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ABSTRACT

The Gaussian Multiple access channel (GMAC) is a well-studied multiuser chan-

nel in information theory and communication theory. The capacity of the GMAC

can be achieved in theory and closely approached with practical coding schemes

when there is coordination between the transmitters and the base station. In recent

years, there has been growing interest in the design of uncoordinated multiple access

or random access schemes for the GMAC, where there is no coordination between

the users and the base station. The performance of such random access schemes

with iterative collision resolution or Successive Interference Cancellation (SIC) for

the interference-limited channel has been studied in previous works and the results

show that the throughput efficiency of random access schemes can be as high as

those of coordinated multiple access schemes. However, these works do not consider

transmit power constraints and additive white Gaussian noise at the receiver.

In this thesis, we consider the design of uncoordinate multiple access schemes that

explicitly consider transmit power constraint and additive white Gaussian noise. We

first show that direct extensions of the existing schemes, to the power constrained

channel results in an inefficient scheme and we also show that using maximal ratio

combining does not improve its performance significantly. Most importantly, we

propose a novel uncoordinated multiple access scheme that allows each transmitter

to pick the rate of transmission from a predetermined distribution. By selecting the

rates from corner points of the achievable rate region, a SIC decoder can be used

which has a single-user decoding complexity. We show that using this scheme we

can achieve an absolute gap of the order O(log2 log2K) in the finite SNR regime

and O(1) in the infinitesimal SNR regime from the GMAC capacity, where K is the
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number of active transmitters in the network. Thus the proposed scheme has a gap

that is a function of both the SNR and the number of users, unlike some previous

schemes whose performance depend only on the number of users. Apart from being

optimal in the low SNR regime, this scheme has other advantages such as minimal

latency, flexibility to be used with other iterative decoders, different channel models

such as varying channel gains and variable power constraints.
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NOMENCLATURE

AWGN Additive White Gaussian Noise

DE Density Evolution

GMAC Gaussian Multiple-Access Channel

MAC Medium Access Control

MIMO Multi-Input Multi-Output

MRC Maximal Ratio Combining

OQ Optimal Quantization

PMF Probability Mass Function

RA Random Access

SA Scheduled Access

SIC Successive Interference Cancellation

SISO Single-Input Single-Output

SNR Signal to Noise Ratio

UQ Uniform Quantization

URS Uncoordinated Rate Selection
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1. INTRODUCTION

1.1 Overview

The Medium Access Control (MAC) layer plays the crucial role of determining

how multiple nodes in a wireless network share the physical transmission medium

and has a substantial impact on the throughput, latency and reliability of wireless

networks. Traditional MAC layer protocols can be classified into two categories:

Scheduled access (SA) and Random access (RA) [1]. In SA, typically a central node

coordinates the transmission of all nodes and assigns resources such as time slots to

the transmissions in a way that interference is avoided. In RA, there is no such central

coordination and each node transmits information as soon as its available or at the

beginning of the next time slot in an uncoordinated fashion. Although the scheduled

access ensures very high reliability, there are some scenarios where RA is preferred

over SA. In networks with large round trip times such as satellite networks, Wireless

sensor networks where there is power constraint at the transmitter, and large wireless

ad-hoc networks where scalability is required RA protocols have to be employed. In

this work, we focus on such a situation and we consider well-known random access

schemes such as slotted ALOHA.

In slotted ALOHA, each user transmits information as a packet at the beginning

of the next time slot. Assuming all the nodes are synchronized and packets are fixed

size, this scheme ensures minimal latency and minimal overhead in communicating

the slot scheduling policy. The disadvantage however is that the transmitted packets

can collide with very high probability. Traditionally, when transmissions overlap, the

collided packets are discarded, thereby, resulting in a loss in the net throughput. It is

well known that the throughput of slotted ALOHA is 1/e ≈ 0.37 [1]. Recently, there
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is growing interest in MAC protocols where the collided packets are not discarded,

but kept in a buffer and then a successive interference cancellation (or, decoding)

algorithm is applied to all the received transmissions.Schemes such as Contention

Resolution Diversity Slotted Aloha (CRDSA)[?], Irregular repetition Slotted Aloha

(IRSA) [2] were proposed to improve the performance of Slotted Aloha. In these

works a connection has been established between SIC decoding and message-passing

decoding on an equivalent bipartile graph. Using this idea, it has been shown that

when there is no noise in the channel, i.e., only collisions or error-free transmission

and when there is no power constraint to the transmissions, throughput arbitrarily

close to 1 can be obtained by choosing soliton distribution for the choice of repetition

rates. [3].

In this work, we consider the important extension to the case when there is noise

in the channel in addition to collisions and when there are power constraints at the

transmitter. The overarching goal of this thesis is to understand how much improve-

ment in throughput can be obtained due to the enhanced decoding procedure com-

pared to discarding the packets. This also helps us answer the fundamental question

of whether uncoordinated transmission can be as good as coordinated transmission

in wireless networks.

1.2 Prior Work

We are interested in a scenario where a large number of nodes, K, are trying

to communicate to a single base station, B. This multiuser channel is commonly

known as a Multiple-access channel. Let P be the maximum power available for

each node to transmit its information. We assume the channel to have Additive

White Gaussian Noise (AWGN) with zero mean and variance, σ2 . This is the well

known Gaussian Multiple Access Channel (GMAC).

2



The achievable rate region for this channel is given by the following set of K in-
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Figure 1.1: Gaussian Multiple-access channel with nodes u1, ..., uK transmitting to
the base station B

equalities [4]:
k∑
i=1

ri <
1

2
log

(
1 +

kP

σ2

)
for k = 1, 2, ..., K (1.1)

The achievable rate region is a subspace of RK . By picking a corner point of the

subspace, MMSE decoder combined with Successive Interference Cancellation (SIC)

can achieve sum rate optimality with the complexity of a single user decoder [4].

In [5], achievable rate region is derived taking into account the channel gains. The

MMSE-SIC scheme is replaced by Successive Integer Forcing (SIF) scheme which

uses a set of K nested Lattices. This scheme is shown to be sum rate optimal and

has the advantage of achieving non-corner points of the rate region. With a more

complicated decoder, it has been shown that the ”equal-rate” point is also achievable

[4] [6]. In [7], a new scheme called Rate Splitting Multiple Access (RSMA) is proposed

to achieve any point in the achievable rate region with complexity similar to single

user decoder by splitting M users into 2M − 1 virtual users.
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1.3 Contribution

The fundamental question our work aims to address is whether it is possible

to achieve the capacity of Gaussian MAC channel without coordination among the

nodes, which is the characteristic of Random Access MAC schemes. In [3] it has

been shown that for an error free channel (only packet collisions), in the absence of

coordination, sumrate equal to capacity can be obtained through Iterative Collision

Resolution (ICR). We define sumrate as the sum of individual rates obtained by all

the nodes transmitting at the same time. In chapter 2, we explore the possibility

of extending this scheme to a Gaussian MAC scenario and the consequent pros and

cons of this scheme.

In chapter 3, we propose an uncoordinated scheme, where the nodes choose their

rates ri without communicating with each other. Each node picks a rate from a rate

distribution, Q, which depends on the number of nodes, K, and the probability of

iterative decoder failure tolerated, ε̂. We obtain the rate distribution by formulating

the problem as a series of optimization problems. Using concepts from information

theory and convex optimization, we obtain a unique rate distribution for a given

(K, ε̂). In the asymptotic limits as K →∞, we find upper and lower bound for the

gap between the sumrate achieved with this scheme and GMAC capacity.

In Chapter-4, we set up some simulation scenarios to observe the performance of

our scheme under different constraints. We observe that the simulations follow the

trends expected from our analysis in chapter-3. Finally in chapter-5, we conclude

our analysis and suggest possible extensions for this work.
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2. PERFORMANCE OF ICR FOR GMAC

Iterative Collision Resolution is known to be sumrate optimal for a noise-free

channel [3]. It is possible to use the same scheme with small modifications to get

good throughputs. Assuming there exists a capacity achieving code for a point-to-

point AWGN channel, we can encode the information of each node using such a code

and use ICR for accessing the channel. In this chapter we analyze the upper and

lower bounds of the sumrate achieved using such a scheme.

2.1 System Model

Each user has k bits of information which is encoded using any capacity achieving

code for a point-to-point AWGN channel. Time is divided into MAC frames, each of

which is subdivided into M time slots. Figure 2.1 shows the time division into a MAC

frame of M time slots. The resulting n length code word is transmitted in i time

slots where i = 2, 3, . . . , N , where N is chosen as the maximum repetition rate. Due

to lack of coordination, each node choses the repetition rate, i independent of one

another from a predetermined distribution. Each node then chooses a random subset

of i time slots from the current MAC frame. The receiver then performs Successive

Interference Cancellation decoding on the obtained MAC frame to iteratively decode

the information from each node. The decoding process can be represented as a

Tanner graph as shown in Figure 2.2.

In [3], it has been shown that the Soliton distribution is the optimal distribution.

Particularly, it has been shown that as M →∞, the efficiency of this scheme, η → 1
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Figure 2.1: Time division of each MAC frame into M slots

as N →∞. Efficiency of this system is defined as:

η =


M
K

if decoding is successful

0 otherwise

2.2 Performance Analysis of ICR

Let us extend the same scheme to an AWGN channel instead of a simple BEC.

Let us assume that each node has a power constraint of P ′ and the AWGN channel

has mean 0 and variance σ2. Figure 2.3 shows the time division at the receiver. We

know from the results in [3] that in the limit as K →∞ with a Soliton distribution,

the system has an efficiency of 1. Hence the sumrate is given by:

SICR =
K · log2

(
1 + P

′

σ2

)
M

bits/channel use
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Figure 2.2: Tanner graph representation of ICR based slotted Aloha

lim
k→∞

SICR = log2

(
1 +

P
′

σ2

)
bits/channel use

lim
k→∞

SICR = log2

(
1 +

K · P
(lnK) · σ2

)
bits/channel use (2.1)

We assume that we require M time slots to decode K users successfully using

ICR. Since the decoding is successful, each user gets one interference free time slot

in which it can transmit at a rate of log2

(
1 + P

′

σ2

)
. Hence we get a total sum rate

of K · log2

(
1 + P

′

σ2

)
in M channel uses. In the limit K → ∞, we have M

K
→ 1.

