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ABSTRACT 

 

The vibrational spectra and structures of several cyclic silanes and a bicyclic 

molecule have been investigated with high-level ab initio and density function theory 

(DFT) calculations. In addition, the Raman spectra of botryococcene hydrocarbons have 

been studied to help with their identification. 

Infrared and Raman spectra and ab initio and DFT calculations have been 

utilized to study 1,3-disilacyclopent-3-ene, 1,3-disilacyclopentane, 1-silacyclopent-3-

ene, silacyclopentane and their derivatives. In each case the agreement between observed 

and calculated infrared and Raman spectra was very good.  

Theoretical computations have also been used to calculate the potential energy 

surfaces (PES) for four cyclic silanes. The calculated ring-puckering potential energy 

functions of 1-silacyclopent-3-ene and 1,3-disilacyclopent-3-ene had barriers of 3.8 cm
-1

 

and 0 cm
-1

, respectively, in good agreement with experimental results. The calculated 

results for and 1,3-disilacyclopentane predicted ring-twisting barriers of 2493 cm
-1

 (vs. 

2110 cm
-1

 observed) and 1395 cm
-1

, respectively. The conformational energies for the 

bent forms were calculated to be 1467 cm
-1

 (vs. 1509 cm
-1

 observed) for the former and 

878 cm
-1

 for the latter relative to the energy of the twist minima. 
 

The vibrational assignments of 2,4,7-trioxa(3.3.0)octane have been made based 

on its infrared and Raman spectra and theoretical DFT calculations. The two ring-

puckering motions (in-phase and out-of-phase) were observed in the Raman spectrum of 

the liquid at 249 and 205 cm
-1

 and these values correspond well to the DFT values of 
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247 and 198 cm
-1

. Ab initio calculations were utilized to calculate the structures and 

conformational energies for the four energy minima and the barriers to interconversion 

and the data were utilized to generate a two-dimensional PES for the two ring-puckering 

motions.  

The Raman and infrared spectra of liquid squalene, which is a building block 

molecule for the production of essential cellular molecules, have been collected and 

assigned using DFT calculations. This was helpful for analyzing the Raman spectra of 

botryococcus braunii. DFT calculations also assisted in understanding the Raman 

spectra of the botryococcenes. The spectral region from 1600-1700 cm
-1

 shows C=C 

stretching bands specific for botryococcenes, and this is of great value for identifying the 

specific molecules. 
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CHAPTER I 

INTRODUCTION 

 

Spectroscopic methods such as infrared and Raman spectroscopy have been used 

to record and determine the vibrarional spectra, potential energy functions (PEFs), and 

structures of many molecules for a number of decades. Infrared and Raman spectroscopy 

were used in a complementary way. Infrared spectroscopy results from a dipole moment 

changes in molecules during vibrations. On the other hand, a polarizability change 

during the vibration is required for Raman spectroscopy. Far-infrared spectra were used 

to determine the ring-puckering and ring-twisting potential energy functions of small 

cyclic and bicylic molecules. Infrared and Raman spectroscopy were utilized to collect 

the vibrational spectra experimentally for 2,4,7-trioxa(3.3.0)octane, squalene and 

botryococcene hydrocarbons in this study.  

Density functional theory (DFT) calculations were carried out to determine the 

calculated vibrarional spectra and vibrational assignments for 1,3-disilacyclopent-4-ene, 

1,3-disilacyclopentane, 1-silacyclopent-3-ene, silacyclopentane, 2,4,7-

trioxa(3.3.0)octane, squalene and botryococcene hydrocarbons. High level ab initio 

computations were used to calculate the conformational structures and potential energy 

functions of the cyclic and bicyclic molecules. The potential energy surfaces (PESs) 

were calculated with the conformational energies for different values of selected 

vibrational coordinates. 
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Vibrational Spectra, Theoretical Calculations, and Potential Energy Surfaces of 

2,4,7-Triox(3.3.0)octane 

 Two-dimentional potential energy surfaces (PESs) for a number of bicyclic 

molecules have been determined in past several decades [1-3]. 2,4,7-Trioxa(3.3.0)octane 

(247TOO) is an unusual bicyclic molecule which can have the four different 

conformational forms. These are determined by the directions of the two ring- puckering 

motions. In this study the infrared and Raman spectra were collected. The vibrational 

frequencies were assigned. The computational calculations of vibrational spectra, PESs, 

and structures of four different conformational forms have been carried out using ab 

initio and DFT calculations.  

 

Spectroscopic and Theoretical Investigations of Cyclic Silanes 

For over four decades the cyclic silanes such as 1,3-disilacyclopent-4-ene, 1,3- 

disilacyclopentane, 1-silacyclopent-3-ene, and silacyclopentane have been studied to 

determine the potential energy functions and conformations. Colegrove and Laane 

reported the first preparation of 1,3-disilacyclopent-4-ene and 1,3-disilacyclopentane and 

their tetrachloro derivatives in 1991 [4]. In the previous studies of 1,3-disilacyclopent-4-

ene[4] and 1-silacyclopent-3-ene [5-8], the ring-puckering potential energy surfaces and 

the far-infrared spectra were reported. The ring-puckering and ring-twisting potential 

energy surfaces of 1,3-disilacyclopentane and silacyclopentane were determined using 

far-infrared spectra [9]. Infrared and Raman spectra of 1,3-disilacyclopent-4-ene and 

1,3-disilacyclopentane and their tetrachloro derivatives were analyzed [10]. In the 
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present work, ab initio and density function theory (DFT) calculations were used to 

calculate the vibrational spectra, potential energy functions and structures of these four 

cyclic silanes. The conformational energy was calculated point by point for the ring-

puckering and ring-twisting potential energy functions.  

 

Raman Studies of Squalene and Botryococcenes 

Squalene is a linear triterpene molecule found in many organisms throughout 

nature including mammals, plants, and bacteria [11,12]. The limited studies of Raman 

spectroscopy analysis for squalene were reported to identify squalene as a component of 

olive oil [13], to study the effect of squalene on the packing of lipid bilayers and 

monolayers [14], to analyze the degradation of squalene by bacteria [15], and to analyze 

the components of sebaceous gland exudates [16]. However, the detailed analysis and 

structure studies of squalene were not reported based on Raman spectroscopy.  In this 

study, the liquid infrared and Raman spectra of squalene were collected. The calculated 

vibrational spectra have been determined and assigned by DFT computations. 

 The use of green algae has been of interest because of the depletion of world 

petroleum reserves. The recent methods of detecting algal oil production are 

complicated, time consuming, and destructive [17]. Raman spectroscopy is one of the 

techniques to detect various molecular compounds in algae and is a valuable method for 

studying algae because Raman spectroscopy can detect algae in aqueous samples and 

differentiate algal strains. In this study, the Raman spectroscopy and DFT calculations 
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were carried out for the characterization of botryococcenes from the B race of B. 

braunii.  
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CHAPTER II 

THEORETICAL AND COMPUTATIONAL METHODS 

 

Ab initio Calculations 

 Ab initio methods involve theoretical quantum mechanical calculations and can 

be used to calculate molecular structures, energies, and vibrational spectra. These 

methods include Hartree–Fock (HF), Møller–Plesset Perturbation Theory (MPn), and 

coupled cluster theory (CC). In this study the MP2 (Moller-Plesset Perturbation Theory) 

method and cc-pVTZ basis set were used to calculate the structures, energies of the 

conformational minima, and the energy barrier between these conformations for cyclic 

silans and 247TOO. The CCSD (single and double excitations) method and cc-pVTZ 

basis set were utilized to determine the structures of 1,3-disilacyclopent-4-ene, 1,3-

disilacyclopentane, 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-ene, and 1,1,3,3-

tetrachloro-1,3-disilacyclopentane. The theoretical calculations were carried out using 

Gaussian 03 and 09 packages [18,19]. The infrared and Raman spectra were recorded 

and compared to predicted spectra from DFT calculations.  

  

Potential Energy Function  

 In 1945 R. P. Bell reported that ring-puckering four-membered ring vibration 

was expressed using a quartic oscillator function [20]. This function is shown in 

Equation (2.1). 

                                                              (2.1) 
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For a number of decades the potential energy surfaces for large-amplitude motions have 

been reported in Jaan Laane’s laboratory [1-2,21-25].  

                                                            (2.2) 

Equation (2.2) is a one dimensional potential energy function and a and b are potential 

energy parameters. x is the vibrational coordinate such as ring-bending and ring-twisting 

based on high-low frequency separation. The sign of the parameter b determines the 

geometry of the molecule. The conformation of the ring is planar when b is positive and 

has a single-minimum. If b is negative, the ring has a double-minimum. 

The vibrational frequencies of the ring-puckering and ring-twisting motions were 

calculated using the DA1OPTN program [26]. The VNCOSPX program was used to 

calculate the pseudorotational frequencies [27]. The energy levels of the 2D potential 

energy surface were carried out using the Meinander-Laane DA2OPTN4 program [28].  
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CHAPTER III 

EXPERIMENTAL METHODS 

 

Infrared and Raman spectroscopy were utilized in this work. These techniques 

will be generally described in this section. The more specific procedures used for 

individual molecules will be discussed in the related chapters. 

 

Infrared Spectra 

The liquid mid-infrared spectra of squalene and 247TOO were recorded on a 

Bruker Vertex 70 FT spectrometer equipped with a globar light source, a KBr 

beamsplitter and deuterated lanthanum triglycine sulfate (DLaTGS) detector. Two 

polished KBr windows that have 25 mm diameter and 4 mm thickness were used to hold 

the liquid samples. The spectra were collected with 0.5 cm
-1

 resolution and 512 scans. 

 

Raman Spectra 

A Jobin–Yvon U-1000 spectrometer (Instrument S. A., Edison, NJ) equipped 

with a liquid nitrogen-cooled charged-coupled device (CCD) detector was used to record 

the vapor and liquid Raman spectra. A Coherent Verdi-V10 laser operating at 532 nm 

was used and typically operated at 6 W of power for vapor-phase samples and 0.5 to 2 

W of power for liquid-phase samples. For the vapor samples, a homemade single-pass 

gas cell was used to contain 300 torr of the samples, achieved by heating the liquid 
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sample to 200°C. Spectra of the liquid samples were recorded using a quartz cuvette. 

The resolution was 0.7 cm
-1

. 
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CHAPTER IV 

VIBRATIONAL SPECTRA, THEORETICAL CALCULATIONS AND  

TWO-DIMENSIONAL POTENTIAL ENERGY SURFACE FOR  

THE RING-PUCKERING VIBRATIONS OF  

2,4,7-TRIOXA(3.3.0)OCTANE 

 

Introduction 

 For a number of decades both experimental and theoretical investigations of 

vibrational potential energy surfaces (PESs) for large-amplitude motions have been 

reported by Laane [1-3].  For several of those studies our focus has been on determining 

two-dimensional PESs for bicyclic molecules in order to better understand how the two 

rings interact. In 2004 the study of bicyclo[3.3.0]oct-1,5-ene (BCO) [29] has been 

presented and showed that its PES could be represented by a function of the  

 

form 

V = a(x1
4
 + x2

4
) + b(x1

2
 + x2

2
) + cx1

2
x2

2
 + dx1x2                            (4.1)  

where x1 and x2 are the ring-puckering coordinates of the two rings and a, b, c, and d are 

potential energy parameters which are determined so that they best fit the two different 

conformational energies and energy barriers found from ab initio calculates. The 

complex nature of the ring-puckering quantum states and the resulting spectra were 
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analyzed in detail.  More recently we have reported the two-dimensional PES for the two 

ring-puckering vibrations of 4-silaspiro(3,3)heptane (SSH) [30]. The calculated quantum 

states, wavefunctions, and predicted spectra were reported. For SSH the PES has the 

form of Eq. (4.1) but does not require the x1x2 term. Recently the PES for two out-of-

plane ring vibrations of 2-cyclopenten-1-one ethylene ketal (CEK) [31] has also been 

calculated and its energy levels and wavefunctions have been analyzed. The two-

dimensional PES for CEK has two pairs of energy minima at two different 

conformational energies. In the present study the results for 2,4,7-trioxa[3.3.0] octane 

(247TOO) have been presented. The infrared and Raman spectra have been recorded and 

compared to predicted spectra from DFT calculations. Ab initio calculations were used to 

calculate the structures and energies of the four conformational minima and the energy 

barriers between these conformations. A PES in terms of the two ring-puckering 

coordinates was then calculated and the corresponding energy levels and wavefunctions 

were determined. This molecule is of particular interest since the anomeric effect is 

expected to cause puckering of the ring with two oxygen atoms (this labeled the  ring) 

and torsional forces are expected to pucker the ring with the single oxygen (the  ring). 

 

Experimental 

 2,4,7-Trioxa(3.3.0)octane was prepared at the University of Texas-Pan American 

through a ring-closure condensation reaction of anhydroerythritol and paraformaldehyde 

[32]. At the time of the synthesis, there was no mention in the chemical literature of this 

compound having been prepared. In a 500-mL three-necked flask, anhydroerythritol 
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(Aldrich, 0.25 moles) was dissolved in 150-mL of dry benzene.  The flask was charged 

with 15-g of paraformaldehyde and a Dean-Stark trap was used to remove water over a 

four-hour period. The reaction contents were mixed in a separatory funnel with three 

successive 150-mL portions of 5% Na2CO3 and then with 150-mL portions of saturated 

NaCl and water. After overnight drying over anhydrous MgSO4, the mixture was 

concentrated via a 10-inch Vigreux column and distilled under vacuum (b.p 105
o
-115

o
). 

The 2,4,7-trioxa(3.3.0)octane was characterized by C-13 and H-1 NMR spectrometry. 

