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ABSTRACT

The recently proposed Interferometric Neighboring Fracture (INF) localization

method places unique and demanding constraints on relative travel time measure-

ment accuracy and precision, while sampling a function of relative travel times be-

tween pairs of microseismic events as measured along a linear array. Conducting two

synthetic trials, I analyze the relationship between event-receiver geometry and rela-

tive travel time measurement error and its effect on the feasibility of INF localization.

The results indicate that even for typical hydraulic fracturing monitoring geometries,

measurement error can exceed the feasible error limits of INF localization.

In order to mitigate this error, I propose a new relative travel time measure-

ment technique, Modified Adaptive Steering (MAS), along with a unique prepro-

cessing methodology, Progressive Template Extraction (PTE). Analyzing synthetic

data sets with varying SNR ratios, and a field recorded microseismic data set, I com-

pare the performance of PTE-preprocessed MAS to conventional cross-correlation

(CXC). Results of both synthetic and field recorded data analysis indicate that PTE

enhanced MAS outperforms CXC as a general lag measurement technique, reducing

average lag error by as much as 1.25 ms at SNRs below 10. With respect to the

unique constraints of the INF method, PTE-MAS produces as many as 4.2 times as

many usable samplings of the relative travel time function, while reducing error in

stationary position and lag by up to 15 m and 2.5 ms, respectively.
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1. INTRODUCTION

1.1 Microseismic Monitoring

The recent increase in tight reservoir development within the global petroleum

industry has generated interest in the use of microseismic monitoring as a hydraulic

stimulation monitoring tool. The study of microseismicity induced by fracturing rock

is not strictly novel, as it has been a staple of geothermal field development since the

1970s (Maxwell et al., 2010), as well as a hazard detection tool within the mining

industry for almost as long (Gibowicz and Kijko, 1994). Recent theoretical devel-

opments have been characterized by numerous advances, ranging from better source

characterization (Sileny et al., 2009), to passive imaging and tomography (Zhang

and Thurber, 2003), as well as improved hypocenter localization (Waldhauser and

Ellsworth, 2000; Poliannikov et al., 2011), including the Interferometric Neighboring

Fracture method which forms the focus of this thesis.

Microseismic event locations function as a direct measurement of fracture orien-

tation, distribution, and density, qualities which enable operators to optimize hy-

draulic fracturing pressures, fluids, proppants, and well and stage spacings (Portis

et al., 2013). Event density and distribution allow for the estimation of total stimu-

lated reservoir volume (SRV), allowing engineers to evaluate stimulation efficacy and

predict drainage (Meek et al., 2013) of stimulated reservoirs. Knowledge of fracture

growth and containment, given by hypocenter distribution, may be used to delin-

eate geological formation boundaries, supplementing well and mud logs by providing

additional clues to subsurface geology in a volume surrounding the stimulation well-

bore. These data additionally allow for inferences regarding reservoir connectivity,

and facilitate the minimization of leakoff into and stimulation of non-reservoir forma-
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tions. Waters et al. (2009) reported on the use of real time microseismic monitoring

during stimulation of Barnett Shale to avoid fracture intrusion into the underlying,

water bearing Ellenberger Limestone. During initial development of the Barnett

Shale, microseismic analysis was used to demonstrate the existence of natural frac-

ture networks, leading reservoir engineers to consider more complex fracture models

for optimal stimulation planning (Mayerhofer et al., 2006).

1.2 Seismic Interferometry

Despite a number of recently proposed localization methodologies, literature re-

ports (Havskov and Ottemöller, 2010; Schweitzer, 2001; Vesnaver et al., 2008), that

contemporary seismologists still predominantly rely on Geiger and Wadati methods,

and minor variations thereof, hereafter referred to as classical localization techniques.

These classical methods, based on P- and S-wave arrival time differences and arrival

polarization, locate events individually, and have been adapted from earthquake

seismology, where meaningful analysis is possible with uncertainties on the order

of hundreds or thousands of meters. The physical scales of hydraulically induced

fracture networks more strongly constrain the useful limits of accuracy in event lo-

calization, such that errors of 10 s to 100 s of meters typically reported for classical

localization (Hurd, 2012) restrict the quality and quantity of information which may

be derived from hypocenter locations.

Recent applications of seismic interferometry to microseismic analysis have been

proposed in an effort to mitigate these limitations, by generally promising to reduce

the uncertainty of hypocenter inversion. Interferometric techniques compare event

waveforms using cross-correlation, convolution, or some combination of the two, to

supplement absolute event locations and individual event waveforms with relative

event information, allowing for source-receiver virtualization (Curtis, 2009; Schuster,
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2009; Poliannikov and Willis, 2011; Poliannikov et al., 2012), passive seismic imag-

ing (Wapenaar, 2006), and event redatuming (Curtis and Halliday, 2010; Schuster

and Zhou, 2006; Poliannikov and Willis, 2011). While interferometry is a powerful

technique which may redatum full waveforms between pairs of events, relative event

travel times alone can act as a useful set of data, particularly as input for relative

localization methods, such as the Double Difference (DD) technique proposed in

Waldhauser and Ellsworth (2000), as well as the Interferometric Neighboring Frac-

ture method, and a Unified Bayesian combination of Double Difference and INF

introduced in Poliannikov et al. (2013).

The Interferometric Neighboring Fracture method (INF) proposed in Poliannikov

et al. (2011) is a promising relative localization methodology which is particularly

useful for linear array event-receiver geometries typical of hydraulically induced mi-

croseismic events. As characteristic of interferometric techniques, INF makes use of

relative event travel time information to reduce uncertainty in localized hypocenters,

thereby improving the quality of information which may be inferred from microseis-

mic event locations. The INF methodology places unique and demanding require-

ments on travel time measurements, such that care must be taken to ensure that

event-receiver geometry and relative travel time precision are suitable for INF relo-

cation; otherwise, as will be demonstrated in the following text, the methodology

may be unable to relocate events, or it may produce nonsensical locations which

may be taken as accurate without an understanding of the effect of geometrical and

measurement limitations on INF localization results.

To date, only a handful of studies have succeeded in relocating microseismic

events using relative event information, e.g. (Hurd, 2012; Melo et al., 2012; Phillips,

2000). Although the results of the application of Double Difference to microseismic

localization in Hurd (2012) were less than ideal, the method, originally adapted

3



from earthquake seismology nonetheless shows promise as a microseismic relative

localization tool. Based on the Geiger method in Geiger (1912), the methodology

simultaneously minimizes absolute and relative traveltime residuals for all events and

event pairs, reducing error induced by noise and velocity uncertainty. Compared to

INF, DD is better suited to noisy data, while INF is less sensitive to velocity model

error for certain geometries (Poliannikov et al., 2013). The Bayesian unification of the

two methods in Poliannikov et al. (2013) leverages these situational advantages, by

realizing locations under each methodology and choosing the result with the smaller

uncertainty volume.

1.3 Thesis Purpose

Given the breadth of information that may be inferred from accurate microseismic

hypocenter locations, in this thesis I propose two novel techniques, which I show to

generally improve relative travel time measurement accuracy and precision, thereby

reducing uncertainty in event locations generated by INF, Double Difference, and the

Unified Bayesian method, as well as other localization methodologies which may rely

on relative event travel times. In addition to demonstrating the circumstances under

which even typical monitoring geometries may exceed INF limitations, I further

establish that my methodologies, when used in tandem, reduce lag measurement

error in such a way as to better satisfy the particular error constraints of the INF

method, extending the feasibility of the Interferometric methodology to a wider range

of acquisition geometries and data qualities, as well as reducing overall localization

error.

1.4 Thesis Structure

In this work, I first demonstrate the relationship between source-receiver geom-

etry and the precision and accuracy required by the Interferometric Neighboring

4



Fracture method, followed by an exploration of the effect of receiver array charac-

teristics and placement on the feasibility of an INF relocation. I then demonstrate,

with real data, the consequences of travel time measurements which do not satisfy

the stringent requirements necessitated by the INF method, along with a discus-

sion of the limitations of and errors caused by relative travel time measurement

via conventional inter-event cross-correlation. Next, I present a Modified Adaptive

Steering (MAS) technique, based on a methodology proposed in Gangi and Fair-

born (1968), along with a related preprocessing technique, Progressive Template

Extraction (PTE). I then use synthetic seismic data to compare the performance of

my proposed methodologies with that of conventional inter-event cross-correlation.

Finally, the thesis is concluded with a real data comparison, which suggests supe-

rior performance of PTE enhanced MAS with respect to conventional inter-event

cross-correlation, demonstrating improvement in relative lag measurements which

more closely meet the unique precision and accuracy conditions required by the INF

method.
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2. INTERFEROMETRIC NEIGHBORING FRACTURE LOCALIZATION

2.1 Method Description

The following description is adapted from the original method presentation in

Poliannikov et al. (2011).

The interferometric neighboring fracture method (INF) is a derivative of more

general interferometric redatuming, which theoretically enables full Green’s function

recovery under idealized receiver coverage (e.g., Wapenaar, 2004). This technique

requires only estimates of relative travel times between event pairs. Consider the

following problem setup: a flat, vertical surface of geophones and two sources in

three dimensional space, x1 and x2, illustrated in Figure 2.1. In the case that the

location of x1 is known and that of x2 is unknown, we may estimate the coordinates

of x2 by recovering the traveltime difference between the two sources along the ray

which originates at source x2 and passes through source x1 before it is recorded at a

receiver. We define a function,

dt(p) = tx2 − tx1 (2.1)

to represent the measured relative difference in travel times tx2 and tx1 from events x2

and x1 to point p on the receiver array surface. Provided that such a ray, from point

x2 through point x1 to a point on the receiver array, exists, the function dt(p) will

contain a maximum lag time dt(pstat) equivalent to the traveltime difference we seek

to derive, where pstat is the position on the 2D monitoring surface corresponding to

this maximum lag τmax. The presence of a stationary lag time implies the existence of

the common raypath, shared by events x1 and x2, from point x1 to the receiver array

6



Figure 2.1: Planar monitoring surface (green triangles), two hypothetical fractures
with many events (red and blue points), and microseismic events x1 and x2 (black
stars), with a stationary raypath shown by the black connecting line.

surface, and combining the recovered lag time τmax with conventional ray tracing

allows for inversion of the position of x2.

Consider instead the case shown by Figure 2.2, in which the monitoring surface

is replaced with a single vertical monitoring array, and in addition to the two sources

x1 and x2, two rectangular fracture planes each represent potentially hundreds of

events. Assume furthermore that the plane closest to the array, containing point x1,

is a reference fracture where event locations have been determined. We now redefine

the function dt as a function of l,

dt(l) = tx2 − tx1 (2.2)

representing the difference in travel times tx2 and tx1 to a parameterized point l on

the linear array. In the case that events are monitored with a linear array, rotating
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the positions x1 and x2 around the array does not change the measured absolute or

relative travel times, such that a full spatial stationary analysis is no longer possible.

However, a measured maximum in the function dt(l) implies unique coordinates in

two dimensions, defining the angle of the ray from the stationary receiver position l,

through the constant travel-time locus formed by rotating point x1, to the constant

travel-time locus formed by rotating point x2, as shown in Figure 2.3.

