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ABSTRACT

A class of codes, half-product codes, derived from product codes, is characterized.

These codes have the implementation advantages of product codes and possess a

special structural property which leads them to have larger (at least 3
2

times more)

minimum distance than product codes. With the same length and rate, they have

better scaling in the error floor than product codes. They also have a larger minimum

stopping-set size under iterative decoding which provides better scaling. The main

results of this thesis are summarized as follows:

1. Encoding and decoding methods of half-product codes are described.

2. The minimum distance of these codes is derived, and proved to be at least 3
2

times larger than that of the product codes for the same rate and block length.

3. The performance of iterative decoding in the error floor region is analyzed by

enumerating the minimum stopping-set patterns for these codes. The results

are compared with product codes.

Simulations are also performed to compare the half-product codes with product

codes. We conclude that half-product codes scale better in the error floor than

product codes in the region where the minimum stopping-sets dominate the error

floor, and that they have same threshold as product codes when rate is same and

code length is increased to infinity .
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1. INTRODUCTION

This thesis considers a classical family of codes called product codes (PCs) and

develops the theory for related class of codes, called half-product codes (HPCs). In

particular, this thesis claims that HPCs are superior to PCs when compared fairly.

1.1 Background

Even though product codes were proposed a long time ago [1], they are still being

used in practice because of their efficient implementation. In particular they are

used for high data rate applications through low error rate channels such as Optical

Transport Networks (OTN), where the data rate can be 100 Gbit/sec. These are also

used in the applications where frame lengths are in excess of 105 bits and the code

rates are greater than 0.9 [2]. These codes can be found used in the CD standard

IEC-908, the CD-ROM standard ECMA-130, and in the DVD standard [3].

Product codes are useful for a variety of reasons including their burst-error cor-

recting capabilities [4]. They were first introduced by Elias in [1] around five decades

ago. Elias showed that the minimum distance of binary product codes is equal to

the product of the minimum distances of their component codes. They have been

extensively studied ever since, because of their ease in the implementation. There

are many decoders proposed for these codes, but one among them stood out to be

efficient in implementation, i.e., the cascade decoding, which was introduced by N.

Abramson in [5]. In his words, the cascade decoder is an efficient decoder because

of two things, one, they can be easily built, and two, instead of correcting all error

patterns with weight less than some fixed value and no error patterns of greater

weight, the cascade decoders correct many more error patterns beyond their guar-

anteed correction capability [5]. There are many versions of row-column decoding
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that have been proposed and analyzed in the literature. There are also many mod-

ifications to product codes that have been proposed for specific applications [2]. In

[2], Justesen analyzes the performance of the product codes and related structures

with iterative decoding. In the same paper, Justesen suggests an idea of a possible

modified construction of the product codes called half-product codes. However, the

paper doesn’t provide many details related to these codes. This thesis explores some

important properties and details of half-product codes.

1.2 Our work

In our work on the half-product codes, the encoding and decoding methods of

these codes are suggested. Their properties such as dmin, minimum stopping set

patterns, and enumeration of these patterns are derived. Then, the codes are com-

pared with the parent codes of these, the product codes. The error floor of these

codes have been analytically calculated and is compared with the error floor of the

product codes. It is concluded that the error floor in the half-product codes scales

better than that of the product codes. Simulation results are also presented and the

performance is discussed.

1.3 Organization

In this report, chapter 2 gives an introduction, and a summary on the product

codes. Chapter 3 presents our work in the half-product codes. It details on encoding

and decoding methods. It presents the derivation and proof on dmin(lower bound)

of the half-product codes. It gives the error floor analysis, and concludes with a

comparison to the product codes. Chapter 4 shows the simulations performed in this

work, discusses the results obtained, and describes our conclusions.

2



2. PRODUCT CODES - A SUMMARY

In this chapter, some required description on the product codes is provided. This

chapter also serves to build the notation required for the next chapters.

2.1 Preliminaries

Product codes (PCs) are formed by arranging the code symbols in a matrix

form with rows forming one component code and columns forming another [5]. Let

C1(n1, k1, d1) and C2(n2, k2, d2) be two binary linear codes of lengths n1 and n2,

dimensions k1 and k2, and minimum distances d1 and d2, respectively. The product

code C = C1⊗C2 consists of all matrices whose rows are in C1 and whose columns are

in C2. The product code C is a (n, k, d) code where its length is n = n1n2, dimension

is k = k1k2, and its minimum distance is d = d1d2. The structure of C is illustrated

in Figure 2.1.

k1

n1

k2

n2

Figure 2.1: Structure of product code.
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2.2 Encoding

The top left part of the matrix contains k1k2 information symbols. The first k1

columns are encoded into n1 columns so that each row is contained in C1. Now,

after the first k2 rows are encoded, they are encoded into n2 rows so that each

column is contained in C2. This process of encoding can also be seen in terms of the

generator matrix. The generator matrix of the product code is the kronecker or the

tensor product of the generator matrices of the component codes [6]. The encoding

operation can be concisely given in the following theorem.

