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ABSTRACT

Metallic nuclear fuels, as potential candidates in advanced reactors development,

have been extensively studied for over five decades. The main challenges are the fuel

performance designed for higher burn-up and higher temperatures. Fuel-cladding

chemical interaction, or FCCI, is one of the primary material problems during reactor

operations. A series of tests using uranium-bearing fuel alloys and various cladding

materials were performed to assess the di↵usional interactions. However, the knowl-

edge of thermally-activated multicomponent di↵usion followed by irradiation tests is

quite limited. , Combined both experimental and theoretical investigation are essen-

tial to predict the feasibility of fuel designs. The overall objective of this dissertation

is to unravel the radiation e↵ects in microstructural and kinetic data. In order to

achieve this, two major di↵usion systems are chosen.

For the first system, we start with two uranium-free di↵usion couples to study

microstructural evolution. Primary experiments assembled zirconium/molybdenum

with iron. Zr and Mo are the major constituents in fuel alloys and Fe is the surrogate

for ferritic cladding materials. Both di↵usion couples were annealed at 850�C for

15 days and irradiated with 3.5MeV Fe++ at 600�C. Post irradiation examination

involved scanning electron microscope (SEM) and transmission electron microscope

(TEM). Through this work, we identified the phases formed in the interaction layers

and showed enhanced di↵usion in the ion bombarded regions. Additionally, the

mechanism of intermetallics formation (e.g. Fe23Zr6) and radiation stability were

discussed.

Second, a matrix of uranium-bearing couples is established. 1) Depleted uranium

(DU) was bonded with polycrystalliine iron to form binary di↵usion couples followed
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by 2 MeV He+ irradiation. Our intent is to understand microstructural informa-

tion and thermokinetic data. 2) DU vs. single crystalline iron/nickel couples were

assembled and annealed for various temperatures/time. Interdi↵usion coe�cients

and activation energy are calculated for each phase formed in the interaction layers

3) In addition to solid-solid di↵usion experiments, Fe/(Fe+Cr)/(Fe+Cr+Ni) were

deposited on the DU substrates to form thin-film di↵usion couples with concurrent

3.5MeV Fe++ ion irradiation. Rutherford backscattering spectrometry (RBS) was

used to extrapolate interdi↵usion profiles and intermetallic phase formation. These

results provide strong evidence to support multiscale modeling of FCCI. In par-

ticular, goals of the modeling are to provide detailed analysis in fuel performance

development.
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NOMENCLATURE
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1. INTRODUCTION

Fuel cladding chemical interaction, or FCCI, has a huge impact on fuel designs

and cladding considerations. The advanced metallic fuel of fast reactors are devel-

oped for higher temperature and higher burnup. During reactor operation, energetic

neutrons and fission products cause significant damage to both fuel itself and cladding

materials. Strong interest exists for understanding radiation e↵ects and interdi↵usion

mechanism. It is, however, di�cult for long irradiation testing to achieve expected

burnup level.

Various di↵usion experiments have been tested earlier consisting uranium-plutonium

alloys and cladding materials, the e↵orts contained in this dissertation focus on se-

lected couples for intermetallic phase formation and di↵usion kinetics data. The basic

layout of this dissertation starts with a brief background on metallic fuel development

and radiation e↵ects (Section 2), a section on the experimental and characterization

methods (Section 3), followed by two sections which discussed main di↵usion couple

(Section 4 and 5) systems performed. Sections 4 and 5 begin with objectives and

research activities.

1.1 Dissertation scope

The aim of this dissertation is to provide experimental data and support com-

putational modeling for FCCI and further fuel performance. In order to address

FCCI, selected di↵usion systems were annealed at elevated temperatures followed

by ion irradiation. Scanning electron microscope (SEM) and transmission electron

microscope (TEM) are employed for all solid-solid di↵usion systems and Rutherford

backscattering spectrometry (RBS) with high fidelity spectral simulations were used

for all thin-film di↵usion couples.
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The two main objectives covered in this dissertation are :

1. The intermetallics formation plays a huge role in developing fuel alloys. With

the help of multicomponent di↵usion couples, thermokinetic data and mi-

crostructural information for binary, or ternary systems can be obtained. There-

fore, interdi↵usion coe�cients and activation energies of each phase provide

fundamental parameters to support the multiscale modeling of FCCI.

2. In the e↵ort to understand radiation e↵ects of FCCI during reactor operation,

thermally-activated di↵usion couples were irradiated with charged particles to

expected damage level. Post-irradiation examination was performed to inves-

tigate the phase stability and related microstrual changes.

In addition, a very brief introduction of the two selected di↵usion systems were

provided in the following sub-sections. For clarity, the uranium-bearing system are

presented separately, involving bulk and thin-film di↵usion couples.

1.1.1 Uranium-free di↵usion systems

The interaction between fuel alloys and cladding materials strongly depend on

the composition. Consequently, fragile interfacial compounds with relatively low

melting temperature are formed. The addition of zirconium and molybdenum have

been proved to increase the high temperature stability. In order to study the possible

phase formed in the reaction zone, ex-reactor experiments were performed at elevated

temperature. Zr and Mo were assembled with iron, as the surrogate to ferrous

cladding materials.

Despite numerous earlier studies, the intermetallics of Fe/Zr and Fe/Mo systems

are not completely understood. Section 4 is dedicated to phase identification and

microstructural changes after heavy ion irradiation.
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1.1.2 Uranium-bearing di↵usion systems

In this section, the uranium-based experiments are divided into two groups includ-

ing 1) solid-solid di↵usion couples and 2) thin-film di↵usion couples. The objectives

are to understand the di↵usivities of each phase and properties with di↵erent alloy

elements. Iron and nickel, major constituent in cladding materials, were bonded with

depleted uranium to form binary di↵usion couples followed by He ion irradiation.

However, relatively rough interaction zones are usually observed in uranium-

bearing couples due to oxidation. The oxide layers result in delayed interdi↵usion

and large interface variations. In the present work, a setup of thin-film di↵usion cou-

ples,involving iron, chromium and nickel, is constructed. Fe/(Fe+Cr)/(Fe+Cr+Ni)

were deposited onto depleted uranium substrate followed by heave ion irradiation.

Rutherford backscattering spectrometry (RBS) was performed to investigate inter-

di↵usion profiles.
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2. BACKGROUND ON METALLIC FUEL DEVELOPMENT AND

RADIATION EFFECTS

The present section summarizes the experience with earlier metallic fuel devel-

opment, including fuel design and fuel performance. In addition, a brief overview

is dedicated to the radiation e↵ects during reactor operation. However, this area is

very broad and covers a wide range of practical issues. Only the fundamentals which

is necessary to the data interpretation in this dissertation will be discussed .

2.1 Overview of metallic fuel development

Metallic alloy fuels have been first developed and tested in the liquid metal reac-

tors (LMR) since 1960s[54, 55, 116, 73]. Variety of uranium-based alloys were cast

and used as driver fuels in Experimental Breeder Reactor-II (EBR-II), a test facility

at Argonne National Laboratory-West in Idaho falls, Idaho. The results were un-

successful with peak burnup of ⇠ 3 at% and failed due to cladding breach. At that

time, strong interest turned and concentrated on ceramic fuels development before

the potential of metallic fuels been fully recognized[5, 4].

Through the 1970s, however, the EBR-II continued using selected metallic fuels

along with possible cladding materials and appreciable burnup were achieved. E↵orts

were focused on fuels composition and stronger cladding, including ⇠ 35,000 fuel pins

test experiments[123, 120, 100, 84, 97, 131]. Uranium-fissium (U-5 wt% Fs) fuels

was cast in the early 1970s, as known as Mark-IA. It had 85% smeared density and

contained a small gas plenum. MK-II came out with improved smeared density 75%

and better plenum-to fuel ratio. Figure 2.1 shows the evolution trends in burnup

limit of EBR-II driver fuels[71, 8, 9, 10].
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Figure 2.1: The evolution of burnup limit in EBR-II driver fuels.

US Integral Fast Reactor (IFR) program initiated in 1983, after extensive experi-

ence from the late 1960s and targeted to higher burnup capability. Argonne National

Laboratory (ANL) proposed to use U-Pu-Zr alloys as driver fuels in EBR-II, clad

with austenitic stainless steels (D9 or HT9) and modified smeared density of 75%,

replacing the MK-IIA fuel design. For the test of U-Pu-Zr alloy cladding with D9, the

burnup level reached 18.4 at%; and 17.5 at% was achieved with HT9 steels without

cladding breach[139, 130, 112]. The basic schematic of fuel pin components is shown

in Figure 2.2. Upon prior works, e↵orts were mainly made on modifying the space

between fuel alloys and cladding materials, which allows excessive swelling before

contact initiated[56, 39, 140].
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Figure 2.2: The schematic view of metallic fuel pin.

Among several advantages, such as good thermal conductivity, excellent neu-

tron economy, simple reprocessing, and improved waste management, of metal-

lic fuels , the Idaho National Laboratory (INL)and ANL share collaborative ef-

forts in developing ultra-high burnup fuel alloys[132, 91, 92, 67]. As part of the

Global Nuclear Energy Partnership (GNEP) program, the goal is to achieve 40 at%.

burnup[114, 107, 7, 17, 3, 30, 136, 102, 96]. However, damage accumulation from

energetic neutrons and fission gas will cause significant dimensional changes. The

radiation e↵ects will be discussed in the following section.

2.2 Radiation e↵ects

During reactor operation, high energy neutrons and fission products will cause

severe damage to the microstructures. The incident particle will collide and trans-

fer energy to a lattice atom, called primary knock-on atom (PKA). The PKA will

continue traveling and cause a series of atomic displacements. Figure 2.3 illustrates

the atomic displacements of neutron collisions. Along the PKA trajectory, damage

cascade is created and a vacancy rich core structures surrounded by interstitials is

usually formed. Finally, the PKA will slow down via electronic and nuclear stop-

ping without enough energy to create further displacement. The whole annihilation
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process is around 10 picosecond.

Figure 2.3: Damage cascade of neutron collisions.

According to Norgett-Robinson-Torrens (NRT) model, modified version of Kinchin

and Pease, the numbers of Frenkel pairs (interstitial-vacancy pairs) created by PKA

can be estimated by

⌫
NRT

(T ) =
E

D

(T )

2E
d

(2.1)

where E
D

(T ) is denoted to damage energy, E
d

is the energy needed to strike an

atom out from its lattice position, or displacement energy.  is usually taken as 0.8.

More commonly, total number of displacement per atom (dpa) is used in irradiation

damage measurement. The NRT dpa parameter is given by
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dpa =

Z Z
�(E)⌫

NRT

(T )�(E, T ) dt (2.2)

where �(E) stands for neutron flux and �(E, T ) is the probability of atom with

energy E transfer energy T to the recoil particles. Most of the vacancies and intersti-

tials will recombine in a very short time, only a fraction of point defects can escape

from the cascade, called freely migrating defects (FMD). These FMD strongly influ-

ence the irradiated microstructures, and leads to vacancy cluster formation (voids)

or interstitial cluster formation (dislocations).

