartz is resistant 

to physical and chemical weathering. 

K-Feldspar, potassium feldspar (KAlSi3O8) is the most abundant mineral in the 

Earth‘s continental crust therefore, it is considered as a ―rock-forming‖ mineral i.e. most 

rocks are composed mainly of feldspar (Deer et.al, 1992). The color of K-feldspar ranges 

from white to brick red. Similar in chemical structure to quartz, the major difference 

between the two elements in that various metals such as Na, K or Ca partly replace the 

silicon. Depending on the temperature, there are three crystal structures that potassium 
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feldspar can form namely: microcline, sanidine and orthoclase (Alden, 2011). The 

former is stable below 400°C, orthoclase is stable above 500°C and sanidine is stable 

above 900°C. 

Plagioclase, (Na,Ca)(Si,Al)4O8, is part of the feldspar mineral group. It is a 

tectosilicate mineral and it is a major component of the Earth‘s crust. It is composed of 

sodium (4.25%), calcium (7.40%), Aluminum (9.96%), Silicon (31.12%) and Oxygen 

(47.27%). There are two major minerals that are found in plagioclase; anorthite 

(CaAl2Si2O8) and albite (NaAlSi3O8). The ratio of each of those minerals determines the 

type of plagioclase feldspar the mineral is. This mineral has an average density of 2.68 

g/cc.  

Pyrite, iron disulfide (FeS2), is called fool‘s gold as a result of its shiny, yellow 

color. It is composed of Iron (46.55%) and Sulfur (53.45%). Pyrite is the most common 

sulfide mineral and can be found in coal, sedimentary and metamorphic rocks. When 

exposed to water and air, iron pyrite breaks down into iron oxides and sulfate and it is 

generally unstable in the environment. Pyrite has an average density of 5.01 g/cc. 

Barite, has the chemical formula BaSO4. It is composed of Barium (58.84%), Sulfur 

(13.74%) and Oxygen (27.42%) and has a density of 4.48 g/cc. This mineral could be 

either colorless or white. According to Hanor (2000), barite can be deposited through 

biogenic, hydrothermal and evaporation and it is present in numerous of depositional 

environments. Barite is essential to the petroleum industry because it is used as a 

weighting agent in drilling mud. It is very insoluble, hence it isn‘t considered toxic 

despite containing barium. 
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Fluoroapatite, Ca5(PO4)3F aka calcium fluorophosphate is a hard, crystalline solid. 

This mineral is found in a range of colors including blue, violet, green etc. It is 

composed of calcium (39.74%), phosphorus (18.43%), oxygen (38.07%) and fluorine 

(3.77%) and has an average density of 3.15 g/cc. Fluoroapatite is the most common 

phosphate mineral and it‘s synthesized in two steps. Initially, calcium phosphate is 

generated by combining calcium and phosphate salts. Next it is reacted with a fluoride 

source such as sodium monofluorophosphate (Holleman, 2001). Fluoroapatite is used in 

the production of hydrofluoric acid which is used in the oil and gas industry to acidize 

sandstones. 

Gypsum is a sulfate mineral with chemical formula CaSO4∙2(H2O). It is a soft 

mineral with density 2.3 g/cc and contains 23.28% calcium, 2.34% hydrogen, 18.62% 

sulfur and 55.76% oxygen. It is found in sedimentary rocks and is usually deposited in 

strata. Groundwater hydrates hydrothermal anhydrite to form gypsum. Although being 

moderately water-soluble, according to Bock (1961), gypsum has the retrograde 

solubility property. Heating it in air causes it to lose water and become calcium sulfate 

hemihydrate after which it becomes anhydrite upon further heating. Gypsum is widely 

used in making fertilizers. 

Below is a table containing the various mineral compositions of the samples used in 

the experiment. There is great variation in the mineralogy makeup of the rocks which is 

common in shales. 
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Table 2.1 — Bulk and clay mineralogy of shale samples used in this work 
 

 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

2.4. Hydraulic Fracturing 

 In simple terms, hydraulic fracturing is a technique that involves large volumes 

of water and sand (98 to 99.5%), and very small volumes of chemical additives injected 

into the subsurface at high pressures to open existing fractures in the rock, or create new 

ones in order to increase the production of oil or natural gas. In order words, by 

enhancing the permeability of the formation, fluids can flow more readily to the 

wellbore during production. (Veatch et al, 1985) Prior to pumping the fracture fluid, 

  Barnett Eagle Ford Marcellus 
 Mineral % % % 
 Smectite 0.0 0 2 
 Chlorite 4.0 0 Tr 
 Kaolinite 5.0 7.2 0 
 Illite/Mica 32.0 1 16 
 Mx IS 9.0 0.9 7 
 Calcite Tr 60.1 12 
 Dolomite 0 0 1 
 Siderite 0 0 0 
 Quartz 31 20.2 41 
 K-Feldspar 2 0 2 
 Plagioclase 2 0 6 
 Pyrite 1 5.2 12 
 Barite 0 0 0 
 Fluoroapatite 11 0 1 
  Gypsum  3 5.4 Tr 

Totals Clays 50 9.1 25 
 Carbonates 0 60 13 
 Gypsum 50 30.8 62 
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perforations are made along the wellbore. These ―cracks‖ are where the fluid or slurry 

(fracture fluid and proppant) is supposed to travel into.  The sand present (or proppant) is 

used to keep the cracks open which allow the hydrocarbons to flow much easier. 

 Prior to hydraulic fracturing, the industry used to detonate explosives (liquid 

nitroglycerin) in wells. The explosive would create a large cavity which was then 

cleaned out and completed as an open hole. Although this was effective, it was very 

dangerous. (Hyne, 2012). HF was developed in 1948 and in 1949, the first commercial 

job was successfully completed. Today, it is almost impossible to complete and produce 

a well without using HF and statistics show that of all the wells drilled in the U.S. in 

2010, over 60% of them were hydraulically fractured. (Hyne, 2012). 

Hydraulic fracturing is meant to increase both the production rate (by 1.5 to 30 

times) and the ultimate production from a well. When fractures are created, they extend 

further into the formation and are in contact with more of the reservoir. This essentially 

increases the effective wellbore radius. Considerations of minimum and maximum 

horizontal stresses have to be taken into account during fracture design as this affects the 

length and width fractures will propagate. In addition, natural fractures and their 

orientation are also important during fracture design.  (Figure. 2.11) 
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Figure 2.11 – Difference between the surface area of a naturally completed well and one 
that was hydraulically fractured. 

 

 

 

 

 

 

 

 
 
 
This process (HF) is usually done in three steps. First, the fracture fluid is 

pumped into the reservoir at high enough pressure to initiate the fractures. Then, the 

slurry is pumped downhole to extend the fractures and while the propping agents keep 

them open. Finally, the well is flushed to remove the excess fracture fluid in the 

wellbore.  

Over the years, this completion technique has been refined and improved as a 

result of scientific and engineering advancements. The technology behind the chemicals 

used for both gel and slick water fracture fluids and proppants are investigated on a daily 

basis to determine the safest and most economic ways to use means to perform HF 

(using the optimum composition of chemicals and the right balance of proppant and 

fluid). 

Generally, the composition of a gel fracture fluid is 99.5 % water and sand and 

the remaining 0.5% are the chemicals additives. See Figure 2.12.  
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Figure 2.12 – Composition of a typical gel fracture fluid. 
 

 
 
 
 
The major problem facing the petroleum industry today starts with the massive 

amounts of water brought to the drill sites (a typical stimulation job requires multiple 

stage fractures and each stage requires about 3-5 million gallons of water). Next, the  

equipment (trucks, mixers, pumps) have to be transported to the location to create the 

fracture fluid and locals complain of the noise and destruction of property and 

infrastructure during this process. In order to reduce some of the issues mentioned about, 

suggestions about reusing flowback and produced waters are being considered. 

 

2.4.1. Hydraulic Fracturing Fluid Composition 

As the popularity of HF has risen, a lot of concern for environment has also been 

raised. As a result, there is an increase in legislation to ban HF in many parts of the 

world. A lot of misconceptions have been formed and the general public needs to be 
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educated further on the procedure and the steps taken by the industry to ensure the safety 

of the general public. 

Majority of the chemicals used in HF are also used in everyday life. The table 

below lists the chemicals used in fracture fluids and their corresponding everyday 

application. 

 
 

Table 2.2 — The chemicals used in hydraulic fracturing fluids and everyday life 
Additive Type Main Compound Purpose Common Use of 

Main Compound 
Dilute Acid  Helps dissolve minerals 

and initiate cracks in 
the rock 

Swimming pool 
cleaner 

Biocide Glutaraldehyde Eliminates bacteria in 
the water to prevent 
corrosive byproducts 

Disinfectants used 
to sterilize medical 
and dental 
equipment 

Breaker Ammonium 
persulfate 

Breaks down polymer 
chains to reduce 
viscosity and allow 
fracture fluid flowback 

Hair coloring, 
disinfectant 

Clay stabilizer Choline 
Chloride 

Prevents clay from 
swelling 

Used in chicken 
feed 

Friction Reducer  Minimizes friction 
between fluid and pipe 

Depending on the 
type, water 
treatment, soil 
condition, laxative, 
candy 

Gelling agent Guar Gum Thickens the water so it 
can carry proppant 

Ice cream, sauces, 
toothpaste etc. 

pH Adjuster Sodium 
Hydroxide 
(activator) 

Adjust the pH of fluid 
to maintain the 
effectiveness of other 
components 

Soaps, detergents, 
water softener etc. 

Gel stabilizer Sodium 
Thiosulfate 

 Lessen side effect of 
some cancer 
medication 
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2.5. Flowback and Produced Water 

Generally, water produced from oil and gas wells are called interchangeably called 

flowback or produced waters. These two terms actually stand for different waters that 

come back from the well after hydraulic fracturing. Flowback is defined as the fluid that 

flows back out of the well in the first two weeks after it has been stimulated and 

fractured. (Haluszczak et al, 2012) It usually contains chemicals using in the fracture 

fluids and dissolved solids from the reservoir (Basu, 2011). 

Produced water, on the other hand, is described as the remaining fluid that flows out 

from the well after two weeks and throughout the lifetime of the well. This water has 

chemicals naturally occurring in the reservoir such as Total Dissolved Solids (TDS), 

Total Organic Carbon (TOC) and Natural Occurring Radioactive Materials (NORM) 

such as radium isotopes.  Minerals from the shale including barium, calcium, iron and 

magnesium are leached out and carried to the surface in produced water. It also contains 

dissolved hydrocarbons such as methane, ethane and propane.  

These two types of water can be differentiated by their chemical composition and the 

rate of return. Typically, flowback water is produced at a higher flow rate over a shorter 

period of time which produced water returns to the surface at a slower rate and over a 

longer period of time. Over time, flowback transitions to produced water and 

distinguishing between both of them is a difficult task as both their chemical 

compositions are very similar. Flowback and produced water components are dependent 

on the initial fracture fluid additives, the development of the play (contamination from 

other wells) and pay maturity. (Blauch et al., 2010) 
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3. EXPERIMENTAL STUDIES 

Soil characterization and mineralogy assessment are carried out to determine the 

properties of the different shales used in the laboratory experiments. These tests were 

done by independent laboratories. The Shale-Fluid interaction tests were carried out to 

establish what chemical reactions may have occurred in when the rock and fluid were in 

contact. The experimental flowchart is presented in Figure 3.1 below. 