Theorem 2.1 (Encoding). If the component codes of the product code C, given by

C1(n1, k1) and C2(n2, k2), have generator matrices G1 and G2 respectively, then the

encoding of the message matrix, Mk1×k2, into a codeword c ∈ C is given by

c = GT
1MG2.

The proof for this theorem can be easily seen by the construction process given above.

2.3 Decoding

The decoding of product codes can be done in an iterative fashion. In each step of

iteration, some errors are corrected, until the codeword is corrected or can no longer

be corrected. The structure of the product code also suggests a decoding process—

the process where decoding of the rows and columns occur independently. So, the

natural method of decoding is the cascade decoding, introduced by N. Abramson in

[5], in which a received codeword is passed through the cascade of row and column

decoders. The row decoder decodes all rows at once, and then the column decoder

decodes all columns at once. This process is carried out iteratively until the decoding

may no longer result in a new word (see figure 2.2).

4



Row Decoder

Row Decoder

Column Decoder

Column Decoder

b

b

b

Figure 2.2: Cascade Decoding.

Let us see the decoding capability of the product codes. The structure of the

product codes with cascade decoding method makes a subtle difference in the decod-

ability of the codes, to the product codes from the regular linear block codes. The

difference is that the relation between the bound for the number of errors decodable

and the minimum distance is no longer valid. That is, the number of correctable

errors by the cascade decoder for the product codes is not dmin−1
2

. This is because of

certain patterns of errors occurring, called stopping-set patterns. For example let us

consider the following simple stopping-set pattern.

0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Figure 2.3: 4 error stopping-set

Figure 2.3 shows a pattern of errors that is uncorrectable when 1-error correcting

component codes, for example—(7, 4) Hamming codes, are used for the rows and
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columns. The minimum distance of each component code is 3 and so the minimum

distance of the product code formed by these component codes is 9. We see that

this pattern can not be reduced in row decoding as the pattern has 2 errors in two

rows and the row component code can only correct 1-error, and similarly, it can not

be reduced in column decoding. So, this pattern remains uncorrected even though 4

errors is correctable by minimum distance decoding because 4 ≤ 9−1
2

.

2.4 Decoding Capability of Product Codes

It is clear from above that the relation between the number of correctable errors

and the minimum distance of the product code is different from that of a regular

linear block code. Now, we will compute the expression for the minimum number

of errors that are uncorrectable by cascade decoding of product codes, as is given in

[5].

Let the row component code, C1(n1, k1), be a t1−error correcting, and let the col-

umn component code, C2(n2, k2), be a t2−error correcting. Then, we define the min-

imum number of errors that can not be corrected by the product code C(n1n2, k1k2)

to be sPC
min. Any error pattern with at least (t2 + 1) errors in each of at least (t1 + 1)

different columns will be a stopping-set pattern, and hence, can not be corrected by

the cascade decoding procedure. So, the minimum number of errors that can not be

corrected equals the number of errors in the minimum stopping-set. Hence,

sPC
min = (t1 + 1)(t2 + 1)

= t1t2 + t1 + t2 + 1

But according to the minimum Hamming distance relation, the code can correct any

6



pattern of t errors or less with minimum distance decoding, where

t =
dmin − 1

2

=
(2t1 + 1)(2t2 + 1)− 1

2

= 2t1t2 + t1 + t2

So, there is a difference of t − sPC
min + 1 = t1t2 in the number of errors that can

not always be corrected due to the structure of the decoder. Because of these error

patterns, cascade decoding gives rise to an error floor in the low error rate region in

the plot of probability of codeword error against the error rate of the channel.

Now, we will enumerate the minimum stopping-set patterns. To enumerate the

number of minimum weight stopping-set error patterns is to enumerate the number

of ways of choosing (t1 + 1) columns in n1 columns and (t2 + 1) rows in n2 rows.

Then, the following is imminent.

Enumeration 1. The total number of error patterns of minimum stopping-sets of

size sPC
min is given by

NPC =

(
n1

t1 + 1

)(
n2

t2 + 1

)

2.5 Stopping-set Performance of Product Codes

In this section, we will evaluate the error floor performance, i.e. the error perfor-

mance due to the minimum stopping-sets in product codes. In the previous section,

it has already been explained that, in the low error rate regions, as N tends to infin-

ity, the error floor performance is dominated by the stopping-set patterns. Now, we

will calculate this error probability, due to these dominating stopping-sets. In the

enumeration 1, the total number of possible error patterns of minimum stopping-sets

7



has been evaluated. Using this, the probability of error in the error floor is given by,

P (Error) ≥ P (Error due to min stopping-sets)

≈ (No. of min stopping-sets)× p(weight of the min stopping-set)

= NPC × p
(t1+1)(t2+1)

2

=

(
n1

t1 + 1

)(
n2

t2 + 1

)
p

(t+1)(t+2)
2 (PC Error floor performance)
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3. HALF-PRODUCT CODES

Half-product codes (HPCs) are introduced in [2], as a variation of product codes,

without describing the details of their encoding, decoding, or performance. In this

chapter, we will explain the details of encoding and decoding procedures. Also, some

interesting properties pertaining to their decoding capability are derived.