In addition to FMD clusters, fission gas play the primary role in fuel/cladding

deformations due to the internal pressure. Both FMD and fission gas accumulation

lead to dimensional change, or swelling, and close the gap between fuel alloys and

cladding materials. Figure 2.4 (a) shows a typical swelling behavior in the type 316

cladding after neutron irradiation, and Figure 2.4 (b) is the corresponding transmis-

sion electron microscope (TEM) image reveals the voids formation. The consequence

is the fuel cladding chemical interaction, or FCCI, which is the major challenge in

fuel performance and reactor safety.
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(a) Irradiated SS 316 (b) Corresponding TEM image of voids

Figure 2.4: Radiation-induced microstructural change �� void swelling

2.3 Fuel cladding chemical interaction

Metallic fuel has been considered as a candidate for advanced nuclear reactors,

which operates at higher temperature and requires longer lifetime. It is important to

understand the microsctructural changes during reactor operation, particularly the

chemical interaction between fuel alloys and cladding materials, and able to predict

the irradiation behavior and fuel performance[38, 35, 126, 14, 88, 143, 40]. The

original spacing between fuel alloys and cladding materials is closed due to excessive

swelling and intermatellics start to form[145, 103, 124, 31]. Figure 2.5(a) shows the

contact initiates after fuel/cladding deformation. These phases, with relatively low

melting temperature, are usually mechanically fragile. The interdi↵usion process

consumes cladding materials and degrades the structural integrity. The possible

failure mechanism is shown in Figure 2.5(b), coolant may penetrate into the reactor
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core through the cracked fuel/cladding interface[32, 41, 117, 135, 15, 24, 104, 44].

(a) fuel/cladding swelling (b) Fuel pin failiure

Figure 2.5: Fuel pellets-cladding interaction

E↵orts have been made to study FCCI during EBR-II tests. Zirconium (Zr)

and molybdenum (Mo) addition to fuel alloys were proven to increase the melting

points which matched the anticipated operating temperature[74, 99, 33, 101, 6, 119,

23, 42, 57]. Cladding materials, such as HT9 and D9, were assembled with U-

based metallic fuels up to 10 at% burnup. Possible di↵usion barriers were tested

to suppress the FCCI, including chromium coated layer and neodymium-added fuel

alloys[12, 13, 20, 75, 141, 16, 85]. Ex-reactor experiments were conducted at elevated

temperatures, mainly focused on metallic fuels bonded with stainless steels, which

formed complex multi-component di↵usion systems. In order to support atomic

simulation and predict fuel performance, fundamental understanding is needed from

simple binary di↵usion system, involving initial microstructures of intermetallics and

10



di↵usion kinetic data[146].

2.4 Di↵usion couples technique: solid-solid interaction

In order to investigate thermokinetic data, solid-solid di↵usion couple technique

is used. This powerful tool provides comprehensive analysis to the phase formation

at the annealing temperature, which can be used to validate phase diagrams. It

does not restrict the formation of any phases allowed in the phase diagram, which

is close to the practical reactor operations at elevated temperatures. It also deduces

the complexity of testing a large alloying matrix with various compositions, which is

often the case in traditional alloying approaches.

The formation of intermetallics or compounds, usually microscale in bulk system,

are easily identified with microscopical tools, such as scanning electron microscope

(SEM) and electron probe microanalysis (EPMA). The reaction zone is governed by

Gibbs phase rule, shown in equation 2.3 ,

F = C � P + 2 (2.3)

where F is the degrees of freedom, C is the number of components, and P is

the number of phases. With given temperature and pressure, there is no additional

freedom for composition changes, which leads to straight interface with fixed com-

position. The composition profile shows a step distribution with corresponding local

phase equilibrium. It provides the understanding of microstructural information in

thermally-activated multidi↵usion system, in particular to study FCCI with possi-

ble constituents to verify phase equliibria. In addition, bulk di↵usion systems have

the advantage in mechanical properties test, such as nano-indentation for hardness

measurement on each intermetallic. The oxidation, however, leads to poor bond-

ing at delay the interdi↵usion process. The rough interaction zone is often noticed

11



with large interface variations. In order to avoid oxidation, other techniques have

also been tested using physical vapor deposition (PVD) or chemical vapor deposition

(CVD). The deposition is highly uniform and not influenced by surface roughness

on the substrate. Energetic argon is used to remove surface oxidation layers to form

clean alloy interface.

2.5 Ion acceleration

The neutron experiments in nuclear reactor are usually costly and time consum-

ing. With the help of accelerator technology, ion irradiation has been widely used

to simulate neutron damages. Figure is the 1.7 MV tandem accelerator operated

in the Ion Beam Laboratory at Texas A&M University. Incident ions are produced

in the ion source and accelerated through acceleration column via electric potential.

Desired ion specie is selected using magnetic filed based on mass to charge ratios and

electrostatic lenses are used for beam optics.
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The entire beam line and target chambers are held under vacuum, typically

around 10�7 Torr to avoid ion-gas collision. The target chamber equipped with

thermocouple for precise temperature control, and faraday cup is usually used to

measure the beam intensity. Upon di↵erent charge state of incident ions, typical ion

energy are of the range between keV (103 eV) to MeV (106 eV). Heavy ion (e.g. Fe)

irradiation is often used to study radiation e↵ects in materials, with relatively low

cost and fast damage accumulation. Simultaneous annealing can be coupled with

ion irradiation, which makes the experiments apply to practical reactor operations.

2.6 Interdi↵usion coe�cient Boltzmann Matano method

Scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy

(EDS) was employed to characterize intermetallics formation. The thickness can be

measured throughout the interdi↵usion zones. In addition, concentration profile of

phase constituents provides thermokinetic data and microstructural information for

di↵usion studies.The di↵usion coe�cient in a multi-compound binary system can be

determined using Matano-Boltzmann method with following equations:

D̃int

i

=

Z
Ni(x2)

Ni(x1)

D̃dN
i

= �
Z

x2

x1

J̃dx (2.4)

where D̃ is the integrated interdi↵usion coe�cient of a specific phase in (x1,

x2) and ideally should be the same in all di↵usion couples regardless experimental

boundary condition. J̃
i

is the interdi↵usion flux at position x as described in equation

(2.5)

J̃
i

(N⇤
i

) =
1

2t

Z
N

⇤
i

N

±1
i

(x� x0)dNi

(2.5)

where x0, known as the Matano plane, is the average position weighted on con-
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centration N
i

.

Z +1

�1
(x� x0)dNi

= 0 (2.6)

The obtained di↵usion coe�cients then can be applied in an Arrhenius equation,

equation (2.7),to find activation energy Q and maximum di↵usion coe�cient D0 for

the specific phase. The di↵usion coe�cients and activation energy play a huge role

in establishing advanced multiscale atomic modeling in metallic fuel development.

D = D0e
� Q

T (2.7)

2.7 Motivation and objectives

The FCCI is one of the major materials challenges in metallic fuel development.

However, the knowledge of thermally-activated multicomponent di↵usion followed

by irradiation tests is quite limited. , Combined both experimental and theoretical

investigation are essen- tial to predict the feasibility of fuel designs. The overall

objective of this dissertation is to unravel the radiation e↵ects in microstructural

and kinetic data.

15



3. EXPERIMENTAL AND CHARACTERIZATION METHODS

3.1 Fabrication of di↵usion couples

There are two di↵usion systems covered in this dissertation, the first system is

the uranium-free di↵usion couples. Specimen contains polycrystalline iron (99.99%),

zirconium (99.2%), and molybdenum (99.2%). It was sectioned into 3 mm disks and

mechanically polished through 0.5 µm alumina. Before assembly, the dilute nitric

acid is used to remove oxidation layer from the polished surface. Prior to sealing,

the quartz capsule was repeatedly vacuumed (10�6 Pa) and purged with Ar/H2 gas

mixture. Later, the binary di↵usion couples were bonded and sealed into quartz

capsule. Both Fe/Zr and Fe/Mo di↵usion couples were annealed under vacuum at

850�C for 15 days. Table 3.1 lists the sample matrix for uranium-free systems.

Table 3.1: Uranium-free sample matrix

Sample name Component Temperature (�C) Time (hours)

Fe/Zr iron/zirconium 850 360

Fe/Mo iron/molybdenum 850 360

The second system is uranium-bearing system. In order to avoid oxidation, spec-

imen preparation was carried out under an argon (Ar) environment inside glove box.

Depleted uranium (DU) was sectioned to 2mm in thickness and then polished with

Buehler MiniMet 1000. Sectioned DU was polished with silicon carbide to grade

1200. Finished surface was etched with dilute nitric acid solution before assembly.

Bonded di↵usion couples were placed in a stainless steel clamp and wrapped with
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tantalum foil. A quartz ampoule was used and evacuated to 4 x 10�6 pascal prior

sealing . Fig 3.1 shows the closed system between glove box and furnace to avoid

contamination.

Figure 3.1: Closed system for specimens transportation

Two types of single crystal systems, nickel and iron, with di↵erent annealing

condition are shown in the Table 3.2 and Table 3.3. In addition, combined with

helium irradiation, the di↵usion couple is assembled with polycrystalline iron to

study microstructural evolution and listed in Table 3.4.

Table 3.2: Uranium-bearing sample matrix-single crystalline Fe

Sample name Component Temperature (�C) Time (hours)

U/Fe A1 depleted uranium/iron 575 168

U/Fe A2 depleted uranium/iron 600 144

U/Fe A3 depleted uranium/iron 625 120
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Table 3.3: Uranium-bearing sample matrix-single crystalline Ni

Sample name Component Temperature (�C) Time (hours)

U/Ni B1 depleted uranium/nickel 675 360

U/Ni B2 depleted uranium/nickel 700 312

U/Ni B3 depleted uranium/nickel 725 264

Table 3.4: Uranium-bearing sample polycrystalline Fe

Sample name Component Temperature (�C) Time (hours)

U/Fe C1 depleted uranium/iron 700 96

In parallel with bulk system, the thin-film di↵usion couples were also studied.

Metallic thin-films were deposited onto uranium substrate using AJA International

A2800 6-gun physical vapor deposition system and alloy target were acquired from

ACI Alloys Inc. The whole process was kept under 2.8 x 10�7 Torr. DU surface

was pre-cleaned by using a radio frequency power of 50 Watt, roughly 240 volt Ar

ion bombardment. The desired thickness of 1µm was achieved for time of 200 min-

utes, 20 standard cm3 / sec and 200 Watt DC power on the target. Fe(99.9%) ,

Fe-20wt%Cr and Fe-20wt% Cr-20wt%Ni bonded with DU were prepared and char-

acterized. Figure 3.2 shows the schematics for the as-deposited thin-film couples.
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Figure 3.2: Schematic of as-deposited thin-film couples

3.2 Characterization methods

3.2.1 Electron microscopy

Scanning electron microscope (SEM) provides morphology information using fo-

cused energetic electrons. The interaction volume for incident electron is ⇠ 1 µ m

deep. Secondary electrons (SE), backscattered electrons (BSE), and characteristic

X-rays will be generated. SE mainly comes from the specimen surface with relatively

good depth of focus. BSE has the better contrast regarding to atomic numbers (Z),

which the higher the Z , the brighter contrast in BSE micographs. With equipped

energy dispersive spectrometry (EDS), the chemical composition can be determined

by analyzing characteristic x-rays. In this dissertation, SEM is employed to obtain

following information 1) inter metallic phase identification through composition pro-

files mapping. 2) the thickness measurement for each phase formed for interdi↵usion

coe�cient calculation.

Microstructural information play an important role of understanding FCCI. There-

fore, transmission electron microscope (TEM) is intensively performed through this

dissertation. The resolution limit for typical light microscope is ⇠ 300 nm. The lat-

tice parameter of crystal structures, however, is on the scale of angstrom (Å). Based

on the de Broglie relation ,
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mv = h/� (3.1)

D = �d2 (3.2)

� / C
V

/C
V

⇤ (3.3)

where m represents mass, v is the velocity, and h stands for Planck’s constant. The

electron wavelength � of 200 kV acceleration voltage is 0.025 Å which is su�cient

for microstructural characterization.