 

 

 

Figure 3.1 – Experimental flowchart 
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Disaggregate outcrop shale samples from the Barnett, Eagle Ford and Marcellus shale 

plays used in these experiments were purchased from Kocurek Industries, Caldwell 

Texas.  

X-Ray Diffraction (XRD) tests were performed by Ellington Laboratories, 

Houston Texas. This test was used to determine the percentage composition of the clays, 

carbonates and other minerals in each of the three shale types. X-Ray Fluorescence 

(XRF) tests (also by Ellington Labs) were used to quantify the elemental or oxide 

content of the shale samples. It also provides major and trace elements in solid samples. 

Soil characterization was carried out by the Soil Characterization Laboratory of Texas 

A&M University. These tests were used to also determine mineralogy but in addition, 

the cation exchange capacity (CEC) and organic carbon were obtained.   

 

3.1.  Determination of Mineralogy 

3.1.1. X-Ray Diffraction 

For XRD tests, a few grams of the sample (in powder form) is placed in a holder 

with a flat surface and exposed to an X-Ray beam with one wavelength (one color). This 

beam reflects of the tiny crystals in the sample and the reflection is usually several 

beams at different angles. These reflected beams are measured by a detector that swings 

around the sample, registering the strength and positions of the beams. Different 

diffraction patterns result since each chemical compound reflects x-rays at slightly 

different wavelengths.  
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3.1.2.   X-Ray Fluorescence 

In the case of XRF, x-ray beams are used to excite a sample and this sample in 

turn creates secondary x-rays that can be measure using a spectrometer. Wavelengths of 

the x-ray beams used in this test should have as wide a range as possible (the closer to 

white light, the better). When the x-rays are exposed to the sample, the atoms of each 

different element give off one color (wavelength) of an x-ray beam. A detector measured 

the strength of the x-ray emitted and its intensity is relative to the amount of that element 

in the sample. 

 
 

Figure 3.2 – X-ray beam reflection when exposed to a sample. 
 

 

 
 
 
 

3.2.  Soil Characterization 

Characterizing soil provides the properties of the soil and it helps determine the 

geologic, climatic and biologic history at the location from which the soil is taken. 

Results from multiple tests are used to characterize the soil. Some of these tests are  
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  KCl Aluminum Extraction 

 Ammonium Oxalate Extractable Iron. 

 Cation Exchange Capacity (CEC) 

 Chitticks Test 

 Extractable Bases 

 Gypsum 

 Saturated Paste Extract 

 Soil Reaction (pH) 

 Total Carbon 

The main tests that will be discussed in this section are the CEC, Chittick Test 

and Total Carbon.  

3.2.1. Determination of Cation Exchange Capacity (CEC) 

The Soil Characterization laboratory used the pH 7.0 ammonium acetate 

procedure of Chapman (1965). The samples were ground to particle sizes of less than 

2mm.  The procedures provided by the laboratory are as follows:  

Equipment: 

1.  24 place, mechanical extractor 

2.  24 each, 60 cc plastic (polypropylene) syringes, sample tubes, and reservoirs. 

Reagents: 

1. Sodium Acetate (NaOAc) 1 N, pH 8.2.  Mix 136.08 g of NaOAc in deionized H2O 

for each liter of solution desired.  Allow time for solution to cool to room 

temperature.  Adjust pH to 8.2 with sodium hydroxide (NaOH) or acetic Acid 

(CH3COOH) as needed. 
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2. Ethanol, 95%. 

3. Ammonium Acetate (NH4OAc), 1 N, pH 7.0.  Mix 68 ml of reagent grade 

ammonium hydroxide (NH4OH) and 57 ml of reagent grade acetic acid 

(CH3COOH) per liter of solution desired.  Bring to volume with deionized water, 

and cool to room temperature.  Adjust pH to 7.0 with NH4OH or CH3COOH as 

needed. 

Procedure:  

1. Pack approximately .5 g filter pulp into each sample tube. 

2. Weigh 2.50 g, < 2 mm air dry soil and transfer into sample tube.  Install tubes in the 

upper disc of the extractor. 

3. Install Na syringes. 

4. Using a squeeze bottle containing pH 8.2 NaOAc, wash down the inside of the 

sample tubes. 

5. Add NaOAc to the 20 ml mark of each sample tube. 

6. Extract rapidly until the depth above each sample pad is about 3 to 5 ml. 

7. Install Na reservoirs. 

8. Add about 40 ml of NaOAc to each reservoir. 

9. Extract for 2 hours; remove reservoirs. 

10. Discard NaOAc extract. 

11. Return extractor to starting position. 

12. Reattach Na syringes to sample tubes. 

13. Rinse wall of sample tube with ethanol and fill to 20 ml mark. 

14. Extract rapidly until the depth of ethanol above each sample pad is 3 to 5 ml. 

15. Install NH4 reservoirs and fill to 40 ml mark with ethanol. 

16. Extract for 45 min. 

17. Remove reservoir and syringe and discard ethanol extracts.   

18. Return extractor to starting position and add about 5 ml of ethanol to the sample.  

Reattach the NH4 reservoirs. 

19. Add about 40 ml of ethanol to NH4 reservoirs and extract for 45 minutes. 
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20. Remove reservoirs, discard ethanol, and return extractor to starting position.  

21. Install numbered syringes. 

22. Add pH 7.0 NH4OAc to 20 ml mark. 

23. Extract rapidly until depth of NH4OAc above sample pad is about 3 to 5 ml. 

24. Install NH4 reservoirs and fill to 40 ml mark with NH4OAc. 

25. Extract for 2 hours. 

26. Remove syringes.  Transfer extract to a tared bottle and record weight of extract.   

27. Determine concentration of Na in the extract by flame emission on the atomic 

absorption spectrometer.  Use standards with the proper matrix (NH4OAc) at 0, 5, 

20, 40ppm. 

 

Calculations: 

CEC as (meq/100g) = (extract wt.) (mg/1 Na) (dilution)/ (sample wt.) (230)  

3.2.2. Determination of Calcite, Dolomite and Calcium Carbonate Equivalent 

To calculate total carbon, the calcite, dolomite and calcium equivalent have to be 

first determined using the Chittick test. The procedures used by the Soil Characterization 

Lab are as follows: 

Apparatus: 

Chittick apparatus as shown in Figure. 3.3 (Dremanis, 1962) 

 

Reagents: 

Hydrochloric acid (HCl), 6 N, with 3% ferrous chloride (FeCl2).  Dilute concentrated 

HC1 1:1 with water and allow to cool. Determine approximate amount of acid to be used 

during the day‘s determinations and weigh appropriate amount of FeCl2 (3 g per 100 ml) 

into a beaker. Add acid and stir until FeCl2 dissolves. This solution deteriorates. Do not 

mix in advance of the determination. 
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Figure 3.3 – Chittick test apparatus 

 

 
 
 
 
 
Procedure: 

1. Mill grind 15 to 20 g of < 2mm samples for .20 minutes in the large mill. 

2. Weigh appropriate amount of mill ground soil (see table below) to the nearest 

milligram into a decomposition flask. 

3. Use table below to determine the sample weight 

 

Table 3.1 — Sample weight as determined by fizz test. 
 

 

 

 

 

 

 

Effervescence Class Sample Weight (g) 

0 Do not run 

1 3 

2 2 

3 1 

3+ or Carbonate Rock 0.5 
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4. Place a stir bar in the flask and add 2 drops of amyl alcohol. 

5. Fill the buret tip with HCl-FeCl2 solution and install the sample flask in the system. 

Fill the buret to the 5 ml mark with HCl- FeCl2. 

6. Open the 3-way stopcock to the atmosphere and adjust the liquid level in the 

measuring buret to +20 ml (above 0) with the leveling bulb. 

7. Close the system to the atmosphere with the 3-way stopcock (180o rotation) and 

lower the leveling bulb about 5 ml.S 

8. imultaneously begin to add HCl-FeCl2 solution to the sample and begin lowering the 

leveling bulb. The leveling bulb should be kept 1 to 2 cm below the liquid level in 

the measuring buret. 

9. After the sample is moistened, turn on the magnetic stirrer at a slow stirring rate. 

10. Close stopcock after 20 ml of acid has been dispensed (25 ml mark). 

11. After 30 sec. from the time you open the stopcock, equalize liquid levels in the 

leveling bulb and the measuring buret and read and record the volume of CO2 that 

has been evolved.  Also record the temperature and barometric pressure. 

12. Turn off magnetic stirrers except for 15 to 30 sec stirring period every 5 to 10 min. 

Maintain liquid level in leveling bulb 1 to 2 cm below that in the measuring buret. 

13. After 30 min., repeat measurements as in step 10. 

Note: If CO2 is still, evolving at the end of 30 min., do not make this measurement until 

gas evolution has stopped. 

 

Calculations: 

The calculations involved here require that CO2 density and air density be estimated 

from temperature and barometric pressure.  The equations given here are based on 

multiple regression analysis of values from standard tables and van der Waal‘s Equation 

of State against temperature (T) and barometric pressure (P). 

 

Air density = 0.00977 + 0.00171 P - 0.00000609 TP + [0.0000130 T2] 

CO2 density = 0.0208 + 0.00262 P - 0.0000093 TP + [0.0000186 T2] 
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Air Mass (g) = (355.0*)(Air density at 30 sec.) 

CO2 Mass 1 = (30 sec. volume)(CO2 density at 30 sec.)(1000)  

Air volume = (Air mass)(Air density at 30 min.) 

CO2 Mass 2 = (30 min. reading + 355.0 - Air volume)(CO2 density at 30 min.)(1000) 

CO2 from dolomite = (CO2 Mass 2 - CO2 Mass 1)(0.96#) 

CO2 from calcite = CO2 Mass 2 - CO2 from dolomite 

Calcite (%) = (CO2 from calcite X 100)/(0.4401) X (sample wt.) 

Dolomite (%) = (CO2 from dolomite X 100 X 1.05**)/(0.4773 X sample wt.) 

CaCO3 equivalent (%) = % calcite + (1.085 X % dolomite) 

* = approximate volume of air in the system. 
# = 4% of the dolomite is assumed to react within the first 30 sec. 

** = 5% of the dolomite is assumed to remain unreacted after 30 min. 

 

3.2.3. Determination of Total Organic Carbon 

A quantitative technique is used to by the Soil Characterization Laboratory. The 

difference between the total carbon and the inorganic carbon (the chittick test above is 

used for this) is measured and then calculations are applied to find the total organic 

carbon (Nelson, 1982; Page, 1982) . The procedures provided by the laboratory are as 

follows. 

Apparatus: 

1. Tube furnace and scrubbing train. 

 

Procedure: 

1. Preheat combustion furnace to 950oC.  Begin sweeping system with oxygen at a 

rate of approximately 100 cm3 per minute. 

2. Determine initial weight of two adsorption bulbs. 
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3. Connect the inlet of one of the bulbs to the flow tube and immediately open the 

stopcock. 

4. Insert sample of known weight into the center of the furnace (mark on rod) and 

immediately reinsert the stopper to begin flow. 

 

5. Ignite the sample for 10 minutes. 

6. At the end of the ignition period, close the stopcock on the adsorption bulb and 

immediately disconnect the bulb from the flow.  Remove the ignited sample from 

the furnace and allow oxygen to sweep the system while the second bulb is 

readied. 

7. Weigh the bulb and record as final weight. 

8. Repeat steps 3 through 7 for subsequent samples. 

 
Calculation: 

% carbon = (final bulb weight – initial bulb weight)(27.3) / sample weight 

 

Remarks: 

1. CaCO3 is used as a standard to insure 100% of the carbon is being recovered by 

the carbon train (See Fig 4).  Standards should be run initially until both 

bulbs show 100 + /-3% recovery.  A standard should also be run after every 

10 samples.  0.2274 g of dry CaCO3 is normally used and should yield 0.100 

g of CO2. 