Figure 2.2: Linear receiver array (green triangles), reference and locatable fractures
(red and blue points, respectively), and with events x1 and x2 (black stars).

In the example of a vertical array, tracing a ray from the receiver through point

x1 using the measured stationary lag allows for the recovery of depth and offset of

point x2 relative to point x1, with a resulting azimuthal ambiguity, which may be

recovered by classically locating point x2. In this manner, hypocenter x2 is partially

redatumed to hypocenter x1, which functions as a virtualized receiver.

There are at least three potential benefits offered by the INF method over classi-

cal localization. Firstly, localization uncertainty increases with event-receiver offset,

8



Figure 2.3: For a linear array, a stationary pair of events may be rotated about
the array axis without loss of stationarity, since travel times measured at the array
remain constant. For a 1D velocity model, these constant-time loci are circles.

such that it is possible to reduce distant hypocenter uncertainty by using informa-

tion from more precisely localized nearby fracture events. Secondly, given the typical

geometry of a hydraulically induced events, numerous reference-locatable event pairs

will follow similar raypaths to the receiver array, allowing for velocity model error

reduction along the common portion of the raypath, a frequently cited attribute of in-

terferometric redatuming (e.g., Schuster and Zhou, 2006; Schuster, 2009; Waldhauser

and Ellsworth, 2000; Poliannikov and Willis, 2011). Thirdly, and most significantly,

the large number of events available in the reference fracture can produce multi-

ple estimates of localized hypocenter coordinates, which may be stacked to reduce

9



localization error compared to classical localization methods.

Poliannikov et al. (2011) present a full uncertainty analysis. To summarize the

major points and form part of the foundation for section 3, the uncertainty in coor-

dinates recovered with classical methods is inversely proportional to the square root

of the number of independent receiver realizations, which may be stacked

σc ∝ 1/
√
Nrec. (2.3)

In contrast, INF method uncertainty is inversely proportional to the square root of

the number of reference events over which a localized hypocenter may be stacked

σINF ∝ 1/
√
Ns. (2.4)

Because the number of reference events Ns is expected to be much greater than the

number of receivers Nrec, it follows that location estimates recovered by the inter-

ferometric neighboring fracture method should be more precise than those realized

classically. A universal threshold of reference events required to surpass classical

uncertainty is difficult to establish, since classical and INF uncertainties are compli-

cated functions of many variables, e.g. measurement error, event-receiver offset, and

stationary receiver uncertainty, which vary among data sets. The important point,

however, is that an idealized application of the INF method is predicated upon the

maximization of the number of reference events per locatable event. Conversely, if

monitoring and/or data conditions are such that few redundant estimates of non-

reference hypocenters are available, an INF based relocation of microseismic events

is simply not feasible, as it cannot be expected to outperform classical localization.
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2.2 Ideal Geometry and the INF Method

Poliannikov et al. (2011) present the INF methodology under idealized circum-

stances. In practice, a number of factors involving receiver placement and arrival

time measurement can affect not only the accuracy but the feasibility of an INF

analysis of microseismic data. Compared to other interferometric methodologies,

INF places unique and demanding constraints onto relative arrival time precision

and accuracy. The stationary analysis central to neighboring fracture interferome-

try relies upon relative arrival times as recorded along a receiver array to discretely

sample a continuous relative traveltime function dt(l) in the vicinity of a stationary

point. Expanding upon the definition of dt(l) given by equation 2.2 in section 2.1,

and assuming a homogeneous medium, this function is given by

dt(l) =
||p(l)− x2|| − ||p(l)− x1||

v
(2.5)

where p(l) is the parameterized spatial position p along a linear monitoring array, x2

is the distant event position to be relocated, and x1 is the reference event position.

For illustrative purposes, we assume a simple vertical linear array 4000 m in length,

centered on the point p(0) = (0, 0, 0), with event positions at x2 = (600, 0, 0) and

x1 = (300, 0, 0), and a P-velocity of 4000 m/s. With these substitutions, the equation

is plotted in Figure 2.4. Note that the function is smooth, asymptotically approaches

a constant as l approaches ±∞ and, as expected for this particular geometry, the

stationary point occurs at l = 0. More importantly, observe that for a pair of

receivers on the array at positions l = 0 and l = 100, there is a difference in dt(l) of

just 2 ms. The derivative of dt(l) is plotted in Figure 2.5.

The derivative of dt(l) ranges from .065 ms/m to -.065 ms/m at 300 m from

the stationary point where it predictably goes to zero. In order for relocation of
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Figure 2.4: Relative travel time function dt(l) as a function of receiver position l

an event to take place, the stationary point in dt(l) must be identified and, ideally,

enough data points should be available for accurate interpolation of the true value

of l for which δ
δl
dt(l) = 0. Because both dt(l) and its derivative depend upon event-

receiver geometry, there is a limited range of options for receiver placement relative

to microseism distribution in this particular case, for example, if a 7 receiver array

with a receiver spacing of 15 m were centered at (0, 0, 0), there would be no more

than 1 ms of travel time difference between any two receivers, and a much smaller

difference between adjacent receivers. This implies that, for certain geometries, the

function dt(l) cannot be sampled precisely enough to resolve stationary event pairs;

Waldhauser and Ellsworth (2000) report that under the best field circumstances, a

relative arrival time precision of 1 ms is optimistic.

It follows that care must be taken in evaluating the potential feasibility of an INF

analysis with respect to receiver array placement and array length, since even rela-
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Figure 2.5: Derivative of the relative travel time function dt(l) as a function of
receiver position l

tively typical monitoring arrangements, such as the example presented above, may

easily surpass the limits of relative travel time measurement precision. If an interfer-

ometric neighboring fracture analysis is attempted on a highly non-ideal data set, few

stationary pairs may be available for relocation, or worse, noisy samplings of dt(l)

may falsely identify event pairs as stationary and result in nonsensical relocations.

This behavior is the source of the unusual demand which the INF stationary anal-

ysis places on arrival time measurement. Whereas other methodologies, e.g. Double

Difference, may minimize localization uncertainty by simultaneously operating on all

events, so long as errors are normally distributed about true values, this condition

is not sufficient for INF relocation. Because INF evaluates data on a pair by pair

basis, with the number of samples equal to the number of receivers, large, random

measurement error will obscure stationary dt(l) values, regardless of error distribu-

tion. Although some degree of error is unavoidable, INF requires that the error is not
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necessarily small, but consistent enough to resolve the curvature of the dt(l) curve,

to correctly identify stationary pairs.
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3. MONITORING GEOMETRY AND THE FEASIBILITY OF THE INF

METHOD

Prior to using the interferometric neighboring fracture method as a relocation

tool, the effects of monitoring geometry must be considered in order to avoid analy-

sis of a data set which surpasses the strict limitations of interferometric neighboring

fracture analysis, as described in section 2.2. Specifically, it should be ensured that

dt(l) may be resolved for the majority of event pairs in the presence of measurement

error, and that a large number of stationary reference events are available per locat-

able event to effectively exploit the INF feature of common-event stacking. In this

portion of the text, therefore, the effects of event-receiver geometry on the resolution

of dt(l) and stationary pair count are explored.

3.1 Receiver Array Characteristics and dt(l) Resolution

As demonstrated in section 3, the feasibility of the INF method is limited by the

ability of monitoring receivers to resolve the dt(l) function for a given pair of events.

To summarize, if the magnitude difference in relative arrival times between receivers

along an array is comparable to the magnitude of measurement error, stationary

pairs may be missed or misidentified, and a correctly identified stationary pair may

not be suitable for localization because of the confounding effect of measurement

error on stationary point interpolation. The robustness of stationary analysis results

will therefore be maximized when receivers are located in such a manner as to max-

imize the total change in dt(l) along the receiver array. To simplify the problem,

we consider an array with just two receivers, and seek to generally maximize the
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following function for all pairs of microseisms

∆dt = |dt1 − dt2| (3.1)

where dt1 and dt2 are the relative lags for a given pair of events as measured at

receivers 1 and 2, respectively. In this manner, ∆dt represents the difference of two

discrete samples of the dt(l) function as given in equation 2.5, at different locations

on a receiver array.

Because ∆dt is a function of 12 variables (spatial coordinates for each receiver

and each event), it is difficult to provide a concise, analytic demonstration of the

relationship between receiver placement and dt(l) resolution. Instead, conclusions

are derived from the following numerical trial.

3.1.1 Model Description

To evaluate the relationship between receiver placement and travel time mea-

surement within the context of a hydraulically stimulated well, 200 total events are

randomly positioned within two planar fracture stages, separated by 400 m. Both

fractures are 100 meters wide, 75 meters tall, and 10 meters deep, each containing

100 events. A simple, homogeneous, isotropic velocity model is assumed throughout

the medium, with v = 4000 m/s. The model is graphically displayed in figure 3.1,

with the reference fracture in red, and the locatable fracture in blue.

3.1.2 Test Model and Procedure

A single trial consists of calculating the ∆dt value averaged over all reference-

locatable pairs of events at equally spaced grid nodes on the xy plane, z = 0. Between

trials, receiver spacing and orientation are varied, for a total of 9 trials, with prop-

erties summarized in table 3.1.2
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Figure 3.1: Model used in the resolution trial. Two fractures, 100 events each, are
separated by 400 meters. Example receiver locations are given by the blue crosses.

In this manner, I explore the effects of array orientation, spacing between re-

ceivers, and receiver position on the difference in relative travel times as measured

between two receivers. For each node in the model grid space, a value ∆dt is calcu-

lated as

∆dt =
1

N

N∑
i=0

|dt1 − dt2| (3.2)

where the summation is over all N (reference, locatable) event pairs. ∆dt therefore

is the average difference between time lags as measured at receivers 1 and 2 over

all pairs of events. In order to avoid artifacts resulting from unrealistic equidistant

event spacing, event positions are generated randomly once and kept constant for all

trials.
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Trial Number Receiver Spacing Array Orientation
1 10 m êx
2 10 m êy
3 10 m êz
4 20 m êx
5 20 m êy
6 20 m êz
7 30 m êx
8 30 m êy
9 30 m êz

Table 3.1.1: Orientation and receiver spacing combinations used in the resolution
trial.
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3.1.3 Results

Figure 3.2: Results of trials with varying receiver spacings and orientations. Array

orientations are ex, ey, and ez in the left, center, and right columns, respectively.

Receiver spacings are 10 m, 20 m, and 30 m, from top to bottom row. Colorbar

values are in seconds. Color scales are identical for all plots.

19



êx êy êz
10 m 0.0049 s 0.0019 s 0.0018 s
20 m 0.0099 s 0.0038 s 0.0034 s
30 m 0.0138 s 0.0057 s 0.0050 s

Table 3.1.2: Maximum ∆dt values corresponding to the trials in figure 3.2.

Two observations are immediately apparent. First, plot symmetries are only

dependent upon array orientation, not receiver spacing. Second, calculated inter-

receiver time lag differences ∆dt increase with receiver spacing for a given orientation.

