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ABSTRACT 

Swales in wetland complexes can provide evidence of hydrologic connectivity for 

wetlands on the Texas Gulf Coast, supporting the idea that many coastal wetlands in 

Texas are vitally connected to navigable waters covered by the Clean Water Act. In this 

study, runoff that accounted for more than 18% of rainfall was observed from a 

representative “isolated” wetland complex—wetland depressions and upland areas 

interconnected by shallow erosional features—southeast of Houston, Texas between 

March 2005 and April 2010. Annual runoff ranged from 0% in 2005 to 27% in 2007. 

This result was surprising, given the presumably isolated nature of the wetlands.  

The wetland complex was predominantly forested, with emergent vegetation dominating 

some of the depressions. Measured hydrologic fluxes included: (1) rainfall, using a 

tipping-bucket rain gauge supplemented with official weather station data; (2) surface 

runoff, using a v-notch weir to measure discharge from a wetland swale; (3) 

transpiration of Quercus nigra (18.0 cm diameter) and Quercus pagodafolia (15.9 cm 

diameter) using the heat-dissipation sap flux method; (4) groundwater level changes, 

using piezometers, and (5) soil moisture changes, using soil moisture probes. Watershed-

scale evapotranspiration was estimated using the Hargreaves model. Surface runoff, 

although intermittent, occurred during 25 of 57 months. Monthly runoff ranged from 0% 

of rainfall to 57% of rainfall. Soil moisture loss trended with increased transpiration 

rates, where the Q. nigra specimen transpired 11.6 to 35.8 L d-1 and Q. pagodafolia 

specimen transpired 2.43 to 13.8 L d-1. Moisture was depleted rapidly in the upper soil 
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layer, emphasizing the importance of considering local weather patterns when 

identifying wetlands and making jurisdictional decisions.  

The results of this study call into question regulatory presumptions about coastal plains 

wetlands (at least 400,000 ha in Texas alone), of which roughly 50% are considered 

geographically isolated. One way to improve implementation of federal rules for 

wetlands similar to those in this study, which are reasonably close to both navigable and 

non-navigable streams, is for regulatory agencies to determine whether the wetlands are 

adjacent to a navigable water before making other decisions that would lead to a 

presumption that significant nexus does not exist. 
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CHAPTER I 

INTRODUCTION, LITERATURE REVIEW, AND GOALS* 

This thesis addresses whether existing regulatory policies for implementing the Clean 

Water Act match the current scientific knowledge of wetland hydrology. Specifically, 

small swales and similar erosional features in a wetland complex provide prima facie 

evidence of the hydrologic connectivity necessary to justify Clean Water Act jurisdiction 

for wetlands on the Texas Gulf Coast. This thesis also addresses improvements needed 

to ensure that regulatory agencies are implementing the Clean Water Act in a way that is 

true to the law’s purpose and the public interest. Specifically, a sequential decision-

making process—beginning with the decision that would most readily identify nexus and 

ending with the decision that would least readily identify nexus— will eliminate 

heuristics (rules of thumb and other mental shortcuts) that produce variability in 

decision-making, leading to more accurate and consistent jurisdictional determinations. 

This study was motivated by uncertainty about how the Clean Water Act should be 

implemented. The Clean Water Act amendments passed in 1972 rewrote the United 

States policy toward the quality of U.S. waters, with the specific objective of restoring 

and maintaining the physical, chemical, and biological integrity of the nation’s  

waterways (33 U.S.C. 1251 §101, 2002). Congress set aggressive goals that exhibited a 

high level of commitment to meeting the Clean Water Act’s objective. Specifically, 
                                                 
* Portions of this chapter are reprinted or adapted from Wetlands, vol. 31, 2011, pp. 451-458, Evidence of 
surface connectivity for Texas Gulf Coast depressional wetlands, Bradford P. Wilcox, Dex D. Dean, John 
S. Jacob, and Andrew Sipocz, with consent of the authors and with kind permission from Springer Science 
and Business Media. 
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Congress expected the nation’s waterways to be fishable and swimmable by 1983 and 

discharges of pollutants into navigable waters to be eliminated by 1985 (33 U.S.C. 1251 

§101, 2002). 

A major Clean Water Act issue in Texas today is the rate of wetland losses on the Texas 

Gulf Coast. For example, approximately 13% of wetlands that existed in Harris County 

in 1992 were no longer present in 2002 (Jacob and Lopez 2005). This staggering rate of 

loss is a Clean Water Act issue because wetlands have well-documented functions, such 

as pollutant trapping, that play a critical role in maintaining the water quality of streams 

and other waters (Mitsch and Gosselink 2000).  

In Texas, a huge portion of the public interest in wetland functions related to water 

quality rests solely in the hands of two federal agencies. This means that the public 

ultimately bears more risk if the federal agencies fail to safeguard and support the 

public’s interests. In many other states, wetland conservation policies for public lands 

help to preserve the water quality functions that wetlands provide. However, wetland 

conservation policies for public lands do not make much of an impact in Texas, where 

approximately 97% of the land is privately owned. Additionally, several other states 

have laws that compel freshwater wetland conservation on private property—for 

example, Maryland’s Non-Tidal Wetlands Act requires permitting of all activities in or 

near non-tidal wetlands, unless specifically exempted by the state (McNeer 1992), and 

Wisconsin’s Act 6 requires state water quality certification of all non-federal wetlands 

(Environmental Law Institute 2008). Texas does not have specific wetland conservation 
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laws for wetlands on private property, instead relying on Clean Water Act § 401 water 

quality certifications of federal permit applications and on state-level outreach programs 

like the Galveston Bay Estuary Program.  

For Texans and their public interests, all of this amounts to a crucial need for an 

effective Clean Water Act § 404 permitting program that produces consistent and 

reliable decisions based on the best available knowledge. Clean Water Act § 404 permits 

regulate the discharge of pollutants, more specifically dredged or fill material, into 

waters of the United States. A Clean Water Act § 404 permit must be obtained before a 

wetland can be filled if the wetland is considered a water of the United States. Clean 

Water Act § 404 permitting does not guarantee wetland preservation, but it does require 

a permit applicant to consider all feasible alternatives and to mitigate impacts when 

wetland destruction is unavoidable. 

However, uncertainty about which wetlands are within jurisdiction of the Clean Water 

Act is a hurdle to effective Clean Water Act § 404 permitting. Some of the uncertainty 

can be traced back to 2001, when the United States Supreme Court considered whether 

the Clean Water Act applied to isolated wetlands in the case Solid Waste Agency of 

Northern Cook County v. U.S. Army Corps of Engineers (SWANCC) (Downing et al. 

2003). The main upshot of the Supreme Court’s opinion was that the Clean Water Act is 

about the integrity of the nation’s waterways (Solid Waste Agency of Northern Cook 

County v. U.S. Army Corps of Engineers 2001) — not migratory birds or interstate 

commerce. The court’s opinion also caused the United States Army Corps of Engineers 
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and the Environmental Protection Agency to question whether 33 Code of Federal 

Regulations (CFR) § 328.3(a) could still be used to assert Clean Water Act jurisdiction 

(United States Government Accountability Office 2005). In 33 CFR § 328.3(a), the 

Corps of Engineers defined “waters of the United States” to include almost any water, 

including wetlands, that could be used in or have an effect on interstate or foreign 

commerce, presumably based on language Congress used in the text of the Clean Water 

Act (see Clean Water Act § 404(g)(1)). Despite additional case law, two proposed 

rulemakings, and joint guidance from the U.S. Environmental Protection Agency and the 

U.S. Army Corps of Engineers, the question of the Clean Water Act’s reach remains 

unsettled today.  

The main problem presented by this legal uncertainty is that isolated wetlands—

wetlands that are presumed not to affect the physical, chemical, or biological integrity of 

the nation’s waterways in any substantial way—can be drained or filled at will without a 

permit application. In other words, there is no review that considers the public interest 

and no opportunity to voice concerns about public impacts.  

A recent inventory of isolated wetlands in the United States estimated that about 50% of 

wetlands on the Texas Coastal Plain were geographically isolated (Tiner 2002, 2003). 

But what if these presumably isolated wetlands are not really isolated? What if, in fact, 

many of these so-called “isolated” wetlands actually affect public waters, where people 

fish and swim? In that case, should the public have a say about the acceptable level of 

impacts? Determining whether “isolated” wetlands are actually connected to 
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downstream waters hits at the heart of the issue that federal regulatory agencies and the 

courts have been struggling with: specifically, how to define the scope of the Clean 

Water Act for non-navigable streams and adjacent wetlands. 

Literature Review 

Post-SWANNC wetland science 

In an effort to build knowledge for sound policy development, the September 2003 issue 

of the journal Wetlands became the foundational scientific conversation about isolated 

wetlands and the Clean Water Act. Wetland scientists from the U.S. Environmental 

Protection Agency identified specific research needs in the issue’s closing article 

(Leibowitz and Nadeau 2003), including: 

1. fundamental wetland process studies, particularly hydrology; 

2. rapid land assessment method development; 

3. nation-wide geographic extent studies;  

4. impact estimates for wetland loss; and 

5. studies that compare isolated wetlands to other wetland and non-wetland 

ecosystems. 

Substantial and important progress has been made in response to the September 2003 

Wetlands issue on land assessment methods (e.g. Smith et al. 1995, Johnson 2005, Reif 

et al. 2009, Lane and D’Amico 2010), nation-wide wetland extent (see the National 

Wetlands Inventory, U.S. Fish and Wildlife Service, available at 
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http://www.fws.gov/wetlands), and impacts of wetland loss (e.g. Tiner 2005, Zedler and 

Kercher 2005, Ringeval et al. 2010, McCauley et al. 2013). Hydrologic studies have also 

been conducted across North America (e.g. Hayashi et al. 2004, Lu et al. 2006, Harder et 

al. 2007, Wu and A Johnston 2008). However, relatively few wetland hydrology studies 

have focused on urban or urbanizing environments, and even fewer have enjoyed the 

widespread attention given to the research on wetlands loss, ecosystem services, and 

rapid assessment methods. A study by Stander and Ehrenfeld (2009) underscored the 

importance of basic hydrology research by concluding that the popular hydrogeomorphic 

rapid assessment method (see Smith et al. 1995) does not effectively predict basic 

wetland functions or useful wetland reference sites in an urban setting and suggested that 

year-long hydrologic characterizations are indispensable for understanding wetland 

processes in both urban and non-urban settings. In response to the research needs 

identified by the U.S. Environmental Protection Agency’s scientists in 2003, the study 

reported in this thesis examines the fundamental hydrology of a forested freshwater 

wetland complex on the Upper Texas Gulf Coast using the kind of year-long hydrologic 

characterization that Stander and Ehernfeld promote. For additional context, the 

hydrology of the study wetlands was compared to that of a nearby urbanized watershed, 

to Texas streams in general, and to major global water balances. 

Texas coastal wetlands 

A few scientists have made significant contributions that are specifically related to 

wetlands on the Texas Gulf Coast. Moulton et al. (1997) reported on the status and 

distribution of coastal wetlands in Texas. They also quantified and categorized wetland 

http://www.fws.gov/wetlands
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land use changes between 1955 and 1992. Jacob and Lopez (2005) employed a rapid 

assessment method to provide a better understanding of recent wetland trends in the 

Lower Galveston Bay watershed. 

In a 2008 article, researchers from Texas A&M University provided insight from a 

landscape and urban planning perspective, specifically contributing to the understanding 

of patterns for Clean Water Act § 404 permits issued in Texas (Brody et al.). They 

examined the record of issued permits by permit type, wetland type, year, and location 

between 1991 and 2003. The most typical permits issued during their study period were 

nationwide permits for development projects, located outside of the 100-year floodplain, 

and near an urbanized area. The researchers involved in the study also correlated permit 

issuance to flooding (Brody et al. 2007) but noted study limitations that substantially 

restricted confidence in causation. 

In one of the most comprehensive reports to date on the functions of wetlands on the 

Texas Gulf Coast, researchers from Baylor university linked rapid GIS assessment 

methods with wetland functional assessment models, hydrologic models, and water 

quality models (Forbes et al. 2009, Forbes et al. 2010, Enwright et al. 2011, Forbes et al. 

2012). This series of studies determined that freshwater wetlands on the Upper Texas 

Gulf Coast are highly effective at removing inorganic nitrogen, inorganic phosphorus, 

and other oxygen-demanding organic materials. The studies also determined that these 

wetlands are moderately effective at removing organic nitrogen, phosphorus, and heavy 

metals.  
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Though their cumulative work was a significant step forward for understanding coastal 

wetlands in Texas, the research from Baylor University did not clearly settle the issue of 

connectivity versus isolation between coastal wetlands in Texas and downstream waters, 

which became increasingly important after the U.S. Supreme Court issued its opinion for 

the Rapanos et ux., et al. v. United States case in 2006. During the time after the 

Rapanos case went before the Supreme Court, the idea of “significant nexus” emerged 

as perhaps the most important legal concept for wetlands jurisdiction (Murphy 2007). A 

critical question in terms of wetland jurisdiction and regulation under the Clean Water 

Act is the nature of the connection to receiving water bodies: is the connection 

significant enough to affect “the chemical, physical, and biological integrity of the 

nation’s waters”—the maintenance of which is the purpose of the Clean Water Act (33 

U.S.C. §§ 1251–1387) (Wilcox et al. 2011)? In fact, the Environmental Protection 

Agency’s scientists suggested that relationships between precipitation and runoff could 

be used to predict which watersheds have significant nexus to waters of the United 

States (see Leibowitz et al. 2008). As a result, the study reported in this thesis directly 

addresses the question of nexus by examining hydrologic connectivity of the study 

wetlands to downstream waters using rainfall and runoff relationships. 

Study Goals and Expectations 

The presence of surface or shallow subsurface connections is an essential requirement 

for significant nexus to exist in Clean Water Act evaluations (Solid Waste Agency of 

Northern Cook County v. U.S. Army Corps of Engineers 2001). The other essential 

requirement is an effect on the physical, chemical, or biological characteristics of a 
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waterway, which Forbes and her colleagues already documented for Texas coastal 

wetlands. Because surface or shallow subsurface connections are an essential component 

of nexus, the primary scientific goals of this study were to: 

1. determine whether forested wetlands on the Upper Texas Gulf Coast form 

surface connections to navigable waterways; and  

2. determine whether forested wetlands on the Upper Texas Gulf Coast form direct 

shallow subsurface connections to navigable waterways. 

Wetlands in the area are considered closed systems from a regulatory perspective. The 

federal agencies that oversee implementation of the Clean Water Act identified surface 

and shallow subsurface connections as the pathways for hydrologic nexus (USEPA and 

USACE 2008). For surface nexus to exist, rainfall from the wetlands and swales must 

flow out of the watershed as surface runoff.  

Hypothesis 1: Surface runoff from the wetlands and swales occurs in 

amounts that are quantifiable using a reasonably available 

water measurement technology. 

Null Hypothesis 1:  Surface runoff from the wetlands and swales does not occur 

in amounts that are quantifiable using a reasonably available 

water measurement technology. 
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To demonstrate that subsurface nexus to exists, water that infiltrates in the watershed 

must flow into a waterway that is covered by the Clean Water Act. For the purposes of 

this thesis, groundwater nexus will be confirmed if the predominant direction of 

groundwater flow is within ± 45 degrees of the shortest path to Armand Bayou.  

Hypothesis 2: Groundwater flows predominantly within ± 45 degrees from 

the shortest path to Armand Bayou (~243 ± 45 degrees). 

Null Hypothesis 2:  Groundwater does not flow predominantly within ± 45 

degrees from the shortest flow path to Armand Bayou (~243 

± 45 degrees). 

If nexus exists, then more detailed information about the near-surface hydrology could 

prove useful for predicting nexus in other landscapes. Therefore, secondary scientific 

goals of this study were related to collecting observational information on hydrologic 

processes including: 

1. precipitation; 

2. surface runoff; 

3. evapotranspiration;  

4. groundwater movement and storage; and 

5. near-surface soil moisture. 
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Original expectations, based on allegory and initial observation of the study area, were 

that both surface and near-surface groundwater connections were likely to occur. The 

allegorical evidence indicated that the wetlands in the study area were seasonally wet, 

especially after prolonged rainfall, but not always during the same season of the year. 

The wetlands were usually, though not always, dry during the spring and summer. 

Physical evidence in the watershed indicated that surface runoff probably occurred with 

some regularity. The watershed contained a complex of wetland depressions, separated 

by uplands, with small swales connecting the wetland depressions and an intermittent 

stream channel downslope. Though swales do not have the bed and banks that are 

characteristic of streams, the location of the swales has remained fairly constant 

throughout recent memory, providing evidence that flow concentrates in the same places 

year after year. Near-surface groundwater was expected to flow in a reasonably direct 

path from the wetlands to the navigable bayou.  

Because this research is linked to policy development, additional goals of this research 

are to:  

1. bring important knowledge of the Clean Water Act, federal rules, and 

guidance on wetland regulation back into the scientific and popular 

dialog;  

2. explain how heuristics made inconsistent Clean Water Act 

implementation possible; and  
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3.  propose a process that will improve consistency of Clean Water Act 

implementation by eliminating opportunities for the use of heuristics. 

Study Area 

Landscape context 

The landscape context of the study watershed is representative of many wetlands on the 

Texas Gulf Coast, making it an ideal test case to determine if surface or near surface 

connectivity is likely to exist for other wetlands along the Texas Gulf Coast. The study 

watershed exhibits the flat terrain and shallow wetlands depressions that typically occur 

on the Texas Coastal Plain, which can make it especially difficult to identify wetlands 

and their connections to waters of the United States in the field during drier periods of 

the year. The Texas Coastal Plain is a 30,000-km2 depositional plain located along the 

Gulf of Mexico. The area is characterized by very poorly drained and seasonally 

waterlogged soils and a lack of incised channels (Sipocz 2005). Freshwater palustrine 

wetlands at one time covered more than one-third of the landscape. A recent inventory of 

isolated wetlands in the United States estimated that about 50% of wetlands on the Texas 

Coastal Plain were geographically isolated (Tiner 2002, 2003). Others, however, have 

argued on the basis of aerial imagery analysis that these wetlands are in fact connected to 

major waterways through intermittent and generally unmapped channel networks (Jacob 

and Lopez 2005; Sipocz 2005).  

This study took place in a watershed located on the Beaumont geologic formation, a 

Pleistocene-age fluvial-deltaic deposit common on the Texas Coastal Plain (Blum and 



 

13 

Aslan 2006). Most of the wetlands on this formation took shape in meander scars or 

other fluvial features of the ancestral rivers that laid down the formation. Many of the 

soils in the vicinity of the study site are characteristic of meander scars and shifting river 

berms, according the soil series descriptions in the Natural Resources Conservation 

Service web soil survey. The undisturbed surface of the Beaumont geologic formation 

does not typically show strong visible evidence of a naturally integrated drainage 

system. At first glance, and especially during dry periods, it can be difficult to identify 

outlets from the wetland depressions. However, closer inspection reveals numerous 

shallow swales between depressions (FIG. 1) that often coalesce before flowing to a 

watercourse. The overall pattern is a complex mosaic of depressions, surrounding 

wetlands, and small non-wetland hillocks (known locally as a pothole–pimple-mound 

complex) which occurs in both forested and prairie landscapes (Moulton and Jacob 

2000; Sipocz 2005).  

Location 

The coastal flatwoods wetland used in this study, like many forested wetlands in the 

United States, is situated on the margins of a growing metropolitan area. The study 

watershed is located southeast of Houston, Texas at the Armand Bayou Nature Center. 

Located along the banks of Mud Lake and Taylor Lake in Harris County, the Armand 

Bayou Nature Center is surrounded by a host of distinctive land uses, with the Clear 

Lake Oilfield to the north, chemical refineries and the Bayport Ship Channel to the north 

and to the east, residential and commercial development to the south and to the east, the 

Lyndon B. Johnson Space Center to the southwest, the University of Houston Clear Lake 
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Campus to the west, and mixed-density residential development in the City of Houston 

to the north and to west (USGS 1998a, b, c, d). 

 

Fig. 1. Color infrared aerial photo highlighting typical features of depressional 
wetlands on the Texas Gulf Coast. Adapted from Wilcox et al. (2011). This image is 
of the Lake Austin estuary adjacent to the Matagorda Bay. The area is underlain 
by the same Beaumont Coastal Terrace geologic formation as the Armand Bayou 
study site; however, it is located on an unforested prairie where wetland and runoff 
patterns are readily visible from the air. Lighter shaded areas correspond to 
growing vegetation on drier lands and darker areas correspond to senesced 
vegetation in wetlands. Open water is blue or white. Three paleo-river tributaries 
are visible as drainages, with the most recent being well-defined and tidal in its 
lower reach (discernible natural drainages are highlighted using dotted lines). 
Wind-deflated wetland basins similar to the study site, which overflow into the 
drainage swales, are carved from the lighter textured channel and levee soils. 
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The study watershed (FIG. 2) is part of a pothole–pimple mound complex in a riparian 

forest adjacent to a large prairie. The watershed is slightly larger than 8 ha (20 ac) and 

lies just outside the 100-year floodplain of the bayou. About 25% of the watershed 

consists of wetland depressions having emergent herbaceous vegetation; these 

depressions are interspersed with transitional flats and forested upland mounds.  

 

Fig. 2. Study watershed location and boundaries. From Wilcox et al. (2011). The 
study watershed outlet is represented by the large dot at the intersection of the 
watershed boundary and the drainage channel. Hatched shapes represent wetland 
basins (depressions). Insets show the study site’s general location (top) and its 
location within the Armand Bayou watershed (bottom). 
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The study watershed is mapped as Verland silty clay loam (fine, smectitic, hyperthermic 

Chromic Vertic Epiaqualfs, see http://soils.usda.gov/survey/online_surveys/texas/). Our 

observations suggest most of the soil in the watershed is significantly wetter than what is 

described for the Verland series. Depressions were not mapped separately from the 

surrounding soils, but they likely correspond to the Leton series (fine-silty, siliceous, 

superactive, hyperthermic Typic Glossaqualfs), which is commonly mapped in similar 

depressions in the area. The typical profile for a Verland soil is 18 cm of silty clay loam 

over clay to about 2 m. It is listed on the Web Soil Survey with a moderately low 

saturated hydraulic conductivity (Ksat) class (0.2877 μm s-1 for the entire profile). The 

Leton typical profile is 30 cm of loam over clay loam to about 150 cm, with a listed Ksat 

of 2.6 μm s-1 for the entire profile. The depressional Leton soil, at least in this area, has a 

substantially lower Ksat than a typical Verland soil. 

Saturation appears to occur from the top down, as indicated by the “Epi” formative 

element in the taxonomic classification of the Verland soil series. Dry soil at less than 25 

cm depth under a ponded surface was observed while boring wells during the study. 

These saturated surface soil conditions, with relatively shallow unsaturated soils below, 

can last for several months. Drainage features are quite subtle. The watershed’s outlet 

swale—which becomes evident about 60 m from the center of the largest, farthest-

downslope depression—is only about 2 m wide and 10 cm deep at its most distinctive 

point. Towards the base of the study watershed, a small incised channel has developed 

that drains into the nearby tidal Armand Bayou (for additional context, see FIG. 23 on 

page 77).  
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Climate 

Average annual rainfall is 1,330 mm (Wheeler 1976). Snowfall is negligible and soil 

temperatures at a depth of 20 cm never drop below 4° C. The average temperature 

during the study period was 20º C (NOAA, Houston NWSO, 29°28′N/95°05′W, records 

available November 1990–present). 

Vegetation 

Willow oak (Quercus phellos), swamp red oak (Quercus pagodafolia), and water oak 

(Quercus nigra) are prominent tree species in the watershed. Common understory 

species include Chinese tallow (Triadica sebufera or Sapium sebiferum) and yaupon 

(Ilex vomitoria). Emergent species observed in the depressions include swamp 

smartweed (Polygonum hydropiperoides), finger dogshade (Cynosciadium digitatum), 

giant plume grass (Saccharum giganteum), sedges (Carex spp.), and palmetto (Sabal 

minor). For a more extensive list of species that are known to occur in the Armand 

Bayou watershed, see Armand Bayou Watershed Plan, Appendix J (Coastal 

Coordination Council et al. 2006). 
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CHAPTER II 

WETLAND HYDROLOGY* 

This study investigated the hydrology of a forested freshwater wetland complex on the 

Texas Gulf Coast from the spring of 2005 to the spring of 2010. Research from 2005 

through 2009 focused on: (1) determining whether swales in the watershed form 

hydrologic connections between the wetland depressions and the jurisdictional waters 

downslope and (2) characterizing the relationship between precipitation and surface 

runoff. Further research during the spring of 2010 focused on: (1) determining whether 

groundwater flowed directly toward the adjacent bayou and (2) collecting observational 

information on hydrologic processes, including evapotranspiration, groundwater storage, 

and soil moisture storage.  

Theory and Methods 

Watershed delineation 

Andrew Sipocz of the Texas Parks and Wildlife Department delineated the watershed 

boundary on February 15, 2007, using flags and a handheld GPS unit, while the 

watershed was saturated and runoff was occurring. According to his notes, most of the 

boundary was easily discernible, but in some instances flow direction was used to 

identify the watershed boundary.  

                                                 
* Portions of this chapter are reprinted or adapted from Wetlands, vol. 31, 2011, pp. 451-458, Evidence of 
surface connectivity for Texas Gulf Coast depressional wetlands, Bradford P. Wilcox, Dex D. Dean, John 
S. Jacob, and Andrew Sipocz, with consent of the authors and with kind permission from Springer Science 
and Business Media. 
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Survey 

The site was surveyed using a total station (Leica Geosystems) to develop a common 

reference elevation for groundwater levels. Survey components included the weir, the 

groundwater monitoring well sites, and the bayou reference well. The survey also 

included the profile and cross sections of the main swale in the watershed and a partial 

survey of a tributary swale. 

Hydrologic fluxes 

Documentation of hydrologic fluxes in this study focused on the components of a 

simplified water balance, derived from the generalized water balance presented by 

Hornberger (1998), which is given by 

𝑃 − 𝑅 − 𝐸𝑇 −  𝛥𝐺 −  𝛥𝑆 = 0 

where P = precipitation, R = surface runoff, ET = evapotranspiration, ΔG = the change 

in groundwater storage, and ΔS = the change in soil moisture (modified from Shen 

2007). Many hydrology studies assume that all fluxes are uniform across a given area, 

such that a flux can be expressed as a depth of water. The uniform depth representation 

of water fluxes is used in this thesis unless other units are provided. This study also 

directly compares measured runoff and precipitation using a runoff ratio, where  

𝑅𝑢𝑛𝑜𝑓𝑓 𝑅𝑎𝑡𝑖𝑜 =
𝑅

𝑃
. 
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Precipitation 

Rainfall was measured with a tipping bucket rain gauge (Infinities USA) located in the 

largest wetland depression. Readings from the gauge were collected at 10 minute 

sampling intervals from March 31, 2005 until January 19, 2008, and at 20 minute 

intervals after January 19, 2008. Missing on-site measurements were supplemented with 

daily rainfall data from the weather station at the Houston National Weather Service 

Office whenever more than 20 percent of the on-site data was missing for a given day. 

The weather station at the Houston National Weather Service Office, located about 18 

km south of the study area (Houston NWSO, 29°28′N/95°05′W, records available 

November 1990–present) is the nearest official National Climatic Data Center 

(http://www.ncdc.noaa.gov/oa/ncdc.html) weather station that encompassed the full 

duration of the study.  

Although the Houston NWSO weather station was the nearest official weather station 

that covered the study entire study period, the weather station at the nearby William P. 

Hobby Airport had a much longer period of record and was therefore used to estimate 

long-term average rainfall (29º39’N/95º17’W, records available November 1941 – 

present). 

Runoff 

Surface runoff (i.e. runoff, ground surface runoff) was measured at the watershed outlet 

to determine whether surface nexus exists. Runoff flowing through the outlet was 

measured using a 90º V-notch weir equipped with a sonar water-level recorder (Infinities 

http://www.ncdc.noaa.gov/oa/ncdc.html


 

21 

USA). The weir was located to measure surface runoff that flowed through the main 

swale in the wetland complex. Any water that flowed over the weir passed through a 

culvert and into an intermittent stream channel immediately downslope of the outlet (an 

intermittent channel is one that holds water during wet periods of the year but is 

periodically dry—Svec et al. 2005). The intermittent stream channel runs from the 

watershed outlet into Armand Bayou. All surface water appeared to flow into the 

wetland depressions or into the system of swales that interconnects the wetland 

depressions before discharging into the intermittent stream channel.  

The water level at the weir was converted to runoff using the Kindsvater-Shen equation 

(USBR 1997), given by  

𝑄 = 2.47 𝐻5 2⁄  

where Q = the discharge in cubic feet per second and H = the head on the weir in feet. 

Dividing the total volume of water per unit of time by the watershed area gives a depth 

of water per unit time. Readings from the water-level recorder were collected at 10 

minute sampling intervals until January 19, 2008, at 20 minute intervals from January 

19, 2008 until April 9, 2009, and at 30 minute intervals thereafter. There were occasional 

data gaps due to equipment problems. These data gaps were not filled. Most of the gaps 

were inconsequential because they occurred during the extremely dry conditions of 2005 

and during other periods without substantial rainfall. However, 403 mm of rainfall 

coincided with a large data gap that spanned from February 18, 2009, through May 11, 
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2009. Moreover, ample antecedent moisture was present because 56 mm of rainfall fell 

during the week before the largest rainfall event in the missing data period. Therefore, 

runoff presented for 2009 is certainly a considerable underestimate. 

Evapotranspiration 

Two evapotranspiration methods were used in this study. The heat dissipation sap flux 

method (Granier 1985, Granier 1987) was used for individual tree specimens, and the 

Hargreaves method was used for watershed-scale evapotranspiration estimates. The 

theoretical basis for each method is discussed below. 

Hargreaves method 

The Penman-Monteith model is a widely-used and well-documented evapotranspiration 

model (Droogers and Allen 2002), but data availability prevented its application in this 

study. When critical Penman-Monteith data is not available, the United Nations Food 

and Agriculture Organization recommends the Hargreaves model (Kingston et al. 2009). 