To compare SICR with the capacity of GMAC, Scap, we need to equate the average

energy spent by all the users in both the schemes. The average degree of a soliton

distribution with K nodes is lnK. (2.1) is a result of this following substitution:

K · P = (lnK) · P ′ (2.2)

Let us analyze the gap between SICR and Scap in two different SNR regimes. We
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Figure 2.3: Time division of each MAC frame into M slots

divide the whole spectrum of SNRs into two regimes, (i) Finite SNR regime, where

P
σ2 is finite and (ii) Infinitesimal SNR regime, where KP

σ2 is constant, which means

the SNR goes to zero as K goes to ∞. The choice of such classification will be

more evident in the following chapter, when we propose a different model of power

constraint. We define absolute gap between SICR and Scap as ga = Scap − SICR. We

also define fractional gap between SICR and Scap as gf = SICR
Scap

.

2.2.1 ICR Analysis: Finite SNR regime

From the expression of sumrate obtained in (2.1) and capacity of GMAC, we

calculate gaps in the finite SNR regime.

lim
k→∞

SICR = log2

(
1 +

K · P
(lnK) · σ2

)
≈ log2

(
K · P

(lnK) · σ2

)
(2.3)
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= log2

(
K · P
σ2

)
− log2 (lnK)

≈ Scap − log2 (lnK) (2.4)

Using the approximation ln(1 + x) ≈ ln(x) for large x and the finite SNR

regime definition, we get (2.3). Using the same approximation, we can write Scap =

log2(KP
σ2 ). From (2.4), we observe that the absolute gap, ga, is of the order, O (ln (lnK))

and fractional gap, gf → 1.

2.2.2 ICR Analysis: Infinitesimal SNR regime

In the infinitesimal SNR regime, instead of observing the absolute gap to capacity,

Scap−SICR (which is trivially zero), we observe the fractional gap, SICR/Scap. From

the definition of infinitesimal SNR regime, let KP
σ2 = s, where s is constant. From

the following analysis, we observe that the fractional gap tends to zero. Hence we

can conclude that ICR is not capacity achieving in either of the SNR regimes.

lim
k→∞

SICR
Scap

=
log2

(
1 + K·P

(lnK)·σ2

)
log2

(
1 + K·P

σ2

)
≈

K·P
(lnK)·σ2

log2

(
1 + K·P

σ2

) (2.5)

=
s

(lnK)(ln(1 + s))

=

(
s

ln(1 + s)

)
·
(

1

lnK

)
(2.6)

(2.5) is a result of the approximation, ln(1 + x) ≈ x for x ≈ 0. Applying the limit

K →∞ for (2.6), gives the result that gf → 0.
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2.3 Performance Analysis of ICR coupled with MRC

Looking at the ICR, we speculate that the gap to capacity is due to the suboptimal

Selection Combining policy when using the SIC decoder. As we know, to get the

maximum diversity, we need to employ Maximal Ratio Combining (MRC) at the

decoder. In this section we analyze the performance of ICR when we MRC in addition

to the SIC decoding. The coefficients for MRC are calculated in the following way:

yi1 = xi + . . .+ η

yi2 = xi + . . .+ η (2.7)

...

yik = xi + . . .+ η

Effective symbol transmitted by node i with degree k is calculated as:

yi,eff = c1 · yi1 + . . .+ ck · yik (2.8)

The choice of coefficients, {cj}, is such that we obtain maximum SNR for yi,eff.

We intuitively understand that cj is inversely related to the number of interfering

symbols, nj in the jth time slot of node i. Note that this index is with respect to

node i and not the overall slot index.

SNRi,eff =
(c1 + . . .+ ck)

2 · P ′

(c2
1 + . . .+ c2

k) · σ2 + (c2
1 · n1 + . . .+ c2

k · nk) · P
′

10



∂SNRi,eff

∂cj
= 0 =⇒

[(
k∑

m=1

c2
m

)
σ2 +

(
k∑

m=1

c2
mnm

)
P
′
]
· 2
(

k∑
m=1

cm

)
P
′

[(
k∑

m=1

c2
m

)
σ2 +

(
k∑

m=1

c2
mnm

)
P ′
]2

−

(
k∑

m=1

cm

)2

· P ′
[
2cjσ

2 + 2cjnjP
′]

[(
k∑

m=1

c2
m

)
σ2 +

(
k∑

m=1

c2
mnm

)
P ′
]2 = 0

=⇒ cj

[
σ2 + njP

′
]

=

(
k∑

m=1

c2
m

)
σ2 +

(
k∑

m=1

c2
mnm

)
P
′

(
k∑

m=1

cm

) (2.9)

=⇒ cj =
1

σ2 + njP
′ j = 1, 2, . . . , k (2.10)

With the choice of coefficients given in (2.10), let us analyze the performance this

hybrid ICR-MRC scheme. Just as in the ICR, the decoder looks for an interference

free time slot, performs MRC for the node i transmitting in that time slot. After

successful decoding of user i, all the edges corresponding to that node are removed

form the graph and the decoding continues until it no longer finds an interference free

time slot (decoding failure) or all the users have been decodes (decoding successful).

Each node chooses the degree distribution from Soliton, which was demonstrated to

guarantee successful decoding with efficiency of one in the asymptotic regime. This

directly applies to our hybrid scheme. However, the users can now transmit at rates,

log2(1 + E[SNRi,eff]). We first demonstrate these rates are higher than the constant

rate, rj = log2(1 + P
′

σ2 ), obtained in ICR. Consider the effective SNR of node i with

a repetition rate of k,

SNRi,eff =

(
k∑

m=1

cm

)2

· P ′

k∑
m=1

(c2
m · [σ2 + nmP

′ ])

11



=

(
k∑

m=1

1
σ2+nmP

′

)2

· P ′

k∑
m=1

(
1

σ2+nmP
′

)2

· [σ2 + nmP
′ ]

=
P
′

σ2

[
k∑

m=1

σ2

σ2 + nmP
′

]

E[SNRi,eff] =
P
′

σ2

(
k∑

m=1

E
[

σ2

σ2 + nmP
′

])
(2.11)

If each of the users chooses the time slots uniformly at random, we have a check node

distribution that is Poisson distribution in the asymptotic limit as K → ∞. Hence

the number of interfering symbols in each time slot, nj, is a random variable that

has Poisson distribution.

E
[

σ2

σ2 + njP
′

]
=

∞∑
nj=0

[
σ2

σ2 + njP
′

] [
exp−λ λnj+1

(nj + 1)! (1− exp−λ)

]
(2.12)

We choose λ = K
M
·Lavg, which is the average degree from node perspective for the

time slots. Note that as the decoding proceeds, λ decreases and the effective SNR

increases. The exact evaluation of the summation in (2.12) is hard and it does not

have an intuitive closed form expression which requires a more rigorous study which

is beyond the scope of this work. Instead, we analyze the sumrate by considering

the upper bound of the effective SNR and show that the absolute gap is a function

of K. Thus we derive valid upper and lower bounds as follows:

E
[

σ2

σ2 + njP
′

]
≥
(

σ2

σ2 + E[nj] · P ′
)

(2.13)

=

 σ2

σ2 +
(

λ
1−exp−λ

− 1
)
· P ′

 (2.14)
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(2.13) is a result of application Jensen’s inequality for the convex function, σ2

σ2+njP
′ .

Random variable nj is the number of interfering symbols given there is at least one

incoming edge for the time slot. The expected value is simply the mean of the Pois-

son distribution normalized by (1− exp−λ), which is the probability that there is at

least one user transmitting in that time slot.

The upper bound for the summation in (2.12) is obtained by substituting nj = 0,

since the number of interfering symbols is greater than or equal to zero. Thus the

upper bound for the summation is 1. This upper bound is tight only when P
′

σ2 � 1,

which falls in the infinitesimal SNR regime. From (2.14) and the above upper bound,

we can say that:

k · P
′

σ2

 σ2

σ2 +
(

λ
1−exp−λ

− 1
)
· P ′

 ≤ E[SNRi,eff] ≤ k · P
′

σ2
(2.15)

Intuitively the upper bound in (2.15) simply means that any node that has de-

gree k can expect to have an effective SNR that is at most k-times the SNR in an

interference free slot. It is also clear that such a situation occurs when there are

no interfering signals in any of the k slots it transmits in. In the following sections

we analyze the gap to capacity with our new ICR-MRC scheme in both the SNR

regimes.

2.3.1 ICR-MRC in finite SNR regime

The exact computation of SICR−MRC is beyond the scope of this work. Hence

we use the upper bound in (2.15) to analyze the gap to capacity with the most

optimal (even if it is not feasible) ICR-MRC implementation. This approach serves

the purpose of refuting the claim that with ICR-MRC, we can approach the capacity
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of GMAC. In the following analysis, using the upper bound, we show that ICR-

MRC scheme has a O(ln lnK) gap to capacity in the finite SNR regime. Let pk be

the probability that a node chooses repetition rate of k.