Half-product codes are formed by arranging the code elements in a symmetric

matrix with rows and columns from the same component codes, and taking only the

upper (or lower) half of this matrix. The diagonal elements are all taken to be zeros.

The half-product code formed by the component code C(n, k) is given by C(N,K)

with length N = n(n−1)
2

and dimension K = k(k−1)
2

. Even though we only take the

half of the encoded matrix for transmission, we will consider its equivalent full form

for analysis and other purposes. The codeword, in full symmetric matrix form, is

called the codeword in full form, and the upper half triangle is called the codeword in

half form. Following Figure 3.1 gives an example for (21, 6) half-product codeword,

formed by (7, 4) Hamming code as component code.

0 1 1 0 1 0 0
0 1 1 1 0 0

0 1 0 0 0
0 1 0 0

0 0 0
0 0

0

0 1 1 0 1 0 0
1 0 1 1 1 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Half form Full form

Figure 3.1: (21, 6) Half-product codeword in half form, and full form

9



3.1 Encoding

The encoding of the half-product codes is illustrated in the following Figure 3.2.

Consider an k × k matrix with unfilled positions.

� � � . . . �
� � � . . . �
� � � . . . �
...

...
...

. . .
...

� � � . . . �

0 m1 m2 . . . mk−1
� 0 mk . . . m2k−3
� � 0 . . . m3k−5
...

...
...

. . .
...

� � � . . . 0

Unfilled matrix. Upper triangle filled.

0 m1 m2 . . . mk−1
m1 0 mk . . . m2k−3
m2 mk 0 . . . m3k−5
...

...
...

. . .
...

mk−1 m2k−3 m3k−5 . . . 0

Message matrix, M(k×k) in full form.

Figure 3.2: Message matrix of the half-product codes.

Let us start filling the matrix row by row. The first row is filled with 0 in the diagonal

position and k− 1 information symbols in the next k− 1 positions. The second row

is with 0 in the diagonal position and k − 2 information symbols in the next k − 2

positions. Similarly, the third row is started with 0 in the diagonal position and k−3

symbols in the following k − 3 positions. This process continues until the (k − 1)th

row is filled with 0 in the diagonal position and 1 information symbol in the following

position. Now, all the available positions for information symbols are filled. Then,

kth row is only filled in the diagonal position with 0. Now, we have upper triangle

of size k × k filled with information symbols. This is the message matrix in the half

form. As the half-product codes are symmetric in the full form, to fill the up the

10



message matrix, we take the lower half triangle to be the transpose of the upper half

triangle. This way, the lower triangle of size k × k is also filled.

We are now left with k × k message matrix, in full form, with diagonal elements

equal to 0. Let us denote it by M . The encoding of this, now, is same as the

encoding of a message matrix in the product codes, except in this, both row and

column component codes are same. Each row of length k is encoded into a codeword

of length n, contained in the component code C(n, k) and then, each column of

length k is encoded into a codeword of length n, contained in the same component

code C(n, k). This forms the full symmetric product code. Taking the upper (or,

lower) half triangle gives the half-product code C(N,K).

Theorem 3.1. Encoding of the above message matrix, M will give rise to a half-

product codeword matrix which is symmetric and has all the the diagonal positions

as zeros if the component code is in GF (2m).

Proof. Let the generator matrix of systematic code C(n, k) be G = [I P ]k×n, where

I is the Identity matrix of size k×k and P is the parity part of the generator matrix

which generates the parity symbols in the codeword. Let it be given by

P =



p11 p12 . . . p1n−k

p11 p12 . . . p1n−k
...

...
. . .

...

pk1 pk2 . . . pkn−k


The message matrix in full symmetric form be given by M , and let the corre-

sponding half-product codeword in full form be given by c. Then, the encoding of

the half-product code C in full form is given by the following operation, from the

11



theorem 2.1.

c = GTMG

= [I P ]TM [I P ]

=

 M MP

P TM P TMP


The diagonal elements of c are, collectively, the diagonal elements of M and the

diagonal elements of P TMP . We already know that the diagonal elements of M are

all zeros. So, we only need to find the diagonal elements of P TMP . They are given

by,

(P TMP )ii =
k∑

l=1

k∑
j=1

pjiMjlpli, for i = 1, 2, . . . , k

But we already know that matrix M is symmetric and has zeros as the diagonal

elements, so

Mjl = Mlj = mr, if j 6= l

Mjl = 0, if j = l

where r is a function of l and j.