The 1985 Hargreaves model was calibrated in the United States using precision 

lysimeters. The 1985 Hargreaves model demonstrated greater accuracy and flexibility, 

compared to other evapotranspiration methods that were available at the time 

(Hargreaves and Samani 1985). Hargreaves and Samani based their conclusions on 

precision lysimeter tests that were conducted on several different continents. Droogers 

and Allen (2002) compared evapotranspiration estimates using the Penman-Monteith 

and the Hargreaves methods worldwide, and their analysis did not show appreciable 

differences between the two methods in Texas.  
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The generalized Hargreaves equation is  

𝐸𝑇 =  𝐾𝐸𝑇 × 𝑅𝑎 ×  𝑇𝐷0.5(𝑇𝐶 + 17.8) 

where KET is an empirically derived coefficient taken to be 0.0023 in the 1985 

Hargreaves equation, Ra = location-dependent average solar radiation at the top of the 

atmosphere for the time step in millimeters per day, TD = monthly mean maximum 

temperature minus monthly mean minimum temperature in degrees Celsius, and TC = 

the average temperature for the time step in degrees Celsius (Hargreaves and Samani 

1985, Hargreaves and Allen 2003).  

Hourly solar radiation data was obtained from the National Solar Radiation Database 

(Station 722436, Ellington Air Force Base, Houston, Texas). Daily temperature data was 

obtained from the nearest official National Climatic Data Center weather station 

(Houston NWSO, 29°28′N/95°05′W). Radiation data in watts per square meter was 

multiplied by a factor of 0.035 to convert to millimeters of equivalent evapotranspiration 

(Allen et al. 1998) for use with the Hargreaves model. 

Sap flux method 

This study measured transpiration from individual trees using the heat dissipation sap 

flux method (Granier 1987). The heat dissipation method allows empirical estimation of 

sap flux density. The empirical relationship for sap flux density was correlated using a 

variety of species (Granier 1985). Granier gives a thorough explanation of the theory in 

his works. The basic concept is that the rate of convective heat transfer to sap flowing in 
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a tree is related to the actual flow rate of sap. This concept allowed Granier to relate the 

flow rate of sap to the temperature difference between a heated sensor and an unheated 

reference sensor. The reference sensor is located below the heated sensor to minimize 

interference with the reference temperature of the xylem. The mathematical basis for this 

method (Granier 1987) involves an empirically derived, dimensionless value K which is 

related to the temperature difference between the heated and reference sensors such that 

𝐾 =  
∆𝑇𝑀 −  ∆𝑇

∆𝑇
 

where ΔTM = the temperature difference between the sensors when there is no xylem 

flow, and ΔT = the temperature difference between the sensors when there is positive 

xylem flow. In his 1985 article, Granier demonstrated that trends in the value of K 

reasonably approximate trends in Penman potential evapotranspiration over the course of 

a day. Using the value K, xylem flow is calculated from the relationship  

𝑢 = 119 × 10−6𝐾1.231 

where u = xylem flow in meters per second. Total sap flow through the tree in cubic 

meters per second is calculated by multiplying the xylem flow by the total sap wood 

area. Sap flow values presented in this thesis were converted to liters per hour. 

A selection of trees in the watershed was instrumented with sap flux sensors (see Granier 

1985 for a sensor diagram). Data was collected at a 30 minute sampling interval to allow 
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sub-daily analysis for a Quercus pagodafolia specimen (15.9 cm diameter, 0.017 m2 sap 

wood area) and a Quercus nigra specimen (18.0 cm diameter, 0.024 m2 sap wood area). 

The usable data extended from March 31, 2010 through April 14, 2010. The trees in this 

study were selected because (1) they were near the weir site and the largest wetland 

depression, (2) they represented common species in the watershed, and (3) they received 

good exposure to sunlight. Sensors (10 mm length) were installed in the xylem layer 

between the bark and the less active tissue of the inner trunk (see Granier 1987 for an 

installation diagram).The sensor zone on each tree was wrapped with reflective material 

to minimize thermal interference. Sensors were installed on the east and west sides of the 

selected trees to further minimize thermal differences between sensors.  

Groundwater 

Groundwater monitoring wells were installed so that the direction of groundwater flow 

in the watershed could be determined. Conclusively determining the direction of 

groundwater flow requires at least four wells—three for calculation, and one additional 

well to confirm whether the other wells are located in the same groundwater lens 

(Mathewson 2009). According to Mathewson, wells are located in the same groundwater 

lens only if the calculated groundwater flow direction is reasonably consistent between 

all three-well combinations within the same set. Three groundwater monitoring well 

sites and a bayou level reference well (FIG. 3 on page 27) were added to the watershed in 

January 2010. A fourth well site was added in June 2010. The wells were made from 

PVC well casing, with a 127 mm section of slotted screen installed at the bottom of each 

casing. 
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Each well site consisted of two wells. The shallow wells were installed to monitor 

perched water tables, which are top-saturated soil zones separated from the apparent 

water table by unsaturated soil. Deeper wells were installed to measure the true 

groundwater table elevation (FIG. 4 on page 28). Installing a deep and shallow well at 

each site also made it possible to observe whether the apparent groundwater table would 

interact with perched water tables in the watershed. 

All holes for groundwater monitoring wells were bored using hand-powered soil augers. 

Auger heads used in this study included mud and sand heads with 63.5 millimeter 

diameters. The small gap between the bore hole and the well casing at each well was 

filled with the original material, which was layered to match the original profile and 

gently tamped. Sodium bentonite pellets were used to seal the borings to a depth of 0.31 

meters from the surface. Each well casing was covered to prevent rainfall and debris 

from entering the well. 
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Fig. 3. Site locations of groundwater monitoring wells (Dock, Site 1, Site 2, Site 3, 
and Site 4). The relative positions of other important features, such as the weir and 
the sap flow site, are provided for reference. 
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Fig. 4. Groundwater monitoring well profiles. The numbers represent elevation in 
meters relative to mean sea level. PVC well casing is displayed as vertical lines, and 
the gray boxes at the base of vertical lines represent PVC slotted well screen. The 
shallow wells were installed to monitor perched water tables. Deeper wells were 
installed to measure the true groundwater table elevation 
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Soil storage 

A total of six soil moisture probes (Hydra Probe II, Stevens Water Monitoring) were 

installed in the middle of the sap flux plot to measure near-surface soil moisture. Probes 

were installed at the surface, at 100 mm deep, and at 150 mm deep. One set of probes 

was installed in a loam surface soil and the other set was installed in a clay surface soil. 

Data was collected at 30 minute sampling intervals from late-December 2009 through 

late-April 2010. Missing data was filled linearly. Linear fill was reasonable in this case 

because: (1) the changes in soil moisture between the nearest data points were small for 

all sensors, and (2) surface observations made during groundwater level monitoring 

indicated that the surface remained saturated in the proximity of the soil moisture 

sensors throughout the missing data periods. 

Results 

Rainfall and runoff 

This study included years with significantly below-average rainfall (2005), near-average 

rainfall (2006, 2008, 2009), and significantly above-average rainfall (2007). The long-

term annual average rainfall was approximately 1310 mm per year, with a standard 

deviation of approximately 350 mm, based on the entire record from November 1941 to 

April 2014 using the William P. Hobby Airport weather station.  

No runoff was observed during 2005, which was among the driest years on record for 

the region. Runoff was observed during each other year of the study, with runoff ranging 

between approximately 13% and 27% of watershed precipitation on an annual basis 
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(FIG. 5). Over the study period as a whole, including 2005, surface runoff from the 

watershed accounted for approximately 18% of precipitation.  

Over the course of the study, wetland runoff was observed during every season of the 

year (FIG. 6). Wetland runoff occurred during 25 of the 57 months of the study, most 

often when monthly precipitation approached or exceeded the long-term monthly 

average. Occasionally, runoff occurred in months of below-average rainfall, but in most 

of these cases rainfall had been above average in the preceding months. During normal 

years runoff occurred during every month where rainfall exceeded 130 mm. Runoff was 

observed during 37 days in 2006, 180 days in 2007, 80 days in 2008, and 40 days in 

2009. 

In general, runoff was highly episodic and strongly associated with individual rainfall 

events (FIG. 6), but there were occasional periods of extended flow that lasted well 

beyond the rainfall event, the longest being 68 days. Periods of continuous runoff ranged 

from 4 days to 68 days. For some individual events, runoff accounted for as much as 

60% of watershed rainfall. 

Null hypothesis 1 can be rejected based on these findings, meaning that surface nexus 

exists between the wetlands and waters covered by the Clean Water Act. 
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Fig. 5. Monthly precipitation and runoff for 2005–2009. The annual runoff ratio 
was 0.0% in 2005, 12.9% in 2006, 27.4% in 2007, 18.2% in 2008, and 12.0% in 
2009. The percentage of rainfall discharged as runoff is shown for each month.  
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Fig. 6. Annual hydrographs (2005–2008) of daily precipitation and runoff data 
(axes plotted at different scales for clarity). Runoff percentages are given for major 
events, and the rate of runoff at the USGS gauge on Vince Bayou is shown for each 
year. Gaps in the red line indicate no runoff or no data. 
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Groundwater 

Saturated soil conditions and ponding were observed at each groundwater monitoring 

well site during the 2010 growing season. Perched water tables were also present at all 

of the monitoring well sites between February 6, 2010 and August 13, 2010. The 

perched water tables observed in the study watershed consisted of saturated zones that 

were positioned above the actual groundwater table and were separated from the actual 

groundwater table by a zone of unsaturated soil. As discussed in the study area 

description, soils in the watershed are episaturated (from the top down), meaning that 

rainfall is a primary driver of the moisture state for surface soils.  

Groundwater level observations in the deep wells indicated that the general direction of 

groundwater flow is southeasterly, approximately parallel to Armand Bayou. This means 

that groundwater does not take the shortest path to Armand Bayou. Instead, groundwater 

may connect with Armand Bayou farther downstream, or may enter a more regional 

groundwater system that connects to Clear Lake, Galveston Bay, or the Gulf Coast 

Aquifer. The groundwater flow direction was calculated for all available sampling dates 

between January 23, 2010 and August 19, 2011 using the deep wells at Sites 1, 2, and 3. 

The calculations showed that groundwater flowed at an average heading of 

approximately 158 degrees (FIG. 7 on page 35). Groundwater flow calculated from these 

three wells varied within a 62 degree range. The following observations have been 

excluded from the average because they do not represent the groundwater flow direction 

of the entire watershed: (1) March 30, 2010, because of possible groundwater recharge 

behavior at Site 3; (2) April 23, 2010, because of possible groundwater recharge 
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behavior at Site 3; and (3) May 11, 2010, because of lag from the possible groundwater 

recharge behavior at Site 3.  

Site 4 was installed later, and observations began on July 9, 2010. The southeasterly 

direction of groundwater flow was the same in each set of calculations, meaning that the 

four wells are located in the same groundwater lens. The deep groundwater flow 

direction calculated using Sites 1, 2, and 4 had an average heading of approximately 149 

degrees, with a range of approximately 40 degrees. The deep groundwater flow direction 

calculated using Sites 1, 3, and 4 had an average heading of approximately 143 degrees, 

with a range of approximately 20 degrees. Finally, the deep groundwater flow direction 

calculated using Sites 2, 3, and 4 had an average heading of approximately 147 degrees, 

with a range of approximately 17 degrees. 
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Fig. 7. Graphical summary of groundwater flow direction calculated using deep 
wells. Wells used in the calculations are represented by dark circles. The point (0, 
0) is located at the bayou level reference well. The solid and dashed lines that touch 
the axes represent the shortest flow path to Armand Bayou (243 degrees) ± 45 
degrees. Three dates resulted in questionable groundwater flow directions, for the 
reasons noted in the main discussion, and the endpoints of these flow direction lines 
are open diamonds. Note the similar direction of flow. 
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The level of groundwater in each of the deep groundwater wells followed similar trends 

over the course of the study (FIG. 8 and FIG. 9), supporting the idea that the deep wells 

were interconnected in a common groundwater lens. However, the variation in 

groundwater levels at the deep groundwater wells did not appear to correlate with 

variation in the level of Armand Bayou. It is difficult to establish clear effect because the 

portion of Armand Bayou adjacent to the study area is tidal, and there are no tide gauges 

within the Armand Bayou watershed (Texas Commission on Environemental Quality 

2014). 

No well combination produced flow directions that were predominantly within the range 

of 243 ± 45 degrees; therefore Null Hypothesis 2 cannot be rejected based on the deep 

well observations of this study. In other words, this study was unable to conclusively 

demonstrate a subsurface connection to Armand Bayou using the deep wells. However, 

it is also important to note that groundwater observed in the deep wells ultimately flows 

somewhere outside of the study watershed boundary, whether that be into Armand 

Bayou south  of the study watershed, into Clear Lake or another nearby water, or into the 

Gulf Coast Aquifer. 
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Fig. 8. Groundwater levels in deep monitoring wells (2010). All groundwater levels 
are given relative to mean seal level. The relative level of Armand Bayou is given 
for comparison. 
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Fig. 9. Groundwater levels in deep monitoring wells (2011). All groundwater levels 
are given relative to mean seal level. The relative level of Armand Bayou is given 
for comparison. 

In contrast to the deep groundwater wells, which trended together and were located in a 

common groundwater lens, the shallow groundwater levels indicated that the shallow 

wells were located in separate perched water tables. The calculated direction of 

groundwater flow using the shallow wells was more variable than the direction 

calculated from the deep groundwater wells. Additionally, the calculated direction of 

groundwater flow for the shallow wells was not reasonably consistent among all of the 

well combinations, demonstrating that not all of the wells were located in a common 
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groundwater lens (FIG. 10).This result was not unexpected, because perched water tables 

are known to occur in the area (Griffin 1991) and the soils are associated with 

meandering streams, which can cause soil heterogeneity by creating different lenses of 

surface soil. Excluding the period between January 1, 2010 and February 8, 2010, when 

less than three wells were active, there was only one case (July 3 through July 16) during 

the 2010 observation period where the direction of the groundwater trend matched 

between all of the shallow wells for more than a single observation (FIG. 11). 

Additionally, the groundwater level trend did not match consistently between any two of 

the shallow wells for the 2010 observation season.  

The shallow groundwater flow direction calculated using Sites 1, 2, and 3 had an 

average heading of approximately 170 degrees, with a range of approximately 136 

degrees. The shallow groundwater flow direction calculated using Sites 1, 2, and 4 had 

an average heading of approximately 190 degrees, with a range of approximately 95 

degrees. The shallow groundwater flow direction calculated using Sites 1, 3, and 4 had 

an average heading of approximately 142 degrees, with a range of approximately 129 

degrees. Finally, the shallow groundwater flow direction calculated using Sites 2, 3, and 

4 had an average heading of approximately 168 degrees, with a range of approximately 

32 degrees. 



 

40 

 

Fig. 10. Graphical summary of groundwater flow direction calculated using 
shallow wells. The calculated direction of groundwater flow was not reasonably 
consistent between different wells, meaning that the shallow wells were not all 
located in a common groundwater lens. The solid and dashed lines that touch the 
axes represent the shortest flow path to Armand Bayou and ± 45 degrees, 
respectively. Note the differences in direction of flow. 
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No shallow well combination produced flow directions that were predominantly within 

the range of 243 ± 45 degrees; therefore Null Hypothesis 2 cannot be rejected based on 

the shallow well observations of this study. In other words, this study was unable to 

conclusively demonstrate a subsurface connection to Armand Bayou using the shallow 

groundwater wells. 

 

Fig. 11. Groundwater levels in shallow monitoring wells (2010). All groundwater 
levels are given relative to mean sea level. The relative level of Armand Bayou is 
given for comparison. 

  

-4.00

-3.50

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

El
e

va
ti

o
n

 f
ro

m
  W

e
ir

 B
as

e
 (

m
e

te
rs

) 

Shallow Groundwater Levels 

Site 1 - Shallow Site 2 - Shallow Site 3 - Shallow

Site 4 - Shallow Bayou Level



 

42 

One interesting result is that the shallow groundwater level trends (FIG. 11 and FIG. 12) 

reflected the trend of the water level at Armand Bayou more closely than did the deep 

groundwater level trends (FIG. 7 and FIG. 8). This may mean that water levels in the 

shallow wells and in the bayou were both driven by precipitation because (1) 

episaturation occurs in the area, (2) perched water tables were observed at the shallow 

wells, and (3) the shallow wells are not all located in a common groundwater lens. 

 

Fig. 12. Groundwater levels in shallow monitoring wells (2011). All groundwater 
levels are given relative to mean sea level. The relative level of Armand Bayou is 
given for comparison. Gaps in a data line means that the well was dry. 
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Unusual groundwater behavior was observed at Site 3, beginning around March 30, 

2010. During that time, deep groundwater was observed within the shallow groundwater 

zone (approximately 0 m to 1 m deep). The level in the shallow well decreased 

dramatically between March 30, 2010, and April 23, 2010 (FIG. 13), especially when 

compared with the other shallow wells. Though no definitive cause was identified in this 

study, one possibility is that groundwater recharge may have occurred at Site 3. 

 

Fig. 13. Unusual behavior at the Site 3 groundwater wells. One possible 
explanation is that the deep groundwater intruded into the shallow water zone 
around March 30, 2010, after which the shallow water table fell dramatically.  
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Unlike the other well sites, no limiting clay layer was observed in the soil profile at Site 

3 (FIG. 14). Without a clay layer to limit water and air movement, if the unsaturated zone 

between the shallow and deep water tables became saturated, the difference between the 

unsaturated and saturated hydraulic conductivity might provide a pathway for relatively 

rapid movement of groundwater out of the shallow layer as the deeper groundwater 

receded.  

 

Fig. 14. Soil strata of groundwater monitoring well sites in service prior to March 
30, 2010. The soil profile at Site 3 was substantially different from the soil profiles 
at the other sites because no limiting clay layer was present. This difference may 
have contributed to the unusual behavior observed at Site 3. 
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Evapotranspiration and soil storage 

Evapotranspiration and soil moisture measurements were evaluated from late-December 

2009 through late-April 2010. Losses to evapotranspiration and soil storage increased 

through the period of record. On average, the surface soil layer remained at or near 

saturation throughout January and February (FIG. 15). Five-day average evaporative 

demand actually decreased by approximately 0.8 mm d-1 during January. Evaporative 

demand increased significantly during February. However, the evaporative demand was 

more than offset by rainfall during January and February (FIG. 16). Dynamic soil 

moisture behavior began around March 12, 2010, corresponding to increased losses by 

evapotranspiration. Deciduous trees in the watershed came out of dormancy sometime 

between March 4 and March 30—a timeframe that corresponds to the sudden change in 

soil moisture behavior. The amount of evapotranspiration was nearly double the amount 

of rainfall during March, and was more than seven times greater than rainfall during 

April. The differences between evapotranspiration values during March and April can be 

partially explained by the lack of data beyond April 23. However, even if the 

evapotranspiration trend were to continue to the end of the month, there would still be 

approximately 20 mm less evapotranspiration in April than during March.  
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Fig. 15. Daily hydrologic fluxes, January 1 through April 23, 2010. 
Evapotranspiration (line with markers) and the change in soil storage (solid line) 
are represented on the left axis. Rainfall (bars from top) is represented on the right 
axis. A dashed trend line is provided for each flux. 
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Fig. 16. Monthly fluxes of rainfall, potential evaporation, and soil water for 
January to April of 2010. April is a partial month (15 days). 

A closer look at hydrologic fluxes during March and April (FIG. 17) gives additional 

insight that could help explain the remaining difference in evapotranspiration between 

the two months. Evapotranspiration was most dynamic during March—the same month 

in which soil moisture began to fluctuate. Although evapotranspiration exceeded 3.0 mm 

d-1 only three times before March 12, evapotranspiration suddenly increased to exceed 

3.0 mm d-1for 13 of the 19 days remaining in March. Approximately half of those days 

had evapotranspiration rates between 3.5 mm d-1 and 4.5 mm d-1.  
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Fig. 17. Daily hydrologic fluxes, March-April 2010. Evapotranspiration (line with 
markers) and the change in soil storage (solid line) are represented on the left axis. 
Rainfall (bars from top) is represented on the right axis. 

For most of April, evapotranspiration hovered around 3.0 mm d-1. Evapotranspiration 

began to trend more tightly with soil moisture in April than it did in March. At the same 

time, saturated surface conditions were no longer observed at the groundwater 

monitoring sites, and did not return for the rest of the season. Deeper groundwater levels 

also began to decline during this time. Based on these facts, it appears that the surface 

soil layer had actually become water limited in less than one month. This phenomenon 

might help explain why wetland hydrology can be difficult to identify from aerial images 

and surface observations on the Texas Gulf Coast. 
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Sap flux measurements 

Whole-tree transpiration was compared with solar radiation at the top of the atmosphere 

(FIG. 18) to confirm that Hargreaves estimates could reasonably represent the watershed. 

Solar radiation at the top of the atmosphere is the primary energy component in 

Hargreaves equation. The tree species observed included Quercus nigra, an overstory 

species, and Quercus pagodafolia, an understory species. Although the initial 

transpiration response from both species lagged behind solar radiation by a few hours, 

Quercus nigra transpiration tracked the solar radiation trend closely. Quercus 

pagodafolia exhibited a strong initial response to solar radiation, but could not maintain 

the response throughout the day. Although the information collected in this study does 

not provide direct evidence that can explain the difference in response between the two 

tree specimens, it is possible that the Quercus pagodafolia specimen, as a facultative 

upland species (USACE 2014), may not have been as well-suited for growth in an 

inundated environment as the Quercus nigra specimen, which is a facultative species 

(USACE 2014). The time lag between the incidence of radiation at the atmosphere and 

at the surface of the earth could have contributed to the lag in response from both 

species. 
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Fig. 18. Comparison of whole-tree transpiration rates for Q. nigra and Q. 

pagodafolia trees with incident solar radiation. 

Over the course of a day, the transpiration rate of Quercus nigra ranged between zero 

and 4.83 L hr-1, with peak transpiration typically occurring between 12:00 noon and 3:00 

pm (FIG. 19). The peak transpiration rate was typically greater than three liters per hour. 

The transpiration of Quercus pagodafolia ranged between zero and 3.61 L hr-1, with 

peak transpiration most often occurring between 10:30 am and 11:30 am. Peak 

transpiration was typically less than two L hr-1.  
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Fig. 19. Whole-tree transpiration rates for Q. nigra and Q. pagodafolia trees. The 
transpiration rate ranged between zero and 4.83 L hr-1 for Q. nigra, and between 
zero and 3.61 L hr-1 for Q. pagodafolia. 

When the 30-minute interval data were summed to give total daily transpiration, 

Quercus nigra transpired between 11.6 L d-1 to 35.8 L d-1, with an average of 24.6 L d-1 

based on all usable observation days (FIG. 20). Quercus pagodafolia transpired between 

2.43 L d-1 and 13.8 L d-1, with an average of 7.66 L d-1 based on all usable observation 

days. Similar trends in daily transpiration were observed for Quercus nigra and Quercus 

pagodafolia. There were only four days where a decrease in transpiration from Quercus 

nigra was not met with a corresponding decrease in transpiration from Quercus 
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pagodafolia. All increases in daily transpiration from Quercus nigra were met by an 

increase in transpiration from Quercus pagodafolia. 

 

Fig. 20. Daily transpiration from Q. nigra and Q. pagodafolia trees. The average 
transpiration rate was 24.6 L d-1for Q. nigra, and 7.66 L d-1 for Q. pagodafolia. 
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Discussion 

Runoff from the wetlands was expected going into this study because of the small swales 

running through the watershed, but it was difficult to make an initial prediction about 

how much runoff to expect. So far, scientists and the regulatory agencies that oversee the 

Clean Water Act have not been able to reach any consensus on a runoff threshold that 

would demonstrate significant nexus. Wetlands are also known to serve flood storage 

functions, so one would expect that the percentage of runoff from a wetland watershed 

would be substantially lower than the runoff percentages from a large-scale water 

balance. 

No one expected to see runoff average 18% over the course of the study. The relevance 

of the runoff produced from the complex of wetland depressions and small swales in this 

study cannot be easily overstated. From a regulatory perspective, these wetlands have 

historically been considered closed or virtually-closed systems, with essentially no 

runoff that reaches waters covered by the Clean Water Act. More striking is the fact that 

runoff averaged 18%, even though the wetlands produced no runoff and received more 

than half of the rainfall expected in 2005. Certainly no one anticipated that runoff would 

reach 27% of the total incoming rainfall during 2007. These kinds of runoff percentages 

meant that the amount of runoff generated per unit area of the wetland complex was 

within range of the runoff generated per unit area in larger upland watersheds. Legates 

and Mather (1992), for example, used latitudinally-corrected precipitation and 

evapotranspiration to predict that runoff accounts for approximately 28% of the average 

annual water budget of North America. Further confirmation of surface hydrological 
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connectivity on the Texas Gulf Coast was provided by Forbes et al. (2009), who 

monitored outflow for one year at six wetland locations on the Texas Gulf Coast.  

Enwright et al. (2011) observed that wetlands and their catchments occupy 40% of the 

land area around Galveston Bay. If the 18% runoff observed in this study is universally 

applied to the land area covered by wetlands and their catchments (40% of the land area) 

and if 28% runoff is universally applied to the non-wetland catchment areas (60% of the 

land area, then approximately 30% of the runoff received by streams in the area would 

flow out of wetlands. 

Runoff comparison with Vince Bayou 

In a publication from earlier work on this study (Wilcox et al. 2011), the flow data from 

2005 through 2008 were compared with data from the 23-km2 watershed of the USGS-

gauged Vince Bayou (USGS-8075500) (http://waterdata.usgs.gov/tx/nwis/current/? 

type=flow), a site near Armand Bayou that is largely urbanized (FIG. 2 on page 1514). 

Interestingly, runoff from the study site was synchronous with that measured from the 

nearby Vince Bayou USGS location (FIG. 6 on page 32). Event-based runoff percentages 

were calculated from the first precipitation event following a 24-hour dry period to the 

beginning of the first 24-hour period with no runoff. Baseflow in Vince Bayou is 

minuscule, with median flow rates ranging from 0.05 to 0.08 m3 s-1 (0.2–0.3 mm d-1); 

however, during major events the rate of flow through the bayou was as high as 48.14 

m3 s-1 (180 mm d-1). Runoff from Vince Bayou is largely episodic, exhibiting strong 

similarities with the hydrographs of runoff from the study watershed near Armand 

http://waterdata.usgs.gov/tx/nwis/current/
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Bayou. The urbanized Vince Bayou watershed was slightly more responsive to rainfall 

than the study watershed, probably because of its limited water-storage capacity. Once 

the storage capacity of the study watershed was satisfied, its runoff response was very 

similar to that of Vince Bayou. The episodic nature of the runoff is explained in part by 

the fact that precipitation from smaller events can be completely stored within the 

wetland depressions and shallow soil horizons, and in part by the fact that a significant 

portion of annual precipitation comes by way of large storms. From 2006 to 2008, 

storms that produced major runoff events accounted for 37% to 62% of annual rainfall. 

In essence, the runoff characteristics observed in this study are not that dissimilar from 

the runoff characteristics expected from other watersheds in the vicinity. The amount of 

runoff observed from the wetland complex in this study, per unit area, was not unlike the 

amount of runoff that would be expected based on large-scale water balances for river 

systems. Likewise, the timing of flow from the wetland complex in this study was 

similar to the timing of flow from a nearby urbanized watershed. 
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CHAPTER III 

IMPROVING THE CURRENT LEGAL FRAMEWORK 

With several years of experience and scientific discovery since the SWANCC and 

Rapanos Supreme court cases, the agencies that oversee the Clean Water Act are 

currently in the rulemaking process. Therefore, it is more important for the scientific 

community to understand and inform wetland policy now than ever before. The 

Scientific Advisory Review Board released a draft report for public comment (see 

USEPA 2013). The finalized report will be the scientific basis for the rulemaking.  

The purposes of this chapter are to: (1) bring important knowledge of the Clean Water 

Act, federal rules, and guidance on wetland regulation back into the scientific and 

popular dialog; (2) explain how heuristics made inconsistent Clean Water Act 

implementation possible; and (3) propose a process that will improve consistency of 

Clean Water Act implementation.  

Important Law, Rules and Guidance for Wetlands 

If scientists intend to inform policy in a useful way, then an understanding of the current 

law and the rules designed to implement the law is absolutely critical. The text of the law 

and rules is vitally important because the public has rights to representation and 

participation in the development of laws and rules that govern them—rights that do not 

exist in the development of regulatory guidance documents and court opinions. The 
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purpose of this section is to shed light on important elements of the existing law, rules, 

and guidance as they relate to wetlands. 

The Clean Water Act 

The objective of the Clean Water Act is to “restore and maintain the chemical, physical, 

and biological integrity of the Nation’s waters” (Federal Water Pollution Control Act 

1972 as amended, codified in 33 U.S.C. § 1251 et seq.). The Clean Water Act’s stated 

goals for achieving this objective focus on eliminating discharges of pollutants, 

developing research programs, developing pollution control programs, and funding 

treatment works. The important message is that Congress intended to restore and 

maintain the nation’s waters by keeping pollutants out. The Clean Water Act’s definition 

of pollutants is broad enough to explicitly include dredged spoil, rocks, sand, cellar dirt, 

and heat as pollutants (Clean Water Act § 502(6)).  

The Clean Water Act applies to waters of the United States, but the term "waters of the 

United States" is not expressly defined in the Clean Water Act. Therefore, the chief 

source of uncertainty in pollution control is not how to identify pollution, but rather how 

to identify where the law applies in a physical sense. The Environmental Protection 

Agency’s CWA Definition of Waters of the United States web page emphasizes this 

uncertainty by pointing out the Environmental Protection Agency’s inability to pursue 

enforcement in egregious pollution cases, such as the Edwards Creek crude oil discharge 

case in Titus County, Texas (FIG. 21 on page , see additional photos and captions on the 

Environmental Protection Agency’s Clean Water Act Definition of Waters of the United 
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States web page, accessed September 17, 2013, available at 

http://water.epa.gov/lawsregs/guidance/wetlands/Clean Water Actwaters.cfm#). The 

Environmental Protection Agency had to walk away from enforcement proceedings, 

despite possible drinking water impacts and a clear violation of the Clean Water Act’s 

goals and objectives. It was too difficult for the Environmental Protection Agency to 

demonstrate that the Clean Water Act applied to the physical location, because the crude 

oil was discharged into a relatively small, non-permanent waterway. 