Raman spectra were recorded at right angle scattering geometry using an Jobin Yvon U-

1000 monochromator equipped with 1800 groves mm
-1

 holographic grating and CCD 

detection. The resolution was 0.7 cm
-1

. A Coherent Verdi-V10 laser operating at 532 nm 

was used and typically operated at 6 W of power for vapor-phase samples and 0.5 W of 

power for liquid-phase samples. For the vapor sample a homemade single-pass gas cell 

[33,34]  was used to contain 300 torr of the 247TOO, achieved by heating the liquid 

sample to 200°C. Spectra of the liquid were obtained of the sample contained and a 

quartz cuvette. The liquid mid-infrared spectrum of 247TOO was recorded on a Bruker 

Vertex 70 FT spectrometer equipped with a globar light source, a KBr beamsplitter and 

deuterated lanthanum triglycine sulfate (DLaTGS) detector.  

 

Theoretical Calculations 

 Density functional theory (DFT) computations for calculating the infrared and 

Raman spectra were carried out using the GAUSSIAN 09 package [19] and the 

B3LYP/cc-pVTZ method and basis set. Scaling factors of 0.985 for frequencies below 
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2000 cm
-1

 and 0.961 for the higher frequencies were used. Ab initio computations with 

MP2/cc-pVTZ were used to calculate the conformational structures and potential energy 

surface. The Meinander-Laane DA2OPTN4 program [28] was used to calculate the ring-

puckering energy levels and wavefunctions. The calculated wavefunctions were obtained 

by Meinander.  

 

Results and Discussion 

1. Structure 

Figure 1 shows the calculated structure and geometrical parameters of 247TOO 

in its lowest energy conformation which we label structure A. Both rings are puckered 

up and the dihedral angles of puckering are 41.9° for the  ring with the single oxygen 

and 36.0° for the  ring. The molecule also has three additional conformational energy 

minima resulting from whether the two rings pucker up or down relative to each other, 

and structures are labeled as B, C, and D in order of increasing energy. Figure 2 shows 

all four conformations along with their calculated relative energies and puckering angles.  

The bond distances and angles differ little from one structure to another and these are 

shown in Table 1. The puckering of the  ring results from the torsional strain between 

the CH2 group and H-C-O grouping on the bridgehead carbon atom. This can be seen in 

Figure 3 which shows that eclipsing would result if this ring were planar. The puckering 

of the  ring is brought about by the anomeric effect due to the O-C-O bonding 

configuration.  This result has been observed previously and discussed in some detail in  
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Figure 1. Geometrical parameters and structure of 247TOO in its lowest energy 

conformation. 
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Figure 2. Conformational minima and relative conformational energies (cm
-1

) of 

247TOO. 
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Table 1. Bond distances (Å ) and angles (degrees) calculated for the four conformations 

of 247TOO. 

 

 

 

 

Parameter A         B C D 

 ring     

C-C 1.524 1.519 1.527 1.532 

C-O 1.423 1.420 1.422 1.422 

C-H (CH2) 1.086/1.097 1.086/1.067 1.085/1.095 1.092/1.096 

CCO 105.6 105.5 105.0 105.5 

COC 103.9 104.4 105.0 105.0 

CCC 103.0 103.2 103.2 103.3 

HCH 109.8 109.9 109.9 109.2 

Puckering angle 41.9 41.5 40.5 41.1 

     

Bridged C-C 1.554 1.550 1.550 1.550 

C-H (CH) 1.086 1.091 1.090 1.085 

 ring     

C-O 1.421 1.423 1.423 1.421 

O-CH2 1.411 1.406 1.410 1.410 

C-H (CH2) 1.086/1.094 1.086/1.098 1.086/1.098 1.085/1.097 

CCO 104.3 104.2 104.7 104.5 

COC 105.8 105.0 104.7 104.6 

OCO 106.3 106.4 106.5 106.6 

HCH 111.5 111.2 111.1 110.8 

Puckering angle 36.0 38.4 38.7 39.1 

Conformational 

energy (cm
-1

) 
0 189 797 1130 
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Figure 3. Eclipsing of the CH2 and H-C-O groups when the  ring is planar. 
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the studies of 1,3-dioxole [35] and 1,3-benzodioxole [36]. While the puckering of each 

ring is readily understood, the reasons for the conformational energy differences 

between A, B, C, and D are less clear. 

 

2. NMR Spectra 

 The C-13 NMR spectrum shows three types of carbon atoms with chemical 

shifts at 96 ppm, 80 ppm and 73 ppm. The H-1 NMR spectrum shows five signals; 5.0 

ppm (1-proton), 4.8 ppm (1-proton), 4.7 ppm (2-protons), 4.1 (2-protons) and 3.4 ppm (2 

protons). The data support a bicyclic ring system in which the two protons of each of the 

methylene groups are not equivalent due to the conformations of the two rings and of the 

bicyclic system, in general. The chemical shifts of the methylene groups and of the 

bridgehead hydrogens are consistent with those in the literature for similar groups (1,3-

dioxolane, tetrahydrofuran, and 9-oxabicyclo(6.1.0)nonane). Significantly, each of the 

nmr peaks shows up as a closely spaced doublet, indicating that two different 

conformers have significant abundance in the liquid at room temperature. These clearly 

arise from conformers A and B which are calculated to be 181 cm
-1

 apart in 

conformational energy. Conformations C and D, which are calculated to be 745 and 

1148 cm
-1

  higher in energy, were not observed in the nmr spectra. 

 

3. Vibrational Spectra 

Figure 4 shows the infrared spectrum of liquid 247TOO and compares it to the 

calculated spectra of the four conformers.  Figure 5 compares the observed Raman  
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Figure 4. Observed and calculated infrared spectra of 247TOO for its four 

conformations. 
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Figure 5. Observed and calculated Raman spectra of 247TOO for its four conformations. 

 

 

 



 

20 

 

spectra of the vapor and liquid to the calculated spectrum. As can be seen, the observed 

spectra agree quite well with that of structure A which is the predominant one in the 

sample. This molecule has Cs symmetry with the plane of symmetry passing through the 

oxygen atom of the  ring and the CH2 group of the  ring. With Cs symmetry the 

molecule has 23A' + 19A" modes. Visualizing and assigning the vibrations are 

facilitated if we assume the molecule takes on a totally planar skeletal structure and has 

C2v symmetry.  The vibrations are then distributed as 

         Γ = 14A1 + 7A2 + 12B1 + 9B2                    (4.2)  

where the A1 and B2 are in actuality A' modes and A2 and B2 are the A" modes.   

Utilizing the C2v approximation, however, allows to distinguish the A1 and B1 in-plane 

ring modes from the A2 and B2 out-of-plane modes. Table 2 presents a listing of the 

observed infrared and Raman bands according to C2v symmetry and compares these to 

the calculated frequencies and intensities for all conformations of the molecule. The 

primary interests are the low frequency modes of 247TOO. The vibration of lowest 

frequency is the skeletal twisting motion where the two rings twist in opposite 

directions. This is calculated to be at 92 cm
-1

. The next two lowest frequency vibrations 

are the ring-puckering motions calculated to be at 198 and 247 cm
-1

 for a vapor sample.  

Although we have not observed these in the vapor spectrum, they appear in the liquid 

spectra at 205 and 249 cm
-1

. The lower frequency results from both rings puckering in 

phase (this labeled +) while the higher frequency (-) has both the  and  rings 

puckering in opposite directions. In this study the potential energy surface was focused
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Table 2. Observed and calculated infrared and Raman spectra for 247TOO. 

 

 

 

    2,4,7-trioxa(3.3.0)-octane A B C D 

  Descriptiona 
Infrared 
(liquid)b 

Raman 
(vapor)c 

Raman (liquid)c Calculatedd  Calculatedd Calculatedd Calculatedd 

A1 (A') 
  

  
  

  

  
  

  
  

  

  
  

  

  

C-H sym. Str. 2977 (m, br) 2983 (51) 2986(41, br) 2978 (41, 1101) 2926 (98, 1129) 2975 (8, 889) 3003 (36, 768) 

CH2 sym. Str. () 2858 (s, br) 2877 (16) 2861(29, br) 2866 (74, 505) 2821 (100, 882) 2833 (45, 428) 2896 (62, 931) 

CH2 sym. Str. (i.p.) () 2858 (s, br) 2850 (51) 2861 (9, br) 2850 (92, 1260) 2852 (84, 1198) 2873 (54, 1577) 2958 (20, 1278) 

CH2 deformation () 1504 (vvw) 
 

1505 (9) 1523 (1, 42) 1519 (2, 60) 1523 (2, 45) 1518 (1, 66) 

CH2 deformation (i.p.) () 1504 (vvw) 
 

1462 (12) 1481 (5, 35) 1479 (6, 41) 1495 (3, 68) 1495 (3, 43) 

CH2 wag (i.p.) () 1396 (vw) 1365 (2) 1368 (3) 1373 (0.2, 12) 1379 (1, 11) 1369 (0.2, 20) 1374 (0, 17) 

C-H wag (i.p.) 1226 (vw) 
 

1225 (10) 1216 (4, 10) 1228 (1, 14) 1233 (2, 18) 1239 (1, 20) 

Ring str. (i.p.) 1060 (s) 1063 (4) 1060 (12) 1060 (59, 32) 1076 (100, 20) 1083 (100, 28) 1089 (100, 26) 

Ring str. (i.p.) 1016 (m) 1015 (5) 1015 (22) 1002 (6, 39) 1010 (16, 41) 1021 (5, 51) 976 (4, 32) 
Ring str. (i.p.) 922 (ms) 933 (13) 922 (37) 926 (27, 38) 928 (22, 45) 956 (27, 34) 926 (12, 26) 

Ring str. (i.p.) 874 (vw) 
 

873 (2) 874 (7, 7) 888 (11, 9) 824 (10, 100) 821 (8, 100) 

Ring str. (i.p.) 827 (ms) 827 (100) 827 (100) 814 (13, 100) 816 (16, 100) 926 (8, 31) 966 (7, 23) 
Ring bending 

 
748 (5) 727 (9) 722 (0.2, 11) 747 (15, 21) 728 (1, 20) 732 (0.3, 7) 

Ring bending 719 (ms) 718 (6) 719 (5) 715 (28, 8) 701 (16, 12) 609 (2, 30) 604 (4, 27) 

A2 (A'') 
  

  
  

  

  
  

CH2 antisym. Str. (o.p.) () 2977 (m, br) 2996 (40) 2986(41, br) 2991 (18, 376) 2993 (19, 423) 2986 (27, 875) 3059 (18, 630) 

C-H wag (o.p.) 
  

 1343 (1, 7) 1347 (0, 7) 1352 (0.1, 9) 1359 (1, 0) 

CH2 twist () 1226 (vw) 
 

1225 (10) 1214 (0.1, 33) 1220 (2, 41) 1216 (1, 27) 1219 (0.1, 38) 

CH2 twist (o.p.) () 1200 (vw) 
 

1201 (8) 1202 (2, 17) 1205 (2, 32) 1202 (7, 39) 1206 (6, 30) 

CH2 rock (o.p.) () 
  

983 (1) 983 (1, 4) 1067 (19, 5) 1115 (5, 1) 1077 (21, 1) 

Ring twist 
  

375 (3) 391 (1, 2) 366 (2, 3) 395 (3, 4) 380 (0.2, 5) 

Ring twist 
  

 92 (1, 2) 98 (1, 2) 87 (0.1, 5) 35 (1, 2) 
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a i.p.-in phase; o.p.-out of phase; ring; ring 
b s-strong; m-medium; w-weak; v-very; br-broad 
c Relative intensities; br-broad 

dThe frequency and relative intensities (IR, Raman) were calculated using the B3LYP/cc-pVTZ basis set. The scaling factor 0.985 was used for frequencies below 2000 cm-1 and 0.961 for 
above. 

 

Table 2. Continued. 

 

 

    2,4,7-trioxa(3.3.0)-octane A B C D 

  Descriptiona 
Infrared 
(liquid)b 

Raman 
(vapor)c 

Raman 
(liquid)c 

Calculatedd  Calculatedd Calculatedd Calculatedd 

B1 (A'') 
  

  

  
  

  

  
  

  

  
  

  

CH2 sym. Str. (o.p.) () 2977 (m, br) 2996 (40) 2986(41, br) 2993 (6, 671) 2995 (6, 734) 2993 (29, 1919) 3062 (13, 1025) 

C-H antisym. Str. 2977 (m, br) 2983 (51) 2986(41, br) 2966 (12, 302) 2911 (23, 349) 2968 (0.1, 269) 2987 (3, 287) 

CH2 deformation (o.p.) () 1462 (w) 
 

1450 (11) 1470 (1, 51) 1467 (1, 53) 1486 (0.3, 57) 1485 (0.1, 50) 

CH2 wag () 1396 (vw) 
 

1396 (5) 1407 (6, 15) 1404 (6, 31) 1400 (3, 25) 1402 (2, 37) 

CH2 wag (o.p.) () 1324 (vw) 
 

1322 (7) 1325 (2, 18) 1329 (1, 12) 1307 (0.1, 24) 1315 (0, 24) 

C-H wag (o.p.) 1264 (w) 
 

1266 (10) 1272 (0.1, 25) 1292 (0, 14) 1280 (1, 29) 1291 (0, 5) 

Ring str. (o.p.) 1099 (vs) 1105 (2) 1099 (6) 1107 (56, 3) 1104 (84, 3) 1083 (48, 7) 1111 (16, 5) 

Ring str. (o.p.) 1076 (s) 
 

1075 (7) 1075 (24, 4) 1018 (24, 2) 1033 (14, 6) 1025 (4, 2) 

Ring str. (o.p.) 963 (vs) 
 

963 (2) 956 (100, 6) 963 (69, 4) 947 (41, 10) 927 (57, 7) 

Ring bending 874 (vw) 
 

873 (2) 876 (6, 5) 830 (1, 0.2) 728 (0, 5) 912 (5, 13) 

Ring str. (o.p.) 
  