SICR−MRC ≤
K∑
k=1

pk log2

(
1 +

k · P ′

σ2

)

≈
K∑
k=1

pk log2

(
k · P ′

σ2

)

=
K∑
k=1

pk log2

(
P
′

σ2

)
+

K∑
k=1

pk log2(k)

= log2

(
P
′

σ2

)
+

K∑
k=1

pk log2(k)

From [3], we know that for an induced Poisson distribution on the right, Soliton is

the unique distribution on the left. In a soliton distribution, probability that a node

picks a repetition rate of k is pk = 1
k(k−1)

. This result coupled with the equivalent

power constraint relation in (2.2), we have,

SICR−MRC ≤ log2

(
K · P
σ2

)
− log2(lnK) +

K∑
k=1

log2(k)

k(k − 1)
(2.16)

= Scap − log2(lnK) + O(1) (2.17)

The summation series in (2.16) is a convergent series. It can be shown that
∞∑
k=1

log2(k)
k(k−1)

≈ 2.3731. Please refer to Appendix for the proof. This concludes that

even if we are able to exploit all the available diversity using MRC, there is only a

constant gain in the sumrate. This is still not sufficient to approach the capacity of

GMAC channel in the finite SNR regime and the absolute gap. ga is still of the same

order O(ln lnK).
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2.3.2 ICR-MRC in infinitesimal SNR regime

Analyzing (2.15) in the infinitesimal SNR regime gives an interesting result. We

observe that the ratio of lower and upper bounds tend to one, which implies that the

bounds are tight. Intuitively, this means that the effective SNR of a node transmit-

ting in k slots is k-times the SNR in an interference free slot. This is due to the fact

that at such low SNRs, the signal distortion is dominated by AWGN noise compared

to the interference from the other symbols. Hence we can say that,

E[SNRi,eff] ≈ k · P
′

σ2

SICR−MRC ≈
K∑
k=1

pk log2

(
1 +

k · P ′

σ2

)

=
K∑
k=1

pk log2

(
1 +

k ·K · P
(lnK)σ2

)
(2.18)

Using the upper and lower bounds, 2x
2+x
≤ ln(1+x) ≤ x, we evaluate the upper and

lower bounds of (2.18). From the following analysis, it is evident that the fractional

gap SICR−MRC

Scap
may not tend to one.In this regime, Scap = KP

σ2 . The lower and upper

bounds do not converge. Hence tightness of either bounds cannot be established. So

we use the Taylors series expansion of ln(1 + x) to evaluate the fractional gap. Let

B = K·P
(lnK)σ2 .

K∑
k=2

pk

(
2 k·K·P

(lnK)σ2

2 + k·K·P
(lnK)σ2

)
≤ SICR−MRC ≤

K∑
k=2

pk

(
k ·K · P
(lnK)σ2

)
K∑
k=2

(
1

k(k − 1)

)(
2 k·K·P

(lnK)σ2

2 + k·K·P
(lnK)σ2

)
≤ SICR−MRC ≤

K∑
k=2

(
1

k(k − 1)

)(
k ·K · P
(lnK)σ2

)
[

2K · P
(lnK)σ2

] K∑
k=2

(
1

(k − 1)(2 + k·K·P
(lnK)σ2 )

)
≤ SICR−MRC ≤

[
K · P

(lnK)σ2

] K∑
k=2

(
1

(k − 1)

)
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[
2K · P

(lnK)σ2

] K∑
k=2

(
1

(k − 1)(k + k·K·P
(lnK)σ2 )

)
≤ SICR−MRC ≤

[
K · P

(lnK)σ2

]
· (ln(K − 1))[

2K · P
(lnK)(1 + K·P

(lnK)σ2 )σ2

]
K∑
k=2

(
1

k(k − 1)

)
≤ SICR−MRC ≤

[
K · P · ln(K − 1)

(lnK)σ2

]
[

2K · P
lnKσ2

]
≤ SICR−MRC ≤

[
K · P
σ2

]

SICR−MRC =
K∑
k=1

pk log2 (1 + k ·B)

=
K∑
k=2

(
1

k(k − 1)

)
log2 (1 + k ·B) (2.19)

≈
K∑
k=2

(
1

k(k − 1)

)[
k ·B − (k ·B)2

2
+

(k ·B)3

3
− . . .

]
(2.20)

=
K∑
k=2

(
B

k − 1

)
−

K∑
k=2

(
k ·B2

2(k − 1)

)
+

K∑
k=2

(
k2 ·B3

3(k − 1)

)
− . . .

= B · ln(K − 1)− B2

2
[K − 1 + ln(K − 1)]

+
B3

3

[
K(K + 1)

2
+K − 1 + ln(K − 1)

]
− B4

4

[
K(K + 1)(2K + 1)

6
+
K(K + 1)

2
+K − 1 + ln(K − 1)

]
+ . . .

lim
K→∞
KP
σ2
→0

SICR−MRC = B · ln(K − 1)− B2K

2 · 1
+
B3K2

3 · 2
− B4K3

4 · 3

=
1

K

[
B ·K · ln(K − 1)− (BK)2

2 · 1
+

(BK)3

3 · 2
− (BK)4

4 · 3

]
=

1

K

[
B ·K · ln(K − 1)−

∫
ln(1 +B ·K) d(BK)

]
=

1

K
[B ·K · ln(K − 1)− (1 +B ·K) ln(1 +B ·K) +B ·K + const]

lim
K→∞
KP
σ2
→0

SICR−MRC

Scap
=

1
K

[B ·K · ln(K − 1)− (1 +B ·K) ln(1 +B ·K) +B ·K + const]

log2(1 + KP
σ2 )
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≈
1
K

[B ·K · ln(K − 1)− (1 +B ·K) ln(1 +B ·K) +B ·K + const]
B lnK

ln 2

= lim
K→∞
KP
σ2
→0

[
B ln(K − 1) ln 2

B lnK
− ln 2(1 +BK) ln(1 +BK)

BK lnK
+

BK ln 2

BK lnK

]

= ln 2− ln 2 = 0

Equation (2.19) is from the result that soliton distribution is uniquely optimal for

ICR decoding. (2.20) is due to Taylor series expansion of ln(1 + x). From the above

analysis, it is evident that the fractional gap in the infinitesimal SNR regime and

as K → ∞, goes to zero. This concludes our intuition that MRC is not a sufficient

addition to ICR to approach the capacity of GMAC. At this point, we note that one

possible reason for the non-constant absolute gap or non-unity fractional gap is the

inherent sub-optimality of the repetition coding schemes. In the following chapter

we propose a novel Random Access MAC scheme that promises to be better than

the previous schemes.
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3. OPTIMAL RATE SELECTION FOR UNCOORDINATED GAUSSIAN

MULTIPLE-ACCESS CHANNEL

As we noted in the previous chapter the suboptimality of the previous schemes

lie in the fact that we use repetition coding at the transmitter. Hence we propose

a new paradigm in which the transmitter does not repeat information. This lost

degree of freedom is compensated by the ability of transmitters to choose their rate

of transmission according to a predefined policy. In the following sections we describe

the proposed paradigm in great detail.

3.1 System Model

Let us assume there are K nodes communicating with the base station, B. Let

P be the maximum power available at each node to transmit its information. We

assume the channel to be AWGN with zero mean and σ2 variance. The achievable

rate region for a Gaussian multiple-access channel (GMAC) with power constraints

is given by the following set of K inequalities [4]:

k∑
i=1

ri ≤
1

2
log2

(
1 +

kP

σ2

)
k = 1, 2, ..., K (3.1)

The rate region is a subspace of RK . A point in RK represents a K-tuple of

rates chosen by all the nodes. Some points in this rate region are easily achieved

compared to the others. For example the following set of points are achievable by a

simple interference cancellation decoder, which has the complexity of a single user

decoder.

ri ≤
1

2
log2

1 +
Pi

σ2 +
∑
j<i

Pj

 i = 1, 2, ..., K (3.2)
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Figure 3.1: Achievable rate region for the two-user GMAC

where Pi is the power constraint at each node and σ2 is the variance of the AWGN

channel. In the following scheme each user independently chooses a rate from the

above set, which corresponds to the corner points of the rate region. Figure 3.1

shows the rate region for a two-user scenario.

Each node uses a random codebook of rate chosen from (3.2), with every code-

word being a sequence of i.i.d random variable with N (0, Pi). This is a necessary

condition for the codebook to be capacity achieving for a Gaussian channel. For rates

chosen according to (3.2), this K×1 MIMO channel is transformed into K level SISO

channels. The decoding starts with the node whose rate is the lowest. It decodes

the codeword treating all other codewords as Gaussian noise. After successful de-

coding, the codeword is subtracted from the received word and the process continues

to the higher levels. This idea is described in detail in [8]. This kind of decoding

process is often referred to as Onion peeling, Successive Interference Cancellation

and Successive cancellation.
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One important characteristic of the GMAC that we are interested in is that it

is dynamically configured. It means only a subset of all available nodes are active

in any time slot and nodes switch between idle and active modes. This is a more

general configuration and the the results obtained in this work are valid for a static

configuration as well.

3.2 Problem Formulation

The proposed random access scheme for GMAC is based on the same idea of

dividing time into time slots as commonly used in slotted ALOHA. This inherently

assumes that nodes and the base station have synchronized clocks. There areK nodes

active in the network, trying to communicate with the base station. Each node at

the beginning of the time slots transmits its data in packets of fixed length. Let each

node maintain a set of L codebooks, each with rates r1, . . . , rL. Length of codewords

in all the codebooks must be the same. Nodes must choose the rates (codebooks)

according to some predefined policy. Since the scheme is RA in nature, the nodes

cannot coordinate among themselves to pick the rates. As described earlier rate

tuples given by (3.2) are easily achievable using a SIC decoder. This scheme targets

to achieve the same rate tuples without coordination. We assume that each node

knows the number of active users in the network. This is a reasonable assumption

since the base station can broadcast this number which is a negligible overhead.

3.3 The Uncoordinated Rate Selection (URS) Scheme

In the proposed scheme, each node that has information to transmit to the base

station will choose a rate from a predetermined rate PMF. The message is encoded

using the codebook of chosen rate. The SIC decoder iteratively decodes each message

transmitted in that time slot. We define sumrate as the sum of rates of all the

nodes that were successfully decoded at the base station. This scheme is said to be
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capacity achieving if the sumrate is equal to the capacity of GMAC, which is equal

to 1
2

log2

(
1 + KP

σ2

)
.

The proposed scheme can be broadly divided into three stages. In the first stage,

the set of K rates is quantized into L rates. This is called Rate Quantization. The

rate PMF is obtained after completing this stage. In the second stage the rate PMF

is biased such that the probability of failure of the SIC decoder is bounded. This

is called Rate Biasing. At the end of these two stages, we have a rate distribution

function the nodes use to pick a rate. Using this distribution function, the probability

of decoder failure is bounded at the base station. Figure 3.2 summarizes the various

stages of URS.