 

2. The final weight of the adsorption bulb should be measured and samples for 

analysis weighted during the 10 minute period while a sample is combusting.  

A new sample can be started as soon as the old one is removed from the 

furnace and the bulbs are changed.  The final weight of the bulb becomes the 

initial weight the next time the bulb is used. 

 

3. 0.25 g of manganese dioxide (MnO2) is weighed into the combustion boat before 
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the sample or standard is weighed.  Sample weight varies and is based on 

effervescence rating.  Disk mill ground soil should be used. 

    Effervescence Sample Weight 

Slight (1)     2 g 

Moderate (2)     1 g 

Violent (3)             0.5 g 

If the sample appears to be high in carbon (dark color) a 1.0 g ample should be used. 

 

4. When connecting and disconnecting adsorption bulbs, care should be taken to 

insure that the inlet side of the bulb is disconnected, and that the stopcock is 

opened immediately after connection, and the system is flowing freely.  The two 

bottles of sulfuric acid should have approximately the same bubble rate if the 

system is flowing freely.  Failure of the system to flow freely may lead to 

sulfuric acid being drawn into the furnace and producing a noxious gas. 

 

 

 

Total Carbon Calculations 

Table 3.2— Example of Sample weight as determined by fizz test. 
 

 

 
 
 

 

 
 
 
If soil is very dark, use 0.5 g or less!!! 

Standard Calculation 

CO2 = After wt. – Before wt. 

(Standard wt.)(.44) = C 

FIZZ SOIL WT. 

0 – 1 2 g 

2 1 g 

3 .5 g 

  

Standards .2 g CaCO3 
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(CO2 / C)(100 %) = % Recovery  

 

Acceptable Range:   

97 – 103 % 

% Carbon Calculation 

CO2 wt. = After wt. – Before wt. 

C = CO2 wt. (.2727) 

% C = C / Soil wt. (100 %) 

 

Error: 

A – B <= .05 if % C <= 1 % 

A – B <= [(A + B) / 2] * .05 if % C > 1 % 

 

 

Figure 3.4 – Carbon Train Apparatus (Holmgren, 1977) . 
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3.3. Concentration of Elements in Fluid 

3.3.1.  Determination of Inorganic Anions by Ion Chromatography 

Energy Laboratories, College Station performed this test using the U.S. 

Environmental Protection Agency‘s (EPA) E.300.0 method ( Pfaff, 1993). This method 

is used to measure the concentrations of Chloride (Cl) and Sulfate (SO4).  To begin, a 

small volume of the sample (2-3 mL) is introduced into an ion chromatograph. The 

anions of interest are then separated and measured using a system comprised of a guard 

column, analytical column, suppressor device and conductivity detector (Figure 3.5). 

 
 
 

Figure 3.5 – Ion chromatography instrumentation. www.chromatography-online.org 

 

 
 

 
 
 

 

http://www.chromatography-online.org/
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3.3.2.  Determination of Metals and Trace Elements in Water and Wastes by 
Inductively Coupled Plasma-Atomic Emission Spectrometry 

Energy Laboratories, College Station performed this test using the U.S. EPA 

Method E.200.7 (Martin, 1990; Martin, 1991, 1994) . This method is used to determine 

the concentrations of Aluminum (Al), Barium (Ba), Boron (B), Calcium (Ca), Iron (Fe), 

Magnesium (Mg), Potassium (K), Silicon (Si), Sodium (Na), and Strontium (Sr). 

 This is a summary of the method from the EPA‘s manual. ―An aliquot of a well-

mixed, homogeneous aqueous or solid sample is accurately weighed or measured for 

sample processing. For total recoverable analysis of a solid or an aqueous sample 

containing undissolved material, analytes are first solubilized by gentle refluxing with 

nitric and hydrochloric acids. After cooling, the sample is made up to volume, is mixed 

and 

centrifuged or allowed to settle overnight prior to analysis. For the determination of 

dissolved analytes in a filtered aqueous sample aliquot, or for the "direct analysis" total 

recoverable determination of analytes in drinking water where sample turbidity is <1 

NTU, the sample is made ready for analysis by the appropriate addition of nitric acid, 

and then diluted to a predetermined volume and mixed before analysis. 

  The analysis described in this method involves multielemental determinations by   

ICP-AES using sequential or simultaneous instruments. The instruments measure 

characteristic atomic-line emission spectra by optical spectrometry. Samples are 

nebulized and the resulting aerosol is transported to the plasma torch (Pfaff, 1993). 

Element specific emission spectra are produced by a radio-frequency inductively 

coupled plasma. The spectra are dispersed by a grating spectrometer, and the intensities 
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of the line spectra are monitored at specific wavelengths by a photosensitive device. 

Photocurrents from the photosensitive device are processed and controlled by a 

computer system. A background correction technique is required to compensate for 

variable background contribution to the determination of the analytes. Background must 

be measured adjacent to the analyte wavelength during analysis.‖ (Kopp 1982) 

3.3.3. Measurement of Physical Properties 

Physical properties such as pH, Total Dissolved Solids (TDS), Hardness and 

alkalinity were performed by Energy Laboratories, College Station. The following 

methods were used.  

3.3.3.1. Method 4500-H
+
 pH value 

pH is defined as –log[H+] (Sorenson). As one of the most significant tests in 

water chemistry, pH is used in nearly every phase of water supply and wastewater such 

as acid-base neutralization, water softening, precipitation, coagulation, disinfection, and 

corrosion control. In addition, temperature affects the measurement of pH and it should 

be recorded.  

―The basic principle of electrometric pH measurement is determination of the 

activity of the hydrogen ions by potentiometric measurement using a standard hydrogen 

electrode and a reference electrode. The hydrogen electrode consists of a platinum 

electrode across which hydrogen gas is bubbled at a pressure of 101 kPa. Because of 

difficulty in its use and the potential for poisoning the hydrogen electrode, the glass 

electrode commonly is used. The electromotive force (emf) produced in the glass 

electrode system varies linearly with pH. This linear relationship is described by plotting 
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the measured emf against the pH of different buffers. Sample pH is determined by 

extrapolation. 

Because single ion activities such as aH+ cannot be measured, pH is defined 

operationally on a potentiometric scale. The pH measuring instrument is calibrated 

potentiometrically with an indicating (glass) electrode and a reference electrode using 

National Institute of Standards and Technology (NIST) buffers having assigned values 

so that:  

pHB= -log10aH
+ 

where: 

pHB = assigned pH of NIST buffer. 

The operational pH scale is used to measure sample pH and is 

defined as: 

        
 (     )

        
 

where: 

pHx =  potentiometrically measured sample pH, 

F = Faraday: 9.649 × 104 coulomb/mole, 

Ex = sample emf, V, 

Es = buffer emf, V, 

R = gas constant; 8.314 joule/(mole °K), and 

T = absolute temperature, °K. 
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3.3.3.2. Method 2540 Solids 

According to EPA Method 2540, solids are defined as ―matter suspended or 

dissolved in water or wastewater.‖ The amount of dissolved solids in water can affect the 

quality and usability of the water. Total Solids refers to ―the material residue left in the 

vessel after evaporation of a sample and its subsequent drying in an oven at a defined 

temperature‖. Total Solids are made up of two parts, Total Suspended Solids (TSS) and 

Total Dissolved Solids (TDS). The former represents the part of the solids that does not 

pass through the filters and the latter; the solids that pass through a filter that is ≤2.0µm 

in size.  

The temperature at which the solids are dried play a great role on results obtained 

because it affects the weight of the solids that remain. For example, weight loss due to 

evaporation of water of crystallization, gases from heat-induced chemical decomposition 

etc. or weight gain from oxidation. This project measures the Total Dissolved Solids 

(TDS) dried at 180ºC. At this temperature, most of the mechanically occluded water and 

water of crystallization will evaporate. In addition, organic matter and carbon dioxide 

may be lost. 

The sample to be analyzed is mixed well and filtered. The filtrate is then 

evaporated in a weighed dish at 180 ºC until the weight becomes constant. 

 

3.4. Total Organic Carbon (TOC) Measurement of Fluids 

Measurements for TOC were carried out using the GE Sievers InnovOx Lab and 

On-Line TOC analyzer in the Global Petroleum Research Institute (GPRI) laboratory.  
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According to the manual, this machine uses the patented ―Supercritical Water Oxidation 

(SCWO) technique‖ that heats and pressures the samples to a supercritical state in order 

to the most efficient oxidation possible which in turn results in greater TOC 

measurement accuracy and precision.  

Collected samples should be decanted or filtered of large particles then samples 

diluted as needed. For this work, the fracture fluid flowback should be diluted to a 1:40 

flowback water ratio. Water flowback samples need about a 1:5 sample flowback water 

dilution. This is done to ensure that the machine can flush itself adequately before 

running consequent samples and to prevent the internal capillary tubes from becoming 

clogged. Samples were run a minimum of four times and the values averaged after the 

outlier is eliminated. 

 
3.5. Shale-Fluid Interaction Test 

3.5.1. Sample Preparation 

Care should be taken when preparing both the shale samples and fracture fluid 

samples. Protective Equipment should be used at all times because harmful chemicals 

were used for these experiments. Ensure all chemicals are stored in appropriate 

containers and at the right temperature. The work area should be kept clean as much as 

possible to prevent accidents, but more importantly to ensure samples are not 

contaminated.  
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3.5.1.1. Shale Preparation 

When working with more than one shale sample, make sure every container is 

label to prevent mixing the samples up. The shale samples have to be ground and sifted 

to ensure uniformity of the grains. 

Equipment 

 Mechanical Shale Grinder (Recommended) 

 Mortar and Pestle (if no mechanical shale grinder is available) 

 2 micron mesh sieve 

 Googles 

 Face masks 

Procedure 

1. Make sure the equipment to be used is clean (mortar and pestle) 

2. Disaggregate shale using a hammer initially, then a mortar and pestle to grind 

particles into finer fragments.  

3. Transfer shale from mortar to sieve using a clean spoon. 

4. Use the sonic sifter to get the desired size.  

5. Put the sifted shale into a clean container (air tight preferably). 

6. Return pieces left in the sieve to the mortar and repeat steps 2 - 5.  

* The experiment requires about 30g of shale. So make sure there are adequate amounts 

of ground shale before beginning the experiment. 
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3.5.1.2. Fracture Fluid Preparation 

 Again, ensure all the apparatus used for the experiment is clean and well labelled 

before beginning.  

Equipment 

 Waring blender 

 Rheostat 

 Pipette (if pipette is unavailable, use syringes) 

 pH paper or pH meter 

 Filter paper 

 Scoop 

 100, 200 or 500mL graduated cylinder 

 2 100mL beakers 

 Top loading balance 

 

Procedure 

1. Put 1000mL of warm water in the blender. Check the pH to ensure it is between 

7 and 7.5. If the pH is greater than 7.5, add some acid until the desired pH is 

reached. 

2. Turn the waring blender on, adjusting the rheostat until you have created enough 

shear (vortex). 

3. Measure 3g of the gelling agent (J580) and add to the vortex. Allow the gel to 

completely hydrate. This will take approximately 5 minutes (or more) depending 
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on the temperature and pH of the water. The viscosity of the water should be 

consistent with honey when the gel is properly hydrated. 