 810 (8, 0.3) 850 (16, 5) 898 (33, 11) 712 (2, 3) 

Skeletal bend 574 (w) 
 

575 (11) 572 (4, 16) 587 (1, 21) 577 (3, 17) 588 (1, 15) 

B2 (A') 
  

  
  

  

  
  

  

  

CH2 antisym. Str. () 2977 (m, br) 2983 (44) 2986(41, br) 2967 (50, 774) 2980 (32, 830) 2979 (32, 770) 3055 (18, 807) 

CH2 antisym. Str. (i.p.) () 2858 (s, br) 2850 (51) 2861(29, br) 2845 (35, 207) 2847 (36, 214) 2868 (25, 160) 2954 (20, 112) 

C-H wag (i.p.) 
  

 1334 (3, 19) 1330 (8, 28) 1331 (3, 20) 1328 (5, 25) 

CH2 twist (i.p.) () 1264 (w) 
 

1266 (10) 1265 (12, 30) 1266 (11, 30) 1260 (5, 31) 1262 (2, 22) 

CH2 rock () 1166 (s) 
 

1168 (1) 1165 (61, 3) 1167 (66, 4) 1165 (48, 4) 1169 (25, 2) 

CH2 rock (i.p.) () 1099 (vs) 
 

1099 (6) 1112 (80, 12) 1102 (72, 13) 1041 (2, 27) 1060 (6, 10) 

Ring flap 
  

406 (5) 415 (8, 4) 393 (5, 8) 429 (7, 12) 419 (2, 14) 

Ring puckering (o.p.) 
  

249 (2) 247 (5, 6) 262 (8, 1) 257 (11, 5) 235 (8, 2) 

Ring puckering (i.p.) 
  

205 (5) 198 (7, 3) 181 (3, 4) 175 (2, 4) 193 (1, 3) 



 

23 

 

since they determine the conformations of the molecules. 

 

4. Potential Energy Surface (PES) 

 Figure 2 shows the four conformations and their relative energies calculated for 

247TOO. Each conformation can be defined in terms of its ring-puckering coordinates x1 

and x2 which are defined in Figure 6. Ab initio calculations provided the energy and x1 

and x2 coordinate values for each of the minima as well as for the four barriers between 

the minima. In addition, the central barrier value of 3141 cm
-1

 at x1 = x2 = 0 has been 

calculated. These twenty-five data points have allowed us to calculate a potential energy 

surface that fits all of the values from the ab initio computations quite closely. In 

particular, the potential energy parameters were chosen so that the data at lower energies 

would be well fit. The function determined, which at first glance looks excessively 

complicated, is 

V (cm
-1

) = 6.324x10
5
 x1

4 
+ 2.250x10

4
 x1

3 
– 6.551x10

4
 x1

2
 

         + 1.781x10
6
 x2

4 
+ 2.766x10

4
 x2

3 
– 9.851x10

4
 x2

2 

    
       + 3.223x10

5
 x1

2
 x2

2 
– 4.809x10

3
 x1

3
 x2 + 4.443x10

4
 x1 x2

3
 

          – 3.116x10
3
 x1 – 1.589x10

3
 x2 + 2.001x10

3
 x1 x2 

           + 1.309x10
5
 x1

6
 + 1.039x10

4
 x1

5
 – 9.946x10

4
 x2

6
 

          – 8.653x10
4
 x2

5
 + 9.827x10

6
 x1

4
 x2

2
 – 1.391x10

7
 x1

2
 x2

4
 

           – 3.136x10
5
 x1

3
 x2

3
 + 9.684x10

5
 x1

5
 x2 + 8.336x10

4
 x1 x2

2
 

            + 3141                (4.3) 

The puckering coordinates are in Ångstrom units. A large number of terms, above and 

beyond those used in Eq. (4.1), were required to reproduce the conformational energies 

of this highly asymmetric PES. In Eq. (4.1) no terms above fourth order were utilized, 
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Figure 6. Definition of the ring-puckering coordinates x1 and x2 for the  and β rings, 

respectively. Each coordinate is half the distance between two ring diagonals. 
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but Eq. (4.3) also uses sixth power terms and this may seem troublesome. However, 

these higher power terms have been used to tweak the PES only somewhat and have 

considerably smaller contributions than it might seem. For example, the x1
6
 term 

contributes about forty times less at the energy minima than the x1
4
 term since its 

coefficient is about eight times smaller and its value is about five times less there.  

Similarly, the x2
6
 term contributes about ninety times less than the x2

4
 term. Without the 

higher order terms, however, the overall PES would not be so well fit. Figure 7 shows 

the two-dimensional PES corresponding to Eq. (4.3). Having determined this PES, we 

were then able to use the Meinander-Laane DA2OPTN4 program [28] to calculate the 

energy levels for this surface. The calculations also require the utilization of the kinetic 

energy (reciprocal reduced mass) terms. The realistic estimates of these were made by 

choosing their values so that our program reproduces the ring-puckering frequencies 

calculated by the DFT program. The DFT frequencies are calculated based on the 

harmonic approximation and it is well known that deep within a potential well the 

harmonic oscillator approximation works quite well for predicting frequencies [37]. 

Figure 8 shows the calculated energy levels for the PES of Eq. (4.3). The lowest 

quantum states are isolated in the potential energy wells for structures A and B with 

those for the latter starting 181 cm
-1

 higher. The vibrational excited states can be 

described by the number of quanta for each puckering motion (v-, v+), and they are also 

labeled sequentially starting at 0. Thus, the lowest ring-puckering level is (0,0) or 0 and 

corresponds to structure A. The next level (0,1) or 1 corresponds to structure B and lies 

181 cm
-1

 higher in energy. In the figure the levels for structures A, B, C, and D are 
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Figure 7. PES corresponding to Eq. (4.3) for 247TOO. The conformational energies (cm
-1

) for the energy minima and barriers 

are also shown. 
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Figure 8. Energy levels calculated for the different conformations of 247TOO. The levels are labeled sequentially and also 

according to (v-, v+) format. 
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shown separately since at lower energies each level is isolated in one well or another.  

The complete listing of the lowest 100 calculated energy levels is available in the 

supplementary material. The energy levels in Figure 8 are shown so that those for + 

with the lower puckering frequency are in a vertical column. Those for - are shown 

progressing to the right. Thus, the lowest puckering transition for structure A is for + 

and is (0,0) → (0,2) or 0 → 2 for the sequential levels. For structure B the lowest 

puckering transition is (0,1) → (0,3) or 1 → 4. The corresponding transitions for the - 

puckering are (0,0) → (1,0) or 0 → 3 for structure A and (0,1) → (2,1) or 1 → 6 for 

structure B.  Most of the levels shown represent states for which both puckering motions 

have been excited at the same time. The (v-, v+) labels can become confusing since the 

lowest energy level (0,0) corresponds to structure A while the next one (0,1) corresponds 

to structure B.  Figures 9 and 10 show one-dimensional slices of the two-dimensional 

PES, and each shows the energy levels associated + or -, respectively. The former 

shows the function for the puckering of ring β along x2 while x1 is at its minimum energy 

value. Figure 10 shows the potential energy curve for the  ring as a function of x1 while 

x2 is at its minimum energy value. These provide additional perspective and help to 

understand the distribution of the quantum states between the potential wells for 

structures A, B, and C. The fourth well D and its energy levels are at much higher 

energies as can be seen in Figures 7 and 8.    

Figure 11 shows a selection of the wavefunctions calculated for the energy levels 

in the different wells of the PES. The supplementary material presents many more of 

these. The figure clearly shows that the lowest eight quantum states are clearly isolated 
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Figure 9. One-dimensional slice of the PES for 247TOO along x2 with x1 fixed at its 

energy minimum. The energy levels for + are also shown. 
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Figure 10. One-dimensional slice of the PES for 247TOO along x1 with x2 fixed at its 

energy minimum. Note that the levels (n,0) for n = 2, 4, 6, and 8 are within the B well. 

The energy levels for -  are also shown. 
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Figure 11. Selected wavefunctions calculated for the PES of 247TOO. 
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in either well A (levels 0, 2, 3, 5 and 7) or B (levels 1, 4, and 6). Level 9 is almost totally 

in B but begins to show a tiny bit of probability in well A. Higher levels begin to show 

progressively more and more probability in both wells. Yet higher levels wind up 

isolated in conformation C (18, 30, 44, 47, 50) or D (42, 57, 61). In addition to showing 

where the conformational probabilities lie, the wavefunctions also show the expected 

nodes for each of the PES wells. Level 0 is the lowest state for conformation A and level 

1 is the lowest state for conformation B. Hence, neither has a node for the wavefunction. 

Levels 2 and 4 are the first excited vibrational levels for A and B, respectively, and each 

has one node. For higher levels the number of nodes increases progressively. Careful 

inspection of the functions also shows that there is a directionality of the functions either 

along x1 or x2 and a conformation of both. These correspond as expected based on where 

the levels lie in Figure 9 and 10. For the very highest levels which lie along all but the 

central barrier (such as 174 and 199), the conformational probability corresponds to all 

of the conformations (A, B, C, and D). 

  

Conclusion 

 The 247TOO was synthesized for the first time and it analyzed its infrared and 

Raman spectra with the aid of theoretical calculations. Ab initio calculations provided 

conformational energy data for detecting the two-dimensional PES for the out-of-plane 

modes of the two rings. The nmr spectrum of the molecules showed the presence of the 

two lowest energy conformations.  The energies for the quantum states corresponding to 

each of the four potential energy wells were calculated along with their corresponding 
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wavefunctions. The results provide a comprehensive understanding of both the energy 

level patterns and the nature of the wavefunctions. 
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CHAPTER V 

VIBRATIONAL SPECTRA, THEORETICAL CALCULATIONS AND 

STRUCTURES FOR 1,3-DISILACYCLOPENT-4-ENE AND  

1,3-DISILACYCLOPENTANE AND THEIR TETRACHLORO DERIVATIVES* 

 

Introduction 

 In 1991 the first preparation of 1,3-disilacyclopent-4-ene (I) and a portion of its 

vibrational spectra have been reported by Colegrove and Laane [4]. The aim of the 

project was to determine the ring-puckering potential function for the molecule to see 

whether it had unusual rigidity due to possible pπ-dπ bonding involving the silicon atoms. 

Along the way 1,3-disilacyclopentane (II), 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-ene 

(III), and 1,1,3,3-tetrachloro-1,3-disilacyclopentane(IV) were prepared. 

 

The preparation of these molecules was difficult and tedious, requiring many 

weeks to complete, and the final products were only obtained in small quantities. Hence,  

in order to conserve the samples, the samples were not reduced by additional 

 

 

*Reprinted in part from Journal of Molecular Structure, Vol. 1049, Hye Jin Chun, Lloyd 

F. Colegrove, and Jaan Laane, Vibrational spectra, theoretical calculations, and 

structures for 1,3-disilacyclopent-4-ene and 1,3-disilacyclopentane and their tetrachloro 

derivatives, 172-176, Copyright (2013), with permission from Elsevier. 
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purification. The infrared and Raman spectra obtained therefore included bands from 

impurities [10]. In the present work the infrared and Raman spectra of these four 

molecules have been presented which were recorded more than two decades ago [10]. 

These studies were also complemented with ab initio and DFT computations which the 

structures of the molecules and their infrared and Raman spectra were carried out to 

calculate. 

 

Experimental 

 The infrared and Raman spectra were recorded on Digilab FTS-60 and Cary 82 

Raman instruments. The details, including the preparation methods for these molecules, 

have been previously described [4,10]. 

 

Computations 

 Density functional theory (DFT) computations for calculating the infrared and 

Raman spectra were carried out using the GAUSSIAN 09 package [19] and B3LYP/cc-

pVTZ computation. Scaling factors of 0.961 for frequencies above 2200 cm
-1

 and 0.985 

for the lower frequencies were used. Ab initio computations with MP2/cc-pVTZ and 

CCSD/cc-pVTZ were used to calculate the molecular structures. 

 

Calculated Structures 

 Fig. 12 shows the calculated structures for these molecules. For comparison 

purposes, Fig. 13 shows the Si-C and C-C bond distances for the related molecules 
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Figure 12. Calculated structures for 1,3-disilacyclopent-4-ene (I), 1,3-disilacyclopentane 

(II), 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-ene (III), and 1,1,3,3-tetrachloro-1,3-

disilacyclopentane (IV). 
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Figure 13. Calculated bond distances for five-membered rings containing silicon. 
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cyclopentene (V) [38], silacyclopenten-2-ene (VI) [39], 1,1-dichloro-1-silacyclopent-2-

ene (VII) [39], silacyclopentane (VIII) [40], and 1,1-dichloro-1-silacyclopentane (IX) 

[40]. The interest in molecules I and VI originated from the possibility that these may 

show pπ-dπ type π bonding between the silicon atoms and the C=C double bond. The 

determination of the ring-puckering potential energy function of I, however, showed that 

while the five-membered ring is planar, it is only slightly more rigid than would be 

expected without this type of interaction [4]. In addition, the reanalysis of the far-

infrared spectrum of VI [39] also showed that the molecule is less rigid than previous 

results [41,42]. Examination of the silicon–carbon bond distances in Figs. 12 and 13 

shows these all to be 1.892–1.898 Å for the SiH2-CH2 bonds for molecules I, II, VI, and 

VIII. For SiCl2-CH2 bonds in molecules III, IV, VII, and IX these are slightly shortened 

by about 0.02 Å to 1.872 to 1.878 Å. When the silicon atom is bonded to an olefinic 

carbon atom, the SiH2-CH= bonds are shorter (1.869–1.882 Å) by about 0.02 Å than the 

SiH2-CH2 bonds. Likewise, the SiCl2-CH= bonds are also shortened a similar amount as 

compared to the SiCl2-CH2 bonds. This does demonstrate that there is a small bond 

strengthening when the silicon atom bonds to an olefinic carbon atom. Figs. 12 and 13 

also show that there is a very small lengthening of the C=C double bond when a silicon 

atom is next to it. The figures also show that replacement of hydrogen atoms by 

chlorines on the silicon atoms has the effect of shortening the Si-C bonds in the saturated 

molecules, also by about 0.02 Å. Molecules I and III were found to be planar molecules 

in agreement with previous experimental results. Molecules II and IV were calculated to 

be twisted with twisting angles of 28.1° and 27.5°, respectively. 