∆dt is largest when receiver spacing is large, and the receiver array is oriented in the

êx direction, midway between the reference and locatable fractures.

If a conservative constraint of 0.01 s is placed on ∆dt, simulating a minimum

precision tolerance which would be acceptable in the presence of measurement error,

receivers must be spaced at least 20 m apart, and in the case that the spacing is

less than 30 m, only an êx oriented array will satisfy the minimum ∆dt requirement,

and even then there is a limited range of locations within which ∆dt is greater than

0.01 s, bounded by the circular yellow region in the bottom left hand corner of figure

3.1.3.

Observe also that ∆dt goes to 0 as the receiver array is moved away from the frac-

ture planes. This has an important consequence, in that the location of a monitoring

array within the vertical section of a well pad, even for typical monitoring geome-

tries, may produce data which cannot be reliably relocated with the INF method.

As an example, even the idealized geometry presented in Poliannikov et al. (2011),

with receivers, reference, and locatable fractures centered at x = 0, 100, and 200

meters, respectively, produces a ∆dt value of 0.0022 s for a velocity of 4000 m/s

for an adjacent receiver separation of 30 m, far less than a practical 0.01 s limit. If
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two vertical receivers are placed with a centroid at (0, 0, dz), the minimum spacing

required to satisfy the 0.01 s constraint is approximately 260 m for the Poliannikov

model and 230 m for the model used in the trial above.

A surface monitoring array presents a similar problem, being geometrically similar

to the êy trials above, with more extreme y offsets than the 500 m test limits. Even

at approximately 500 m of distance between fracture centroids and the monitoring

array, ∆dt goes to 0 s for a 30 m receiver spacing, and distances from the surface

to stimulated wellbores generally surpass 1 km, where a receiver spacing in excess of

100 m is required to meet the 0.01 s resolution constraint.

Both cases allude to the physical relationship between travel-times and receiver-

fracture geometry: as microseismic hypocenters move away from a monitoring array

towards infinity, the angles from receivers to events approach 0, such that the differ-

ence in raypath lengths measured by ∆dt also rapidly approaches 0.

The average value ∆dt may be somewhat misleading, as it does not guarantee

that all event pairs will meet the minimum resolution value for a given receiver

placement. Unfortunately, the distribution of ∆dt also varies with receiver placement

and orientation; nonetheless, the distribution follows a clear trend with respect to

array position. To explore the relationship between ∆dt and the actual proportion

of event pairs which can be expected to be resolved, histograms were generated for

three select locations from the 30 m êz trial, shown in figure 3.4 with a location

basemap in figure 3.3.
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Figure 3.3: Basemap, showing locations from which histograms were taken, with

reference and locatable fractures in blue and red, respectively.
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Figure 3.4: Histograms at locations A, B, and C from the basemap in figure 3.3.

∆dt values are given by the red lines. Note how in each case, the actual distribution

is somewhat skewed.

As the array is moved away from the borehole axis at y = 0, the distribution

tends to skew more and more toward lower values. The ∆dt values, represented by

the red circles in figure 3.4, are 1.7 ms, 0.80 ms, and 0.49 ms, while the proportions
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of event pairs with ∆dt greater than ∆dt are .48, .44, and .45, for locations A, B, and

C, respectively. This suggests that if ∆dt at a particular receiver location is equal

to the minimum resolvable time, only about 45%-48% of event pairs will produce

resolvable dt(l) values.

3.2 Array Placement and Resolvable Stationary Pair Count

While the analysis above may provide a useful exploration of the relationship

between dt(l) resolution and receiver placement, it ignores the influence of event-

receiver geometry on the number of stationary pairs potentially available for reloca-

tion. Given that a synthetically demonstrated strength of the INF methodology lies

in the stacking of multiple stationary pairs over a common relocated event, optimal

event-receiver geometry can only be realized through the additional consideration of

stationary pair count maximization.

The previous trial is therefore expanded upon with a second numerical explo-

ration, this time simultaneously considering resolvability as well as stationary pair

count with respect to receiver position.

3.2.1 Test Model and Procedure

This numerical test uses the same velocity/hypocenter model as that in section

3.1 above, although rather than evaluating travel times at two receivers, a receiver

array is represented by a continuous line. The test simply counts the number of event

pairs for a given array spacing, position, and orientation, which satisfy the following

two constraints:

1. A stationary point must exist along the array, and not at the first or last

receivers

2. The stationary point must be resolvable

To test for condition 1 above, for a simple 1D model, since both events in a
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stationary pair may be rotated around the receiver array axis without a loss of

stationarity, the fracture planes are first flattened to a single azimuth. The stationary

test then simply tests for geometrical co-linearity of each reference-locatable pair with

some point on the array.

Condition 2 depends on receiver spacing, array length, measurement precision,

and the minimum number of resolvable receivers desired. Because the stationary

point will fall between receivers in practice, its value must be interpolated, and

in the presence of error, multiple dt(l) measurements are necessary for accurate

interpolation. The condition can be reformulated: what is the minimum distance

along the array from the stationary point at which the next measurement must be

taken so that the difference ∆dt in two measurements is greater than the desired

precision? If we assume a constant receiver spacing, and that ∆dt increases as we

move away from the stationary point, then this distance d relative to array length l

may be used to estimate the number of receivers which will be able to resolve ∆dt

values:

Nr = Nt(1− 2
d

l
) (3.3)

where Nr is the number of receivers which can measure ∆dt and Nt is the total

number of receivers. The factor of 2 arises from the fact that receivers on either side

of the stationary point within distance d will be unable to resolve ∆dt. This equation

is valid under the assumption that there is at least d distance from the stationary

point to either end of the array.

Assuming 10 receivers, I choose a cutoff of d/l = .25, in which case a minimum of

approximately 5 receivers should be able to measure ∆dt for interpolation, assuming

an optimistic minimum resolvable ∆dt of 1 ms. In other words, if d/l > .25, the

distance from the stationary point to the first array position at which ∆dt exceeds
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1 ms is greater than 1/4 of the total array length, and condition 2 is not satisfied.

As the previous trial has demonstrated that increased inter-receiver spacing in-

creases resolvability, I now seek to demonstrate the array position which maximizes

the number of resolvable stationary points. To simplify the analysis, I assume the

equivalent of a 10 receiver array with 40 m inter-receiver spacing, for a total array

length of 400 m, and a minimum 1 ms resolution cutoff. For a given fracture geom-

etry, point pairs which satisfy conditions 1 and 2 can only increase with increased

receiver spacing and array length, so the emphasis here is on the effects of location

and orientation of the receiver array relative to fracture geometry. In the same style

as the previous trial, the centroid of the array is shifted through all points of a grid,

and at each point the number of pairs which satisfy conditions 1 and 2 above are

counted. This procedure is repeated for three possible array orientations êx, êy, and

êz. For the êz trial, the array center is placed 200 meters above the center of the

fractures, to represent monitoring from within the vertical portion of a horizontal

well. êx and êy array centers are kept level with fracture centers, to mimic horizontal

monitoring from within adjacent horizontal wellbores.
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3.2.2 Results

Figure 3.5: Stationary, resolvable pairs counted for arrays oriented in the êx (top

left), êy (top right), and êz (bottom) orientations. The êx orientation maximum

count is 391, while both êy and êz orientations reach 10000 (100%) stationary pairs.

At a glance, the results in Figure 3.5 seem to contradict those of section 3.1.3,

as the êx orientation was previously shown to offer the best resolution for a given

receiver spacing, whereas in this case the êx oriented array produces just 391 resolv-

able stationary pairs in the optimal location, or just 3.9% of all possible event pairs,
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compared to 10,000 (100%) for the (̂e)y and êz oriented arrays. This discrepancy

highlights the importance of the geometrical relationship between fractures, moni-

toring receivers, and the suitability of an INF analysis, since any reasonably long

array oriented perpendicular to fracture planes (êx in this case) will not produce

enough stationary pairs for relocation. In this case the analysis is not limited by res-

olution, but by the simple lack of event pairs which are stationary, i.e. are co-linear,

after rotation, with any point on the array.

The êy and êz orientations on the other hand produce more favorable results. To

simplify, we assume a cutoff value of 5000 total resolvable stationary pairs, below

which an array location does not resolve enough stationary pairs for an INF analysis.

This translates to 50 potential relocations per non-reference event, although depend-

ing on array placement, locatable events will be stationary with more or less than

50 reference events. The êz trial satisfies this condition at 59% of tested locations,

compared to 39% for êy. It is worth noting, however, that the average counts of all

locations which satisfy the 5000 pair minimum are 9134 pairs for êy and 8410 for

êz, such that neither orientation is obviously better suited for INF analysis. Plots

showing nodes which satisfy the minimum 5000 stationary pair condition are shown

below. The asymmetrical nature of the plots is a result of the random hypocenter

distribution detailed previously.
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Figure 3.6: Spatial distribution of nodes with at least 5000 stationary, resolvable

event pairs (green).

On a final note, the primary focus of this section is the general shape of the

plots above, as the total area of suitable receiver array locations can be increased by

increasing array length or reducing the minimum desired ∆dt value.

3.3 Summary

Array length and positioning in the field are constrained by economic considera-

tions, generally limiting monitoring locations to either downhole horizontal arrays ly-

ing parallel to the stimulation well, and perpendicular to idealized fracture geometry

(êx cases above), or within the vertical section of a horizontal pad (êz cases above).

Because stimulation wells are typically drilled in the direction of minimum hori-

zontal stress, and arbitrarily oriented monitoring wells are not drilled, event-receiver

geometries resembling the tested êy cases do not occur in practice. As the resolvable-

stationary pair trial of the previous section has shown, microseismic recordings from

a downhole array parallel to the stimulated borehole cannot be expected to produce
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enough stationary pairs for an INF analysis. The only practical monitoring arrange-

ment which may therefore produce data suitable for an Interferometric Neighboring

Fracture analysis is a vertical downhole array.

The results in section 3.1 demonstrate that as the offset between an array and

the monitored fracture planes is increased, the difference in measured relative ar-

rival times between adjacent receivers, ∆dt, decreases. Combining this observation

with the measurement requirements of dt(l) detailed in section 2.2, it is clear that

care must be taken to ensure that the expected ∆dt value for a given monitoring

geometry is greater than the expected relative arrival time measurement precision

prior to performing an INF analysis, in order to avoid the aforementioned erroneous

relocations that may otherwise result.

Given the range of choices for array length and receiver count, as well as the vari-

ability among hypocenter distributions in practice, the suitability of a data set for

INF relocation should be evaluated on a case-by-case basis. If preliminary hypocen-

ters are available, the analyses above are simple enough to be repeated with true

receiver positions and available classical hypocenter locations prior to investing time

in a full INF analysis. Additionally, such a preliminary step can avoid erroneous

locations returned by the INF analysis of an infeasible data set.

Finally, results in 3.2.2 may be used to establish a rule of thumb regarding max-

imum permissible offset between a vertical downhole array and monitored fractures.

