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ABSTRACT

Skeleton representations are a fundamental way of representing a variety of solid

models. They are particularly important for representing certain biological models

and are often key to visualizing such data. Several methods exist for extracting

skeletal models from 3D data sets. Unfortunately, there is usually not a single

correct definition for what makes a good skeleton, and different methods will produce

different skeletal models from a given input. Furthermore, for many scanned data

sets, there also is inherent noise and loss of data in the scanning process that can

reduce ability to identify a skeleton.

In this document, I propose a method for combining multiple algorithms’ skeleton

results into a single composite skeletal model. This model leverages various aspects

of the geometric and topological information contained in the different input skeletal

models to form a single result that may limit the error introduced by particular

inputs by means of a confidence function. Using such an uncertainty based model,

one can better understand, refine, and de-noise/simplify the skeletal structure. The

following pages describe methods for forming this composite model and also examples

of applying it to some real-world data sets.
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NOMENCLATURE

BNL Brain Networks Lab

KESM Knife Edge Scanning Microscope

Medial Axis Set of all points having more than one closest point on the

object’s boundary

Medial Axis Skeleton In 2D a set tree-like branching points making up the object’s

medial axes, while in 3D this often is composed of planes as

well as line segments and curves

Endpoint Point at end of polyline not connected with another polyline

Midpoint Point along polyline with a valence of two

Branch Point Point on polyline with a valence greater than two (connect-

ing multiple polylines)

Edge Line segment of two points connected by minimu spanning

line

Segment Sequential series of one or more edges

Skeleton Set of segments connected at branch points (typically used

to represent and manipulate a volume or mesh in simplified

form)

Segment Set Set of segments that logically correspond to a single under-

lying segment

Set Model Set of endpoint connected segment sets logically correspond-

ing to an underlying skeleton

Result Model Set of segments connected at branch points with points con-

taining combination data (uncertainty evaluation)
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1. INTRODUCTION AND MOTIVATION

Skeletal models are prevalent in a number of applications, including biology and

graphics. The relatively simple structure of a skeletal model allows for an intuitive

way to describe the shape of the data, as well as provides a means to simplify

computations for the shape. Skeletons are used to deal with polygonal models and

with volumetric data, and typically provide a much more compact representation

of the object while losing some fidelity. In particular, skeletal structures form an

important aspect of several biological visualizations, in that they often allow for much

more rapid and less memory-intensive rendering than the volumetric or similarly

highly sampled “raw” data. While an the exact mathematical representation of

the skeleton of an object is commonly understood to be the true medial axis, most

skeletal models are not in fact faithful to this but are conceptually related and serve

as a substitute for medial axes in visualization or computation. An example of this

can be seen in the following Fig.1.1.

Unfortunately, there is no consensus about what a “good” skeleton of a given

model or data set should be. This discrepancy of the ideal skeleton for a data set

arises because the desired result depends both on the original data and the desired use

or purpose the skeleton will fulfill. There are numerous skeletonization algorithms,

offering different advantages and disadvantages, and producing different skeletons

given the same input model. Furthermore, the same skeletonization algorithm will

often produce varying results of a data set for different sets of initialization parame-

ters for the skeletonization algorithm. As a result, even for the same data set, there

can be many possible skeletons generated. To further complicate the problem of

skeletonization for volumes, most volume based algorithms require the volume to be

1



Figure 1.1: (Left) Medial axis representation of a simple horse outline (generated
following [1]) (Right) Simplified skeleton representation of a humanoid mesh used in
character animation(generated following [2] )

small enough to fit in memory, something that is not always feasible for high reso-

lution biological data sets. Our work here aims to deal with such situations as these

by creating a unified result skeleton that incorporates the differing skeletons from

several algorithms into a single robust result skeleton.

1.1 Problem Formulation

A major motivating example for us has been skeletonization of volumetric data

of tube-like structures (particularly vasculature). In these settings, a 3D volume of

data (5123 voxels is typical) is “traced” by an algorithm, producing one or more dis-

joint skeletal structures. At the highest resolution with our equipment, this volume

is effectively about 0.53 mm of data from a 15x9x6 mm block of embedded mouse

brain (about 1-2 Tb of total storage). These volumes are generated from anatomical

imaging using the Knife Edge Scanning Microscope (KESM ), with the common flow

being: specimen preparation, serial sectioning, image acquisition, image cleaning,

and finally composition of the images into a volume for tracing or fitting geometric

2



primitives to the data. In this process there are various elements of noise and error

that can accumulate and propagate to the tracing stage, such as blood clots (pre-

venting stain), knife chatter (increasing erroneous traces), lighting artifacts (noise)

or bad images (data gaps).

Specifically, when given a physical volume V , we section, image, clean, and com-

pose the data to arrive at the digital volume V ′. A variety of algorithms, often

specific to the particular scanning procedure, have been developed for dealing with

the various errors introduced in the transformation from V to V ′ and we will ignore

this aspect of the process, though it should be noted that some tracing/segmentation

algorithms also attempt to account for these propagated errors.

We will assume, then, that we are given a scanned volume, V ′, that contains data

(such as vasculature or neuron structures) that is amenable to a skeletal represen-

tation. From that, we wish to extract the “best” skeleton from that volume. Many

of the existing tracing methods possess a variety of parameters that can be tuned,

producing a wide variety of different (but hopefully similar) skeletons. We can use

some tracing algorithm Ti with parameters pj to generate a skeleton Sk. See Fig.1.3.

Given that any method Ti with pj potentially introduces some error εk, our goal is

to limit the contribution of any individual εk by combining the various Sks to get

the result skeleton S ′. By using this combination of skeletons, we strive to achieve

an S ′ that will be a better approximation of V ′ (and thus of V ) than any individual

Sk (see Fig.1.2). Our working assumption for this combination is that most of the

Sks do not have the same placement of error ek and the majority of Sks remain fairly

reliable, or the error ek is independent, nonuniform, and does not compose a large

portion of the skeleton.

A second motivating example occurs when the underlying data is much larger

than can be traced in memory at one time; our typical approach is to divide the

3



V V ′

S1

S2

S3

...

Sn

S ′
scan

trace combine

Figure 1.2: Process of taking a physical volume V to a combined skeleton S ′ that
better accounts for what is found through the scan V ′ of the volume than any single
traced skeleton Si

overall data volume into overlapping blocks, trace each one, and then merge the

results together. Overlapping blocks are used instead of trying to match endpoints

of adjacent datasets due to the predictive nature of several local volume tracing

algorithms and the relative unreliability of the algorithms near volume boundaries

([6], [11]).