Thus,

(P TMP )ii =
k∑

l=1

k∑
j>l

(pjiMjlpli + pliMljpji)

=
k∑

l=1

k∑
j>l

mr(pjipli + plipji), for i = 1, 2, . . . , k

12



But, if the elements of G, (and hence, the elements of P ) belong to GF (2m), then

pjipli = α ∈ GF (2m) and so, α + α = 0. Thus,

(P TMP )ii = 0, for i = 1, 2, . . . , k.

Therefore, the diagonal elements of P TMP are zeros. And so, all the diagonal

elements of the half-product codeword, c in full form, are all zeros.

The above theorem guarantees zeros in every diagonal position of the half-product

codeword if the symbols are from GF (2m), and the diagonal positions of the message

matrix are all taken to be zeros. The reason why we need the zeros in the diagonal

is because the diagonal positions may be weakly protected when compared to the off

diagonal positions. We can observe that in the half-product code matrix structure,

each code element that is in non diagonal position belongs to two different compo-

nent codewords, whereas the element in the diagonal position belongs to only one

codeword. That’s why these weakly protected positions are fixed with zeros in the

half-product codes.

3.2 On dmin of Half-product Codes

We have seen the encoding of the half-product codes in the previous section. Now,

we will see an important property of any linear code, i.e, the minimum distance, dmin

for the half-product code. In this section, we will derive a lower bound on dmin for

the half-product codes.

We have already known about the minimum distance of the product codes from

the previous chapter. Its expression is given by the product of the minimum distances

of the component codes (dmin = d1 × d2). But, it is not as simple as that for

half-product codes. Half-product codes in full form are product codes which are

13



symmetric and have zeros in the diagonal. These two constraints restrict the patterns

of the codewords and make them not so easy to comprehend. The same applies to

the minimum weight pattern also. From the basic coding theory, it is known that in

a linear code, the minimum distance is equal to the weight of the minimum weight

codeword. So, the art of finding the minimum distance of a code translates to finding

the minimum weight codewords in that code. We use this principle in deriving the

lower bound for minimum distance of the half-product code, in the following.

Definition 3.1 (Support Set). The support set of a set of codewords X, denoted by

χ(X), is the set of locations i ∈ [n] = {1, 2, . . . , n} such that xi 6= 0 for some x ∈ X.

Definition 3.2 (2nd Generalized Hamming weight). The second generalized ham-

ming weight of the code C, denoted by d2(C), is the length of the minimum support

set of the two non-zero codewords taken at a time.

Lemma 3.2. For a linear code C with dmin = d,

d2(C) ≥


3d
2

if d is even

(3d+1)
2

if d is odd.

Proof. Let us first consider the case when d is even. Take two nonzero codewords

from C into the set X. Each of them has weight of at least d, and the distance

between them is at least d. So, the support of X, χ(X), has at least d+ d
2

elements.

Hence, d2(C) = |χ(X)| ≥ 3d
2

. The equality happens when X has two codewords of

minimum weight, and are separated by the minimum distance in C.

Now, let us consider the case when d is odd. Take two nonzero codewords from C

into the set X. One of them has weight of at least d, then the other has the weight of

at least d+ 1, because the distance between them is at least d, which is odd. So, the

14



support of X, χ(X) has at least d+ (d+1)
2

elements. Hence, d2(C) = |χ(X)| ≥ 3d+1
2

.

The equality happens when X has one codeword of minimum weight, d, in C, and

is separated with other codeword of weight d + 1 by minimum distance, d, or has

one codeword of minimum weight, d, in C, and is separated with other codeword of

weight d by minimum distance, d+ 1.

Theorem 3.3. Let a linear code C with dmin = d form a half-product code C. Then,

the minimum distance of C is given by

Dmin ≥


3d2

4
if d is even

(d+1)(3d−1)
4

if d is odd

Proof. The first bound can be proved like this. In a half-product codeword, take the

support set of the component codewords. Let it be S. Then,

|S| ≥ |Support of two distinct codewords|

≥ d2(C) (by definition)

≥ 3d

2
(by lemma 3.2)

The rows (columns) corresponding to the elements of S are all non-zeros, because

there exists a row codeword that has a non-zero in the position corresponding to each

element of S. And, a non-zero codeword has weight of at least d. So, the weight of

the half-product codeword is at least |S| times d, and we have

|S| × d ≥


3d2

2
if d is even

d(3d+1)
2

if d is odd
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So, in the half form,

Dmin ≥


3d2

4
if d is even

d(3d+1)
4

if d is odd

The above part derives only the lower bound on dmin. This still doesn’t prove its

tightness, especially in the case when d is odd. In other words, it doesn’t give a way

to construct the minimum weight half-product codeword. In the following, we are

going to construct a minimum weight codeword for the half-product code C formed

by the linear component code C of dmin = d.

The process of constructing a minimum weight half-product codeword is done by

choosing a codeword, from the set of component codewords C, for each row (column)

to complete the half-product codeword in the full form. The number, l, of distinct

codewords taken from C to form the half-product codeword is varied as l = 1, 2, 3, . . .