URS begin

K,L, σ2, ε̂

UQ/OQ

{q∗i }, {r∗i }

UQ(L)

Rate bias (ε̂)

OQ(L)

Rate bias (ε̂)

URS end

OQUQ

{n∗i }, {r∗i } {n∗i }, {r∗i }

{q∗i } {q∗i }

Figure 3.2: Flowchart summarizing the operations of URS
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3.3.1 Rate Quantization

Each node maintains a set of L codebooks. Ideally L must be equal to K to fully

operate at any point in the rate region. But L is chosen to be less than K for two

reasons. Firstly, maintaining K codebooks is not feasible since the number of nodes

in the network, K can potentially be very large (of the order of 104). Secondly, it

provides additional degree of freedom in the asymptotic analysis, which we will see

in more detail in the subsequent sections. In this work two ways of rate quantization

are proposed namely, Uniform quantization and Optimal quantization. The former

scheme is more suitable for the asymptotic analysis while the latter achieves higher

sum rates for finite K. In the asymptotic limit the performance of both the schemes

converge.

3.3.1.1 Uniform Quantization

In this scheme, the number of users picking each of the quantized rates is assumed

to be uniform. Let ni be the number of users picking rate ri. Uniform quantization

implies:

n1 = n2 = . . . = nL =
K

L

For the given {ni}, we can calculate the rates {ri} such that they satisfy the con-

straints imposed by the SIC decoder:

r1 = log2

(
1 +

P

(K − 1)P + σ2

)
(3.3)

ri = log2

1 +
P(

K −
i−1∑
j=1

nj − 1

)
P + σ2

 i = 2, ..., L
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3.3.1.2 Optimal Quantization

The objective of rate quantization is to maximize the sumrate, which is the sum

of rates of all the nodes transmitting in the current time slot. The constraints are due

to the choice of rates that are easily decoded using SIC (3.2). Each node with rate

ri has interference from all the other nodes with rates rj < ri, which can be treated

as noise by the SIC decoder. Hence we can formulate this quantization operation as

the following optimization problem:

maximize
ni,ri∀i∈[1,L]

L∑
i=1

niri

subject to
L∑
i=1

ni = K

r1 ≤ log2

(
1 +

P

(K − 1)P + σ2

)

ri ≤ log2

1 +
P(

K −
i−1∑
j=1

nj − 1

)
P + σ2

 i = 2, ..., L

ri ≥ 0 i = 1, ..., L

ni ≥ 0 i = 1, ..., L

(3.4)

The above problem is non-convex in ni and ri. However a suboptimal solution

can be obtained by finding a local maximum. With the motivation of obtaining a

simple closed form solution for the above optimization problem, an approximation

is used for each of the inequality constraints. This approximation is only valid when
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the following condition is satisfied:

P(
K −

L−1∑
j=1

nj − 1

)
P + σ2

� 1 (3.5)

This condition is true when SNR is low (ie., σ2

P
� 1). The deviation of the true value

from the approximation is less than 10−3 for SNR ≤ -15 dB. From the Maclaurin

series, we have,

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ ... ≈ x for x� 1 (3.6)

Using the above approximation and the condition in (3.5), the rate constraint is

modified as:

log2

1 +
P(

K −
i−1∑
j=1

nj − 1

)
P + σ2

 ≈ 1

ln 2

 P(
K −

i−1∑
j=1

nj − 1

)
P + σ2

 (3.7)

Using the method of Lagrange multipliers, a closed form solution for the modified

convex optimization problem is derived. The solution is given below and the proof
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is described in the appendix.

n∗i =
1

(Aλ)L−i−1

[
1

Aλ2
− 1

λ

]
for i = 1, 2, ...L− 1

n∗L = K −
L−1∑
j=1

n∗j

r∗1 =
1

ln 2

(
P

(K − 1)P + σ2

)

r∗i =
1

ln 2

 P(
K −

i−1∑
j=1

n∗j − 1

)
P + σ2

 for i = 2, ..., L

A =
σ2

P
, λ =

(
1

AL−1(K − 1 + A)

)1/L

(3.8)

3.3.2 Rate Biasing

Having obtained the optimal {r∗i } and {n∗i }, the next step is to obtain the PMF,

Q, according to which each node chooses its rate. Thus the average sum rate obtained

is
K∑
i=1

qiri. The objective is to maximize the expected sum rate subject to a bound on

the probability of iterative decoding failure. Iterative decoder proceeds by identifying

the nodes that transmit at the lowest rate among all the undecoded nodes. After

decoding all the users at that rate, it repeats the whole process. Thus a maximum

of L stages are possible for the decoder. Iterative decoding fails at stage m (m ≤ L),

when

e1 + e2 + . . .+ em <

m∑
j=1

nj (3.9)

where ei is the fraction of nodes picking rate ri. Looking at {ei} as a vector, E can be

helpful in understanding the following analysis. Another way to look at {ei} is that

they form an empirical PMF. (3.9) simply means that there are not enough number
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of lower rate nodes to decode to proceed to stage m + 1 (
∑m

j=1 nj is the minimum

required number). We can formulate the above as an optimization problem where

one of the constraints is a bound on the probability of decoder failure.

maximize
qi∀i∈[1,L]

L∑
i=1

qiri

subject to
L∑
i=1

qi = 1

Pfail ≤ ε̂

(3.10)

The probability of iterative decoding failure is analyzed using the Sanov’s theorem[?],

which gives a bound on the probability of observing an atypical sequence of sam-

ples. It states that if X1, X2, ...Xn are i.i.d. ∼ Q and E is any set of empirical

distributions, then

Qn(E) ≤ (n+ 1)|χ|2−nD(E∗i ||Q) (3.11)

where Qn(E) is the probability that an empirical distribution in the set E results

by taking n samples following the probability distribution Q and E∗ is the empirical

distribution in E that is closest to Q in terms of Kulback-Liebler distance.

E is defined as a set of all the distributions in the n-dimensional space that cause

the iterative decoding to fail. Thus Qn(E) is the probability of decoding failure. We

define E as the union of each set of empirical distribution that causes a particular

mode of failure. Failure mode m occurs when the iterative decoding fails in stage m

whose condition is given by (3.9). Pfail for mode m can be estimated using Sanov’s

theorem by calculating E∗m, which is the empirical distribution in the set of E that

has the failure mode of m that is closest to Q . Finding the closest distribution that

26



is in the failure set is formulated as the following optimization problem:

minimize
ei∀i∈[1,L]

D(E||Q)

subject to
L∑
j=1

ej = 1

e1 + . . .+ em ≤
m∑
j=1

n∗j

(3.12)

The value of the objective function of the above optimization problem gives

D(E∗m||Q). The closed form solution can be obtained using the method of Lagrange

multipliers.

E∗m(j) =



qj
m∑
i=1

n∗i

m∑
i=1

qi

for j = 1, 2, ...,m

qj
L∑

i=m+1
n∗i

L∑
i=m+1

qm

for j = m+ 1,m+ 2, ..., L

(3.13)

The constraint Pfail ≤ ε̂ is equivalent to D(E∗m||Q) > ε for m = 1, 2, . . . , L.

Intuitively, it means that if each set of empirical distributions that result in decoding

failure (stages 1, 2, ...L) have a minimum distance of ε from Q, we can certify that

the iterative decoding succeeds with at least a probability of (1 − ε̂). The relation

between them is derived in the following theorem.

Theorem 3.3.1. Let ε̂ be the upper bound on the probability of decoder failure. The

smallest distance between any empirical distribution E, resulting in decoder failure

and Q, ε, is given by:

ε ≥ 1

K
[log2 (L− 1)− log2 ε̂+ L log2 (K + 1)]

Proof. Let Pf,m be the probability that the iterative decoder fails in mode m, the
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condition for which is given in (3.9). From Sanov’s theorem, we have,

Pf,m ≤ (K + 1)L 2−KD(E∗m||Q) (3.14)

By solving (3.12), we find E∗m that is closes to Q such that D (E∗m||Q) ≥ ε. Com-

bining this and the above equation, we have,

Pf ≤ ε̂

L−1∑
i=1

Pf,i ≤ ε̂

L−1∑
i=1

(K + 1)L

2Kε
≤ ε̂

(L− 1) (K + 1)L

2Kε
≤ ε̂

ε ≥ 1

K
log2

(L− 1)(K + 1)L

ε̂
(3.15)

ε ≥ 1

K
[log2(L− 1)− log2 ε̂+ L log2(K + 1)]

Note that the upper bound of Pf,i is the same for all i = 1, 2, . . . , L. This relation

is fundamental in understanding the asymptotic regime behavior of the rate biasing

operation. Figure 3.3 shows how the distribution is biased for a particular choice of

ε

The relation between E∗m and Q is obtained by solving (3.12). The closed

form solution for this optimization problem is given in (3.13). Hence the condition

D(E∗m||Q) > ε can be equivalently written as:

sq(m)sn(m) (1− sq(m))1−sn(m) ≤ sn(m)sn(m) (1− sn(m))1−sn(m) (3.16)
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where sn(m) =
∑m

i=1 n
∗
j and sq(m) =

∑m
i=1 qj are the cumulative sums of vectors N

and Q. It can be shown that equation in (3.16) has only two real roots. The proof

is given in the appendix. Solving equation (3.16) for sq(m) gives two conditions:

sq(m) ≤ am1 or sq(m) ≥ am2 (3.17)

where am1, am2 are the two roots of the above equation. This discontinuous choice of

Q-region is difficult to handle while solving the optimization problem in (3.10). But

it turns out that the condition sq(m) ≤ am1 results in a Q that is already in E, the

set of distributions that cause decoding failure. Thus the constraint D(E∗m||Q) > ε

is equivalent to sq(m) ≥ am2, which makes the following optimization problem a

Linear problem.

maximize
qi∀i∈[1,L]

L∑
i=1

qiri

subject to
L∑
i=1

qi = 1

m∑
i=1

qi ≥ am2 m = 1, 2, . . . , L− 1

(3.18)

3.4 Asymptotic Analysis

In this section, the performance of the proposed scheme is analyzed for two differ-

ent models. The two models have a similar topology, encoding and decoding schemes

but different power constraints. We use the same criteria defined in chapter-2 to mea-

sure the performance relative to GMAC capacity such as absolute gap tending to 0

and fractional gap tending to 1.