To state the problem more generally, we wish to take a sequence of skeleton

models representing the same structure to produce a consensus result skeleton. These

skeleton models may not fully span the underlying structure individually, but their

desired combination should yield model that spans as much as the input models allow.

With this combination, we want a measure of the level of consensus based on aspects

of similarity and correspondence between the skeleton inputs. This consensus should

be based on a similarity function designed to measure geometric and topological

4



property proximity across the skeleton components.

Figure 1.3: (Left) Volume data showing vasculature from a mouse brain (Right) A
skeleton extracted from that data using an automated trace [6]

1.2 Ideal Model

Given the problem of combining various skeletons in an error reducing fashion,

some key components of a result model should be:

• Compact accessible representation: Volumes (and thus the skeletons) can span

very large volumes, and one of the main reasons to use skeletal representations is

for data reduction. Thus, the representation should be compact while allowing

access queries regarding subsections in a reasonable time.

• Consensus function: Since the result is a composite of the inputs, details of

the confidence in various regions of the result should be available. Information

5



such as the amount of overlap and the standard deviation of inputs that map

to that part of the result are important to understanding the error bound. This

consensus function can help us understand where there is greater uncertainty,

what parts are outliers, and where additional refinement is needed.

• Order independence: There may be many different inputs and an exponential

number of possible orderings of the input. We desire a single robust output

model that is independent of the ordering of the input skeletons.

• Weighting of inputs : Though almost all trace algorithms for our primary moti-

vating example produce errors, some can be more reliable for specific volumes

than others. Also, in the case where we have a majority of inputs from one

trace (with different parameters) and only a few from other traces, we would

like to be able to scale the inputs in inverse proportion to their trace frequency.

In this document, we introduce a combined skeletal model designed for such situ-

ations. We describe both the structure of the combined model, along with methods

for combining multiple skeletons. Finally, we conclude with a brief discussion of how

this model can be used for further querying, and present several results on real data

sets.
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2. BACKGROUND AND PRIOR WORK

Skeleton extraction is an important part of several different applications. A

complete overview of methods for skeleton creation and use is beyond the scope of

this document, but we give a brief overview here.

Some of the applications skeletons are used for include deformations of mesh mod-

els based on their skeleton deformations [5], similarity estimation between shapes by

their skeleton structure (particularly a Reeb graph skeleton) [8], parameterizations of

surfaces based on feature selection and subsequent skeletonization [20], and scientific

visualization of fibrous and thread-like data [12]. Many of these applications have

particular requirements for the skeletons, and incorporate additional data with the

skeleton, such as a distance mapping to a surface from which they were extracted,

or radius information.

Similarly, there are a large number of methods for computing skeletons (i.e., skele-

tonization). These generally fall into two categories: those extracting skeletons from

volumetric data, and those computing a skeleton for a mesh model. Much volume

data generally arises from biomedical scans, and a wide variety of methods are used

to generate skeletons for these. Zhou et al. [21] use voxel coding (essentially clus-

tering and thinning of the input) to achieve skeletons, while Yim et al. [18] perform

ordered region growing and pruning for their skeletons (particularly of magnetic res-

onance angiography). Borgefors et al. [4] define and extract a curve skeleton based

on thinning a volume, yet Reinders et al. [14] further tackle the level of detail for

skeleton reconstruction of their volumes by means of skeletonograph (uses a thinning

approach with distance transform information). Finally, two locality focused tracing

algorithms of volumes to generate skeletons from 3 dimensional fibrous data include

7



Han et al. [6], with maximum intensity projection tracing, and Mayerich et al. [11],

with a GPU accelerated volume trace by predicting trajectories. Often, such volu-

metric skeletons are used as a proxy for the object itself, and represent a medial axis

approximation of the object. A variety of approaches are also used for skeletonization

from meshes. Tierny et al. [9] identify feature points and constructs a dual Reeb

graph for the skeleton, while Lien et al. [10] perform shape decomposition refinement

for computing the skeleton. Au et al. [3] use feature points to perform constrained

laplacian smoothing to contract a mesh to its curve skeleton, and Schaefer et al. [15]

use multiple mesh poses for use extracting segmentation and then skeletonization

and weighting of the skeleton from a mesh. Some approaches such as Yoshizawa et

al. [19] also extract a “mesh skeleton” (one composed of surfaces as well as curves) by

means of voronoi tesselation and smoothing, but we do not consider such skeletons,

here.

There also is prior work on skeleton matching and comparison. One example is

the work of Ward et al. [17], which uses perturbations of the boundary of a shape to

generate several medial axis skeletons in order to find a better general skeleton of an

object. While they do some similar matching of the skeletons, their work deals with

proximities and only a single skeletonization algorithm and has yet to be extended

to the 3rd dimension that is needed with data sets we use.

We are aware of only one other approach used on biological data sets for error

quantification and merging of traced skeletons. Helmstaedter et al. [7] define a

system, RESCOP, for comparing manually traced skeletons to achieve a final result

skeleton for neurite reconstruction. Using a heuristic distance function for voting

on the validity of existence of connecting line segments by the individual skeletons,

they gauge certainty for the composite result by using an estimated error bound.

While this paper is like-minded in motivation and similar in idea to our own, we

8



approach our solution of a composite skeleton by using various geometric and topo-

logical characteristics to aid in matching unordered segments generated by the more

scalable automated methods rather than manual traces.

Our work here is motivated specifically by and focuses on biological data and use

in visualization, but the methods should be applicable to other data sources and/or

applications.
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3. THEORY AND METHOD

We describe in this section the basic definitions and a brief overview of the method

before diving into more details about input formats and the measurements and pro-

cedure for combining skeletal models.

3.1 Definitions

Three types of models must be described: the skeletal model, which is the general

form for skeletons including input; the set model, which is the working model we

create while trying to reconstruct; and the result model, our final model.

3.1.1 Skeletal Model

While the particular skeleton corresponding to a given model is not well-defined,

there is a general consensus on what makes a skeleton. Skeletons consist of a set of

points connected by curves and/or line segments, referred to as edges (Fig.3.1). In

our discussion, we will assume that the skeleton is made up of (poly-)lines; this is the

most common representation, and any curve skeleton can be converted to a polyline

skeleton to a given precision.

Figure 3.1: Simple edge example, with endpoints containing data such as radius.

Points will be classified as one of three types: endpoints, which have only one

outgoing edge and terminate a skeleton, midpoints, which have two outgoing edges

and are basically interior points of polylines, and branch points, which have three
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or more outgoing edges and denote bifurcation of the skeleton. This classification

allows us to distinctly categorize a segment path along the skeleton, where a segment

is composed of points going from any non-midpoint to any other non-midpoint (i.e.,

a polyline terminated by branch points or endpoints as in Fig.3.2).