 

39 

 

Vibrational Spectra 

 As mentioned previously, the scarcity of these samples did not allow them to be 

fully purified and some impurities remained in the samples and gave rise to some of the 

spectral peaks. Nonetheless, it is desirable to present the spectra of molecules I to IV. 

Figs. 14-17 show the infrared and Raman spectra for molecules I and II and Tables 3 and 

4 summarize the experimental data and compare them to the calculated values for all 

four molecules. Figs. 18 and 19 show the calculated infrared and Raman spectra for 

molecules III and IV. Their observed spectra and a listing of all the spectral bands can be 

found elsewhere [10]. Molecules I and III have C2v symmetry while II and IV have C2 

symmetry. However, the assignments for II and IV were assigned according to C2v 

symmetry since the vibrations are quite well approximated by that planar model. With 

the aid of the computed spectra the vibrational assignments of the four molecules were 

mostly quite straightforward, and the agreement between observed and calculated values 

can be seen to be good. However, the presence of some impurity bands made a few 

assignments somewhat uncertain. The biggest puzzle was, 1,3-disilacyclopent-4-ene (I), 

and its tetrachloro derivative (III), both showed two strong Raman bands in the C=C 

region. For For I these are observed at 1600 and 1512 cm
-1

 and for III they are at 1600 

and 1509 cm
-1

.  The calculated values using a scaling factor of 0.985 are 1542 for both 

molecules, so the lower Raman frequency in each case is the logical choice for the 

assignments.  Moreover, for 2-silacyclopentene (VI), the C=C stretching frequency has a 

low value of 1560 cm
-1

 [41] showing that a silicon atom next to the double bonded 

carbon lowers this vibrational frequency.  Since I has two silicon atoms next to the C=C 
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Figure 14. Observed and calculated infrared spectra of 1,3-disilacyclopent-4-ene (I). 
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Figure 15. Observed and calculated Raman spectra of 1,3-disilacyclopent-4-ene (I). 
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Figure 16. Observed and calculated infrared spectra of 1,3-disilacyclopentane (II). 
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Figure 17. Observed and calculated Raman spectra of 1,3-disilacyclopentane (II). 
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Table 3. Characteristic Infrared and Raman frequencies of 1, 3-disilacyclopent-4-ene and 1,1,3,3-tetrachloro-1,3-

disilacyclopent-4-ene. 

   1,3-Disilacyclopent-4-ene  1, 1, 3, 3-Tetrachloro-1,3-disilacyclopent-4-ene 

  Description Infrared (vapor)a Raman (liquid)b Calculatedc  Raman (liquid)b Calculatedc 

A1 ν1 C-H sym. Str. 3018 m 3017 (53) 3000 (9, 100)  3028 (100) 3025 (100) 

 ν2 CH2 sym. Str. 2905 m 2922 (113) 2945 (1, 100)  2925 (550) 2957 (38) 

 ν3 SiX2 sym. Str. (i.p.) 2155 vs 2150 (526) 2167 (4, 100)  530 (165) 533 (10) 

 ν4 C=C str. - 1512 (23) 1542 (0, 72)  1509 (94) 1542 (14) 

 ν5 CH2 deformation 1409 w 1410 (12) 1394 (2, 22)  1409 (73) 1381 (3) 

 ν6 C-H wag (i.p.) 1093 vw 1094 (17) 1099 (3, 54)  1089 (47) 1094 (7) 

 ν7 SiX2 deformation (i.p.) 948 vs 952 (18) 961 (4, 100)  140 (240) 127 (2) 

 ν8 SiX2 wag (i.p.) 868 vs 861 (2) 883 (100, 4)  170 (vw) 172 (0.4) 

 ν9 ring C-Si str. (i.p.) 666 w 672 (100) 651 (0.3, 100)  795 (7) 756 (0.7) 

 ν10 ring C-Si str. (i.p.) -  654 (26) 626 (0.03, 48)  710 (7) 692 (5) 

 ν11 ring deformation - 370 (11) 375 (0.02, 28)  299 (425) 290 (7) 

A2 ν12 SiX2 antisym. Str. (o.p.) - - 2160 (0.01, 93)  580 (52) 550 (4) 

 ν13 C-H wag (o.p.). - - 1024 (0, 0)  - 1019 (0) 

 ν14 CH2 twist - 969 (19) 977 (0, 1)  940 (vw) 941 (0.1) 

 ν15 SiX2 twist (o.p.) - - 690 (0, 4)  70 (-) 68 (0.1) 

 ν16 SiX2 rock (o.p.) - 513 (3) 537 (0, 1)  140 (240) 123 (2) 

 ν17 ring twist - 263 (7) 252 (0, 9)  380 (vw) 372 (0) 
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as-strong; m-medium; w-weak; v-very 
bRelative intensities in parentheses 
cFrequency and relative intensities (IR, Raman) were calculated using the B3LYP/cc-pVTZ basis set. The scaling factor was 0.985 for frequencies below 2200 cm-1 and 0.961 for above. 

 

 

Table 3. Continued. 

   1,3-Disilacyclopent-4-ene  1, 1, 3, 3-Tetrachloro-1,3-disilacyclopent-4-ene 

  Description Infrared (vapor)a Raman (liquid)b Calculatedc  Raman (liquid)b Calculatedc 

B1 ν18 C-H antisym. Str. (o.p.) 2951 m 2979 (135) 2978 (3, 100)  2965 (288) 3006 (56) 

 ν19 SiX2 sym. Str. (o.p.) 2146 vs - 2161 (100, 72)  - 397 (0) 

 ν20 C-H wag (o.p.) 1297 w - 1307 (3, 0)  1292 (18) 1304 (0) 

 ν21 CH2 wag 1054 s 1052 (2) 1013 (32, 11)  1002 (15) 1017 (1) 

 ν22 SiX2 deformation (o.p.) 948 vs 952 (18)  947 (68, 15)  170 (vw) 174 (0.1) 

 ν23 SiX2 wag (o.p.) 815 vw 815 (4) 804 (4, 43)  248 (49) 236 (0.5) 

 ν24 ring C-Si str. (o.p.) - 735 (11) 722 (6, 24)  801 (6) 765 (0.1) 

 ν25 ring C-Si str. (o.p.) 678 w  - 662 (7, 4)  720 (11) 699 (1) 

 ν26 ring deformation - 478 (2) 474 (6, 2)  - 521 (0) 

B2 ν27 CH2 antisym. Str. (i.p.) 2991 s 3007 (40) 2988 (1, 100)  2980 (313) 3008 (22) 

 ν28 SiX2 antisym. Str. (i.p.) 2146 vs - 2162 (93, 35)  520 (120) 521 (0) 

 ν29 C-H wag (i.p.) 780 s 791 (8) 784 (12, 20)  749 (6) 721 (0.5) 

 ν30 CH2 rock 750 s 740 (9) 752 (44, 13)  
679 (6)  

() 
684 (0.1) 

 ν31 SiX2 twist (i.p.) 550 w 565 (21) 555 (1, 67)  185 (53) 175 (2) 

 ν32 SiX2 rock (i.p.) - - 451 (3, 4)  - 242 (0) 

 ν33 ring pucker 48 w - 46 (1, 1)  - 20 (0) 
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Table 4. Characteristic Infrared and Raman frequencies of 1,3-disilacyclopentane and 1,1,3,3-tetrachloro-1,3-

disilacyclopentane. 

 
  1,3-Disilacyclopentane  

1, 1, 3, 3-Tetrachloro-1,3-
disilacyclopentane 

C2v C2 Description Infrared (vapor)a Raman (liquid)b Calculatedc  Raman (liquid)a Calculatedc 

A1 (A) ν1 ν2 CH2 sym. str. 2930 vs 2918 (40) 2942 (0.1, 44)  2950 vvs 2954 (58) 

 ν2 ν3 CH2 sym. str. (i.p.) 2870 vs 2888 (40) 2901 (3, 51)  2920 vvs 2922 (21) 

 ν3 ν4 SiX2 sym. str. (i.p.) 2145 vs 2150 (100) 2167 (100, 6)  575 s 552 (8) 

 ν4 ν6 CH2 deformation (i.p.) 1465 w 1450 (1) 1442 (2, 1)  1460 w 1435 (3) 

 ν5 ν7 CH2 deformation 1375 w 1363 (1) 1394 (2, 1)  1349 mw 1379 (3) 

 ν6 ν9 CH2 wag (i.p.) - 1072 (2) 1083 (0.1, 1)  1075 w 1084 (1) 

 ν7 ν11 SiX2  deformation (i.p.) 950 s 956 (9) 953 (3, 4)  139 vs 127 (2) 

 ν8 ν12 ring C-C str. - 947 (8) 940* (0.2, 2)  - 944 (0.01) 

 ν9 ν13 SiX2 wag (i.p.) 899 vs 890 (0.3) 893 (82, 0.1)  189 ms 176 (1) 

 ν10 ν15 ring C-Si str. (i.p.) 665* w 658 (37) 642 (1, 2)  748 w 737 (0.4) 

 ν11 ν16 ring C-Si str. (i.p.) - 615 (3) 630 (0.1, 10)  663 mw 675 (9) 

 ν12 ν19 ring deformation 330 ? 332 (3) 337 (0.01, 1)  299 vvs 285 (8) 

A2 (A) ν13 ν1 CH2 antisym. str. (o.p.) - 2920 (40) 2943 (7, 31)  - 2968 (80) 

 ν14 ν5 SiX2 antisym. str. (o.p.) - 2150 (100) 2159 (0.1, 76)  520 vvs 534 (0.1) 

 ν15 ν8 CH2 twist (o.p.) - 1238 (3) 1255 (0.4, 1)  1268 m 1253 (1) 

 ν16 ν10 CH2 twist - 991 (2) 981 (2, 0.2)  941 mw 937 (2) 

 ν17 ν14 CH2 rock (o.p.) - 829* (1) 834 (30, 0.4)  - 796 (0.2) 

 ν18 ν17 SiX2 twist (o.p.) - 580 (1) 600 (0.3, 1)  120 s 108 (1) 

 ν19 ν18 SiX2 rock (o.p.) - 510 (4) 491 (0.03, 1)  173 ms 165 (1) 

 ν20 ν20 ring twist - 188 (0.4) 167 (0.1, 0.03)  - 22 (0.04) 
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as-strong; m-medium; w-weak; v-very 
bRelative intensities in parentheses 
cFrequency and relative intensities (IR, Raman) were calculated using the B3LYP/cc-pVTZ basis set. The scaling factor was 0.985 for frequencies below 2200 cm-1 and 0.961 for above. 
*Overlapping bands 

 

Table 4. Continued. 

 
  1,3-Disilacyclopentane  

1, 1, 3, 3-Tetrachloro-1,3-
disilacyclopentane 

C2v C2 Description Infrared (vapor)a Raman (liquid)b Calculatedc  Raman (liquid)a Calculatedc 

B1 (B) ν21 ν23 CH2 sym. str. (o.p.) 2909 w 2900 (41) 2904 (9, 13)  2975 vs 2973 (56) 

 ν22 ν25 SiX2 sym. str. (o.p.) 2143 vs 2145 (100) 2157 (97, 2)  486 s 470 (0.03) 

 ν23 ν26 CH2 deformation (i.p.) 1415 w 1412 (3) 1434 (2, 3)  1405 ms 1429 (5) 

 ν24 ν27 CH2 wag (o.p.) 1258 vw 1238 (3) 1231 (1, 0.4)  1239 mw 1238 (1) 

 ν25 ν29 CH2 wag 996 s - 1009 (28, 1)  995 w 1014 (1) 

 ν26 ν30 SiX2  deformation (o.p.) 945 s - 940* (61, 1)  - 176 (1) 

 ν27 ν31 SiX2 wag (o.p.) 832 m 829* (1) 822 (17, 2)  249 ms 245 (1) 

 ν28 ν34 ring C-Si str. (o.p.) 715* m 718 (vw) 700 (16, 1)  780 mw 774 (0.4) 

 ν29 ν35 ring C-Si str. (o.p.) 665* w 658 (37) 644 (8, 1)  - 680 (0.2) 

 ν30 ν38 ring deformation ? 347 (1) 345 (1, 0.2)  370 m 360 (1) 

B2 (B) ν31 ν21 CH2 antisym. str. 2972 m 2959 (10) 2985 (1, 19)  - 3004 (31) 

 ν32 ν22 CH2 antisym. str. (i.p.) 2942 vs 2928 (40) 2949 (7, 27)  2895 vvs 2918 (100) 

 ν33 ν24 SiX2 antisym. str. (i.p.) 2152 vs 2150 (100) 2168 (7, 100)  500 s 503 (13) 

 ν34 ν28 CH2 twist (i.p.) 1038 m 1039 (1) 1046 (6, 1)  - 1034 (1) 

 ν35 ν32 CH2 rock 780 m 781 (3) 780 (19, 2)  701 s 707 (1) 

 ν36 ν33 CH2 rock (i.p.) 730* m 730 (7) 717 (5, 3)  - 602 (1) 

 ν37 ν36 SiX2 twist (i.p.) 560 w 559 (2) 552 (3, 1)  - 237 (1) 

 ν38 ν37 SiX2 rock (i.p.) - - 486 (5, 0.2)  - 243 (1) 

 ν39 ν39 ring pucker 56 - 51 (1, 0)  - 66 (0.1) 
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Figure 18. Calculated infrared and Raman spectra for 1,1,3,3-tetrachloro-1,3-

disilacyclopent-4-ene (III). 
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Figure 19. Calculated infrared and Raman spectra for 1,1,3,3-tetrachloro-1,3-

disilacyclopentane (IV). 
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bond, an even lower frequency is expected.  Unfortunately, this still leaves the band near 

1600 cm
-1

 for I and III as unidentified but must evidently be from a starting material or a 

side product from the preparation. 