 

Fig. 21. Oil in Edwards Creek (from the Environmental Protection Agency’s Clean 

Water Act Definition of Waters of the United States web page). 

The Clean Water Act does not directly address whether wetlands are waters of the 

United States subject to pollution control requirements. However, the Clean Water Act 

http://water.epa.gov/lawsregs/guidance/wetlands/CWAwaters.cfm
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gives clear signals about Congress’s intent. Congress addressed wetland protection and 

restoration in the Chesapeake Bay region (Clean Water Act § 117) and in Long Island 

Sound (Clean Water Act § 119). Congress expressly identified wetlands as part of the 

Lake Champlain Drainage Basin for the purpose of developing a comprehensive 

pollution prevention, control, and restoration plan (Clean Water Act § 120). Congress 

specifically directed the Environmental Protection Agency to assure continued 

coordination with other agencies on the National Wetlands Inventory, and authorized a 

$6.0 million appropriation for the National Wetlands Inventory’s timely completion 

(Clean Water Act § 208). The most telling clue to Congress’s intent is in Clean Water 

Act §404, where Congress allowed the States to administer permit programs, but 

reserved federal control over permit programs for waters that can reasonably be used for 

interstate or foreign commerce and their adjacent wetlands. Taken together, these 

examples show Congress clearly intended that the Clean Water Act would apply to 

wetlands. The U.S. Supreme Court supported this interpretation of the Clean Water 

Act’s applicability to wetlands in several cases, including United States v. Riverside 

Bayview Homes, Inc., et al. (1985), Solid Waste Agency Of Northern Cook County v. 

United States Army Corps of Engineers et al. (2001), and Rapanos et ux., et al. v. United 

States (2006). 

Corp of Engineers rules in Title 33, Code of Federal Regulations 

The Environmental Protection Agency was given primary responsibility for carrying out 

the Clean Water Act. However, the Clean Water Act authorized the Secretary of the 

Army, acting through the Chief of Engineers, to issue permits for the discharge of 
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dredged or fill material. This permitting program, administered through the United States 

Army Corps of Engineers, is the primary vehicle for permitting construction in existing 

wetlands. 

The Navigation and Navigable Waters title of the federal regulations (33 CFR) includes 

the most important set of rules for Clean Water Act § 404 permitting. According to these 

rules, the U.S. Army Corps of Engineers District Engineer, U.S. Army Corps of 

Engineers Division Engineer, and Environmental Protection Agency have authority to 

determine jurisdiction over Clean Water Act § 404 permits (33 CFR § 325.90). Though 

both agencies have this authority, the Environmental Protection Agency has final 

authority as the administrator of the Clean Water Act (33 CFR § 328.3(a)(8)). Title 33 

also defines certain terms used in the Clean Water Act and establishes the limits of the 

Clean Water Act with respect to wetlands (see 33 CFR §§ 328.1-328.5). 

The term “waters of the United States” refers to all waters that have been or could be 

used for interstate or foreign commerce, all interstate waters, and all other waters that 

could affect interstate or foreign commerce if used, degraded, or destroyed. Wetlands 

adjacent to any covered water are also waters of the United States (33 CFR § 328.3(a)). 

Waters of the United States can include waters which are not typically considered 

navigable, such as mudflats, sandflats, prairie potholes, wet meadows, and playa lakes 

(33 CFR § 328.3).  
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The term “adjacent” means bordering, contiguous, or neighboring. Wetlands separated 

from other waters of the United States by man-made dikes or barriers, natural river 

berms, beach dunes, and the like are still adjacent wetlands (33 CFR § 328.3(c)). When 

adjacent wetlands are present, Clean Water Act jurisdiction extends beyond the ordinary 

high water mark to the limit (far boundary) of the adjacent wetlands (33 CFR § 

328.49(c)(2)). 

An individual permit is required to discharge dredged or fill material, unless the 

discharge is covered by a nationwide permit or is specifically exempt from permit 

requirements (33 CFR § 323.3(a)). Individual permits are subject to closer review and 

sometimes allow for public review and comment. Discharges from normal farming, 

silviculture, or ranching activities at an ongoing operation are exempt from regulation 

(33 CFR § 323.4). Generally speaking, the discharge from farming, silviculture, or 

ranching must not be intended to convert land to a different use, and the landowner must 

use best management practices to minimize effects on waters of the United States. 

The U.S. Army Corps of Engineers can issue two kinds of individual permits. A standard 

individual permit requires public notice and a public interest review (33 CFR § 325.5). A 

letter of permission does not require public notice, but still requires public interest 

review and coordination with fish and wildlife agencies (33 CFR § 325.2(e)(1)). The 

U.S. Army Corps of Engineers can issue a letter of permission for large categories of 

common minor activities governed by Clean Water Act § 404 permits in consultation 

with the Environmental Protection Agency, fish and wildlife agencies, the state 
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certifying agency, and the coastal zone management agency (33 § CFR 

325.2(e)(1)(ii)).The U.S. Army Corps of Engineers can also issue a letter of permission 

for Section 10 permits (see Rivers and Harbors Act of 1899, § 10) if the District 

Engineer feels such permits would be minor, would not have significant environmental 

impacts, and would be unlikely to encounter appreciable opposition from the public (33 

CFR § 325.2(e)(1)(i)).  

The U.S. Army Corps of Engineers can issue four kinds of general permits. These 

include regional permits, national permits, programmatic permits, and Section 9 permits. 

Regional and national permits apply to a specific region of the United States or to the 

United States as a whole. Programmatic permits avoid duplication by relying on existing 

local, state, or federal programs. Section 9 permits authorize bridge construction (33 

CFR § 325.5(c)). 

Permits for structures do not generally have an expiration date, but permits for 

maintenance dredging are limited to ten years (33 CFR § 325.6). The District Engineer 

may reevaluate permits and may suspend, revoke, or modify individual and regional 

permits for cause (if the District Engineer has a defensible reason). Permit reevaluation 

can be initiated by the District Engineer, the permittee, a third party, or an inspector (33 

CFR § 325.7). 
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The U.S. Army Corps of Engineers must consider impact on wetlands when evaluating a 

permit application. The rules identify wetlands that perform functions important to the 

public interest in 33 CFR § 320.4(b)(2). These include wetlands that: 

 serve significant natural biological functions, 

 are set aside for study or as a sanctuary or refuge, 

 prevent detrimental effects on sedimentation patterns and other natural drainage 

characteristics, 

 shield other areas from wave action or erosion, 

 store flood waters, 

 allow groundwater recharge or discharge, 

 serve significant water purification functions, or 

 are unique or scarce in a region. 

According to the rules, a wetland site must be evaluated with the recognition that it may 

be part of a complete and interrelated wetland area (33 CFR § 320.4(b)(3). The rules 

further state that no permit will be issued for a project in a wetland that is important to 

the public interest, or in a wetland site that may be part of an interrelated wetland area, 

unless a public interest review shows that the benefits of alteration outweigh the damage 

to the wetland resource (33 CFR §320.4(b)(4)). 
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Regulatory guidance issued in 2008 

The 2008 regulatory guidance (USEPA and USACE 2008) was intended to provide 

clarity to regulatory staff and the regulated community after the United States Supreme 

Court’s decision in the Rapanos case (2006). However, guidance does not have the force 

of law, and does not require public notice during the development process. Therefore, 

the 2008 guidance has actually brought about uncertainty, doubt, and a lack of 

significant consensus from those in the regulated community, who often seek to treat the 

guidance as if it were a rule. 

The 2008 regulatory guidance established a decision-making framework based on the 

navigability and the relative permanence of a waterbody. It also established conditions 

for the agencies to consider before exercising jurisdiction over a waterbody. The 

document also identified when the regulatory agencies may presume that significant 

nexus exists between a wetland and a waterbody, and when a more intensive assessment 

is required (FIG. 22). According to the 2008 guidance, significant nexus is presumed if a 

wetland is adjacent to a traditional navigable waterbody. Nexus is also presumed for a 

wetland adjacent to a relatively permanent non-navigable waterbody if a continuous 

surface connection exists between the wetland and the waterbody. All other wetlands 

require more specific information before jurisdiction can be determined. 
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Fig. 22. Nexus presumption matrix. The agencies only presume significant nexus 
where the main waterbody is relatively permanent. If a relatively permanent 
waterbody is not navigable, the agencies may still presume nexus if a continuous 
surface connection exists. If the agencies cannot presume significant nexus, they 
must conduct a significant nexus finding.  

This guidance document uses the term “adjacent” as it is defined in 33 CFR § 328, but 

also points out three indicators of adjacency that show the agencies’ intent when drafting 

the original rules. These include (1) unbroken hydrologic connections, (2) physical 

separation by man-made or natural barriers, and (3) reasonably close proximity. Based 

on the context, and for the purpose of clear discussion, the second indicator of adjacency 

may be stated more clearly as, “an otherwise adjacent water should be considered 

adjacent, even if barriers exist between that water and navigable waters of the U.S.” This 
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essentially leaves two indicators of adjacency, but for consistency this thesis mirrors the 

language in the guidance document and refers to three indicators of adjacency. The 

guidance states that any of the above conditions can be used to establish adjacency. In 

other words, a wetland only needs to meet one of the criteria to be considered adjacent. 

The guidance also states that a continuous surface connection is not required. Rather, 

intermittent surface and near-surface connections can be used to establish adjacency.  

The terms “continuous surface connection” and “unbroken hydrologic connection” are 

used in the guidance to describe hydrologic connections. The term “continuous surface 

connection”, as used in Rapanos, has a temporal element. It qualifies whether a 

connection lasts for days, months, or years. Justice Scalia also argued that a continuous 

surface connection is limited, spatially, to wetlands that are directly abutting waters such 

that there is inseparable intermingling. However, the majority of the justices, including 

the four dissenting justices and Justice Kennedy, rejected the spatial limitation that 

Justice Scalia attempted to impose on the term “continuous surface connection.” In 

contrast to the temporal sense of “continuous surface connection, the 2008 guidance 

implies that the term “unbroken hydrologic connection”, means the conveyance route 

must be physically continuous in space. The guidance acknowledges that shallow 

subsurface connections contribute to unbroken hydrologic connections. Most 

importantly, the guidance explicitly states that intermittent connections can be used to 

demonstrate adjacency. It is important to note that the federal agencies’ interpretation of 

adjacency in the guidance document rests on unbroken hydrologic connections instead of 

continuous surface connections. 



 

67 

The 2008 guidance states that adjacency will be determined on a case-by-case basis for 

individual wetlands. In other words, an individual wetland’s adjacency does not carry 

over to other wetlands in the watershed that may be farther from the adjacent waterbody. 

The guidance also states that a case-specific study of ecological interconnection is 

usually not needed to demonstrate reasonable proximity. Rather, the ecological 

interconnection can be inferred from the existing body of science (as of September 2014, 

a search for “wetlands” in the Environmental Protection Agency’s science inventory 

yielded more than 1,400 results). 

In the case of a wetland that is adjacent to a relatively permanent non-navigable 

waterway, a continuous surface connection must exist for nexus to be presumed. The 

2008 guidance emphasizes that a wetland must be in direct physical contact with a non-

navigable waterway.  

According to the 2008 guidance, nexus would never be presumed for any wetland that is 

not adjacent to a navigable waterway or directly abutting a relatively permanent non-

navigable tributary. Other wetlands would only be considered jurisdictional if significant 

nexus were established by assessment. In the remainder of the guidance, the agencies 

expanded on factors to be considered when significant nexus analyses are performed, 

including: the flow and functions of the tributary; whether any adjacent wetlands are 

present, and if so, their functions and contributions; and the degree of physical, 

chemical, and biological effects that the tributary and adjacent wetlands have on 

navigable waters, with some consideration for ecological functions. The guidance points 
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out that swales, ditches, and similar features are not themselves wetlands, but can 

function as point sources that transfer water from wetlands to other waterways. The 

importance of this distinction is that point sources could be subject to other parts of the 

Clean Water Act, such as § 402 (pertaining to the National Pollutant Discharge 

Elimination System). 

Draft regulatory guidance released in 2011 

After a few years, the Environmental Protection Agency and the U.S. Army Corps of 

Engineers concluded that the December 2008 guidance did not reflect the full extent of 

authority that the Clean Water Act intended (USEPA and USACE 2011). The resulting 

2011 draft guidance is arranged in sections that specifically cover: (1) traditional 

navigable waters, (2) interstate waters, (3) significant nexus analysis, (4) tributaries, (5) 

adjacent wetlands, and (6) other waters. The draft guidance also includes an appendix 

that expands on the legal and scientific basis for the new guidance.  

The 2011 draft guidance draws more attention to collective impacts than did the 2008 

guidance. Recall that the 2008 guidance directed field staff to evaluate wetlands on an 

individual, case-by-case basis. In contrast, the draft guidance states:  

Watershed ecosystems, and their interrelationships, are constructed of component 

parts that have relevance when considered collectively. Failure to protect the 

components can undermine the ecosystem in its entirety. Therefore, the agencies 

have an obligation to evaluate waters in terms of how they interrelate and 
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function as ecosystems rather than as individual units, especially in the context of 

complex ecosystems where their integrity may be compromised by environmental 

harms that individually may not be measurably large but collectively are 

significant. 

Where significant nexus analysis is required, the draft guidance directs field staff to 

determine the resource type of the water to be evaluated. The choices are: (1) tributary, 

(2) adjacent wetland, or (3) other proximate water. After the resource type is identified, 

the guidance directs field staff to determine the extent of the region. The guidance 

defines the region as watershed that contributes to a navigable or interstate water through 

a single point of entry. The result is that all resources of the same type within a single-

point-of-entry watershed will be considered together. Finally, the guidance directs field 

staff to determine whether cumulative effects of similarly situated waters in a region are 

significant. The draft guidance considers all waters of the same resource type to be 

similarly situated. The guidance allows staff to rely on scientific information and 

explains that field staff do not need to identify every similarly situated water in the 

region if significant nexus can be demonstrated or reasonably presumed from a smaller 

set. 

The draft 2011 guidance maintains that natural and man-made swales are not tributaries. 

However, in contrast to the 2008 guidance, the draft guidance notes that ditches or 

swales may include areas that meet the regulatory definition of “wetlands.” Under the 

plurality or Kennedy standard, the 2011 guidance states that wetland ditches and swales 
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will be evaluated as wetlands, not as tributaries. Like the 2008 guidance, the 2011 draft 

guidance recognizes that a swale or ditch can function as a point source and can 

contribute to a hydrologic connection between an adjacent wetland and a traditional 

navigable water or interstate water, even if the ditch or swale is not jurisdictional on its 

own.  

In the 2008 guidance, it was not explicitly clear whether the term “unbroken hydrologic 

connection” referred to spatial or temporal continuity. The reader had to rely on 

inference and deduction. The draft 2011 guidance clarifies the meaning of “unbroken 

hydrologic connection” by explicitly stating:  

An unbroken surface or shallow sub-surface hydrologic connection to 

jurisdictional waters may be established by a physical feature or discrete 

conveyance that supports periodic flow between the wetland and a jurisdictional 

water. Water does not have to be continuously present in this hydrologic 

connection and the flow between the wetland and the jurisdictional water may 

move in either or both directions. The hydrologic connection need not itself be a 

water of the U.S.  

In the section that specifically addresses adjacent wetlands, the draft guidance maintains 

the standards set forth in the 2008 guidance. Specifically, a wetland can be considered 

adjacent if one or more of the following conditions exist: (1) unbroken hydrologic 

connections, (2) physical separation by man-made or natural barriers, or (3) reasonably 
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close proximity. Again, for clear discussion it is important to note that there are really 

only two conditions, and that the presence of barriers does not simply invalidate 

adjacency found by proximity or hydrologic connection. The draft guidance recognizes 

that these conditions can be extremely variable for different wetlands, and that field staff 

will need to exercise judgment to determine whether wetlands are adjacent to navigable 

or interstate waters. The guidance specifically addresses adjacency concerns for wetland 

mosaics, stating, “All wetlands within a wetland mosaic should ordinarily be considered 

collectively when determining adjacency. Wetlands present in such systems act 

generally as a single ecological unit.”  

Most importantly, the draft guidance distinguishes between situations where adjacency 

and significant nexus evaluations are most appropriate. Discussion on this important 

question is completely absent from the 2008 guidance. To make this distinction, the 

agencies introduce the concept of a “nearest jurisdictional water.” The idea is that 

adjacency analysis applies if a navigable or interstate water is the nearest jurisdictional 

water to the wetland in question. Significant nexus analysis applies in all other cases.  

Toward Inconsistent Clean Water Act Implementation 

Despite the best efforts of Congress and regulatory agencies, inconsistencies can develop 

between a law, the rules used to implement the law, and the procedures used to 

implement the rules. In 2004, the United States General Accounting Office (now named 

the Government Accountability Office) found that Corps of Engineers district offices 

differ in how they interpret and apply federal regulations related to Clean Water Act 
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jurisdiction, and in how they document their practices (United States General 

Accounting Office 2004). Though it was not directly stated in the two reports, the 

message was clear—inconsistency and lack of public transparency placed the 

Environmental Protection Agency and the Corps of Engineers at significant risk. 

High information costs trigger the use of heuristics  

Although the Government Accounting Office report noted that the federal regulations 

leave room for judgment and interpretation by district offices—a concept that the U.S. 

Supreme Court also acknowledged—the report specifically drew attention to several 

rules-of-thumb and decision-making shortcuts (i.e., heuristics) that certain Corps of 

Engineers district offices had been using to make jurisdictional decisions. Heuristics 

speed up decision-making, but can also lead to decision-making errors. This section 

explores the use of heuristics and some of the conditions that promote reliance on 

heuristics in making jurisdictional determinations. For example, perceived high 

information costs are known to trigger the use of heuristics (Bröder 2000). The 

information costs of a jurisdictional decision for a non-navigable water is certainly high 

compared to a clear-cut navigable waterway, creating conditions where reliance on 

heuristics is more likely to occur. The Environmental Protection Agency and the Corps 

of Engineers acknowledge that, especially after the SWANCC case, non-navigable waters 

that appear to be isolated are tough case-by-case decisions (Downing et al. 2003). 
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Heuristics can lead to errors and inconsistency 

The Government Accounting Office specifically identified differing practices used to 

evaluate jurisdiction related to: (1) hydrologic connections, (2) proximity, (3) man-made 

and natural barriers, (4) ditches and other man-made surface conveyances, and (5) man-

made subsurface conveyances. For example, the Government Accountability Office 

found that districts varied widely in whether the 100-year floodplain was used as 

evidence of a hydrologic connection. Some districts would never consider the 100-year 

floodplain, other districts might consider the 100-year floodplain as one factor of many, 

and still other districts might consider the 100-year floodplain as prima facie evidence of 

hydrologic connection.  

The main issue raised by the previous example is that there are proxies in play that can 

cause errors. The use of the 100-year floodplain to determine whether a wetland is 

adjacent is actually a proxy for two entirely different questions, specifically: (1) whether 

there is an unbroken hydrologic connection, whether or not intermittent, between the 

wetland and a navigable waterway (USEPA and USACE 2008); and (2) whether the 

wetland is close enough to a navigable waterway to reasonably support a science-based 

inference of ecological interconnectedness (USEPA and USACE 2008). Worse yet, the 

100-year floodplain is by no means a perfect proxy for either of those decisions. The 

science in this thesis, for example, demonstrates that the probability of hydrologic 

connection in any given year for a wetland outside of the 100-year floodplain can be 

much greater than the probability that flooding will occur at the 100-year floodplain 

boundary. 
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Sequential and non-sequential decisions produce different results 

Assuming that all of the inconsistencies raised by the Government Accounting Office 

report were totally eliminated, conditions that promote heuristics still make the 

Environmental Protection Agency and the Corps of Engineers legally vulnerable. 

Currently, there is no clear sequence of decisions to determine whether a waterbody falls 

within Clean Water Act jurisdiction. Research from several different fields—including 

psychology, marketing, economics, and criminal law— as shown that sequential and 

simultaneous decision processes produce different results, and that the results obtained 

by non-sequential processes are more variable (e.g. Lindsay and Wells 1985, Simonson 

1990, Read and Loewenstein 1995, Benartzi and Thaler 2001, Steblay et al. 2011).  

For example, the 2008 guidance does not clearly identify what Corps of Engineer staff 

should consider first in the case of a wetland such as the wetland complex used in this 

study. Should staff first identify whether the wetland is isolated? Or should staff first 

identify the most proximate water and then determine whether the wetland is adjacent to 

a navigable waterway or a non-navigable waterway? Or should the adjacency of the 

wetland to a relatively permanent waterway, an intermittent waterway, or an ephemeral 

waterway be considered first? Or does adjacency to a navigable waterway take 

precedence, even where non-navigable waterways are more proximate? Or if water 

flows from the wetland through a ditch or swale, should staff first consider whether the 

ditch or swale is jurisdictional? 
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In the case of the wetland used in this study, the sequence of information considered can 

have huge impacts on whether nexus might be presumed because of adjacency, or 

whether a fact-based nexus evaluation would be required, or whether the wetland would 

be dismissed as isolated without any nexus evaluation. All three of these endpoints are 

possible, depending on the sequence of the information considered. To expand on this 

point, the wetland depressions evaluated in this study are almost equally proximate to a 

relatively permanent navigable waterway, and to an intermittent non-navigable channel 

with a discernible high water mark (FIG. 23 on page 77). None of the depressions are 

directly abutting a clearly-defined, bed-and-banks waterway. The distance from the 

navigable bayou to the closest wetland depression is about 125 m. The length of the 

shortest flow path from the depressions to the bayou is approximately 260 m, which 

consists of about 120 m of swale and about 140 m of intermittent channel. The wetland 

is clearly unidirectional, based on the Environmental Protection Agency’s draft scientific 

basis for the current rulemaking (USEPA 2013). The Environmental Protection 

Agency’s draft report concluded that all tributary streams are physically, chemically, and 

biologically connected to downstream waters; including perennial, intermittent, and 

ephemeral streams. The draft report also concluded that headwater streams supply most 

of the water in rivers. This study demonstrated that mosaics of unidirectional wetlands 

on the Texas Gulf Coast can and do form these very headwaters by sending water to 

intermittent streams through small swales. Although the Environmental Protection 

Agency’s report concluded that it was impossible to generalize about the connectivity of 
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unidirectional wetlands, this study clearly shows that swales flowing from unidirectional 

wetlands are prima facie physical evidence of surface connectivity.  

If staff focuses first on the proximity to the navigable bayou and the continuity of the 

hydrologic features, including the swales, then it is possible that the study wetland might 

be found adjacent to the navigable bayou based on the unbroken hydrologic connection 

observed in this study. In stark contrast, if staff focuses first on the facts that portions of 

the swales are not always easy to identify and are not jurisdictional in their own right, 

these facts may be viewed as evidence that the wetlands are isolated and no significant 

nexus analysis would be performed. In between the previous endpoints, if staff first 

determined that the wetland depressions are adjacent to the non-navigable intermittent 

stream, then an analysis would be performed to determine if significant nexus exists, but 

the potential adjacency to the bayou might be overlooked. If the wetlands are in fact 

adjacent to a navigable waterway, then the final case could cost the Corps of Engineers 

unnecessary time and resources. 

A Proposition for Increasing Consistency 

The previous examples show that the decision process itself may be to blame for 

producing a degree of inconsistency. One easy way to reduce the potential for process-

induced inconsistency is to adopt a set of sequential decisions to determine whether a 

wetland falls within Clean Water Act jurisdiction. A sequence of decisions would 

remove the variability created by the process, so that any remaining inconsistencies 

would be primarily related to the facts of the case being considered.  
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Fig. 23. Landscape context of the study wetland under the Clean Water Act. 
Important wet features are presented in gray. Short dashes represent swales and 
other small concentrated flow paths. Long dashes represent intermittent waters 
with an ordinary high water mark. Flow from wetland depressions travels through 
a network of swales to an intermittent channel, then to the tidal bayou. 

  



 

78 

Although the clarity of guidance improved from the 2008 guidance to the draft guidance 

released in 2011, the 2011 guidance relied heavily on the concept of a “nearest 

jurisdictional water.” Though the nearest jurisdictional water concept is probably more 

reliable than the 100-year floodplain concept, it comes with several issues. For example, 

what happens for wetlands like those in this study, where the nearest jurisdictional water 

is non-navigable, but the wetlands might also be adjacent to a navigable waterway that is 

slightly farther away? The decision process proposed in this thesis eliminates these kinds 

of issues.  

Several recent press articles suggest that rule amendments recently developed by the 

Environmental Protection Agency and the Corps of Engineers are intended to further a 

regulatory agenda that was never intended by the statutory language of the Clean Water 

Act (Price 2014). However, the goals established by Congress in the text of the Clean 

Water Act make the intent of Congress abundantly clear. The goals established by 

Congress in the Clean Water Act are: (1) to eliminate the discharge of pollutants into 

navigable waters by 1985 (Clean Water Act §101(a)(1)), and (2) that wherever 

attainable, an interim goal of water quality which provides for the protection and 

propagation of fish, shellfish, and wildlife and provides for recreation in and on the 

water be achieved by July 1, 1983 (Clean Water Act §101(a)(2)). The most important 

thing that needs to be accomplished through the rulemaking is to establish a decision-

making process that is reliable, consistent, and true to the law. 
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Fig. 24. Proposed process for jurisdictional determinations (see page 65 for 
adjacency criteria). 
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Fig. 25. One possible interpretation of the jurisdictional decision process based on 
the 2008 guidance. 
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Other inconsistencies that require attention 

Aside from the issues of process raised earlier, the guidance documents contain some 

inconsistencies that need to be addressed, preferably through public-noticed rules.  

For example, the 2008 guidance states that the controlling legal principles from the 

Rapanos case are those espoused by five or more justices. If that is true, then staff who 

drafted the second section of the guidance (Relatively Permanent Non-navigable 

Tributaries of Traditional Navigable Waters and Wetlands with a Continuous Surface 

Connection with Such Tributaries) erred legally and scientifically by resting on Justice 

Scalia’s argument that continuous surface connections require direct abutment to a 

tributary. The agencies erred in their interpretation of the Rapanos case by placing this 

requirement on wetlands adjacent to tributaries, because five justices rejected Justice 

Scalia’s limitation of continuous surface connection to physically abutting waters. 

Therefore wetlands do not need to abut tributaries for significant nexus to be presumed. 

Now research clearly demonstrates that the agencies also erred scientifically. Wetlands 

adjacent a tributary, but which do not directly abut it, can and do form hydrologic 

connections with the tributary. This point may raise issue in some parts of the country 

where non-navigable tributaries can be tens or even hundreds of miles long. However, 

many tributaries on the Texas Gulf Coast and in other similar regions are more 

appropriately measured in meters than in miles. 

The 2008 guidance also contradicts the federal rules by stating that, “in assessing 

whether a wetland is reasonably close to a jurisdictional water, the proximity of the 
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wetland (including all parts of a single wetland that has been divided by road crossings, 

ditches, berms, etc.) in question will be evaluated and shall not be evaluated together 

with other wetlands in the area.” In contrast, 33 CFR §320.4 shows clear intent that 

wetlands should be evaluated cumulatively, stating, “…the cumulative effect of 

numerous piecemeal changes can result in a major impairment of wetland resources. 

Thus, the particular wetland site for which an application is made will be evaluated with 

the recognition that it may be part of a complete and interrelated wetland area.” 

Another example related to wetlands adjacent to non-navigable streams can be found in 

the draft 2011 guidance, which contradicts 33 CFR § 328 by stating that “a finding that a 

particular wetland is adjacent to a jurisdictional waterbody other than a traditional 

navigable water … is not sufficient in and of itself to establish Clean Water Act 

jurisdiction over that wetland.” The rules in 33 CFR § 328 explicitly state that Clean 

Water Act jurisdiction extends beyond the ordinary high water mark of covered waters 

to encompass their adjacent wetlands. 

A Case for Why the “Isolated” Wetlands in This Study Should be Jurisdictional 

The study wetland meets the criteria for adjacency in 33 CFR. This research project 

documented that the wetland passed the unbroken surface connection test (see Wilcox et 

al. 2011). Specifically, water flowed from the wetland to an intermittent channel, and 

then to a navigable water through defined courses. By defined courses, we did not mean 

watercourses with bed and banks, but rather that water flows through the same 
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discernible pathways every time. This meaning is not inconsistent with the Clean Water 

Act definition of a point source. 

Several facts distinguish the wetlands in this study from those considered by the 

Supreme Court in the Rapanos case. These facts, in addition to the observed presence of 

biota and scientific findings of other researchers in the area, make for a compelling 

argument that the study wetland complex passes the reasonable proximity test.  