4. Using the pipette, add 1.9mL of the biocide (B244B), 1.9mL of the surfactant 

(F112), 7.57mL of the Gel Stabilizer (J535L), 3.79 mL of the Clay Stabilizer 

(L071) to the blender. Allow them to mix for one minute. 

5. Measure 0.12 g of the High Temperature Breaker (J490) and 0.06 g of the Low 

Temperature Breaker (J218) separately and add them to the blender one at a time. 

Allow this to mix for one minute. Do NOT mix the two breakers in their dry 

forms. 

6. When the gel is hydrated, add 3.79 mL of the activator (U028) to the blender (be 

careful because this material can burn skin in its raw form if contacted). 

7. Shake the cross-linker (J604) vigorously and add 5.68 mL of it to the blender. 

Continue mixing the fluid for several more minutes (2-3) in the blender and the 

fluid should continue to thicken up somewhat with time.   

8. Pour some of the contents into the 100 mL beaker. Continue to pour the fluid 

from beaker to beaker to observe that it is fully cross-linked with a ―lipping‖ 

characteristic when leaning the container to its side and it should then retract 

back into the cup when the cup is tipped back.  See Figure 3.6. 
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Figure 3.6 – Fully cross-linked gel fracture fluid. Lipping characteristic is observed. 
 

 

 

 

 

 

 
 
 
* If the fluid is heated somewhat, the cross-link effect will occur quicker than just 

allowing it to happen on its own at ambient temperature. 

** If using a pipette, make sure to change the disposable head is changed before dipping 

into another chemical. 

*** Make sure all syringes are labeled for the appropriate chemical it used to measure. 

 

3.5.2. Shale-Fluid Interaction Test 

 These are the detailed steps for exposing the shale samples to the fracture fluid 

and collecting samples for analysis.  Extra caution should be taken when extracting 

samples from the oven. The samples have to be digested (procedure below) in order to 

preserve the iron in the solution. Further explanation about this process can be found in 

the results chapter. Again, all the equipment used for the experiment should be clean and 

well labelled before beginning. Plastic ware is preferable for collecting shale-fluid 
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mixture because it‘s easy to keep plastic clean and less contaminants can adhere to the 

surface. 

To determine the ratio of rock to fracture fluid volume, the procedure from 

Byrne‘s paper is used. Calculations from the paper yielded a ratio based on the porosity 

of the rock. For example, a ratio for rock-fluid volumes would be calculated as follows: 

Surface area of fracture rock: 24-60 million ft2 

Volume of fluid injected: 120,000 bbl (670,000 ft3) 

The assumption is that 70% ± 10% of fluid leaks off into the formation:  

0.7*670000 = 469000 ± 67000 ft3 

To determine the depth of invasion, the volume of the fluid injected divided 

         

           
          

Equipment 

 Roller Oven (See Figure 3.7) 

 Aging cells (see Figure 3.8) 

 Teflon liners for aging cells (See Figure 3.9) 

 Allen key 

 A pair of pliers 

 Nitrogen gas and/or vacuum pump. 

 Oven mitts 

 Water bath 

 50mL test tubes 
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 15 mL test tubes 

 Disposable pipettes 

 Concentrated nitric acid 

 
 
 
Figure 3.7 – Roller Oven 
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Figure 3.9 – Teflon liners that go in the Aging Cells. 
 

Figure 3.8 – The Aging Cells used in the experiments. 
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Procedure 

1. Make sure all the equipment and instruments are clean.  

2. Set roller oven to 250°F. 

3. While the oven is heating up, set out aging cell and their lids, Teflon liners and 

their lids. Label each set clearly to indicate which shale samples will be placed in 

it and the time frame for the experiment. Ex. Marcellus, Day 10. 

4. Create the required amount of fracture fluid. (See fracture fluid recipe above). 

5. Insert the Teflon liners into the corresponding aging cells.  

6. In 2 aging cells, measure 150 mL of fracture fluid only. Purge the air out with 

vacuum.  

7. In the remaining nine aging cells, measure and put 100g of the 2 micron sized 

shale of each shale sample in each cell. In this case, three cells had the Marcellus 

shale samples, three had the Eagle Ford samples and the last three had the 

Barnett samples. 

8. Add 150 mL of fracture fluid to the aging cells and stir/mix with a clean plastic 

spoon. For the 500 mL aging cell, a maximum of 350 mL of fluid can be used to 

run the experiment to remain in the acceptable pressure/temperature range for the 

cell. 

9. Insert Teflon piston into the aging cell. Press it down until it comes in contact 

with the fluid/rock. Screw cap on firmly. 

10. Seal the aging cell in the appropriate manner (if the lid has screws, tighten them 

with the Allen key). Make sure valves are attached to the lid of the aging cells. 
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11. Purge all the air out of the cell using a vacuum pump; then use nitrogen gas to 

remove the oxygen.   

12. Correctly attach the nitrogen gas tank‘s outlet pump to the valve of the aging cell. 

Make sure the aging cell‘s value is open then pressurize the aging cell with 

nitrogen gas to 100 psi. Close valve tightly (using pliers) before removing from 

the nitrogen connection. 

13. Submerge aging cells into a water bath to ensure there are no leaks. If any leaks 

are observed, check the aging cell lid, valves and screw to determine origin of the 

leak. Replace faulty part. 

14. Insert the aging cells in roller oven ensuring the temperature is now at 250°F. 

15. Allow mixture to sit in the oven for the desired time, setting it to roll for an hour 

about 4-6 times a day.  

16. When the time period has elapsed, remove the aging cells from the oven using 

gloves. Insert cells in a water bath to cool them down. When the cell is at room 

temperature, depressurize it by releasing the valve and the lid screws (if 

applicable). 

17. Make sure all 50 mL test tubes used to collect simulated flowback are labelled 

correctly. 

* Two separate extractions are made; the first extraction, S+A, must be done as quickly 

as possible to reduce the amount of time the sample is exposed to air. This first sample 

will be digested (see process below).  
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18. For S+A extractions, at least 20 mL of fluid is needed. Using a disposable pipette 

or Teflon syringe, remove 20 mL of the fluid and immediately transfer it the 

50mL tube labelled for that sample. Start digestion immediately. 

19. Next extract 50 mL of fluid sample put it in the50mL tube labelled for it. This 

portion should NOT be digested. It will be used for chemical analysis (via 

ICP/titration).  

20. Extract about a 20g of shale. Put it in a 15 mL test tube and seal it immediately.  

If access to an XRD machine is readily available, put about 10 g of shale on a 

sample disc and set it in the oven to be dried for at least 24 hours. These samples 

can then be used for XRD analysis. 

21. Repeat steps for other time periods. This study was done for 1, 5, 10 and 30 days 

for each shale sample. 

For the experiments performed with just water, repeat all the steps above but instead 

of the crosslinked gel fluid, substitute 150 mL of water. 

3.5.3. Sample Collection and Analysis 

 Samples were collected using clean polypropylene test tubes and disposable 

pipettes. Approximately 10 mL of each of the samples was collected separately and 

digested. This was used to test for iron. 40mL of the sample was needed for TOC testing 

and at least 10mL was required for ICP-MS and titration.  
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3.5.3.1 Sample Digestion Procedure 

This procedure was furnished by the Chemistry Department of Texas A & M University. 

It describes Method 1638 used by the US EPA (1995). 

SOP 9201:  TOTAL RECOVERABLE DIGESTION OF WATER SAMPLES 

(ALTERNATE TOTAL RECOVERABLE DIGESTION PROCEDURE FROM 

EPA METHOD 1638) 

 

1. REMEMBER whenever handling water samples for trace element analysis 

CONTAMINATION CONTROL IS CRITICAL.   Trace element levels are so 

low in most water samples that even an ―invisible‖ amount of foreign material 

can cause erroneously high data.   Most contamination comes from particulates in 

the air or on uncleaned surfaces.   To avoid introducing these contaminants into 

samples always observe the following recommendations: 

 

a. Keep the sample bottles capped and enclosed in a plastic bag (if the 

original sample came in a plastic bag) at all times except when actually 

adding or removing material from the bottle. 

b. Always wear powder-free vinyl gloves and a Tyvek (lint-less) lab coat 

when handling water samples. 

c. Do as much of the water sample handling as possible in the clean room. 

 

2. First determine if the digestion can be done using the original bottle in which the 

sample was shipped.  REMEMBER: Do not digest samples that are to be 

filtered for dissolved trace metals analysis (in rare cases, it may be necessary to 

digest samples that have already been filtered). Factors to consider in this 

decision are as follows: 

a. Can the bottle and cap withstand the 85 °C temperature? 

b. What volume of digested water is required for analysis? 
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c. Can additional QA samples (e.g. lab dups, matrix spikes, etc.) be 

prepared after the digestion of the whole sample in its original container 

or must all samples be prepared and digested separately? 

d. How critical is it to know the exact volume of the water digested? 

3. If the original sample container can be used for the digestion proceed as follows: 

a. Estimate the volume of sample in the original container and be sure there 

is enough headspace to add the digestion acids.  If more headspace is 

required, discard the appropriate sample volume after vigorous shaking. 

b. If the required detection limits for the water samples are 1 ppb or above, 

then the digestion acids can be added in the open laboratory as long as 

careful attention is given to not contaminating the samples from airborne 

fallout, etc. (see para. 1).   If the required detection limits are < 1 ppb (i.e. 

we are trying to measure actual ambient concentrations), then the acid 

addition should be done in the clean room.   

c. Add ultrapure nitric and hydrochloric acids separately in the proportions 

indicated in the table below. 

d. Tightly re-cap the sample and shake thoroughly. 

e. Place in preheated 85 ° C. oven.  The container should be placed on an 

insulating piece of material such as wood or cardboard rather than 

directly on the typical metal grating.  [In addition, every effort should be 

made to minimize the possibility of sample contamination from oven 

corrosion.  This may require that the samples are covered with a foil 

“tent”.] After the samples have reached 85 °C, heat for 2 hours  (Total 

time will be 3-6 hours depending on the sample size).  Temperature in the 

sample bottles should be monitored indirectly using an identical sample 

container filled with distilled water and a thermocouple to standardize 

heating and digestion times. 

f.  Allow sample to cool.   Prepare necessary duplicates and matrix spikes 

by shaking the digested sample and pouring into appropriate sized 
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polyethylene sample containers.  Again, if required detection limits are ≥ 

virgin bottles right out of the box.   If the required detection limits are < 1 

bottles.  Prepare the following QA samples in addition to an aliquot of 

each sample: 

 

1.  Duplicates at the rate of 5% or one per batch whichever is greater. 

2.  Matrix spikes at the rate of 5% or one per batch whichever is greater.  Note: 

Determine whether samples are to be spiked at the instrument... If they are not:  

Spike with the standard tissue spike solution at the rate of one (1) ml per one (1) 

liter of sample.   You will have to determine the volume of the matrix spike 

samples by weighing and specific gravity determination.   If < 100 ml sample 

bottles are used spike with 50 microliters.  If samples are to be spiked at machine:  

Pour off an aliquot of the digested sample into a bottle labeled as a spike and note 

that the spike must be done at the instrument. 

3.  Method blank at rate of 10% or two per batch whichever is greater.  Prepare a blank 

by adding 0.2N ultrex nitric acid to a container. 

4.  Blank spike at the rate of 5% or one per batch whichever is greater.    Spike with the 

standard tissue spike solution at the rate of one (1) ml per one (1) liter of sample.   

You will have to determine the volume of the blank spike sample by weighing and 

specific gravity determination.   If < 100 ml sample bottles are used spike with 50 

microliters. 