 

Conclusion 

 The calculations have been provided with the computed structures of the four 

molecules discussed in this study. They also have assigned their infrared and Raman 

spectra with considerable confidence.  On the structural side the shortening of the  

SiH2-C= bond between the silicon atom and the olefinic carbon atom is notable.  

Simultaneously the C=C double bond is lengthened in these systems. These changes 

reflect the fact that the Si-C bond is strengthened when the carbon atom is part of a π 

bonded system.  This may be due to pπ-dπ interactions or to electrostatic effects. 
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CHAPTER VI 

THEORETICAL CALCULATIONS, FAR-INFRARED SPECTRA AND  

THE POTENTIAL ENERGY SURFACES OF  

THE SELECTED FOUR CYCLIC SILANES
*
 

 

Introduction 

 In many years the low-frequency vibrations and potential energy surfaces of 

small ring compounds have been investigating [1-2,21-25]. Among these are a number 

of organosilanes 

 

including silacyclobutane (I) [5,43-48], 1,3-disilacyclobutane (II) [49,50], 

silacyclopentane (III) [9,51-53], 1,3-disilacyclopentane (IV) [4,54], 1-silacyclopent-3-

ene (V) [5-8], 1-silacyclopent-2-ene (VI)  [39,41-42,55], and 1,3-disilacyclopent-4-ene 

(VII) [4,54].  Among these, molecules I, II, IV, and VII were prepared for the first time 

by Laane’s laboratories. Theoretical calculations for I [43], II [49], and VI [39] have 

been reported previously. In the present work III, IV, V, and VII were reported with a 

focus on theoretical calculations of the conformational energies of these molecules as  

 

*Reprinted in part from Chemical Physics, Vol. 431-432, Hye Jin Chun, Lloyd F. 

Colegrove, and Jaan Laane, Theoretical calculations, far-infrared spectra and the 

potential energy surfaces of four cyclic silanes, 15-19, Copyright (2014), with 

permission from Elsevier. 
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governed by their low-frequency out-of-plane vibrations. 

 

Theoretical Calculations 

 Ab initio and DFT computations were carried out using the Gaussian 09 package 

[19]. The MP2/cc-pVTZ computation was utilized to determine the molecular structures 

and the conformational energies for different values of selected vibrational coordinates.  

The B3LYP/cc-pVTZ computation was used to calculate vibrational frequencies. A 

scaling factor of 0.985 was used for the lower frequencies. The vibrational frequencies 

of the ring-puckering and ring-twisting motions were calculated using the DA1OPTN 

program [26]. The VNCOSPX program [27] was used to calculate the pseudorotational 

frequencies.  

         Fig. 20 shows the calculated structures for III and V, which they have not been 

previously reported.  III is twisted with a calculated twist angle of 27.7° while V is 

planar.  The structures for IV and VII were presented previously [54]. 

 

Experimental 

 The far-infrared spectra of 1,3-disilacyclopentane (IV) and 1,3-disilacyclopent-4-

ene (VII) were previously recorded and published in part [4].   Additional spectra were 

reported in the L. F. Colegrove Ph. D. thesis [10]. 

 

 

 



 

53 

 

 

 

 

 

  

 

 

Figure 20. Calculated structures for silacyclopentane (III) and 1-silacyclopnet-3-ene (V). 
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Results and Discussion 

1. 1-Silacyclopent-3-ene 

Previously the far-infrared spectrum of this molecule was reported and its one-

dimensional ring-puckering potential energy function was determined [8]. At that time 

the reduced mass was only estimated, but some years later, after the refining process of 

carrying out reduced mass calculations [56,57], an improved value was determined [6].  

That value of μ = 128.64 au along with the kinetic energy expansion terms, which 

account for the change in reduced mass with coordinate, will be utilized here. The 

conformational energy of V was calculated point by point using increments of Δx = 

0.008 to 0.28 Å for the puckering coordinate.  The computations predicted a barrier of 

3.8 cm
-1

 and the calculated values were fit with the potential function in Eq. (6.1): 

                   V(cm
-1

) = 2.200x10
5
x

4 
– 0.0183x10

5
x

2 
                                          (6.1)      

 This can be compared to the function in Eq. (6.2) determined from the experimental 

data [6] and the calculated reduced mass [6] 

                               V(cm
-1

) = 2.130x10
5
x

4 
– 0.0054x10

5
x

2 
                                         (6.2)                                                        

The experimentally determined function in Eq. (6.2) has a barrier of only 0.3 cm
-1

.  Thus 

both functions produce a miniscule barrier so for all practical purposes the molecule is 

planar and very nearly a pure quartic oscillator. Fig. 21 compares the two functions and 

the agreement can be seen to be excellent. Table 5 compares the observed experimental 

frequencies to those calculated from Eqs. (6.1) and (6.2). The latter fits the data very 

well since the potential energy parameters were refined to fit the spectroscopic data.  

Moreover, the excellent agreement is gratifying since it also confirms that our model  
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Figure 21. Experimental (solid line) and theoretical (dashed line) potential energy 

functions for the ring-puckering vibration of 1-silacyclopent-3-ene (V). 
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a
 V(cm

-1
) = 2.130  10

5
x

4
 - 0.0054  10

5
x

2
 (experimental fit) 

b
 V(cm

-1
) = 2.220  10

5
x

4
 - 0.0183  10

5
x

2
 (ab initio) 

 

Table 5. Observed and calculated ring-puckering transitions for 1-silacyclopent-3-ene. 

 

 

 

 

 

 Frequency, cm
-1

 

Transition obs. calc.
a
 calc.

b
 

0-1 39.2 39.1 33.3 

1-2 53.4 53.5 50.6 

2-3 61.0 61.2 58.5 

3-4 67.1 67.3 65.0 

4-5 72.0 72.3 70.2 

5-6 76.3 76.5 74.7 

6-7 80.1 80.3 78.6 

7-8 83.4 83.6 82.0 

8-9 86.6 86.6 85.1 

9-10 89.3 89.3 88.0 
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[56,57]  for calculating the reduced mass for the puckering has produced a very accurate 

value. The frequencies calculated for Eq. (6.1) agree remarkably well considering that 

the potential energy function was generated directly from the ab initio data. As seen 

from Eq. (6.1), the slightly higher (but still tiny) barrier for this function causes the 

lowest two energy levels to start to merge and produces a lower transition frequency by 

5.9 cm
-1

. All of the other frequencies from the ab initio calculation function of Eq. (6.1) 

wind up 1.3-2.9 cm
-1

 lower than those from eq. (6.2). It is remarkable that the ab initio 

prediction is as good as it is, and it is interesting that the barrier difference of 3.5 cm
-1

 

does have a significant effect on the observed values. It is also noteworthy that the 

GAUSSIAN program predicts a transition frequency from the DFT calculation of 62 cm
-1 

which is higher than the experimental value of 39.2 cm
-1

. The theoretical value is based 

on the assumption of harmonic forces but, as the result has been obtained, the puckering 

vibration is very nearly pure quartic.
 

  

2. 1,3-Disilacyclopent-4-ene 

 The calculations for VII were carried out in similar fashion as for V. The 

previously reported potential function for the puckering determined from the 

experimental data [4] was 

                                     V(cm
-1

) = 1.48x10
5
x

4 
+ 0.030x10

5
x

2 
                                       (6.3)                                                                                                     

The function determined from the ab initio calculations is 

                                      V(cm
-1

) = 1.83x10
5
x

4 
+ 0.020x10

5
x

2 
                                     (6.4)                                                                                                    

Both functions are shown in Fig. 22 and the agreement is very good.  Although the  
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Figure 22. Experimental (solid line) and theoretical (dashed line) potential energy 

functions for the ring-puckering vibration of 1,3-disilacyclopent-4-ene (VII). 
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quartic constant in Eq. (6.4) is about 20% higher than that in Eq. (6.3), this is somewhat 

compensated for by a lower quadratic constant. Table 6 also shows the comparison 

between the observed transition frequencies and those calculated from Eqs. (6.3) and 

(6.4). The generally higher values resulting from the ab initio calculation result from the  

higher quartic potential energy constant. Nonetheless, it is obvious that the theoretical 

calculation again does a remarkably good job of predicting the potential energy curve 

quite accurately. The DFT calculation predicts a puckering frequency of 46 cm
-1 

whereas 

the experimental value is 48.8 cm
-1

. 

 

3. Silacyclopentane 

The far-infrared data for this molecule were reported by Laane in 1969 [53] and a 

two-dimensional potential energy surface in terms of the ring-twisitng and ring-bending 

modes was calculated based on that data in 1990 [9]. The potential energy surface that 

best fit the data had potential energy minima corresponding to the two equivalent 

twisting structures and a barrier to planarity of 2110 cm
-1

. The bent conformations are 

saddle points on the surface and were calculated to be 601 cm
-1 

in energy below the 

planar structure. Ab initio calculations presented here confirm that the molecule is 

twisted and that the bent forms are intermediate in energy. The theoretical calculations 

predict a twisting barrier of 2493 cm
-1 

and also predict that the bent structure is a saddle 

point with an energy 1026 cm
-1 

lower than the planar structure. Fig. 23 depicts the 

energy values both from the present theoretical calculation along with those from the 
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a
 V(cm

-1
) = 1.480  10

5
x

4
 + 0.0300  10

5
x

2
 (experimental fit) 

b
 V(cm

-1
) = 1.830  10

5
x

4
 + 0.0203  10

5
x

2
 (ab initio) 

 

Table 6. Observed and calculated ring-puckering transitions for 1,3-disilacyclopent-4-

ene. 

 

 

 

 

 

 

 Frequency, cm
-1

 

Transition obs. calc.
a
 calc.

b
 

0-1 48.8 49.2 47.0 

1-2 57.6 56.9 56.7 

2-3 63.4 62.5 63.3 

3-4 68.2 67.0 68.5 

4-5 72.1 70.9 72.9 

5-6 75.2 74.3 76.8 

6-7 78.3 77.3 80.2 

7-8 80.8 80.1 83.3 

8-9 83.0 82.6 86.1 

9-10 84.8 85.0 88.8 
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Figure 23. Schematic representation of the two-dimensional potential energy surface for 

the ring-twisting and ring-bending vibrations of silacyclopentane (III). P = planar 

structure; T = twist structure (energy minimum); B = bent structure (saddle point); T = 

twisting frequency; B = bending frequency. The energy and frequency values are in cm
-1

 

are from [9]; values in parentheses are from the theoretical calculations. 
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previously published two-dimensional energy surface. The agreement is reasonably 

good, but it must be remembered that the experimental barriers are extrapolated values 

since the spectroscopic data only extend up to about 1200 cm
-1

, well below the 

calculated barrier of 2493 cm
-1

. Figure 24 presents a comparison of the potential energy 

curves along the ring-twisting coordinate from the published two-dimensional surface 

[9] and from the theoretical calculation in the present study. A comparison of the 

observed and calculated frequencies is also shown. The calculated values are from the 

one-dimensional fit of the conformational energy as a function of the twisting 

coordinate. It has the form 

                                    V(cm
-1

) = 6.01x10
4
x

4 
- 2.45x10

4
x

2 
                                           (6.5)                                                                                                     

This may be compared to the twisting part of the two-dimensional surface 

                                     V(cm
-1

) = 3.68x10
4
x

4 
- 1.76x10

4
x

2 
                                          (6.6) 

The barrier values differ by about 15% and the ab initio value to be somewhat more 

reliable than the extrapolated experimental one. The frequencies calculated from the 

theoretical calculation differ from the observed by about 20%, but that is not 

unreasonable considering that they were calculated using a one-dimensional potential 

energy approximation. The DFT calculation predicts a twisting frequency of 251 cm
-1

 

while the experimental value is 265 cm
-1

. In the initial study of silacyclopentane (III) a 

one-dimensional hindered pseudorotational model was used to calculate the energy 

levels [27].  Using a barrier to pseudorotation of 1362 cm
-1

 and a pseudorotational 

constant of B = 1.97 cm
-1

, the experimental data were fit very well.  In this present work 

the barrier to pseudorotation (the energy of the bent conformation relative to the twist  
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Figure 24. Comparison of the one-dimensional potential energy curves from the 

experimental (solid line) and theoretical (dashed line) determinations for the ring 

twisting of silacyclopentane (III).  Values in parentheses are calculated from Eq (6.5). 
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structure) was calculated to be 1467 cm
-1

. The energy level calculation has been repeated 

[27] using the potential energy function 

                                          V (cm
-1

) = ½V2(1-cos2φ)                                       (6.7)  

with V = 1467 cm
-1

 and B = 1.828 cm
-1

.  The result is shown in Fig. 25.  It can be seen 

that the energy differences calculated for the ab initio function differ remarkably little 

from those observed. 