Energetic electrons are generated from the gun tip, which is either filament or cold

emission design, and focused through various lens to form images. The two major

modes of operation in TEM are imaging mode and di↵raction mode. The electrons

pass through the specimen and project the images onto the fluorescent screen or CCD

camera, called image mode. It is strongly dependent to the specimen composition

and thickness. The other mode is di↵raction mode, it reveals the microstructure

by indexing the di↵raction patterns.The images formed at the back focal plane is

constructed by di↵racted electrons and provides microstructural information. By

using the following equation,

d =
�L

R
, (3.4)

where d represents the lattice spacing, R is the distance obtained from reciprocal

space (usally a ring or point), L is the camera length, and � is the electron wavelength.

In addition to conventional TEM, scanning TEM (STEM) focused the electron

beam down to nanometer size and scanned across the specimen. Similar to the SEM,
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chemical composition can be acquired via default point or line scanning packages

with equipped EDS system. With the help of High-angle annular dark-field imaging

(HAADF), the STEM provides the options with image contrast upon composition

(Z). In HAADF images, the higher the atomic number, the brighter the contrast.

Figure 3.3 explains the basic image formation mechanism between TEM and STEM.

Figure 3.3: Illustration of the working principles for TEM and STEM

In order to achieve electron transparent thickness, cross-sectional specimens were

prepared using focused ion beam (FIB) lift-out technique. The area of interest was

covered by platinum(Pt) deposition as a protection layer. 30 keV gallium (Ga) ion

was used to remove extra materials away from the lamellae. Lamellae was then lift
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with nano-manipulator and transferred to TEM grid for further thinning process.

Final thickness of less than 100 nm can be achieved for TEM characterization.

3.2.2 Rutherford backscattering spectrometry

Rutherford backscattering spectrometry (RBS) is a common ion beam analysis

technique for element distribution and depth profile. Typically, 2 MeV helium (He)

ion is used in RBS . A collimated He beam will bombard the specimen, after energy

transfer and two-body collision, some He ions will be backscattered to the detector

with partial energy remained. The basic configuration of RBS system is shown in

Figure 3.4 with the detector set up at 165 degrees. The energy deposited on the

detector from the backscattered He ions corresponds to the depth below the surface

and target compositions. Calibration of the standard samples is needed for better

interpretation, usually using silicon and gold as the reference targets. The spectrum

obtained from RBS has to be compared and simulated via computational codes for

analysis. SIMNRA was used to study the di↵usion behavior in DU/thin-film system,

and by changing the target composition, depth profile can be extrapolated.

Figure 3.4: Typical arrangement for Rutherford backscattering spectrometry
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4. URANIUM-FREE DIFFUSION SYSTEMS

The present section consists of a background of the zirconium and molybdenum

addition in metallic fuel application, followed by a series of interrelated experiments

using Fe/Zr and Fe/Mo di↵usion couples. Thermally-activated di↵usion couples were

annealed at 850�C for 15 days. SEM was employed to gather di↵usion kinetics and

composition profiles across the interaction layers. The specimens are both irradiated

with energetic Fe ions up to 130 displacement per atom (dpa). After irradiation,

cross sectional TEM specimen was prepared using focused ion beam and detailed

microstructural analysis was performed.

4.1 Background of zirconium and molybdenum addition in metallic fuels

The major issues of utilizing metallic fuels to the integral Fast Reactor is fuel

cladding chemical interaction (FCCI). Intermetallic phases with relatively low melt-

ing point formed at the reaction interface, which has poor mechanical properties and

may lead to serious structural failure. The addition of zirconium into uranium-based

fuels or uranium-plutonium-based fuels has been tested and developed since 1980s

during EBR-II program[34, 1, 90, 26, 138, 83, 82]. Up to 10 weight percent (wt%)

Zr addition is proven to e↵ectively reduce the interdi↵usion of iron and nickel from

the cladding constituents, and increase the high temperature stability of U-Pu fuel

alloys. Later in 1985, multiple fuel-cladding experiments were performed involving

U-Pu-Zr alloys and varies austenitic steels. It has been found that the ZrO
x

and ZrN

were formed and acted as di↵usion barriers. However, uranium and plutonium were

⇤Parts of this section are reprinted with permission from ”Understanding the phase equilibrium
and irradiation e↵ects in Fe-Zr di↵usion couples” by Wei et al., 2013. Journal of Nuclear Materials,
432, 205-211, Copyright[2013] by Elsevier
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found enriched between the zirconium layer and cladding, and caused accelerated

cladding consumption at elevated temperatures.[81, 122, 78, 89, 36, 25, 77, 111]

Researchers in the U.K and France started working on U-Pu-Mo since 1960s. It

was unsuccessful due to the poor swelling resistance. Through the collaboration of

Argonne National Laboratory (ANL) and Idaho National Laboratory (INL), e↵orts

have been made on metallic fuel development based on U-Mo alloys[60, 61, 58]. The

option of using molybdenum over zirconium has the benefits of 1) avoiding phase

separation in U-Zr fuel systems. 2) increasing the thermal conductivity. Reduced

Enrichment for Research and Test Reactors (RERTR) is one the oldest program sup-

ported by U.S. Department of Energy since 1978. Recently, U-Mo based alloys are

of great interest in INL with the support from RERTR program[108, 94, 22, 43, 95,

134, 144]. The U-Mo alloys have demonstrated with highest thermal conductivity

and highest melting point over U-Zr and U-Nb systems. However, the fundamen-

tal studies of binary di↵usion systems are limited. In order to investigate di↵usion

kinetic and microstructural evolution of the intermetallics phases during reactor op-

eration, in particular to understand FCCI and support mulitscale modeling of fuel

performance, simple binary di↵usion couples were fabricated followed by heavy ion

irradiation[62]. Zirconium and molybdenum are the two major elements considered

as additions to the fuel alloys. The binary di↵usion couples were assembled using

iron, as the surrogate to cladding constituent in structural steels, with zirconium and

molybdenum[50, 113, 27, 64].

4.2 Iron-zirconium di↵usion couple

Prior to decide the experiment temperature, the phase diagram of Fe-Zr is shown

in Fig. 4.1, including four equilibrium phases of FeZr3, FeZr2, Fe2Zr and Fe23Zr6.

A quick summary of crystal structures for each equilibrium phase is as follows, 1)
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FeZr3 takes orthorhombic structure and stabilized up to 928�C; 2) FeZr2 has tetrag-

onal structure up to 962�C; 3) Fe2Zr remains face-centered cubic structure up to

1700�C; and 4) Fe23Zr6 has a Th6Mn23 structure with eutectic point at 1590�C. Each

equilibrium phase has quite fixed stoichiometric composition.

However, the formation of each phase in the Fe-Zr system is not completely

understood. For instance, Kubaschewski, Arias and Abriata reported Fe23Zr6 as an

equilibrium phase, which was not observed by Aleksseva, Korotkova and Stein et al.

Early studies have suggested either Fe23Zr6 is a high temperature phase or it may

be stabilized by impurities, such as oxygen. An argument has been made that both

Fe23Zr6 and FeZr2 are not equilibrium phases unless the presence of oxygen. Liu et

al. suggested that Fe23Zr6 nucleates on the surface of FeZr2 particles and has the

peritectoid reaction of (↵Fe) + Fe2Zr ! Fe23Zr6. Thus, we chose to use di↵usion

couple technique to study the phase formation, which avoids possible contamination

or oxidation during melting process. 850�C was selected as annealing temperature,

and is below the eutectic point for the di↵usion couples fabrication. In the following

section, we will be focusing on the phase formation upon annealing and irradiation

e↵ects of the Fe-Zr di↵usion couple. .
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Figure 4.1: Phase diagram of Fe-Zr

4.2.1 Phase identification and di↵usion kinetics

The iron-zirconium di↵usion couple was annealed at 850�C for 15 days. Complete

experimental procedures are listed in the chapter 3. After annealing, the capsule was

quenched in cold water and sacrificed the ampule using a hammer. The specimen

was then cut in half vertically to the interface and embedded into epoxy to avoid

surface oxidation. Post-polishing was conducted down to micro-meter size suspen-

sion, which reduced surface roughness created while sectioning prior to irradiation.

All the characterizations were studied on the polished surface.
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Scanning electron microscope (SEM) and energy dispersive x-ray spectrometry

(EDS) were performed to study the phase formation at interface. Fig. 4.2a shows

the backscattered SEM micrograph of Fe-Zr di↵usion couples after polishing. Three

noticeable contrasts were observed at the reaction zone. EDS scanning was performed

and compositional profile is plotted in Fig. 4.2b. Two phases were identified as Fe2Zr

and Fe23Zr6. The third contrast was not clear at this point under SEM examination,

further discussion will be covered through transmission electron microscope in the

later section.

The di↵usion length of Fe2Zr phase is 9.8 µm and 4.1 µm for the Fe23Zr6 phase.

It is worth noting the third phase with darker contrast next to zirconium contains

small amount of iron. It might be the precursor forming the Fe2Zr, which indicates

a mixture of alpha iron and Fe2Zr phase . The integrated interdifusion coe�cients

can be calculated by using Eq. 2.6, and D̃ of each phase are listed in Table 4.1. The

interdi↵usion coe�cient of Fe2Zr phase is greater than the Fe23Zr6 phase, which is

noticeable according to the di↵usion length from Fig. 4.2a. The specimen will be

ion irradiated to investigate radiation e↵ect in the next section.
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(a) BSE micrograph of Fe-Zr couple

(b) Composition profiles of Fe-Zr couple

Figure 4.2: Fe-Zr di↵usion couple annealed at 850�C for 15 days
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Table 4.1: Extracted integrated di↵usion coe�cients of Fe vs Zr

D̃ Fe2Zr (at. frac. m2/s ) D̃ Fe23Zr6 (at. frac. m2/s )

1.59 x 10�16 1.01 x 10�16

4.2.2 Ion irradiation and sample preparation

The Fe-Zr di↵usion couple was irradiated with 3.5 MeV doubly-charged Fe ions

to the fluence of 3.5 x 1016 Fe/cm2, corresponding to ⇠ 130 displacement per atom

(dpa) at damage peak. The incoming ions were perpendicular to the interface. The

experimental temperature was at 600�C with thermal couple welded on the sample

stage. The vacuum during the irradiation was kept under 10�6 torr.

The depth profile of injected Fe and dpa was plotted in Figure 4.3 using SRIM

calculation with full-cascade option. The ion penetration depth is ⇠ 1.6 µm and

the peak dpa is located at 1 µm. The peak injected Fe interstitials is less than 1

at% which doesn’t change the chemical composition. The depth of interest will be

focused within the ion projected range and cross-sectional specimen preparation will

be discussed in the next paragraph.

29



Figure 4.3: Experimental condition – 3.5 MeV Fe irradiation

The cross sectional TEM specimen was prepared by focused ion beam (FIB)

with lift-out technique in a dual-beam SEM facility. The area of interest is selected

across the interdi↵usion zone, usually 12µm in width . Figure 4.4 shows the as-

prepared TEM specimen with the average thickness of 70 nm. The top layer is

platinum (Pt), which is deposited on the surface to reduce FIB damages. Based

on the SRIM calculation, the depth of damage peak created by 3.5 MeV Fe ion is

roughly 1 µm underneath the surface. It denoted as irradiated region, marked as

dash line, throughout this dissertation. The depth beyond the irradiated region,

usually 3 µm below the surface , it is selected as unirradiated region for comparison.
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Figure 4.4: TEM sample preparation and description

4.2.3 Post-irradiation characterization

Scanning transmission electron microscope(STEM) is carried out for better atomic

contrast, regarding the element distribution. The probe size is reduced down to

nanometer spot under the STEM mode. Fig. 4.5 is a cross sectional STEM mi-

crograph of Fe-Zr interface. The contrast of the traditional STEM micrograph is

contributed from the atomic mass di↵erence, which the heavier element shows the

lighter contrast. The right side with darker contrast corresponds to iron side and

the left side with lighter contrast corresponds to zirconium side. Irregular grains

and particles were observed in the middle which suggests the existence of multiple

phases.