5.  Reference material at rate of 10% or two per batch whichever is greater.  Usually 

SLRS-3 or NIST 1643d SRM‘s will be used. 

Acid volumes to be used for digestion of water samples 

Bottle 
size 

req’d 
headspace 

HNO3 HCl 

1000 75 10 5 

500 50 5 2.5 

250 25 2.5 1.25 

125 10 1.25 0.75 
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If a mixed nitric/hydrochloric solution is used (having the composition 275 DIW, 150 

nitric, and 75 hydrochloric acid), add 1.0 ml to the 25 ml sample. 

 

4. If the original sample container cannot be used then proceed as follows: 

 

a. If the required detection limits for the water samples are 1 ppb or above, 

then the digestion acids can be added in the open laboratory as long as 

careful attention is given to not contaminating the samples from airborne 

fallout, etc. (see para. 1).   If the required detection limits are < 1 ppb (i.e. 

we are trying to measure actual ambient concentrations), then the acid 

addition should be done in the clean room.   

b. Add the following ultrapure acids separately to the original sample 

original sample container in the proportions indicated: 

i. 1.Ultrex II nitric acid at the rate of 10 ml / liter of sample. 

ii. 2.Ultrex II hydrochloric acid at the rate of 5 ml / liter of sample. 

c. Allow the sample to sit 48 hours at room temperature. 

d. Prepare necessary duplicates and matrix spikes by shaking the original 

sample in the original sample container and pouring into appropriate 

sized polyethylene sample containers.  Again, if required detection limits 

are ≥ 1 ppb then this procedure can be done carefully in the open lab 

using new, virgin bottles right out of the box.   If the required detection 

limits are < 1 ppb then the procedure should be done in the clean room 

using precleaned bottles.  Prepare the same QA samples in addition to an 

aliquot of each sample as described in para. 3f above. 

e. Heat all samples as described in para. 3d and 3e above. 
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4.  EXPERIMENTAL RESULTS 

4.1. Barnett 

4.1.1. Barnett Mineralogy Results 

Using XRD and XRF, the bulk and clay mineralogy was obtained. The results 

indicate that the Barnett outcrop used for the experiments is made up of 50% clay, 50% 

other minerals including quartz, pyrite, gypsum etc. but no carbonates (See Table 4.1) 

After exposure to the fracture fluid for 30 days, the XRD and XRF analysis were 

repeated for the shale sample. The table (Table 4.1) below also shows the new 

mineralogy obtained after 30 days compared to the original composition and the 

differences in each component. 

 
 

 

Table 4.1 — Changes in bulk and clay mineralogy of the Barnett Shale sample 
 

Mineral 
Original 

(%) 
Day 30 

(%) 
% 

change   
 Smectite 0.0 0.0 0.0   
 Chlorite 4.0 3.9 -0.1 ↓ 
 Kaolinite 5.0 5.6 0.6 ↑ 
 Illite/Mica 32.0 35.1 3.1 ↑ 
 Mx IS 9.0 21.3 12.3 ↑ 
 Calcite Tr 0 0.0   
 Dolomite 0 0 0.0   
 Siderite 0 0 0.0   
 Quartz 31 26.7 -4.3 ↓ 
 K-Feldspar 2 0.6 -1.4 ↓ 
 Plagioclase 2 0 -2.0 ↓ 
 Pyrite 1 1.3 0.3 ↑ 
 Barite 0 0 0.0   
 Fluoroapatite 11 6.1 -4.9 ↓ 
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Table 4.1 Continued 
 

Mineral 
Original 

(%) 
Day 30 

(%) 
% 

change   
  Gypsum  3 0.7 -2.3 ↓ 

Total Clays 50 64.7 14.7 ↑ 
 Carbonates 0 0 0.0   
 Other 50 35.4 -14.6 ↓ 

 

 

4.1.2.  Barnett TOC and CEC Results 

The TOC is measured in units of parts per million (ppm). The initial TOC of the rock is 

13.55%. After 30 days exposed to water, it is 11.85% and after 30 days exposed to 

fracture fluid it is 12.9%. 

 
 
 

 

 

Table 4.2 — TOC results for Barnett Shale exposed to water and fracture fluid 
respectively 

 Day 1 Day 5 Day 10 Day 30 
Water 114.5 222.88 215.6 243.20 

Fracture Fluid 4200 4935 4970 6195 
 
 
 
The CEC of the Barnett is 18.7 meq/100g and the pH is 4.1. 
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4.1.3. Barnett ICP-MS Results  

Table 4.3 — ICP-MS results for Barnett Shale sample exposed to water 
PHYSICAL PROPERTIES Day 1 Day 5 Day 10 Day 30 
pH 3.9 3.9 3.8 4 
TDS 3100 4100 4700 3300 
Hardness as CaCO3 937 1020 1130 1450 
Hardness, Calcium in CaCO3 512 555 607 688 
Hardness, Magnesium in CaCO3 425 469 521 758 
      
MAJOR IONS     
Alkalinity, Total as CaCO3 ND ND ND ND 
Bicarbonate as HCO3 ND ND ND ND 
Carbonate as CO3 ND ND ND ND 
Chloride 95 112 106 154 
Sulfate 1510 1800 1980 1330 
Calcium 205 222 243 275 
Magnesium 103 114 127 184 
Potassium 40 55 65 85 
Sodium 212 210 209 297 
Boron 3.3 8 5 11.5 
Silicon 111 133 30.6 71.8 
      
METALS, DISSOLVED     
Aluminum 4.1 32.7 19.5 17.8 
Barium 0.45 0.63 0.23 0.34 
Iron 84.7 166 194 83.2 
Strontium 0.08 0.21 0.3 0.16 

 
    

BALANCE     
Anions 34.1 33.3 44.5 32.5 
Cations 33.4 34 33.3 44 
A/C Balance -1 1.1 -14.5 14.9 
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Table 4.4 — ICP-MS results for Barnett Shale sample exposed to fracture fluid 

PHYSICAL PROPERTIES Day 1 Day 5 Day 10 Day 30 

pH 8.6 8.3 7.2 7.5 
TDS 12400 14500 16400 16600 
Hardness as CaCO3 345 372 237 222 
Hardness, Calcium in CaCO3 334 209 232 215 
Hardness, Magnesium in CaCO3 12 163 5 7 
  

  
  

 MAJOR IONS 

  
  

 Alkalinity, Total as CaCO3 1120 622 1080 801 
Bicarbonate as HCO3 468 759 1320 976 
Carbonate as CO3 440 ND ND ND 
Chloride 1310 1240 1880 1850 
Sulfate 1870 2430 1840 2140 
Calcium 134 84 93 86 
Magnesium 3 40 ND 2 
Potassium 43 42 35 44 
Sodium 2560 2420 3210 3200 
Boron 599 425 611 635 
      
METALS, DISSOLVED     
Aluminum 1.1 4 8.5 75 
Barium 0.55 0.58 0.47 0.9 
Iron 0.4 10.2 10.6 163 
Strontium 6.42 2.55 6.54 8.1 

 
    

BALANCE 

  
 

 Anions 
    Cations 98.6 98.5 116 118 

A/C Balance 120 114 145 145 
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4.2. Eagle Ford  

4.2.1. Eagle Ford Mineralogy Results 

Using XRD and XRF, the bulk and clay mineralogy was obtained. The results 

indicate that the Barnett outcrop used for the experiments is made up of 9.1% clay, 60% 

carbonates and 30.8% other minerals including quartz, pyrite, gypsum etc. After 

exposure to the fracture fluid for 30 days, the XRD and XRF analysis were repeated for 

the shale sample. The table (Table 4.5) below shows the new mineralogy from XRD 

obtained after 30 days compared to the original composition and the differences in each 

component. 

 

 

Table 4.5 — Changes in bulk and clay mineralogy of the Eagle Ford Shale sample 
 Mineral Original 

(%) 
Day 30 

(%) 
% 

change  
 Smectite 0 0 0 - 
 Chlorite 0 0 0 - 
 Kaolinite 7.2 7.3 0.1 ↑ 
 Illite/Mica 1 2.5 1.5 ↑ 
 Mx IS 0.9 3.2 2.3 ↑ 
 Calcite 60.1 63 2.9 ↑ 
 Dolomite 0 0 0 - 
 Quartz 20.2 23.6 3.4 ↑ 
 K-Feldspar 0 0 0 - 
 Plagioclase 0 0 0 - 
 Pyrite 5.2 0.1 -5.1 ↓ 
 Barite 0 0 0 - 
 Fluoroapatite 0 0 0 - 
 Gypsum 5.4 0.3 -5.1 ↓ 

Total Clays (%) 9.1 13 3.9 ↑ 
 Carb. (%) 60 63 3 ↑ 
 Other (%) 30.8 24 -6.8 ↓ 
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4.2.2. Eagle Ford TOC and CEC Results 

The initial TOC is measured in units of parts per million (ppm). The TOC of the rock is 

5.09%. After 30 days exposed to water, it is 4.43% and after 30 days exposed to fracture 

fluid it is 4.49%. 

 
 
Tables 4.6 — TOC results for Eagle Ford Shale exposed to water and fracture fluid 
respectively 
 

 

 

 
 
The CEC of the Eagle Ford is 3.3 meq/100g and the pH is 7.5. 

 

 

 

 

 

 

 

 

 

 

 

 Day 1 Day 5 Day 10 Day 30 
Water 157.15 233.24 243.6 289.10 

Fracture Fluid 4340 5145 5740 5793 
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4.2.3. Eagle Ford  ICP-MS Results 

Table 4.7 — ICP-MS results for Eagle Ford Shale sample exposed to water 
PHYSICAL PROPERTIES Day 1 Day 5 Day 10 Day 30 
pH 8.1 8 8 8 
TDS 3500 4700 3100 2800 
Hardness as CaCO3 1210 1150 1290 827 
Hardness, Calcium in CaCO3 1180 1120 1260 800 
Hardness, Magnesium in CaCO3 26 29 36 27 
       
MAJOR IONS      
Alkalinity, Total as CaCO3 170 163 460 267 
Bicarbonate as HCO3 207 199 561 325 
Carbonate as CO3 ND ND ND ND 
Chloride 122 127 125 132 
Sulfate 1270 1270 1330 982 
Calcium 472 450 504 320 
Magnesium 6 7 9 7 
Potassium 11 12 13 14 
Sodium 233 245 259 236 
Boron 0.7 1.2 1.3 1.8 
Silicon 65.5 102 42.4 47.6 
      
METALS, DISSOLVED     
Aluminum 2 6.7 1.2 0.6 
Barium 0.6 0.56 0.55 0.31 
Iron 2.4 4.1 6.8 12 
Strontium 2.81 2.31 1.86 2.18 

 
    

BALANCE     
Anions 33.3 33.3 40.5 29.7 
Cations 34.5 34 37.5 27.2 
A/C Balance 1.7 1.1 -3.9 -4.5 
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Table 4.8 — ICP-MS results for Eagle Ford Shale sample exposed to fracture fluid 

 Eagle Ford 
PHYSICAL PROPERTIES Day 1 Day 5 Day 10 Day 30 
pH 9.2 8.5 8.2 7.7 
TDS 12800 13100 14400 11600 
Hardness as CaCO3 1360 954 783 710 
Hardness, Calcium in CaCO3 1360 951 622 696 
Hardness, Magnesium in CaCO3 ND 3 161 14 
  

    MAJOR IONS 

    Alkalinity, Total as CaCO3 1260 907 436 857 
Bicarbonate as HCO3 ND 688 531 1040 
Carbonate as CO3 532 206 ND ND 
Chloride 845 908 1230 838 
Sulfate 2650 2200 3610 1640 
Calcium 545 381 249 279 
Magnesium ND ND 39 ND 
Potassium 19 20 46 25 
Sodium 2220 2140 2470 2010 
Boron 350 358 427 354 
      
METALS, DISSOLVED     
Aluminum 0.9 0.8 4.7 6.5 
Barium 0.22 0.39 0.53 0.32 
Iron 0.5 2.1 19.9 50.2 
Strontium 9.77 8.04 2.83 12.3 
 

    BALANCE 

    Anions 104 90.9 119 77.2 
Cations 124 113 124 102 
A/C Balance 8.7 10.7 2.1 13.9 
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4.3. Marcellus 

4.3.1.  Marcellus Mineralogy Results 

Using XRD and XRF, the bulk and clay mineralogy was obtained. The results 

indicate that the Barnett outcrop used for the experiments is made up of 25% clay, 13% 

carbonates and 62% other minerals including quartz, pyrite, gypsum etc.   