Ignoring the effects of noise, with a generous array length of 400 m and a conservative

minimum resolvable ∆dt of 1 ms, figure 3.2 shows that the stationary-resolvable pair

count rapidly drops below 5000 toward 0 at array offsets exceeding 500 m to the first

fracture. For shorter arrays or larger minimum ∆dt, this maximum allowable offset

decreases. Therefore, monitoring geometries approaching 500 m of array-fracture off-

set must be carefully examined to determine the feasibility of associated hypocenter
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relocation with the INF method.
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4. IMPROVED RELATIVE TRAVELTIME MEASUREMENT WITH

MODIFIED ADAPTIVE STEERING

The INF method does not place an explicit constraint on the method used to

recover relative travel times between events, although the present standard for inter-

ferometric methods is cross-correlation (Molyneux and Schmitt, 1999; Waldhauser

and Ellsworth, 2000; Schuster, 2009). However, under the circumstances typical of

hydraulic monitoring, a number of assumptions regarding event geometry and source

characteristics break down, resulting in poor correlation coefficients and relative time

measurement error when times are measured with inter-event cross-correlation. The

following sections briefly demonstrate these non-ideal behaviors in the context of a

real set of data, providing empirical justification for the use of a newly modified

adaptive steering based relative travel time estimation methodology in presented in

section 4.3, proposed to mitigate demonstrated travel time errors associated with

cross-correlation or subtraction of picked arrival times.

4.1 Idealized Cross-Correlation Constraints and Microseismic Monitoring

Cross-correlation as a relative traveltime estimation tool has been adapted for

microseismic analysis from general Earthquake seismology (Schuster, 2009), and it is

accurate to the degree that the two waveforms being cross-correlated are similar. For

correlation on global scales and geometries typical of earthquake seismology, some

combination of the following assumptions is expected to ensure generally similar

waveforms (Arrowsmith and Eisner, 2006; Poupinet et al., 1984; Waldhauser and

Ellsworth, 2000; Geller and Mueller, 1980; Phillips, 2000):

1. Seismic sources are generated by the same source mechanism

2. Seismic sources are separated by roughly 1/4 of the dominant wavelength or
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less

3. Correlated events follow a relatively common raypath

In fact, the technique of multiplet analysis is predicated upon these conditions.

These assumptions are typically not valid during microseismic monitoring, result-

ing in largely dissimilar microseismic waveforms and poor normalized correlation

coefficients during cross-correlation. Yhe breakdown of these conditions manifests as

differences in first arrival and coda expression between events. For a detailed expla-

nation of the invalidity of these conditions and their effects on recorded waveforms,

the reader is referred to Appendix A.

As demonstrated below, when cross-correlation is applied to dissimilar waveforms,

the accuracy of relative arrival time recovery is compromised, and within the context

of an INF analysis, dt(l) functions cannot be reliably measured. The ultimate result is

that event pairs must be discarded without relocation, and if the number of remaining

valid pairs is too small, INF cannot be expected to outperform classical localization,

if any relocations can be performed at all.

4.2 A Case Study of Cross-Correlation and the INF Method

4.2.1 Dataset Description

The microseismic data examined below (and in later) sections was recorded during

the stimulation of a shale reservoir. A 7 receiver downhole monitoring array was

placed in a horizontal well adjacent to the stimulated borehole, approximately 500 m

from the stimulation well. 6 of the receivers were separated by 15 m, while the

easternmost receiver was offset by 30 m from the rest of the array. Because of the

proximity of receivers to the stimulated volume, S/N ratios are typically greater than

10. 212 events were identified and located by a third party processing company, and

their origin times were used to link provided locations to recorded arrivals for all 212
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events. A plot of event locations and the monitoring array is shown in Figure 4.1.

Figure 4.1: Event locations given by light purple cubes.

4.2.2 Events, Methodology, and Results

In order to exemplify the errors introduced by cross-correlation of dissimilar wave-

forms, as well as the consequences that such errors may have on INF relocation,

P-arrivals for two events, numbers 0 and 4, are examined, with their locations and

traces given below. To simplify the analysis, 8 ms windows of only the Z-component

of receiver recordings are considered, in which direction both events are predomi-

nantly polarized. The relative amplitudes are approximately 10:1, event 4 to event

0.

For both events, the exact first arrival time is difficult to estimate visually. It
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Figure 4.2: Locations of events 0 and 4 (labeled stars) with respect to the receiver
array (green triangles).

should be observed additionally that these two events are markedly different in both

first arrival and post first arrival expression. Furthermore, note that the post first

arrivals for both events appears to surpass the amplitude of first arrivals by factors

larger than 10 on some traces. Finally, observing each series of event traces individ-

ually, it is clear that waveforms of the same event recorded by different receivers are

inconsistent. In typical interferometric fashion, and following the INF methodology

described previously, I cross-correlate event waveforms by receiver, and attempt to

recover the relative traveltime function dt(l) over the receiver array, with the results

shown in Figure 4.4.

4.2.3 Implications of Cross-Correlation Error

It is apparent that the resulting measurements of dt(l) as shown in Figure 4.4

cannot be accurate, for at least two reasons. First, as described in section 2.2, the
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Figure 4.3: Traces for events 0 and 4. Event 4:event 0 scale ratio is approximately
10:1.

true function dt(l) is smooth, particularly on the scale of 100 m, in contrast to

the samples shown above. Second, a visual examination of moveouts for events 0

and 4 indicates that the measured values of dt(l) should be relatively consistent in

magnitude and curvature, whereas the plot above ranges in lags from 15 ms to 34 ms,

or 18% to 42.5% of the total signal window width.

If the reported hypocenters for events 0 and 4 are correct, the dt(l) function in

Figure 4.4 should not contain a maximum, since the pairs are not spatially collinear

with any point on the receiver array, even after accounting for azimuthal ambiguity.

It follows that a naive application of the stationary analysis, without consideration

for the accuracy and precision of cross-correlation derived relative arrival times, could

erroneously identify event pairs as stationary, as indicated by the apparent maximum

in dt(l) above. Furthermore, for results like this, it would be impossible to accurately
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Figure 4.4: Measured relative arrival times for events 0 and 4.

interpolate for the true maximum lag, as the curvature of lag function samples is not

only incorrect but also inconsistent.

The major source of error in this case, and for the majority of event pairs that are

compared with conventional cross-correlation, is a misalignment of first arrivals, as

discussed in detail in Appendix B. Related to the concept of cycle skipping (Schimmel

and Assumpcao, 2003; Schaff and Richards, 2004), the problem arises when dissim-

ilar, ringy waveforms produce multiply peaked correlograms on cross-correlation.

Occasionally, correlogram maxima do not correspond to true relative arrival lags,

resulting in inconsistent relative arrival time measurements for event pairs.

4.2.4 Potential Mitigation of Misalignment Error

A number of options for reducing the potential for misalignment and limiting

the associated error are apparent. We could seemingly accomplish both tasks by
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minimizing the time width of the signals being cross-correlated; however, consider

the two first arrivals in Figure 4.5, taken from events 0 and 4 and windowed to 12 ms.

Figure 4.5: Two first arrivals A and B from events 0 and 4, respectively, which could

hypothetically be cross-correlated with each other to recover a relative arrival time.

The maximum value of the cross-correlogram (not shown) appears at the lag

corresponding to the alignment of the large peak in trace A with the final peak

in trace B, suggesting that even for small time window widths which themselves

approach the limits of cross-correlation, there is still the potential for misalignment.

Furthermore, as window widths are made arbitrarily small, they begin to defeat

the purpose of cross-correlation if we assume that they contain true first arrivals,

and as we approach the limits of first arrival picking precision, we run the risk of

windowing out the true first arrival. Given the nature of the data set, misalignment

of cross-correlated traces may be the norm, since mathematically cross-correlation

tends to align functions by their largest peaks, which for this data set frequently do

not correspond to first arrivals. For both window widths in this example, note that
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apparent error is much greater than the required precision suggested by the idealized

analysis in section 2.2, indicating that conventional cross-correlation cannot resolve

the values of dt(l) with the precision and accuracy necessary for stationary analyses.

Because the accuracy of cross-correlation is predicated upon signal similarity,

there is the seemingly plausible option of limiting stationary analyses to event pairs

with some acceptable minimum coefficient value. Indeed, it would be expected that

geometrically stationary event pairs would satisfy at least one of the three previously

discussed conditions for signal similarity, namely that the event signals would follow

a common raypath, and would therefore tend to present more similar waveforms.

To examine this possibility, all pairs of 8 ms p-arrival windows of events within the

data set were cross-correlated, with magnitude correlation-coefficients summarized

in Figure 4.6.

Figure 4.6: Distribution of inter-event correlation coefficient magnitudes.
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The vast majority of event-event correlations produce coefficients of less than 0.6,

which is generally not taken to be large enough to expect accurate relative arrival

time measurement via cross-correlation. It should be noted that applying a But-

terworth 5 Hz-200 Hz bandpass filter, following the work of Hurd (2012), did not

appreciably improve the spread of the coefficients, and that Hurd reported similarly

low correlation coefficients. Even if a minimum coefficient of 0.6 is taken as a min-

imum acceptable value, only 2042 event pairs, or 12%, are potentially available for

relocation, with questionable accuracy.

Unfortunately, the event-receiver geometry of the data set is not suitable for a

full trial of the INF method. Using provided classical locations, dt(l) values were

predicted at the given receiver positions, and 90% of event pairs are beyond res-

olution, as dt(l) values among receivers do not differ by more than 1 ms over the

entire array. The result was that upon cross-correlation, relative arrival times were

drowned out by misalignment, and dt(l) samples for the majority of event pairs could

not be used for relocation, even when they did contain a measured maximum, since

the data points could not be used for interpolation, as in the example for events 4

and 0 above. Moreover, the inconsistency of the measured dt(l) functions calls the

apparent maxima and their associated lags into question.

The problem of accurate relative arrival time measurement therefore remains.

For this data set, conventional event-event cross-correlation appears to fail to return

accurate time lags, while the non-ideal characteristics of the measured waveforms

create an excellent arena in which an accuracy improvement may be demonstrated,

if a suitable alternative measurement methodology can be developed.
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4.2.5 Array Processing

The process of determining relative arrival times at receivers along an array is

closely related to the general problem of seismological array processing, which has

been studied since the 1950s (Rost and Thomas, 2009). These techniques are gener-

ally designed to improve signal to noise ratios through various forms of stacking, via

cancellation of incoherent noise. One historic method in particular, the process of

beam forming, alternatively referred to as array steering or migration, is still com-

monly used today in both global and petroleum seismology, and involves delaying

and stacking seismic arrivals, with varying methods of normalization and delay calcu-

lation (Ram and Mereu, 1975; Rawlinson and Kennett, 2004; Gibbons and Ringdal,

2006).

While these techniques are designed for improving estimates of absolute arrival

times, if these absolute times are sufficiently accurate, they may simply be subtracted

to calculate the relative arrival times frequently measured by direct cross-correlation.

Because direct event-event cross-correlation has been shown to fail for this data set,

and microseismic characteristics suggest that waveform dissimilarity is to be generally

expected for microseismic data (Appendix A), I propose a number of modifications

to an adaptive array steering method proposed in Gangi and Fairborn (1968) and

referenced more recently, with slight modification, in Rawlinson and Kennett (2004).