First, according to the facts of the Rapanos case, those wetlands were adjacent to man-

made drainage ditches. This study documented real discharges directly to a natural 

watercourse, although it should be noted that man-made ditches can and do carry water 

from one place to another. Second, the wetlands filled by Carabell in the Rapanos case 

were separated from the adjacent drainage ditch by an impermeable berm. Although a 

natural levee separates the wetlands in this study from the navigable bayou nearby, the 

levee is cut through by natural watercourses, and did not prevent wetland discharges 

from flowing to the bayou through those watercourses. Third, the sets of wetlands filled 

by Rapanos in the Rapanos case were 11 and 20 miles away from the nearest navigable 

watercourse. In stark contrast, the wetlands in this study were entirely situated within a 

range of approximately 125 to 375 meters from the navigable bayou. In fact, the distance 

between the study wetlands and the navigable Bayou closely resembles the distance 

between the wetlands on the Riverside Bayview Homes, Inc. property and Black Creek 

on the western side of Lake St. Clair—wetlands which the U.S. Supreme Court 

determined fell within the jurisdiction of the Clean Water Act. 
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According to the 2008 guidance, scientists have already demonstrated ecological 

interdependence between waters and adjacent wetlands, leading to the ability to apply a 

scientifically-supported presumption of nexus. This study supports that scientific 

presumption. The wetlands in the study watershed have hosted gambusia, tadpoles, and 

aquatic insect eggs within the depressions. The wetlands from this study send a 

substantial percentage of the water they receive to the bayou. Forbes et al. (2010) stated 

that coastal prairie wetlands are an integral part of the Galveston Bay ecosystem, and 

further observed that the cumulative impact of wetland losses could also have substantial 

detrimental impacts on the hydrology, water quality, and general ecosystem health of 

nearby aquatic systems, particularly in Galveston Bay and its tributaries. These 

observations by Forbes et al. also support the science-based inference that wetlands in 

the region have an effect on the ecology of jurisdictional waters, and the idea that 

wetlands in the region are important to the public interest (see 33 CFR §320.4(b)(2)). 
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CHAPTER IV 

SUMMARY* 

Wetland Hydrology 

The wetland complex in this study was not an isolated system—the wetland depressions 

were in fact hydrologically and ecologically woven into the fabric of their surroundings. 

More importantly, these research findings likely have applications that are broader than 

the immediate study area. The depressions, swales, and similar hydrologic features of the 

wetland complex used in this study are common across the Texas Gulf Coast region. 

Moreover, surface connections between “isolated” wetlands and jurisdictional waters 

have been observed in other research findings related to wetlands on the Texas Gulf 

Coast and in findings from the larger body of wetland science. Further confirmation of 

surface hydrological connectivity on the Texas Gulf Coast was provided by Forbes et al. 

(2009), who monitored outflow for one year at six wetland locations on the Texas Gulf 

Coast and reported that runoff occurred from all of the monitored locations. Coupled 

with these observations, our findings provide strong evidence that shallow wetland 

depressions on the Texas Coastal Plain are not closed systems, and that swales provide 

clear evidence of substantial surface connectivity.  

                                                 
* Portions of this chapter are reprinted or adapted from Wetlands, vol. 31, 2011, pp. 451-458, Evidence of 
surface connectivity for Texas Gulf Coast depressional wetlands, Bradford P. Wilcox, Dex D. Dean, John 
S. Jacob, and Andrew Sipocz, with consent of the authors and with kind permission from Springer Science 
and Business Media. 
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Wetlands on the Texas Gulf Coast are not expressly seasonal. Rather, they can produce 

flow in any season, depending on the rainfall pattern in a particular year. One 

shortcoming of Justice Scalia’s hydrologic permanence test from the Rapanos case 

overlooks the real-world truth that regional precipitation patterns are not identical and 

that precipitation is not uniform. Wetlands on the Texas Gulf Coast do not flow 

continuously, nor should they be expected to do so. During most years, a substantial 

portion of the annual rainfall comes from just few major storm events. During the study 

period, runoff-producing storms accounted for large portions of the total annual rainfall 

(37% to 62% of annual rainfall).  

Contrary to expectations, groundwater did not follow the shortest path to Armand 

Bayou, but ran generally parallel to the bayou. This observation is not inconsistent with 

other studies that observed localized groundwater flow nearest the surface, with more 

regional groundwater flow at greater depths. Regional groundwater flow between 

separate watersheds or even separate basins is common in a wide variety of topographic 

and hydrogeologic settings (Winter et al. 2003, Gleeson and Manning 2008). Additional 

study will be needed to confirm whether deeper groundwater at the study site is most 

connected with the Armand Bayou, Clear Lake, Galveston Bay, or the Gulf Coast 

Aquifer. 

This study demonstrated that deciduous trees impact the saturation state of surface soils 

in Texas’s forested wetlands. As a result, wetlands that have standing water during one 

month can appear totally dry the next. The important message is that jurisdictional 
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decisions must take weather patterns into account. Wetlands that are not isolated may 

appear isolated during dry months and the wet-to-dry transition can happen rapidly on 

the Texas Gulf Coast. Rainfall patterns on the Texas coast can restore surface saturation 

and reducing soil conditions during any season.  

Temporal patterns of runoff from the study wetland and the urbanized Vince Bayou 

watershed were very similar. However, the urbanized watershed produced peak flows 

that were more than four times greater in magnitude than the greatest peak flow from the 

wetlands during the same time period. This observation supports the scientific 

conclusion that wetlands substantially dampen peak flows. Additionally, there were 

events where Vince Bayou’s flow increased after relatively small rainfall events. The 

wetlands often did not respond during the same rainfall event, emphasizing their ability 

to contain first-flush runoff.  

Wetlands and the Clean Water Act Regulatory Framework 

The hydrologic findings of this study suggest that many wetlands along the Texas Gulf 

Coast may be overlooked during implementation of the Clean Water Act, although those 

wetlands actually affect navigable waterways. Specifically, the use of heuristics and the 

lack of a clear progression in decision-making processes are known to cause 

inconsistency, leaving room for unnecessary variability in jurisdictional determinations. 

A close review of the Clean Water Act, rules, and case law, paired with the hydrologic 

findings of this study, revealed that there is a strong case that the “isolated” wetlands 

examined in this study should actually be considered jurisdictional by virtue of 
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adjacency with a navigable waterway. This thesis proposes that a sequential decision-

making progression, which should begin with decisions that would readily identify 

hydrologic nexus and end with the decision that would least readily identify hydrologic 

nexus— will eliminate heuristics that produce variability in decision-making, thus 

leading to more accurate and consistent jurisdictional determinations. This is essentially 

a diagnostic approach that focuses on broad questions before honing in on specific 

issues; it eliminates the temptation to skip past the broad but vitally important questions 

(such as identifying whether a wetland is adjacent to a navigable water) in favor of a 

quick and easy answer that based on incomplete and often misrepresentative 

information. 
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APPENDIX A 

RAINFALL AND RUNOFF DATA
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Table A - 1. Rainfall and runoff data notes and their meanings. 

NOTE MEANING 
A Rainfall data incomplete, no substitution 

B Rainfall data incomplete, data substituted using Houston NWSO weather station 
data 

C Runoff data incomplete, no substitution 

D Runoff data incomplete, data substituted as described in main text 

T Trace runoff (< 0.01 mm) 
 

Table A - 2. Daily totals for rainfall and runoff. 

DATE RAINFALL RUNOFF NOTES 
M/DD/YYYY [MM] [MM] 

 3/31/2005 0 0 B C 
4/1/2005 0 0 

 4/2/2005 0 0 
 4/3/2005 0 0 
 4/4/2005 0 0 
 4/5/2005 0 0 
 4/6/2005 0.02 0 
 4/7/2005 0 0 
 4/8/2005 0 0 
 4/9/2005 0 0 
 4/10/2005 0 0 
 4/11/2005 0.33 0 
 4/12/2005 0 0 
 4/13/2005 0 0 
 4/14/2005 0 0 
 4/15/2005 0 0 
 4/16/2005 0 0 
 4/17/2005 0 0 
 4/18/2005 0 0 
 4/19/2005 0 0 
 4/20/2005 0 0 
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Table A - 2 (continued).   
    

DATE RAINFALL RUNOFF NOTES 
M/DD/YYYY [MM] [MM]  

4/21/2005 0 0 
 4/22/2005 0.05 0 
 4/23/2005 0 0 
 4/24/2005 0 0 
 4/25/2005 0.87 0 
 4/26/2005 0 0 
 4/27/2005 0.01 0 
 4/28/2005 0 0 
 4/29/2005 0 0 
 4/30/2005 0 0 
 5/1/2005 0 0 
 5/2/2005 0 0 
 5/3/2005 0 0 
 5/4/2005 0.1 0 
 5/5/2005 0 0 
 5/6/2005 0 0 
 5/7/2005 0 0 
 5/8/2005 1.31 0 
 5/9/2005 0 0 B C 

5/10/2005 0 0 B C 
5/11/2005 0 0 B C 
5/12/2005 0 0 B C 
5/13/2005 0 0 

 5/14/2005 0 0 
 5/15/2005 0 0 
 5/16/2005 0 0 
 5/17/2005 0.02 0 
 5/18/2005 0 0 
 5/19/2005 0 0 
 5/20/2005 0 0 
 5/21/2005 0 0 
 5/22/2005 0 0 
 5/23/2005 0 0 
 5/24/2005 0 0 
 5/25/2005 0 0 
 5/26/2005 0.09 0 
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5/27/2005 0 0 
 5/28/2005 0 0 
 5/29/2005 1.11 0 
 5/30/2005 0.16 0 
 5/31/2005 0 0 
 6/1/2005 0.26 0 
 6/2/2005 0 0 
 6/3/2005 0 0 
 6/4/2005 0 0 
 6/5/2005 0 0 
 6/6/2005 0.04 0 
 6/7/2005 0.14 0 
 6/8/2005 0 0 B C 

6/9/2005 6.9 0 B C 
6/10/2005 0 0 B C 
6/11/2005 0 0  C 
6/12/2005 0 0 

 6/13/2005 0 0 
 6/14/2005 0 0 
 6/15/2005 0.01 0 
 6/16/2005 0 0 
 6/17/2005 0 0 
 6/18/2005 0 0 
 6/19/2005 0 0 
 6/20/2005 0 0 
 6/21/2005 0 0 
 6/22/2005 0 0 
 6/23/2005 0 0 
 6/24/2005 0 0 
 6/25/2005 0.05 0 
 6/26/2005 0 0 
 6/27/2005 0 0 
 6/28/2005 0 0 
 6/29/2005 0 0 
 6/30/2005 0 0 
 7/1/2005 0.45 0 
 7/2/2005 0 0 
 7/3/2005 0 0 
 7/4/2005 0 0 
 7/5/2005 0 0 
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7/6/2005 0.53 0 
 7/7/2005 0.02 0 
 7/8/2005 5.3 0 B C 

7/9/2005 1 0 B C 
7/10/2005 0 0 B C 
7/11/2005 0 0 B C 
7/12/2005 10.2 0 B C 
7/13/2005 0.3 0 B C 
7/14/2005 29.2 0 B C 
7/15/2005 85.3 0 B C 
7/16/2005 1.3 0 B C 
7/17/2005 9.1 0 B C 
7/18/2005 0 0 B C 
7/19/2005 0.8 0 B C 
7/20/2005 2.3 0 B C 
7/21/2005 1 0 B C 
7/22/2005 0 0 B C 
7/23/2005 0 0 B C 
7/24/2005 0 0 

 7/25/2005 0 0 
 7/26/2005 0 0 
 7/27/2005 0 0 
 7/28/2005 0 0 
 7/29/2005 0.03 0 
 7/30/2005 0.01 0 
 7/31/2005 0 0 
 8/1/2005 0 0 
 8/2/2005 0 0 
 8/3/2005 0 0 
 8/4/2005 0 0 
 8/5/2005 0.45 0 
 8/6/2005 0.02 0 
 8/7/2005 0 0 
 8/8/2005 0.07 0 
 8/9/2005 0.34 0 
 8/10/2005 0.01 0 
 8/11/2005 0 0 
 8/12/2005 0.19 0 
 8/13/2005 0 0 
 8/14/2005 0 0 
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8/15/2005 0 0 
 8/16/2005 0.01 0 
 8/17/2005 0.73 0 
 8/18/2005 0 0 B C 

8/19/2005 0 0 B C 
8/20/2005 0 0 B C 
8/21/2005 0 0 

 8/22/2005 0 0 
 8/23/2005 0 0 
 8/24/2005 0 0 
 8/25/2005 0.07 0 
 8/26/2005 0.01 0 
 8/27/2005 0.09 0 
 8/28/2005 0.77 0 
 8/29/2005 0 0 
 8/30/2005 0 0 
 8/31/2005 0 0 
 9/1/2005 0.92 0 
 9/2/2005 0.17 0 
 9/3/2005 1.32 0 
 9/4/2005 0.01 0 
 9/5/2005 0 0 
 9/6/2005 0 0 
 9/7/2005 0 0 
 9/8/2005 0 0 
 9/9/2005 0 0 
 9/10/2005 0.4 0 
 9/11/2005 0 0 
 9/12/2005 0.04 0 
 9/13/2005 0.32 0 
 9/14/2005 0 0 
 9/15/2005 0 0 B C 

9/16/2005 22.6 0 B C 
9/17/2005 0 0 B C 
9/18/2005 0 0 B C 
9/19/2005 0 0 B C 
9/20/2005 0 0 B C 
9/21/2005 0 0 B C 
9/22/2005 0 0 B C 
9/23/2005 16.3 0 B C 
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9/24/2005 12.4 0 B C 
9/25/2005 0 0 

 9/26/2005 0.01 0 
 9/27/2005 0 0 
 9/28/2005 0 0 
 9/29/2005 0.05 0 
 9/30/2005 0 0 
 10/1/2005 0 0 
 10/2/2005 0.03 0 
 10/3/2005 0 0 
 10/4/2005 0.06 0 
 10/5/2005 0.05 0 
 10/6/2005 0 0 
 10/7/2005 0 0 
 10/8/2005 0 0 
 10/9/2005 0 0 
 10/10/2005 0.25 0 
 10/11/2005 0.19 0 
 10/12/2005 0.06 0 
 10/13/2005 0.03 0 
 10/14/2005 0.01 0 
 10/15/2005 0 0 
 10/16/2005 0 0 
 10/17/2005 0 0 
 10/18/2005 0 0 
 10/19/2005 0 0 
 10/20/2005 0.01 0 
 10/21/2005 0 0 
 10/22/2005 0 0 
 10/23/2005 0 0 
 10/24/2005 0 0 
 10/25/2005 0 0 
 10/26/2005 0 0 
 10/27/2005 0 0 
 10/28/2005 0 0 
 10/29/2005 0 0 
 10/30/2005 0 0 
 10/31/2005 0.03 0 
 11/1/2005 0.01 0 
 11/2/2005 0 0 
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11/3/2005 0.01 0 
 11/4/2005 0.04 0 
 11/5/2005 0.02 0 
 11/6/2005 0.01 0 
 11/7/2005 0.01 0 
 11/8/2005 0.01 0 
 11/9/2005 0 0 
 11/10/2005 0 0 
 11/11/2005 0 0 
 11/12/2005 0 0 
 11/13/2005 0 0 
 11/14/2005 0 0 
 11/15/2005 0 0 
 11/16/2005 0 0 B 

11/17/2005 0 0 B 
11/18/2005 0 0 B 
11/19/2005 0.3 0 B 
11/20/2005 5.6 0 B 
11/21/2005 0 0 B 
11/22/2005 0 0 B 
11/23/2005 0 0 B 
11/24/2005 0 0 

 11/25/2005 0.01 0 
 11/26/2005 2.24 0 
 11/27/2005 0.01 0 
 11/28/2005 0.01 0 
 11/29/2005 0 0 
 11/30/2005 0 0 
 12/1/2005 0 0 
 12/2/2005 0 0 
 12/3/2005 0.01 0 
 12/4/2005 0.06 0 
 12/5/2005 0.01 0 
 12/6/2005 0 0 
 12/7/2005 0.1 0 
 12/8/2005 0 0 
 12/9/2005 0 0 
 12/10/2005 0 0 
 12/11/2005 0 0 
 12/12/2005 0 0 
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12/13/2005 0.01 0 
 12/14/2005 3.36 0.5110143 
 12/15/2005 0 0 B C 

12/16/2005 0 0 B C 
12/17/2005 8.4 0 B C 
12/18/2005 0 0 B C 
12/19/2005 0 0 B C 
12/20/2005 0 0 

 12/21/2005 0 0 
 12/22/2005 0 0 
 12/23/2005 0.01 0 
 12/24/2005 0 0 
 12/25/2005 0 0 
 12/26/2005 0 0 
 12/27/2005 0 0 
 12/28/2005 0.01 0 
 12/29/2005 0 0 
 12/30/2005 0 0 
 12/31/2005 0.01 0  C 

1/1/2006 0.00 0.00 
 1/2/2006 0.00 0.00 
 1/3/2006 0.00 0.00 
 1/4/2006 0.01 0.00 
 1/5/2006 0.00 0.00 
 1/6/2006 0.00 0.00 
 1/7/2006 0.00 0.00 
 1/8/2006 0.00 0.00 
 1/9/2006 0.00 0.00 
 1/10/2006 0.01 0.00 
 1/11/2006 0.01 0.00 
 1/12/2006 0.01 0.00 
 1/13/2006 0.00 0.00 
 1/14/2006 0.00 0.00 
 1/15/2006 0.00 0.00 
 1/16/2006 0.74 0.00 
 1/17/2006 0.44 0.00 
 1/18/2006 0.00 0.00 
 1/19/2006 0.00 0.00 
 1/20/2006 0.00 0.00 
 1/21/2006 0.01 0.00 
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1/22/2006 0.85 0.00  T 
1/23/2006 0.00 0.00  T 
1/24/2006 0.00 0.00 

 1/25/2006 0.00 0.00 
 1/26/2006 0.00 0.00 
 1/27/2006 0.00 0.00 
 1/28/2006 0.29 0.00 
 1/29/2006 0.02 0.00 
 1/30/2006 0.00 0.00 
 1/31/2006 0.00 0.00 
 2/1/2006 0.31 0.00 
 2/2/2006 0.01 0.00 
 2/3/2006 0.00 0.00 
 2/4/2006 0.00 0.00 
 2/5/2006 0.00 0.00 
 2/6/2006 0.00 0.00 
 2/7/2006 0.00 0.00 
 2/8/2006 0.00 0.00 
 2/9/2006 0.00 0.00 
 2/10/2006 0.54 0.00 
 2/11/2006 0.00 0.00 
 2/12/2006 0.00 0.00 
 2/13/2006 0.00 0.00 
 2/14/2006 0.00 0.00 
 2/15/2006 0.00 0.00 
 2/16/2006 0.00 0.00 
 2/17/2006 0.00 0.00 
 2/18/2006 0.26 0.00 
 2/19/2006 0.02 0.00 
 2/20/2006 0.00 0.00 
 2/21/2006 0.01 0.00 
 2/22/2006 0.01 0.00 
 2/23/2006 0.00 0.00 
 2/24/2006 0.01 0.00 
 2/25/2006 0.49 0.00 
 2/26/2006 0.00 0.00 
 2/27/2006 0.01 0.00 
 2/28/2006 0.00 0.00 
 3/1/2006 0.01 0.00 
 3/2/2006 0.01 0.00 
 



 

105 

3/3/2006 0.00 0.00 
 3/4/2006 0.00 0.00 
 3/5/2006 0.00 0.00 
 3/6/2006 0.00 0.00 
 3/7/2006 0.01 0.00 
 3/8/2006 0.01 0.00 
 3/9/2006 0.04 0.00 
 3/10/2006 0.00 0.00 
 3/11/2006 0.00 0.00 
 3/12/2006 0.00 0.00 
 3/13/2006 0.02 0.00 
 3/14/2006 0.00 0.00 
 3/15/2006 0.00 0.00 
 3/16/2006 0.00 0.00 
 3/17/2006 0.01 0.00 
 3/18/2006 0.00 0.00 
 3/19/2006 0.00 0.00 
 3/20/2006 0.06 0.00 
 3/21/2006 0.00 0.00 
 3/22/2006 0.02 0.00 
 3/23/2006 0.03 0.00 
 3/24/2006 0.00 0.00 
 3/25/2006 0.00 0.00 
 3/26/2006 0.00 0.00 
 3/27/2006 0.00 0.00 
 3/28/2006 0.60 0.00 
 3/29/2006 0.29 0.00 
 3/30/2006 0.01 0.00 
 3/31/2006 0.00 0.00 
 4/1/2006 0.00 0.00 
 4/2/2006 0.00 0.00 
 4/3/2006 0.00 0.00 
 4/4/2006 0.00 0.00 
 4/5/2006 0.01 0.00 
 4/6/2006 0.00 0.00 
 4/7/2006 0.00 0.00 
 4/8/2006 0.00 0.00 
 4/9/2006 0.00 0.00 
 4/10/2006 0.00 0.00 
 4/11/2006 0.00 0.00 
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4/12/2006 0.00 0.00 
 4/13/2006 0.00 0.00 
 4/14/2006 0.01 0.00 
 4/15/2006 0.01 0.00 
 4/16/2006 0.00 0.00 
 4/17/2006 0.00 0.00 
 4/18/2006 0.01 0.00 
 4/19/2006 0.00 0.00 
 4/20/2006 0.00 0.00 
 4/21/2006 0.57 0.00 
 4/22/2006 0.04 0.00 
 4/23/2006 0.00 0.00 
 4/24/2006 0.01 0.00 
 4/25/2006 0.05 0.00 
 4/26/2006 0.10 0.00 
 4/27/2006 0.00 0.00 
 4/28/2006 0.00 0.00 
 4/29/2006 0.73 0.00 
 4/30/2006 0.00 0.00 
 5/1/2006 0.01 0.00 
 5/2/2006 0.02 0.00 
 5/3/2006 0.00 0.00 
 5/4/2006 0.33 0.00 
 5/5/2006 0.00 0.00 
 5/6/2006 0.65 0.00 
 5/7/2006 0.00 0.00 
 5/8/2006 0.00 0.00 
 5/9/2006 0.00 0.00 
 5/10/2006 0.00 0.00 
 5/11/2006 0.00 0.00 B C 

5/12/2006 0.00 0.00 B C 
5/13/2006 0.00 0.00 B C 
5/14/2006 0.70 0.00 

 5/15/2006 0.00 0.00 
 5/16/2006 0.00 0.00 
 5/17/2006 0.00 0.00 
 5/18/2006 0.00 0.00 
 5/19/2006 0.01 0.00 
 5/20/2006 0.00 0.00 
 5/21/2006 0.00 0.00 
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5/22/2006 0.01 0.00 
 5/23/2006 0.00 0.00 
 5/24/2006 0.00 0.00 
 5/25/2006 0.00 0.00 
 5/26/2006 0.00 0.00 
 5/27/2006 0.00 0.00 
 5/28/2006 0.02 0.00 
 5/29/2006 1.22 0.00 
 5/30/2006 0.00 0.00 
 5/31/2006 1.93 0.00 
 6/1/2006 0.01 0.00 
 6/2/2006 0.00 0.00 
 6/3/2006 0.00 0.00 
 6/4/2006 0.00 0.00 
 6/5/2006 0.00 0.00 
 6/6/2006 0.00 0.00 
 6/7/2006 0.00 0.00 
 6/8/2006 0.43 0.00  C 

6/9/2006 0.00 0.00  C 
6/10/2006 0.00 0.00  C 
6/11/2006 0.00 0.00  C 
6/12/2006 0.00 0.00  C 
6/13/2006 0.07 0.00  C 
6/14/2006 0.01 0.00  C 
6/15/2006 0.00 0.00  C 
6/16/2006 0.01 0.00  C 
6/17/2006 0.07 0.00  C 
6/18/2006 1.10 0.00  C 
6/19/2006 3.90 9.86  C 
6/20/2006 0.67 5.46  C 
6/21/2006 0.00 1.73  C 
6/22/2006 0.00 0.10  C 
6/23/2006 0.00 0.00  C 
6/24/2006 0.00 0.00  C 
6/25/2006 0.00 0.00  C 
6/26/2006 0.00 0.00  C 
6/27/2006 0.00 0.00  C 
6/28/2006 0.00 0.00  C 
6/29/2006 0.00 0.00  C 
6/30/2006 0.00 0.00  C 
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7/1/2006 0.14 0.00  C 
7/2/2006 0.02 0.00  C 
7/3/2006 0.38 0.00  C 
7/4/2006 1.13 0.00  C 
7/5/2006 1.00 1.10  C 
7/6/2006 0.10 0.24 

 7/7/2006 0.00 0.01  T 
7/8/2006 0.02 0.00 

 7/9/2006 0.01 0.00 
 7/10/2006 0.00 0.00 
 7/11/2006 0.00 0.00 
 7/12/2006 0.00 0.00 
 7/13/2006 0.00 0.00 A C 

7/14/2006 0.00 0.00 
 7/15/2006 0.00 0.00 
 7/16/2006 0.00 0.00 
 7/17/2006 0.00 0.00 
 7/18/2006 0.75 0.00 
 7/19/2006 0.01 0.00 
 7/20/2006 0.00 0.00 
 7/21/2006 0.00 0.00 
 7/22/2006 0.01 0.00 
 7/23/2006 0.05 0.00 
 7/24/2006 0.00 0.00 
 7/25/2006 2.28 0.83 
 7/26/2006 1.26 8.30 
 7/27/2006 0.00 2.92 
 7/28/2006 0.00 0.57 
 7/29/2006 0.00 0.06 
 7/30/2006 0.00 0.00 
 7/31/2006 0.04 0.00 
 8/1/2006 0.00 0.00 
 8/2/2006 0.00 0.00 
 8/3/2006 0.00 0.00 
 8/4/2006 0.00 0.00 
 8/5/2006 0.00 0.00 
 8/6/2006 1.51 0.33 
 8/7/2006 0.08 0.00 
 8/8/2006 0.00 0.00 
 8/9/2006 0.00 0.00 
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8/10/2006 0.09 0.00 
 8/11/2006 0.01 0.00 A C 

8/12/2006 0.00 0.00 B C 
8/13/2006 0.00 0.00 

 8/14/2006 0.00 0.00 
 8/15/2006 0.01 0.00 
 8/16/2006 0.00 0.00 
 8/17/2006 0.00 0.00 
 8/18/2006 0.00 0.00 
 8/19/2006 0.48 0.00 
 8/20/2006 0.00 0.00 
 8/21/2006 0.00 0.00 
 8/22/2006 0.01 0.00 
 8/23/2006 0.79 0.00 
 8/24/2006 0.01 0.00 
 8/25/2006 0.00 0.00 
 8/26/2006 0.02 0.00 
 8/27/2006 0.00 0.00 
 8/28/2006 0.02 0.00 
 8/29/2006 0.01 0.00 
 8/30/2006 0.00 0.00 
 8/31/2006 0.00 0.00 
 9/1/2006 0.00 0.00 
 9/2/2006 0.00 0.00 
 9/3/2006 0.00 0.00 
 9/4/2006 0.00 0.00 
 9/5/2006 0.01 0.00 
 9/6/2006 0.01 0.00 
 9/7/2006 0.00 0.00 
 9/8/2006 0.30 0.00 B C 

9/9/2006 6.10 0.00 B C 
9/10/2006 5.60 0.00 B C 
9/11/2006 3.30 0.00 B C 
9/12/2006 43.90 0.00 B C 
9/13/2006 0.00 0.00 B C 
9/14/2006 0.00 0.00 B C 
9/15/2006 0.38 0.00 

 9/16/2006 0.09 0.00 
 9/17/2006 0.40 0.00 
 9/18/2006 0.10 0.00 
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9/19/2006 0.00 0.00 
 9/20/2006 0.00 0.00 
 9/21/2006 0.04 0.00 
 9/22/2006 0.00 0.00 
 9/23/2006 0.46 0.00 
 9/24/2006 0.49 0.00 
 9/25/2006 0.00 0.00 
 9/26/2006 0.00 0.00 
 9/27/2006 0.00 0.00 
 9/28/2006 0.00 0.00 
 9/29/2006 0.00 0.00 
 9/30/2006 0.00 0.00 
 10/1/2006 0.01 0.00 
 10/2/2006 0.00 0.00 
 10/3/2006 0.00 0.00 
 10/4/2006 0.01 0.00 
 10/5/2006 0.01 0.00 
 10/6/2006 0.00 0.00 
 10/7/2006 0.00 0.00 
 10/8/2006 0.00 0.00 
 10/9/2006 0.00 0.00 
 10/10/2006 1.06 0.00 
 10/11/2006 0.01 0.00 
 10/12/2006 1.89 0.00 
 10/13/2006 0.00 0.00 
 10/14/2006 0.00 0.00 
 10/15/2006 2.20 0.59 
 10/16/2006 3.83 34.87 
 10/17/2006 0.01 15.24 
 10/18/2006 0.00 1.31 
 10/19/2006 0.06 0.17 
 10/20/2006 0.00 0.00  T 

10/21/2006 0.03 0.00 
 10/22/2006 0.12 0.00 
 10/23/2006 0.00 0.00 
 10/24/2006 0.00 0.00 
 10/25/2006 0.00 0.00 
 10/26/2006 3.36 22.49 
 10/27/2006 0.53 31.79 
 10/28/2006 0.00 2.06 
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10/29/2006 0.00 0.22 
 10/30/2006 0.01 0.01  T 

10/31/2006 0.00 0.00 B C 
11/1/2006 0.00 0.00 B C 
11/2/2006 0.00 0.00 

 11/3/2006 0.00 0.00 
 11/4/2006 0.00 0.00 
 11/5/2006 0.02 0.00 
 11/6/2006 0.12 0.00 
 11/7/2006 0.01 0.00 
 11/8/2006 0.01 0.00 
 11/9/2006 0.01 0.00 
 11/10/2006 0.07 0.00 
 11/11/2006 0.00 0.00 
 11/12/2006 0.00 0.00 
 11/13/2006 0.00 0.00 
 11/14/2006 0.02 0.00 
 11/15/2006 0.00 0.00 
 11/16/2006 0.00 0.00 
 11/17/2006 0.00 0.00 
 11/18/2006 0.01 0.00 
 11/19/2006 0.00 0.00 
 11/20/2006 0.00 0.00 
 11/21/2006 0.00 0.00 
 11/22/2006 0.00 0.00 
 11/23/2006 0.01 0.00 
 11/24/2006 0.01 0.00 
 11/25/2006 0.01 0.00 
 11/26/2006 0.01 0.00 
 11/27/2006 0.23 0.00 
 11/28/2006 0.01 0.00 
 11/29/2006 0.01 0.00 
 11/30/2006 0.01 0.00 
 12/1/2006 0.00 0.00 
 12/2/2006 0.00 0.00 
 12/3/2006 0.00 0.00 
 12/4/2006 0.00 0.00 
 12/5/2006 0.00 0.00 
 12/6/2006 0.00 0.00 
 12/7/2006 0.00 0.00 
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12/8/2006 0.00 0.00 
 12/9/2006 0.00 0.00 
 12/10/2006 0.01 0.00 
 12/11/2006 1.66 0.52 
 12/12/2006 0.01 0.19 
 12/13/2006 0.00 0.01 
 12/14/2006 0.01 0.00 
 12/15/2006 0.00 0.00 
 12/16/2006 0.01 0.00 
 12/17/2006 0.01 0.00 
 12/18/2006 0.06 0.00 
 12/19/2006 0.00 0.00 
 12/20/2006 0.04 0.00 
 12/21/2006 0.38 0.00 
 12/22/2006 0.00 0.00 B C 