After exposure to the fracture fluid for 30 days, the XRD and XRF analysis were 

repeated for the shale sample. The table (Table 4.9) below shows the new mineralogy 

from XRD obtained after 30 days compared to the original composition and the 

differences in each component.  

 

 

Table 4.9 — Changes in bulk and clay mineralogy of the Marcellus Shale sample 

 
 

Original 
(%) 

Day 30 
(%) 

% 
change   

 Smectite 2.0 0.0 -2.0 ↓ 
 Chlorite Tr 0.8 0.8 ↑ 
 Kaolinite 0.0 0.0 0.0   
 Illite/Mica 16.0 23.7 7.7 ↑ 
 Mineral 7.0 7.7 0.7 ↑ 
 Calcite 12 16.7 4.7 ↑ 
 Dolomite 1 1.9 0.9 ↑ 
 Siderite 0 0 0.0   
 Quartz 41 42.2 1.2 ↑ 
 K-Feldspar 2 0 -2.0 ↓ 
 Plagioclase 6 2.5 -3.5 ↓ 
 Pyrite 12 4.5 -7.5 ↓ 
 Barite 0 0 0.0   
 Fluoroapatite 1 0 -1.0 ↓ 
  Gypsum  Tr 0 0.0   

Totals Clays 25 32.1 7.1 ↑ 
 Carb. 13 19 5.6 ↑ 
 Other 62 49.2 -12.8 ↓ 
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4.3.2. Marcellus TOC and CEC Results 

The initial TOC is measured in units of parts per million (ppm). The TOC of the rock is 

5.50%. After 30 days exposed to water, it is 4.12% and after 30 days exposed to fracture 

fluid it is 4.87%. 

 

Table 4.10 — TOC results for Marcellus Shale exposed to water and fracture fluid 
respectively 

 Day 1 Day 5 Day 10 Day 30 

Water 97.3 204.4 297.6 321.9 
Fracture Fluid 4340 5250 5530 7140 

 
 
 
The CEC of the Marcellus is 5.3 meq/100g and pH is 7.7. 
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4.3.3. Marcellus ICP-MS Results 

Table 4.11 —  ICP-MS results for Marcellus Shale sample exposed to water 
PHYSICAL PROPERTIES Day 1 Day 5 Day 10 Day 30 
pH 8.1 7.9 8.2 8.1 
TDS 2800 2500 3200 1500 
Hardness as CaCO3 318 455 623 583 
Hardness, Calcium in CaCO3 300 420 593 535 
Hardness, Magnesium in CaCO3 19 35 30 48 
      
MAJOR IONS     
Alkalinity, Total as CaCO3 180 90 267 200 
Bicarbonate as HCO3 220 110 325 244 
Carbonate as CO3 ND ND ND ND 
Chloride 87 107 155 97 
Sulfate 514 801 995 884 
Calcium 120 168 238 214 
Magnesium 5 9 7 12 
Potassium 14 16 13 13 
Sodium 220 276 352 245 
Boron 1.3 3.7 3.8 4.6 
Silicon 65.2 104 32.2 37.5 
      
METALS, DISSOLVED     
Aluminum 0.8 5.7 15.6 12.2 
Barium 0.56 0.58 1.41 0.28 
Iron 2.5 4.3 87.6 132 
Strontium 0.35 0.56 1 1.3 

 
    

BALANCE     
Anions 16.8 21.5 30.4 25.6 
Cations 16.3 21.5 28.1 22.7 
A/C Balance -1.5 0.049 -3.9 -6 
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Table 4.12 —  ICP-MS results for Marcellus Shale sample exposed to fracture fluid 

 Marcellus 
PHYSICAL PROPERTIES Day 1 Day 5 Day 10 Day 30 
pH 9.7 8.2 7.6 7.8 
TDS 10400 13100 12900 11600 
Hardness as CaCO3 221 336 117 418 
Hardness, Calcium in CaCO3 220 335 117 404 
Hardness, Magnesium in CaCO3 ND ND ND 14 
  

    MAJOR IONS 

    Alkalinity, Total as CaCO3 1760 1110 1500 879 
Bicarbonate as HCO3 ND 1350 625 1071 
Carbonate as CO3 568 ND 593 ND 
Chloride 864 931 1240 804 
Sulfate 716 1010 945 1140 
Calcium 88 134 47 162 
Magnesium ND ND ND ND 
Potassium 18 20 19 25 
Sodium 2140 2130 2630 1890 
Boron 379 406 454 364 
      
METALS, DISSOLVED     
Aluminum 3.5 2.3 6.8 4.3 
Barium 0.8 0.53 0.51 0.48 
Iron 1.9 8.4 22.5 29.8 
Strontium 3.58 6.37 3.25 4.99 
 

    BALANCE 

    Anions 75.1 71.4 85.2 111 
Cations 98.1 99.8 117 91.2 
A/C Balance 13.3 16.6 15.8 -9.7 
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4.4.   Blank Fracture Fluid 

The blank fracture fluid is used as a control in our experiment. 

 
 
Table 4.13 —  ICP-MS results for blank fracture fluid 

 Blank 
PHYSICAL PROPERTIES Day 1 Day 5 Day 10 Day 30 
pH 10.35 9.4 8.6 7.95 
TDS 12775 12825 13838 14950 
Hardness as CaCO3 81.5 52.5 40.5 30.5 
Hardness, Calcium in CaCO3 81.5 52 40.5 29.5 
Hardness, Magnesium in CaCO3 ND ND ND 1 
      
MAJOR IONS     
Alkalinity, Total as CaCO3 2420 1940 1430 608.5 
Bicarbonate as HCO3 ND ND 922.5 742 
Carbonate as CO3 740 866 404 ND 
Chloride 1090 1105 1159 903 
Sulfate 376 822.5 1605 1341.5 
Calcium 32.5 21 16.5 11.5 
Magnesium ND ND ND ND 
Potassium 14.5 15.5 19.5 12 
Sodium 2645 2665 3010 2073.5 
Boron 456.5 481 527.5 376 
      
METALS, DISSOLVED     
Aluminum ND 0.2 0.2 0.2 
Barium 0.58 0.66 0.82 0.67 
Iron ND ND ND ND 
Strontium 7.37 6.38 6.76 3.30 
     
BALANCE     
Anions 86.9 87.1 94.9 72.9 
Cations 117 117.5 132 91.1 
A/C Balance 14.75 15.05 16.85 9.6 
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Tables 4.14 —  Total Organic Carbon (TOC) results for the Blank Fracture Fluid 
 

 

 

** The TOC is measured in units of parts per million (ppm). 

 

 

 

 

 

 

 

 

 

 

 

 

Day 1 Day 5 Day 10 Day 30 

4515 3955 5355 6510 
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5. ANALYSES AND CONCLUSIONS 

Tests were performed on 3 different outcrop samples; the Barnett, Eagle Ford 

and Marcellus shales.  The results determined from the experiments with fracture fluid 

(FF) were repeated and the results averaged. However, the trends/patterns from 

rock/water experiments are preliminary observations because the tests were only carried 

out once.   

The initial values of the water concentrations (base case) for the water/rock 

experiments were obtained from a water analysis report done by the Soil, Water and 

Forage Testing Laboratory of the Department of Soil and Crop Sciences, Texas A&M 

University. Table 5.1 shows the values of the tap water obtained from the lab where the 

experiments were carried out. For the base case of the fracture fluid/rock experiments, 

the total dissolved solids (TDS) value in the fracture fluid was computed by adding the 

TDS of tap water to the quantities of the solid components and the concentration of each 

element in the liquid components of the fracture fluid recipe. For the solids, a 

straightforward conversion to parts per million (ppm) was all that was required (i.e. a 

total of 26.5 lb/mgal (3.18 g/L) from the gelling agent and the breakers were converted 

to 3183.6 ppm). For the liquid constituents, more detailed calculations were employed 

using the information obtained from the MSDS sheets, atomic weight, density and mass 

of each element. The result of said calculations yielded ~8650 ppm of dissolved solids. 

Similar calculations were utilized to calculate the concentrations of single 

elements such as iron, boron, sodium etc. Measurements such as alkalinity, bicarbonates 
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etc. were assumed to have the same values as the 24 hour broken fracture fluid that was 

analyzed in Energy laboratories (Table 5.1). 

Table 5.1 — Results for the base cases for the water and fracture fluid experiments. 
(The Tap water results are from Soil, Water and Forage Laboratory‘s Water analysis and 
the blank fracture fluid results are a combination of calculations and water analysis 
performed by Energy Laboratories, College Station.) 
 

PHYSICAL PROPERTIES 

A&M Tap 

Water 

Blank 

fracture fluid 

 

pH 7.88 10.35  
TDS 820 8650  
Hardness as CaCO3 11 81.5  
Hardness, Calcium in CaCO3  NT 81.5  
Hardness, Magnesium in CaCO3  NT ND  

 
   

MAJOR IONS    
Alkalinity, Total as CaCO3 404 2420  
Bicarbonate as HCO3 486 ND  
Carbonate as CO3 3 740  
Chloride 86 564.8  
Sulfate 25 895.5  
Calcium 3 32.5  
Magnesium 0 ND  
Potassium 3 14.5  
Sodium 212 1360.75  
Boron 0.3 256.95  

 
   

METALS, DISSOLVED    

Aluminum NT ND  
Barium 0.008 0.62  
Iron 0 ND  
Strontium NT 7.16  

 
ND: Not detected 
NT: Not tested 
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5.1. Barnett 

Figure 5.1 – Barnett mineralogy results from XRD analyses. Both before the sample is 
exposed to the fluids and after it is exposed to water and hydraulic fracturing fluid after 
30 days. 

 

 

 
5.1.1. Observation from  Mineralogy 

Increases in chlorite can be explained by the higher concentrations of magnesium 

and iron obtained from in the fluid analyses of the water flowback. Since chlorite is a 

hydrated aluminosilicate of magnesium and/or iron, the increased presence of iron and 

magnesium suggests chlorite is more reactive in water (Robinson, 2009; Gustafsson, 

2002). Changes in the amount of chlorite measured either after exposure to water or 

fracture fluid although not statistically significant (Figure 5.1a), is not fully understood 

and is worth further investigation. 
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Similarly, a decrease in the amount of kaolinite (Figure 5.1a) is observed when 

the rock is exposed to water while an increase is noted after exposure to the fracture 

fluid. The difference in these concentrations, again since not significant is not fully 

understood. However, according to Curtis and Spears (1970), an increase in kaolinite 

could result from the silification of hydrated aluminum oxides. The concentrations of 

both illite/mica and mixed illite-smectite increase after exposure to fracture fluid. 