4.3 Modified Adaptive Steering and Progressive Template Extraction

The modified adaptive steering (MAS) methodology proposed herein improves

lag accuracy and precision over conventional cross-correlation by reducing the num-

ber of inter-event, dissimilar waveform cross-correlations, and predominantly relying

instead on absolute arrival lags derived from cross-correlation of stacked, intra-event

(similar) waveforms. I additionally propose a new pre-processing technique, dubbed
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progressive template extraction (PTE), to extend the utility of this modified array

steering methodology to signal to noise ratios approaching 1.0, where modified adap-

tive steering tends to fail alone. As I demonstrate in section 4.5, the modified adap-

tive steering methodology, in tandem with progressive template extraction, improves

the accuracy of dt(l) measurements for both synthetic and field microseismic data,

minimizing measurement inconsistency resulting from event-event cross-correlation

misalignment, thereby increasing the number of event pairs available for INF based

relocation.

Rawlinson and Kennett (2004) note that the original adaptive steering methodol-

ogy as presented in Gangi and Fairborn (1968) is well suited for dissimilar waveforms.

The additions discussed below are designed to further reduce lag measurement error

for low SNR ratios, as well as adapt the methodology for measurement of relative

event lags.

4.3.1 Modified Adaptive Steering

4.3.1.1 Original Method Description

As described in Gangi and Fairborn (1968), Modified Adaptive Steering begins

with the picking of time windows containing the arrivals of interest on each receiver.

From these absolute picks, initial relative arrival times tci at each receiver i are de-

termined and used to perform an initial linear stack of arrival traces ui(t) over all N

receivers, to derive an initial composite trace,

uc(t) =
1

N

N∑
i=1

ui(t− tci). (4.1)

Next, each receiver trace ui is cross-correlated with the initial composite trace uc(t),

to derive the corrective lag τic at which the normalized correlation coefficient ci is

42



maximized

ci = max[fx(uc(t), ui(t− τ))] (4.2)

where fx denotes the normalized cross-correlation function. Once these corrective

lags have been found, the individual traces are shifted again by τic to reform the

composite trace uc(t),

uc(t) =
1

N

N∑
i=1

ui(t− tci − τic) (4.3)

and the cross-correlation procedure is repeated, with the goal of maximizing the

average correlation coefficient,

ci =
1

N

N∑
i=1

max[fx(uc(t), ui(t− τ))] (4.4)

The process is repeated until the average correlation coefficient c converges. The

result is a maximally aligned composite trace um(t), and a series of raw relative

arrival lags τri measured with respect to the composite trace, for a single event.

4.3.1.2 Proposed Modifications

During initial synthetic testing with 7 receivers, it was observed that for signal

to white noise ratios below approximately 5, the adaptive steering methodology, as

described, failed to make any corrections to the starting arrival times used for initial

stacking. Because the initial arrival times do not align traces for optimal signal

stacking, corrective lags are frequently 0 for large noise levels, as cross-correlation

between stacked traces and individual traces preferentially aligns trace waveforms

with their original positions within the stacked trace.

In order to encourage corrective lag recovery under noisy conditions, the original

methodology is modified, such that N unique composite stacks are generated, one

for each trace i. The jth composite trace uc,j(t) is instead formed by stacking over all
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traces ui such that i 6= j. Equations 4.1 and 4.3 are therefore respectively modified

as follows:

uc,j(t) =
1

N − 1

N∑
i=1

ui(t− tci), i 6= j (4.5)

uc,j(t) =
1

N − 1

N∑
i=1

ui(t− tci − τic), i 6= j. (4.6)

Corrective lags and correlation coefficients are then derived via cross-correlation be-

tween individual traces and the corresponding composite stacks generated without

them, with the same goal of maximizing the average of the individual correlation

coefficients, given by

cj = max[fx(uc,j(t), ui(t− τ))], i = j. (4.7)

Once either correlation coefficients converge, or corrections go to zero, the traces

are shifted by their corrective lags, and a single, final composite trace is generated

using all N traces, as given by equation 4.3. For two events j and k, the process

therefore produce two composite traces um,j(t) and um,k(t), and two sets of raw lags

at each receiver i, τri,j and τri,k. The composite traces are then cross-correlated to

recover a relative composite lag τc, and relative event arrivals are finally calculated

at each receiver as

ai = τc + τri,j − τri,k. (4.8)

4.3.2 Progressive Template Extraction

For SN ratios below approximately 5, even with the modifications proposed above,

the adaptive steering methodology often fails to converge when initial relative arrival
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times are not sufficiently accurate to coherently stack individual traces. The problem

could be mitigated if some template were available to which traces could be compared

for generation of the initial composite stack, and other authors have applied template

matching to earthquake and even man-made seismic data, (Gibbons and Ringdal,

2006; Plenkers et al., 2013, e.g.,); however, these methods generate templates, a

priori, to detect subsequent events under the assumption of waveform similarity,

which cannot be expected for heterogeneous microseismic first arrivals. Instead, I

propose a method to gradually extract a unique template for each microseismic event

recorded along a linear array, which will later be shown to improve the coherency of

the initial stack generated by the modified adaptive steering technique, improving

convergence toward accurate lag values when used as an initial preprocessing step.

Progressive Template Extraction (PTE) begins after first arrivals are detected and

approximately windowed on all N receivers of a linear array. While phase picks will

contain some degree of error, particularly in the case of noisy data, PTE only requires

approximate time windows containing first arrival waveforms. Starting at one end

of an N receiver array, the 1st and 2nd receiver arrival windows are cross-correlated,

to calculate a lag τ1, used to align and stack the two traces to form the start of a

progressive composite stack. This composite is then cross-correlated with the 3rd

receiver arrival, which is similarly aligned and stacked with the current composite

stack, at this point the summation of 3 aligned traces. Thusly, a composite stack is

progressively constructed, gradually aligning and summing over all N receivers, such

that the jth iteration composite is given by

uc,j(t) =
1

j

j∑
i=1

ui(t− τi) (4.9)

where ui is the ith receiver arrival window and τi is the lag between the ith receiver
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arrival and the previous stack, which maximizes

fx(uc,i−1(t), ui(t− τ)) (4.10)

where fx again is the cross-correlation function. τ1 is always 0.

When inaccurate arrival times are used to simultaneously align and stack all N

traces, as in the unmodified adaptive steering methodology, there is the risk of semi-

coherent interference which creates a stacked trace which does not closely resemble

individual traces, and therefore results in cycle-skipping or larger misalignment error,

and general divergence of subsequent corrective lags following iteration. The issue is

further compounded by the gradual shift in first arrival expression along the array,

brought about by interfering secondary arrivals (Appendix A.3). This progressive

technique instead leverages the greater degree of first arrival similarity between ad-

jacent receivers, and the goal is to opportunistically build a template before arrivals

may be incorrectly stacked by MAS. If the first cross-correlation fails to recover the

correct lag between receivers 1 and 2, N − 1 additional opportunities remain to cor-

rectly stack at least one pair of arrivals to form an initial noisy template, with a

boosted signal to noise ratio.

In this manner, the final composite should contain at least one pair of closely

aligned traces, and, when the corresponding coherently aligned lags are used as a

starting point for modified adaptive steering, the initial stack acts as an empirically

extracted template which improves the accuracy of corrective lags and increases the

probability of convergence.
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4.4 Synthetic Comparison of Modified Adaptive Steering versus Conventional

Cross-Correlation

In order to compare the performance of modified adaptive steering, with and with-

out progressive template extraction preprocessing, and conventional cross-correlation,

the three methodologies are used to analyze a set of traces containing variable first

arrivals to which white Gaussian noise has been added at varied signal to noise ratios.

Additionally, the synthetic data is used to demonstrate the validity of two indirect

relative performance measurements, before they are used in section 4.5 to evaluate

relative performance of the methods as applied to a field recorded microseismic data

set.

4.4.1 Model Description and Comparison Framework

200 total microseismic events were distributed equally and with random positions

within two simulated fractures, centered at (160, 0, 0) and (470, 0, 0). In order to

ensure approximately equal counts of stationary and non-stationary event pairs, the

vertical span of the reference fracture at x = 160 m was limited to 50 m, while that

of the locatable fracture at x = 470 m was set to 700 m. A vertical, linear receiver

array was centered on the point (0, 0, 0), consisting of 7 geophones spaced 30 meters

apart. Events and receivers are shown in Figure 4.7. Assuming a homogeneous,

attenuation-free, isotropic 4000 m/s velocity model, travel times were calculated

from each event to each receiver. Using these travel times, traces containing first

arrivals were generated for each event.

Because adaptive steering, with and without template extraction, is explicitly

proposed to outperform conventional cross-correlation when microseismic waveforms

are dissimilar, synthetic first arrivals were made to represent the general first ar-

rival heterogeneity as well as the gradual interaction of scattered subsequent arrivals
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recorded along an array, as observed in the previously introduced real data set.

For a given event, using calculated arrival times at each receiver, first arrivals are

initially modeled as simple ricker wavelets, with an event-constant peak frequency

ranging from 200 Hz-300 Hz. Following the assumptions discussed in Appendix A.2,

subsequent arrivals are modeled as near-source scattered energy: the original event

hypocenter is randomly perturbed by a distance of one wavelength or less, scat-

tered arrival times are calculated, and traces containing ricker wavelets aligned to

these arrival times are summed with the original first arrival trace. Each event trace

randomly contained between 2 and 6 scattered arrivals.

These traces, 80 ms long, sampled at 16000 Hz, are then contaminated with white

Gaussian noise at varied SNRs. Finally, each trace window is randomly offset, when

read and windowed, by ± 50 ms to simulate picking error. For a given trial, the

SNR was kept constant for all events, and varied in integer values from 1-20, 25,

and 32, for a total of 22 trials. Event and receiver positions were kept constant

between trials. Modified adaptive steering and conventional cross-correlation were

used to calculate relative arrival times among all reference-locatable event pairs, and

the values were compared to true relative arrival values as generated by the model.

Out of 10000 total event comparisons, 4365 pairs were stationary.
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Figure 4.7: Receiver and event locations for this synthetic trial. Reference events

are in red, locatable events are in blue.

Three classes of metrics were chosen to compare the performance of MAS, PTE

enhanced MAS, and CXC:

1. Direct measures of general lag error

2. Direct measures of INF specific error

3. Indirect measures of relative error

Comparator descriptions and corresponding results are segregated and presented by

class in the following subsections.
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4.4.2 General Lag Measurement Metrics and Results

In order to evaluate the techniques as general relative arrival time measurement

tools, the overall lag error was calculated by averaging over all lag measurements

ε̄ =
1

Np ∗Nr

Nr∑
i

Np∑
j

|τij,m − τij,t| (4.11)

where Np and Nr are the number of event pairs and receivers, respectively, and

τij,m and τij,t are the measured and true lag values measured at the jth receiver for

the ith pair. Additionally, three average correlation coefficients are generated: the

average of all conventional inter-event cross-correlations, the average of all intra-event

adaptive steering correlations, and the average of all inter-event adaptive steering

stack correlations.