These segments thus represent separate branch paths within a skeleton, and may

be augmented to keep track of connectivity information by having each segment store

two linked lists corresponding to the connections for the head and tail of the segment.

With the connectivity being maintained at the segment level, the skeleton itself is

maintained as a simple list of its segments.

Figure 3.2: Simple segment example, with pointers to other connecting segments at
head and tail.

As the segment already stores connectivity information, the skeleton itself needs

only be composed of a list of corresponding segments (see Fig. 3.3). Additional

information is often associated with skeletons, and this is typically stored by a table

reference at each of the edge endpoints. This is perhaps a simplification of the

underlying problem space, as information could change more rapidly than just at the

indexed points, though one could refine the original skeletal partitioning to maintain

higher levels of fidelity. For our motivating example, a radius value is associated

with each edge endpoint, thus describing the radius of the tubular structure through
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which the skeleton is passing at that point. Note that for an ideal tubular structure,

including this information makes the skeleton a medial axis transform. For other

skeletal structures, other types of information might be kept, such as density, color,

or vertex weights for use in a deformation process. Note also that this information

is kept for the endpoint of a line segment.

Figure 3.3: Simple skeleton example, which is composed of a list of its composite
segments.

3.1.2 Set Model

Our set model represents the thus far added skeletons as sets of segments (see Fig.

3.4). A global skeletal graph is maintained. Each edge of this global graph tracks

the individual segments that correspond to that edge, and vertices of the graph

store additional information. A single segment (graph edge) of the combined skeletal

model has a list of indices for the segments/subset of segments from the input that

are mapped here. Consistency in the overall graph and the set information stored at

edges and vertices is ensured by allowing modifications only through a set of rules

for updating the combined skeletal model (Section 3.7.1).
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Figure 3.4: The set model is represented by a series of individual sets (color dic-
tates single set) that each correspond to single final segments in the result model.
Within each set is a list of segments that are used to form this final segment for the
region, where the region is denoted by branch points or farthest extents of the list
of segments.

3.1.3 Result Model

The result model is of the same form as a skeletal model (a list of segments and

end-/mid-/branch-points), and is generated from the set model (Fig. 3.5). The

graph edges and points of the set model, including the segments that map to each

edge, are used to define the edges and branch points of the result model. As a result

of the mapping process, the result model also computes and stores the uncertainty

information in terms of interval mapping and variances. This uncertainty information

may be useful in fine tuning the result model to be composed of non-outlier subsets

of segments as well as for the creation of bi-directional maps from the result model

to all input skeletal models.
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Figure 3.5: The result model is a skeleton that also contains information about the
combined consensus at each of its points.

3.2 Method Overview

The basic overview of our method can split into four sections, each of which may

have particular functions used in subsequent sections as needed. The following setup

serves as a background for the layout of our method and each component is expanded

in the following sections.

• Input initialization

– Forming a global list of segments

– Marking segment topology

• Sequential addition of all segments to set model

– Distance mapping

– Segment comparison

– Set combination
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– Mapping Rules

• Correction of set model for order independence

– Segment comparison

– Merge

– Set combination

– Split

• Composition of result model from set model

– Set combination

– Repairing topology

3.3 Input Initialization

In practice, when the skeleton model is first received as a list of points and con-

nections, we perform a simple flooding-type algorithm to find all the segments for

the skeleton. The flooding algorithm adds all non-midpoints (endpoints and branch-

points) to a list PL (Fig. 3.6). We then proceed to take each subsequent element

Figure 3.6: (Left)Sample input skeleton. (Right)Marked non-midpoints in white
added to PL.
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in PL and sequentially walk along each of its non-marked paths while marking the

path as we go till we reach another element of PL. The completion of any path thus

represents a new segment that we add to a growing global segment list SL (Fig. 3.7).

It should be noted that as we assume no skeleton should include a loop internally, we

Figure 3.7: Walk/Mark along each unmarked path until another element in PL is
located. Red is a completed segment and yellow is being traced.

discard any path that proceeds back to its orignal start location. After processing

the entire list PL, we mark each segment that connects at its head or tail respectively

(Fig. 3.8). As the input skeletons are not necessarily of the same partition length,

Figure 3.8: Mark each topological connection among the segments (contains the same
endpoint at head or tail).
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we resample (repartition) each of the segments to a fixed edge length where this is

possible. Thus as the segments are all stored in a single global list SL, a skeleton

(and the segment connections) need only be composed of a list of indices to this

global list.

For the set model there are several differing options for initialization. In one

basic approach, an empty set model may be created prior to the loading of any actual

skeletal models, meaning the set model is the empty set. Another initialization option

is to load any single skeleton model as the initial set model. There are other more

complex options possible, but the choice of the initialization configuration makes

little difference in the end result or the process of construction. The subsequent two

phase merge/split set operations will help to aid in the robustness of the set model

composition independent of the initialization and the order of addition to the set

model.

The result model needs no initialization, but rather takes as input the last known

set model. More information about the specific state of the set model at the time of

forming the result model can be found in Composing the Set Model (section 3.7).

3.4 Combination

The following section seeks to describe the progression of the combination of

geometric objects, from sets of points on up sets to segments. Given any two or

more geometric objects that are intended to represent pieces of the same underlying

model, their combination to a single result yields a more complex model if equally

representing the inputs in the result or equal complexity in the case of averaging.

In the case of a set of points in space representing a single point of a model, a

simple averaging operation allows us to find a good point with the assumption all

inputs are equally plausible.
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For line segments (edges), the orientation of each segment with regards to the

other needs to first be determined before any averaging operation could be performed.

This orientation could be found by the minimum of the sum of the pairwise distances

to the endpoints (Fig. 3.9) and then pairwise averaging between end points could be

performed. However, this method does not allow for the case of both line segments

actually representing disjoint or overlapping pieces of the same underlying line seg-

ment. Thus for our purposes, we determine orientation and parameterization along

that orientation by solving for the parameters for end points of the line segments

along the principal component axis and then having a connected sequence of line

segments that may then be smoothed as as desired (Fig.3.9).

Figure 3.9: The left figure corresponds to using the summed minimun pair distance

between endpoints to get a basis for orientation. The right figure is an illustration of

the result of the combination of multiple line segments (dotted lines) to a segment

containing all their endpoints.

To locate the principal axes of any set of n point data, principal component
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analysis (PCA) can be used. To calculate the PCA by means of the covariance

method, we first take each of the dimensions (p of them) for the points (stored in X,

an n x p matrix), calculate the mean for each dimension, and store it in vector u.

u[i] =
1

n

n∑
i=1

X[i, j]

We then subtract this mean from each of the points and store the values in an n x

p matrix B.