12/23/2006 9.40 0.00 B C T 
12/24/2006 0.57 0.83 

 12/25/2006 0.01 0.20 
 12/26/2006 0.00 0.03 
 12/27/2006 0.00 0.05 
 12/28/2006 0.01 0.00  T 

12/29/2006 1.70 3.91 
 12/30/2006 0.32 24.16 
 12/31/2006 0.01 2.23 
 1/1/2007 0.00 0.41 
 1/2/2007 0.00 0.11 
 1/3/2007 0.13 0.05 
 1/4/2007 0.88 10.19 
 1/5/2007 0.00 3.03 
 1/6/2007 0.01 0.89 
 1/7/2007 0.19 0.62 
 1/8/2007 0.00 0.18 
 1/9/2007 0.00 0.09 
 1/10/2007 0.00 0.04 
 1/11/2007 0.01 0.03 
 1/12/2007 0.00 0.03 
 1/13/2007 0.02 0.07 
 1/14/2007 0.35 0.30 
 1/15/2007 0.44 1.80 
 1/16/2007 0.05 0.30 
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1/17/2007 0.05 0.15 
 1/18/2007 0.22 0.41 
 1/19/2007 0.05 1.05 
 1/20/2007 0.12 0.65 
 1/21/2007 0.06 0.88 
 1/22/2007 0.00 0.49 
 1/23/2007 0.57 0.91 
 1/24/2007 0.86 21.07 
 1/25/2007 0.01 6.13 
 1/26/2007 0.00 1.58 
 1/27/2007 0.63 9.08 
 1/28/2007 0.00 3.08 
 1/29/2007 0.00 0.86 
 1/30/2007 0.32 1.95 
 1/31/2007 0.18 1.37 
 2/1/2007 0.03 1.41 
 2/2/2007 0.00 0.65 
 2/3/2007 0.00 0.29 
 2/4/2007 0.00 0.18 
 2/5/2007 0.01 0.11 
 2/6/2007 0.01 0.08 
 2/7/2007 0.00 0.13 
 2/8/2007 0.01 0.07 
 2/9/2007 0.00 0.03 
 2/10/2007 0.00 0.02 
 2/11/2007 0.00 0.03 
 2/12/2007 1.26 10.88 
 2/13/2007 0.10 5.53 A C 

2/14/2007 0.00 0.19 B C 
2/15/2007 0.00 0.40 B C 
2/16/2007 0.00 0.14 B C 
2/17/2007 0.00 0.08 B C 
2/18/2007 0.00 0.02 B C 
2/19/2007 0.00 0.03 B C 
2/20/2007 0.00 0.04 B C 
2/21/2007 3.00 0.12 B C 
2/22/2007 0.00 0.06 B C 
2/23/2007 0.00 0.04 B C 
2/24/2007 0.80 0.06 B C 
2/25/2007 0.00 0.03 B C 
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2/26/2007 0.00 0.02 B C 
2/27/2007 0.50 0.01 B C 
2/28/2007 0.00 0.01 B C 
3/1/2007 0.00 0.02 B C 
3/2/2007 0.00 0.00 B C 
3/3/2007 0.00 0.00 B C 
3/4/2007 0.00 0.00 B C 
3/5/2007 0.00 0.00 B C 
3/6/2007 0.00 0.00 B C 
3/7/2007 0.00 0.00 B C 
3/8/2007 0.00 0.00 B C 
3/9/2007 0.00 0.00 B C 
3/10/2007 0.00 0.00 B C 
3/11/2007 0.00 0.00 B C 
3/12/2007 46.50 1.14 B C 
3/13/2007 6.40 0.05 B C 
3/14/2007 72.40 21.56 B C 
3/15/2007 0.01 15.19 

 3/16/2007 0.01 1.36 
 3/17/2007 0.29 0.40 
 3/18/2007 0.00 0.18 
 3/19/2007 0.00 0.09 
 3/20/2007 0.00 0.08 
 3/21/2007 0.00 0.04 
 3/22/2007 0.01 0.03 
 3/23/2007 0.00 0.00  T 

3/24/2007 0.02 0.00 
 3/25/2007 0.00 0.00 
 3/26/2007 0.03 0.00 
 3/27/2007 0.04 0.00 
 3/28/2007 0.00 0.00 
 3/29/2007 0.00 0.00 
 3/30/2007 0.00 0.00 
 3/31/2007 2.67 32.30 
 4/1/2007 0.30 8.39 
 4/2/2007 0.01 1.99 
 4/3/2007 0.00 1.24 
 4/4/2007 0.32 1.19 
 4/5/2007 0.00 0.69 
 4/6/2007 0.00 0.29 
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4/7/2007 0.40 0.04 
 4/8/2007 0.29 0.91 
 4/9/2007 0.00 0.30 
 4/10/2007 0.25 0.42 
 4/11/2007 0.00 0.09 
 4/12/2007 0.00 0.02 
 4/13/2007 0.15 0.06 
 4/14/2007 0.79 5.32 
 4/15/2007 0.00 0.66 
 4/16/2007 0.00 0.15 
 4/17/2007 0.47 0.30 
 4/18/2007 0.01 0.77 
 4/19/2007 0.00 0.12 
 4/20/2007 0.00 0.02 
 4/21/2007 0.01 0.00  T 

4/22/2007 0.00 0.00 
 4/23/2007 0.00 0.00 
 4/24/2007 0.00 0.00 
 4/25/2007 0.66 0.48 
 4/26/2007 0.01 0.10 
 4/27/2007 0.00 0.00  T 

4/28/2007 0.00 0.00 
 4/29/2007 0.01 0.00 
 4/30/2007 0.00 0.00 
 5/1/2007 0.00 0.00 
 5/2/2007 0.00 0.00 
 5/3/2007 0.49 0.02 
 5/4/2007 0.00 0.00 
 5/5/2007 0.00 0.00 
 5/6/2007 0.02 0.00 
 5/7/2007 0.00 0.00 
 5/8/2007 0.00 0.00 
 5/9/2007 0.00 0.00 
 5/10/2007 0.65 0.00 
 5/11/2007 0.33 0.00 
 5/12/2007 0.00 0.00 
 5/13/2007 0.00 0.00 
 5/14/2007 0.01 0.00 
 5/15/2007 0.06 0.00 
 5/16/2007 0.00 0.00 
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5/17/2007 0.00 0.00 
 5/18/2007 0.00 0.00 
 5/19/2007 0.00 0.00 
 5/20/2007 0.00 0.00 
 5/21/2007 0.00 0.00 
 5/22/2007 0.37 0.00 
 5/23/2007 0.00 0.00 
 5/24/2007 0.00 0.00 
 5/25/2007 0.00 0.00 
 5/26/2007 0.86 0.00 
 5/27/2007 0.01 0.00 
 5/28/2007 2.36 0.00 
 5/29/2007 0.02 0.00 
 5/30/2007 0.01 0.20 
 5/31/2007 0.00 0.17 
 6/1/2007 0.00 0.01  T 

6/2/2007 0.62 0.46 
 6/3/2007 0.01 0.36 
 6/4/2007 0.04 0.01  T 

6/5/2007 0.00 0.00 
 6/6/2007 0.00 0.00 
 6/7/2007 0.00 0.00 
 6/8/2007 0.00 0.00 
 6/9/2007 0.00 0.00 
 6/10/2007 0.01 0.00 
 6/11/2007 0.00 0.00 
 6/12/2007 0.00 0.00 
 6/13/2007 0.02 0.00 
 6/14/2007 0.01 0.00 
 6/15/2007 0.34 0.00 
 6/16/2007 0.10 0.00 
 6/17/2007 0.01 0.00 
 6/18/2007 0.00 0.00 
 6/19/2007 0.00 0.00 
 6/20/2007 0.00 0.00 
 6/21/2007 0.00 0.00 
 6/22/2007 0.00 0.00 
 6/23/2007 0.00 0.00 
 6/24/2007 0.00 0.00 
 6/25/2007 0.39 0.00 
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6/26/2007 0.20 0.00 
 6/27/2007 0.00 0.00 
 6/28/2007 0.00 0.00 
 6/29/2007 0.57 0.00 
 6/30/2007 0.14 0.00 
 7/1/2007 0.41 0.00 
 7/2/2007 1.21 0.42 
 7/3/2007 0.45 0.02 
 7/4/2007 0.50 0.56 
 7/5/2007 1.56 18.61 
 7/6/2007 0.73 13.78 
 7/7/2007 1.43 18.06 
 7/8/2007 0.00 10.70 
 7/9/2007 0.00 1.17 
 7/10/2007 0.00 0.28 
 7/11/2007 0.00 0.04 
 7/12/2007 0.00 0.00 
 7/13/2007 0.00 0.00 
 7/14/2007 0.00 0.00 
 7/15/2007 0.33 0.00 
 7/16/2007 0.17 0.00 
 7/17/2007 0.06 0.00 
 7/18/2007 0.10 0.00 
 7/19/2007 0.67 0.13 
 7/20/2007 1.50 13.89  C 

7/21/2007 0.00 3.87 
 7/22/2007 1.11 9.53 
 7/23/2007 0.01 4.14 
 7/24/2007 0.00 0.69 
 7/25/2007 0.00 0.20 
 7/26/2007 1.02 3.33 
 7/27/2007 2.01 30.87 
 7/28/2007 0.00 3.92 
 7/29/2007 0.82 10.32 
 7/30/2007 0.00 3.74 
 7/31/2007 0.00 0.83 
 8/1/2007 0.99 3.97 
 8/2/2007 0.85 22.62 
 8/3/2007 0.00 4.67 
 8/4/2007 0.02 0.69 
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8/5/2007 0.01 0.27 
 8/6/2007 0.00 0.09 
 8/7/2007 0.02 0.02 
 8/8/2007 0.00 0.00 
 8/9/2007 0.00 0.00 
 8/10/2007 0.00 0.00 
 8/11/2007 0.00 0.00 
 8/12/2007 0.11 0.00 
 8/13/2007 0.00 0.00 
 8/14/2007 0.00 0.00 
 8/15/2007 0.09 0.00 
 8/16/2007 4.53 36.43 
 8/17/2007 0.00 8.68 
 8/18/2007 0.65 5.75 
 8/19/2007 0.04 2.26 
 8/20/2007 0.26 0.89 
 8/21/2007 0.00 0.30 
 8/22/2007 0.00 0.03 
 8/23/2007 0.00 0.00 
 8/24/2007 0.00 0.00 
 8/25/2007 0.26 0.00 
 8/26/2007 0.00 0.00 
 8/27/2007 0.01 0.00 
 8/28/2007 0.01 0.00 
 8/29/2007 0.54 0.00 
 8/30/2007 0.09 0.00 
 8/31/2007 0.63 0.00 
 9/1/2007 0.01 0.00  T 

9/2/2007 0.18 0.00 
 9/3/2007 0.39 0.12 
 9/4/2007 0.21 0.02 
 9/5/2007 0.44 0.10 
 9/6/2007 0.01 0.00 
 9/7/2007 0.06 0.00 
 9/8/2007 0.03 0.00 
 9/9/2007 0.00 0.00 
 9/10/2007 0.00 0.00 
 9/11/2007 0.00 0.00 B C 

9/12/2007 47.80 0 B C 
9/13/2007 0.00 0 B C 
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9/14/2007 0.00 0.01 B C 
9/15/2007 0.00 0.00 B T 
9/16/2007 0.00 0.00  T 
9/17/2007 0.00 0.00 

 9/18/2007 0.00 0.00 
 9/19/2007 0.03 0.00 
 9/20/2007 0.01 0.00 
 9/21/2007 0.00 0.00 
 9/22/2007 0.01 0.00 
 9/23/2007 0.00 0.00 
 9/24/2007 0.00 0.00 
 9/25/2007 0.29 0.00 
 9/26/2007 0.04 0.00 
 9/27/2007 3.24 6.13 
 9/28/2007 0.01 0.87 
 9/29/2007 0.73 0.04 
 9/30/2007 2.13 14.13 
 10/1/2007 0.00 0.13 
 10/2/2007 0.01 0.01 
 10/3/2007 0.00 0.06 
 10/4/2007 0.01 0.33 
 10/5/2007 0.56 0.05 
 10/6/2007 0.98 9.40 
 10/7/2007 0.29 4.41 
 10/8/2007 0.01 2.25 
 10/9/2007 0.01 0.92 
 10/10/2007 0.00 0.33 
 10/11/2007 0.00 0.06 B C 

10/12/2007 0.00 0 B C 
10/13/2007 0.00 0 B C 
10/14/2007 0.00 0 B C 
10/15/2007 0.00 0 B C 
10/16/2007 0.00 0 B C 
10/17/2007 0.00 0 B C 
10/18/2007 0.00 0 B C 
10/19/2007 0.00 0 B C 
10/20/2007 0.00 0 B C 
10/21/2007 0.00 0 B C 
10/22/2007 2.80 0 B C 
10/23/2007 0.00 0 B C 
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10/24/2007 0.00 0.00 B C 
10/25/2007 0.00 0.00 

 10/26/2007 0.00 0.00 
 10/27/2007 0.00 0.00 
 10/28/2007 0.00 0.00 
 10/29/2007 0.00 0.00 
 10/30/2007 0.00 0.00 
 10/31/2007 0.00 0.00 
 11/1/2007 0.01 0.00 
 11/2/2007 0.01 0.00 
 11/3/2007 0.00 0.00 
 11/4/2007 0.01 0.00 
 11/5/2007 0.01 0.00 
 11/6/2007 0.00 0.00 
 11/7/2007 0.00 0.00 
 11/8/2007 0.00 0.00 
 11/9/2007 0.00 0.00 
 11/10/2007 0.04 0.00 
 11/11/2007 0.01 0.00 
 11/12/2007 0.01 0.00 
 11/13/2007 0.15 0.00 
 11/14/2007 0.02 0.00 
 11/15/2007 0.00 0.00 
 11/16/2007 0.00 0.00 
 11/17/2007 0.03 0.00 
 11/18/2007 2.13 1.46 
 11/19/2007 0.00 0.02 
 11/20/2007 0.03 0.00 A C 

11/21/2007 8.40 0 B C 
11/22/2007 0.00 0 B C 
11/23/2007 0.30 0.00 B C 
11/24/2007 1.21 2.25 

 11/25/2007 0.08 1.64 
 11/26/2007 0.00 0.77 
 11/27/2007 0.00 0.27 
 11/28/2007 0.00 0.06 
 11/29/2007 0.00 0.01 
 11/30/2007 0.01 0.00  T 

12/1/2007 0.00 0.00  T 
12/2/2007 0.01 0.00 
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12/3/2007 0.00 0.00 
 12/4/2007 0.00 0.00 
 12/5/2007 0.00 0.00 
 12/6/2007 0.01 0.00 
 12/7/2007 0.01 0.00 
 12/8/2007 0.00 0.00 
 12/9/2007 0.00 0.00 
 12/10/2007 0.12 0.00 
 12/11/2007 0.01 0.00 
 12/12/2007 0.00 0.00 
 12/13/2007 0.06 0.00 
 12/14/2007 0.02 0.00 
 12/15/2007 0.64 0.14 
 12/16/2007 0.00 0.00 
 12/17/2007 0.00 0.00 
 12/18/2007 0.00 0.00 
 12/19/2007 0.08 0.00 
 12/20/2007 0.50 0.00 B C 

12/21/2007 0.00 0.00 B C 
12/22/2007 0.25 0.00  T 
12/23/2007 0.00 0.00 

 12/24/2007 0.00 0.00 
 12/25/2007 0.00 0.00 
 12/26/2007 0.32 0.03 
 12/27/2007 0.00 0.00 
 12/28/2007 0.59 2.53 
 12/29/2007 0.00 1.14 
 12/30/2007 0.00 0.12 
 12/31/2007 0.01 0.03 
 1/1/2008 0.00 0.00 
 1/2/2008 0.00 0.00 
 1/3/2008 0.00 0.00 
 1/4/2008 0.00 0.00 
 1/5/2008 0.14 0.00 
 1/6/2008 0.01 0.00 
 1/7/2008 0.01 0.00 
 1/8/2008 0.11 0.00 
 1/9/2008 0.00 0.00 
 1/10/2008 0.00 0.00 
 1/11/2008 0.00 0.00 
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1/12/2008 0.15 0.00 
 1/13/2008 0.00 0.00 
 1/14/2008 0.00 0.00 
 1/15/2008 0.54 0.11 
 1/16/2008 1.26 20.36 
 1/17/2008 2.15 2.16 A C 

1/18/2008 0.00 0.00 B C 
1/19/2008 20.46 0.00 B C 
1/20/2008 3.03 0.00 B C 
1/21/2008 1.16 0.00 B C 
1/22/2008 0.78 0.00 B C 
1/23/2008 7.55 0.00 B C 
1/24/2008 7.76 0.00 B C 
1/25/2008 10.62 0.00 B C 
1/26/2008 4.67 0.00 B C 
1/27/2008 1.60 0.00 B C 
1/28/2008 1.01 0.00 B C 
1/29/2008 0.69 0.00 B C 
1/30/2008 0.28 0.00 B C 
1/31/2008 14.17 0.00 B C 
2/1/2008 0.00 3.58 B C 
2/2/2008 0.00 1.31 B C 
2/3/2008 1.80 0.89 B C 
2/4/2008 0.00 0.78 B C 
2/5/2008 0.30 0.56 B C 
2/6/2008 0.00 0.20 B C 
2/7/2008 0.00 0.07 B C 
2/8/2008 0.00 0.02 B C 
2/9/2008 0.00 0.01 B C 
2/10/2008 0.00 0.00 B C 
2/11/2008 2.80 0.01 B C 
2/12/2008 11.70 0.15 B C 
2/13/2008 0.00 0.04 B C 
2/14/2008 0.00 0.05 B C 
2/15/2008 8.10 0.08 B C 
2/16/2008 33.50 4.76 B C 
2/17/2008 0.00 16.02 B C 
2/18/2008 0.00 1.88 B C 
2/19/2008 0.00 0.75 B C 
2/20/2008 14.50 1.74 B C 



 

123 

2/21/2008 3.00 3.16 B C 
2/22/2008 0.00 1.67 B C 
2/23/2008 0.00 0.70 B C 
2/24/2008 0.00 0.40 B C 
2/25/2008 0.00 0.25 B C 
2/26/2008 0.30 0.19 B C 
2/27/2008 0.00 0.06 B C 
2/28/2008 0.00 0.03 B C 
2/29/2008 0.00 0.03 B C 
3/1/2008 0.00 0.02 B C 
3/2/2008 0.00 0.02 B C 
3/3/2008 4.30 0.46 B C 
3/4/2008 0.00 0.21 B C 
3/5/2008 0.00 0.10 B C 
3/6/2008 26.20 3.38 B C 
3/7/2008 0.00 4.89 B C 
3/8/2008 0.00 1.22 B C 
3/9/2008 0.00 0.80 B C 
3/10/2008 23.40 4.23 B C 
3/11/2008 0.00 2.93 B C 
3/12/2008 0.00 0 B C 
3/13/2008 0.00 0.60 B C 
3/14/2008 0.00 0.71 B 
3/15/2008 0.00 0.38 B 
3/16/2008 0.00 0.40 B 
3/17/2008 0.00 0.38 B 
3/18/2008 2.50 0.26 B 
3/19/2008 0.00 0.12 B 
3/20/2008 0.00 0.00 B T 
3/21/2008 0.00 0.00 B 
3/22/2008 0.00 0.00 B 
3/23/2008 0.00 0.00 B 
3/24/2008 0.00 0.00 B 
3/25/2008 0.00 0.00 B 
3/26/2008 0.00 0.00 B 
3/27/2008 0.00 0.00 B 
3/28/2008 0.00 0.00 B 
3/29/2008 0.30 0.00 B 
3/30/2008 2.00 0.00 B 
3/31/2008 0.30 0.00 B 
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4/1/2008 0.00 0.00 B 
4/2/2008 0.30 0.00 B 
4/3/2008 0.00 0.00 B 
4/4/2008 1.30 0.00 B 
4/5/2008 0.00 0.00 B 
4/6/2008 0.00 0.00 B 
4/7/2008 0.00 0.00 B 
4/8/2008 0.00 0.00 B 
4/9/2008 0.00 0.00 B 
4/10/2008 0.00 0.00 B 
4/11/2008 0.00 0.00 B 
4/12/2008 0.00 0.00 B 
4/13/2008 0.00 0.00 B 
4/14/2008 0.00 0.00 B 
4/15/2008 0.00 0.00 B 
4/16/2008 0.00 0.00 B 
4/17/2008 0.00 0.00 B 
4/18/2008 20.80 0.00 B 
4/19/2008 0.00 0.00 B 
4/20/2008 0.00 0.00 B 
4/21/2008 0.00 0.00 B 
4/22/2008 0.00 0.00 B 
4/23/2008 0.00 0.00 B 
4/24/2008 0.00 0.00 B 
4/25/2008 0.00 0.00 B 
4/26/2008 17.30 0.00 B 
4/27/2008 15.20 0.00 B 
4/28/2008 0.00 0.00 B 
4/29/2008 0.00 0.00 B 
4/30/2008 0.00 0.00 B 
5/1/2008 0.80 0.00 B 
5/2/2008 0.00 0.00 B 
5/3/2008 0.00 0.00 B 
5/4/2008 0.00 0.00 B 
5/5/2008 4.80 0.00 B 
5/6/2008 0.00 0.00 B 
5/7/2008 0.00 0.00 B 
5/8/2008 0.00 0.00 B 
5/9/2008 0.00 0.00 B 
5/10/2008 0.00 0.00 B 
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5/11/2008 0.00 0.00 B 
5/12/2008 0.00 0.00 B 
5/13/2008 0.00 0.00 B 
5/14/2008 0.50 0.00 B 
5/15/2008 10.90 0.00 B 
5/16/2008 3.00 0.00 B 
5/17/2008 0.00 0.00 B 
5/18/2008 0.00 0.00 B 
5/19/2008 0.00 0.00 B 
5/20/2008 0.00 0.00 B 
5/21/2008 0.00 0.00 B 
5/22/2008 0.00 0.00 B 
5/23/2008 0.00 0.00 B 
5/24/2008 0.00 0.00 B 
5/25/2008 0.00 0.00 B 
5/26/2008 0.00 0.00 B 
5/27/2008 0.00 0.00 B 
5/28/2008 9.40 0.00 B 
5/29/2008 0.00 0.00 B 
5/30/2008 0.00 0.00 B 
5/31/2008 0.00 0.00 B 
6/1/2008 0.00 0.00 B 
6/2/2008 0.00 0.00 B 
6/3/2008 0.00 0.00 B 
6/4/2008 0.00 0.00 B 
6/5/2008 0.00 0.00 B 
6/6/2008 0.50 0.00 B 
6/7/2008 0.50 0.00 B 
6/8/2008 0.00 0.00 B 
6/9/2008 0.00 0.00 B 
6/10/2008 40.90 0.00 B C 
6/11/2008 0.00 0.00 B C 
6/12/2008 2.80 0.00 B C 
6/13/2008 0.30 0.00 B C 
6/14/2008 0.00 0.00 B C 
6/15/2008 0.00 0.00 B C 
6/16/2008 0.00 0.00 B C 
6/17/2008 21.80 0.00 B C 
6/18/2008 0.00 0.00 B C 
6/19/2008 0.00 0.00 B C 
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6/20/2008 7.10 0.00 B C 
6/21/2008 5.30 0.00 B C 
6/22/2008 0.00 0.00 B C 
6/23/2008 1.50 0.00 B C 
6/24/2008 0.50 0.00 B C 
6/25/2008 9.70 0.00 B C 
6/26/2008 0.00 0.00 B C 
6/27/2008 0.00 0.00 B C 
6/28/2008 21.30 0.00 B C 
6/29/2008 0.00 0.00 B C 
6/30/2008 1.30 0.00 B C 
7/1/2008 2.30 0.00 B C 
7/2/2008 0.00 0.00 B C 
7/3/2008 0.00 0.00 B C 
7/4/2008 70.40 0.00 B C 
7/5/2008 0.00 0.00 B C 
7/6/2008 0.00 0.00 B C 
7/7/2008 0.00 0.00 B C 
7/8/2008 0.00 0.00 B C 
7/9/2008 0.00 0.00 B C 
7/10/2008 0.30 0.00 B C 
7/11/2008 0.00 0.00 B C 
7/12/2008 0.00 0.00 B C 
7/13/2008 0.00 0.00 B C 
7/14/2008 0.00 0.00 B C 
7/15/2008 0.00 0.00 B C 
7/16/2008 0.00 0.00 B 
7/17/2008 0.00 0.00 B 
7/18/2008 0.00 0.00 B 
7/19/2008 0.00 0.00 B 
7/20/2008 0.00 0.00 B 
7/21/2008 0.00 0.00 B 
7/22/2008 0.00 0.00 B 
7/23/2008 10.70 0.00 B 
7/24/2008 35.80 0.12 B 
7/25/2008 0.00 0.00 B 
7/26/2008 0.00 0.00 B 
7/27/2008 0.00 0.00 B 
7/28/2008 0.00 0.00 B 
7/29/2008 0.00 0.00 B 
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7/30/2008 0.00 0.00 B 
7/31/2008 0.00 0.00 B 
8/1/2008 0.00 0.00 B 
8/2/2008 0.00 0.00 B 
8/3/2008 1.80 0.00 B 
8/4/2008 0.00 0.00 B 
8/5/2008 44.20 3.52 B 
8/6/2008 2.30 0.66 B 
8/7/2008 1.00 0.03 B 
8/8/2008 0.00 0.00 B 
8/9/2008 0.00 0.00 B 
8/10/2008 0.00 0.00 B 
8/11/2008 0.00 0.00 B 
8/12/2008 0.00 0.00 B 
8/13/2008 3.00 0.00 B 
8/14/2008 0.00 0.00 B 
8/15/2008 0.30 0.00 B 
8/16/2008 12.70 0.00 B 
8/17/2008 8.90 0.00 B 
8/18/2008 1.50 0.00 B 
8/19/2008 29.70 0.00 B 
8/20/2008 51.80 0.00 B 
8/21/2008 37.10 0.44 B 
8/22/2008 0.00 0.20 B 
8/23/2008 4.60 0.11 B 
8/24/2008 0.00 0.27 B 
8/25/2008 0.00 0.00 B T 
8/26/2008 2.00 0.00 B 
8/27/2008 0.50 0.00 B 
8/28/2008 0.00 0.00 B 
8/29/2008 0.00 0.00 B 
8/30/2008 0.00 0.00 B 
8/31/2008 0.00 0.00 B 
9/1/2008 0.00 0.00 B 
9/2/2008 1.50 0.00 B 
9/3/2008 0.00 0.00 B 
9/4/2008 0.00 0.00 B 
9/5/2008 0.00 0.00 B 
9/6/2008 0.00 0.00 B 
9/7/2008 0.00 0.00 B 
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9/8/2008 0.00 0.00 B 
9/9/2008 0.00 0.00 B 
9/10/2008 0.00 0.00 B 
9/11/2008 8.60 0.00 B 
9/12/2008 54.60 0.00 B 
9/13/2008 170.40 44.25 B 
9/14/2008 96.30 41.29 B 
9/15/2008 0.00 7.19 B 
9/16/2008 0.00 0.99 B 
9/17/2008 0.00 0.26 B 
9/18/2008 0.30 0.04 B 
9/19/2008 0.00 0.00 B T 
9/20/2008 0.00 0.00 B 
9/21/2008 0.00 0.00 B 
9/22/2008 0.00 0.00 B 
9/23/2008 0.00 0.00 B 
9/24/2008 0.00 0.00 B 
9/25/2008 0.00 0.00 B 
9/26/2008 0.00 0.00 B 
9/27/2008 0.00 0.00 B 
9/28/2008 0.00 0.00 B 
9/29/2008 0.00 0.00 B 
9/30/2008 0.00 0.00 B 
10/1/2008 0.00 0.00 B 
10/2/2008 0.00 0.00 B 
10/3/2008 0.00 0.00 B 
10/4/2008 0.00 0.00 B 
10/5/2008 0.00 0.00 B 
10/6/2008 0.00 0.00 B 
10/7/2008 22.90 0.00 B 
10/8/2008 0.00 0.00 B 
10/9/2008 0.00 0.00 B 

10/10/2008 0.00 0.00 B 
10/11/2008 0.00 0.00 B 
10/12/2008 0.30 0.00 B 
10/13/2008 0.00 0.00 B 
10/14/2008 3.80 0.00 B 
10/15/2008 2.50 0.00 B 
10/16/2008 16.30 0.00 B 
10/17/2008 0.00 0.00 B 
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10/18/2008 0.00 0.00 B 
10/19/2008 0.00 0.00 B 
10/20/2008 0.00 0.00 B 
10/21/2008 0.00 0.00 B 
10/22/2008 3.00 0.00 B 
10/23/2008 0.30 0.00 B 
10/24/2008 0.00 0.00 B 
10/25/2008 0.00 0.00 B 
10/26/2008 0.00 0.00 B 
10/27/2008 0.00 0.00 B 
10/28/2008 0.00 0.00 B 
10/29/2008 0.00 0.00 B 
10/30/2008 0.00 0.00 B 
10/31/2008 0.00 0.00 B 
11/1/2008 0.00 0.00 B 
11/2/2008 0.00 0.00 B 
11/3/2008 0.00 0.00 B 
11/4/2008 0.00 0.00 B 
11/5/2008 1.50 0.00 B 
11/6/2008 0.00 0.00 B 
11/7/2008 4.30 0.00 B 
11/8/2008 0.00 0.00 B 
11/9/2008 0.00 0.00 B 