Without progressive template extraction, lag error associated with the modified

adaptive steering technique was generally larger (Figure 4.8) than that of cross-

correlation over all signal to noise ratios. This is partially attributable to the sim-

ulated 50 ms initial pick error, which caused iterative corrections to converge to

incorrect lags. MAS with PTE, on the other hand, performed on par with conven-

tional cross-correlation, until approximately SNR = 10, where the average lag error

was lower by as much as 1.25 ms.
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Figure 4.8: ε̄, average error of all measured lag values, as a function of SNR. CXC

in blue, MAS in green, PTE enhanced MAS in red.

The large differences in inter-event, intra-event, and conventional correlation co-

efficients in Figure 4.9 seem to contradict the relative performance implied by Figure

4.8, as the larger correlation coefficients suggest much better overall lag accuracy.

However, as shown by Figures 4.10 and 4.11, modified adaptive steering is prone to

generating large outliers. The result is that, although the bulk of MAS errors are

closer to 0 than those of CXC, the overall mean error is greater for MAS. The outlier

effect is reduced by PTE preprocessing, however it appears that MAS may be able

to outperform conventional cross-correlation without preprocessing if outliers can be

accurately identified and discarded, and similarly, MAS performance with PTE may

be further refined.
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Figure 4.9: Average CXC correlation coefficients (blue), MAS inter-event correlation
coefficients (green, dashed), MAS intra-event correlation coefficients (green, dotted),
PTE enhanced MAS inter-event correlation coefficients (red, dashed), and PTE en-
hanced MAS intra-event correlation coefficients (red, dotted), as functions of SNR.

Figure 4.10: Distribution of lag errors calculated by conventional cross-correlation

for trial with SNR=13. Bin width = 0.1625 ms.
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Figure 4.11: Distribution of lag errors calculated by modified adaptive steering,

without preprocessing, for trial with SNR=13. Bin width = 0.1625 ms. Note that

the y scale has been clipped, the counts for bins 1 and 2 are 614 and 626, respectively.

4.4.3 INF Focused Metrics and Results

The second group of measurements examines the minimization of error within

the context of an INF analysis. Counts are conducted of falsely identified stationary

pairs (false positives) and incorrectly identified non-stationary pairs (false negatives),

both of which may result from cross-correlation error as in the example of events 0

and 4. For each correctly identified stationary pair, the error in the measured dt(l)

maximum is evaluated by calculating the stationary position error

εl = |lstat,m − lstat,t| (4.12)
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and the stationary lag error

εdt = |dtstat,m − dtstat,t| (4.13)

where subscripts m and t indicate measured and true values, respectively. For a

given SNR trial, the values are averaged over all correctly identified stationary pairs,

such that

ε̄l =
1

Ns

Ns∑
i

εl,i (4.14)

and

ε̄dt =
1

Ns

Ns∑
i

εdt,i (4.15)

where Ns is the total number of correctly identified stationary pairs. The stationary

position error εl is a measure of the error in the origin of the ray traced from the

stationary receiver, through the reference location, onto the location of the distant

event. The contribution of εl to final hypocenter error is not straightforward, since

it is a function of event-receiver geometry, however it has the effect of modifying the

takeoff angle in the ray. The effect of stationary lag error εdt is more obvious, with

associated hypocenter error εx,dt given by

εx,dt = εdt ∗ V (4.16)

where V is the velocity near the termination of the traced ray, assuming a homoge-

neous model.

False positive and false negative counts (Figures 4.12 and 4.13) for modified

adaptive steering, with and without preprocessing, were both consistently smaller

than those of conventional cross-correlation, over almost all tested SNR ratios. For
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both counts, PTE-enhanced MAS once again outperformed non-preprocessed MAS,

although the margin of improvement was much smaller than that over CXC.

False positives occur when measured dt(l) functions erroneously contain max-

ima, while false negatives occur when theoretically stationary dt(l) functions do

not contain detectable maxima. The false positive count is particularly sensitive

to cycle-skipping or misalignment, which tends to occur inconsistently for a given

pair of events. It is therefore no surprise that, because modified adaptive steering

minimizes the propensity for mis-alignment by increasing waveform similarity, this

method outperforms CXC in both false positive and false negative counts. At SNR

= 1, MAS with PTE produced 17% fewer false negatives and 24% fewer false posi-

tives than conventional cross-correlation, showing a reduced propensity for erroneous

relocation during INF analysis.

Figure 4.12: False positive counts. CXC in blue, MAS in green, MAS with PTE in

red.
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Figure 4.13: False negative counts. CXC in blue, MAS in green, MAS with PTE in

red.

Of the correctly identified stationary pairs, the values for CXC and adaptive

steering average lag error ε̄l (Figure 4.14) resemble those of overall lag error ε, both

in magnitude and in trend. Non-preprocessed MAS produced erratic results, failing

to outperform conventional cross-correlation for most signal to noise ratios, likely a

result of the outlier effect mentioned in section 4.4.2. With PTE, adaptive steering

produced a smaller average error for all SNR values, particularly at SNRs below

approximately 6, with an average stationary lag error reduction of 24%, or 2.7ms,

for SNR = 1. This translates to an average relocation error reduction of 10.8 meters

for a velocity of 4000 m/s.

Performance between PTE and non-PTE MAS was more consistent over aver-

age stationary position error ε̄dt (Figure 4.15), although again preprocessed adaptive

steering generally provided superior error reduction. The error was reduced con-
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sistently over all noise levels, by 22%-33%, bringing identified stationary receiver

positions closer to true positions by 10 m-15 m for a 180 m array.

Figure 4.14: ε̄dt, average stationary lag error for correctly identified stationary pairs,

as a function of SNR. CXC in blue, MAS in green, PTE enhanced MAS in red.
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Figure 4.15: ε̄l, average stationary position error for correctly identified stationary

pairs, as a function of SNR. CXC in blue, MAS in green, PTE enhanced MAS in

red.

4.4.4 Indirect Performance Metrics and Results

The third group of measurements has been developed to measure indirectly the

relative performance of adaptive steering and conventional cross-correlation in the

case that true relative arrival times are not available, as would be true for a field-

recorded data set. They are applied to these synthetic data to demonstrate their

validity prior to their application in section 4.5.

As hinted in the event 0 and event 4 example shown previously, measured dt(l)

values in cases where CXC fails to properly align dissimilar waveforms on certain

receivers show an erroneously large spread. It therefore follows that any methodology

with the potential to reduce misalignment should result in lower standard deviations

for dt(l) values measured for any particular event pair. To compare adaptive steering
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to CXC, I therefore examine the difference in standard deviations of all event pairs

calculated with each methodology. Mathematically, I calculate the average

∆σ =
1

N

∑
N

(σdt(l),CXC − σdt(l),AS) (4.17)

Where σdt(l),CXC and σdt(l),AS are the standard deviations of the dt(l) functions for a

given pair of events calculated using CXC and adaptive steering, respectively, and N

is the total number of event pairs over which the summation is performed. Separate

values are obtained for results with and without progressive template extraction

preprocessing. To evaluate the use of standard deviation as a general error proxy,

the statistical correlation between ∆σ and the difference εCXC − εAS, as functions of

signal to noise ratio, will be examined.

The metric with the most immediate consequences within the framework of an

INF analysis is the concept of concavity (i.e. the sign of the second derivative dt′′(l)).

In the case that receiver array length is short compared to array-event distance, the

second derivative of a dt(l) function corresponding to a stationary pair will be of

constant sign, and a non-stationary pair may occasionally produce no more than one

sign change if measured dt(l) values are accurate. More importantly, even if measured

dt(l) values for a given pair are approximately accurate, the event pair cannot be

used for relocation if the second derivative of the measured function has multiple

sign changes, because the stationary lag cannot be reliably identified or found by

interpolation. It follows that a more accurate dt(l) estimator should produce a

greater number of dt(l) measurements with consistent concavity, and the number of

pairs with no more than one sign change in dt′′(l) are counted.

Figures 4.18 and 4.17 show the concavity counts and standard deviation differ-

ences, respectively, over all tested signal to noise ratios. In terms of usable mea-
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surements of dt(l) as defined by consistent concavity, progressive template extrac-

tion enhanced modified adaptive steering drastically outperforms conventional cross-

correlation, producing 1.3 (SNR = 25) to 4.2 (SNR = 1) times as many event pairs

with consistent concavity potentially available for relocation.

To evaluate the applicability of standard deviation as a proxy for overall relative

error measurement, a statistical correlation coefficient was calculated between the

difference in average lag error as a function of SNR,

∆ε̄(s) = ε̄CXC(s)− ε̄AS(s), (4.18)

and the average difference in standard deviations (∆σ, Equation 4.17) as a function

of SNR for preprocessed modified adaptive steering dt(l) measurements. The cross-

plot is shown in Figure 4.16. ρ∆ε̄,∆σ = 0.92, suggesting that the average difference

in standard deviation increases in proportion to the relative error between measure-

ments made with modified adaptive steering and conventional cross-correlation.

The adaptive steering methodology introduces an error associated with generat-

ing a single reference lag for each event pair. Because the subsequent relative lag

measurements are aligned to this single value, the calculated dt(l)AS lags may con-

sistently under- or over-estimate true arrival lags, in the case that the relative error

introduced by cross-correlation is comparatively small. While CXC has its own ran-

dom error, the error is receiver-specific, such that the errors in lags for a particular

dt(l)CXC function should not be expected to be of equal sign. In order to loosely esti-

mate whether adaptive steering over- or under-estimates lags compared to CXC, the

mean value of dt(l) samples is calculated for each pair, and the differences between
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Figure 4.16: Cross-plot of ∆ε̄ and ∆σ, as functions of SNR, with a line of best fit.
The statistical correlation coefficient between the two functions is 0.92, indicating a
strong correlation between standard deviation and overall error.

CXC and adaptive steering means are averaged over all event pairs

〈
∆t
〉

=
1

N

N∑
i=0

(dt(l)i,CXC − dt(l)i,AS) (4.19)

where dt(l)i,CXC and dt(l)i,AS are the lag functions returned by the two different

methodologies for event pair i, and N is the total number of event pairs. Here again,

two values are calculated, with and without preprocessing.

Based on the results in Figure 4.19, there does not appear to be a discernible

relationship between signal to noise ratios and
〈
∆t
〉
. As an indirect measure of

relative performance, the metric is therefore abandoned. However, Figure 4.19 does

demonstrate that there is no consistent tendency for MAS to under- or over-estimate

relative lags as compared to conventional cross-correlation.
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Figure 4.17: Count of dt(l) measurements with consistent concavity for CXC (blue),
MAS (green), and PTE enhanced MAS (red)

4.5 Real Data Evaluation of Modified Adaptive Steering versus Conventional

Cross-Correlation

An analysis was conducted using the same shale data set introduced in section

4.2 to assess the relative performance of adaptive steering compared to CXC. Be-

cause true relative arrival times cannot be known for microseismic field data, two

indirect metrics, standard deviation and concavity count (as introduced in section

4.4), were used for this comparison, emphasizing the measurement characteristics

that are necessary for an INF analysis. For the purpose of this trial, 192 events

with clear first arrivals were windowed to a time width of 0.08 s. For each pair of

events, a lag function dt(l) was calculated using both CXC and progressive template

extraction enhanced modified adaptive steering, and the results were examined using

the assessors introduced and verified in section 4.4. First arrivals for initial adaptive
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Figure 4.18: u, average difference in standard deviation of dt(l) functions, as a
function of SNR. MAS-CXC in green, PTEMAS-CXC in red.

steering alignment were picked by hand.