1. Model-1, Power constraint only : Let P be the maximum power used by each
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Figure 3.3: Rate biasing in action; Model-1, K = 104, L = 103 ε = 0.01

node. The sumrate capacity is log2

(
1 + KP

σ2

)
bits/channel use. This belongs

to the Finite SNR regime defined in chapter-2.

2. Model-2, Power & Energy constraint : An additional constraint that each node

should operate in M time slots is imposed. To compare two schemes, the

energy used by each node must be the same. Hence in this model each node

can operate at a maximum power of P
M

per time slot. The sum rate capacity

is log2

(
1 + KP

Mσ2

)
bits/channel use. We assume that M grows at the same rate

as K. This belongs to the Infinitesimal SNR regime defined in chapter-2.

3.4.1 Asymptotic Analysis in the Finite SNR Regime

Let Suq be the theoretical sumrate obtained through uniform quantization. Sim-

ilarly Soq is the sumrate obtained through Optimal rate quantization, Scap is the

capacity of GMAC and Ssim is the sumrate obtained by simulating the decoder af-

ter the rate biasing operation. In the proposed scheme, loss in sum rate occurs in
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both the stages of our scheme. In the first stage of rate quantization, since L 6= K,

Suq ≤ Scap. In the second stage due to the biasing operation, for any ε ≥ 0, we have

Ssim ≤ Suq. In the following theorem the dependence of loss in rate quantization

stage on the number of quantization levels, L is derived.

Theorem 3.4.1. In a finite SNR regime, for a fixed L, as K → ∞, the sum rate

achieved through uniform quantization is of the order O(log2 L).

Proof. : Let A = SNR−1

Suq =
K

L
log2

(
1 +

1

K − 1 + A

)
+

L∑
i=2

K

L
log2

(
1 +

1

K − (i− 1)K
L
− 1 + A

)

Using the approximation ln(1 + x) ≈ x when x → 0, the individual terms in the

above equation can be approximated as follows:

lim
K→∞

K

L
log2

(
1 +

1

K − 1 + A

)
=

1

L ln 2

lim
K→∞

K

L
log2

(
1 +

1

K − (i− 1)K
L
− 1 + A

)
=

1

L ln 2

(
1

1−
(
i−1
L

)) (3.19)

Using the following upper bound for the summation of harmonic series an upper

bound is derived for Suq. Here γ is the EulerMascheroni constant and εk ≈ 1
2k

k∑
n=1

1

n
= ln k + γ + εk < ln k + 1 (3.20)
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Using the above upper bound and (3.19), the order of Suq is calculated as follows:

lim
K→∞

Suq =
1

L ln 2
+

L∑
i=2

1

L ln 2

(
1

1−
(
j−1
L

))

<
1

L ln 2
+

1

L ln 2
(L lnL)

= O(log2 L) (3.21)

Since Scap is O(log2K), we can conclude that for a fixed L, the absolute gap to

capacity or the loss in rate quantization is increasing logarithmically.

Similarly, we analyze the dependence of loss in sumrate due to the rate biasing

operation on L. In the following theorem, we show that for a fixed L as K → ∞,

the second loss goes to zero.

Theorem 3.4.2. In the finite SNR regime, for a fixed L, as K → ∞, the sumrate

obtained after the rate biasing operation, Ssim → Suq

Proof. Let us recall the result of Theorem 3.2.1 summarized in (3.15).

ε ≥ 1

K
[log2 (L− 1)− log2 ε̂+ L log2 (K + 1)]

For a fixed L and K → ∞, there exists an arbitrarily small δ such that ε → δ

can guarantee arbitrarily small decoder failure probability, γ (ε̂ → γ). Since ε → 0

implies that the biasing operation can be bypassed, the sumrate obtained through

simulation is equal to the sumrate expected from quantizing the rate distribution.

Hence Suq − Ssim → 0.

From Theorems 3.3.1, it is evident that for a fixed L, the proposed scheme does

not perform well in the asymptotic regime. From Theorem 3.3.2, it can be seen that
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when L increases at a certain rate relative to K, the rate loss in biasing operation

can still go to zero. For example, when L = log2K, ε → 0. Hence L should grow

as a function of K such that the loss in sumrate in both the operations is minimal.

From the expressions in theorems 3.3.1 and 3.3.2, it can be inferred that the best

performance is achieved when L = K
(log2K)1+δ

for an arbitrarily small δ > 0. This is

the reason behind the rate quantization operation. For this choice of L, the following

theorems give upper and lower bounds for Suq, absolute gap and fractional gap.

Theorem 3.4.3. Let Suq be the sum rate obtained through uniform quantization

using L levels, where L = K
(log2K)1+δ

. The upper and lower bounds for Suq are:

log2

(
L

K
· (K − 1

2
+ A)− 1

)
− log2

(
L

K
· (K − 1

2
+ A)− L+ 1

)
− log2 e

≤ Suq ≤ log2

(
L

K
· (K − 1 + A)− 1

)
+ log2 e

Proof. Let L, the number of quantization levels that grow with the number of nodes,

K as L = K
(log2K)1+δ

for some arbitrarily small δ ≈ 0.

Suq =
L∑
i=1

n∗i r
∗
i

Suq =
K

L
log2

(
1 +

1

K − 1 + A

)
+

L∑
i=2

K

L
log2

(
1 +

1

K − 1− (i− 1) · K
L

+ A

)
(3.22)

We calculate the upper and lower bounds for each of the two parts separately. Upper
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bound for the first term:

=
K

L
log2

(
1 +

1

K − 1 + A

)
= log2

(
1 +

1

K − 1 + A

)K
L

≤ log2

(
e
K
L
· 1
K−1+A

)
(3.23)

=

(
K

L

)
·
(

1

K − 1 + A

)
· (log2 e)

Lower bound for the first part:

=
K

L
log2

(
1 +

1

K − 1 + A

)
= log2

(
1 +

1

K − 1 + A

)K
L

≥ log2

(
e
K
L
· 1

K− 1
2+A

)
(3.24)

=

(
K

L

)
·
(

1

K − 1
2

+ A

)
· (log2 e)

(3.23) and (3.24) are a result of the application of the following bound, which is true

for all x ≥ 0.

2x

2 + x
≤ ln(1 + x) ≤ x (3.25)
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Bounds for the second term in (3.22) are evaluated as follows:

=
L∑
i=2

K

L
log2

(
1 +

1

K − 1− (i− 1) · K
L

+ A

)

=
K

L
log2

L∏
i=2

(
1 +

1

K − 1− (i− 1) · K
L

+ A

)

= log2

[
L∏
i=2

(
1 +

1

K − 1− (i− 1) · K
L

+ A

)]K
L

Using the same inequality in (3.25), the upper and lower bounds for the above term

are obtained. Upper bound:

≤ log2

[
L∏
i=2

e
K
L
· 1

K−1−(i−1)·K
L

+A

]
(3.26)

= log2

[
e

L∑
i=2

K
L
· 1

K−1−(i−1)·K
L

+A

]

= log2

[
e

L∑
i=2

K
L
· 1

K−1−(i−1)·K
L

+A

]

≤ log2

[
eln( LK ·(K−1+A)−1)+1

]
(3.27)

= log2

[(
L

K
· (K − 1 + A)− 1

)
· e
]

= log2

(
L

K
· (K − 1 + A)− 1

)
+ log2 e (3.28)

(3.26) is a result of the application of upper bound of ln(1+x) given in (3.25). (3.27)

is the upper bound of the summation of the harmonic series. Let L
K
·(K−1+A) = x.

This upper bound is derived as follows:

L∑
i=2

K

L
· 1

K − 1− (i− 1) · K
L

+ A
=

L∑
i=2

1
L
K
· (K − 1 + A)− (i− 1)
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=
L∑
i=2

1

x− (i− 1)

=
1

x− L+ 1
+ . . .+

1

x− 1

Using the known bounds for the summation of harmonic series, (3.20), we get:

ln k <
k∑

n=1

1

n
< ln k + 1 (3.29)

ln

(
x− 1

x− L+ 1

)
− 1 <

L∑
i=2

1

x− (i− 1)
< ln (x− 1) + 1 (3.30)

Similarly, the lower bound is calculated as follows:

≥ log2

 L∏
i=2

e

K
L
·

2

K−1−(i−1)·K
L

+A

2+ 1

K−1−(i−1)·K
L

+A

 (3.31)

= log2

[
e

L∑
i=2

K
L
· 2

2·(K−1−(i−1)·K
L

+A)+1

]

= log2

[
e

L∑
i=2

1
L
K
·(K− 1

2+A)−(i−1)

]

≤ log2

[
eln( LK ·(K−

1
2

+A)−1)−ln( LK ·(K−
1
2

+A)−L+1)−1
]

(3.32)

= log2

[ (
L
K
· (K − 1

2
+ A)− 1

)
· e(

L
K
· (K − 1

2
+ A)− L+ 1

)]

= log2

(
L

K
· (K − 1

2
+ A)− 1

)
− log2

(
L

K
· (K − 1

2
+ A)− L+ 1

)
− log2 e

(3.33)

(3.31) is a result of the application of lower bound of ln(1 +x) given in (3.25). (3.32)

is the lower bound of the summation of the harmonic series given in (3.30). Thus
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from (3.28) and (3.33) we have:

log2

(
L

K
· (K − 1

2
+ A)− 1

)
− log2

(
L

K
· (K − 1

2
+ A)− L+ 1

)
− log2 e

≤ Suq ≤ log2

(
L

K
· (K − 1 + A)− 1

)
+ log2 e

From the following analysis, it can be seen that asymptotically there is a constant

gap between the upper and lower bounds of Suq, which can be evaluated as follows:

= lim
K→∞

[
log2

(
L

K
· (K − 1 + A)− 1

)
+ log2 e− log2

(
L

K
· (K − 1

2
+ A)− 1

)
+ log2

(
L

K
· (K − 1

2
+ A)− L+ 1

)
+ log2 e

]
= 2 log2 e

since, for the choice of L = K
(log2K)(1+δ)

, we have, lim
K→∞

log2

(
L
K
· (K − 1

2
+ A)− L+ 1

)
=

0 and lim
K→∞

log2

(
L
K
·(K−1+A)−1

L
K
·(K− 1

2
+A)−1

)
= 0.