For each l, if possible, a minimum weight half-product codeword is constructed and

its weight is calculated. It will be proved that the minimum weight is achieved for

a minimum half-product codeword constructed using l = 3. For l = 4 or more, the

half-product codeword constructed will have weight more than the minimum weight.

Let us first consider the case where a half-product codeword is formed by single

component codeword (l = 1). It is clear from the encoding process of the half-

product code that every row has zero in the diagonal position. If we are to form a

half-product codeword from a single component codeword, let’s say c, then it must

have zeros in the diagonal positions of the rows it is in. Let it be filled in ith row,

then, ci = 0. So, ith column will have zeros in the positions corresponding to the rows

with c. That implies, ci = 0 ∀i. Hence, the (only) half-product codeword formed by

a single component codeword is the all zero codeword. In other words, we can not
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construct a non-zero half-product codeword with just a single component codeword.

Second, consider the case where a half-product codeword is constructed by two

non-zero component codewords (l = 2). Let us consider the half-product codeword X

formed by two distinct non-zero component codewords c1 and c2. Let c1 and c2 have

support sets S1 and S2. Let ith row, denoted by Xi, be filled by c1, so Xi = c1. Then,

Xij = c1j 6= 0 ∀j ∈ S1. Because of the symmetry, we have Xji = Xij 6= 0 ∀j ∈ S1.

So, jth row is non-zero for each j ∈ S1. As the diagonal position Xii = c1i = 0,

we have i /∈ S1 for each row i in which c1 is filled. Therefore, each row Xj such

that j ∈ S1 can not be filled by c1. Let us fill those with component codeword

c2. Then, Xjk = c2k 6= 0 ∀j ∈ S1, ∀k ∈ S2. Because of the symmetry, we have

Xjk = Xkj 6= 0 ∀j ∈ S1, ∀k ∈ S2. So, kth row is non-zero for each k ∈ S2. As the

diagonal position Xjj = c2j = 0, we have j /∈ S2 for each row j ∈ S1. Therefore, each

row Xk such that k ∈ S2 can not be filled by c2. We can fill these rows with c1 if and

only if S1 and S2 are disjoint. Now, the number of non-zero rows is at least |S1|+|S2|.

To get the minimum codeword, we consider exactly |S1| + |S2| rows. In that case,

we have |S1| number of rows filled with c2 and |S2| number of rows filled with c1.

The only constraint to construct this half-product codeword is that the component

codewords c1 and c2 should have disjoint support sets. If such a codeword pair is

not in the component code, then we can not form a half-product codeword just by

two non-zero codewords. If the component code C has such a pair with weights d1

(= |S1|) and d2 (= |S2|), then a half-product codeword is formed by these, and will

have the weight which equals d1d2 + d2d1 = 2d1d2, which is at least 2d2, as each

d1, d2 ≥ d.

Now, consider the case where a half-product codeword is constructed by three

non-zero component codewords (l = 3). The following construction procedure gives

a minimum half-product codeword. Take two non-zero codewords c1, c2 ∈ C such
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that |χ({c1, c2})| = d2(C). Consider c3 = c1 + c2, is also a codeword ∈ C, as C

is a linear code and sum of two codewords is also a codeword. We observe that

χ({c1, c2, c3}) = χ({c1, c2}) and denote this by S. This is because of addition of

zero positions in c1 with zero positions in c2 gives zero positions in c3, so there

are no extra non-zero positions in c3. Fill the rows (columns) corresponding to the

indices from S with these codewords such that the diagonal positions are always

zeros. That is, a codeword c1, c2, or c3 is filled in an ith row if the ith position of

the respective codeword c1, c2, or c3 is a zero, for all i ∈ S. We observe that this

can be uniquely filled, because no zero-position i ∈ S in a codeword is repeated

in other two codewords. This gives a symmetric structure because of the following

arguments. Let the half-product codeword formed be X, and its ith row be denoted

by Xi. Let J = S − χ(c1), which has the elements in S that are zero positions

in c1, i.e. c1j = 0 ∀j ∈ J . From the construction process, an ith row is filled

with c1 if i ∈ J , i.e Xi = c1 ∀i ∈ J . Therefore, Xij = c1j = 0 ∀i ∈ J, ∀j ∈ J ,

which implies that Xij = Xji = 0 ∀i ∈ J, ∀j ∈ J . Similarly, we can argue that

Xij = Xji = 1 ∀i ∈ χ(c1), ∀j ∈ χ(c1). This proves the symmetry of the rows and

the corresponding columns filled with c1 using the above construction procedure.

Similarly, one can prove it for other codewords, c2 and c3. This way, all the rows and

columns corresponding to S are filled with c1, c2, or c3, and are symmetric. Then the

remaining rows, and so columns, are all filled with zeros. This construction gives a

half-product codeword which is of minimum weight.

We now refer to the example in Figure 3.3, which gives an illustration of the

construction process for a codeword of minimum weight 6. In the figure we consider

only the rows and columns corresponding to S that are rearranged with a unique

mapping such that the first codeword, c1, has all non-zeros continuously.