B = X − huT (where h is an n x 1 column vector of 1’s)

We then compute the covariance matrix C by taking the outer product of the matrix

B with itself.

C =
1

n− 1
BTB

To find the principal axis, we need to locate the key eigenvectors V of the matrix C.

These eignvectors correspond to the eigenvalues in the diagonal matrix D.

V −1CV = D

Upon calculating V andD (in our implementation we use the GNU Scientific Library)

we then sort the eigenvectors by their paired eigenvalues in D and use the largest

eigenvalue corresponding vector as our principal axis. A visible example of PCA on

a set of points in two dimensions can be seen in Fig. 3.10).
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Figure 3.10: An example of the PCA of a set of points in space, with the green arrow

representing the principal axis (generated following [13]).

For a series of consecutive end to end connected line segments with another that

represent potentially disjoint or overlapping pieces, the orientation and parameteri-

zation are needed to find a single result. These can be found by creating an approx-

imation of the result by using the method of polynomial fitting (described in detail

below). To ensure a regular sampling, first each segment is partitioned into a set of

points at equal distances along the segment. These points are then used as input for

a PCA parameterization along the principal axis for a least squares fit of a polyno-
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mial to the data, where the polynomial is of low degree to try to ensure the points of

each segment’s points retain their monotonic ordering in parameterization (see Fig.

3.11). Using this polynomial, the location of each line segment interval is mapped

by finding the respective end point’s closest parameter point on the polynomial.

Figure 3.11: Points along each segment in the set are taken at regular intervals (top

left). Using these points, a best fit polynomial is constructed using least squares op-

timization using PCA parameterization of points(top right). Finally, the parameter

of the closest point on the polynomial is used as a basis for ordering the segments in

a global manner with respect to the set (bottom).

This parameterization inherently grants a mathematically robust global parame-
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terization, which can then be used to compose the combined result. The combination

is made by generating the monotonicly enforced parameterization of the midpoints

of each segment based upon length of the edges composing each segment (see Fig.

3.12).

Figure 3.12: (Left) Parameterized endpoints based on polynomial. (Right) Mono-

tonic parameterization of midpoints based edge length.

Now having all the key points of interest mapped along a common parameteriza-

tion, we then perform an averaging of the segments mapped intervals. The resulting

points store not only the average position, but also the number of combining segments

and may store distance average and variance (see Fig. 3.13).
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Figure 3.13: Averaged points resulting from averaging segments at each change along

interval.

These points are composed into a single result segment and then subsampled for

smoothing, just as in the input initialization phase (see Fig. 3.14).

Figure 3.14: (Left) Average points composed into a segment. (Right) Segment re-

sampled to achieve smoothness.

To perfom the least squares polynomial fitting for data points, we first do a PCA

computation as has been explained previously for the parameterization of the points

along the principal axis. Given this parameterization, we sort the points and then

calculate the coefficients of the best fit parameters of a polynomial of degree m− 1

for the n points. This least squares fitting is done by matrix manipulation of the
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equations using a Vandermonde matrix with the parameter values of the points (t).

Using this Vandermonde matrix W with the values of t taken from the PCA mapping,

we compute the parameters of each dimension’s polynomial equation of degree m−1

(with m < n).



1 t1 t21 · · · tm−11

1 t2 t22 · · · tm−12

...
...

...
...

1 tn t2n · · · tm−1n


∗



a1

a2
...

am


=



x1

x2
...

xn


Wa = x

a = (W TW )−1W Tx

Thus, with each of the parameters computed for each dimension we now have a

least squares fit polynomial of degree m−1 for the point sets with parameter values t.

A sample image of least squares fitting of polynomials in two dimensions can be seen

in Fig. 3.15. While one may choose to a nonlinear least squares fit to determine the

parameterization of the points at the same time as the polynomial with approaches,

for our data sets we had trouble for convergence even when initialized with the PCA

parameterization.
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Figure 3.15: An example of the least squares polynomial fitting of a set of points in

space (generated following [16]).

3.5 Segment Comparison

Determining wether a geometric object is representative of another and thus is a

candidate to be combined can be analyzed in a variety of ways. In this section we

look at the increasing level of complexity that should be considered for similarity of

points on up to segments.

In the case of a point in space matching with another point or set of points

in space, looking at the geometric quantity of distance allows us to readily check

liklihood of combination, while other point data, like color, size, or density, can help

to clarify the matter further. Each of these parameters can be used in conjuction

with a threshold value to allow a neighborhood of acceptance that would then be
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logically represented as a single point.

For line segments (edges), the geometric aspects of: orientational difference, aver-

age distance, and minimum distance are all additional criteria to check. The orienta-

tion particularly will allow the distinguishing of nearby edges of opposing orientation

whereas distance alone would fail.

For a segment, new geometric aspects of line segment to line segment angle vari-

ance and smallest average distance from one segment to another come into consid-

eration. Also, the case of topology regarding the number of connections at the ends

of the segment become an issue and factor into classification of similarity.

Though each of the categories of geometric, topological, and data comparison

allow for evaluation of the segments, their scoring is weighted so as to allow priority

to be given to certain comparisons. We allow the user to set the associated weights

for each aspect of the evaluation, though in practice we prioritize the aspects in

the order given below and limit comparisons to sets within a certain radius of the

combining segment.

Geometric

• The first metric we use is an approximation of the smallest average distance

between the segments (or the least of the average distance from one segment’s

edge endpoints to the opposing segment). We compute an approximation of

this average distance by taking the minimum of the two segments’ average

distance from each other at distinct points, where each segment’s distance is

the sum of the closest distance from each of its line segment endpoints to the

closest point on the other segment, divided by the total number of distances.

See Fig. 3.16. This metric is used to mitigate the trouble of matching small

segments to larger ones. Also, complications due to different edge lengths for
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the input segments are curbed by repartitioning each of the input segments.

• The second metric we take into account is the minimum distance between the

segments, namely the minimum distance between any pair of opposite edges of

the segments.

• The third metric is the angular difference between the segments, which is always

bounded by 90 degrees for a maximum angle. This metric assumes segments

are bi-directional.

• The final geometric metric is the difference between the sum of angular varia-

tions along sequential edges of the segments, or the sum of angle changes from

line segment to line segment across the segment.

Figure 3.16: The one-sided distance is computed by averaging the distances to one

segment from all of the other segment’s edgepoints. The minimum average distance

is the smaller of the two one-sided average distances.
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Topological

• The topological metric measures the valence difference among the pairing of

opposing segment endpoints, assuming the direction is the same.