Assumptions can be made to suggest that the chemicals in fracture fluid, in addition to 

the raised temperature, create conditions that encourage conversion of kaolin to illite. 

(Gaudette, 1966; Colten-Bradley, 1987; Lanson et al., 2001).  

Quartz is a very stable mineral at the temperatures and pressures simulated in the 

laboratory (Seki et al.1964; Goldsmith, 1982), so changes in its concentration cannot be 

fully explained as a result of chemical reactions during the experiments. However, 

reactions can occur when the rock is ground to a fine powder. The decrease observed in 

the concentration of quartz could result from the etching that occurs on quartz grains, 

affecting the XRD pattern (Brantley, et al., 1986; White & Brantley, 2003). 

Reduction in concentrations of k-feldspar and plagioclase are observed (See 

Figure 5.1). This may be because k-feldspar and plagioclase are susceptible to 

hydrolysis. In the presence of water and hydrogen, k-feldspar is chemically weathered 

and produces clay minerals, potassium ions and silicon dioxide while plagioclase 

produces kaolin and cations such as sodium, calcium and magnesium. (See equations 

below). (Lerman and Meybeck; 1988; Parsons, 1994). 

2KAlSi3O8 (feldspar)+ 2H+ + H2O→ Al2Si2O5(OH)4 (clay)+ 2K+ + 4SiO2  
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NaAlSi3O8 (plagioclase) + 4H2O + 4H+ → Na+ + Al3
+ + 3H4SiO4. 

 The Barnett shale is devoid of carbonates. 

 

5.1.2. Observation from Fluid Analyses 

Physical properties 

Fluids exposed to Barnett rock are buffered to a more acidic pH than that the original pH 

value of the base case. The pH value of the fracture fluid flowback is higher than that of 

the water because the fracture fluid contains a pH adjustor, sodium hydroxide, which 

raises the pH. The low pH of the Barnett could result from the lack of/absence of 

carbonates (calcite and dolomite)—see Figure 5.2. Alkalinity develops from water 

flowing through formations with limestone and/or marble (Mitchell et al., 2005),  so the 

lack of carbonates in the Barnett sample not only explains the acidity of the flowback 

fluids collected but also clarifies the non-detectable concentrations of alkalinity and 

bicarbonates in the flowback analyses (Lerman and Meybeck, 1988). 

As expected, TDS values are about 3 times more in fracture fluid flowback than 

just water flowback (9530 ppm vs. 3280 ppm). It is necessary to point out that the 

Energy laboratories use the evaporation method to measure TDS (EPA Method 2540). 

This means that the TDS values obtained from the water flowback would contain rock 

fragments and the value from the fracture fluid flowback could include rock fragments 

and broken polymers from the fracture fluid.  

The measured value for TDS in the water flowback over 30 days is considerably 

larger than the TDS in its base case.  For example, approximately 2500 – 4000 ppm (3 –
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5 times more) after exposure to the rock compared to 820ppm in the base case. This 

indicates that minerals and solids are dissolved from the rock by water (Figure 5.3). 

These results are expected since the minerals and rock fragments dissolved/suspended 

are not adsorbed by the rock but remain in the solution. 

In this Barnett sample, the TDS from the flowback after the fracture fluid is 

exposed to the rock (12400 ppm) for 24 hours is about the same as the TDS value 

obtained from the FF flowback base case (12775 ppm). Two different reasons exist for 

this observation. First, after 24 hours, the polymer gel is not completely broken and a 

clump of the gel is observed in the solution of the base case.  

The second reason is due to adsorption. The CEC of the clay minerals in the rock 

attract the polymer fragments and cause them to attach to rock giving a lower TDS value 

than expected whereas in the base case, the broken polymer fragments are still in the 

solution, hence they are included in the measured TDS value. Over time, however, the 

TDS value of FF flowback exposed to rock is observed to be greater than that of the base 

case (which remains relatively the same) indicating that other minerals and salts are 

being dissolved from the rock. 
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Figure 5.2 – Barnett pH results obtained from water flowback and hydraulic fracturing 
fluid flowback over a period of 30 days. 
 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – Barnett TDS results obtained from water flowback and hydraulic fracturing 
fluid flowback over a period of 30 days. 
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Cations 

 Concentrations of calcium and magnesium (Figures 5.1d & 5.1e) are higher in 

the water flowback than in the fracture fluid flowback. The lack of bicarbonates in the 

water flowback indicates that the calcium and magnesium concentrations maybe coming 

from calcium sulfate and magnesium sulfate compounds (Rodriguez-Blanco, et al., 

2008; Rodriguez-Blanco, et al., 2011). This can be backed up by the considerably high 

hardness values since hardness can be defined as the concentration of calcium and 

magnesium sulfates (Hurlbut, 1966; Hurlbut, Klein, 1985). 

The increase in potassium concentrations in both flowback cases can be 

attributed to the dissolution of potassium (an element commonly found in soil and rock 

samples). (Deer et.al, 1992). (Figure 5.1f).  Since potassium ions have a great affinity for 

clay particles, the Barnett shale (which is 50% clay) has the highest concentration of 

potassium ions in solution. Another possible source for the increased concentrations 

could occur as a result of the diagenesis of clay and reduction of plagioclase since 

potassium is a byproduct of both processes (Hanor, 2000, Hower, 1976).  
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Figure 5.4 – Barnett Calcium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 – Barnett Magnesium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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Figure 5.6 - Potassium 
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The sodium concentration does not change significantly in either case. The fact 

that weathered outcrop is used in the experiments suggests that the soluble salts/minerals 

in the rock have most likely been washed away.   

 

 

Figure 5.6 – Barnett Potassium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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Figure 5.7 – Barnett Sodium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Aluminum and iron concentrations in the water flowback are significantly greater 

than that of the fracture fluid flowback. This is due to the fact these cations are more 

soluble in acidic environments and the pH values of the water flowback are considerably 

lower than that of the fracture fluid. See Figures 5.1h & 5.1i. 
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Figure 5.8 – Barnett Iron concentrations obtained from water flowback and hydraulic 
fracturing fluid flowback over a period of 30 days.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 – Barnett Aluminum concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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Anions   

Sulfate concentrations in the water flowback are over 60 times more than that in tap 

water. Generally, sulfates are soluble and form salts with cations where present. (Bock,, 

1961).  In this case, the high concentrations of sulfates can be attributed to the solubility 

of gypsum (which is a sulfate mineral).  Decrease in the concentration of gypsum in the 

mineralogy after 30 days further supports this. For the fracture fluid flowback, additional 

concentrations of sulfates are introduced from the chemicals (breaker and gel stabilizer) 

used to create hydraulic fracturing fluids. 

In the case of chlorides, the water flowback contains about twice as much 

chloride ions as tap water. Considering that outcrops are weathered, majority of the 

salinity that would be common in the subsurface is absent, explaining the low 

concentrations. The higher concentrations of chloride in the fracture fluid flowback 

could be introduced from the chemical components (clay stabilizers) in the fluid mixture. 

Minimal amounts of boron are released from the rock when it is exposed to 

water. However, the much higher values in the fracture fluid flowback again, can be 

credited to the crosslinking agent in the fracture fluid. 
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Figure 5.10 – Barnett Chloride concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 – Barnett Sulfate concentration obtained from water flowback and hydraulic 
fracturing fluid flowback over a period of 30 days.  
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Figure 5.12 – Barnett Boron concentrations obtained from water flowback and hydraulic 
fracturing fluid flowback over a period of 30 days.  
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5.2  Eagle Ford 

Figure 5.13  – Eagle Ford mineralogy results from XRD analyses. Results before the 
sample is exposed to the fluids and after it is exposed to water and hydraulic fracturing 
fluid after 30 days. 

 

 
 

 

5.2.1. Observation from  Mineralogy 

The kaolinite concentration remains relatively the same but the concentration of 

illite/mica is double the original amount after 30 days exposure to the fracture fluid. 

Considering the chemical composition of mica, it can be inferred that the cations 

(aluminum, calcium, iron, etc.) released into the solution combine with hydroxide and 

trace amounts of other clays to simulate illite/mica (Hower, 1981). In addition, the 

crystallinity of illite/mica could result in higher peaks on XRD mimicking an increase in 

its concentration (Jaboyedoff  et al., 2001).The samples exposed to water, however, 
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showed a decrease in concentration of both types of clay after exposure for 30 days but 

there is not enough information  to explain these phenomena.  

 From the equation, CaSO4∙2H2O +H2O → Ca2+ +SO4
-, gypsum dissolves in the 

presence of water to release byproducts of calcium and sulfate (Lerman and Meybeck; 

1988). Gypsum concentrations are almost completely depleted after 30 days indicating 

that the calcium dissolved from the mineral may combine with carbonates in the fluids, 

precipitate out of solution and mimic calcite. This explanation is plausible for the 

increase in the calcite concentrations after 30 days in both flowback cases.  

Although quartz is very stable, reactions can occur when rock samples are 

ground to a fine powder and a slight increase is observed in the results after exposure to 

the fluids for 30 days. During smectite to illite conversion, silica is one of the byproducts 

released during the reactions (SEPG, 2012). Therefore, the increase in quartz 

concentrations (Figure 5.13) could be from the silica released combining with oxygen 

when contacted by air and then precipitating out of the solution.  

There are no k-feldspars or plagioclase minerals present in the Eagle Ford rock 

sample (Alder, 2009).  

 

5.2.2.  Observation from Fluid Analyses 

Physical properties 

The pH of the Eagle Ford is relatively constant (~8) during the 30 day time 

interval (rock plus water); see Figure 5.2b. The values measured in the fracture fluid 
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flowback are slightly higher due to the basic nature of the fracture fluid, also, the pH 

buffer keeps the pH elevated for at least the first 5 – 10 days.   

Again, TDS values (See Figure 5.15) are higher in fracture fluid flowback than 

just water flowback. This explained above in the Barnett section. Similarly, the 

measured value of the TDS of water flowback is considerably larger than the dissolved 

solids found in the base tap water (approximately 5 – 9 times more solids are present in 

the flowback). Again, this is indicative of the rock‘s mineral dissolution by water. 

 For the Eagle Ford rock sample exposed to fracture fluid, the TDS value 

measured  is generally lower than the other two rock samples. The CEC and the amount 

of clay present in the Eagle Ford sample is much lower than the other two rock samples 

(3.3 meq/100g vs. 18.33 meq/100g (Barnett) and 5.3meq/100g (Marcellus) —See 

Results in Chapter 4). This further supports the earlier hypothesis that the polymer 

fragments attach to the clay minerals, hence reducing measured TDS values.  
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Figure 5.14 – Eagle Ford TDS results obtained from water flowback and hydraulic 
fracturing fluid flowback over a period of 30 days. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 – Eagle Ford pH results obtained from water flowback and hydraulic 
fracturing fluid flowback over a period of 30 days. 
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Cations 

Concentration of calcium (Figure 5.16) in the Eagle Ford is much higher than the 

other two shale plays; up to twice as much as the Barnett‘s and four times that of 

Marcellus. This is understandable considering the very high amount of calcite (60%) in 

the Eagle Ford rock sample. On the other hand, the magnesium concentrations are very 

low.  The XRF data indicates a low concentration of MgO, supporting also, the very low 

clay (illite/mica) concentrations; see Figure 5.17.  