 

4. 1,3-Disilacyclopentane 

 The experimental data for this molecule were obtained along with that for the 

unsaturated 1,3-disilacyclopent-4-ene (VII) [4,10]. Fig. 26 shows the far-infrared bands 

between 53 and 58 cm
-1

 observed for the pseudorotational (bending) motion. The spectra 

for the twisting vibration were not observed. Fig. 27 shows a schematic diagram for the 

calculated conformational energies of this molecule and Fig. 28 presents the potential 

energy curve calculated along the ring-twisting coordinate. Fig. 28 also shows the 

calculated ring-twisting frequencies. In order to represent the bending (hindered 

pseudorotation) the potential function was utilized again in Eq. (6.6). Values of V = 878 

cm
-1

 and B = 0.968 cm
-1

 were selected in order to fit the lowest energy transition 

observed in the spectra. Fig. 29 shows this function along with the observed and 

calculated transition frequencies. The agreement here again is remarkably good.  

The lower barrier to planarity of this molecule (1395 cm
-1

) as compared to 

silacyclopentane (III) results from the presence of a second silicon atom in the five-  
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Figure 25. Calculated one-dimensional potential energy curve (dashed line) for the 

hindered pseudorotation (bending) of silacyclopentane (III) compared to the 

experimental curve (solid line) [53]. All of the energy levels shown are nearly doubly 

degenerate. The potential function is periodic in terms of the pseudorotational angle  

and repeats itself after one circle (2 radians).  
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Figure 26. Far-infrared spectrum showing the ring-bending (pseudorotational) 

transitions of 1,3-disilacyclopentane [4,10]. 
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Figure 27. Schematic representation of the two-dimensional potential energy surface for 

the ring-twisting and ring-bending vibrations of 1,3-disilacyclopentane (IV). The 

observed frequency values in cm
-1

 are from [10] ; values in parentheses are from the 

theoretical calculations. 
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Figure 28. One-dimensional potential energy curve calculated for the ring-twisting 

vibration of 1,3-disilacyclopentane (IV). 
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Figure 29. One-dimensional potential energy curve calculated for the hindered 

pseudorotational (ring-bending) vibration of 1,3-disilacyclopentane (IV). 
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membered ring. The CSiC angle bending force constants are smaller than the 

corresponding CCC angle bending constants and these results in lower angle strain.  For 

the same reason the barrier to pseudorotation, as shown in Fig. 29, is lower (878 cm
-1

) 

than for III (1362  cm
-1

). 

 

Conclusion 

 Utilizing ab initio computations the one-dimensional ring-puckering potential 

energy functions for 1-silacyclopent-3-ene (V) and 1,3-disilacyclopent-4-ene (VII) were 

generated and compared to the experimentally determined functions. The remarkably 

good agreement not only demonstrates how well present day ab initio calculations 

perform in calculating conformational energies, but it also provides strong support for 

the validity of previous determinations of potential energy functions from spectroscopic 

data. The conformational energies for silacyclopentane (III) and 1,3-disilacyclopentane 

(IV) have also been calculated and one-dimensional ring-twisting and pseudorotational 

potential energy functions has been generated. These again provided excellent 

confirmation of the experimental functions. It is most gratifying to see that experimental 

analyses and theoretical computations are in such good agreement. 
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CHAPTER VII 

VIBRATIONAL SPECTRA AND DFT CALCULATION FOR                    

SQUALENE
*
 

 

Introduction 

 Squalene (Fig. 30) is a linear triterpene molecule found in many organisms 

throughout nature including mammals, plants, and bacteria [11,12]. Organisms primarily 

utilize squalene by cyclizing it to form a vast array of triterpenes that have functions 

ranging from regulating membrane fluidity to protection against pathogens [58,59]. 

Squalene also exists in organisms in its native, linear state and can be found in high 

quantities in the oils of human skin, shark liver, and the oil of several plants such as 

olive [60-63]. Studies have suggested that squalene has many bioactive properties 

including antioxidant and anticancer activities, and these properties may contribute to 

the health benefits of the Mediterranean diet [11,64-65]. This diet is high in squalene-

rich olive oil and has a low occurrence of associated cancers [66-68]. Squalene has also 

been shown to reduce the prevalence of colon cancer resulting from chemical exposure 

and breast cancer caused by DNA damage [11,69-71]. Interestingly, sharks are known to 

not have cancer and this is thought to be related to the high level of squalene in sharks 

[72]. Squalene is also used for pharmaceutical and commercial purposes such as an 

 

 

*Reprinted in part from Journal of Molecular Structure, Vol. 1032, Hye Jin Chun, Taylor 

L. Weiss, Timothy P. Devarenne, and Jaan Laane, Vibrational spectra and DFT 

calculations of squalene, 203-206, Copyright (2013), with permission from Elsevier. 
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Figure 30. The structure of squalene. The calculated bond distances (Å) are shown in 

the center. 
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emulsifier for drug delivery, an adjuvant for vaccine delivery, a moisturizer in cosmetics,  

a surfactant in dry cleaning, and as a vulcanization test molecule [73]. 

The biosynthesis of squalene utilizes the isoprenoid pathway [59]. Two 

molecules of the C15 isoprenoid intermediate farnesyl diphosphate (FPP) are condensed 

to form C30 squalene [74,75]. This reaction is carried out by the enzyme squalene 

synthase, requires the reducing agent NADPH, and results in the connection of two 

farnesyl moieties from C1 of one farnesyl molecule to C1 of the second farnesyl 

molecule [74,75]. This results in the linear structure of squalene with six carbon–carbon 

double bonds (C=C) in the backbone at carbons 2, 6, 10, 14, 18, and 22 (Fig. 30) that 

should provide unique qualities for spectroscopic studies such as Raman spectroscopy. 

Reports of Raman spectroscopy analysis for squalene are limited and have been used to 

identify squalene as a component of olive oil [13], to study the effect of squalene on the 

packing of lipid bilayers and monolayers [14], to analyze the degradation of squalene by 

bacteria [15], and to analyze the components of sebaceous gland exudates [16]. 

However, there are no reported studies on a detailed analysis of the squalene structure 

based on Raman spectroscopy. Given the importance of this molecule, a molecular-level 

understanding of the squalene structure will be invaluable in advancing squalene 

functional studies. 

Raman spectroscopy was utilized to study the structure of hydrocarbons called 

botryococcenes from the green microalgae Botryococcus braunii that are structurally and 

biosynthetically (produced from two farnesyl molecules) similar to squalene [76]. 

Botryococcenes have several Raman active C=C bonds including backbone C=C bonds 



 

74 

 

similar to squalene, a central branch C=C bond, and exomethylene groups [77]. Coupled 

with DFT calculations, Raman spectroscopy was able to distinguish between these 

different C=C groups; backbone C=C frequencies in the 1663–1679 cm
-1

 range, 

exomethylene frequencies in the 1646–1655 cm
-1

 range, and branch C=C frequencies in 

the 1642–1649 cm
-1

 range [76]. While squalene is similar to botryococcenes, it only 

contains backbone C=C groups. Here a similar analysis of squalene was reported using 

Raman spectroscopy as well as infrared spectroscopy to assign frequencies to all bonds 

in squalene. In addition, density functional theory calculations were carried out to 

complement the experimental work. 

 

Experimental Methods 

 A Jobin–Yvon U-1000 spectrometer equipped with a liquid nitrogen-cooled 

charged-coupled device (CCD) detector was used to record the liquid Raman spectrum 

of squalene. A Coherent Verdi-V10 laser operating at 532 nm was used and typically 

operated at 2 Watts of power. The liquid mid-infrared spectrum of squalene was 

recorded on a Bruker Vertex 70 FT spectrometer equipped with a globar light source, a 

KBr beamsplitter and deuterated lanthanum triglycine sulfate (DLaTGS) detector. 

Liquid squalene was obtained from Sigma. 

 

Theoretical Calculations 

 Density functional theory (DFT) computations were carried out using the 

B3LYP/cc-pvtz. Squalene can possess a variety of conformations resulting from internal 
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rotations about their single C-C bonds. Hence, calculations were carried out on several 

conformations of the molecule but only minor effects on the vibrational frequencies and 

bond distances were found. A scaling factor of 0.969 was used for all frequencies above 

1350 cm
-1

 [76] and 0.980 was used for the lower frequencies. 

 

Results and Discussion 

 The calculated structure of squalene (Fig. 30-center) has bond distances in line 

with expectations. The C=C bond distances are all 1.336 ± 0.001 Å, the C-C single 

bonds not adjacent to the double bonded carbon atoms are 1.546 ± 0.001 Å, and single 

bonds adjacent to the double bonded carbon atoms are 1.506 ± 0.006 Å. Figs. 31 and 32 

show the experimental liquid-phase Raman and infrared spectra of squalene, 

respectively. The computed spectra for the individual (vapor phase) molecule are also 

shown in the figures. The frequency agreement between the experimental and calculated 

spectra is in good agreement, but as is commonly the case, the intensities are in 

somewhat poorer agreement. Since squalene has 234 vibrational frequencies, both the C-

H stretching region (50 vibrations in the 2800–3100 cm
-1

 region) and the fingerprint 

region (184 vibrations below 1700 cm
-1

) are extremely rich with spectral bands. This 

makes it very difficult to do a one to one correlation between observed and calculated 

spectral bands. The calculated frequencies are expected to be within 10 cm
-1

 of the 

observed frequencies, but since there are often several observed spectral bands within 10 

cm
-1

 of each other, identifying which correlates to which calculated vibrational 

frequency is challenging. Table 7 presents a summary of the different types of 
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Figure 31. The experimental and calculated Raman spectra of liquid squalene. 
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Figure 32. The experimental and calculated infrared spectra of liquid squalene.
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Table 7. Vibrations of squalene. 

Symbol Vibration 
Wavenumber 

Range (cm
-1

)  

Number of 

vibrations 

  (CH3)  CH3 stretch  2911-3024 24  

  (CH3)  CH3 deformation  1254-1460 24  

  (CH3)  CH3 rock    943-1228 16  

  (CH3)  CH3 torsion    110-209 8  

  (CH2)  CH2 stretch  2904-2988 20  

  (CH2)  CH2 deformation  1428-1460 10  

 ω (CH2)  CH2 wag  1207-1333 10  

 t (CH2)  CH2 twist  1012-1291 10  

  (CH2)  CH2 rock    730-1207 10  

  (CH)  =C-H stretch  3006-3012 6  

 ωi (CH)  CH wag (in-plane)  1012-1379 6  

 ωo (CH)  CH wag (out-of-plane)    778-1000 6  

  (C=C)  C=C stretch  1668-1679 6  

  (C-C)  C-C stretch    730-1379 23  

 b (C-C-C)  C-C-C angle bend    169-503 6  

 b (C=C-C)  C=C-C angle bend    319-592 12  

 ωo (C-CH3)  C-CH3 wag (out-of-plane)    452-503 8  

 ωi (C-CH3)  C-CH3 wag (in-plane)    353-434 8  

  (C-C)  Internal rotation (C-C)/Skeletal        4-209 15  

  (C=C)  Internal rotation (C=C)/Skeletal      42-209 6  
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vibrational modes in squalene and the frequency ranges calculated (and observed) for 

each. Table 8 presents a condensed version showing the observed and calculated 

frequencies and intensities along with approximate descriptions for the more prominent 

infrared and Raman bands. It should be noted that for a large molecule such as this, the 

vibrational modes, especially for the low-frequency ones, will be highly coupled. Hence 

a single vibrational frequency, for example, may have contributions from C-C 

stretchings, CH wags, CH3 rocks, as well as skeletal motions. Some of the vibrational 

descriptions based on the symbolic representation in Table 7 are shown in Figs. 31 and 

32. 

In the previous study of the botryococcene hydrocarbons each bond of the C=C 

stretching modes resulted in an individual vibrational frequency for the most part 

without significant interactions with the stretching of other bonds [76]. The backbone, 

exomethylene, and branch C=C frequencies were found in different frequency ranges. 

For squalene the two C=C groups near the ends of the molecule (carbons 2 and 22) 

vibrate together (symmetrically or antisymmetrically) giving rise to two almost identical 

frequencies of 1679 cm
-1

 (Table 7). The other four C=C bonds (carbons 6, 10, 14, 18) 

vibrate simultaneously with differences in the phase of the motions, and these produce 

four frequencies in the 1668–1672 cm
-1

 range (Table 7). For the botryococcene 

molecules the backbone C=C vibrations were found previously in the 1663–1679 cm
-1

 

range [76], so the results here for squalene are consistent with that of botryococcenes. In 

addition to the intense C=C stretching bands in the Raman several other bands were 

obtained with strong intensity. These include all types of C-H stretchings, the CH3 
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Table 8. Observed and calculated frequencies for the more prominent bends of squalene. 