Data

• For our motivating example, when tracing various tubular structures we also

record the radius information at each edge endpoint. For the comparison be-

tween two segments we use this to calculate an average radius along the seg-

ment.

Other characteristics can also be considered, but for our data we have found the

above comparisons to be sufficient. Since some of the characteristics can be quite

varied with respect to each other, in practice we establish weights to key in on

parameters the user is seeking.

3.6 Distance Mapping

To address the issue of mapping an interval match between two segments we

perform distance mapping to achieve intervals used for both non-branching points

and branching points (branching points will require a close cut). First, given two

segments S1 and S2, we compute for each edge endpoint in S1 the corresponding

closest point along S2. Next we find for each edge in S1 the closest point along S2

(this is needed as seen with the case of perpendicular edges with closest point lying

in their middle). Third we use these first two distance computations to find the

first and last points or edges that lie within the specified distance and mark their

parameterization along the segments ([0-1] range) as the interval. These distances

and a user specified distance threshold let us compute a mapping interval in which

the entire segment is mapped to portions of the segment to which it is closest, or
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else to a null region (if there is no point on the other segment sufficiently close).

We then proceed to do these same three steps from S2 to S1, thus having two sets

of interval mappings (S1 to S2 and S2 to S1). Note that because the comparison is

for the minimum distance, the two sets of interval mappings likely will not be the

same. Thus when we are using interval maps we project these parameterizations and

perform a union in the case for loose intervals (ones not requiring a cut because of a

branch point), and a intersection in the case of for tight intervals (only for the cut or

branch part itself). One final word about this distance mapping is that this form of

interval mapping allows to maintain the same underlying topology of the combining

skeletons instead of introducing cuts for sections which match within a distance at

the ends but go beyond that threshold in their middle.

3.7 Composing the Set Model

We construct the set model incrementally, adding one input skeleton at a time

into the set model by a set of mapping rules stated below. Each segment of the

added skeleton becomes part of the set model, either in a new set of segments, or

joining with an existing set of segments. After all the segments are combined with

the set model we then refine the set model for order independence by the two primary

operations of merging and splitting.

3.7.1 Mapping Rules

Given a segment from the skeleton being added to the set model, we want to find

the segment from the set model that it most closely matches. Using the comparison

between segments (see section 3.5), we find the segment that closest matches the

combining segment and then mark its set to be the key. This key set then has its

average result segment computed (see section 3.4) and this result segment is used to

compute the interval mapping (see section 3.6) and how it will be combined with the
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set. Each pair of segments can be classified for combination in one of three ways (no

match, match, or partial match), having five results (combine, split, test again with

higher threshold, or new set), with an overview of the matching algorithm shown

(Fig. 3.22 and Fig. 3.23).

A no match with the result segment occurs if the distance metric exceeds the

threshold or there are no potentially matching sets (see Fig. 3.17). With either of

these cases, the new segment cannot be added to the set model, so we create a new

empty set of segments, add the combining segment into it, and add it to our set

model.

Figure 3.17: Cases where no match is detected and a new set is created include when

the comparison score too far and when the closest distance between the segments is

too great.

A match with the result segment occurs when the entire [0 − 1] interval of both
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segments is mapped to the other segment (see Fig. 3.18). In this case, one segment

is treated as coinciding with the other for the full interval and thus we simply add

the segment to the corresponding set of segments that were used to form the result

segment. Note that in this case we do not need to worry about the connective

topology of the end points of the segments as we do not subdivide one of them

relative to the other, and thus segment status is unchanged.

A partial match with the result segment occurs when a subset of the [0 − 1]

interval is mapped for each segment. For partial matches, a more complicated proce-

dure is involved, as described below. For this partial match case, more information

about the valence of two segments’ endpoints must be evaluated to determine how

the segment might possibly be split and combined into to the set model. The aspects

of the various cases are discussed in detail below.

1. Combine: This case occurs when the combining segment is deemed to be close

enough and safe to combine with the set (see Fig. 3.18). There are two basic

scenarios where this can happen. The first is when the mapped interval of

each segment overlaps an opposing endpoint (i.e. [.. 1] and [0 ..]), with the

overlapped endpoints for both segments having a valence of 2 or less. The

second is where one segment interval is subsumed in the other interval (i.e. [..

..] and [0 1]) and the endpoints of the subsumed segment have valence 2 or less.

In both scenarios, the new segment is considered close enough to the other and

thus either addeding to or extending the set segment will be “safe” operations.
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Figure 3.18: Cases where combining is detected and the set can safely and logically

add the combining segment: (Top) overlapping non-branching endpoint, (Right)

subsumed segment contains non-branching endpoints, (Bottom) match case.

2. Split: Splitting addresses the issues raised by the set model containing a branch

that is not within the combining skeleton. This will occur when the mapping

between segments places an endpoint of the set segment in the interior of

the combining segment, and that set segment has valence 3 or more (see Fig.

3.19). In such cases, partitioning the combining segment into two or three

pieces (depending on how the other endpoint is mapped and what its valence

is) and re-testing the segment pieces individually allows for the safe mapping

of segments to the set model.
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Figure 3.19: Cases where splitting is detected and the set must cut the combining

segment (yellow) due to the valence of the result segment (green): (Top) overlapping

branching endpoint, (Right) subsumed segment contains one branching endpoints,

(Bottom) subsumed segment contains both branching endpoints.

3. Swap: Swapping is defined as when the combined segment becomes the sole

occupant of the set and all the previous segments of the set are re-tested to

find their new position in the set model. This case is made necessary whenever

the combining segment has an endpoint of valence 3 or more that maps to the

interior interval of the set segment - i.e. the combining skeleton has a branch

that was not part of the set model (see Fig. 3.20). It should be noted that the

set segment is always evaluated first for valence and partitioning the combining

segment, thus preventing a looping swap call.
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Figure 3.20: Cases where swapping is detected and the set must switch out the

set due to the valence of the combining segment (yellow) and the valence of the

result segment (green): (Top) overlapping branching endpoint, (Right) subsumed

segment contains one branching endpoints, (Bottom) subsumed segment contains

both branching endpoints.