Theorem 3.4.4. Let Suq be the sum rate obtained through uniform quantization

using L levels, where L = K
(log2K)1+δ

. Asymptotically, the absolute gap from capacity

is of the order O(ln lnK) and the fractional gap tends to 1.

lim
K→∞

ga = O(log2 log2K)

lim
K→∞

gf = 1

Proof. let us begin the proof with the fractional gap. Using the upper bound for Suq

derived in (3.28), the upper bound for gf is derived as follows:

lim
K→∞

gf ≤ lim
K→∞

log2

(
L
K
· (K − 1 + A)− 1

)
+ log2 e

log2

(
1 + K

A

)
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= lim
K→∞

[
1

L
K
·(K−1+A)−1

] [
(log2K)1+δ−(K−1+A)·(1+δ)(log2K)δ 1

K ln 2

(log2K)2+2δ

]
1

1+K/A
· 1
A

= lim
K→∞

(K + A) ·K
(log2K)1+δ (L(K − 1 + A)−K)

− lim
K→∞

(K + A)(K − 1 + A)(1 + δ)

(L(K − 1 + A)−K) · ln 2 · (log2K)2+δ

= lim
K→∞

(K + A)

(log2K)1+δ
(
L
K
· (K − 1 + A)− 1

)
− lim

K→∞

(
1 + δ

ln 2

)[
(K + A) · (K − 1 + A)

K
(
L
K

(K − 1 + A)− 1
)
· (log2K)2+δ

]

= lim
K→∞

(K + A)

(log2K)1+δ((log2K)−1−δ · (K − 1 + A)− 1)

− lim
K→∞

(
1 + δ

ln 2

)[
(K + A) · (K − 1 + A)

K [(log2K)−1−δ · (K − 1 + A)− 1] · (log2K)2+δ

]
= lim

K→∞

1

(log2K)1+δ ((log2K)−1−δ · (K − 1 + A)− 1)

− lim
K→∞

(
1 + δ

ln 2

)[
(K + A) · (K − 1 + A)

K [(K − 1 + A) · (log2K)− (log2K)2+δ]

]
= lim

K→∞

1
K−1+A
K+A

− (log2K)1+δ

K+A

− lim
K→∞

(
1 + δ

ln 2

) 1(
K

K+A

)
·
[
log2K −

(log2K)2+δ

(K−1+A)

]


= 1− 0 = 1

Similarly, using the lower bound for Suq derived in (3.28), it can be shown that the

lower bound for gf is also 1. Since both the bounds converge, we can say that, as

K →∞ for this particular choice of L, fractional gap, gf tends to 1.

Similar to the above approach, we calculate upper and lower bounds for the
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absolute gap, ga. The lower bound for ga is derived as follows:

lim
K→∞

Suq − Scap ≤ lim
K→∞

log2

(
L

K
· (K − 1 + A)− 1

)
+ log2 e− log2

(
1 +

K

A

)
= lim

K→∞
log2

(
L
K
· (K − 1 + A)− 1(

1 + K
A

) )
+ log2 e

= lim
K→∞

log2

(
(log2K)−1−δ · (K − 1 + A)− 1(

1 + K
A

) )
+ log2 e

= lim
K→∞

log2

(
(K − 1 + A)− (log2K)1+δ(

1 + K
A

) )
+ log2 e− log2

(
(log2K)1+δ

)
= log2

(
A

A+ 1

)
+ log2 e− log2 ((1 + δ) · log2K) (3.34)

The upper bound for ga is calculated as follows:

Suq − Scap ≥ lim
K→∞

log2

(
L

K
· (K − 1

2
+ A)− 1

)
− log2

(
L

K
· (K − 1

2
+ A)− L+ 1

)
− log2 e− log2

(
1 +

K

A

)
= lim

K→∞
log2

(
(K − 1

2
+ A)− (log2K)1+δ

(K − 1
2

+ A)−K + (log2K)1+δ

)
− log2 e− log2

(
1 +

K

A

)
= lim

K→∞
log2

(
(K − 1

2
+ A)− (log2K)1+δ(

1 + K
A

) )

− log2

(
(log2K)1+δ − 1

2
+ A

)
− log2 e

= log2

(
A

A+ 1

)
− log2 e− log2

(
(1 + δ) · log2K + A− 1

2

)
(3.35)

From (3.34) and (3.35) we have the upper and lower bounds for ga.

log2 ((1 + δ) · log2K)− log2 e− log2

(
A

A+ 1

)
≤ ga ≤ log2

(
(1 + δ) · log2K + A− 1

2

)
+ log2 e− log2

(
A

A+ 1

)
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It can be seen from the above equation that both the bounds converge. Hence the

absolute gap, ga is of the order, O(log2 log2K). Note that the ga is also a function

of A and hence a function of the signal to noise ratio.

3.4.2 Asymptotic Analysis in the Infinitesimal Regime

The analysis of bounds on Suq, ga and gf in the infinitesimal regime is similar to

the analysis in the finite SNR regime. The fundamental difference in the following

proofs is that A is no longer constant. This model assumes that the SNR goes to

zero at the same rate as K goes to infinity. Hence A tends to infinity at the same

rate.

Theorem 3.4.5. Let Suq be the sum rate obtained using L levels, where L = K
(log2K)1+δ

and A
′

be the inverse SNR. The upper and lower bounds for Suq in the infinitesimal

SNR range are:

log2

(
L

K
· (K − 1

2
+ A

′
)− 1

)
− log2

(
L

K
· (K − 1

2
+ A

′
)− L

)
− log2 e

≤ Suq ≤ log2

(
L

K
· (K − 1 + A

′
)− 1

)
− log2

(
L

K
· (K − 1 + A

′
)− L

)
+ log2 e

Proof.

Suq =
L∑
i=1

n∗i r
∗
i

=
K

L
log2

(
1 +

1

K − 1 + A′

)
+

L∑
i=2

K

L
log2

(
1 +

1

K − 1− (i− 1) · K
L

+ A′

)
(3.36)

We calculate the upper and lower bounds for each of the two parts in (3.36) sep-

arately. The bounds for the first part are calculated the same way as in Theorem
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3.3.3.

K

L

(
1

K − 1
2

+ A′

)
log2 e ≤ K

L
log2

(
1 +

1

K − 1 + A′

)
≤ K

L

(
1

K − 1 + A′

)
log2 e

(3.37)

The second term in the equation (3.37) is evaluated as follows:

=
L∑
i=2

K

L
log2

(
1 +

1

K − 1− (i− 1) · K
L

+ A′

)

=
K

L
log2

L∏
i=2

(
1 +

1

K − 1− (i− 1) · K
L

+ A′

)

= log2

[
L∏
i=2

(
1 +

1

K − 1− (i− 1) · K
L

+ A′

)]K
L

(3.38)

We calculate an upper bound and a lower bound for (3.38). Upper bound:

≤ log2

[
L∏
i=2

e
K
L
· 1

K−1−(i−1)·K
L

+A
′

]
(3.39)

= log2

[
e

L∑
i=2

K
L
· 1

K−1−(i−1)·K
L

+A
′

]

= log2

[
e

L∑
i=2

K
L
· 1

K−1−(i−1)·K
L

+A
′

]

≤ log2

[
e

ln
(
L
K
·(K−1+A

′
)−1

)
+1−ln

(
L
K
·(K−1+A

′
)−L

)]
(3.40)

= log2

[
e

ln
(
L
K
·(K−1+A

′
)−1

)
· e · e− ln

(
L
K
·(K−1+A

′
)−L

)]
= log2

(
L

K
· (K − 1 + A

′
)− 1

)
− log2

(
L

K
· (K − 1 + A

′
)− L

)
+ log2 e (3.41)

(3.39) is from the approximation given in (3.25). (3.40) is obtained by evaluating

the summation of the harmonic series similar to (3.27) with minor changes. Since
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x− L does not go to zero, we find tighter upper and lower bounds.

L∑
i=2

K

L
· 1

K − 1− (i− 1) · K
L

+ A
=

L∑
i=2

1
L
K
· (K − 1 + A)− (i− 1)

=
L∑
i=2

1

x− (i− 1)

=
1

x− L+ 1
+ . . .+

1

x− 1

=

(
1 +

1

2
+ . . .