This construction gives a minimum weight codeword, because of the following.
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0 1 1 1 1 1 1 0 0
1
1
1
1
1
1
0
0

0 1 1 1 1 1 1 0 0
1 0 1 1 1 0 0 1 1
1 1
1 1
1 1
1 0
1 0
0 1
0 1

0 1 1 1 1 1 1 0 0
1 0 1 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1
1 1 0
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1

Starting with c1 Filling with c2 Filling with c3

0 1 1 1 1 1 1 0 0
1 0 1 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 0 1 1 1
1 0 1 1 1
0 1 1 1 1
0 1 1 1 1

0 1 1 1 1 1 1 0 0
1 0 1 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

0 1 1 1 1 1 1 0 0
1 0 1 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1 1
1 0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1 1
0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 0 0

Completing with c3 Completing with c2 Completing with c1

Figure 3.3: Construction of the minimum half-product codeword from component
code of dmin = 6.

First, for every element in S, there is a non-zero row contributing to the weight of the

codeword. So, the weight is minimum only when the cardinality of S, the support

set χ({c1, c2, c3}), is minimum. That’s why choosing c1, c2 such that |χ({c1, c2})| =

d2(C) guarantees it to be minimum. If we choose any more distinct codewords

for construction of the half-product codeword, their support set increases more than

d2(C) causing the number of non-zero rows, and hence, the overall weight to increase.

So, we can’t get any lesser weight codeword if we use 4 or more distinct codewords.

Let us, now, calculate the weight of this codeword thus constructed using c1, c2,

and c3. The codeword has |S| = d2(C) number of rows, which, from lemma 3.2, is

minimum when the code C has two codewords of minimum weight d and separated

by minimum distance d, in the case when d is even; or the code C has one codeword

19



of minimum weight d that is separated from one codeword of weight d + 1 by the

minimum distance d, in the case when d is odd. So,

• in the case when d is even: If c1, c2 are d−weight, d−distance separated, then c3

is also d−weight and d−distance separated from each of {c1, c2}. So, d2(C) = 3d
2

and weight of the codeword in full form is d2(C)× d = 3d2

2
.

• in the case when d is odd: If c1 is d−weight and c2 is (d+ 1)−weight, and are

separated by distance of d, then c3 is d−weight and is separated by distances

of (d + 1) and d respectively from c1 and c2. So, d2(C) = 3d+1
2

and weight of

the codeword in full form is (d+1)
2
× d+ d−1

2
× (d+ 1) = (d+1)(3d−1)

2
.

Observing the half-product codes above, the minimum weight comes from the

codeword constructed by three non-zero component codewords. Therefore, in the

half form

Dmin ≥


3d2

4
if d is even

(d+1)(3d−1)
4

if d is odd

3.3 Decoding

The decoding of half-product codes is performed in an iterative fashion, similar

to product codes. But, for half-product codes, cascade decoding happens at every

row and column continuously in every iterative step. So, a row is passed to the row

decoding, and immediately the corrected codeword is updated along the symmetric

column (which is equivalent to passing the symmetric column through the column

decoding independently). An iteration is over when all the rows are decoded. The

corrected codeword matrix is again passed to the cascade decoder in the next itera-

tion. This continues until the decoding leads to no new codeword matrix at the end
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of an iteration.

As this process is iterative and involves cascade decoding, a stopping-set to be

formed while decoding and may affect the performance. To give an example of a

stopping-set for half-product codes, let us consider the following pattern. The error

0 0 1 1 0 0 0
0 0 0 0 0 0

0 1 0 0 0
0 0 0 0

0 0 0
0 0

0

0 0 1 1 0 0 0
0 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

In half form In full form

Figure 3.4: Minimum stopping-set pattern for (21, 6) half-product code formed by
(7, 4) Hamming code.

pattern, given in the Figure 3.4 in both half and full forms, is a minimum stopping-set

pattern for (21, 6) half-product code formed by (7, 4) Hamming code as component

code. When we look at the full form of the error pattern, we can see that it can not

be corrected when it is passed through the row decoder, as the non-zero rows have 2

errors in them, which is more than error correctability of the component code (1-error

correcting). We can also see that it can not be corrected when it is passed through

the column decoder for the same argument. This shows that the half-product codes

have stopping-sets using the above decoding procedure.

3.4 Enumeration of the Minimum Stopping-sets

In this section, we will calculate the number of possible minimum stopping-set

error patterns that can happen when a half-product code is transmitted through

a channel with certain non-zero error probability. First, we will look at the error
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pattern that leads to a minimum stopping-set in the half-product codes, before enu-

merating the number of such patterns possible.