4. Retest: The case where there is no good combination and there is no cause for

swapping or splitting the segment (based on valence of endpoints in mapped

intervals) can occur when no endpoint maps to the interval, a partial mapping

where only one endpoint (valence 2 or less) is mapped to the interval, or when

two endpoints from opposing segments map to the interval but no segment’s

endpoint pair is contained in the interval (see Fig. 3.21). We have two options

for handling this. The first is to split both the combining and set segments and

merge their pieces based on distance. The disadvantage to this approach is that

it can unnecessarily complicate the segment structure and lead to many small

sub-regions and loops in the result. The second option (the one we employ)

is to modify our match criteria slightly and retest, with this most commonly
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involving the increase of the allowed distance for matching. While this latter

approach does allow a larger margin of error into the similarity evaluation, it

also allows for contiguous mappings between the segment and the set model

(thus things that are at least partially close will remain connected in single

segment pieces in the end).

Figure 3.21: Cases where retesting is detected and the criteria for matching is in-

creased slightly before testing again: (Top) same endpoints mapped but no segment’s

endpoint pair is mapped, (Right) only one non-branching endpoint mapped, (Left)

no endpoint is mapped.

5. New set: The final case we handle is a bit rarer, and occurs when the combining

segment cannot logically be combined with the existing set. In this case, a

new set must be created for it. The scenarios where this occurs are when

the endpoints of either segment map to a single point on the interval (as with

perpendicular lines) and the valence of one of the endpoints is 3 or more. In such

a situation, it might seem that splitting the segments and introducing branch
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points would be the correct solution, but that would introduce connections

in the final result that were inconsistent with all of the input skeletons. We

choose instead to maintain topological input similarity and have two sets that

end up passing within our normal allowable similarity space with regards to

each other.

In the end, we have a mapping from the combining segment to the segment sets

in the set model that does not subdivide the underlying segments more than would

be required by the explicit input skeleton branch points. As the segments are split,

each piece still maintains the connectivity with respect to both its counterpart and its

endpoints. Thus, each segment set contains information about what other segment

sets it connects with by the segments’ recorded connections with each other.

This concludes the mapping rules for adding segments, though there still needs

to be a stage in set maintenance to ensure order independence with skeleton com-

binations. For a diagram of the mapping rules and logical flow of deciding where a

segment will go in the set model see Fig. 3.22 and Fig. 3.23.
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Figure 3.22: The flow of the decision tree for deciding how a segment X will be

combined with the Set Model given a distance threshold m, score threshold s, and

point tolerance threshold p (used for detecting regions too small).
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Figure 3.23: The second section of the decision tree for deciding how a segment X

will be combined with the Set Model.
38



3.7.2 Maintaining Order Independence (Merge and Split)

In the establishment of sets of segments, the linear order of combination can play

a key role in the final sets. To mitigate this concern we employ the following merge

and split approach to achieve a more robust result. In this section we look at the

result of applying a merge and split approach for sets of points on up to sets of

segments.

For sets of points representing singular points in an underlying model the idea is

to incrementally merge all point sets that have points within some threshold distance

of each other. This merging effect tends to create large sets that are larger than or

equally as large as the maximum potential set given all the possible combination

orders. With this largest set distribution accomplished, we then compose an average

point and check the similarity of each point in the set with regards to the average.

If there exists a point or set of points outside a specified similarity score we will

take the most offending point (point 1) and the point in the set most dissimilar to it

(point 2). Thus with the two farthest opposing parts of the set we recategorize the

set into two based on fitting better with point 1 or point 2, subsequently splitting

on each subset as needed (failing the similarity threshold).

For sets of line segments (sets of edges) representing single underlying line seg-

ments one may perform a similar incremental merging based on the distance from

any point on the edge of one set to an edge of another set. Again, this allows us to

have large sets that encompass the maximum potential set given by any combination

order. Using this encompassing set distribution, we then compose an average line

segment (see 3.4 Combination) and check the similarity (see 3.5 Segment Compari-

son) of each to see if splitting of the set should commence given a similarity threshold.

As with the point example, we take the most offending edge and its counterpart and
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split the segment into two using them as the basis for the two new sets. We then

subdivide further based on the similarity results within the two new sets.

Similarly to points and edges, in order to reduce order dependence of our result

with regards to sets of segments we use this two phase operation of first merging

sets based on distance and of secondly partitioning sets based on their variance in

similarity (see 3.5 Segment Comparison) with the average result of the set (see 3.4

Combination).

This first phase of merging sets is done by a pairwise segment-segment comparison

of nearby segments from each opposing set to see if there exists some segment pair

that has a similarity score within a defined threshold. It should be noted that if

the combination of the sets would internalize a branch point we do not proceed with

the merge (to prevent over collapsing). In the case that no pair is found to match

within the threshold, we conclude the sets are distinct with respect to each other.

For the case where a pair is found to match similarity within the threshold, we say

there is overlap in the sets (as there would be a set match given just the pair) and

thus collapse the two sets into one. Taking into account this new set we compare

sets until all nearby sets have been checked with regards to their pair similarities.

As stated with points and edges, the idea in this phase is to combine neighboring

segments (those mapped into the same set in the set model) into a minimal number

of sets as if they had been given in the order that maximizes the size of the set. The

necessity of partitioning these larger sets we handle in the next phase.

For the second phase we look at each set individually and see if it should be

split based on individual segment similarity difference (see 3.5 Segment Comparison)

from the average segment (see 3.4 Combination). We find the similarity score of

every segment in the set with the average segment and evaluate whether the score is

beyond the specified split threshold. As with the case of points and edges, if a split
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is incurred we partition the set into two based upon the most offending segment and

its least similar counterpart. Thereafter we recurse upon the splitting operation until

the sets are within the specified split threshold similarity. It should be noted we no

longer split apart segments at this stage, thus, if merging allows for collapsing over

a branch point the segment is no longer faithful to the combined input skeletons.

As the cutting position is dependent on the order, order indepence can truly be

achieved with merging and splitting only when the cut positions are uniform in the

final segment state (same regardless of ordering).

Figure 3.24: On the left: If segments are combined in monotonic fashion with re-
gards to their numbering, the case on the left results in two segment sets in the the
combined skeletal model even though adding them in the order 1,3,5,4,2 results in a
single segment set. By merging sets we resolve this issue by ensuring all segments
that would map together are in the same set. On the right: With segments continu-
ing to map together and also their sets undergoing merging, sometimes the range of
variability for an individual set grows beyond the desired bounds (say for a radius
measure). By subdividing the set into two with regards to the farthest matches we
then ensure that at each level of subdivision the set is rid of the largest outlier from
its current median.
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The underlying reasoning behind the merging and splitting is seen in Fig. 3.24.

In practice we use the same scoring function and values for merging and splitting as

we did for matching, though this could be changed to tailor the combination to fit a

more specific style.

3.8 Forming the Result Model

After processing all the input skeletons into the set model, the combining of each

set into their respective final segment and connection repairing is handled in creating

the result model.