EDS line scans were performed across irradiated region and unirradiated region.
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The spectrum obtained from the unirradiated region shows the step-like profiles

for both Fe and Zr distribution. This can be understood from the Gibbs’ phase

rule that with given pressure and temperature, no additional degree of freedom for

composition changes. According to the atomic composition analysis, FeZr3, FeZr2

and Fe2Zr were identified from each steps. However, the last step-height on the Fe

side contains mixed phase, including ↵Fe, Fe23Zr6 and FeZr2. The details of the

Fe23Zr6 formation will be discussed in later section.

For comparison of the unirradiated region, another line scan was conducted in

the irradiated region, which was at the depth less than 0.5 µm below surface. The

spectrum shows abnormally enhanced di↵usion and no step-like distribution was ob-

served. The Zr signals even appear at 8 µm away from the interface, also, both Fe and

Zr signals contain huge fluctuations in the irradiated region. The damage cascades

created by 3.5 MeV Fe ion irradiation increase the defect concentration and excessive

vacancies/interstitials accelerate the atomic movement at elevated temperature and

leads to radiation enhanced di↵usion.
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Fig. 4.6 is the BF-TEM micrograph and shows the overall microsctruce of Fe-Zr

interface. The white solid line denoted to the ion-projected range and original inter-

face is marked with blue arrow. We have observed irregular grains and particles with

darker contrast along the interface, even beyond the ion projected range, which is

formed during thermal treatment. According to EDS analysis, these dark particles

were identified primarily to be Fe23Zr6 phase, while some of them were determined to

be Fe2Zr. Selected area di↵raction (SAD) were performed to confirm the microstruc-

tures. Fig. 4.7 shows enlarged BF-TEM micrograph of the interaction zone and the

SAD patterns of phases identified. (A) -(E) marked in the BF-TEM corresponds to

where the local region of SAD is taken. The SAD patterns revealed the existence

of ↵Fe, Fe23Zr6 and Fe2Zr. In addition, the SAD pattern of region (E) contains the

mixture of Fe2Zr and ZrO2, which indicates the presence of oxygen. The SAD pat-

terns with ring-like features suggests nano-crystal formation. The oxide precipitates

in the interdi↵usion zone will be discussed in the later section.

In addition, the Fe side shows some smaller grains or phases developed within the

ion projected range. The average size of unirradiated Fe grain in the bulk, beyond

the white solid line, is on the micro-meter range. The grains formed, however, after

irradiation are on the range from 100 nm to 500 nm. The EDS, plot in Fig. 4.5, has

shown that ion irradiation strongly promoted the Zr di↵usion. Therefore, possible

Fe/Zr phase formed due to non-equilibrium process following ion irradiation. The

discrete grains/phases of newly formed Fe/Zr disappeared at the point where the

noticeable Zr signal is gone in EDS plot, which indicates that the radiation induced

phase formation is correlated to the Zr di↵usion into Fe.
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Further e↵ort was made on the irregular shapes appeared in the interaction layer.

Dark particles act like a core structure within the gray phases which also incorpo-

rated in the dark matrix. The dark matrix of the STEM micrograph is the Fe side,

and the other side is Zr. The core-particle structures can be seen throughout the

interface. Figure 4.8 shows closed look of core-particle structures, marked as blue

dash circle in STEM micrograph. EDS line scan, with beam spot size of ⇠ 1 nm, was

performed across the two particles and surrounded matrix. Based on EDS spectrum,

the composition profiles reveals that 1) the dark matrix is iron. 2) the core particles

with darker contrast are O-rich Fe2Zr. 3) the light gray phase surrounded O-rich

Fe2Zr is Fe23Zr6. These findings provide evidence and possible explanation to the

argument of Fe23Zr6 formation.

Figure 4.8: Oxygen appears in the interaction region STEM EDS line scan
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4.2.4 Fe23Zr6 phase formation

The atomic composition across the two particles is plotted in Fig. 4.8. According

to the EDS results, two interesting conclusions can be drawn here: 1) the presence of

oxygen in the core structure, which has darker contrast. 2) the Fe is depleted from

oxygen-rich core structure; also the lower the Fe composition, the higher O compo-

sition and vise versa. The zirconium composition in Fe23Zr6 phase is measured to

be 20 at%, while the oxygen composition is 5 at%. If the oxygen is assumed to take

zirconium substutional sites, the Zr composition should be 25 at% without oxygen

presence. It agrees with the measurement from Liu et al. However, in the oxygen-

rich phase, the Zr composition is measured to be 40 at% , not reflected the oxygen

variation. Furthermore, the sum of Fe and O signals remains constant at about 60

at%, which suggests that oxygen may take the original Fe lattice site. This finding

indicates that Fe23Zr6 is not the phase strongly absorbs oxygen. In addition, the

Fe23Zr6 phase in this present study always surround the Zr-rich particles.A possible

mechanism was proposed by Liu et al. : the Fe23Zr6 phase formation is through

peritectoid reaction of (↵Fe) + Fe2Zr ! Fe23Zr6. It will become di�cult for inside

growth of Fe23Zr6, while the required Fe have to di↵use from the ↵ Fe matrix. How-

ever, the Fe23Zr6 transformation can be compensated via Fe di↵usion from inside the

Fe2Zr phase.If the Fe depletion continues from Fe2Zr phase, it might explain that

observation by Abraham et al. finding the ↵Zr and Fe-Zr mixture inside Fe23Zr6.

Previous studies have suggested that Fe23Zr6 is the phase that strongly absorbs

oxygen, and referred to be a metastable phase. As shown in Fig. 4.8, we have found

that it is Fe2Zr to absorb oxygen, instead of Fe23Zr6. Figure 4.9 reveal the structure

of O-rich Fe2Zr phase. The box region marked in the STEM micrograph is further

characterized by SAD analysis. The SAD pattern was indexed to be the mixture
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of Fe2Zr and ZrO2. The ring-like di↵raction pattern suggests that the core contains

small grains. It agrees with the dark-field TEM micrograph, which shows nanometer

size oxide particles .

Figure 4.9: (a) STEMmicrograph of one selected interaction region; (b) SAD pattern
obtained from the core particle within the box specified region in (a); and (c) dark
field TEM micrograph from the same region.

4.2.5 Radiation induced surface segregation

In addition to the radiation induced phase formation on the Fe side, Fig. ?? shows

BF-TEM of an island-like feature at the near surface region. It appears that the

precipitate formed right above the interaction layer after irradiation. The precipitate

was confirmed to be ↵Fe after SAD analysis, including multiple zone axises and a

convergent beam electron di↵raction (CBED) pattern. The ring-like features also
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suggests that the surface ↵Fe particle consists of nanometer size grains. The interface

between the ↵Fe particle and matrix is quite smooth. It is, therefore, not likely

formed due to the phase segregation while annealing. The island-like features were

not observed on the surface prior to irradiation. This concludes, due to the enhanced

di↵usion, the surface particles are driven by Fe migration towards the surface through

grain boundaries and ion irradiation promotes crystal nucleation and growth. The

mechanism, however, of the precipitate formation remains unclear.

Figure 4.10: (a) Bright-field TEM micrograph obtained from the irradiated sample
and (b – e) SAD patterns collected under di↵erent orientations for the surface particle
marked by the arrow in (a).

4.3 Iron-molybdenum di↵usion couple

Figure 4.11 shows the Fe-Mo phase diagram and suggests two equilibrium phases

of Fe2Mo and Fe7Mo6 : Fe2Mo exists at the composition of 33.3 at% Mo. It has

the MgZn2-type hexagonal structure and belongs to Laves phase called C14; Fe7Mo6
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also has hexagonal structure and exists at a composition range of 39 - 44 at% Mo.

However, the Fe-Mo system is not completely understood regarding the nature of

these two phases. For example, Fe2Mo was first reported by Zaletaeva and Shnha

confirmed its existence. It is also observed multiple times by varying Fe to Mo ratio in

bulk alloy method, but Fe2Mo was not detected by Heijwegen and Rawlings et al. in

di↵usion couples[76, 47, 80, 129, 105, 118, 79]. To understand the phase equilibrium

and irradiation e↵ects in the Fe-Mo system, the di↵usion couple technique was used

to investigate the intermetallic compounds. The advantages of this technique are:

through the thermal interdi↵usion process, phase formation will not limit to the

equilibrated alloy;it can possibly, perhaps at right temperature and time, reveal

most of the compounds from phase diagram.

Figure 4.11: Phase diagram of Fe-Mo
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4.3.1 Phase identification and di↵usion kinetics

An iron-molybdenum di↵usion couple was mechanically bonded via stainless steel

clamp and annealed in a vacuum furnace at 850�C for 15 days. Prior to assembly,

polycrystalline Fe (99.99%) and Mo (99.2%) metal disk were polished and etched

in diluted nitric acid to remove possible oxidation layer. The di↵usion couple was

sealed inside a quartz capsule. Detailed steps can be found in the previous section of

Fe-Zr. The sample was dropped into cold water by breaking up the capsule to speed

up quenching.

SEM and EDS were performed on the interface prior to irradiation. Fig. 4.12a

is the backscattered SEM micrographs and two phases formed at the reaction zone.

According to quantified composition plotted in Fig. 4.12b, the two phases are iden-

tified to be Fe7Mo6 and Fe2Mo. The di↵usion length of each phase was recorded

and Table 4.2 lists the integrated interdifusion coe�cients D̃ of Fe7Mo6 and Fe2Mo

phases. The integrated interdi↵usion coe�cient of the Fe2Mo phase is two times

larger than the Fe7Mo6 phase, which leads to farther di↵usion length of the Fe2Mo

phase in Fig. 4.12a.
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(a) BSE micrograph of Fe-Mo couple

(b) Composition profiles of Fe-Mo couple

Figure 4.12: Fe-Mo di↵usion couple annealed at 850�C for 15 days
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Table 4.2: Extracted integrated di↵usion coe�cients of Fe vs Mo

Fe7Mo6 (at. frac. m2/s ) Fe2Mo (at. frac. m2/s )

0.9 x 10�16 1.94 x 10�16

4.3.2 Ion irradiation and sample preparation

The Fe-Zr di↵usion couple was irradiated with 3.5 MeV Fe ions to 3.5 x 1016

Fe/cm2, corresponding to ⇠ 130 displacement per atom (dpa) at damage peak, at

600�C under 10�6 torr. After ion irradiation, cross-sectional TEM specimens were

prepared in a FEI Quanta 3D FEG dual beam SEM/FIB microscope using lift-out

method. The platinum layer was deposited for few micrometers on the surface to

protect the ion induced features during Ga+ milling. Two steps thining was used

to reduce the ion damage from Ga+ bombardment: relatively high beam current is

for quick material removal and lower beam current with glancing angle is for final

cutting and cleaning purposes.

4.3.3 Post-irradiation characterization

TEM specimens were then characterized by two electron microscope. Selected

area di↵raction (SAD) and X-ray energy dispersive spectroscopy (EDS) for phase

identification was taken by JEOL JEM-2010. Bright-field images, scanning TEM

(STEM) and nanobeam EDS scanning was taken by FEI TECNAI G2 -ST. Both

microscopes were operated with accelerating voltage of 200 kV. The STEM images

were acquired by high-angle annular dark field (HAADF) detector and showed better

contrast upon the atomic numbers di↵erence.

STEM micrograph of cross-sectional Fe-Mo di↵usion couple after ion irradiated

is shown in Figure 4.13. The left side corresponds to Mo side with lighter contrast,
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and relatively dark on the right corresponds to Fe side. The interaction zone in the

middle contains two types of grains,one has the layer-like structures and the other

has the rectangular shapes. The top arrow refers to the ion penetration depth which

is approximately 1.3 um from the surface. EDS line scanning was performed along

the solid arrow to compare the composition within ion bombardment region and

beyond.