1

x− 1

)
−
(

1 +
1

2
+ . . .+

1

x− L

)
ln

(
x− 1

x− L

)
− 1 <

L∑
i=2

1

x− (i− 1)
< ln

(
x− 1

x− L

)
+ 1 (3.42)

We can calculate the lower bound for the second term in (3.38) as follows:

≥ log2

 L∏
i=2

e

K
L
·

2

K−1−(i−1)·K
L

+A
′

2+ 1

K−1−(i−1)·K
L

+A
′

 (3.43)

= log2

[
e

L∑
i=2

K
L
· 2

2·(K−1−(i−1)·K
L

+A
′
)+1

]

= log2

[
e

L∑
i=2

1
L
K
·(K− 1

2+A
′
)−(i−1)

]

≤ log2

[
e

ln
(
L
K
·(K− 1

2
+A
′
)−1

)
−ln

(
L
K
·(K− 1

2
+A
′
)−L

)
−1

]
(3.44)

= log2

[ (
L
K
· (K − 1

2
+ A

′
)− 1

)(
L
K
· (K − 1

2
+ A′)− L

)
· e

]

= log2

(
L

K
· (K − 1

2
+ A

′
)− 1

)
− log2

(
L

K
· (K − 1

2
+ A

′
)− L

)
− log2 e (3.45)

(3.43) is from is from the approximation given in (3.25). (3.44) is from the upper
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bound in (3.42). Thus from (3.41) and (3.45) we have:

log2

(
L

K
· (K − 1

2
+ A

′
)− 1

)
− log2

(
L

K
· (K − 1

2
+ A

′
)− L

)
− log2 e

≤ Suq ≤ log2

(
L

K
· (K − 1 + A

′
)− 1

)
− log2

(
L

K
· (K − 1 + A

′
)− L

)
+ log2 e

We can see that asymptotically there is a constant gap between the upper and

lower bounds, which can be evaluated as follows:

lim
K→∞

g = lim
K→∞

[
log2

(
L

K
· (K − 1 + A

′
)− 1

)
− log2

(
L

K
· (K − 1 + A

′
)− L

)
+ log2 e

− log2

(
L

K
· (K − 1

2
+ A

′
)− 1

)
+ log2

(
L

K
· (K − 1

2
+ A

′
)− L

)
− log2 e

]
= 2 log2 e

since lim
K→∞

log2

(
L
K
·(K−1+A

′
)−L

L
K
·(K− 1

2
+A′ )−L

)
= 0 and lim

K→∞
log2

(
L
K
·(K−1+A)−1

L
K
·(K− 1

2
+A)−1

)
= 0.

Theorem 3.4.6. Let Suq be the sum rate obtained using L quantization levels, where

L = K
(log2K)1+δ

. Asymptotically, the absolute gap from capacity is of constant order,

O(1) and the fractional gap tends to 1.

lim
K→∞

ga = 0

lim
K→∞

gf = 1

Proof. Let us first evaluate the upper and lower bounds for the absolute gap. The

43



lower bound is calculated as follows:

lim
K→∞

Suq − Scap ≤ lim
K→∞

log2

(
L

K
· (K − 1 + A

′
)− 1

)
− log2

(
L

K
· (K − 1 + A

′
)− L

)
+ log2 e− log2

(
1 +

K

A′

)
= lim

K→∞
log2

(
L
K
· (K − 1 +K · A)− 1

L
K
· (K − 1 +K · A)− L

)
+ log2 e− log2

(
1 +

1

A

)

= lim
K→∞

log2

(
(K − 1 +K · A)− K

L

(K − 1 +K · A)−K

)
+ log2 e− log2

(
1 +

1

A

)
= log2

(
A+ 1

A

)
+ log2 e− log2

(
1 +

1

A

)
= log2 e (3.46)

Similarly the upper bound for the absolute gap is:

lim
K→∞

Suq − Scap ≥ lim
K→∞

log2

(
L

K
· (K − 1

2
+ A

′
)− 1

)
− log2

(
L

K
· (K − 1

2
+ A

′
)− L

)
− log2 e− log2

(
1 +

K

A′

)
= lim

K→∞
log2

(
L
K
· (K − 1

2
+K · A)− 1

L
K
· (K − 1

2
+K · A)− L

)
− log2 e− log2

(
1 +

1

A

)

= lim
K→∞

log2

(
(K − 1

2
+K · A)− K

L

(K − 1
2

+K · A)−K

)
− log2 e− log2

(
1 +

1

A

)
= log2

(
A+ 1

A

)
− log2 e− log2

(
1 +

1

A

)
= − log2 e (3.47)

Since the absolute gap to capacity, is always positive, zero is a trivial lower

bound for ga. Since zero is tighter than the estimated lower bound in (3.46), it is
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used. Combining this with (3.47), we have:

0 ≤ ga ≤ log2 e
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4. SIMULATION RESULTS

In this chapter, five different simulations are conducted. Scenarios I and II help

in understanding the operations of rate quantization and rate biasing. Scenarios III,

IV and V validate our theoretical analysis in chapter-3. Although the simulations

are constrained by the computational resources required for large values of K, they

present trends which closely match the theoretical analysis. We use bits/channel

use as the standard unit for GMAC capacity and the sumrates in all the following

results.

4.1 Scenario-I: Role of ε- Model 1

In this scenario, K = 104, L = 102. Simulations are run for different values

of ε, which is related to the probability of decoding failure. The following figure
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Figure 4.1: K = 104, L = 102 GMAC capacity=12.9557
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shows the quantized sum rate, Sq, which is the sum rate obtained if the decoding is

successful and the average sum rate obtained, Savg, which is the sum rate obtained

by implementing the decoder against ε.

From Fig 4.1, it is observed that as ε decreases, probability of decoder failure

increases and hence we get a lower sum rate (Savg ≤ Sq). Thus there exists an

optimal value for the biasing parameter, ε that achieves maximum sum rate for a

given K,L.

4.2 Scenario-II: Uniform Quantization vs Optimal Quantization

In this scenario we simulate the two types of quantizations suggested earlier. We

observe that the optimal quantization outperforms uniform quantization.

L Suq,unbiased Soq,unbiased Suq,sim Soq,sim

10 4.2088 7.3657 3.7729 4.6621

100 7.3153 10.0988 5.5257 6.0682

1000 9.6354 10.4469 6.0508 6.2844

Table 4.1: K = 1000, GMAC capacity=9.6354

From Table 4.1, it is interesting to note that Soqunbiased, which is the sum rate ob-

tained from optimal quantization, is greater than the capacity. This happens because

the decision variables in the optimization problem ni is constrained to be an integer,

but solving a mixed integer problem is hard. Hence we relax the integer constraint.

Thus solving this problem gives a sub-optimal solution. It is of significant interest to

find a global optimum for the quantization problem with integer constraints on ni.
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4.3 Scenario-III: Asymptotic Behavior

We study the asymptotic behavior of this scheme by constructing a sub scenarios.

We fix L and increase K to observe the gap to the capacity.

From Table 4.2, we can validate Theorems 1 and 2. Since K is increasing exponen-

K GMAC capacity Soq Soq,sim ε

102 0.0144 0.0144 0.0143 9× 10−2

103 0.1375 0.1374 0.1368 1× 10−2

104 1 0.9966 0.9857 1× 10−3

105 3.4594 3.3710 3.3760 5× 10−5

106 6.6582 6.4328 6.4355 11× 10−6

5× 106 8.9687 8.6956 8.6175 1.5× 10−6

Table 4.2: SNR=-40dB, L=100, Asymptotic behavior of K

tially, Theorem 1 predicts that the gap between Scap and Suq increases in the order of

O(log2K) and hence linearly in this case. It can be seen from columns 2 and 3 that

this is true. Theorem-2 also predicts that ε goes to zero as K → ∞, which can be

seen as true from column 5. Figure 4.2 shows the closeness of Soq,sim to the GMAC

capacity.

48



10
2

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

5

6

7

8

9

K in log scale

su
m

 r
at

e 
in

 b
it

s/
ch

an
n
el

 u
se

 

 

GMAC capacity
Sumrate obtained 

Figure 4.2: Asymptotic behavior of K. SNR=-40dB, L=100

4.4 Scenario-IV: Model-1- Finite SNR Regime

Instead of a fixed L in scenarios 1,2 and 3, we increase L as a function of K. We

observe the absolute and fractional gaps to validate Theorems 3 and 4.

From table 4.3, column 5, we observe that ε → 0 hence Ssim → Suq. We also

observe that the fractional gap progresses as {0.31, 0.39, 0.47, 0.54, 0.56, 0.58}. This

data is far from conclusive that gf → 1 as K → ∞. But it quickly becomes in-

feasible to simulate for such large values of K. The absolute gap progresses as

{4.359, 5.87, 6.87, 7.52, 7.72, 7.98}. It can be seen that this sequence is logarithmi-

cally increasing when K is increasing exponentially. This conforms with the analysis

in theorem 3.3.4, which states that limK→∞ ga = O(log2 log2K).
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K L GMAC capacity Suq Ssim ε

102 2 6.3297 2.1371 1.9711 3× 10−2

103 10 9.6354 4.2088 3.7644 5× 10−3

104 57 12.9557 6.6681 6.0898 1× 10−3

105 362 16.2780 9.3281 8.7594 11× 10−5

3× 105 906 17.8624 10.6515 10.1390 3× 10−5

6× 105 1629 18.8624 11.4981 10.8846 1.2× 10−5

Table 4.3: Asymptotic behavior for increasing L. SNR=-1dB, L = K
(log2K)2

4.5 Scenario-V: Model-2: Infinitesimal SNR Regime

This scenario is similar to scenario IV except we impose the constraints for Model

2. We observe the absolute and fractional gaps to validate Theorems 5 and 6.

From table 4.4, column 5, we observe that ε → 0 hence Ssim → Suq. We

also observe that the fractional gap progresses as {0.8544, 0.9630, 0.9921, 0.9983},

which supports out claim that gf → 1 as K → ∞. The absolute gap progresses

as {0.1228, 0.03120.0067, 0.0014}. This validates theorem 3.3.6, which states that

limK→∞ ga = O(1) = 0.

K L GMAC capacity Suq Ssim ε

102 2 0.8434 0.7313 0.7206 1× 10−2

103 10 0.8434 0.8123 0.8122 1× 10−3

104 57 0.8434 0.8390 0.8367 1× 10−4

105 362 0.8434 0.8427 0.8420 1× 10−5

Table 4.4: Asymptotic behavior for increasing L. SNR=-1dB, L = K
(log2K)2
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5. CONCLUSION

5.1 Contribution

This work primarily addressed the question if uncoordinated MAC schemes could

perform as good as their counterparts. In [3] it has been shown that for a noise less

channel at the cost of (lnK) times additional transmit power an efficiency of 1 can

be achieved asymptotically. In section-2.2 it is shown that extending this scheme to

a gaussian MAC has an absolute gap to capacity of the order O(ln lnK) in the finite

SNR regime and a fractional gap tending to zero in the infinitesimal SNR regime. In

section-2.3 it is shown that adding MRC at the decoder only improves the sumrate

by a constant order and hence is suboptimal in both the SNR regimes. From these

results, it is inferred that the suboptimality lies in repetitive coding.