11/10/2008 47.20 0.00 B C 
11/11/2008 27.20 0.00 B C 
11/12/2008 53.10 0.00 B C 
11/13/2008 3.30 0.00 B C 
11/14/2008 0.00 0.00 B C 
11/15/2008 0.00 0.00 B C 
11/16/2008 0.00 0.00 B C 
11/17/2008 0.00 0.00 B C 
11/18/2008 0.00 0.00 B C 
11/19/2008 0.00 0.00 B C 
11/20/2008 0.00 0.00 B C 
11/21/2008 0.00 0.00 B 
11/22/2008 0.00 0.00 B 
11/23/2008 0.00 0.00 B 
11/24/2008 0.00 0.00 B 
11/25/2008 0.00 0.00 B 
11/26/2008 0.00 0.00 B 
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11/27/2008 0.00 0.00 B 
11/28/2008 0.80 0.00 B 
11/29/2008 3.60 0.00 B 
11/30/2008 0.00 0.00 B 
12/1/2008 0.00 0.00 B 
12/2/2008 0.00 0.00 B 
12/3/2008 3.60 0.00 B 
12/4/2008 0.00 0.00 B 
12/5/2008 0.00 0.00 B 
12/6/2008 0.00 0.00 B 
12/7/2008 0.00 0.00 B 
12/8/2008 0.00 0.00 B 
12/9/2008 5.10 0.00 B 

12/10/2008 6.10 0.00 B 
12/11/2008 0.00 0.00 B 
12/12/2008 0.00 0.00 B 
12/13/2008 0.00 0.00 B 
12/14/2008 0.80 0.00 B 
12/15/2008 0.00 0.00 B 
12/16/2008 2.80 0.00 B 
12/17/2008 0.00 0.00 B 
12/18/2008 2.30 0.00 B 
12/19/2008 0.00 0.00 B 
12/20/2008 0.00 0.00 B 
12/21/2008 0.00 0.00 B 
12/22/2008 0.30 0.00 B 
12/23/2008 7.90 0.00 B 
12/24/2008 1.80 0.00 B 
12/25/2008 0.00 0.00 B 
12/26/2008 0.00 0.00 B 
12/27/2008 2.80 0.00 B 
12/28/2008 1.00 0.00 B 
12/29/2008 0.00 0.00 B 
12/30/2008 0.00 0.00 B 
12/31/2008 0.00 0.00 B 
1/1/2009 0.00 0.00 B 
1/2/2009 0.00 0.00 B 
1/3/2009 0.00 0.00 B 
1/4/2009 0.00 0.00 B 
1/5/2009 0.00 0.00 B 
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1/6/2009 4.60 0.00 B 
1/7/2009 0.00 0.00 B 
1/8/2009 0.00 0.00 B 
1/9/2009 0.00 0.00 B 
1/10/2009 0.50 0.00 B 
1/11/2009 0.00 0.00 B 
1/12/2009 0.00 0.00 B 
1/13/2009 0.00 0.00 B 
1/14/2009 0.00 0.00 B 
1/15/2009 0.00 0.00 B 
1/16/2009 0.00 0.00 B 
1/17/2009 0.00 0.00 B 
1/18/2009 0.00 0.00 B 
1/19/2009 0.00 0.00 B 
1/20/2009 0.00 0.00 B 
1/21/2009 0.00 0.00 B 
1/22/2009 0.00 0.00 B 
1/23/2009 0.00 0.00 B 
1/24/2009 0.00 0.00 B 
1/25/2009 0.00 0.00 B 
1/26/2009 0.00 0.00 B 
1/27/2009 0.00 0.00 B 
1/28/2009 1.50 0.00 B 
1/29/2009 0.00 0.00 B 
1/30/2009 0.00 0.00 B 
1/31/2009 0.00 0.00 B 
2/1/2009 4.80 0.00 B 
2/2/2009 0.50 0.00 B 
2/3/2009 0.00 0.00 B 
2/4/2009 0.00 0.00 B 
2/5/2009 0.00 0.00 B 
2/6/2009 0.00 0.00 B 
2/7/2009 0.00 0.00 B 
2/8/2009 0.00 0.00 B 
2/9/2009 3.30 0.00 B 
2/10/2009 0.80 0.00 B 
2/11/2009 1.50 0.00 B 
2/12/2009 0.00 0.00 B 
2/13/2009 0.30 0.00 B 
2/14/2009 26.40 0.00 B 
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2/15/2009 0.30 0.00 B 
2/16/2009 0.00 0.00 B 
2/17/2009 0.80 0.00 B 
2/18/2009 0.30 0.00 B C 
2/19/2009 0.00 0.00 B C 
2/20/2009 0.00 0.00 B C 
2/21/2009 0.50 0.00 B C 
2/22/2009 0.00 0.00 B C 
2/23/2009 0.00 0.00 B C 
2/24/2009 0.00 0.00 B C 
2/25/2009 0.00 0.00 B C 
2/26/2009 0.00 0.00 B C 
2/27/2009 0.00 0.00 B C 
2/28/2009 0.80 0.00 B C 
3/1/2009 0.00 0.00 B C 
3/2/2009 0.00 0.00 B C 
3/3/2009 0.00 0.00 B C 
3/4/2009 0.00 0.00 B C 
3/5/2009 0.00 0.00 B C 
3/6/2009 0.00 0.00 B C 
3/7/2009 0.00 0.00 B C 
3/8/2009 0.00 0.00 B C 
3/9/2009 0.00 0.00 B C 
3/10/2009 0.00 0.00 B C 
3/11/2009 0.00 0.00 B C 
3/12/2009 1.00 0.00 B C 
3/13/2009 4.60 0.00 B C 
3/14/2009 13.20 0.00 B C 
3/15/2009 5.10 0.00 B C 
3/16/2009 0.00 0.00 B C 
3/17/2009 0.00 0.00 B C 
3/18/2009 0.00 0.00 B C 
3/19/2009 0.00 0.00 B C 
3/20/2009 0.00 0.00 B C 
3/21/2009 0.00 0.00 B C 
3/22/2009 0.00 0.00 B C 
3/23/2009 0.00 0.00 B C 
3/24/2009 0.30 0.00 B C 
3/25/2009 8.40 0.00 B C 
3/26/2009 19.10 0.00 B C 
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3/27/2009 1.80 0.00 B C 
3/28/2009 0.00 0.00 B C 
3/29/2009 0.00 0.00 B C 
3/30/2009 0.00 0.00 B C 
3/31/2009 1.80 0.00 B C 
4/1/2009 0.00 0.00 B C 
4/2/2009 7.10 0.00 B C 
4/3/2009 0.00 0.00 B C 
4/4/2009 0.00 0.00 B C 
4/5/2009 0.00 0.00 B C 
4/6/2009 0.00 0.00 B C 
4/7/2009 0.00 0.00 B C 
4/8/2009 0.00 0.00 B C 
4/9/2009 0.00 0.00 B C 
4/10/2009 0.00 0.00 B C 
4/11/2009 0.00 0.00 B C 
4/12/2009 7.90 0.00 B C 
4/13/2009 0.00 0.00 B C 
4/14/2009 0.00 0.00 B C 
4/15/2009 0.00 0.00 B C 
4/16/2009 2.80 0.00 B C 
4/17/2009 45.00 0.00 B C 
4/18/2009 200.20 0.00 B C 
4/19/2009 0.00 0.00 B C 
4/20/2009 0.00 0.00 B C 
4/21/2009 0.00 0.00 B C 
4/22/2009 0.00 0.00 B C 
4/23/2009 0.00 0.00 B C 
4/24/2009 49.80 0.00 B C 
4/25/2009 2.00 0.00 B C 
4/26/2009 0.00 0.00 B C 
4/27/2009 31.20 0.00 B C 
4/28/2009 0.30 0.00 B C 
4/29/2009 0.00 0.00 B C 
4/30/2009 0.00 0.00 B C 
5/1/2009 0.00 0.00 B C 
5/2/2009 0.00 0.00 B C 
5/3/2009 0.00 0.00 B C 
5/4/2009 0.00 0.00 B C 
5/5/2009 0.00 0.00 B C 
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5/6/2009 0.00 0.00 B C 
5/7/2009 0.00 0.00 B C 
5/8/2009 0.00 0.00 B C 
5/9/2009 0.00 0.00 B C 
5/10/2009 0.00 0.00 B C 
5/11/2009 0.00 0.00 B C 
5/12/2009 0.00 0.00 B 
5/13/2009 0.00 0.00 B 
5/14/2009 0.00 0.00 B 
5/15/2009 0.00 0.00 B 
5/16/2009 0.00 0.00 B 
5/17/2009 0.00 0.00 B 
5/18/2009 0.00 0.00 B 
5/19/2009 0.00 0.00 B 
5/20/2009 0.00 0.00 B 
5/21/2009 0.00 0.00 B 
5/22/2009 0.00 0.00 B 
5/23/2009 0.00 0.00 B 
5/24/2009 36.30 0.00 B 
5/25/2009 0.00 0.00 B 
5/26/2009 0.00 0.00 B 
5/27/2009 1.30 0.00 B 
5/28/2009 0.00 0.00 B 
5/29/2009 0.00 0.00 B 
5/30/2009 0.00 0.00 B 
5/31/2009 0.00 0.00 B 
6/1/2009 0.00 0.00 B 
6/2/2009 19.60 0.00 B 
6/3/2009 1.50 0.00 B 
6/4/2009 0.00 0.00 B 
6/5/2009 0.00 0.00 B 
6/6/2009 0.00 0.00 B 
6/7/2009 0.00 0.00 B 
6/8/2009 0.00 0.00 B 
6/9/2009 0.00 0.00 B 
6/10/2009 0.00 0.00 B 
6/11/2009 0.00 0.00 B 
6/12/2009 0.00 0.00 B 
6/13/2009 0.00 0.00 B 
6/14/2009 0.00 0.00 B 
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6/15/2009 0.00 0.00 B 
6/16/2009 0.00 0.00 B 
6/17/2009 0.00 0.00 B 
6/18/2009 0.00 0.00 B 
6/19/2009 0.00 0.00 B 
6/20/2009 0.00 0.00 B 
6/21/2009 0.00 0.00 B 
6/22/2009 0.00 0.00 B 
6/23/2009 0.00 0.00 B 
6/24/2009 0.00 0.00 B 
6/25/2009 0.00 0.00 B 
6/26/2009 0.00 0.00 B 
6/27/2009 0.00 0.00 B 
6/28/2009 0.00 0.00 B 
6/29/2009 0.00 0.00 B 
6/30/2009 1.00 0.00 B 
7/1/2009 0.00 0.00 B 
7/2/2009 0.00 0.00 B 
7/3/2009 0.00 0.00 B 
7/4/2009 0.00 0.00 B 
7/5/2009 0.00 0.00 B 
7/6/2009 0.00 0.00 B 
7/7/2009 5.60 0.00 B 
7/8/2009 0.00 0.00 B 
7/9/2009 0.00 0.00 B 
7/10/2009 0.00 0.00 B 
7/11/2009 0.00 0.00 B 
7/12/2009 0.00 0.00 B 
7/13/2009 0.00 0.00 B 
7/14/2009 0.00 0.00 B 
7/15/2009 0.00 0.00 B 
7/16/2009 10.40 0.00 B 
7/17/2009 8.90 0.00 B 
7/18/2009 44.20 0.00 B 
7/19/2009 3.60 0.00 B 
7/20/2009 9.40 0.00 B 
7/21/2009 17.00 0.00 B 
7/22/2009 0.00 0.00 B 
7/23/2009 1.50 0.00 B 
7/24/2009 0.30 0.00 B 
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7/25/2009 0.00 0.00 B 
7/26/2009 0.00 0.00 B 
7/27/2009 4.10 0.00 B 
7/28/2009 0.00 0.00 B 
7/29/2009 0.00 0.00 B 
7/30/2009 0.00 0.00 B 
7/31/2009 4.60 0.00 B 
8/1/2009 0.00 0.00 B 
8/2/2009 0.00 0.00 B 
8/3/2009 0.00 0.00 B 
8/4/2009 0.00 0.00 B 
8/5/2009 27.20 0.00 B 
8/6/2009 0.00 0.00 B 
8/7/2009 7.90 0.00 B 
8/8/2009 0.00 0.00 B 
8/9/2009 1.50 0.00 B 
8/10/2009 0.00 0.00 B 
8/11/2009 2.30 0.00 B 
8/12/2009 2.30 0.00 B 
8/13/2009 1.50 0.00 B 
8/14/2009 0.00 0.00 B 
8/15/2009 3.30 0.00 B 
8/16/2009 0.00 0.00 B 
8/17/2009 0.30 0.00 B 
8/18/2009 48.30 0.00 B 
8/19/2009 0.00 0.00 B 
8/20/2009 0.30 0.00 B 
8/21/2009 2.80 0.00 B 
8/22/2009 0.00 0.00 B 
8/23/2009 2.50 0.00 B 
8/24/2009 0.00 0.00 B 
8/25/2009 0.50 0.00 B 
8/26/2009 0.00 0.00 B 
8/27/2009 0.00 0.00 B 
8/28/2009 8.10 0.00 B 
8/29/2009 0.00 0.00 B 
8/30/2009 9.70 0.00 B 
8/31/2009 0.00 0.00 B 
9/1/2009 0.00 0.00 B 
9/2/2009 0.00 0.00 B 
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9/3/2009 0.00 0.00 B 
9/4/2009 0.00 0.00 B 
9/5/2009 0.00 0.00 B 
9/6/2009 0.00 0.00 B 
9/7/2009 0.00 0.00 B 
9/8/2009 0.00 0.00 B 
9/9/2009 1.30 0.00 B 
9/10/2009 8.40 0.00 B 
9/11/2009 37.10 0.00 B 
9/12/2009 5.10 0.00 B 
9/13/2009 1.50 0.00 B 
9/14/2009 0.00 0.00 B 
9/15/2009 0.00 0.00 B 
9/16/2009 0.00 0.00 B 
9/17/2009 0.00 0.00 B 
9/18/2009 0.00 0.00 B 
9/19/2009 0.00 0.00 B 
9/20/2009 0.00 0.00 B 
9/21/2009 8.10 0.00 B 
9/22/2009 15.70 0.00 B 
9/23/2009 0.00 0.00 B 
9/24/2009 0.50 0.00 B 
9/25/2009 0.00 0.00 B 
9/26/2009 0.00 0.00 B 
9/27/2009 0.00 0.00 B 
9/28/2009 9.10 0.00 B 
9/29/2009 0.00 0.00 B 
9/30/2009 0.00 0.00 B 
10/1/2009 77.50 0.00 B 
10/2/2009 31.50 0.03 B 
10/3/2009 5.30 0.00 B 
10/4/2009 12.20 0.00 B 
10/5/2009 0.00 0.00 B 
10/6/2009 0.00 0.00 B 
10/7/2009 1.80 0.00 B 
10/8/2009 0.00 0.00 B 
10/9/2009 44.70 0.00 B 

10/10/2009 0.00 0.00 B 
10/11/2009 0.00 0.00 B 
10/12/2009 11.90 0.00 B 
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10/13/2009 6.90 0.05 B 
10/14/2009 0.50 0.00 B 
10/15/2009 0.00 0.00 B 
10/16/2009 0.00 0.00 B 
10/17/2009 0.00 0.00 B 
10/18/2009 0.00 0.00 B 
10/19/2009 0.00 0.00 B 
10/20/2009 0.00 0.00 B 
10/21/2009 3.60 0.00 B 
10/22/2009 78.20 34.40 B 
10/23/2009 0.00 7.59 B 
10/24/2009 0.00 1.60 B 
10/25/2009 0.00 0.66 B 
10/26/2009 70.40 12.33 B 
10/27/2009 0.00 10.46 B 
10/28/2009 0.80 3.65 B 
10/29/2009 14.20 2.70 B 
10/30/2009 12.20 15.24 B 
10/31/2009 0.00 5.57 B 
11/1/2009 0.00 1.87 B 
11/2/2009 0.00 0.95 B 
11/3/2009 0.00 0.18 B 
11/4/2009 0.00 0.00 B 
11/5/2009 0.00 0.00 B 
11/6/2009 0.00 0.00 B 
11/7/2009 0.00 0.00 B 
11/8/2009 1.50 0.00 B 
11/9/2009 2.00 0.00 B 

11/10/2009 0.00 0.00 B 
11/11/2009 0.00 0.00 B 
11/12/2009 0.00 0.00 B 
11/13/2009 0.00 0.00 B 
11/14/2009 0.00 0.00 B 
11/15/2009 0.00 0.00 B 
11/16/2009 3.60 0.00 B 
11/17/2009 0.00 0.00 B 
11/18/2009 0.00 0.00 B 
11/19/2009 0.00 0.00 B 
11/20/2009 37.10 0.35 B 
11/21/2009 5.30 1.56 B 
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11/22/2009 0.00 0.55 B 
11/23/2009 0.00 0.00 B 
11/24/2009 1.00 0.00 B 
11/25/2009 0.00 0.00 B 
11/26/2009 0.00 0.00 B 
11/27/2009 0.00 0.00 B 
11/28/2009 0.00 0.00 B 
11/29/2009 0.00 0.00 B 
11/30/2009 10.70 0.00 B 
12/1/2009 23.40 1.61 B 
12/2/2009 0.00 6.63 B 
12/3/2009 0.00 1.76 B 
12/4/2009 10.70 2.34 B 
12/5/2009 0.00 1.95 B 
12/6/2009 35.80 3.34 B 
12/7/2009 9.10 16.22 B 
12/8/2009 1.80 6.90 B 
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  12/9/2009 0.00 0.78 B 
12/10/2009 0.00 0.00 B 
12/11/2009 0.50 0.00 B 
12/12/2009 3.00 0.14 B 
12/13/2009 0.00 0.00 B 
12/14/2009 11.70 0.00 B 
12/15/2009 1.50 0.00 B 
12/16/2009 0.00 0.00 B 
12/17/2009 22.60 8.33 B 
12/18/2009 0.00 5.64 B 
12/19/2009 0.00 0.37 B 
12/20/2009 0.00 0.00 B 
12/21/2009 0.00 0.00 B 
12/22/2009 2.30 0.00 B 
12/23/2009 7.40 0.00 B 
12/24/2009 8.10 5.35 B 
12/25/2009 0.00 0.68 B 
12/26/2009 1.80 0.00 B 
12/27/2009 0.00 0.00 B 
12/28/2009 0.00 0.00 B 
12/29/2009 2.00 0.00 B 
12/30/2009 26.20 9.88 B 
12/31/2009 1.30 0.00 B 
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Table A - 3. Kindsvater-Shen equation conversion factors and constants for 
calculating runoff over the V-notch weir. 

KINDSVATER-SHEN EQUATION 
CONVERSIONS AND CONSTANTS 

NOTES 

Inches per foot =  12  
Seconds per minute =  60  
Millimeters per inch =  25.4  
Square feet per acre =  43560  
Acres = 20  
Offset inches = -0.95 For calibration, see Jan. 18, 2007 field notes. 

Ten minutes = 10 Variable, based on time step 

KS constant A =  2.473433 Includes 4.28*Ce* tan(theta)/2 

KS constant k =  0.002903 feet 

KS exponent =  2.5  
KS theta = 90 degrees 

KS constant C = 0.577905  
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Table A - 3. Sample runoff calculations for January 1, 2007. 

TIME WATER 
LEVEL 

CORRECTED 
WATER LEVEL Q Q Q Q 

HH:MM:SS INCHES 
INCHES (SEE JAN. 
18, 2007 FIELD 

NOTES) 
CFS 

CF PER 
10 

MINUTES 
INCHES MM 

 00:00:00 2.83 1.88 0.024122 14.47331 0.000199 0.005064 
 00:10:00 2.79 1.84 0.022861 13.71684 0.000189 0.004799 
 00:20:00 2.79 1.84 0.022861 13.71684 0.000189 0.004799 
 00:30:00 2.83 1.88 0.024122 14.47331 0.000199 0.005064 
 00:40:00 2.83 1.88 0.024122 14.47331 0.000199 0.005064 
 00:50:00 2.83 1.88 0.024122 14.47331 0.000199 0.005064 
 01:00:00 2.83 1.88 0.024122 14.47331 0.000199 0.005064 
 01:10:00 2.83 1.88 0.024122 14.47331 0.000199 0.005064 
 01:20:00 2.94 1.99 0.027801 16.68067 0.00023 0.005836 
 01:30:00 2.87 1.92 0.025424 15.25427 0.00021 0.005337 
 01:40:00 2.79 1.84 0.022861 13.71684 0.000189 0.004799 
 01:50:00 2.87 1.92 0.025424 15.25427 0.00021 0.005337 
 02:00:00 2.79 1.84 0.022861 13.71684 0.000189 0.004799 
 02:10:00 2.71 1.76 0.020461 12.27634 0.000169 0.004295 
 02:20:00 2.83 1.88 0.024122 14.47331 0.000199 0.005064 
 02:30:00 2.71 1.76 0.020461 12.27634 0.000169 0.004295 
 02:40:00 2.67 1.72 0.01932 11.59178 0.00016 0.004056 
 02:50:00 2.67 1.72 0.01932 11.59178 0.00016 0.004056 
 03:00:00 2.67 1.72 0.01932 11.59178 0.00016 0.004056 
 03:10:00 2.67 1.72 0.01932 11.59178 0.00016 0.004056 
 03:20:00 2.63 1.68 0.018218 10.93064 0.000151 0.003824 
 03:30:00 2.67 1.72 0.01932 11.59178 0.00016 0.004056 
 03:40:00 2.67 1.72 0.01932 11.59178 0.00016 0.004056 
 03:50:00 2.67 1.72 0.01932 11.59178 0.00016 0.004056 
 04:00:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 04:10:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 04:20:00 2.63 1.68 0.018218 10.93064 0.000151 0.003824 
 04:30:00 2.63 1.68 0.018218 10.93064 0.000151 0.003824 
 04:40:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 04:50:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 05:00:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
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Table A - 4 (continued). 

TIME WATER 
LEVEL 

CORRECTED 
WATER LEVEL Q Q Q Q 

HH:MM:SS INCHES 
INCHES (SEE JAN. 
18, 2007 FIELD 

NOTES) 
CFS 

CF PER 
10 

MINUTES 
INCHES MM 

 05:10:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 05:20:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 05:30:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 05:40:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 05:50:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 06:00:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 06:10:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 06:20:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 06:30:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 06:40:00 2.48 1.53 0.014426 8.65535 0.000119 0.003028 
 06:50:00 2.48 1.53 0.014426 8.65535 0.000119 0.003028 
 07:00:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 07:10:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 07:20:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 07:30:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 07:40:00 2.36 1.41 0.011766 7.059578 9.72E-05 0.00247 
 07:50:00 2.36 1.41 0.011766 7.059578 9.72E-05 0.00247 
 08:00:00 2.4 1.45 0.012616 7.569888 0.000104 0.002648 
 08:10:00 2.36 1.41 0.011766 7.059578 9.72E-05 0.00247 
 08:20:00 2.2 1.25 0.008712 5.227469 7.2E-05 0.001829 
 08:30:00 2.2 1.25 0.008712 5.227469 7.2E-05 0.001829 
 08:40:00 2.4 1.45 0.012616 7.569888 0.000104 0.002648 
 08:50:00 2.36 1.41 0.011766 7.059578 9.72E-05 0.00247 
 09:00:00 2.44 1.49 0.013503 8.101714 0.000112 0.002834 
 09:10:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 09:20:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 09:30:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 09:40:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 09:50:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 10:00:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 10:10:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 10:20:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 10:30:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 10:40:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
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Table A - 4 (continued). 

TIME WATER 
LEVEL 

CORRECTED 
WATER LEVEL Q Q Q Q 

HH:MM:SS INCHES 
INCHES (SEE JAN. 
18, 2007 FIELD 

NOTES) 
CFS 

CF PER 
10 

MINUTES 
INCHES MM 

 10:50:00 2.4 1.45 0.012616 7.569888 0.000104 0.002648 
 11:00:00 2.4 1.45 0.012616 7.569888 0.000104 0.002648 
 11:10:00 2.44 1.49 0.013503 8.101714 0.000112 0.002834 
 11:20:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 11:30:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 11:40:00 2.79 1.84 0.022861 13.71684 0.000189 0.004799 
 11:50:00 2.94 1.99 0.027801 16.68067 0.00023 0.005836 
 12:00:00 2.79 1.84 0.022861 13.71684 0.000189 0.004799 
 12:10:00 2.71 1.76 0.020461 12.27634 0.000169 0.004295 
 12:20:00 2.71 1.76 0.020461 12.27634 0.000169 0.004295 
 12:30:00 2.67 1.72 0.01932 11.59178 0.00016 0.004056 
 12:40:00 2.79 1.84 0.022861 13.71684 0.000189 0.004799 
 12:50:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 13:00:00 2.59 1.64 0.017154 10.29266 0.000142 0.003601 
 13:10:00 2.44 1.49 0.013503 8.101714 0.000112 0.002834 
 13:20:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 13:30:00 2.36 1.41 0.011766 7.059578 9.72E-05 0.00247 
 13:40:00 2.36 1.41 0.011766 7.059578 9.72E-05 0.00247 
 13:50:00 2.51 1.56 0.015142 9.085064 0.000125 0.003179 
 14:00:00 2.44 1.49 0.013503 8.101714 0.000112 0.002834 
 14:10:00 2.44 1.49 0.013503 8.101714 0.000112 0.002834 
 14:20:00 2.4 1.45 0.012616 7.569888 0.000104 0.002648 
 14:30:00 2.4 1.45 0.012616 7.569888 0.000104 0.002648 
 14:40:00 2.44 1.49 0.013503 8.101714 0.000112 0.002834 
 14:50:00 2.28 1.33 0.010171 6.10231 8.41E-05 0.002135 
 15:00:00 2.44 1.49 0.013503 8.101714 0.000112 0.002834 
 15:10:00 2.4 1.45 0.012616 7.569888 0.000104 0.002648 
 15:20:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 15:30:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 15:40:00 2.48 1.53 0.014426 8.65535 0.000119 0.003028 
 15:50:00 2.55 1.6 0.016129 9.677564 0.000133 0.003386 
 16:00:00 2.24 1.29 0.009425 5.654741 7.79E-05 0.001978 
 16:10:00 2.2 1.25 0.008712 5.227469 7.2E-05 0.001829 
 16:20:00 2.12 1.17 0.007388 4.432544 6.11E-05 0.001551 
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Table A - 4 (continued). 

TIME WATER 
LEVEL 

CORRECTED 
WATER LEVEL Q Q Q Q 

HH:MM:SS INCHES 
INCHES (SEE JAN. 
18, 2007 FIELD 

NOTES) 
CFS 

CF PER 
10 

MINUTES 
INCHES MM 

 16:30:00 2.08 1.13 0.006774 4.064243 5.6E-05 0.001422 
 16:40:00 2.08 1.13 0.006774 4.064243 5.6E-05 0.001422 
 16:50:00 2.08 1.13 0.006774 4.064243 5.6E-05 0.001422 
 17:00:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
 17:10:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 17:20:00 1.89 0.94 0.004281 2.568415 3.54E-05 0.000899 
 17:30:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 17:40:00 1.89 0.94 0.004281 2.568415 3.54E-05 0.000899 
 17:50:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 18:00:00 1.89 0.94 0.004281 2.568415 3.54E-05 0.000899 
 18:10:00 1.85 0.9 0.003841 2.304626 3.17E-05 0.000806 
 18:20:00 1.85 0.9 0.003841 2.304626 3.17E-05 0.000806 
 18:30:00 1.89 0.94 0.004281 2.568415 3.54E-05 0.000899 
 18:40:00 1.89 0.94 0.004281 2.568415 3.54E-05 0.000899 
 18:50:00 1.93 0.98 0.004749 2.849538 3.92E-05 0.000997 
 19:00:00 2.08 1.13 0.006774 4.064243 5.6E-05 0.001422 
 19:10:00 1.89 0.94 0.004281 2.568415 3.54E-05 0.000899 
 19:20:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 19:30:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 19:40:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 19:50:00 2.08 1.13 0.006774 4.064243 5.6E-05 0.001422 
 20:00:00 2.08 1.13 0.006774 4.064243 5.6E-05 0.001422 
 20:10:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
 20:20:00 2.12 1.17 0.007388 4.432544 6.11E-05 0.001551 
 20:30:00 2.12 1.17 0.007388 4.432544 6.11E-05 0.001551 
 20:40:00 2.12 1.17 0.007388 4.432544 6.11E-05 0.001551 
 20:50:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 21:00:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 21:10:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 21:20:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 21:30:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
 21:40:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
 21:50:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
 22:00:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
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Table A - 4 (continued). 

TIME WATER 
LEVEL 

CORRECTED 
WATER LEVEL Q Q Q Q 

HH:MM:SS INCHES 
INCHES (SEE JAN. 
18, 2007 FIELD 

NOTES) 
CFS 

CF PER 
10 

MINUTES 
INCHES MM 

 22:10:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
 22:20:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
 22:30:00 2.01 1.06 0.005775 3.465228 4.77E-05 0.001212 
 22:40:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 22:50:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 23:00:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 23:10:00 2.04 1.09 0.006192 3.71494 5.12E-05 0.0013 
 23:20:00 1.97 1.02 0.005247 3.148356 4.34E-05 0.001101 
 23:30:00 1.97 1.02 0.005247 3.148356 4.34E-05 0.001101 
 23:40:00 1.97 1.02 0.005247 3.148356 4.34E-05 0.001101 
 23:50:00 1.97 1.02 0.005247 3.148356 4.34E-05 0.001101 
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GROUNDWATER DATA
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Fig. B - 1. Site locations of groundwater monitoring wells (Dock, Site 1, Site 1, Site 
3, and Site 4). The relative positions of other important features, such as the weir 
and the sap flow site, are provided for reference. 
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Table B - 1. Coordinates and elevations of groundwater monitoring well sites and 
the bayou level reference. 