The spectrum in Figure 4.13 shows the comparison between irradiated and unir-

radiated regions. The spectrum for irradiated region is collected from the line (less

than 0.5 um beneath the surface). The line scan shows abnormally enhanced di↵u-

sion of Mo, and the sharp interface turns to a gradient-like distribution. In contrast

to the irradiated region, another line scan was performed at 4 um below the surface.

The spectrum shows clear step-height distribution at the interface. Large fluctua-

tions are observed in Fe and Mo signal appears 6 um away from the interface within

the irradiated area. With an close look in Fig 4.13, the solid line in the irradiated

region may scan across newly formed precipitates or large grain boundaries, which

implies ion bombardment helps atomic migration through the grain boundaries.
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Bright-field TEM in Fig. 4.14 are stacked to show the microstructure across

the interaction layer. The white solid line refers to the projected range (RP) of 3.5

MeV Fe ions and the blue arrow below corresponds to the original Fe-Mo interface.

Smaller grains with dark contrast formed in the Fe side within the irradiated region,

averaging 500 nm in size. We believe that the dark contrast is caused by radiation

enhanced Mo di↵usion and it agrees with the line scanning results. The process of

new phase formation is accompanied with grain refinement. No evidence showing the

grain refinement or phase formation on the Mo side. With the help of EDS analysis,

two phases were identified in the interaction region. Layered structure with a dark

contrast on the left is the Fe2Mo, and Fe7Mo6 phase is on the right.

Figure 4.14: BFTEM of Fe-Mo di↵usion couple
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4.3.4 Crystal structures of Fe2Mo, and Fe7Mo6

E↵orts have been made to study crystal structure of Fe2Mo, and Fe7Mo6 phases

for the past two decades. Traditional alloying process, which containing various

composition, were used to verify the phase diagrams. Fe2Mo was reported as a

C14, which belongs to Laves intermetallics with hexagonal closed packed crystal

structure. The other phase has the rhombohedral crystal structure is referred to

Fe7Mo6. Previous studies, done by Raghavan et. al. and Galimberti et. al., showed

the TEM analysis of these two intermetallic phases in steels, and matched with

theoretical data of phase diagram calculation. However, we have been observed

di↵erent crystal structures for both Fe2Mo, and Fe7Mo6 in the current di↵usion

couple.

Fig. 4.15 is the SAD patterns of the Fe2Mo, and Fe7Mo6 phases. Eq. 3.4 allows

us to calculate the lattice parameters and characterize the crystal structures through

di↵raction patterns acquired from TEM. With known Bravais lattice classification,

Fe2Mo phase, Fig 4.15a is well-indexed to be face-centered cubic (FCC) and has

lattice parameter of 0.72 nm. The newly-defined crystal structure is verified through

di↵erent zone axis and take the average lattice parameter due to the variation in

defocusing. Fe7Mo6 phase is also characterized with the same method and referred

to be face-centered cubic (FCC) with lattice parameter of 1.17 nm in Fig. 4.15b.

These two FCC crystal structures of Fe2Mo, and Fe7Mo6 phases are the first time

being reported in the literatures, and more details of the irradiation e↵ect will be

discussed in the later sections.
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(a) SAD pattern of Fe2Mo phase

(b) SAD pattern of Fe7Mo6

Figure 4.15: Crystal structures of Fe2Mo, and Fe7Mo6 phases revealed from selected
area di↵raction (SAD) pattern

4.3.5 Irradiation e↵ects of Fe2Mo, and Fe7Mo6

Fig 4.16 shows the bright-field TEM image and corresponding SAD patterns of

Fe2Mo, and Fe7Mo6 phases. The white arrow refers to the 3.5 MeV Fe ion projected

range ⇠1.1 µm. One of the advantages using the di↵usion couple technique is able to
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study irradiation e↵ects on all possible phases. In previous section, Fe7Mo6 phase is

reported as FCC crystal structure. As we examined the unirradiated region, which is

well beyond ion projected range, and the irradiated region, the SAD patterns reveals

the consistency of the Fe7Mo6 phase throughout the cross-sectional specimen. After

ion irradiation, Fe7Mo6 phase remains its crystal structure and shows the radiation

tolerant up to 100 displacement per atom (DPA). On the other side, the SAD patterns

of Fe2Mo changes significantly after irradiation compared to unirradiated region. The

SAD of Fe2Mo in Fig 4.16 indicates the FCC crystal structure has no longer retained.

Figure 4.16: Microstructure evolution of irradiated Fe2Mo, and Fe7Mo6
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4.3.6 Fe2Mo phase and quasicrystal

Fig 4.16 shows unique SAD patterns of Fe2Mo phase after irradiation, which

indicates a transformation from FCC structure to a di↵erent symmetry. With careful

examination, the unique symmetry we found belongs to one of the quasicrystal (QC)

structures. The quasicyrstal, with forbidden five-fold symmetry, was first discovered

by D. Shechtman in 1982. It lacks of periodicity but possess long-range order.

Fig 4.17 shows the BF TEM image of the irradiated interaction zones and corre-

sponding SAD patterns to show the icosahedral quasicrystal (iQC) structures. We

observed the two-fold (2f), three-fold (3f) and five-fold (5f) symmetry by rotating

the specimen to di↵erent zone axis. It was found within the ion projected range

from the Fe2Mo phase. The icosahedral structure refers to a polyhedron with twenty

identical triangular faces. It contains 12 atoms located at the vertices and 1 atom at

the center of polyhedron. Previous iQC transformation in Fe-Mo system were only

observed in the thin film specimen. Liu et al. reported the iQC from the annealed

Fe-Mo thin film following ion beam mixing. It is, however, the clear evidence that

iQC transformation has been first reported in bulk Fe-Mo systems.
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Figure 4.17: Quasicrystal transformation of irradiated Fe2Mo

4.3.7 New iQC phase discussion

In the previous section, we have shown the transformation of Fe2Mo phase to

icosahedral quasicrystals for the first time. It has been reported by Knapp et al.

and Lilienfield et al. back in 1985, the iQC is formed after 400 keV Xe irradiation.

With similar Fe-Mo system, Liu et al. observed the iQC after anneal at 760�C

following Ar ion irradiation. Most of experiments, however, were done in the multi-

layered and amorphous structures by so-called ion beam mixing. The direct iQC

transformation under ion irradiation in bulk materials, especially in Fe-Mo alloys,

has never been reported. We have observed two FCC structures formed in both

Fe2Mo, and Fe7Mo6 phases after annealing at 850�C, and another FCC structure
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is observed in the Fe-Mo di↵usion couple annealed at 650�C. There is only one

phase formed upon 650�C annealing which doesn’t have enough thermal budget for

di↵usion reaction take place. The crystal structure of the intermetallic phase formed

at lower temperature, in this case 650�C, shows the same FCC structure with lattice

parameter of 0.74 nm. Even the composition is not stoichiometrically the same, but

it reveals the consistency in microstructure evolution. It has been shown in the past

that Fe2Mo phase can be formed upon processing in the variety of steels. Fig. 4.18

is the BF-TEM micrographs and corresponding SAD patterns of the Fe2Mo phase,

which shows the HCP structure. What we believe that it is related to the presence

of impurities, such as carbon, oxygen, and silicon.

(a) Fe2Mo phase in steel (b) SAD pattern of Fe2Mo

Figure 4.18: BF-TEM and corresponding SAD of Fe2Mo phase in steels

The face-centered cubic structure is one type approximant to the icosahedral

quasicrystals, which has been reported by Kuo et al. and Luo et al. The approximant

refers to a crystal structure possesses similar building cluster to the corresponding
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iQC. As shown in Fig. 4.15a, the SAD pattern of Fe2Mo is taken along the [011] zone

axis. If we compare the SAD patterns with the iQC along 5-fold (5f) axis, strong

di↵raction dots along the [011] axis shows similarity of 5f symmetry. However, the

mechanism governing the approximant formation in Fe-Mo system has not been

clarified. Early approaches used to verify the intermetallics of Fe-Mo phase diagram

were mainly arc melting. The presence of oxygen, as impurities, during processing

could be the reason that stabilized HCP crystal structure of Fe2Mo phase. In this

manner, Heijwegen and Rawlings et al. did not observe the Fe2Mo phase using

di↵usion couple technique at the relatively lower temperature, comparing to the

arc melting method. As for the thermodynamic stability, the entropy di↵erence is in

favor of FCC structure at elevated temperatures. After annealing, the quench process

could freeze the high temperature FCC phase. Furthermore, heavy ion irradiation

creates damage cascades and leads to locally thermal spike within the picoseconds

range. The whole process of damage cascades formation take place in extremely short

of time, which equals to rapid cooling of the Fe2Mo crystal structure. The rapid

cooling process could be the possible explanation that forming the iQC due to heavy

ion irradiation. In addition, ion irradiation may take the Fe2Mo with FCC structure

far away from the equilibrium. The phase transformation following ion irradiation

may end with lower energy state, in this case the iQC, reported by Lennard-Jones

potential. It is of interest to conduct more systematic studies, especially theoretically

simulation, for a better understanding of the formation mechanism.

4.3.8 Defect development for Fe and Mo matrix

Followed by the discussion on irradiation induced iQC transformation, Fig. 4.19

is the BF-TEM of irradiated region, including Fe and Mo matrix. Enlarged BF-

TEM micrograph of irradiated Fe7Mo6 is shown in Fig. 4.16 (b). There is no clear
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evidence of voids or dislocation observed. Furthermore, the crystal structure after

irradiation remains the same according to SAD analysis in Fig. 4.19. In addition

to the interaction layer, overview BF-TEM micrographs of irradiated Fe and Mo

from the near surface region are shown in Fig. 4.19 (c) and (d), respectively. Larger

voids and dislocation are observed in the Fe grain, which are primarily caused by

irradiation, and no voids have been observed in the unirradiated region.In contrast,

Mo is featured with evenly distributed but smaller voids, white arrows highlight

the noticeable voids. Fig. 4.19 (d) shows the void-denuded region near the grain

boundary just below the surface.

Figure 4.19: Bright-field TE micrographs of (a) Fe2Mo and (b) Fe7Mo6 , and higher
magnification micrographs of voids formed in (c) Fe and (d) Mo. White arrows
identify position of the representative voids.
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5. URANIUM-BEARING DIFFUSION SYSTEMS

The current section consists of previous experimental attempt in understanding

fuel-cladding chemical interaction (FCCI), especially focuses on uranium/iron and

uranium/nickel. Thermally-activated di↵usion couples were prepared with a series of

temperatures. The goal of this set of di↵usion couples is to study di↵usion kinetics

and composition profile at the interaction layers. The interdi↵usion coe�cients and

activation energy will be discussed upon each phase in order to support computa-

tional and theoretical studies. Another essential point, radiation enhanced di↵usion

(RED) must also be concerned during normal reactor operation. It has a strong im-

pact on predicting the fuel performance. The energetic neutrons and fission products

will cause the system far from equilibrium compared to thermal-activated process.

In this section, two di↵erent types of ion irradiation were carried out to study dam-

age accumulation and provide evidence of RED. In addition, grain boundaries (GB)

have been considered as an important role in the di↵usion mechanism and further

research of interdi↵usion coe�cient may include the GB e↵ect.