In chapter 3, a new paradigm is proposed to tackle the limitation of repetitive

based random access MAC schemes. In this scheme every active node transmits in the

current time slot by picking a rate from a predetermined distribution, which depends

only on the number of active users in the network. In section-3.2, operations such

as rate quantization and rate biasing are described and formulated as optimization

problems. In section-3.3 an asymptotic analysis is presented for this scheme in both

the finite and infinitesimal SNR regimes. From theorems 3.3.1 and 3.3.2 it is inferred

that the number of quantization levels, L should increase with K as K
log2K

(1+δ) to

obtain maximum sumrate. In theorem 3.3.3 upper and lower bounds for the sumrate

in the finite SNR regime were derived, which are valid for all K and L. Using these

bounds, it is shown in theorem 3.3.4 that the absolute gap to capacity is of the order

O(log2 log2K) and the fractional gap tends to one. Similarly in theorems 3.3.5 and

3.3.6 valid bounds and the order of absolute gap and fractional gap are derived. It
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is shown that the absolute gap is a constant order away from GMAC capacity.

In chapter-4 five simulation scenarios were setup to better understand URS.

Scenario-I demonstrates that for any finite K and L there exists an optimal bi-

asing parameter, ε, that gives the maximum Ssim. In scenario-II, it is shown that

optimal rate quantization outperforms uniform rate quantization but their perfor-

mances converge asymptotically. Scenario-III validated theorems 3.3.1 and 3.3.2 by

observing that the gap to capacity for fixed L and increasing K increases in the order

of O(log2K). Scenarios-IV and V have a similar setup but the SNRs are in finite

and infinitesimal regimes respectively. The trends of absolute and fractional gaps

are observed to be following the results from the above theorems closely.

URS has several advantages over ICR. It is optimal in the infinitesimal SNR

regime. It has minimal latency of one time slot instead of K time slots. It can

be used with other iterative decoders such as ZF-SIC, MMSE-SIC or SIF [5]. No

modifications are necessary to include more complicated models such as variable

channel gains and different power constraints for transmitters. The proposed scheme

simply enables us to operate at a point on the achievable rate region that is sumrate

optimal and decodable using an iterative decoder without coordination among the

nodes and with single user encoding and decoding complexities. Hence this scheme

is applicable as long as such a point exists in the assumed channel model.

5.2 Future Work

The proposed scheme is optimal in the infinitesimal SNR regime but not in the

finite SNR regime. It is of interest to determine if there exist fundamental limits on

the performance that can be achieved with uncoordinated multiple access schemes.

We would also investigate the use of raptor codes to see if we can avoid the ln lnK

gap in the finite SNR regime.
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APPENDIX

Closed form solution of Optimal Rate Quantization problem

The rate quantization problem proposed in (3.4) is modified by applying the ap-

proximation ln(1+x) ≈ x, which is valid for the low SNR regime. This approximation

is only to obtain an intuitive closed form solution.

maximize
ni,ri∀i∈[1,L]

L∑
i=1

niri

subject to
L∑
i=1

ni = K

r1 ≤
1

ln 2

(
P

(K − 1)P + σ2

)

ri ≤
1

ln 2

 P(
K −

i−1∑
j=1

nj − 1

)
P + σ2

 i = 2, ..., L

ri ≥ 0 i = 1, ..., L

ni ≥ 0 i = 1, ..., L

(5.1)

The objective function is nonconvex in ni, ri. We find the lower bound of our objec-

tive function by solving its dual problem using the Lagrange multipliers. The dual

problem is guaranteed to be a convex problem. There is a finite gap between the

optimal value of the primal and dual objective functions. The Lagrange function for
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the optimization problem in (5.1) can be written as:

Λ(n1, .., nL, r1, .., rL, γ, λ1, .., λL) =
L∑
i=1

niri + γ

(
L∑
i=1

ni −K

)

+ λ1

(
r1 −

1

ln 2

(
P

(K − 1)P + σ2

))

+
L∑
i=2

λi

ri − 1

ln 2

 P(
K −

i−1∑
j=1

nj − 1

)
P + σ2




To find the optimal n∗i , r
∗
i we solve the set of equations obtained by equating the

partial derivatives of Λ to zero.

∂Λ

∂λ1

= 0 =⇒ r∗1 =
1

ln 2

(
P

(K − 1)P + σ2

)

∂Λ

∂λi
= 0 =⇒ r∗i =

1

ln 2

 P(
K −

i−1∑
j=1

nj − 1

)
P + σ2

 i = 2, ..., L

∂Λ

∂γ
= 0 =⇒

L∑
i=1

n∗i = K

(5.2)

Let σ2

P
= A. The following partial derivatives use (5.2):

∂Λ

∂nL
= 0 =⇒

L−1∑
j=1

n∗i = K − 1 + A− 1

γ ln 2

∂Λ

∂nL−1

= 0 =⇒
L−2∑
j=1

n∗i = K − 1 + A− 1

γ2 ln 22 (A− 1)
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=⇒ n∗L−1 =
1

γ2 ln 22 (A− 1)
− 1

γ ln 2

...

∂Λ

∂ni
= 0 =⇒

i−1∑
j=1

n∗i = K − 1 + A− 1

(γ ln 2)L−i+1 (A− 1)L−i
∀i = 1, . . . , L− 1

=⇒ n∗i =
1

(γ ln 2)L−i+1 (A− 1)L−i
− 1

(γ ln 2)L−i (A− 1)L−i−1

γ ln 2 =
1

(A− 1)L−1 (K − 1 + A)
(5.3)

The closed form solution to (5.1) is derived from the results in (5.2) and (5.3) and

summarized as follows:

n∗i =
1

(Aλ)L−i−1

[
1

Aλ2
− 1

λ

]
for i = 1, 2, ...L− 1

n∗L = K −
L−1∑
j=1

n∗j

r∗1 =
1

ln 2

(
P

(K − 1)P + σ2

)

r∗i =
1

ln 2

 P(
K −

i−1∑
j=1

n∗j − 1

)
P + σ2

 for i = 2, ..., L

A =
σ2

P
, λ =

(
1

AL−1(K − 1 + A)

)1/L

(5.4)
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Closed form solution of Optimal biased Rate distribution

Lagrange function for (3.12) is given by:

Λ(em,1, . . . , em,L, γ, λ) =
L∑
j=1

em,j log2

em,j
qj

+ λ

(
L∑
j=1

em,j − 1

)

+ γ

(
em,j + . . .+ em,m −

m∑
j=1

nj

) (5.5)

To find the optimal E∗m in terms of Q, we equate the partial derivatives of the

Lagrangian function w.r.t em,j to zero. The result is:

∂Λ

∂em,j
= 0 =⇒ e∗m,j = qj2

−(1+λ+γ) j = 1, . . . ,m

∂Λ

∂em,j
= 0 =⇒ e∗m,j = qj2

−(1+λ) j = m+ 1, . . . , L

∂Λ

∂γ
= 0 =⇒

i∑
j=1

e∗m,j =
m∑
j=1

nj

∂Λ

∂λ
= 0 =⇒

L∑
j=1

e∗m,j = 1

(5.6)

Solving for E∗m from (5.5) gives the following relation between E∗m and Q:

e∗m,j =


qj

 m∑
i=1

ni

m∑
i=1

qi

 for j = 1, 2, . . . ,m

qj

 L∑
i=m+1

ni

L∑
i=m+1

qi

 for j = m+ 1,m+ 2, . . . , L

(5.7)
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let sn(m) =
∑m

i=1 ni and sq(m) =
∑m

i=1 qi. The condition D(E∗m||Q) ≥ ε implies:

=⇒
L∑
j=1

E∗m(j) log
E∗m(j)

Q(j)
≥ ε

=⇒
m∑
j=1

qj
sn(m)

sq(m)

(
log

sn(m)

sq(m)

)
+

L∑
j=m+1

qj

(
1− sn(m)

1− sq(m)

)(
log

1− sn(m)

1− sq(m)

)
≥ ε

=⇒ sn(m) log
sn(m)

sq(m)
+ (1− sn(m)) log

1− sn(m)

1− sq(m)
≥ ε

=⇒ sn(m)sn(m) (1− sn(m))1−sn(m)

sq(m)sn(m) (1− sq(m))1−sn(m)
≥ 2ε

=⇒ sq(m)sn(m) (1− sq(m))1−sn(m) ≤ 2−ε
(
sn(m)sn(m) (1− sn(m))1−sn(m)

)
(5.8)

Proof that equation (5.8) has exactly two roots

Let us assume, x = sq(m) and A = sn(m).

F = xA(1− x)1−A

dF

dx
= AxA−1(1− x)1−A − xA(1− A)(1− x)−A

= xA−1(1− x)−A [A(1− x)− (1− A)x]

=
xA−1

(1− x)A
[A− x]

(5.9)

For 0 ≤ x ≤ 1, 0 ≤ A ≤ 1, dF
dx

= 0 has exactly one root at x = A. Thus F = B,

where B is some constant has at most 2 real roots.

Choice of rates for SIC decoder is optimal

In chapter-3, we stated that the following choice of rates is optimal for GMAC

and are easily decodable with a SIC decoder:

ri = log2

(
1 +

P

(K − i)P + σ2

)
for i = 1, 2, . . . , K (5.10)
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In the following analysis we show that the sumrate obtained is equal to the capacity

of GMAC. Let A = σ2/P

K∑
i=1

ri =
K∑
i=1

log2

(
1 +

1

(K − i) + A

)

= log2

K∏
i=1

(
K − i+ A+ 1

K − i+ A

)
= log2

(
K + A

K + A− 1

)(
K + A− 1

K + A− 2

)
. . .

(
A+ 1

A

)
= log2

(
K + A

A

)
= log2

(
1 +

KP

σ2

)
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