Consider a t−error correcting code C(n, k) as the component code. Let it form

the half-product code C(N = n(n−1)
2

, K = k(k−1)
2

). As the component code is t−error

correcting, the maximum number of errors the decoder can correct is t along either

row or column, in the full form of the pattern. Hence, the stopping-set error pattern

should have at least t+1 errors along every non-zero row or column. So, the minimum

stopping pattern has exactly (t+1) errors along each non-zero row and column. The

following pattern is exactly that. This is the pattern formed by taking only the non-

0 11 12 13 . . . 1t+1

0 12 13 . . . 1t+1

0 13 . . . 1t+1

. . . . . .
...

0 1t+1

0

0 11 12 13 . . . 1t+1

11 0 12 13 . . . 1t+1

11 12 0 13 . . . 1t+1
...

...
...

. . . . . .
...

11 12 13 . . . 0 1t+1

11 12 13 . . . 1t+1 0

In half form In full form

Figure 3.5: Minimum stopping-set pattern for half-product code formed by t−error
correcting component code. The subscript represents the position of the error in that
corresponding row.

zero rows and rearranging to form a compact error pattern with zeros as diagonal

elements. The pattern symbolizes all the equivalent patterns of minimum stopping-

sets with exactly (t + 1) errors in the non-zero rows (columns). By looking at the

pattern, it can be observed that the total number of (non-zero) rows is (t+2), and so

the total number errors count to 2sHPC
min = (t+ 1)(t+ 2) in the full form, where sHPC

min

is the number of errors in a minimum uncorrectable pattern in the half form. To

enumerate the number of different stopping-set patterns is to enumerate the number
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of ways of choosing (t + 2) rows out of n rows. We note that choosing the rows

itself decides the placements of errors in the rows, because of the symmetry of the

half-product code in the full form. The following is, therefore apparent.

Enumeration 2. The total number of error patterns of minimum stopping-sets of

size sHPC
min is given by

NHPC =

(
n

t+ 2

)

3.5 Stopping-set Performance of Half-product Codes

In this section, we will evaluate the error performance due to the minimum

stopping-sets. In the low error rate region, as N tends to infinity, the error per-

formance of the decoder depends only on the minimum stopping-set patterns, as the

decoder can not correct these error patterns anymore. We need to calculate the per-

formance degradation due to these stopping-sets in order to ensure that the required

performance is met. From the enumeration 2, we calculated the number of possible

minimum stopping-set error patterns, to be NHPC . So, the probability of error in

the error floor is given by the following.

P (Error) ≥ P (Error due to min stopping-sets)

≈ (No. of min stopping-sets)× p(weight of the min stopping-set)

= NHPC × p
(t+1)(t+2)

2

=

(
n

t+ 2

)
p

(t+1)(t+2)
2 (HPC Error floor performance)
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3.6 Comparison to Product Codes

We now have the expressions for error performance due to the minimum stopping-

sets for both product and half-product codes. Thus, we can compare both of them

to see which one is better in the low error rate region as N tends to infinity. Let us

set up the parameters for an approximately fair comparison.

Consider a half-product code C1(N = n(n−1)
2

, K = k(k−1)
2

), and a product code

C2(N = n2

2
, K = k2

2
). Let C1 be formed by the component code C1(n, k), a t−error

correcting code, and let C2 be formed by the component code C2(
n√
2
, k√

2
), a t√

2
−correcting

code, for both rows and columns. The factor of
√

2 is to make the lengths of the both

codes to be approximately same as n→∞. Let us consider the following analysis in

the region as n → ∞ keeping the ratio t
n

= f , a constant. This constant ratio will

ensure the rate to be constant as n→∞, see table 3.1.

Codes C1 C2 C1 C2
Rates 1− 2f 1− 2f (1− 2f)2 − o( 1

n
) (1− 2f)2

Rates as n→∞ 1− 2f 1− 2f (1− 2f)2 (1− 2f)2

Table 3.1: Comparison of the rates

We observe in Table 3.1 that the rates of half-product code C1, and product code

C2 are same, as n → ∞, so that the comparison in table 3.2 is almost fair. Table

3.2 also gives comparison for dmin, size of the stopping-set smin, number of minimum

stopping-sets, and the bound on the error performance due to the minimum stopping-

sets. We can observe the following results from the table.

1. dmin for half-product codes is larger than that for product codes.

2. The size of the minimum stopping-set for half-product codes is O(t) = O(n)

more than the minimum stopping-set for product codes, as sHPC
min − sPC

min =

3−2
√
2

2
t ≈ 0.08t.
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Codes C1 C2

1. dmin ≥ 3d2

4
d2

2

2. smin
(t+1)(t+2)

2
= t2+3t+2

2
( t√

2
+ 1)2 = t2+2

√
2t+2

2

3. No. of ss

NHPC =

(
n

t+ 2

)
= O

((
n

t+ 2

)t+2
)

= O

((
1

f + 2
n

)fn+2
)

= O (F n) ,

NPC =

( n√
2

t√
2

+ 1

)2

= O

( n

t+
√

2

)2
(

t√
2
+1

)
= O

( 1

f +
√
2
n

)√2fn+2


= O
(
F
√
2n
)
,

where F =
(

1
f

)f
> 1 where F =

(
1
f

)f
> 1

4. PoE ≈ O (F n) p
t2+3t+2

2 ≈ O
(
F
√
2n
)
p

t2+2
√
2t+2

2

Table 3.2: Comparison of the sizes of the minimum stopping-sets

3. The number of minimum stopping-sets for half-product code increase exponen-

tially with n in the exponent, which is
√

2 times lower than the exponent with

which the number of minimum stopping-sets for product code increase.