Three major investigation will be presented in the following sections : 1) the ura-

nium di↵usion couple- polycrystalline iron. U/Fe assembly will be annealed at 700�C

for 4days followed by helium (He) irradiation. SEM and TEM will be carried out to

study the radiation e↵ects and microstructure evolution. 2) the uranium di↵usion

couple- single crystalline iron and nickel. U/Fe and U/Ni di↵usion couples will be

characterized to study the kinetics at varies temperatures. 3) the uranium di↵usion

couple- thin film deposition. Multiple specimens were characterized using Ruther-

ford Backscattering Spectrometry (RBS) to study radiation enhanced di↵usion and

radiation induced phase formation.
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5.1 Background of fuel cladding chemical interaction with Uranium-based fuel

alloys

There have been a number of programs, such as the Fuel Cycle Research and

Development (FCRD), the Advanced Fuel Cycle Initiative (AFCI) and the Global

Nuclear Energy Partnership (GNEP), supporting the investigation on primary nu-

clear challenges. Major contributions have been made to achieve higher burn up by

improving the fuel performance. Consequently, the increasing damage accumulation

will cause excessive swelling in both fuel rods and structural materials. Once the fuel

pins is in contact with the cladding, intermetallic phases with low-melting tempera-

ture and poor mechanical properties will form due to the interdi↵usion[87, 121, 51,

53, 52, 147, 65]. Experimental and theoretical approaches are required to address the

unknown in fuel cladding chemical interaction. FCCI has the serious impact to the

reactor safety due to the degradation in structural materials and coolant can breach

into the fuel pins cause reactor failure[137, 106, 142, 46].

.

To help clarify how to mitigate the FCCI, e↵orts have been made on two major

directions : 1) study the interdi↵usion products between metallic fuels and cladding

materials. 2) select possible di↵usion barrier elements to delay the process. The

former provides direct observation of intermetallics formation. Uranium based fuel

alloys, with addition of molybdenum and zirconium, were assembled against cladding

materials such as, T91, HT9 farretic/martensitic steels (FMS)[68, 48, 133, 127]. The

later focused on implementing potential liner materials onto the cladding surface.

Vanadium, Zirconium and Chromium coatings have e↵ectively decreased the pene-
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tration depth of the fuel elements and fission products[29, 21]. Complex phases were

usually observed in the previous studies due to the chemical compositions in fuel and

cladding materials[86, 72, 110, 66, 11, 19, 148]. Recently, binary di↵usion systems

have been tested upon key components of FCCI, such as Uranium, Plutonium, Iron,

Zirconium, and Nickel[59, 2, 37, 93, 125, 109, 28]. The simplified di↵usion couples

demonstrate better resolution in characterizing phase formation and microstructure

evolution. However, detailed information of each phase formation is insu�cient in

developing advanced structural materials, such as iron-based alloys and nickel-based

alloys against uranium metallic fuel[45, 115, 69, 128, 70, 18, 98]. Moreover, it is of

also great importance to have reliable interatomic potentials based on experiments

that facilitate atomic simulation. Microsctrural information and kinetic data, of each

phase formed by thermally-activated di↵usion couple will be beneficial for multiscale

modeling in fuel design[29, 21].

5.2 Uranium di↵usion couples – polycrystalline iron

In this section, poly-crystalline Uranium is assembled with poly-crystalline iron

to form thermally-activated di↵usion couple. Complete experimental procedures are

listed in the chapter 3. Specimen was annealed for 4 days at 700�C to avoid eutectic

transformation. Fig. 5.1 is the equilibrium phase diagram of Uranium and Iron. Two

phases are re↵ered as UFe2 and U6Fe. In brief, UFe2 has face-centered-cubic crystal

structure with lattice parameter of 7.5Åand U6Fe takes tetragonal crystal structure.

More importantly, uranium transformation is not involved in the following di↵usion

couple experiments. Highlight of the U/Fe polycrystalline di↵usion couple : we have

reported the kinetic data upon annealing at 700�C; post-irradiation analysis of each

phase reveals the damage accumulation by 2 MeV helium ions; transmission electron

microscope (TEM) was conducted to study helium bubble formation.
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Figure 5.1: Phase diagram of U–Fe

5.2.1 Phase identification and di↵usion kinetics

After annealing, U/Fe di↵usion couple is cut and polished prior to scanning elec-

tron microscope (SEM) and energy dispersive x-ray spectrometry (EDS) charac-

terization. Fig. 5.2a is a typical back-scattered electron (BSE) micrograph of as-

annealed U/Fe couple. Four phases were identified, from left to right, as U, U6Fe,

UFe2 and Fe, respectively. The EDS line-scan spectrum in Fig. 5.2b confirms the

chemical composition (at%) of the two phases formed at interaction region. The

thermal-kinetic data of can be extrapolated from the EDS line scan via Eq. 2.6.

Phase U6Fe has the di↵usion length of 60 µm and phase UFe2 has roughly 10 µm.

The D̃ of each phase are listed in Table 5.1
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(a) BSE micrograph of U– Fe couple

(b) Composition profiles of U – Fe couple

Figure 5.2: U – Fe di↵usion couple annealed at 700�C for 4 days

Table 5.1: Extracted integrated di↵usion coe�cients of U vs Fe

D̃ U6Fe (at. frac. m2/s ) D̃ UFe2 (at. frac. m2/s )

3.31 x 10�16 1.89 x 10�16
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5.2.2 Ion irradiation and sample preparation

The annealed U/Fe di↵usion couple was irradiated with 2MeV He ions to 1 dis-

placement per atom (dpa) at 450 �C. The vacuum was kept under 10�6 torr and

the temperature was monitored within 1% variation throughout the irradiation. The

depth profile of injected He was plotted in Fig. 5.3 using SRIM calculation with

full-cascade option. Peak helium concentration is located at ⇠ 3.2 µm below surface.

Cross-sectional TEM specimen was prepared using focused ion beam (FIB) lift-out

method.

Figure 5.3: Experimental condition – 2 MeV He distribution
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5.2.3 Post-irradiation characterization

Fig. 5.4 is the scanning transmission electron (STEM) micrograph of the cross-

sectional U/Fe di↵usion couple. The overall morphology at the interaction layer

shows ununiformity which suggests complex phase may form during annealing. The

findings from Fig. 5.4 are summerized as follows. Firstly, a band of black dots was

observed across the specimen at roughly 3 µm below the surface. The black dots in

the STEM indicate the empty volume in the specimen and we believe that is cause

by injected helium accumulation. There seems to be some variation of helium bubble

size and density in each phase and detail will be discussed in later sections.

Secondly, EDS analysis reveals the chemical composition of the intermetallics

formed at the interdi↵usion region. According to quantified composition, the inter-

di↵usion region consists a mixture of U6Fe, UFe2 and UO2. The di↵usion length of

UFe2 was measured as 12 µm compared to the SEM results. And yet UO2 phase

was formed during di↵usion couple assembly with possible oxidation on the uranium

disk. The unexpected oxidation became a di↵usion barrier which explains why un-

uniform phase formed at the interaction layer. In addition, a band of helium bubbles

was observed at the depth roughly 3 µm below surface, which matches with the

SRIM calculation. However, the bubble size varies along with di↵erent phase formed

throughout the interdi↵usion zone.
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Figure 5.4: Helium accumulation in DU–Fe di↵usion couple.

Fig. 5.5 shows a STEM micrograph with lower magnification and yellow-dash

line is denoted to the helium peak accumulation. The U6Fe phase seems to contain

relatively large size of helium bubbles and the island-like UO2 phase can be seen

along the interface. Further crystal structure characterization was carried out by

using selected area di↵raction (SAD) patterns. Five areas of interest were marked

as A- E, and corresponding SAD patterns were indexed below. The dark matrix on

the left is iron, which has relatively lower atomic number. The phase next to iron
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is well-indexed as UFe2 with FCC crystal structure. Oxide materials usually have

darker contrast in the STEM micrograph and SAD pattern of area D is referred as

UO2 phase. U6Fe phase were indexed from the area C and E,which is surrounding

the island-like UO2 phase.

Figure 5.5: Microstructure of the intermetallic compounds – SAD patterns.

Post-irradiation BF-TEM micrographs from each phase are shown in Fig. 5.6.

Pure uranium phase is not covered in this section due to the width limit of FIB

preparation. A long the depth of helium accumulation, it is subjected to investigate

helium bubbles developed in each phase. Region A was taken from the U6Fe phase.
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The area is not quite electron transparent due to the higher uranium content. The

diameter of the helium bubbles in the U6Fe phase is ranging from 50 to 80 nm. Region

B represents the UO2 phase and contains smallest helium bubbles with averaging 20

nm in diameter. The helium bubbles appear to have a wide size distribution in the

UFe2 phase. As shown in region C, the diameter of helium bubbles ranges from 20nm

to 80nm. Also, small helium bubbles tend to move to each other and form medium

size bubbles. Same happens to the medium helium bubbles. Additionally, helium

bubbles are observed to decorate at grain boundaries in the UFe2 phase. In contrast

to the UFe2 phase, relatively larger helium bubbles were observed, which indicates

helium is more mobile, in the U6Fe phase. On the other hand, the bubbles in the

UO2 phase are the smallest in diameter but with highest density. Region D shows

the helium bubbles distribution in the pure iron area.

To sum up, we have demonstrated an e↵ective way to study FCCI with combined

radiation e↵ect. With the di↵usion couple technique, U/Fe phase diagram is verified.

Interdi↵usion coe�cients of U6Fe and UFe2 are extracted after 700�C annealing. The

radiation e↵ect, such as swelling behavior, is studied for each phase formed at the

interaction layer. Oxygen should be avoided throughout the sample preparation

to minimize the surface oxidation, which alter the di↵usion length and block the

path. Next session will be focus on single crystalline iron with three sets of elevated

temperatures. The kinetics and activation energy will be discussed.
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5.3 Uranium di↵usion couples – single crystalline iron

In this section, single crystalline iron will be assembled with poly-crystalline ura-

nium to form di↵usion couples. The temperatures selected for annealing is marked

as red window in Fig. 5.7. Similarly, eutectic temperature is avoided and no ura-

nium transformation is involved. Complete experimental procedures are listed in the

chapter 3. The U/Fe di↵usion couples were annealed at 575�C, 600�C, and 625�C

for 7 days, 6days, and 5days, respectively.

Figure 5.7: Phase diagram of U–Fe.
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5.3.1 Thermal-kinetics of as-annealed U/Fe di↵usion couple

After annealing, each di↵usion couples were cut in half and polished for further

SEM characterization. EDS line scans were carried out on U6Fe and UFe2 phases

upon each annealing temperatures. Two equilibrium phases were present at each

annealing temperature and matched the stoichiometry from the U-Fe phase diagram.

Next, the width of each phase formed at the interaction layer will be measured. The

integrated interdifusion coe�cients were calculated by using Eq. 2.6, and D̃ of each

phase are listed in Table 5.2. More importantly, Eq. 2.7 is used to extrapolated

the activation energy of each phase, which is essential for modeling to describe the

barrier of atomic movement. The activation energy Q of each phase in the U/Fe

di↵usion couples is listed in Table 5.3

Table 5.2: Extracted integrated di↵usion coe�cients of U vs Fe

Temperature (�C) D̃ U6Fe (at. frac. m2/s) D̃ UFe2 (at. frac. m2/s)

575 2.71 x 10�18 9.9 x 10�20

600 2.34 x 10�17 1.35 x 10�18

625 1.45 x 10�16 9.33 x 10�18

Table 5.3: Activation energy of U6Fe and UFe2

Q U6Fe (KJ/mol) Q UFe2 (KJ/mol )

416.5 449.5
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In comparison, Fig. 5.8 plotted the interdi↵usion coe�cient of U/single-crystalline

iron couples against U/poly-crystalline iron couples. Sohn et al. [63, 49]reported the

interdi↵usion coe�cients between uranium and poly-crystalline iron, similar tech-

nique was used but annealed at 580�C, 615�C, and 650�C[50]. The red and black

dash line are replotted from previous study and represent the U6Fe and UFe2 phase,

respectively. In the same way, solid lines were acquired in this study and denoted to

U6Fe and UFe2 phase, respectively.