 

Frequency (cm
-1

) 
 

Approximate assignment 

  
Calculated Infrared Raman   

  2960 (97, 0) 2967 vvs       
 
 (CH3),  (CH2) 

 

2919 (1613, 4) 2920 vvs 

  
  

 (CH3),  (CH2) 

 

2919 (5, 117) 

  

2913 vvs 
  

 (CH3),  (CH2) 

 

1670 (13, 0) 1668 m 
    

 (C=C) 

 

1668 (0, 100) 
  

1668 vvs 
  

 (C=C) 

 

1458 (0, 12) 
  

1451 ms 
  

 (CH3),  (CH2) 

 

1446 (58, 0) 1449 vs 
    

 (CH3),  (CH2) 

 

1379 (42, 0) 1383 s 
    

 (CH3), i (CH),  (C-C) 

 

1379 (0, 12) 
  

1382 s 
  

 (CH3), i (CH),  (C-C) 

 

1333 (0, 29) 
  

1330 ms 
  

 (CH3),  (CH2), i (CH)  

 

1287 (0, 15) 
  

1281 m 
  

 (CH3), t (CH2)  

 

1218 (52, 0) 1224 m 
    

 (CH3), t (CH2),  (C-C)  

 

1157 (31, 0) 1151 m 
    

 (CH3), t (CH2), i (CH) 

 

1112 (100, 0) 1108 ms 
    

 (CH3),  (C-C) 

 

1000 (0, 12) 
  

1003 ms 
  

 (CH3), o (CH) 

 

998 (27, 0) 
 984 m (broad)     

(CH3),  (C-C) 

 

975 (26, 0) 
    

(CH3),  (C-C) 

 

872 (35, 0) 

836 ms (broad) 

    
o (CH),  (C-C) 

 

850 (16, 0) 
    

o (CH),  (C-C) 

 

796 (23, 0) 
    

o (CH),  (C-C) 

 

795 (0, 3) 
  

804 m 
  

o (CH), (C-C)

  452 (0, 3)     454 m     o (C-CH3), b (C=C-C) 
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deformations (CH3), CH2 deformations (CH2), CH2 wags (CH2), CH2 twists t(CH2), 

and CH3 rocks (CH3). In the infrared spectrum the C=C stretching bands are 

considerably less intense, but other bands show up with strong intensity including the    

C-H stretches, the CH3 deformations (CH3), CH2 twists t(CH2), and CH3 rocks (CH3). 

 

Conclusion 

 Squalene is an important molecule because of its bioactive properties and 

similarity to the botryococcenes which were studied previously [76]. Raman and infrared 

spectra have been recorded and DFT computations were used to predict its structure and 

vibrational frequency. The match between theory and experiment is excellent. However, 

the molecule has 234 vibrations, many of which are strongly coupled, so the descriptions 

are very complicated. 
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CHAPTER VIII 

RAMAN SPECTRA, DFT CACULATIONS FOR  

BOTRYOCOCCENE HYDROCARBONS
*
 

 

Introduction 

  In recent years, interest in the use of green algae as a source of biofuels has 

increased due to the need to reduce greenhouse gas emissions and because of depletion 

of world petroleum reserves [78]. For algae to produce enough oil to meet fuel demands, 

large scale culturing of algae and monitoring of oil production will be required [79,80]. 

Current analysis methods for monitoring algal oil production are complicated, time 

consuming, and destructive [17]. Thus, a simple and nondestructive method for 

analyzing algal oil composition is required. Raman spectroscopy is such a technique and 

has been used to detect various molecular compounds in algae, both to detect algae in 

aqueous samples and differentiate algal strains, as well as analyze cellular triglycerides, 

the most common oil used to produce biofuels [17, 81-91]. Thus, Raman spectroscopy 

has great potential to be used as an in vivo detection method for monitoring algal oil 

production. Spectroscopic characterization, other than NMR, of B. braunii hydrocarbons 

is extremely limited [89,92]. A characteristic absorbance spectroscopy peak for 

 

*Reprinted in part with permission from “Raman Spectroscopy Analysis of 

botryococcene Hydrocarbons from the Green Microalga Botryococcus braunii” by T. L. 

Weiss, H. J. Chun, S. Okada, S. Vitha, A. Holzenburg, J. Laane, and T. P. Devarenne, 

2010, The Journal of Biological Chemistry, 285, 32458-32466, Copyright 2010 by the 

American Society for Biochemistry and Molecular Biology. 
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botryococcenes has been identified and used to quantitate extracted botryococcenes [92]. 

Raman spectroscopy has been used on the A race of B. braunii to determine that the 

intracellular oils were similar in nature to the extracellular oils and that these oils were 

composed of long chain unsaturated hydrocarbons [89]. Specific characterization by 

Raman spectroscopy for any hydrocarbon from any race of B. braunii has not been 

reported. There are several C=C bonds in botryococcenes that offer unique Raman 

spectroscopic parameters. For example, the methylation of C30–C33 botryococcenes 

causes C=C bond migration from the backbone endo positions to exo positions at 

carbons 2, 6, 17, and 21 to create exomethylene groups (Fig. 33A). Additionally, the C-

26 branch C=C bond is specific to botryococcenes. In our present work we report 

characterization of botryococcenes from the B race of B. braunii by Raman spectroscopy 

and density function theory (DFT) calculations. Additionally, an identified Raman 

signature specific to methylated botryococcenes is used to map in vivo the presence of 

methylated botryococcenes in the extracellular matrix and intracellular oil bodies of live 

B. braunii cells. 

 

Experimental 

 Algal culturing and purification of B. branii botryococcenes were performed in 

laboratory of Professor Timothy P. Devarenne at Department of Biochemistry and 

Biophysics, Texas A&M University [76]. Raman spectra of squalene (Sigma), total 

hydrocarbon extract, and purified botryococcenes (all in n-hexane in a cuvette) were 

obtained at Horiba Scientific (Edison, NJ) using a Horiba LabRam HR 800 confocal 
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Figure 33. Microscopy and Nile red fluorescent imaging of B. braunii cells. (A) 

Structure of squalene and C30 botryococcene. (B) Transmitted light microscope image of 

a partial B. braunii colony showing pressure-released extracellular oil and intracellular 

oil bodies. A B. braunii colony was subjected to pressure by gently pressing on the 

microscope slide coverslip to expel extracellular oil. Inset shows full B. braunii colony 

for perspective. (C) Colony of B. braunii treated with Nile red and viewed by fluorescent 

microscopy to visualize the Nile red-stained extracellular matrix oil and intracellular oil 

bodies. 
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Raman microscope. The Raman spectrometer was coupled with an Olympus BXFM 

microscope and a liquid nitrogen-cooled CCD detector. The excitation source was a 

Melles-Griot laser operating at 532 nm with a 50-mW output.Asinglet lens with a focal 

length of 40 mm was used.  

Raman spectra of squalene and total hydrocarbon extract contained in vials 

without solvent were also recorded with a Jobin Yvon U-1000 double monochromator 

equipped with a liquid nitrogen-cooled CCD detector. A Coherent Verdi-V10 laser 

operating at 532 nm was utilized as the excitation source. A laser power of 2W was 

typically used.  

In vivo mapping by confocal Raman spectroscopy was performed at the Texas 

A&M Materials Characterization Facility using a Horiba Jobin Yvon LabRam IR system 

with an Olympus BX 41 microscope, a computer-controlled motorized XYZ microscope 

stage, and a liquid nitrogen-cooled CCD detector. Excitation was achieved with a laser 

wave length of 785nm at an output power of 20 mW. The spectral maps were recorded 

with a spectral resolution of 0.16 cm
-1 

and pixel size of 275 nm with an UPLSAPO 

100/1.4 oil immersion objective. Cell photobleaching was performed using a 785-nm 

laser at a power output of 500 mW for at least 20 min. Exact treatment times varied as 

colony cell density varied across the z axis. Photobleaching was considered complete 

once the high, consistent Raman intensities across 200–3600 cm
-1

 sufficiently decreased 

to allow detection of individual Raman peaks and remained static for at least 2 min. All 

Raman spectra were collected in 60-cm
-1

 segments with accumulation times of 1000 s 

for each segment. Spectra were analyzed for peak wavenumbers using the LabSpec 
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program version 5.58.25. Microscopy imaging of B. braunii colonies was performed at 

the Texas A&M University Microscopy and Imaging Center using Nile red fluorescence 

[76]. 

 

Computations 

 DFT computations used the GAUSSIAN 03 package [18] to obtain the calculated 

vibrational frequencies and produce the computed Raman spectra. The B3LYP method 

and cc-pvtz basis set were utilized. Ascaling factor of 0.969 was applied for all 

frequencies. This value was selected to match the observed and calculated (C=C) 

stretching frequencies for squalene. The computed spectra were produced using the 

GaussView 4.1.2 program. 

  

Results and Discussion 

1. B. braunii System Description 

Most of the botryococcene oils in B. braunii, B race, localize to the colony 

extracellular matrix and can be released with pressure (Fig. 33B). It is well known that 

B. braunii cells also have many intracellular oil bodies [93-95] (Fig. 33B). Both these 

intracellular oil bodies and extracellular oil can be visualized using the fluorescent 

neutral lipid-binding stain Nile red, which has been used to accurately estimate B. 

braunii oil content in high-throughput screens [96-98]. Therefore, fluorescence 

microscopy and Nile red were used to show the dramatic accumulation of lipids in the 

extracellular matrix and in intracellular oil bodies (Fig. 33C). The lipid composition of 
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these intracellular oil bodies is not known. Thus, the ultimate goal of this research is to 

use Raman microspectroscopy to detect specific botryococcenes within both the 

extracellular matrix and intracellular oil drops to begin to address the questions about oil 

body botryococcene composition. Experimental Raman Spectra for Botryococcenes—To 

identify spectral regions that contain specificity for botryococcenes, Raman 

spectroscopy was applied to squalene and a total hydrocarbon extract from B. braunii, B 

race. Because a total hydrocarbon extract from some strains of the B race of B. braunii, 

for example the Berkeley strain, is predominantly C34 botryococcene [99-101] and GC 

analysis of our total hydrocarbon extract shows C34 botryococcene as the primary 

constituent, comparison of the two spectra should indicate regions unique to 

botryococcenes. Analysis of the two spectra indicates similarity across the spectra (Fig. 

34A). However, the 1600–1700 cm
-1

 region for (C=C) stretching vibration were 

focused because the main structural differences between squalene and botryococcenes 

are in the C=C bond positions. Within this spectral region, squalene generated a single 

band at 1668 cm
-1

, and the total hydrocarbon fraction generated two bands at 1647 and 

1660 cm
-1

 (Fig. 34A). Because the subsequent analysis of purified botryococcenes was 

performed in n-hexane (see below), the Raman spectra of squalene and total 

hydrocarbons dissolved in n-hexane were analyzed to ensure that the difference in the 

(C=C) stretching region could still be detected in the presence of n-hexane. As shown 

in Fig. 34B, the 1600–1700 cm
-1

 (C=C) stretching region of the spectra of squalene and 

total hydrocarbons in n-hexane shows the same bands seen without n-hexane. However,  
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Figure 34. Raman spectra of squalene and total B. braunii hydrocarbons. (A) Total 

hydrocarbon extract from B. braunii and a pure, commercially   acquired squalene 

sample were analyzed by Raman spectroscopy without solvent. (B) B. braunii total 

hydrocarbon extract and squalene samples from A were solubilized in n-hexane and 

analyzed by Raman spectroscopy. Analysis was performed on n-hexane alone to 

determine background Raman spectra. 
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the absolute intensity was reduced (compare Fig. 34, A and B). The n-hexane sample 

alone did not show these bands (Fig. 34B). 

Next, Raman spectroscopy was applied to individual botryococcenes in n-hexane 

and analyzed in the (C=C) stretching region to identify bands specific to the 

botryococcene structure. Pure C30, C32, C33, and C34 botryococcenes were obtained by 

HPLC, purity was confirmed by GC, molecular weights were confirmed by fast atom 

bombardment-mass spectroscopy, and structures were confirmed by NMR as described 

previously [99-101]. It was unable to purify sufficient quantities of C31 botryococcene to 

analyze by Raman spectroscopy at this time and obtained a minimal amount of C30 

botryococcene (3 mg) to obtain a workable spectrum. Analysis of all bands identified in 

the 1600–1700 cm
-1

 (C=C) stretching region of the spectra reveals that several of the 

bands can be assigned to specific bonds in botryococcenes. The band at 1647 cm
-1

 is 

seen in all botryococcenes except for C30 botryococcene (Fig. 35A). Because C30 

botryococcene lacks methylation (Fig. 3B), this suggests that the 1647 cm
-1

 band 

originates from the exomethylene groups generated by the methylation events. The band 

at 1670 cm
-1

 is seen in all botryococcenes except C34 botryococcene (Fig. 35A), 

suggesting that it is due to the backbone C=C bonds because C34 botryococcene lacks 

these bonds with the exception of the C=C bond at C-11 (Fig. 35B). Moreover, squalene, 

which possesses only backbone C=C bonds, has its maximum Raman intensity at 1668 

cm
-1

. The bands at 1639 and 1660 cm
-1

 are more difficult to assign but appear to be 

specific to botryococcenes compared with squalene (Fig. 35A). These bands may be 

assigned to the branch C=C bond at C-26 and the backbone C=C bond at C-11 that are 
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Figure 35. Raman spectra for the ν(C=C) stretching region of botryococcenes. (A) 

Indicated botryococcenes were purified from B. braunii by HPLC, dissolved in n-

hexane, analyzed by Raman spectroscopy within the ν(C=C) stretching region, and 

compared with that for the total hydrocarbon extract and pure squalene. (B) Structures of 

squalene and individual botryococcenes analyzed in A. 
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found in all botryococcenes (Fig. 35B). This is supported by the spectrum for C34 

botryococcene (Fig. 35A), which has three major bands: 1647 cm
-1

 attributed to the 

exomethylene groups and 1639 and 1660 cm
-1

, which should be attributable to the C-26 

and C-11 C=C bonds because they are the only other C=C bonds in C34 botryococcene  

(Fig. 35B). However, with these data it is difficult to assign these bands specifically to 

the C-26 or C-11 C=C bonds. A band at 1634 cm
-1

 is also seen in C32 botryococcene 

which cannot be assigned at this time.  