Analyses of the potassium and sodium concentrations (Figure 5.18 and 5.19) are 

very similar to the Barnett. However, lower concentrations of aluminum and iron 

(Figures 5.2h and 5.2i) are observed in the flowbacks from this rock sample (in 

comparison to the Barnett), is indicative of the much higher pH these systems have. In 

the fracture fluid flowback, concentrations of iron and aluminum exhibit a greater 

increase than water flowback after Day 10 as the pH of the former is lower after that 

time.  
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Figure 5.16 – Eagle Ford Calcium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 – Eagle Ford Magnesium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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Figure 5.18 – Eagle Ford Potassium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 – Eagle Ford Sodium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days. 
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Figure 5.20  – Eagle Ford Aluminum concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 - Eagle Ford Iron concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days. 
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Anions 

Similar results/explanation for chloride and sulfate concentrations as with the Barnett 

(See Figures 5.2j and 5.2k). This is also the case with boron concentrations (Figures 

5.2l). 

 
 
Figure 5.22 – Eagle Ford Chloride concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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Figure 5.23 –  Eagle Ford Sulfate concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24  – Eagle Ford Boron concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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5.3 Marcellus 

Figure 5.25  –  Marcellus mineralogy results from XRD analyses. Results before the 
sample is exposed to the fluids and after it is exposed to water and hydraulic fracturing 
fluid after 30 days. 

 

 
 
 

5.3.1.  Observation from Mineralogy 

This rock sample is the only one with smectite and after exposure to both fluids 

for 30 days, no smectite concentration is detected. The concentration of illite/mica 

increases after exposure to both fluids. According to Hower, et al. (1976), the most 

common diagenetic chemical change in shales is the progressive reaction of smectite to 

illite through a series of mixed illite/smectite (I/S) intermediate conversions. Water, 

silica and other ions are liberated during these reactions (Bethke and Altaner, 1986; 

Colten-Bradley, 1987). 

The concentration of the mixed illite smectite clays reduces after exposed to 

water and increases after exposure to fracture fluid. This was also observed in the Eagle 
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Ford mineralogy analysis. This suggests that the chemicals in the fracture fluid may 

retard the conversion of mixed illite smectite to illite/mica. 

 Only trace concentrations of gypsum are measured in the Marcellus. However, 

there is a small amount of dolomite and fluoroapatite present and more pyrite than the 

previous two rock samples. According to Chan and Nancollas, 1991, fluoroapatite 

dissolves at relatively low temperatures in mildly acidic to neutral pHs. Hence, calcium 

dissolved from the fluoroapatite, like that from gypsum, may once again combine with 

carbonates in the fluids and precipitate out and mimic calcite. This explanation is 

plausible for the increase in the calcite concentrations after 30 day exposure to the fluids.  

Finally, the changes to quartz, k-feldspar and plagioclase observed have been 

explained in the previous sections. 

 

5.3.2. Observation from Fluid Analyses 

Physical properties 

Similar to the Eagle Ford sample, the pH of the Marcellus is relatively constant 

(~8) when exposed to water during the 30 day time interval (Figure 5.26). The values 

measured in the fracture fluid flowback are also slightly higher due to the basic nature of 

the fracture fluid and the pH buffer.  

Similar trends as those explained in the Barnett are observed in the TDS values 

of the Marcellus.  Again, TDS value are higher in fracture fluid flowback than just water 

flowback. Water flowback values are also considerably larger than the dissolved solids 

found in the tap water ; approximately 3 – 6 times more solids are dissolved from the 
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rock by water (Fig. 5.3c). Also, the same explanations for the initial low TDS values of 

FF flowback in the Barnett and Eagle Ford hold true for the Marcellus. 

 

 
 
Figure 5.26 – Marcellus TDS results obtained from water flowback and hydraulic 
fracturing fluid flowback over a period of 30 days. 
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Figure 5.27 – Marcellus pH results obtained from water flowback and hydraulic 
fracturing fluid flowback over a period of 30 days. 
 

 

 

 

 

 

 

 

 

 

 
 
 
Cations 

 The magnesium concentrations are low when the rock is exposed to water and 

not detectable after exposure to fracture fluid. Mineralogy analysis indicates an almost 

100% increase in the dolomite after the rock sample is exposed to fracture fluid after 30 

days and a complete depletion of dolomite after exposure to water for the same time 

period. This could explain the concentrations of magnesium or lack thereof.  Also, 

calcium concentrations are lower in the fracture fluid flowback (consequently, calcite 

concentrations are higher in mineralogy) than water flowback (calcite concentrations are 

lower). See Figures 5.3d & 5.3e. 
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Analyses of the sodium concentrations are very similar to the Barnett and Eagle 

Ford (Figures 5.3f & 5.3g). Potassium concentrations in these flowbacks, however, are 

different from the two previous samples. The concentrations of potassium decrease over 

time supporting the smectite to illite conversion that was discussed above in the 

observation from mineralogy section (SEPG, 2012). Aluminum and iron concentrations 

(Figures 5.3h & 5.3i) are generally much lower in the flowbacks from this rock in 

comparison to the Barnett since these systems have a much higher pH. Furthermore, the 

concentrations of both cations increase over time. 

 

 

 
Figure 5.28 – Marcellus Magnesium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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Figure 5.29 – Marcellus Calcium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30 – Marcellus Potassium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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Figure 5.31 – Marcellus Sodium concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32 – Marcellus Aluminum concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

119 

 

0

20

40

60

80

100

120

140

Base 1 5 10 30

Ir
o

n
   

(m
g/

L)
 

Days 

Fig. 5.33 - Iron (Fe) 

Water FF

Figure 5.33 – Marcellus Iron concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 
 
 
 

 

 

Anions   

Patterns in chloride concentrations (Figure 5.34) are similar to the other 2 rock samples 

(Barnett and Eagle Ford), but the sulfate concentrations (Figure 5.35) are much lower 

than the Barnett and Eagle Ford. The absence of gypsum could possibly justify the lower 

concentrations.  

Boron concentrations are also analogous to both the Barnett and Eagle Ford (Figure 

5.36). 
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Figure 5.34 – Marcellus Chloride concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 

 

 

 

Figure 5.35 – Marcellus Sulfate concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
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Figure 5.36  – Marcellus Boron concentrations obtained from water flowback and 
hydraulic fracturing fluid flowback over a period of 30 days.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.  Total Organic Carbon (TOC) 

5.4.1.  Rock Sample Exposed to Water  

The TOC of the flowback increases (Figure 5.37) while the TOC of the rock 

decreases in all three samples after 30 days of exposure. See Figure 5.39. These results 

indicate that there may be water soluble kerogen in the rock and this organic matter is 

leached out by the water. 



 

122 

 

0

50

100

150

200

250

300

350

Barnett Eagle Ford Marcellus

TO
C

 (
p

p
m

) 

Total Organic Carbon-Water Flowback  

Day 1

Day 5

Day 10

Day 30

Figure 5.37  –  Results of the fluid analysis of the total organic carbon (TOC) after the 
rock was exposed to water over a period of 30 days.  

 

 

 

5.4.2.  Rock Sample Exposed to Fracture Fluid  

The TOC of the fracture fluid flowback also increases over time and it is about 

40 – 50 times higher than the water flowback. (Figure 5.38). Again, the broken polymers 

in the fracture fluid flowback could be responsible for these higher TOC values in the 

fracture fluid flowback. 

 Also as with the water flowback, an increase in the TOC is observed in all three 

rock samples after 30 days of exposure to fracture fluid. However, the measured value of 

TOC of the rock after being exposed to fracture fluid for 30 days is slightly higher than 
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that of the rocks exposed to water (Figure 5.39). So, although organic matter in the rock 

is still being leached out by the fluid, the high CEC of the clay particles causes the 

broken polymers attach to the rock samples thereby giving a slight increase in the TOC 

values obtained from the rock. See Figure 5.39.  

 

 
 
Figure 5.38  –  Results of the fluid analysis of the total organic carbon (TOC) after the 
rock was exposed to hydraulic fracturing fluid over a period of 30 days.  
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Figure 5.39  –  XRD analysis results of the total organic carbon (TOC) prior to exposure 
to the fluids (water and hydraulic fracturing fluids) and 30 days after exposure.  
 

 
 
 

5.5. Conclusions 

Since clays are generally less stable and more reactive than other minerals such 

as quartz, feldspar, etc. reactions occur first in the clay minerals. Silica and aluminum 

are dissolved readily from clay mineral reactions (SEPG, 2012). In general, an increase 

is noted in the concentration of illite/mica and the mixed illite/smectite minerals after 

exposure to fracture fluids for 30 days in all three rock samples. Conclusions about 

kaolinite and chlorite concentrations cannot be made from the available data. 

Increases in carbonates in also observed in both samples (Eagle Ford and 

Marcellus) suggesting calcium in the fluids combine with carbonates present and 
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precipitate out of solution, mimicking carbonates. Soluble minerals such as very fine k-

feldspar, plagioclase, pyrite, gypsum etc. are dissolved when exposed to fluids. Changes 

in concentrations of quartz are a result of the size which the grains were ground to. This 

allowed reactions (etching of sand grains) that usually would not occur to happen. 

pH and TDS follow the expected trends as in literature.  Over time, pH values 

analyzed from the FF flowback decreases over time while the TDS increases (Blauch, 

2009, LaFollette, 2010; Hayes, 2011).  Similarly, an increase in the concentrations of 

sodium and chloride are evident in this work which is consistent with all reported work 

mentioned above. 

 Iron and aluminum are dissolved out of the rock when exposed to fluids and the 

results suggest that fracture fluid create an environment that allows for greater 

dissolution of said cations. Boron in fracture fluid flowback is present mainly as a 

function of the chemicals in the fraction fluid. From the results, it is clear that hardly any 

boron is dissolved from the rocks by fluid.  

Part of the oxidative breaker (ammonium persulfate) is possibly lost to the 

breakdown of organic matter (Anderson, 1961).  This could explain the substantial 

difference noted between the TOC analysis of water and FF flowback . For example, in 

the Barnett sample after 24 hours, the measured TOC value of water flowback is 114.5 

ppm compared to 1120ppm from the fracture fluid flowback. After 30 days, the water 

flowback TOC is 243.2 ppm and the FF flowback TOC is 3115 ppm. This trend is 

similar for all tested samples. We can conclude that the presence of the breaker aids in 
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the dissolution and release of organic matter. More experimental work will be very 

helpful to completely understand this process. 

Observations from the TOC analysis of the rock samples suggest that a fraction 

of the broken polymers from the fracture fluid stay attached to the rock (about 1%) since 

the rock exposed to fracture fluid exhibits a greater amount of TOC than that exposed to 

water despite the above mentioned findings. 

 

5.6.  Recommendations 

Based on the results obtained from this work, more experiments should be 

carried out to understand the basic chemistry that occurs when shale rock samples are 

exposed to water. Armed with that knowledge, tests can then be expanded to include the 

analysis of slickwater fracture fluids chemistry.  

Also, Scanning Electron Microscope (SEM) images of the rock samples should 

be taken before and after the rocks are exposed to fluids. This procedure will aid in 

understanding the possible development of zeolites and other types of clay minerals not 

easily measured by XRD techniques.  
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APPENDIX A 

BARNETT ROCK + WATER REPORT 
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APPENDIX B 

BARNETT ROCK + FRACTURE FLUID REPORT 
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APPENDIX C 

EAGLE FORD ROCK + WATER LABORATORY REPORT 
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