The interdi↵usion coe�cients in poly-crystalline specimens are an order of mag-

nitude higher than those in single-crystalline specimens. Grain boundaries (GB)

provide additional path for di↵usion in the poly-crystalline materials. While this is

the case, the uranium di↵uses faster in the poly-crystalline iron even with shorter

annealing period , which means less thermal budget. According to Table. 5.3, U6Fe

phase has lower activation energy which indicates it di↵uses faster. As a result, the

U6Fe phase formed wider at the interaction layer. Also, the interdi↵usion coe�-

cients of U6Fe and UFe2 phase show the same trend in both single crystalline and

poly-crystalline couples.
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Figure 5.8: Integrated interdi↵usion coe�cient : single crystalline vs poly-crystalline.

5.3.2 Radiation enhanced di↵usion in U/Fe single-crystalline di↵usion couple

In addition to kinetics study, He implantation was performed to investigate radi-

ation e↵ects upon di↵usion. In this section, U/Fe single crystalline di↵usion couple

was annealed at 625�C for 5 days. After annealing, specimen were cut in half to avoid

surface oxidation/contamination. Prior to irradiation, sectioned specimen were pol-

ished down to micrometer suspension to remove surface roughness. The inset of FIg.

5.9a is the typical backscattered SEM(BS-SEM) micrograph from as-annealed U/Fe

di↵usion couple . BS-SEM micrograph indicates that two phases were formed at the
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interdi↵usion region. EDS line scans were carried out across the bulk materials and

the interface. According to Fig. 5.9a, two phases were identified as U6Fe and UFe2.

The width of the U6Fe phase is measured to be ⇠ 20µm at the interaction layer and

the UFe2 phase has di↵used ⇠ 3µm.

The U/Fe di↵usion couple were then irradiated with 2 MeV He ions at 450�C to

1 displacement per atom. The vacuum was kept under 10�6 torr during irradiation.

The temperature was controlled less than 1% variation.The incoming He ions were

perpendicular to the interface. Post-irradiation analysis were performed using SEM

and EDS in comparison with as-annealed samples. The inset of Fig. 5.9b is the

BS-SEM micrograph of post-irradiated specimen. The EDS line scan were plotted in

Fig. 5.9b and the profiles shows enhanced di↵usion in both phases after irradiation.

The width of U6Fe phase increased to ⇠ 27µm, while the UFe2 only increased to 4µm.

The helium irradiation cause the U6Fe and UFe2 phase di↵used 35% and 25% more,

respectively. This section has provided the evidence that radiation enhanced di↵usion

can be studied by using di↵usion couple technique. The enhanced di↵usion length

can o↵er insights to support computational modeling through various temperatures

and He energy.
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(a) As-annealed U – SCFe couple

(b) 2 MeV He irradiated U – SCFe

Figure 5.9: Corresponding EDS profiles of U (red) and SCFe (blue) distributions at
625�C for 5 days
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5.4 Uranium di↵usion couples – single crystalline nickel

Nickel plays a significant role in cladding materials, especially the austenitic steel

used for current boiling water reactor (BWR). In the presence of nickel, high tem-

perature operation and better corrosion resistance can also be achieved for the ad-

vanced reactor application. Fig. 5.10 is the uranium/nickel phase diagram, and there

are seven equilibrium phases including UNi5, U0.22Ni0.78, U0.23Ni0.77, UNi2, U11Ni16,

U7Ni9 and U6Ni. Kimmel et al. [73] has investigated growth kinetics using nickel

plated uranium and only three phases were observed after annealing at 600�C for

four days. Steinegger et al. [1] also reported six intermetallic phase formed using

vacuum cast. Nickel has also been considered as the di↵usion barrier in-between fuel

and cladding materials. However, the fundamentals of nickel or nickel-based alloys

upon FCCI are quite limited. This section will be focused on the interdi↵usion be-

tween uranium and single-crystalline nickel. Single-crystalline nickel were assembled

with uranium, then annealed at 675�C, 700�C, and 725�C for 15 days, 13 days and

11 days, respectively. Fig. 5.10 is the uranium/nickel phase diagram, and eutectic

temperature was avoided in these U/Ni di↵usion couples.
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Figure 5.10: Phase diagram of U–Ni.

Scanning electron microscope (SEM) and energy dispersive X-ray spectrometry

(EDS) were carried out to investigate the intermetallic phase formation. Fig. 5.11a

is the typical BSE micrograph of U/Ni di↵usion couple annealed at 725�C for 11

days. There seems to be 6 phases formed at the interaction layer. The average width

of each phase is measured by using built-in function of the post-image process. Fig.

5.11b shows the enhanced contrast of the original BSE micrograph. Hence, 7 phases

are revealed and measured. The UNi5 phase has the largest di↵usion length, whereas

the U11Ni16 phase di↵used least. Furthermore, EDS line scans were performed across

the interaction layer upon three U/Ni di↵usion couples. Multiple scans were taken to

have better statistics and average EDS profiles were plotted in the following section.
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(a) BSE micrograph of U – Ni couple

(b) Enhanced contrast BSE micrograph of U – Ni couple

Figure 5.11: U – Ni di↵usion couple annealed at 725�C for 11 days
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To date, there has been no systematic study of U/Ni intermetallics formation.

In this section, we have demonstrated seven U/Ni phases formed by using di↵usion

couple technique at elevated temperatures, 725�C for 11 days in Fig. 5.11b. In

the next session, di↵usion couples annealed at 675�C, 700�C, and 725�C will be

examined upon intermetallic phase formation and di↵usion kinetics. EDS line scans

were conducted across the interaction layer for all three U/Ni di↵usion couples. Fig.

5.12 shows the composition profiles of each annealing temperature, and the resolution

of EDS line scan is 100 nm.

The EDS profile provides the chemical composition (in at%) and di↵usion length

of each phase. As shown in Fig. 5.12, the step-height spectra indicate that all seven

intermetallics were formed throughout three elevated temperatures. Ui5N phase

formed the widest intermetallics upon all the other 6 phases, which is measured to

be over 40 µm . As the annealing temperature increased, the U7Nii9 phase started

to grow faster where the UNi5 phase is sacrificed. The overall thickness of the

interaction layer didn’t change but each phase. The details of the phase formation

will be discussed in later section on interdi↵usion coe�cient and activation energy.
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(a) U – SCNi di↵usion couple annealed at 675�C

(b) U – SCNi di↵usion couple annealed at 700�C

(c) U – SCNi di↵usion couple annealed at 725�C

Figure 5.12: Corresponding EDS profiles of U (red) and SCNi (blue) distributions
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According to the BS-SEM micrograph and EDS profiles, the di↵usion length of

each phase were identified. The interdi↵usion coe�cients of each U/Ni intermetallics

were calculated based on Eq. 2.6, and D̃ of each phase are plotted in Fig. 5.13. As

a result, by using Eq. 2.7 the activation energy Q of each phase were extracted in

Table 5.3. It has a good agreement in trend with Kimmel et al, who previously

reported Q of U6Ni, U7Ni9 and UNi5 phase.

The UNi5 phase possesses the lowest activation energy, which indicates it di↵uses

faster compared to other phases. It can be seen that the UNi5 phase formed a relative

wide layer at lower annealing temperature. On the other hand, the U6Ni phase has

second smallest activation energy, however, the widest di↵usion length was observed

throughout three temperatures. It is worth noting that the di↵usion length between

the U7Nii9 phase and the UNi5 phase. These two phases have a competing e↵ect

during layer growth. As Fig. 5.12 shown, with increasing temperature to 725�C

the U6Ni phase grew thicker while the UNi5 phase started to shirk. All the phases

interact with each other, as well as the growth process. For instance, U0.22Ni0.78

phase next to UNi5 phase also grew thicker at 725�C. Detailed mechanism of the

competing e↵ect in each phase is not clear yet, but we have reported the growth

kinetics of 7 U/Ni intermetallics for the first time.
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Figure 5.13: Interdi↵usion coe�cient of U–SCNi couple.

Table 5.4: Activation energy of U/Ni intermetallics

Phase Q (KJ/mol )

UNi5 67.1

U0.22Ni0.78 110.4

U0.23Ni0.77 138.9

UNi2 232.9

U11Ni16 325.2

U7Ni9 179.1

U6Ni 99.2
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5.5 Uranium di↵usion couples – thin film deposition

In contrast to the solid-solid di↵usion technique in previous sections, thin-film

deposition was employed to investigate radiation enhanced FCCI. There are several

disadvantages of using traditional bulk di↵usion couple assembly, especially uranium

is involved. Severe surface oxidation, as shown in the previous U/Ni couples, usually

leads to poor bonding and rough interaction regions. The oxides formed at the in-

terface would most likely block the di↵usion which cause inhomogeneous interaction.

Large interface variation was observed due to the poor bonding and crack forma-

tion, which is di�cult to study the radiation e↵ects consistently. Therefore, physical

vapor deposition was employed to achieve highly uniform metal thin-film. The thin-

film is independent to the substrate roughness and contains no cavities compared

to mechanically bonded di↵usion couples. The deposition process was carried out

following argon ion etching which e↵ectively reduced the surface oxidation. Detailed

deposition procedures are listed in the chapter 3.

Three sets of metal thin-film were deposited onto uranium substrate with alloy

composition of Fe(99.9%) , Fe-20wt%Cr and Fe-20wt% Cr-20wt%Ni. The tin-film dif-

fusion couples were then irradiated with 3.5 MeV Fe ions to study radiation enhanced

di↵usion on FCCI. Fig. 5.14 is the damage profile and injected Fe ions distribution

calculated using SRIM code. The SRIM calculation is based on the specimen ori-

entation, which consists the 480nm thin-film and uranium substrate. The interface

between thin-film and substrate is denoted to Fe/U. The thin-film di↵usion couples

were then irradiated to the fluence of 9 x 1015 / cm2. The damage created in the

thin-film reaches ⇠ 10 dpa and ⇠ 20 dpa in the uranium substrate. Considering the

loss of thin-film during irradiation, only a layer of ⇠ 1.4nm were removed based on

sputtering yield calculated by SRIM code. The direct compositional redistribution
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can be ignored due to less than ⇠ 0.05 atomic density change.

In order to investigate radiation e↵ect, two specimens of the same alloy compo-

sition were loaded each time. The Fe ion irradiation were carried out at 450�C and

550�C. The control specimen was placed next to the irradiated area but masked,

which only thermally-activated di↵usion was induced. Di↵usion kinetics were char-

acterized by using Rutherford backscattering spectrometry (RBS) with 2 Mev He

ion beam to compare before and after ion irradiation. Then, the RBS spectra were

fitted with SIMNRA code to extract the composition.

Figure 5.14: Experimental condition – 3.5 MeV Fe distribution.
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5.5.1 Rutherford backscattering spectra of thin-film couples with radiation e↵ect

Fig. 5.15 is a typical random spectra of the thin-film di↵usion couples. The

black is the virgin spectra, which is as-deposited. The green is the control specimen

which was only annealed at the irradiation temperature. The red is the spectra with

irradiation at elevated temperature. The individual contribution of the Fe (56), Cr

(52) and Ni (59) will not be separable due to close atomic masses.