Comparing standard deviations using equation 4.17 from section 4.4, the average

difference in standard deviations of dt(l) functions, ∆σ, was 3.89 ms, suggesting

that, on average, adaptive steering dt(l) functions have more tightly grouped values,

and therefore are less likely to be misaligned by cross-correlation. Extrapolating the

relationship between ∆σ and average lag error indicated by the synthetic comparison

in section 4.4 suggests an overall average lag reduction of approximately 6.7 ms.

Out of a total of 18528 event pairs, modified adaptive steering produced 8748

consistent curves, while CXC produced just 2997, an improvement factor of 2.9 for the

total number of potentially relocatable event pairs. This improvement is consistent

with the reduction in standard deviations of dt(l) measurements, and suggest that

for real data, the number of sporadic cross-correlation errors is generally reduced

with modified adaptive steering. Note that this metric only loosely measures the
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Figure 4.19:
〈
∆t
〉
, the average of difference in dt(l) means, as a function of SNR.

CXC-MAS in green, CXC-PTEMAS in red. Note that there does not appear to be
any major trend with respect to SNR, although the variability in PTE enhanced
MAS

〈
∆t
〉

values is markedly smaller.

number of pairs available for relocation; even with 7 receivers, it should be possible

to allow for an occasional outlying dt measurement and a relaxation of the concavity

constraint.

Aggregate statistics, justified by the synthetic test of section 4.4, therefore suggest

that the adaptive steering method is generally more accurate for recovering inter-

event lags when applied to data sets with inconsistent event waveforms. dt(l)AS

functions have generally smaller standard deviations compared to dt(l)CXC func-

tions for the same event pairs, and dt(l)AS functions are 2.9 times as likely to show

consistent concavity, as would be expected for true dt(l) functions.
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4.6 Comparison of Adjacent Steering and CXC Under Idealized Conditions

In order to further demonstrate the validity of modified adaptive steering, its

performance relative to conventional inter-event cross-correlation is examined for

the using the Z-components of the single, relatively ideal pair of events 0 and 9, seis-

mograms shown in Figure 4.20. The ratio of trace scales is approximately 16:1, event

9:event 0. Both events are predominantly polarized in the Z-component direction.

Figure 4.20: Traces for events 0 and 9. Event 9:event 0 scale ratio is approximately

16:1.

The average CXC correlation coefficient is 0.83, which indicates that inter-event

waveforms are indeed similar. In contrast, even in this idealized case where both

waveforms contain well defined sharp impulses, the average correlation coefficients
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returned by adaptive steering after alignment are 0.88 for event 0 and 0.90 for event

9, while the coefficient for the composite trace correlation is 0.93. This difference

suggests that even in the best field cases between similar waveforms, both composite

and intra-event waveforms generally correlate to a greater degree than individual

waveforms of different events. The dt(l) functions are shown in Figure 4.21, CXC in

black, adaptive steering in gray. Note that the trends are similar, with a normalized

correlation coefficient between dt(l)AS and dt(l)CXC of 0.84.

Figure 4.21: dt(l) functions generated by conventional cross-correlation (black) and

adaptive steering (gray).

The standard deviations for both dt(l) curves are comparable, .18 ms and .15 ms

for CXC and adaptive steering, respectively. The differences in this case are likely at-

tributable to small trace variations in first arrival peak widths compare, for example,

traces on receiver 6, where event 9 has a doubly peaked arrival.

The average time lags, 13.83 ms and 13.90 ms, for dt(l)CXC and dt(l)AS, respec-
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tively, are comparable in magnitude. This corresponds to a negligible relocation error

of approximately 0.28 meters for a P-velocity of 4000 m/s. It is not immediately ob-

vious which method is closest to the actual time lags, as it is impossible to measure

true lag times to this level of precision with any current methodology.

Both curves pass the concavity test, although only the dt(l)CXC curve contains

a maximum, between 40 m and 60 m. Classically derived locations provided by a

third-party processing company indicate that events 0 and 9 are not stationary, sug-

gesting that the adaptive steering methodology, for this idealized case, may be more

accurate. The error in dt(l)CXC is a manifestation of cross-correlation misalignment,

although the error is not large enough to be attributed to fully skipped cycles. In-

stead, this event pair demonstrates the precision limitation of cross-correlation under

relatively ideal waveform conditions the relative arrival time values differ by no more

than .25 ms, which corresponds to just 4 samples at a sample frequency of 16000 Hz.

At this scale, the resolution of relative arrival times with cross-correlation is com-

promised by small variations in peak widths, on the order of tenths of milliseconds,

and cannot be improved by modified adaptive steering with progressive template

extraction.

4.6.1 Modified Adaptive Steering Advantages in Detail

Compared to subtraction of picked arrival times, modified adaptive steering

with progressive template extraction preprocessing produces more accurate mea-

sures of relative arrival times, because it makes use of cross-correlation for abso-

lute arrival measurement. The methodology outperforms conventional event-event

cross-correlation (CXC) for highly variable microseismic data because most cross-

correlation operations are performed on self-similar waveforms from individual events,

with comparisons between individual traces and their event-specific composite stacks.
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In addition to general similarity, for events recorded along a linear array, first ar-

rival polarity will generally be consistent among all traces, limiting the number of

potential erroneous correlogram maxima to positive values. This is in contrast to

CXC, which must consider both positive and negative maxima during lag calculation,

effectively doubling the potential for error for noisy correlograms.

MAS is particularly useful within the context of an INF analysis, when considering

the constraints imposed on measurement of the relative lag function dt(l) by the INF

methodology. Because cross-correlation is limited to similar waveforms, the dt(l)

measurements have been shown to be more consistent, with fewer mis-alignment

errors may shift, occlude, or erroneously produce a stationary dt(l) point. The major

error in calculating dt(l) values is instead expected to occur on cross-correlation of

composite traces. While the resulting reference lag is constant at each receiver, the

synthetic trial in section 4.4 demonstrated that the error is random among event

pairs, such that it may be minimized during stacking over the greater number of

pairs produced by PTE enhanced MAS for redundant relocation.

The SNR improvement afforded by trace stacking is especially useful in the field

of microseismic processing, given that microseismic events associated with hydraulic

stimulation are typically low in magnitude and can easily be drowned out by the in-

coherent noise which cancels during array steering. There is, however, the question

of the effect that stacking has on scattered arrivals, specifically those that comprise

the waveform immediately following the first arrival, since scattered energy may not

be strictly incoherent, depending on the spatial of distribution of scattering bod-

ies with respect to relatively short monitoring arrays. In the traces for event 14

shown in Figure 4.22, there is a seemingly gradual change in peak amplitudes and

distributions from the 1th to the 7th receiver. This steady change with receiver po-

sition l is likely a consequence of constructive and destructive interference among
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scattered arrivals with slightly different polarizations with respect to array orienta-

tion. The small variations in slowness vectors of these scattered arrivals translate to

relative scattered arrival times which differ by less than one wavelength and result

in a relative phase difference which varies as scattered arrivals impinge along the

array. Although scattered energy is coherently recorded on multiple receivers, when

traces are aligned to first arrival peaks these scattered post first arrival waveforms

frequently cancel, reducing or eliminating the propensity for cycle-skipping or larger

misalignment during composite trace correlation between events. Figure 4.22 shows

an example of this cancellation, where event 14 traces have been aligned and stacked

with the combined PTE-MAS methodology, and post first arrivals have been muted

in the composite.

Figure 4.22: Traces for event 14 which have been aligned with the adaptive steering

method, along with the resulting stacked composite at the bottom. Note the large

increase in relative amplitudes between the initial arrival and energy arriving after

60 ms, an example of the cancellation which MAS leverages.
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4.7 Summary

Ignoring the effects of scattering and propagation, even typical microseismic mon-

itoring geometries easily approach and surpass the modern limits of relative travel

time measurement techniques, including cross-correlation. Because the three as-

sumptions that ensure cross-correlation accuracy in light of scattering and non-ideal

propagation are generally invalid for microseismic datasets, there is no guarantee that

event waveforms will produce large coefficients on cross-correlation, and the errors,

which result from misalignment of dissimilar signals, reduce the number of station-

ary pairs which may be identified and used for relocation by INF, while additionally

calling the validity of any identified stationary pairs into question.

While shrinking cross-correlation window widths and limiting stationary analy-

ses to pairs with large correlation coefficients do not appear to be feasible for ac-

curacy improvement, the proposed modified adaptive steering (MAS) technique, en-

hanced by progressive template extraction (PTE), outperforms conventional inter-

event cross-correlation (CXC) in the synthetic case of section 4.4, comparatively

minimizing overall lag, stationary position and stationary lag measurement error,

reducing dt(l) spread, and improving the consistency of dt(l) concavity, returning

dt(l) measurements which appear to be more consistent with the theoretical shape

of the dt(l) curve, and producing more consistent, interpolatable dt(l) measurements

that can be used for INF relocation. Using standard deviation and concavity counts

as proxies for indirect relative performance measurement, PTE-MAS shows promise

as a superior relative lag calculation methodology when applied to real microseismic

data.

Because of consistency and accuracy limitations, INF relocation of microseismic

events using CXC may generally not be possible; however, the applicability of INF
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analysis may be greatly extended if PTE-MAS is used for relative travel-time calcu-

lation.
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5. CONCLUSION

For typical linear array monitoring geometries associated with hydraulic stimula-

tion, relative travel time measurements can quickly approach or surpass the precision

limitations of modern measurement techniques. Although other relative localization

methodologies, E.G. Double Difference, can tolerate some degree of normally dis-

tributed error by operating on large numbers of events simultaneously, the Interfero-

metric Neighboring Fracture method is unique in that relative travel time measure-

ments must be accurate and consistent enough for interpolation during stationary

analysis of individual event pairs. Before an INF based relocation is conducted, care

must be taken to ensure that array spacing, orientation, and placement relative to

induced events are such that stationary analyses are possible and accurate, and that

the number of expected stationary reference events per located event is greater than

the number of monitoring receivers.

The high frequency content of microseismicity and the spatial distribution of

hypocenters relative to monitoring arrays lead to a large variability among event

waveforms, with the result that cycle-skipping and general cross-correlation mis-

alignment error limit the accuracy of conventional inter-event cross-correlation, re-

sulting in inconsistent dt(l) functions, which either produce erroneous stationary

positions, or cannot be interpolated for relocation. As an alternative, the modified

adaptive steering methodology (MAS), with progressive template extraction (PTE)

preprocessing, has been shown to generate more accurate relative arrival time mea-

surements, which meet the unique usability requirements of the INF method, by

limiting errors introduced during cross-correlation of dissimilar waveforms.