4. Points 2 and 3 imply that the error rate due to the minimum stopping-sets

of half-product codes should be much lower than the error rate due to the

minimum stopping-sets of product codes.
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4. SIMULATION RESULTS

In this chapter, the simulation results are presented and conclusions are drawn

based on these.

4.1 Comparative Simulations between HPC and PC

We have considered two different MDS codes C1(n1 = n, k1 = k, t1 = t) and

C2(n2 = n√
2
, k2 = k√

2
, t2 = t√

2
) (where the third component in the parameter triplet

represents the error correction capability of the code), as component codes for the

half-product code (HPC) C1(N = n(n−1)
2

, K = k(k−1)
2

) and product code (PC) C2(N =

n2

2
, K = k2

2
). The channel is considered to be a channel with symbol error probability

of p for both the codes. For both codes, all-zero codeword is transmitted through the

channel. Thus, transmitted codeword has errors uniformly from the channel with

symbol error probability of p. The corresponding received codewords are decoded

using the respective cascade decoders for HPC and PC.

Monte Carlo simulations have been performed to calculate the probability of

block or codeword error for varying values of p from 0.03 to 0.04, in each case of

n = 28 − 1, 29 − 1, and 210 − 1 with rate of the HPC and PC being constant, Rate

= 0.95. These probability of error values are plotted in log scale against the values

of p in the figure 4.1.

4.2 Observations

From the plot in the figure 4.1, the following observations can be made.

1. For small n (n1 = 255), equivalently small t (t1 = 6), we see that the half-

product codes perform better than the product codes.

2. For large n (n1 = 511, 1023), equivalently large t (t1 = 13, 26), we see that
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PC(n2=361,t2=9)

Figure 4.1: Comparative plot of HPC and PC for increasing values of n1 and n2 with
fixed Rate = 0.95

the product codes perform better than the half-product codes.

3. One can also observe that the waterfall behavior of the curve becomes steeper,

and both the curves coming closer, as n gets larger.

4.3 Discussion

Based on the observations in section 4.2 of the plot in the Figure 4.1, we can say

the following.

In the observation 1, we see that half-product codes perform better than product

codes. That is because, when n is smaller, t is smaller and so, the stopping-set sizes

are smaller in both the codes. The small sizes of the stopping-set patterns make

the performance due to these patterns dominate the error floor. But, in Section

3.6, it is analytically evaluated that the scaling of the error floor performances is

better in half-product codes than in product codes. So, the observation 1 is only the
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experimental evidence supporting this comparative evaluation.

In the observation 2, we see that product codes perform better than half-product

codes. We observe this, contrary to the intuition portrayed in the previous paragraph,

because in this regime of large n, and so, large t, the sizes of the stopping-sets is

so high that the error performance due to the minimum stopping-sets is no longer

dominating, and is in fact negligible compared to all the other stopping-sets. This

reversal of error performances from the half-product codes and the product codes is

because of the combined effect of all these stopping-sets. Let us now see an example

of this by taking the immediate next stopping-set in both codes and calculating the

error performance due to this. It can be observed that the next stopping-set will

have the size of (t+1)(t+3)
2

in half-product codes, which is, now, O(n) less than the

size of the next stopping-sets, ( t√
2

+1)( t√
2

+2), in product codes. This is opposite to

what we have observed in case of the minimum stopping-sets. Although, the number

of such stopping-sets, if computed for both codes, will be such that the ratio of the

number in product code to that in half-product code is approximately in O(ngn),

where g < 1 is constant for fixed rate. When we compute the error rate due to this

next stopping-set in both codes, we see that the error rate in half-product codes is

lower than that of product codes for up to certain n and then the error rate reverses

after that point. This is similarly carried to the next few dominating stopping-sets.

After taking the combined error rate due to these, the error rate will be seen higher

in half-product codes than in product codes.

From the observation 3, it is clear that the thresholds of the half-product codes

and the product codes tend to be same as n tends to infinity. Analysis of the

thresholds is left to the future work.
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4.4 Conclusions

We have seen the observations and discussed about them in the previous sections.

From this discussion we can conclude that,

1. Half-product codes scale better in the error floor than that of the product

codes. So, if the application is in low t region, where the stopping-sets dominate

the error performance, then the half-product code is probably better than the

product code.

2. Half-product codes have the same threshold as the product codes, as the length

of the component codes tends to infinity, so half-product codes are not worse

than product codes in theory.
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