These Raman spectra indicate that the Raman bands of 1639, 1647, 1660, and 

1670 cm
-1

 are specific for botryococcenes. Thus, these bands could be used as diagnostic 

signatures for the presence of botryococcenes. The 1647 cm
-1

 band is specifically due to 

botryococcene methylation and may offer the best signature for Raman spectroscopy 

identification of botryococcenes. This is supported by the Raman spectrum of the total 

hydrocarbon fraction, which shows the four main botryococcene-specific bands of 1639, 

1647, 1660, and 1670 cm
-1 

(Fig. 35A). Additionally, the band of 1634 cm
-1 

was detected 

in the total hydrocarbon fraction that was seen for C32 botryococcene and cannot be 

assigned at this time (Fig. 35A). It should be noted that the increasing methylation of 

botryococcenes is correlated with a shift of bands in the Raman spectra from the 1670 

cm
-1

 region toward the 1647 cm
-1

 region (Fig. 35A).  

 

2. Computational Analysis 

Because sufficient quantities of C31 botryococcene for Raman spectroscopy were 

not obtained and specifically the 1639 and 1660 cm
-1

 bands (Fig. 35A) could not be 
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assigned, DFT calculations were used to address these problems as well as support the 

experimental spectra interpretation. There are two isomers of C31 botryococcene (Fig. 

36A) that have been identified in B. braunii by methylation of C30 botryococcene at C-3 

or C-20 [100-102] (Fig. 36A). The full Raman spectra from the calculations indicate that 

the major differences among all the botryococcenes analyzed are in the (C=C) 

stretching region as seen in the experimental spectra (Fig. 36B). Analysis of the 1600–

1700 cm
-1

 region for (C=C) stretching shows strong similarities to our experimental 

spectra (Fig. 37). Fig. 37 shows the computed spectra for this region, and Table 9 lists 

the calculated wavenumber values and compares them with those observed 

experimentally. It should be noted that each molecule has six independent (C=C) 

stretching frequencies, but these may overlap to produce only two or three Raman bands 

depending on the type (backbone, exomethylene, or branch) of C=C bond present. Fig. 

38 shows the individual stretching frequency calculated for each specific C=C bond for 

each of the molecules. Remarkably, the stretching vibration of each individual C=C 

bond is shown by the calculations to be almost totally independent and uncoupled to any 

of the other (C=C) stretching motions or to any other vibration. What clearly evident 

from Figs. 37 and 38 and Table 9 is that the three types of (C=C) stretching vibrations 

fall into distinct spectral regions. The backbone (C=C) stretching wavenumbers are 

calculated to be between 1663 and 1679 cm
-1

 for all the molecules and are observed in 

the 1660–1670 cm
-1

 region. The exomethylene stretches are calculated to be between 

1646 and 1655 cm
-1

 and are all observed at 1647 cm
-1

. The branch C=C stretches are 

computed to be in the 1642–1649 cm
-1

 range and are experimentally observed at 1639– 
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Figure 36. DFT-calculated Raman spectra for botryococcenes. (A) Structure of the two 

forms of C31 botryococcene identified in B. braunii. (B) DFT-calculated Raman spectra 

for squalene and the indicated botryococcenes. DFT calculations were performed using 

the GAUSSIAN 03 package, and the computed spectra were assembled using the 

GaussView 4.1.2 program. 
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Figure 37. DFT-calculated Raman spectra for squalene and all botryococcenes in the 

(C=C) stretching region. 
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Figure 38. Calculated Raman wavenumbers for each C-C bond of individual  

botryococcenes.



 

96 

 

 

Molecule C=C type 

Bond number 

(as shown in 

Fig. 38) 

Frequency range 

Observed Calculated 

   cm
-1

 cm
-1

 

C30H50 Backbone 1, 2, 4, 5, 6 1970 1663-1979 

 Exomethylene NP
a
 NP NP 

 Branch 3 1640 1649 

C31H52-a Backbone 2, 4, 5, 6 ND
b
 1668-1679 

 Exomethylene 1 ND 1654 

 Branch 3 ND 1643 

C31H52-b Backbone 1, 2, 4, 5 ND 1667-1679 

 Exomethylene 6 ND 1654 

 Branch 3 ND 1643 

C32H54 Backbone 2, 4, 5 1670 1667-1671 

 Exomethylene 1, 6 1647 1654 

 Branch 3 1639 1642 

C33H56 Backbone 2, 4 1670 1668-1655 

 Exomethylene 1, 5, 6 1647 1652-1655 

 Branch 3 1639 1644 

C34H58 Backbone 4 1660 1668 

 Exomethylene 1, 2, 5, 6 1647 1646-1655 

 Branch 3 1639 1642 
a 
Not present in this structure. 

b
 Not determined. 

 

Table 9. Comparison of observed and calculated Raman bands for botryococcenes. 
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1640 cm
-1

. Because the calculated Raman spectra were determined for fixed bonds of a 

linear botryococcene structure, it was analyzed how different conformations of the 

botryococcene structure would affect the Raman spectra.  

It should be noted that each of these molecules has a large number of vibrations 

(3N–6 where N = number of atoms), and all of these are Raman-active. Thus, for 

example, C34H58 has 270 vibrations. These include 58 C–H stretching modes between  

2800 and 3200 cm
-1

 and 33 skeletal stretching vibrations, including the (C=C) 

stretching modes. The remainders are various types of angle bending, twisting, wagging, 

rocking, etc. motions, and all are below 1500 cm
-1

. In the present work the (C=C) 

stretching vibrations (1600–1700 cm
-1

) is focused because these are well separated from 

all other modes and provide the means for discriminating between the different 

botryococcenes and their three types of C=C double bonds (backbone, exomethylene, 

and branch). 

 

3. In Vivo Raman Spectroscopy Mapping of Botryococcenes 

The Raman spectroscopy analysis presented here indicates that specific Raman 

bands can be used as markers for the presence of botryococcenes in live B. braunii cells 

and/or colonies. This is especially true for the 1647 cm
-1

 band that is specific for 

indicating the presence of methylated botryococcenes (Fig. 35A). Thus, Raman 

microspectroscopy was applied to a colony of B. braunii to map the presence of 

botryococcenes in the extracellular matrix and intracellular oil bodies. A roughly circular 

region within a 13  13-m area of a B. braunii colony was scanned as shown in Fig. 39 
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Figure 39. Mapping of methylated botryococcenes in a B. braunii colony. (A) In vivo 

Raman spectrum of a B. braunii colony. The laser of the confocal  Raman microscope 

was focused on a 13  13-m region of a colony of B. braunii, as shown in B, and the 

Raman spectrum of the region recorded. (B) Light microscope image of the B. braunii 

colony before photobleaching for Raman spectroscopy. Boxed region indicates region 

used for analysis in A. (C) Mapping of the 1647 cm
-1

 specific botryococcene Raman 

band in the B. braunii colony. (D) Graphical representation of colony structure in C. OB, 

oil body; ECM, extracellular matrix. 
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B. Spectroscopy was implemented after photobleaching, and the Raman spectrum in the 

1700–1600 cm
-1

 region is shown in Fig. 39A. Detection of the botryococcene 

methylation-specific 1647 cm
-1

 band was evident and was the most prominent band in 

the spectrum (Fig. 39A). The high level of background within this spectrum prevented us 

from defining other botryococcenespecific bands. 

 

4. The detection of the botryococcene methylation 

Specific 1647 cm
-1

 band was mapped at 54 points yielding a spectral map of the 

scanned region of the B. braunii colony. The presence of the 1647 cm
-1

 band was 

assigned a white color with diminishing detection levels of the 1647 cm
-1

 band scaled to 

gray. Because our cells were photobleached prior to Raman analysis, the cells and 

extracellular matrix could not be distinguished by a microscopy image. Thus, Fig. 39D 

shows a graphical representation of the colony and cell structure. The results show, as 

expected and reported [103-105], that the extracellular matrix has high amounts of 

methylated botryococcenes (Fig. 39, C and D), likely C34 botryococcene because it is 

mostly found in the extracellular matrix [93-95,103,106]. The intracellular oil bodies 

also contained methylated botryococcenes as determined by detection of the 1647 cm
-1

 

band (Fig. 39, C and D). Unfortunately, it was not able to determine the specific 

botryococcene makeup of the individual oil bodies beyond the presence of methylated 

botryococcenes because it was not able to assign and map additional Raman bands due 

to the high background in our analysis and sample degradation from prolonged 

interrogation (Fig. 39A). 
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Conclusion 

  These studies have identified specific Raman spectroscopic characteristics for 

botryococcenes of B. braunii, B race. Additionally, a botryococcene methylation-

specific Raman signature can be detected in living B. braunii cells, indicating that 

Raman spectroscopy is a powerful tool that can be applied to advancing studies on 

botryococcene biosynthesis. A goal for future studies is to refine the Raman 

microspectroscopy using instrumentation appropriate to very small photosynthetic cells 

to fine-map the presence of the different botryococcene homologs in a colony of B. 

braunii. Of particular interest will be the location of the different botryococcenes within 

the cells to determine whether there is a biosynthetic, or composition difference among 

the many intracellular oil bodies. Additionally, Raman spectroscopy could be applied to 

analyze botryococcenes levels and quality during the development of a B. braunii culture 

to determine when oil levels are of both maximal quantity and quality for cell harvesting. 
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CHAPTER IX  

CONCLUSIONS 

 

 Infrared and Raman spectroscopy have been used to collect vibrational spectra, 

and vibrational assignments have been made. Theoretical computational calculations 

were utilized to calculate vibrational frequencies, potential energy functions (PEFs) and 

structures of 2,4,7-Trioxa(3.3.0)octane (247TOO) and cyclic silanes. The 

characterization and vibrational frequencies of botryococcenes were determined using 

DFT calculations. 

First, the infrared and Raman spectroscopy were used to determine the vibrational 

spectra for 247TOO. DFT calculation was utilized to calculate vibrational spectra and to 

aid in making vibrational assignments. Ab initio computations were used to calculate the 

structures and PEFs for 247TOO. The computed results provided four conformations. 

The lowest energy structure was the conformation which has both rings puckered up and 

the dihedral angles of puckering as 41.9° for the  ring with the single oxygen and 36.0° 

for the  ring with two oxygens. The potential energy surface (PES) was determined 

using the MP2 method and the cc-pVTZ basis set. The PES is  

V (cm
-1

) = 6.324x10
5
 x1

4 
+ 2.250x10

4
 x1
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4
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The x1 and x2 are puckering coordinates depending on  ring and  ring, respectively. 

This PES was used to determine the energy levels for this surface using the Meinander-

Laane DA2OPTN4 program. The wavefunctions were also calculated for the energy 

levels of each walls of the PES.  This study has helped us to understand the anomeric 

effect and torsional forces of two rings. The  ring with two oxygens showed the 

anomeric effect due to the O-C-O bonding configuration. The puckering of  ring with 

the single oxygen was determined by the torsional strain between the CH2 group and H-

C-O grouping on the bridgehead carbon atom.  

Second, the DFT and ab initio computations were carried out to calculate the 

vibrational spectra, vibrational assignments, structures, and potential energy functions 

(PEFs). In this work the calculated and previously recorded infrared and Raman spectra 

were compared to determine their vibrational assignments for 1,3-disilacyclopent-4-ene, 

1,3-disilacyclopentane, 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-ene, and 1,1,3,3-

tetrachloro-1,3-disilacyclopentane. The PEFs were determined using MP2/cc-pVTZ 

computations. Each energy point was collected point by point. The ab initio 

computations of 1-silacyclopent-3-ene and 1,3-disilacyclopent-4-ene were utilized to 

compare to the experimentally determined functions. These are shown in equations (9.2) 

and (9.3), respectively. 

 

V(cm
-1

) = 2.130  10
5
x

4
 - 0.0054  10

5
x

2
 (experimental fit) 

V(cm
-1

) = 2.220  10
5
x

4
 - 0.0183  10

5
x

2
 (ab initio)                          (9.2) 
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V(cm
-1

) = 1.480  10
5
x

4
 + 0.0300  10

5
x

2
 (experimental fit) 

  V(cm
-1

) = 1.830  10
5
x

4
 + 0.0203  10

5
x

2
 (ab initio)                          (9.3) 

The ab initio calculations were in remarkably good agreements with the experimentally 

determined functions. The conformational energies for silacyclopentane and 1,3-

disilacyclopentane have also been calculated and one-dimensional ring-twisting and 

pseudorotational potential energy functions were generated. Their agreements were in 

excellent agreement. 

 Third, vibrational spectra for squlalene and botryococcenes of B. braunii were 

collected using infrared and Raman spectroscopy. The DFT computations were carried 

out to determine their calculated spectra and vibrational assignments. In this study the 

vibrational assignment and structure studies of squalene were reported. This theoretical 

study helped to understand its structure and vibrational frequencies. The characterization 

of botryococcenes was aided using Raman spectroscopy and B3LYP/cc-pVTZ 

computations. DFT computations indentified each (C=C) stretching bond of individual 

botryococcenes. They were mostly independent and uncoupled to any of the other (C=C) 

stretching motions or to any other vibration. Each botryococcene has three types of C=C 

bonds, namely backbond, exomethylene, and branch. The backbone C=C bonds 

appeared in 1670-1679 cm
-1 

region. The exomethylene C=C bonds were in 1652-1655 

cm
-1 

region, and branch C=C bonds gave 1642-1649 cm
-1

. The agreements between 

observed and calculated Raman spectra were good evidence to understand and analyze 

botryococcenes.  
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