SITE NAME COORDINATES MEAN SEA LEVEL 

[METERS] 

Site 1 29°35'31.94"N 
 -95° 4'40.58"W 3.889 

Site 2 29°35'35.91"N 
 -95° 4'42.61"W 4.098 

Site 3 29°35'34.75"N 
 - 95° 4'37.47"W 4.139 

Site 4 29°35'38.66"N 
 - 95° 4'37.84"W 4.746 

Dock (used as a bayou level 
reference) 

29°35'29.82"N 
 - 95° 4'45.47"W 1.515 

Note: Mean seal level was estimated at a control point on the survey to +/- one foot 

using topographic maps, aerial imaging systems, and National Geodetic Survey 

metadata. Decimals represent the survey’s precision. 

Table B - 2. Total depth of well casing (including well screen) for each well, and the 
length of casing above and below grade, presented in U.S. units. 

SITE NAME  TOTAL DEPTH  

[FEET] 
ABOVE GRADE 

[INCHES] 
BELOW GRADE 

[FEET] 
  DEEP SHALLOW DEEP SHALLOW DEEP SHALLOW 

Site 1 14.83 4.67 34 34 12.00 1.83 

Site 2 16.25 3.54 24 24 14.25 1.54 

Site 3 15.80 5.22 32 32 13.13 2.55 

Site 4 14.56 3.71 21  1/4  24 9/16 12.79 2.19 

Dock 8.60 ----- 39 5/8 ----- 5.30 ---- 
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Table B - 3. Raw groundwater level data, presented in U.S. units, with the length of well casing above grade included in 
the measurement. The term “Surf. Sat.” means “surface saturated”. A “Y” means “yes” and an “N” means “no”. 

DATE BOAT 
DOCK 

SITE 1 SITE 2 SITE 3 SITE 4 

DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

DEEP SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

M/DD/YYYY [FEET] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] 

1/13/2010 No 
Data 

15.35 4.7 N None 12.25 Dry Y 1 to 2 No 
Data 

No Data Y > 2 No 
Data 

No 
Data 

No 
Data 

No Data 

1/23/2010 5.23 11.4 4.6 N None 8.08 Dry Y 0 to 1 10.42 2.84 Y None No 
Data 

No 
Data 

No 
Data 

No Data 

1/28/2010 5.86 10.38 4.6 N None 8.08 Dry Y None 9.62 2.86 Y None No 
Data 

No 
Data 

No 
Data 

No Data 

2/6/2010 7.27 8.2 4.32 N None 6.3 3.28 Y 2 8.24 2.75 Y None No 
Data 

No 
Data 

No 
Data 

No Data 

3/4/2010 6.26 5.86 3.9 Y 2 5.26 3.03 N None 6.29 2.8 Y < 1/2 No 
Data 

No 
Data 

No 
Data 

No Data 

3/30/2010 6.59 6.11 4.04 N None 5.5 2.87 Y None 5.62 2.96 Y None No 
Data 

No 
Data 

No 
Data 

No Data 

4/23/2010 5.87 8.06 4.7 N None 6.2 3.23 N None 6.94 5.9 N None No 
Data 

No 
Data 

No 
Data 

No Data 

5/11/2010 4.99 9.52 4.7 N None 6.47 3.23 N None 8.21 4.9 N None No 
Data 

No 
Data 

No 
Data 

No Data 

6/11/2010 5.12 11.04 4.51 N None 7.07 2.8 N None 10.01 4.4 N None No 
Data 

No 
Data 

No 
Data 

No Data 

7/3/2010 4.74 11.75 4.64 Y None 7.86 2.4 Y Y 10.75 3.44 Y None No 
Data 

No 
Data 

No 
Data 

No Data 

7/9/2010 4.42 11.25 4.4 N None 7.3 2.02 Y Y 10.96 3.4 N None 9.1 1.8 N Y 

7/16/2010 6.71 11.7 4.68 N None 7.48 2.75 N None 10.71 4.6 N None 9.77 3.55 N None 

7/23/2010 4.45 11.31 4.69 N None 7.59 2.42 N None 10.85 4.08 N None 9.85 3.4 N None 
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Table B - 3 (continued). 

DATE BOAT 
DOCK 

SITE 1 SITE 2 SITE 3 SITE 4 

DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

DEEP SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

M/DD/YYYY [FEET] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] 

7/30/2010 6.35 11.35 4.69 N None 7.74 2.62 N None 11.01 4.23 N None 10 3.4 N None 

8/6/2010 5.68 11.56 4.71 N None 7.92 3.13 N None 11.12 4.66 N None 10.35 3.59 N None 

8/13/2010 5.59 11.86 4.71 N None 8.11 3.15 N None 11.32 4.81 N None 10.76 3.58 N None 

5/20/2011 5 13.36 Dry N None 11.57 3.33 N None 13.12 Dry N None 12.51 3.59 N None 

5/27/2011 6.13 13.58 Dry N None 11.65 3.31 N None 13.36 5.06 N None 12.77 3.28 N None 

6/3/2011 5.57 13.86 Dry N None 11.73 3.37 N None 13.6 Dry N None 13.08 Dry N None 

6/10/2011 5.4 14.07 Dry N None 11.84 3.44 N None 13.79 Dry N None 13.29 Dry N None 

6/17/2011 5.94 14.35 Dry N None 11.93 3.51 N None 13.95 Dry N None 13.49 Dry N None 

6/24/2011 5.15 14.73 Dry N None 11.94 3.51 N None 14.06 5.04 N None 13.61 Dry N None 

7/1/2011 5.59 14.55 Dry N None 12.02 3.52 N None 14.18 5.08 N None 13.69 3.71 N None 

7/9/2011 5.58 14.61 4.74 N None 11.11 3.43 N None 14.3 5.08 N None 13.88 3.62 N None 

7/15/2011 5.15 14.76 4.73 N None 12.19 3.45 N None 14.38 5.08 N None 14.01 3.61 N None 

7/22/2011 5.76 14.7 4.72 N None 12.25 3.48 N None 14.47 5.08 N None 14.01 3.87 N None 

7/29/2011 4.88 14.88 4.7 N None 12.35 3.42 N None 14.6 Dry N None 14.15 3.61 N None 



  

 

152 

Table B - 3 (continued). 

DATE BOAT 
DOCK 

SITE 1 SITE 2 SITE 3 SITE 4 

DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

DEEP SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-ING DEEP  SHAL-
LOW 

SURF. 
SAT. 

POND-
ING 

M/DD/YYYY [FEET] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] [FEET] [FEET] Y/N [INCHES] 

8/5/2011 5.89 15.04 4.73 N None 12.47 3.52 N None 14.68 5.07 N None 14.3 3.61 N None 

8/12/2011 5.88 15.21 4.72 N None 12.58 3.51 N None 14.8 Dry N None 14.47 3.61 N None 

8/19/2011 6.04 15.35 4.73 N None 12.67 3.53 N None 14.86 5.08 N None 14.56 3.61 N None 
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Table B - 4. Groundwater level observed at each well (January 2010 through August 2011). 

DATE BOAT 

DOCK 
SITE 1 SITE 2 SITE 3 SITE 4 

DEEP  SHALLOW DEEP SHALLOW DEEP  SHALLOW DEEP  SHALLOW 
[M/DD/YYYY] [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] 
1/13/2010 No Data 0.07 3.32 0.97 Dry No Data No Data No Data No Data 
1/23/2010 0.93 1.28 3.35 2.24 Dry 1.78 4.09 No Data No Data 
1/28/2010 0.73 1.59 3.35 2.24 Dry 2.02 4.08 No Data No Data 
2/6/2010 0.31 2.25 3.44 2.79 3.71 2.44 4.11 No Data No Data 
3/4/2010 0.61 2.97 3.56 3.10 3.78 3.03 4.10 No Data No Data 
3/30/2010 0.51 2.89 3.52 3.03 3.83 3.24 4.05 No Data No Data 
4/23/2010 0.73 2.30 3.32 2.82 3.72 2.84 3.15 No Data No Data 
5/11/2010 1.00 1.85 3.32 2.74 3.72 2.45 3.46 No Data No Data 
6/11/2010 0.96 1.39 3.38 2.55 3.85 1.90 3.61 No Data No Data 
7/3/2010 1.08 1.17 3.34 2.31 3.98 1.68 3.90 No Data No Data 
7/9/2010 1.17 1.32 3.41 2.48 4.09 1.61 3.92 2.51 4.82 
7/16/2010 0.48 1.19 3.33 2.43 3.87 1.69 3.55 2.31 4.29 
7/23/2010 1.16 1.30 3.32 2.39 3.97 1.64 3.71 2.28 4.33 
7/30/2010 0.59 1.29 3.32 2.35 3.91 1.60 3.66 2.24 4.33 
8/6/2010 0.79 1.23 3.32 2.29 3.75 1.56 3.53 2.13 4.28 
8/13/2010 0.82 1.14 3.32 2.24 3.75 1.50 3.49 2.01 4.28 
5/20/2011 1.00 0.68 Dry 1.18 3.69 0.95 Dry 1.47 4.28 
5/27/2011 0.65 0.61 Dry 1.16 3.70 0.88 3.41 1.39 4.37 
6/3/2011 0.82 0.53 Dry 1.13 3.68 0.81 Dry 1.30 Dry 
6/10/2011 0.88 0.46 Dry 1.10 3.66 0.75 Dry 1.23 Dry 
6/17/2011 0.82 0.32 Dry 1.04 3.63 0.63 3.40 1.11 4.24 
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Table B - 4 (continued). 

DATE BOAT 

DOCK 
SITE 1 SITE 2 SITE 3 SITE 4 

DEEP  SHALLOW DEEP SHALLOW DEEP  SHALLOW DEEP  SHALLOW 
[M/DD/YYYY] [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] 
7/9/2011 0.71 0.38 Dry 1.07 3.64 0.70 3.42 1.17 Dry 
6/24/2011 0.95 0.26 Dry 1.07 3.64 0.67 3.40 1.14 Dry 
7/1/2011 0.82 0.30 3.31 1.32 3.66 0.59 3.40 1.05 4.27 
7/15/2011 0.95 0.25 3.31 0.99 3.66 0.57 3.40 1.02 4.27 
7/22/2011 0.77 0.27 3.31 0.97 3.65 0.54 Dry 1.02 4.19 
7/29/2011 1.03 0.22 3.32 0.94 3.66 0.50 3.41 0.97 4.27 
8/5/2011 0.73 0.17 3.31 0.91 3.63 0.48 Dry 0.93 4.27 
8/12/2011 0.73 0.12 3.31 0.87 3.64 0.44 3.66 0.88 4.27 
8/19/2011 0.68 0.07 3.31 0.85 3.63 0.42 Dry 0.85 4.27 
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The groundwater flow direction was calculated based on the standard approach to 
solving 3-point well problems (Heath 1983). This approach was generalized for multiple 
wells in by replacing the hydraulic grade line approach that Heath employed with the 
two-point form of a line in three-dimensional space. The two-point form of a line is 
given by: 

𝑥 −  𝑥1

𝑥2 −  𝑥1
=  

𝑦 −  𝑦1

𝑦2 −  𝑦1
=  

𝑧 −  𝑧1

𝑧2 −  𝑧1
 

in three dimensions. Coordinates (x and y) for the wells in this generalized approach are 
given in FIG. B -2. The z-coordinates are the variable water elevations at each well. An 
equipotential line runs from the well with an intermediate water level to a point with on 
the opposite side of the triangle (x’,y’,z’), and is perpendicular to the flow direction. 

 

Fig. B - 2. Graphical layout of groundwater monitoring well sites for 
determining flow direction. The southwestern-most well, which was the 
reference well at the boat dock, is given the x-y coordinate pairing (0.00, 0.00). 
The “+” indentifies the center of the four-well array of groundwater monitoring 
wells. 
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Fig. B - 3. Average direction of surface gradient using Site 1, Site 2, and Site 3. 
Well locations used in the calculations are represented as dark circles. The 
average direction of the surface gradient was 202 degrees (north reference). 
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Fig. B - 4. Average direction of surface gradient using Site 1, Site 2, and Site 4. 
Well locations used in the calculations are represented as dark circles. The 
average direction of the surface gradient was 224 degrees (north reference). 
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Fig. B - 5. Average direction of surface gradient using Site 1, Site 3, and Site 4. 
Well locations used in the calculations are represented as dark circles. The 
average direction of the surface gradient was 255 degrees (north reference). 
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Fig. B - 6. Average direction of surface gradient using Site 1, Site 3, and Site 4. 
Well locations used in the calculations are represented as dark circles. The 
average direction of the surface gradient was 258 degrees (north reference). 
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Table B - 5. Calculations summary for groundwater flow direction using the deep wells at Site 1, Site 2, and Site 3. 

DATE Z1 Z2 Z3 Z'  
(MEDIAN 

Z) 

X' Y' THETA' FLOW 

DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

1/13/2010 0.07 0.97 No Data No Data No Data No Data No Data No Data 
1/23/2010 1.28 2.24 1.78 1.78 102.85 129.11 11.79 101.79 
1/28/2010 1.59 2.24 2.02 2.02 95.06 146.21 2.97 177.03 
2/6/2010 2.25 2.79 2.44 2.44 111.89 109.26 22.81 157.19 
3/4/2010 2.97 3.10 3.03 3.03 103.92 126.75 13.07 166.93 
3/30/2010 2.89 3.03 3.24 3.03 164.82 101.54 -44.16 224.16 
4/23/2010 2.30 2.82 2.84 2.82 211.55 149.43 -15.73 195.73 
5/11/2010 1.85 2.74 2.45 2.45 93.98 148.59 1.81 178.19 
6/11/2010 1.39 2.55 1.90 1.90 106.94 120.13 16.71 163.29 
7/3/2010 1.17 2.31 1.68 1.68 106.86 120.29 16.62 163.38 
7/9/2010 1.32 2.48 1.61 1.61 117.50 96.95 29.77 150.23 
7/16/2010 1.19 2.43 1.69 1.69 108.96 115.68 19.19 160.81 
7/23/2010 1.30 2.39 1.64 1.64 114.01 104.61 25.44 154.56 
7/30/2010 1.29 2.35 1.60 1.60 115.36 101.63 27.13 152.87 
8/6/2010 1.23 2.29 1.56 1.56 113.93 104.78 25.35 154.65 
8/13/2010 1.14 2.24 1.50 1.50 112.93 106.97 24.11 155.89 
5/20/2011 0.68 1.18 0.95 0.95 101.24 132.64 9.90 170.10 
5/27/2011 0.61 1.16 0.88 0.88 104.20 126.13 13.40 166.60 
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Table B - 5 (continued). 

DATE Z1 Z2 Z3 Z'  
(MEDIAN 

Z) 

X' Y' THETA' FLOW 

DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

6/3/2011 0.53 1.13 0.81 0.81 105.81 122.60 15.34 164.66 
6/10/2011 0.46 1.10 0.75 0.75 106.50 121.09 16.17 163.83 
6/17/2011 0.38 1.07 0.70 0.70 105.66 122.93 15.16 164.84 
6/24/2011 0.26 1.07 0.67 0.67 103.62 127.42 12.70 167.30 
7/1/2011 0.32 1.04 0.63 0.63 107.53 118.83 17.43 162.57 
7/9/2011 0.30 1.32 0.59 0.59 115.34 101.69 27.10 152.90 
7/15/2011 0.25 0.99 0.57 0.57 107.69 118.48 17.63 162.37 
7/22/2011 0.27 0.97 0.54 0.54 110.05 113.31 20.53 159.47 
7/29/2011 0.22 0.94 0.50 0.50 109.60 114.28 19.98 160.02 
8/5/2011 0.17 0.91 0.48 0.48 108.14 117.48 18.18 161.82 
8/12/2011 0.12 0.87 0.44 0.44 107.59 118.69 17.51 162.49 
8/19/2011 0.07 0.85 0.42 0.42 106.33 121.48 15.96 164.04 
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Table B - 6. Calculations summary for groundwater flow direction using the deep wells at Site 1, Site 2, and Site 4. 

DATE Z1 Z2 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

1/13/2010 0.07 0.97 No Data No Data No Data No Data No Data No Data 
1/23/2010 1.28 2.24 No Data No Data No Data No Data No Data No Data 
1/28/2010 1.59 2.24 No Data No Data No Data No Data No Data No Data 
2/6/2010 2.25 2.79 No Data No Data No Data No Data No Data No Data 
3/4/2010 2.97 3.10 No Data No Data No Data No Data No Data No Data 
3/30/2010 2.89 3.03 No Data No Data No Data No Data No Data No Data 
4/23/2010 2.30 2.82 No Data No Data No Data No Data No Data No Data 
5/11/2010 1.85 2.74 No Data No Data No Data No Data No Data No Data 
6/11/2010 1.39 2.55 No Data No Data No Data No Data No Data No Data 
7/3/2010 1.17 2.31 No Data No Data No Data No Data No Data No Data 
7/9/2010 1.32 2.48 2.51 2.48 202.50 268.19 32.57 147.43 
7/16/2010 1.19 2.43 2.31 2.31 81.53 175.91 38.42 141.58 
7/23/2010 1.30 2.39 2.28 2.28 81.81 175.30 38.66 141.34 
7/30/2010 1.29 2.35 2.24 2.24 81.99 174.91 38.82 141.18 
8/6/2010 1.23 2.29 2.13 2.13 84.61 169.15 41.03 138.97 
8/13/2010 1.14 2.24 2.01 2.01 87.71 162.35 43.58 136.42 
5/20/2011 0.68 1.18 1.47 1.18 177.38 197.38 5.55 174.45 
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Table B - 6 (continued). 

DATE Z1 Z2 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

5/27/2011 0.61 1.16 1.39 1.16 182.10 210.70 12.34 167.66 
6/3/2011 0.53 1.13 1.30 1.13 188.50 228.72 20.14 159.86 
6/10/2011 0.46 1.10 1.23 1.10 191.39 236.87 23.19 156.81 
6/17/2011 0.38 1.07 1.17 1.07 194.87 246.69 26.49 153.51 
6/24/2011 0.26 1.07 1.14 1.07 198.53 257.01 29.59 150.41 
7/1/2011 0.32 1.04 1.11 1.04 197.96 255.38 29.13 150.87 
7/9/2011 0.30 1.32 1.05 1.05 90.53 156.16 45.84 134.16 
7/15/2011 0.25 0.99 1.02 0.99 202.07 266.98 32.26 147.74 
7/22/2011 0.27 0.97 1.02 0.97 200.21 261.75 30.90 149.10 
7/29/2011 0.22 0.94 0.97 0.94 201.46 265.26 31.82 148.18 
8/5/2011 0.17 0.91 0.93 0.91 202.35 267.78 32.46 147.54 
8/12/2011 0.12 0.87 0.88 0.87 204.12 272.75 33.67 146.33 
8/19/2011 0.07 0.85 0.85 0.85 204.12 272.76 33.68 146.32 
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Table B - 7. Calculations summary for groundwater flow direction using the deep wells at Site 1, Site 3, and Site 4. 

DATE Z1 Z3 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

1/13/2010 0.07 No Data No Data No Data No Data No Data No Data No Data 
1/23/2010 1.28 1.78 No Data No Data No Data No Data No Data No Data 
1/28/2010 1.59 2.02 No Data No Data No Data No Data No Data No Data 
2/6/2010 2.25 2.44 No Data No Data No Data No Data No Data No Data 
3/4/2010 2.97 3.03 No Data No Data No Data No Data No Data No Data 
3/30/2010 2.89 3.24 No Data No Data No Data No Data No Data No Data 
4/23/2010 2.30 2.84 No Data No Data No Data No Data No Data No Data 
5/11/2010 1.85 2.45 No Data No Data No Data No Data No Data No Data 
6/11/2010 1.39 1.90 No Data No Data No Data No Data No Data No Data 
7/3/2010 1.17 1.68 No Data No Data No Data No Data No Data No Data 
7/9/2010 1.32 1.61 2.51 1.61 148.85 116.97 47.09 132.91 
7/16/2010 1.19 1.69 2.31 1.69 163.84 159.21 29.25 150.75 
7/23/2010 1.30 1.64 2.28 1.64 156.54 138.64 40.18 139.82 
7/30/2010 1.29 1.60 2.24 1.60 154.61 133.20 42.25 137.75 
8/6/2010 1.23 1.56 2.13 1.56 158.19 143.30 38.19 141.81 
8/13/2010 1.14 1.50 2.01 1.50 161.81 153.48 32.91 147.09 
5/20/2011 0.68 0.95 1.47 0.95 156.31 137.99 40.44 139.56 
5/27/2011 0.61 0.88 1.39 0.88 156.13 137.49 40.64 139.36 
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Table B - 7 (continued). 

DATE Z1 Z3 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

6/3/2011 0.53 0.81 1.30 0.81 157.58 141.59 38.95 141.05 
6/10/2011 0.46 0.75 1.23 0.75 158.16 143.22 38.23 141.77 
6/17/2011 0.38 0.70 1.17 0.70 160.70 150.37 34.67 145.33 
6/24/2011 0.26 0.67 1.14 0.67 164.91 162.23 27.07 152.93 
7/1/2011 0.32 0.63 1.11 0.63 159.86 148.00 35.93 144.07 
7/9/2011 0.30 0.59 1.05 0.59 159.59 147.25 36.30 143.70 
7/15/2011 0.25 0.57 1.02 0.57 161.42 152.39 33.55 146.45 
7/22/2011 0.27 0.54 1.02 0.54 157.66 141.80 38.86 141.14 
7/29/2011 0.22 0.50 0.97 0.50 158.71 144.75 37.52 142.48 
8/5/2011 0.17 0.48 0.93 0.48 160.95 151.07 34.29 145.71 
8/12/2011 0.12 0.44 0.88 0.44 162.42 155.22 31.86 148.14 
8/19/2011 0.07 0.42 0.85 0.42 164.11 159.95 28.71 151.29 
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Table B - 8. Calculations summary for groundwater flow direction using the deep wells at Site 2, Site 3, and Site 4. 

DATE Z2 Z3 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

1/13/2010 0.97 No Data No Data No Data No Data No Data No Data No Data 
1/23/2010 2.24 1.78 No Data No Data No Data No Data No Data No Data 
1/28/2010 2.24 2.02 No Data No Data No Data No Data No Data No Data 
2/6/2010 2.79 2.44 No Data No Data No Data No Data No Data No Data 
3/4/2010 3.10 3.03 No Data No Data No Data No Data No Data No Data 
3/30/2010 3.03 3.24 No Data No Data No Data No Data No Data No Data 
4/23/2010 2.82 2.84 No Data No Data No Data No Data No Data No Data 
5/11/2010 2.74 2.45 No Data No Data No Data No Data No Data No Data 
6/11/2010 2.55 1.90 No Data No Data No Data No Data No Data No Data 
7/3/2010 2.31 1.68 No Data No Data No Data No Data No Data No Data 
7/9/2010 2.48 1.61 2.51 2.48 204.65 270.51 32.86 147.14 
7/16/2010 2.43 1.69 2.31 2.31 98.61 187.55 39.05 140.95 
7/23/2010 2.39 1.64 2.28 2.28 96.65 187.55 38.54 141.46 
7/30/2010 2.35 1.60 2.24 2.24 96.57 187.55 38.52 141.48 
8/6/2010 2.29 1.56 2.13 2.13 106.96 187.55 41.38 138.62 
8/13/2010 2.24 1.50 2.01 2.01 119.46 187.55 45.30 134.70 
5/20/2011 1.18 0.95 1.47 1.18 210.00 225.19 15.72 164.28 
5/27/2011 1.16 0.88 1.39 1.16 208.99 233.78 19.20 160.80 
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Table B - 8 (continued). 

DATE Z2 Z3 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

6/3/2011 1.13 0.81 1.30 1.13 207.75 244.28 23.33 156.67 
6/10/2011 1.10 0.75 1.23 1.10 207.16 249.29 25.25 154.75 
6/17/2011 1.07 0.70 1.17 1.07 206.51 254.74 27.28 152.72 
6/24/2011 1.07 0.67 1.14 1.07 205.81 260.73 29.46 150.54 
7/1/2011 1.04 0.63 1.11 1.04 205.77 261.04 29.57 150.43 
7/9/2011 1.32 0.59 1.05 1.05 126.76 187.55 47.88 132.12 
7/15/2011 0.99 0.57 1.02 0.99 204.85 268.82 32.29 147.71 
7/22/2011 0.97 0.54 1.02 0.97 205.21 265.77 31.24 148.76 
7/29/2011 0.94 0.50 0.97 0.94 204.95 267.94 31.99 148.01 
8/5/2011 0.91 0.48 0.93 0.91 204.78 269.43 32.50 147.50 
8/12/2011 0.87 0.44 0.88 0.87 204.37 272.91 33.67 146.33 
8/19/2011 0.85 0.42 0.85 0.85 204.37 272.90 33.67 146.33 
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Fig. B - 7. Graphical summary of calculated deep groundwater flow direction 
on each date where complete data was available for Site 1, Site 2, and Site 3. 
Wells used in the calculations are represented as dark circles. Four dates 
resulted in questionable groundwater flow directions, for the reasons noted in 
the main body of this thesis, and the endpoints of these flow direction lines are 
open diamonds. The solid and dashed lines that touch the axes represent the 
shortest flow path to Armand Bayou and ± 45 degrees, respectively. 
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Fig. B - 8. Graphical summary of calculated deep groundwater flow direction 
on each date where complete data was available for Site 1, Site 2, and Site 4. 
Wells used in the calculations are represented as dark circles. The solid and 
dashed lines that touch the axes represent the shortest flow path to Armand 
Bayou and ± 45 degrees, respectively. 
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Fig. B - 9. Graphical summary of calculated deep groundwater flow direction 
on each date where complete data was available for Site 1, Site 3, and Site 4. 
Wells used in the calculations are represented as dark circles. The solid and 
dashed lines that touch the axes represent the shortest flow path to Armand 
Bayou and ± 45 degrees, respectively. 
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Fig. B - 10. Graphical summary of calculated deep groundwater flow 
direction on each date where complete data was available for Site 2, Site 3, and 
Site 4. Wells used in the calculations are represented as dark circles. The solid 
and dashed lines that touch the axes represent the shortest flow path to Armand 
Bayou and ± 45 degrees, respectively.
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Table B - 9. Calculations summary for groundwater flow direction using the shallow wells at Site 1, Site 2, and Site 3. 

DATE Z1 Z2 Z3 Z'  
(MEDIAN 

Z) 

X' Y' THETA' FLOW 

DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

1/13/2010 3.32 No Data No Data No Data No Data No Data No Data No Data 
1/23/2010 3.35 4.09 No Data No Data No Data No Data No Data No Data 
1/28/2010 3.32 0.00 0.00 0.00 76.23 187.55 No Data No Data 
2/6/2010 3.35 0.00 4.09 3.35 189.56 158.73 57.50 147.50 
3/4/2010 3.35 0.00 4.08 3.35 189.72 158.69 57.41 122.59 
3/30/2010 3.44 3.71 4.11 3.71 164.57 101.28 -44.32 224.32 
4/23/2010 3.56 3.78 4.10 3.78 165.45 102.19 -43.73 223.73 
5/11/2010 3.52 3.83 4.05 3.83 180.26 117.36 -34.01 214.01 
6/11/2010 3.32 3.72 3.15 3.32 174.08 162.67 65.82 114.18 
7/3/2010 3.32 3.72 3.46 3.46 112.27 108.42 23.29 156.71 
7/9/2010 3.38 3.85 3.61 3.61 104.28 125.97 13.49 166.51 
7/16/2010 3.34 3.98 3.90 3.90 82.48 173.82 -9.22 189.22 
7/23/2010 3.41 4.09 3.92 3.92 90.45 156.33 -1.81 181.81 
7/30/2010 3.33 3.87 3.55 3.55 108.52 116.67 18.64 161.36 
8/6/2010 3.32 3.97 3.71 3.71 98.43 138.81 6.68 173.32 
8/13/2010 3.32 3.91 3.66 3.66 99.31 136.87 7.68 172.32 
5/20/2011 3.32 3.75 3.53 3.53 104.14 126.27 13.33 166.67 
5/27/2011 3.32 3.75 3.49 3.49 109.59 114.31 19.96 160.04 
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Table B - 9 (continued). 

DATE Z1 Z2 Z3 Z'  
(MEDIAN 

Z) 

X' Y' THETA' FLOW 

DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

6/3/2011 3.66 3.69 3.66 3.66 131.13 67.02 No Data No Data 
6/10/2011 Dry 3.70 Dry No Data 131.13 67.02 No Data No Data 
6/17/2011 Dry 3.68 3.66 3.66 76.57 186.81 -14.01 194.01 
6/24/2011 Dry 3.66 Dry No Data No Data No Data No Data No Data 
7/1/2011 Dry 3.64 Dry No Data No Data No Data No Data No Data 
7/9/2011 Dry 3.64 Dry No Data No Data No Data No Data No Data 
7/15/2011 Dry 3.63 3.40 3.40 79.72 179.88 -11.53 191.53 
7/22/2011 Dry 3.66 3.40 3.40 80.11 179.04 -11.22 191.22 
7/29/2011 3.31 3.66 3.40 3.40 116.38 99.40 28.39 151.61 
8/5/2011 3.31 3.65 3.40 3.40 116.34 99.48 28.34 151.66 
8/12/2011 3.32 3.66 3.66 3.66 77.40 185.00 -13.38 193.38 
8/19/2011 3.31 3.63 Dry 3.31 88.55 184.42 -70.07 250.07 
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Table B - 10. Calculations summary for groundwater flow direction using the shallow wells at Site 1, Site 2, and Site 4. 