For instance, the front of the virgin spectra at channel number 400 is contributed

by alloy thin-film, consist of Fe, Cr and Ni signals. As for uranium substrate, the

yield front is shifted to lower channel number due the energy loss of the incoming

He ions. Without the presence of the thin-film, the pure uranium yield front should

appear close the channel number 500. Consequently, any yield front larger than

channel number 400 indicates the uranium di↵uses toward the surface. According to

Fig. 5.15, enhanced uranium di↵usion was observed for each irradiated specimens

(red line). However, in both b-2 and c-2, significant fraction of uranium di↵used to

the surface at 550�C lead to sharp peak at channel number 500. In that case, no

di↵usion kinetics were extracted for U/(Fe+Cr) and U/(Fe+Cr+Ni) couples at the

temperature.
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Figure 5.15: RBS spectra of U/Fe , U/(Fe+Cr), and U/(Fe+Cr+Ni)

SIMNRA code was employed to extract the di↵usion profiles. 20 layers were

generated to fit the RBS spectra, in which the deepest layer referred to uranium

substrate. The fitting process started from the surface layer since uranium and al-

loy are well-separated. Then by changing the uranium concentration incrementally

towards the deeper layer. Fig. 5.16 is the demonstration of the accuracy using SIM-

NRA code. The inset is the extracted uranium concentration upon 20 layers fitting.

The red point indicates the 10% shift in the uranium concentration. Noticeable

changes are marked as two arrows in the red fitting spectra which illustrates high

sensitivity to the uranium concentration.
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Figure 5.16: Sensitivity testing for the RBS spectra fitting in SIMNRA

5.5.2 RBS spectra and SIMNRA fitting analysis of U/Fe couples

Fig. 5.17 shows RBS spectra from the U/Fe thin-film di↵usion couples. Exper-

imental spectra were plotted as gray squares and overlap with SIMNRA fitting in

black solid lines. The virgin U/Fe spectrum was taken and fitted, along with spec-

tra from control and irradiated specimens at 450�C and 550�C, respectively. With

the SIMNRA fitting, corresponding U/Fe concentration can be extracted. Fig. 5.18

shows the extracted composition profiles from exterior surface toward the uranium

substrate. Uranium concentration is plotted in log scale to compare between con-

trol and irradiated specimen at 450�C. Small but noticeable enhancement can be
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observed. The smooth concentration gradient between uranium and iron suggests no

intermetallics formation.

The interdi↵usion became greater at 550�C with wider concentration gradient of

uranium and iron. The radiation enhanced di↵usion is stronger from the uranium

profile plotted in log scale. More importantly, the irradiation induced intermetallic

phase formation is observed. The composition profile of the irradiated U/Fe started

to form a transition regime with step-like distribution, whereas the control specimen

shows smooth concentration gradient. The possible intermetallic formed at the arrow

is likely to be U6Fe phase.

Figure 5.17: Simulated spectra for U/Fe couple
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Figure 5.18: Extracted concentration from simulated spectra – U/Fe couple

5.5.3 Extracted interdi↵usion coe�cient from RBS spectra – U/Fe couple

In order to calculate the interdi↵usion coe�cient of the U/Fe couple, modified

steps from the Equation 2.5 and 2.6 are listed as follows. First , Motano plane is

determined using the Equation. 5.1,

Z
C

+1
U

C

�1
U

(x� x0)dCU

= 0 (5.1)

where C
U

is referred to uranium concentration at position x. The uranium con-

centration is 0 at the film surface and 1 at the uranium substrate. Second, the

interdi↵usion coe�cient based on uranium concentration is calculated using Equa-

tion. 5.2.
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U

(5.2)

The C⇤
U

is the corresponding uranium concentration where the interdi↵usion co-

e�cient is obtained. The fluctuation of dC
U

/ dx is minimized by using build-in

Spline method of commercial software.

Fig. 5.19 shows the extracted uranium interdi↵usion coe�cient from U/Fe control

specimens and irradiated specimens. It has been shown that the di↵usivities decrease

when uranium concentration increase. With the irradiation, the di↵usivity shows

approximately 25% increase at 450�C and 40% at 550�C compared to the di↵usivities

of control specimens. The activation energy can be calculated by using Equation.

2.7 and ⇠ 0.2eV is obtained for 450�C regime. Above 0.4 uranium concentration at

550�C, the interdi↵usion coe�cient deviated from the straight line trend and lead to

higher di↵usivity. And yet, possible phase formation at that region and Equation.

5.2 became invalid due to the flux is no longer proportional to the concentration

gradient.
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5.5.4 RBS spectra and SIMNRA fitting analysis of U/(Fe+Cr+Ni) couples

All the experimental spectra and SIMNRA fitting spectra only include 450�C

data due to excessive uranium di↵used toward surface at 550�C. For the U/(Fe+Cr)

di↵usion couples, longer di↵usion tail were observed after irradiation. In addition,

both control and irradiated specimens showed step-like profile, which indicates pos-

sible phase formation. Due to close atomic masses between iron and chromium, it is

di�cult to identify which phase formed. Uranium and chromium does not form bi-

nary compound while two equilibrium U/Fe phases exist in the phase diagram. With

the Cr addition, it promotes the U/Fe phase formation without irradiation. No dif-

fusivities analysis since the Equation. 5.2 is not valid. In contrast to the U/(Fe+Cr)

di↵usion couples, no step-like profiles were observed in the U/(Fe+Cr+Ni) di↵usion

couples. However, the radiation enhanced di↵usion still present upon the uranium

profiles in log scale.

The di↵usivity is strongly dependent to two factors, one is di↵usion length and

the other is di↵usion frequency. The di↵usion length is unlikely to be changed since it

is related to the vacancy binding energy. On the other hand, the di↵usion frequency

is determined with either the probability of finding a nearby vacancy or the energy

barrier needed to take a vacancy site. The damage cascades created by ion irradiation

will induce supersaturated point defects. The net vacancies increased and the system

is far from equilibrium which can overcome the energy barrier easily. Also, the defect

recombination promotes atomic movement, including the phase formation.
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Figure 5.20: Extracted concentration from simulated spectra – U/(Fe+Cr) and
U/(Fe+Cr+Ni) couple
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6. SUMMARY

The purpose of the current section is to highlight the major findings of this disser-

tation. Through the di↵usion couple technique, a wide range of intermetallics can be

investigated for fundamental studies. Coupling with ion irradiation, radiation e↵ect

can be discussed on each phase, which provides useful information on developing new

materials or solving the existing issues. The complexity of the advanced alloys can

be simplified into binary system, not limited to microsctructural characterizations

but mechanical properties measurement can be applied as well when needed.

In addition, fuel cladding chemical interaction is essential to simulate the fuel

performance. Microstructure evolution under irradiation provides detailed insight to

study the atomic potential far from the equilibrium. Understanding the interdi↵u-

sion between fuel constituent and cladding component will help predict the reactor

lifetime. Furthermore, radiation e↵ect has strong impacts to retard the di↵usion pro-

cess compared to steady-state FCCI and promote undesired phase formation which

can cause poor mechanical properties. Also, di↵usion coe�cient, activation energy

and crystal structures are required to support fuel element redistribution modeling.

Throughout this dissertation, we have demonstrated a novel methodology to

study fundamentals of phase formation and di↵usion kinetics. More importantly,

radiation e↵ects of FCCI is also studied. The summary is broken into two portions.

The first is related to uranium-free di↵usion systems, and the second is related to

uranium-bearing systems.

6.1 Uranium-free di↵usion systems

Zirconium and molybdenum, major components in the metallic fuel fabrication,

have been studied using di↵usion couple technique. Binary systems were assembled
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with iron, a surrogate to the cladding materials. Both Fe/Zr and Fe/Mo systems

were annealed at 850�C for 15 days to study thermally-activated di↵usion. Four

equilibrium phases were identified as FeZr3, FeZr2, Fe2Zr and Fe23Zr6 in Fe/Zr dif-

fusion couple. Surprisingly, with the presence of oxygen in the mixture of Fe2Zr and

Fe23Zr6 phases, we were able to clarify the formation mechanism of Fe23Zr6. Our

findings indicated that the Fe23Zr6 phase first form at the interface of iron matrix

and the Fe2Zr phase. Then, iron depleted from Fe2Zr phase towards the Fe23Zr6

phase and formed Zr-rich core. The oxygen was likely to take the empty iron lattice

site based on the EDS profile. On the other hand, two phases formed in the Fe/Mo

di↵usion couple. These two intermetallics are stoichiometrically the same to the equi-

librium phase reported in the phase diagram, but take di↵erent crystal structures.

The Fe7Mo6 and Fe2Mo phases were both identified as Face-centered Cubic (FCC)

in this study, instead of hexagonal structures. Based on the findings via the di↵usion

couples technique, it can be argued that traditional alloying method may introduce

impurities and stabilize the crystal structures.

Considering radiation e↵ect, both Fe/Zr and Fe/Mo di↵usion couples were irradi-

ated with 3.5 MeV Fe ion. As a result, the Fe/Zr systems show significant radiation

enhanced di↵usion. It is also observed that new nano-meter size grains formed after

irradiation in the Fe matrix, which may be Fe-Zr intermetallics due to additional

Zr presence. There are no signs of phase transformation of all equilibrium Fe/Zr

compounds. Similarly, radiation enhanced di↵usion and radiation induced phase for-

mation are observed in the Fe/Mo di↵usion couple. The Fe2Mo phase transformed

to icosahedral quasicrystal which is the first time reported in the bulk materials. It

turned out the FCC crystal structure is the approximant of the iQC. This discovery

has huge impact to the fundamental transformation of iQC. With the simple binary

system, iron and molybdenum can be modeled using known atomic potential.
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6.2 Uranium-bearing di↵usion systems

The depleted uranium has been tested to form multi-component solid-solid dif-

fusion couples. Iron was then selected and formed di↵usion couple to study fuel

cladding chemical interaction. First, poly-crystalline iron were assembled with DU

and annealed at 700�C for 4 days. Two equilibrium phases were identified as UFe2

and U6Fe and interdi↵usion coe�cient were calculated for each phase. The U/Fe

di↵usion couple were then irradiated with 2 MeV helium at 450�C. Transmission

electron microscope was carried out to study the helium accumulation of the U/Fe

intermetallics. The UFe2 shows 3.9% swelling, three times higher than in U6Fe phase.

Second, depleted uranium was bonded against single-crystalline iron to study di↵u-

sion kinetics. Specimens were annealed at three elevated temperatures. The interdif-

fusion coe�cients were extracted for each phase and furthermore activation energies

were obtained. We also compared the di↵usion kinetics of the single-crystalline iron

with poly-crystalline iron, which di↵used an order of magnitude faster due to the

grain boundaries. The interdi↵uson between uranium and nickel is also studied. The

U/Ni di↵usion couples were annealed at three elevated temperatures. Seven equi-

librium phases, UNi5, U0.22Ni0.78, U0.23Ni0.77, UNi2, U11Ni16, U7Ni9 and U6Ni, were

observed consistently in all temperatures for the first time. Systematic di↵usion

kinetics were studied and activation energies of each phase were obtained.

Thin-film deposition was also employed to study di↵usion kinetics.Several advan-

tages list as follows, 1) the deposition is independent to the substrate roughness. 2)

no cavities due to the homogeneous growth, atom by atom. 3) the ion etching prior

to the deposition can significantly reduce oxidation. Radiation enhanced di↵usion is

observed using Rutherford backscattering spectrometry (RBS), which is a fast and

non-destructible technique. RBS spectra were then fitted to the SIMNRA code and
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chemical composition upon di↵usion was extracted. Di↵usion kinetics and activation

energies were calculated using normalized uranium concentration.

To sum up, the thermally-activated di↵usion couples can be utilized for di↵erent

research purposes. Here we have shown a series of multi-component systems to study

FCCI. As a result, di↵usion coe�cients, activation energies, and crystal structures

can be a huge assets to the computational modeling. With on single di↵usion couple,

phase diagrams can be verified along with the radiation e↵ect of each phase. In ad-

dition, simple binary di↵usion systems are the fundamentals to the complex system,

such as metallic fuel alloys against advanced steels.
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