Figure 3.25: Combining synthetic skeletons from a model. Three different skeletons
are combined into a single unified model. At top left are three skeletons, each in a
separate color. At top-right is the combined skeletal model, with each segment set
highlighted in a different color. At bottom-left is the composite result, with each
segment highlighted in a different color. At bottom-right is the composite skeleton
with uncertainty values color ranging from less certain (blue) to more certain (red).
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3.8.1 Set Evaluation

The combination of the various segments in a set into a single result segment is

handled by establishing a global ordering of their endpoints and monotonicly aver-

aging their paths within their respective global intervals (see section 3.4).

Note that due to the ordering with the construction of the result segment we

also have a two way mapping of each combining skeleton to the result skeleton via

the individual segments (or subsegments in cases of splitting). Thus we can easily

propagate data values stored on the result skeleton to the combining skeletons, and

vice-versa.

3.8.2 Confidence Value

During this process of edge creation we also calculate a corresponding confidence

level for individual points, the edges, and subsequently the segment, indicating how

likely the segment is to reflect a “true” skeleton. The confidence value is based on how

much that region is covered by a set of segments and is to be used in connection with

the total number of skeletons added to the combined skeletal model. If a segment

is contained in all the input skeletons, it will have higher confidence, while if it is

missing in some, it will have lower confidence. We can also augment the confidence

by using our similarity metric. For any segment, we can measure the largest distance

in the set of segments in the set model to the segment in the result model, and treat

(the inverse of) this as a second measure of confidence. If all segments in the set

model are close together, that will increase confidence, while if the set is rather spread

out, the confidence will be lower. The goal of this confidence value is that regions

that have higher confidence values (more segments in the set and high coverage of

the set bounds) will be those where mutual agreement among the various skeletons

occurs. An example of this uncertainty and the process of creating the set model
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can be seen with Fig.3.25.

3.8.3 Connection Repair

After generating result segments for each set in the combined skeletal model, their

topological connectedness may no longer be satisfied geometrically. We thus perform

a geometric adjustment of the segments to have them connect as in the topological

structure of the set model. Using the connectivity lists from each segment of the

set, we know which segment (and thus which set) the result segment should connect

with at the fore and aft. With these connections we make a geometric ’snapping’

modification if the existing geometric connection is invalid.

The snapping occurs by modifying the corresponding connected ends of the seg-

ments to a point formed by averaging all the incident vertices (Fig.3.26). Although

this changes the geometric data we have at the endpoint (since the position is now

based on the geometry of adjacent segments), it is necessary to preserve the topo-

logical constraint.

Figure 3.26: If the endpoints of mulltiple result segments match together topologi-
cally, geometric connectivity is ensured by setting their endpoints to be the average
of the of the mapped endpoints.
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With the connection repair finished, we now have our result model. As the

combination process allows us to determine consensus data at each point along our

segments, the result model now stores an accurate (albeit simplified) consensus mea-

surement along each of the points composing the skeleton.
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4. RESULTS AND EVALUATION

By implementing our method we now demonstrate its application in several fol-

lowing examples.

4.1 Combining Different Volume Skeletons

There are a wide variety of methods that can be used for skeletonization. Skele-

tonization is important to many aspects of visualization and analysis of certain vol-

umetric data sets. One example is vascular data; the skeleton provides a medial axis

for the data, and thus makes it much easier to perform analysis and visualization

of the data (e.g. [12]). Different skeletonization algorithms or different parameter

settings for the same algorithm are better at capturing different parts of the data,

and thus there is a need to combine results from multiple skeletonizations of the

same volume. Figure 3.25, Figure 4.1, and Figure 4.2 show examples of combined

skeletons. shows an example.

4.2 Combining Adjacent Volume Skeletons

Recent imaging methods have begun to produce very large amounts (terabytes) of

volume data. Given the size of such data sets, analysis of the data is performed over

smaller subvolumes that fit in memory. Skeletonization is critical for visualization

and for understanding the connectivity of structures over large distances (vascular

and neuronal structures can extend a very long distance in the volume). To effectively

deal with these large data sets, we need to be able to merge the skeletons generated

from each subvolume into a unified skeleton (Fig. 4.3).

Figure 4.4 and Figure 4.5 show the results of a combined skeleton for such an

application. As the figure demonstrates, skeletons from overlapping regions are eas-
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Figure 4.1: Combining synthetic skeletons from a model. Three different skeletons
are combined into a single unified model. At top left are three skeletons, each in a
separate color. At top-right is the combined skeletal model, with each segment set
highlighted in a different color. At bottom-left is the composite result, with each
segment highlighted in a different color. At bottom-right is the composite skeleton
with uncertainty values color ranging from less certain (blue) to more certain (red).

ily combined into a single unified skeleton; this combined skeleton is suitable for use

in further visualization, simulation, and analysis applications. A closer look at over-

lapping region can be found with Figure 4.6, and shows how well the the combined

skeleton result matches a trace of the whole volume.

4.3 Combining Mesh Skeletons

Skeletonization is used in graphics applications to, among other things, provide

intuitive control for deformation, parameterization across an object, and a base for

simplification. We demonstrate that, like volume-based skeletons, we can combine

mesh-based skeletons into a unified model. An example is shown in Figure 4.7.
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Figure 4.2: Combining skeletons from two different algorithms [11, 6], and several
parameter settings for each. The skeletons trace the vascular structure from part of
the mouse Cerebellum. At top-left are the individual skeletons, each in a different
color. At top-right is the set model, with each segment set highlighted in a different
color. At bottom-left is the result model with each segment a different color. At
bottom-right is the result model colored based on uncertainty, ranging from less
certain (blue) to more certain (red).
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Figure 4.3: Combining 8 adjacent volumes’ skeletons from different traces using
the same algorithm [6] over overlapping volume regions. The image displays the
combining segments with color denoting no combination (blue) or combination (red).
For this case, each volume is 5503 in space with 100 overlap, thus allowing us to piece
together a skeleton for a 10003 volume we cannot trace normally in memory.
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Figure 4.4: Combining 3 skeletons from different traces using the same algorithm
[6] over overlapping volume regions. The skeletons trace the vascular structure from
part of the mouse cerebellum, and the same algorithm (with the same parameter
settings) is used for each of the three volumes. The top image displays the skeletons
(denoted by individual colors), and the bottom image displays the result model with
color denoting uncertainty ranging from less certain (blue) to more certain (red). In
this case, the overlapping region is more certain, while the less overlapped area is
less certain.
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Figure 4.5: Combining 6 skeletons from different traces using the same algorithm
[6] over overlapping volume regions. The skeletons trace the vascular structure from
part of the mouse cerebellum, and the same algorithm (with the same parameter
settings) is used for each of the three volumes. The top image displays the skeletons
(denoted by individual colors), and the bottom image displays the result model with
color denoting uncertainty ranging from less certain (blue) to more certain (red). In
this case, the overlapping region is more certain, while the less overlapped area is
less certain.