If, prior to conducting an INF based relocation, an initial analysis of event-
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receiver geometry suggests a large enough difference in relative lag times across a

linear monitoring array to produce consistent, interpolatable relative time measure-

ments, as well as a large number of expected stationary event pairs, then improved

measurement consistency afforded by the modified adaptive steering technique will

provide a larger number of well-determined stationary pairs. With the resulting in-

crease in reference events per relocated hypocenter, the Interferometric Neighboring

Fracture method can be expected to robustly relocate distant events and surpass the

precision of classical, individual localization techniques.
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APPENDIX A

SOURCES, PROPAGATION, AND WAVEFORM DISSIMILARITY

For correlation on global scales and geometries typical of earthquake seismology,

the following assumptions are expected to ensure generally similar waveforms (e.g.,

Arrowsmith and Eisner, 2006; Poupinet et al., 1984; Waldhauser and Ellsworth, 2000;

Geller and Mueller, 1980):

1. Seismic sources are generated by the same source mechanism

2. Seismic sources are separated by roughly of the dominant wavelength or less

3. Correlated events follow a relatively common raypath

As demonstrated below, these assumptions are typically not valid during micro-

seismic monitoring, resulting in largely dissimilar microseismic waveforms and poor

Pearson coefficients during cross-correlation.

In the context of recorded waveform character, the manifestation of non-ideal

seismic propagation may be separated into two effects: a change in the initial impulse

(first arrival) shape and phase, and the addition of varying post first arrival energy.

When the above conditions are satisfied, it is generally valid to presume that recorded

waveforms will be generated and affected similarly during propagation, and that

events should therefore correlate strongly.

A.1 First Arrival Expression

First arrival waveshape is dependent on source mechanism and frequency depen-

dent attenuation along the ray path. The orientation of the focal source with respect

to a given receiver determines the polarity and relative amplitudes of measured com-

pressional and shear arrivals, since all non-isotropic sources produce angularly depen-
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dent radiation patterns. Consider the illustration below, which depicts the idealized

compressional (blue) and shear (red) amplitudes predicted as a function of receiver

angle relative to a double couple shear source:

Figure A.1: Radiation Patterns for a double couple source. Blue lobes represent
amplitudes of P-waves, red lobes show amplitudes for S-waves, and traces for receivers
at varying angular offsets are shown in the top right corner. Note: lobes are not to
scale.

Note how as the receiver is moved in the X-Y plane around the focal source, the

first arrival polarizations and amplitudes vary. If conditions 1 and 3 are satisfied

above, it follows that since the source mechanisms and angular offsets of two events

at a given receiver are similar, the first arrivals should have the same polarity and

relative phase amplitudes. Within the context of hydraulically induced microseismic-

ity monitored by a linear array, conditions 1 and 3 are frequently not valid. Consider

the following map view illustration, with two fracture planes given in blue, and two

potential travel paths from events to a vertical receiver array:

Because focal mechanisms are expected to align approximately with local field

stresses (e.g., Fehler, 1989), the focal mechanisms for events A and B are aligned

identically with respect to each other. However, the relative angle to events A and B

from the receiver array differ by more than 45, invalidating conditions 1 and 3 and
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Figure A.2: Two fracture planes (blue) and two potential raypaths A and B to a
hypothetical receiver array. Condition 1 is invalid, because of the angular difference
from the array to the events, while condition 3 also fails to hold as the rays follow
different paths.

consequently, the polarizations and amplitudes of first arrivals as measured at the

receiver array cannot be expected to match.

Assumption 1 is additionally faulty when recent literature regarding source mech-

anisms of hydraulically induced events is considered. While conventional literature

still reports that microseismic sources are strictly shear events (Warpinski et al.,

2013), Sileny et al. (2009) less recently analyzed microseismic data from a Texas

gas field, inverting amplitude and polarity measurements for focal mechanisms, and

concluded that microseismic sources from the same stimulation are represented by

event-specific linear combinations of double couple, isotropic and CLVD moment

tensors. If their conclusions are correct and apply generally to microseismic events,

then it is invalid to expect polarization and amplitude similarity for waveforms of

cross-correlated events which have an identical angular offset with respect to receiver

position, since the very radiation patterns of events may differ.

One final effect of non-ideal spatial distribution associated with condition 3 is a

result of path dependent attenuation and dispersion. Frequency dependent attenua-

tion and dispersion have the effect of widening the time signature of first arrivals by

preferentially muting high frequencies, as well as shifting the phase of first arrivals.
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These two phenomena both create the potential for error in relative arrival time

estimation.

A.2 Post First Arrival Expression

When the three above assumptions are not met, waveform presentation is further

complicated by non ideal propagation of energy which is recorded after the first

arrival. In practice there is an error associated with picking of first arrival times,

compounded by multiple arrivals, signal noise, attenuation, and dispersion. Cross-

correlation is typically able to mitigate the effect of these picking errors on relative

arrival time measurements because it operates on time-windows which contain first

arrivals. Unfortunately, seismic first arrivals are generally immediately followed by

post first arrival energy, which can confound cross-correlation based relative arrival-

time extraction when subsequent waveforms have amplitudes similar to or greater

than first arrivals (See section 4.2 and appendix B for an empirical illustration of

this error).

Post first arrival wavetrains are predominantly composed of scattered seismic

energy (Snieder et al., 2002; Lay and Zhang, 1992), with additional contributions

from variably dispersed/attenuated frequencies. The scattered energy may be loosely

characterized by its origin, created by near-source scattering or by distant scattering,

overburden, and/or free surface interactions. The main reason for this differentia-

tion during consideration of signal similarity is the angular dependence of scattered

waveforms. In the case of near-source scattering, energy scattered within 360 of a

hypocenter can in principle contribute to waveforms shortly after the first arrival,

since the difference between path lengths of the actual source and a scattering body

is minimal. However, as scatterers move away from the hypocenter, there is a smaller

angular window within which a signal may be scattered before the path length be-
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comes too large to arrive in time, or at all if attenuation is considered.

Herein lies the justification for the quarter wavelength constraint placed on hypocen-

ter separation: if two events are separated approximately by of the dominant wave-

length, it may be generally expected that the two event signals will be affected sim-

ilarly by both near and far source scattering, and therefore present similar post first

arrival waveforms, (e.g., Arrowsmith and Eisner, 2006; Geller and Mueller, 1980).

This condition is generally met within the scope of earthquake seismology, where

frequencies of interest are on the order of 1Hz or less, enabling multiplet analysis

with event offsets on the order of kilometers. Microseismic frequency content how-

ever is much higher; Eisner et al. (2013) report peak frequencies of around 30Hz at a

2000m offset surface array, while signal analysis of frequency spectra of events from

the Naughtwell Stage 2 data set examined later in this work show peaks in the range

of 200Hz-300Hz for a downhole monitoring array with receiver-event offsets in the

range of hundreds of. Even conservatively taking the lower frequencies reported by

Eisner et al., corresponding roughly to a maximum inter-event separation of 30m, it

is impossible to satisfy the quarter wavelength constraint for the majority of micro-

seismic pairs, since fracture stages alone are separated by hundreds of meters. The

result, as demonstrated in section 4.2, is a large variation among post first arrival

waveforms, leading to poor correlation coefficients and inaccurate relative traveltime

measurement.

A.3 Intra-Event Waveform Similarity

A final characteristic of microseismic waveforms worth mentioning is the vari-

ation of waveforms for individual events as recorded at multiple receivers along a

closely spaced array. As evidenced in the following section, individual microseismic

events show startlingly large variation in both first arrival and coda representation
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among signals recorded along an array. While this phenomenon has yet to be explic-

itly addressed in literature, it appears as though the mechanism responsible for the

differences is strongly angularly dependent, since the angular difference between any

two receivers to a given event is no more than a few degrees. It is therefore presumed

to be a manifestation of either near-source scattering, or scattering by heterogeneities

within tens of meters of array receivers. The large ratio of non-direct/direct arrival

amplitudes, in many cases greater than 1, may be attributed to near source S-P

conversion, in the absence of an alternative explanation.

In conclusion, for applications of the INF method to microseismic data, accurate

measurement of relative arrival times by inter-event cross-correlation cannot be ex-

pected, since the three conditions which generally ensure signal similarity between

two given events cannot be satisfied given the scale and geometry of hydraulic stim-

ulation and monitoring. Source/angle variations and unacceptably large inter-event

distances contribute to differences in waveforms of both first and subsequent arrivals,

arising from scattering, attenuation, and differences in source mechanism and orien-

tation relative to receivers. Section 4.2 demonstrates the specific effect that these

non-ideal characteristics may have on an application of the INF method with an

analysis of a real data set.
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APPENDIX B

CROSS-CORRELATION ERROR IN DETAIL

As typical for cross-correlation based relative arrival time measurement, the ex-

traction of a relative arrival time between two arrivals consists of generating a cross-

correlogram for two signals, and identifying the lag value for which the correlation

coefficient is at a maximum. Qualitatively, this lag time represents the time shift

at which the signals are most similar when visually overlain and, in an ideal case

in which two first arrival waveforms are perfectly impulsive, this lag would exactly

recover the true relative arrival time. To understand the source of the error in the

highly non-ideal case resulting in the dt(l) sampling between events 0 and 4 as pre-

sented in section 4.2, examine the cross-correlograms generated at each receiver:

Note that although in this example, correlation coefficients ranging from 0.39

to 0.75 indicate generally poor waveform similarity, the following conclusions apply

even for coefficients of 0.8 and up, reportedly presumed to be sufficient coefficients

for accurate traveltime measurement. Maximum coefficient values, corresponding to

plotted dt(l) lag values, are circled on each correlogram.

The correlogram for receiver 0 has a single, well defined extremum, which would

be expected under ideal circumstances. However, note that correlograms 2, 3, and 6

have multiple local extrema, which are within more than 85% of the global maximum

coefficient value. This misalignment, occasionally referred to as cycle skipping, is a

consequence of the complex coda which follow the first arrivals of event 4, since there

are in effect multiple lags at which the single large arrival measured for event 0 align

in time with deflections recorded for event 4, resulting in large integral values for

the cross-correlation function. The result is a lag ambiguity, since we cannot discern
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Figure B.1: Correlograms generated at each receiver for events 0 and 4

with certainty from the correlograms alone which local maxima correspond to the

true relative arrival time. The ambiguity is further compounded by the consideration

that the relative polarities of the arrival waveforms are unknown since, as discussed

in section A, there is no guarantee that source mechanisms and their alignments will

be similar for different events. This effectively doubles the number of candidates for

true lags peaks, as negative minima must also be considered.

It appears therefore that the inconsistency among measured lags and the poor

agreement between the expected shape of the dt(l) function and the measured lag

values are both results of misalignment by the cross-correlation function. It is dif-

ficult to rigorously relate first arrival waveform characteristics to cross-correlation

uncertainty beyond general qualitative statements, since the true lag values between

events 0 and 4 are unknown, and to date it appears that no analytic relationship
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between cross-correlation uncertainty and signal properties has been derived.
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