51



Figure 4.6: Combining 2 skeletons generated by [6] over subsets of a larger volume of
the vascular structure of the mouse cerebellum. The top left image displays the input
skeletons (denoted by individual colors), and the top right image displays the set
model with color denoting individual sets. The bottom left displays the uncertainty
ranging from less certain (blue) to more certain (red) and the bottom right displays
the final result (pink) with a trace over the entire volume (orange).

52



Figure 4.7: Combining skeletons from the armadilloman mesh model. Three different
skeletons are combined into a single unified model. At top left are three skeletons,
each in a separate color. At top right is the combined skeleton; the colors demonstrate
different segments in the combined model. At bottom is the combined skeleton
overlaid on the model.
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5. DISCUSSION AND CONCLUSION

In this section we move on to a discussion of applications of our method, its

contributions, concluding thoughts, and future work.

5.1 Queries

Using the final result skeleton, we can perform a number of geometric queries.

While we can treat this final skeleton as a single model, we have additional informa-

tion, namely confidence values and mappings to original skeletons, that will allow us

to gather more interesting results from the skeleton. In particular, we can calculate a

confidence value or range of confidence associated with most geometric queries. This

can allow us to interactively query the structure to get a value with uncertainty that

is not typically available when dealing with a single data set. We must note that this

confidence value is not a reliable measure in any strict statistical sense, but rather a

measure of how consistent the result is versus all of the input skeletons.

As one example, if measuring distance from a point to the skeleton, we can first

find the nearest point on the result skeleton. We can then look at the mapped point

on any of the input skeletons to find a range of possible distance values, from each

of those points. While only approximate, this will give an interval of values that

should be a reasonable range of measures to the ”best” skeleton, and a better sense

of distance than the single value returned from any one skeleton would have been.

As another example of such a query, when analyzing vascular data, information

such as the fraction of space occupied by blood vessels, average length of a blood

vessel between branches and the frequency of branching in a fixed volume are of

interest. The confidence values we compute along segments can be used to determine

the likelihood of each segment actually being part of the vasculature (this is often
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not clear-cut in real-world data), and we can thus compute confidence values for the

gross statistics within a region. That is, if all input skeletons contain the segment,

we can include it with certainty, while if only a fraction do, we can weight that

segment’s contribution by that fraction.

Several other similar queries are also possible, including those that would make

use of the statistical radius or other information that is stored in the combined

skeleton.

5.2 Discussion

There are several applications this method for skeleton combination can be used

in, and in our work is just one step towards the goal of automatic tracing and seg-

mentation of large volumes of high resolution medical volumes. One use of skeleton

combination is as a sort of signal reconstruction, using the assumption that the

noisy/less reliable input skeletons are samples, and we are trying to reconstruct a

more accurate structure underlying them. Through the construction of the result

skeleton one can easily visualize which regions may need more analysis via low con-

fidence values. Another use for skeleton combination is detail addition (as with level

of detail) or expansion (as with adjacency or overlapping parts) of existing struc-

tures that can be applied in online visualizations. While these concepts are readily

applicable to the area of trace combination for tubular networks, other uses such as

obtaining a combined weight skeleton for mesh deformation and mapping topologi-

cal changes to skeletons for meshes over time are not as conveniantly discerned due

to the particular bone/weight assosiations and the topological inconsistency across

models respectively.

Some limitations to the approach we have outlined are as follows. Our presented

method does not allow for the cases of non-branching self connected structures due to
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endpoint constraints (i.e. a loop with no branches). It should be noted that in cases

where there are neighboring branches all of highly similar orientation and close prox-

imity our algorithm will collapse them to one final segment. Also, the combination

approach means that the method can only help to minimize error that is not globally

(or near globally) consistent. This means that if the vast majority of input skeletons

all possess the same error type, the result will likely possess that error, though that

error may be identified through looking at the uncertainty matching for the data (or

variance across the result model). Finally, our approach is limited to dealing with

whatever input is provided, and problems in that input can be propogated in the

output. For instance, if the majority input skeletons fail to identify some segment

in the data, there is no chance that the output will show a favorable certainty for

that segment. However, the advantage to our approach is that if even one input

provides that data, we will have some way of representing it (even if with only low

confidence).

5.3 Revisiting the Ideal Combined Model

• Compact accessible representation: The result of our method still remains a

skeleton with only a small addition of data at the points, thus the compactness

and accessibility reasons for using the skeleton remain.

• Consensus function: As the result stores the mapping amount (as well as can

store average deviation and variance data) at its points, the consensus function

requirement is satisfied.

• Order independence: Provided the cut position of segments is uniform, the

merge and split operations ensure a robust set model state and thus result. This

condition however is rather stringent and should be improved in the future.
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• Weighting of inputs : Any combining segments may have an individual scor-

ing threshold and be combined using a weighted average, therefore enabling a

particular skeleton more effect on the composed result.

5.4 Conclusion

We have presented a new method for combining skeletal information from multiple

skeletal structures to obtain a single skeletal model. This can allow us to:

• Have a more complete representation of the object (when different skeletons

provide complementary information). Thus, a we can visualize more complete

and accurate models than we would be able to otherwise.

• Compute skeletons over larger regions (i.e., stitching skeletons together). This

will allow us to visualize larger regions of data than we could otherwise, as well

as to have more complete models over a larger region.

• Compute an “average” skeleton with order independence (provided uniformity

of cuts in final segment state).

• Possess consensus data that is available at any point along the result skeleton

(slightly simplified due to resampling), allowing us to visualize the result and

at the same time display a measure of uncertainty in the result.

5.5 Future Work

There are several tasks to pursue regarding this work in the future. First, relaxing

the order independence constraint by ensuring cut partitions are uniform across

segments would be beneficial. Second, improving on the scalability of the method

would be a favorable change as currently the set model requires access to the index

of all segments being combined. Currently the solution to scalability is to have a
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pyramid type structure for composing levels of result skeletons that are then fed as

input skeletons to the next iteration of a more encompassing result skeleton (which

loses some finer details of the lower skeletons). An interesting venture would be to

extend this approach to combinations of higher-order skeletal models. Finally, the

uncertainty information that this approach makes available should allow an even

wider range of uncertainty visualization approaches than are mentioned here.
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