DATE Z1 Z2 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

1/13/2010 3.32 No Data No Data No Data No Data No Data No Data No Data 
1/23/2010 3.35 4.09 No Data No Data No Data No Data No Data No Data 
1/28/2010 3.32 0.00 No Data No Data No Data No Data No Data No Data 
2/6/2010 3.35 0.00 No Data No Data No Data No Data No Data No Data 
3/4/2010 3.35 0.00 No Data No Data No Data No Data No Data No Data 
3/30/2010 3.44 3.71 No Data No Data No Data No Data No Data No Data 
4/23/2010 3.56 3.78 No Data No Data No Data No Data No Data No Data 
5/11/2010 3.52 3.83 No Data No Data No Data No Data No Data No Data 
6/11/2010 3.32 3.72 No Data No Data No Data No Data No Data No Data 
7/3/2010 3.32 3.72 No Data No Data No Data No Data No Data No Data 
7/9/2010 3.38 3.85 No Data 3.38 92.06 198.15 No Data No Data 
7/16/2010 3.34 3.98 No Data 3.34 96.78 201.31 No Data No Data 
7/23/2010 3.41 4.09 4.82 4.09 166.46 166.59 -13.08 193.08 
7/30/2010 3.33 3.87 4.29 3.87 172.48 183.56 -2.37 182.37 
8/6/2010 3.32 3.97 4.33 3.97 177.99 199.09 6.47 173.53 
8/13/2010 3.32 3.91 4.33 3.91 173.57 186.65 -0.53 180.53 
5/20/2011 3.32 3.75 4.28 3.75 164.46 160.98 -16.76 196.76 
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Table B - 10 (continued). 

DATE Z1 Z2 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

5/27/2011 3.66 3.69 4.28 3.69 135.25 78.62 -61.55 241.55 
6/3/2011 Dry 3.70 4.37 3.70 193.07 241.62 24.83 155.17 
6/10/2011 Dry 3.68 3.66 3.66 76.57 186.81 34.10 145.90 
6/17/2011 Dry 3.66 Dry Dry 131.13 67.02 No Data No Data 
6/24/2011 Dry 3.64 Dry Dry 131.13 67.02 No Data No Data 
7/1/2011 Dry 3.64 Dry Dry 131.13 67.02 No Data No Data 
7/9/2011 Dry 3.63 Dry Dry 131.13 67.02 No Data No Data 
7/15/2011 Dry 3.66 4.27 3.66 193.95 244.09 25.66 154.34 
7/22/2011 3.31 3.66 4.27 3.66 157.48 141.30 -29.65 209.65 
7/29/2011 3.31 3.65 4.19 3.65 158.94 145.41 -27.00 207.00 
8/5/2011 3.32 3.66 4.27 3.66 157.74 142.02 -29.19 209.19 
8/12/2011 3.31 3.63 4.27 3.63 155.85 136.71 -32.56 212.56 
8/19/2011 3.66 3.69 4.28 3.69 135.25 78.62 -61.55 241.55 
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Table B - 11. Calculations summary for groundwater flow direction using the shallow wells at Site 1, Site 3, and Site 4. 

DATE Z1 Z3 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

1/13/2010 3.32 No Data No Data 0.00 214.45 187.55 No Data No Data 
1/23/2010 3.35 No Data No Data 3.35 212.62 203.00 No Data No Data 
1/28/2010 3.32 0.00 No Data 3.35 212.64 202.89 No Data No Data 
2/6/2010 3.35 4.09 No Data 3.44 212.78 201.69 No Data No Data 
3/4/2010 3.35 4.08 No Data 3.56 213.13 198.74 No Data No Data 
3/30/2010 3.44 4.11 No Data 3.52 213.13 198.75 No Data No Data 
4/23/2010 3.56 4.10 No Data 3.15 134.80 77.35 No Data No Data 
5/11/2010 3.52 4.05 No Data 3.32 214.04 190.98 No Data No Data 
6/11/2010 3.32 3.15 No Data 3.38 213.79 193.08 No Data No Data 
7/3/2010 3.32 3.46 No Data 3.34 212.98 199.97 No Data No Data 
7/9/2010 3.38 3.61 No Data 3.92 157.31 140.80 39.29 140.71 
7/16/2010 3.34 3.90 No Data 3.55 148.16 115.02 47.57 132.43 
7/23/2010 3.41 3.92 4.82 3.71 159.04 145.69 37.07 142.93 
7/30/2010 3.33 3.55 4.29 3.66 155.73 136.35 41.09 138.91 
8/6/2010 3.32 3.71 4.33 3.53 147.52 113.21 48.00 132.00 
8/13/2010 3.32 3.66 4.33 3.49 143.99 103.26 50.11 129.89 
5/20/2011 3.32 3.53 4.28 0.00 214.45 187.55 No Data No Data 
5/27/2011 3.32 3.49 4.28 3.35 212.62 203.00 No Data No Data 
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Table B - 11 (continued). 

DATE Z1 Z3 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

6/3/2011 3.66 3.66 4.28 3.66 131.13 67.02 No Data No Data 
6/10/2011 Dry Dry 4.37 0.00 131.13 67.02 No Data No Data 
6/17/2011 Dry 3.66 3.66 3.66 214.45 187.55 No Data No Data 
6/24/2011 Dry Dry Dry 0.00 No Data No Data No Data No Data 
7/1/2011 Dry Dry Dry 0.00 No Data No Data No Data No Data 
7/9/2011 Dry Dry Dry 0.00 No Data No Data No Data No Data 
7/15/2011 Dry 3.40 Dry 0.00 131.13 67.02 No Data No Data 
7/22/2011 Dry 3.40 4.27 3.40 189.51 231.59 -60.48 240.48 
7/29/2011 3.31 3.40 4.27 3.40 138.21 86.98 52.84 127.16 
8/5/2011 3.31 3.40 4.19 3.40 138.62 88.13 52.67 127.33 
8/12/2011 3.32 3.66 4.27 3.66 157.17 140.43 39.45 140.55 
8/19/2011 3.31 Dry 4.27 3.31 206.59 254.06 68.03 111.97 

  



  

 

178 

Table B - 12. Calculations summary for groundwater flow direction using the shallow wells at Site 2, Site 3, and Site 4. 

DATE Z2 Z3 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

1/13/2010 No Data No Data No Data 0.00 No Data No Data No Data No Data 
1/23/2010 4.09 No Data No Data 0.00 76.23 187.55 No Data No Data 
1/28/2010 0.00 0.00 No Data 0.00 76.23 187.55 No Data No Data 
2/6/2010 0.00 4.09 No Data 3.71 213.45 196.01 No Data No Data 
3/4/2010 0.00 4.08 No Data 3.78 213.67 194.13 No Data No Data 
3/30/2010 3.71 4.11 No Data 3.83 213.91 192.14 No Data No Data 
4/23/2010 3.78 4.10 No Data 3.15 95.83 200.67 No Data No Data 
5/11/2010 3.83 4.05 No Data 3.46 85.34 193.65 No Data No Data 
6/11/2010 3.72 3.15 No Data 3.61 84.32 192.97 No Data No Data 
7/3/2010 3.72 3.46 No Data 3.90 78.57 189.12 No Data No Data 
7/9/2010 3.85 3.61 No Data 4.09 212.48 204.24 6.99 173.01 
7/16/2010 3.98 3.90 No Data 3.87 210.06 224.69 15.51 164.49 
7/23/2010 4.09 3.92 4.82 3.97 210.21 223.44 15.00 165.00 
7/30/2010 3.87 3.55 4.29 3.91 210.73 219.05 13.18 166.82 
8/6/2010 3.97 3.71 4.33 3.75 211.43 213.14 10.72 169.28 
8/13/2010 3.91 3.66 4.33 3.75 211.11 215.85 11.85 168.15 
5/20/2011 3.75 3.53 4.28 0.00 No Data No Data No Data No Data 
5/27/2011 3.75 3.49 4.28 0.00 76.23 187.55 No Data No Data 
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Table B - 12 (continued). 

DATE Z2 Z3 Z4 Z'  
(MEDIAN 
Z) 

X' Y' THETA' FLOW 
DIRECTION 

M/DD/YYYY [METERS] [METERS] [METERS] [METERS] [METERS] [METERS] DEGREES 
(GRAPHICAL 
REFERENCE) 

DEGREES 
(NORTH 
REFERENCE) 

6/3/2011 3.69 3.66 4.28 3.69 213.88 192.37 2.01 177.99 
6/10/2011 3.70 Dry 4.37 3.70 205.87 260.14 29.25 150.75 
6/17/2011 3.68 3.66 3.66 3.66 214.45 187.55 No Data No Data 
6/24/2011 3.66 Dry Dry 0.00 214.45 187.55 No Data No Data 
7/1/2011 3.64 Dry Dry 0.00 214.45 187.55 No Data No Data 
7/9/2011 3.64 Dry Dry 0.00 214.45 187.55 No Data No Data 
7/15/2011 3.63 3.40 Dry 3.40 84.38 193.00 -2.40 182.40 
7/22/2011 3.66 3.40 4.27 3.66 211.41 213.25 10.76 169.24 
7/29/2011 3.66 3.40 4.27 3.66 211.49 212.55 10.47 169.53 
8/5/2011 3.65 3.40 4.19 3.65 211.32 214.08 11.11 168.89 
8/12/2011 3.66 3.66 4.27 3.66 214.33 188.58 0.43 179.57 
8/19/2011 3.63 Dry 4.27 3.63 205.82 260.56 29.40 150.60 



  

180 

 

Fig. B -11. Graphical summary of calculated shallow groundwater flow 
direction on each date where complete data was available for Site 1, Site 2, and 
Site 3. Wells used in the calculations are represented as dark circles. Four dates 
resulted in questionable groundwater flow directions, for the reasons noted in 
the main body of this thesis, and the endpoints of these flow direction lines are 
open diamonds. The solid and dashed lines that touch the axes represent the 
shortest flow path to Armand Bayou and ± 45 degrees, respectively. 
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Fig. B - 12. Graphical summary of calculated shallow groundwater flow 
direction on each date where complete data was available for Site 1, Site 2, and 
Site 4. Wells used in the calculations are represented as dark circles. The solid 
and dashed lines that touch the axes represent the shortest flow path to Armand 
Bayou and ± 45 degrees, respectively. 
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Fig. B - 13. Graphical summary of calculated shallow groundwater flow 
direction on each date where complete data was available for Site 1, Site 3, and 
Site 4. Wells used in the calculations are represented as dark circles. The solid 
and dashed lines that touch the axes represent the shortest flow path to Armand 
Bayou and ± 45 degrees, respectively. 
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Fig. B - 14. Graphical summary of calculated shallow groundwater flow 
direction on each date where complete data was available for Site 2, Site 3, and 
Site 4. Wells used in the calculations are represented as dark circles. The solid 
and dashed lines that touch the axes represent the shortest flow path to Armand 
Bayou and ± 45 degrees, respectively. 
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APPENDIX C 

SAP FLUX DATA



 

185 

Table C - 1. Raw voltage readings, sap flux equation components, and results for 
the Water Oak (Q. nigra) specimen. 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

3/30/10 12:00 0.217 5.59 5.02E-01 5.10E-05 1.20E-06 4.33E+00 
3/30/10 12:30 0.217 5.59 5.02E-01 5.10E-05 1.20E-06 4.33E+00 
3/30/10 13:00 0.217 5.59 5.02E-01 5.10E-05 1.20E-06 4.33E+00 
3/30/10 13:30 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
3/30/10 14:00 No Data 
3/30/10 14:30 No Data 
3/30/10 15:00 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
3/30/10 15:30 0.224 5.77 4.56E-01 4.52E-05 1.07E-06 3.84E+00 
3/30/10 16:00 0.227 5.85 4.36E-01 4.29E-05 1.01E-06 3.64E+00 
3/30/10 16:30 0.234 6.03 3.94E-01 3.78E-05 8.92E-07 3.21E+00 
3/30/10 17:00 0.244 6.28 3.37E-01 3.12E-05 7.36E-07 2.65E+00 
3/30/10 17:30 0.254 6.54 2.85E-01 2.53E-05 5.98E-07 2.15E+00 
3/30/10 18:00 0.264 6.79 2.36E-01 2.02E-05 4.76E-07 1.71E+00 
3/30/10 18:30 0.274 7.05 1.92E-01 1.56E-05 3.68E-07 1.32E+00 
3/30/10 19:00 0.287 7.38 1.38E-01 1.04E-05 2.45E-07 8.84E-01 
3/30/10 19:30 0.297 7.63 1.00E-01 7.00E-06 1.65E-07 5.95E-01 
3/30/10 20:00 0.3 7.71 8.92E-02 6.07E-06 1.43E-07 5.16E-01 
3/30/10 20:30 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
3/30/10 21:00 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
3/30/10 21:30 0.307 7.89 6.45E-02 4.08E-06 9.63E-08 3.47E-01 
3/30/10 22:00 0.307 7.89 6.45E-02 4.08E-06 9.63E-08 3.47E-01 
3/30/10 22:30 0.307 7.89 6.45E-02 4.08E-06 9.63E-08 3.47E-01 
3/30/10 23:00 0.31 7.97 5.43E-02 3.30E-06 7.79E-08 2.80E-01 
3/30/10 23:30 0.31 7.97 5.43E-02 3.30E-06 7.79E-08 2.80E-01 
3/31/10 0:00 0.31 7.97 5.43E-02 3.30E-06 7.79E-08 2.80E-01 
3/31/10 0:30 0.313 8.04 4.43E-02 2.57E-06 6.06E-08 2.18E-01 
3/31/10 1:00 0.313 8.04 4.43E-02 2.57E-06 6.06E-08 2.18E-01 
3/31/10 1:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 2:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 2:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 3:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 3:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 4:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

3/31/10 4:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 5:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 5:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 6:00 0.32 8.22 2.17E-02 1.06E-06 2.51E-08 9.04E-02 
3/31/10 6:30 0.32 8.22 2.17E-02 1.06E-06 2.51E-08 9.04E-02 
3/31/10 7:00 0.32 8.22 2.17E-02 1.06E-06 2.51E-08 9.04E-02 
3/31/10 7:30 0.323 8.30 1.23E-02 5.28E-07 1.25E-08 4.49E-02 
3/31/10 8:00 0.323 8.30 1.23E-02 5.28E-07 1.25E-08 4.49E-02 
3/31/10 8:30 0.327 8.40 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
3/31/10 9:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 9:30 0.3 7.71 8.92E-02 6.07E-06 1.43E-07 5.16E-01 
3/31/10 10:00 0.27 6.95 2.09E-01 1.73E-05 4.09E-07 1.47E+00 
3/31/10 10:30 0.231 5.95 4.12E-01 3.99E-05 9.42E-07 3.39E+00 
3/31/10 11:00 0.224 5.77 4.56E-01 4.52E-05 1.07E-06 3.84E+00 
3/31/10 11:30 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
3/31/10 12:00 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
3/31/10 12:30 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
3/31/10 13:00 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
3/31/10 13:30 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
3/31/10 14:00 0.224 5.77 4.56E-01 4.52E-05 1.07E-06 3.84E+00 
3/31/10 14:30 0.224 5.77 4.56E-01 4.52E-05 1.07E-06 3.84E+00 
3/31/10 15:00 0.224 5.77 4.56E-01 4.52E-05 1.07E-06 3.84E+00 
3/31/10 15:30 0.224 5.77 4.56E-01 4.52E-05 1.07E-06 3.84E+00 
3/31/10 16:00 0.231 5.95 4.12E-01 3.99E-05 9.42E-07 3.39E+00 
3/31/10 16:30 0.237 6.10 3.76E-01 3.57E-05 8.43E-07 3.04E+00 
3/31/10 17:00 0.247 6.36 3.21E-01 2.94E-05 6.93E-07 2.50E+00 
3/31/10 17:30 0.264 6.79 2.36E-01 2.02E-05 4.76E-07 1.71E+00 
3/31/10 18:00 0.277 7.12 1.79E-01 1.43E-05 3.38E-07 1.22E+00 
3/31/10 18:30 0.283 7.28 1.54E-01 1.19E-05 2.81E-07 1.01E+00 
3/31/10 19:00 0.29 7.46 1.26E-01 9.33E-06 2.20E-07 7.93E-01 
3/31/10 19:30 0.3 7.71 8.92E-02 6.07E-06 1.43E-07 5.16E-01 
3/31/10 20:00 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
3/31/10 20:30 0.31 7.97 5.43E-02 3.30E-06 7.79E-08 2.80E-01 
3/31/10 21:00 0.31 7.97 5.43E-02 3.30E-06 7.79E-08 2.80E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

3/31/10 21:30 0.313 8.04 4.43E-02 2.57E-06 6.06E-08 2.18E-01 
3/31/10 22:00 0.313 8.04 4.43E-02 2.57E-06 6.06E-08 2.18E-01 
3/31/10 22:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 23:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
3/31/10 23:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 0:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 0:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 1:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 1:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 2:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 2:30 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 3:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 3:30 0.32 8.22 2.17E-02 1.06E-06 2.51E-08 9.04E-02 
4/1/10 4:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 4:30 0.32 8.22 2.17E-02 1.06E-06 2.51E-08 9.04E-02 
4/1/10 5:00 0.32 8.22 2.17E-02 1.06E-06 2.51E-08 9.04E-02 
4/1/10 5:30 0.323 8.30 1.23E-02 5.28E-07 1.25E-08 4.49E-02 
4/1/10 6:00 0.323 8.30 1.23E-02 5.28E-07 1.25E-08 4.49E-02 
4/1/10 6:30 0.323 8.30 1.23E-02 5.28E-07 1.25E-08 4.49E-02 
4/1/10 7:00 0.323 8.30 1.23E-02 5.28E-07 1.25E-08 4.49E-02 
4/1/10 7:30 0.32 8.22 2.17E-02 1.06E-06 2.51E-08 9.04E-02 
4/1/10 8:00 0.317 8.14 3.13E-02 1.67E-06 3.94E-08 1.42E-01 
4/1/10 8:30 0.307 7.89 6.45E-02 4.08E-06 9.63E-08 3.47E-01 
4/1/10 9:00 0.293 7.53 1.15E-01 8.30E-06 1.96E-07 7.05E-01 
4/1/10 9:30 0.284 7.30 1.50E-01 1.15E-05 2.72E-07 9.79E-01 
4/1/10 10:00 0.264 6.79 2.36E-01 2.02E-05 4.76E-07 1.71E+00 
4/1/10 10:30 0.227 5.85 4.36E-01 4.29E-05 1.01E-06 3.64E+00 
4/1/10 11:00 0.217 5.59 5.02E-01 5.10E-05 1.20E-06 4.33E+00 
4/1/10 11:30 0.217 5.59 5.02E-01 5.10E-05 1.20E-06 4.33E+00 
4/1/10 12:00 0.217 5.59 5.02E-01 5.10E-05 1.20E-06 4.33E+00 
4/1/10 12:30 0.217 5.59 5.02E-01 5.10E-05 1.20E-06 4.33E+00 
4/1/10 13:00 0.224 5.77 4.56E-01 4.52E-05 1.07E-06 3.84E+00 
4/1/10 13:30 0.227 5.85 4.36E-01 4.29E-05 1.01E-06 3.64E+00 
4/1/10 14:00 0.227 5.85 4.36E-01 4.29E-05 1.01E-06 3.64E+00 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/1/10 14:30 0.237 6.10 3.76E-01 3.57E-05 8.43E-07 3.04E+00 
4/1/10 15:00 0.244 6.28 3.37E-01 3.12E-05 7.36E-07 2.65E+00 
4/1/10 15:30 0.244 6.28 3.37E-01 3.12E-05 7.36E-07 2.65E+00 
4/1/10 16:00 0.25 6.44 3.05E-01 2.76E-05 6.52E-07 2.35E+00 
4/1/10 16:30 0.25 6.44 3.05E-01 2.76E-05 6.52E-07 2.35E+00 
4/1/10 17:00 0.257 6.61 2.70E-01 2.37E-05 5.60E-07 2.02E+00 
4/1/10 17:30 0.264 6.79 2.36E-01 2.02E-05 4.76E-07 1.71E+00 
4/1/10 18:00 0.277 7.12 1.79E-01 1.43E-05 3.38E-07 1.22E+00 
4/1/10 18:30 0.287 7.38 1.38E-01 1.04E-05 2.45E-07 8.84E-01 
4/1/10 19:00 0.293 7.53 1.15E-01 8.30E-06 1.96E-07 7.05E-01 
4/1/10 19:30 0.297 7.63 1.00E-01 7.00E-06 1.65E-07 5.95E-01 
4/1/10 20:00 0.3 7.71 8.92E-02 6.07E-06 1.43E-07 5.16E-01 
4/1/10 20:30 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
4/1/10 21:00 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
4/1/10 21:30 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
4/1/10 22:00 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
4/1/10 22:30 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
4/1/10 23:00 0.303 7.79 7.85E-02 5.19E-06 1.22E-07 4.41E-01 
4/1/10 23:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 0:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 1:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/2/10 1:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 2:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 2:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/2/10 3:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/2/10 3:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/2/10 4:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/2/10 4:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/2/10 5:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/2/10 5:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/2/10 6:00 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/2/10 6:30 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/2/10 7:00 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/2/10 7:30 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/2/10 8:00 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/2/10 8:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/2/10 9:00 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/2/10 9:30 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/2/10 10:00 0.277 7.12 1.43E-01 1.09E-05 2.57E-07 9.24E-01 
4/2/10 10:30 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/2/10 11:00 0.254 6.54 2.46E-01 2.12E-05 4.99E-07 1.80E+00 
4/2/10 11:30 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/2/10 12:00 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/2/10 12:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/2/10 13:00 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/2/10 13:30 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/2/10 14:00 0.254 6.54 2.46E-01 2.12E-05 4.99E-07 1.80E+00 
4/2/10 14:30 0.27 6.95 1.73E-01 1.37E-05 3.23E-07 1.16E+00 
4/2/10 15:00 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/2/10 15:30 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/2/10 16:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/2/10 16:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/2/10 17:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/2/10 17:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/2/10 18:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 18:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 19:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 19:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 20:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 20:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 21:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 21:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 22:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 22:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/2/10 23:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/2/10 23:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 0:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/3/10 0:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 1:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 1:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 2:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 2:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 3:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 3:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 4:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 4:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 5:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 5:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 6:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 6:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 7:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/3/10 7:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/3/10 8:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 8:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 9:00 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/3/10 9:30 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/3/10 10:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/3/10 10:30 0.264 6.79 1.99E-01 1.63E-05 3.85E-07 1.39E+00 
4/3/10 11:00 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/3/10 11:30 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/3/10 12:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/3/10 12:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/3/10 13:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/3/10 13:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/3/10 14:00 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/3/10 14:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/3/10 15:00 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/3/10 15:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/3/10 16:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/3/10 16:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/3/10 17:00 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/3/10 17:30 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/3/10 18:00 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/3/10 18:30 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/3/10 19:00 0.28 7.20 1.31E-01 9.74E-06 2.30E-07 8.28E-01 
4/3/10 19:30 0.287 7.38 1.04E-01 7.30E-06 1.72E-07 6.20E-01 
4/3/10 20:00 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/3/10 20:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/3/10 21:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/3/10 21:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/3/10 22:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/3/10 22:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/3/10 23:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/3/10 23:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/4/10 0:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 0:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 1:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 1:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 2:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 2:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 3:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 3:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 4:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 4:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 5:00 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/4/10 5:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 6:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 6:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 7:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 7:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 8:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 8:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 9:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 9:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 10:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/4/10 10:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/4/10 11:00 0.306 7.86 3.56E-02 1.96E-06 4.63E-08 1.67E-01 
4/4/10 11:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/4/10 12:00 0.264 6.79 1.99E-01 1.63E-05 3.85E-07 1.39E+00 
4/4/10 12:30 0.244 6.28 2.96E-01 2.66E-05 6.29E-07 2.26E+00 
4/4/10 13:00 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/4/10 13:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/4/10 14:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/4/10 14:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/4/10 15:00 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/4/10 15:30 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/4/10 16:00 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/4/10 16:30 0.244 6.28 2.96E-01 2.66E-05 6.29E-07 2.26E+00 
4/4/10 17:00 0.25 6.44 2.66E-01 2.33E-05 5.49E-07 1.98E+00 
4/4/10 17:30 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/4/10 18:00 0.27 6.95 1.73E-01 1.37E-05 3.23E-07 1.16E+00 
4/4/10 18:30 0.28 7.20 1.31E-01 9.74E-06 2.30E-07 8.28E-01 
4/4/10 19:00 0.287 7.38 1.04E-01 7.30E-06 1.72E-07 6.20E-01 
4/4/10 19:30 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/4/10 20:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/4/10 20:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/4/10 21:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/4/10 21:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/4/10 22:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/4/10 22:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/4/10 23:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/4/10 23:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 0:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 1:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 1:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 2:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/5/10 2:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/5/10 3:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/5/10 3:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/5/10 4:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/5/10 4:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/5/10 5:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/5/10 5:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/5/10 6:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/5/10 6:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/5/10 7:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/5/10 7:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/5/10 8:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/5/10 8:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/5/10 9:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 9:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/5/10 10:00 0.287 7.38 1.04E-01 7.30E-06 1.72E-07 6.20E-01 
4/5/10 10:30 0.26 6.69 2.17E-01 1.82E-05 4.29E-07 1.54E+00 
4/5/10 11:00 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/5/10 11:30 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/5/10 12:00 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/5/10 12:30 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/5/10 13:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/5/10 13:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/5/10 14:00 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/5/10 14:30 0.214 5.51 4.77E-01 4.78E-05 1.13E-06 4.06E+00 
4/5/10 15:00 0.214 5.51 4.77E-01 4.78E-05 1.13E-06 4.06E+00 
4/5/10 15:30 0.214 5.51 4.77E-01 4.78E-05 1.13E-06 4.06E+00 
4/5/10 16:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/5/10 16:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/5/10 17:00 0.24 6.18 3.18E-01 2.90E-05 6.85E-07 2.47E+00 
4/5/10 17:30 0.25 6.44 2.66E-01 2.33E-05 5.49E-07 1.98E+00 
4/5/10 18:00 0.264 6.79 1.99E-01 1.63E-05 3.85E-07 1.39E+00 
4/5/10 18:30 0.273 7.02 1.60E-01 1.24E-05 2.94E-07 1.06E+00 
4/5/10 19:00 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/5/10 19:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/5/10 20:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/5/10 20:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/5/10 21:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/5/10 21:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 22:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 22:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 23:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/5/10 23:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/6/10 0:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/6/10 0:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/6/10 1:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/6/10 1:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/6/10 2:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/6/10 2:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 3:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 3:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 4:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 4:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 5:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 5:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 6:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 6:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 7:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 7:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 8:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/6/10 8:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/6/10 9:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/6/10 9:30 0.277 7.12 1.43E-01 1.09E-05 2.57E-07 9.24E-01 
4/6/10 10:00 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/6/10 10:30 0.25 6.44 2.66E-01 2.33E-05 5.49E-07 1.98E+00 
4/6/10 11:00 0.241 6.21 3.12E-01 2.84E-05 6.71E-07 2.42E+00 
4/6/10 11:30 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/6/10 12:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/6/10 12:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/6/10 13:00 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/6/10 13:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/6/10 14:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/6/10 14:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/6/10 15:00 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/6/10 15:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/6/10 16:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/6/10 16:30 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/6/10 17:00 0.244 6.28 2.96E-01 2.66E-05 6.29E-07 2.26E+00 
4/6/10 17:30 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/6/10 18:00 0.26 6.69 2.17E-01 1.82E-05 4.29E-07 1.54E+00 
4/6/10 18:30 0.27 6.95 1.73E-01 1.37E-05 3.23E-07 1.16E+00 
4/6/10 19:00 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/6/10 19:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/6/10 20:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/6/10 20:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/6/10 21:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/6/10 21:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/6/10 22:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/6/10 22:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/6/10 23:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/6/10 23:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/7/10 0:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/7/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/7/10 1:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/7/10 1:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 2:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 2:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 3:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 3:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 4:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 4:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/7/10 5:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/7/10 5:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/7/10 6:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/7/10 6:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/7/10 7:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/7/10 7:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/7/10 8:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 8:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/7/10 9:00 0.28 7.20 1.31E-01 9.74E-06 2.30E-07 8.28E-01 
4/7/10 9:30 0.27 6.95 1.73E-01 1.37E-05 3.23E-07 1.16E+00 
4/7/10 10:00 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/7/10 10:30 0.25 6.44 2.66E-01 2.33E-05 5.49E-07 1.98E+00 
4/7/10 11:00 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/7/10 11:30 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/7/10 12:00 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/7/10 12:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/7/10 13:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/7/10 13:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/7/10 14:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/7/10 14:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/7/10 15:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/7/10 15:30 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/7/10 16:00 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/7/10 16:30 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/7/10 17:00 0.244 6.28 2.96E-01 2.66E-05 6.29E-07 2.26E+00 
4/7/10 17:30 0.254 6.54 2.46E-01 2.12E-05 4.99E-07 1.80E+00 
4/7/10 18:00 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/7/10 18:30 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/7/10 19:00 0.28 7.20 1.31E-01 9.74E-06 2.30E-07 8.28E-01 
4/7/10 19:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/7/10 20:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/7/10 20:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/7/10 21:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/7/10 21:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 22:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/7/10 22:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/7/10 23:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/7/10 23:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/8/10 0:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/8/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/8/10 1:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/8/10 1:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 2:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 2:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 3:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 3:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 4:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 4:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 5:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 5:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 6:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 6:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 7:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/8/10 7:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/8/10 8:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/8/10 8:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/8/10 9:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/8/10 9:30 0.287 7.38 1.04E-01 7.30E-06 1.72E-07 6.20E-01 
4/8/10 10:00 0.274 7.05 1.56E-01 1.20E-05 2.84E-07 1.02E+00 
4/8/10 10:30 0.254 6.54 2.46E-01 2.12E-05 4.99E-07 1.80E+00 
4/8/10 11:00 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/8/10 11:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/8/10 12:00 0.218 5.62 4.50E-01 4.45E-05 1.05E-06 3.78E+00 
4/8/10 12:30 0.211 5.44 4.98E-01 5.04E-05 1.19E-06 4.29E+00 
4/8/10 13:00 0.211 5.44 4.98E-01 5.04E-05 1.19E-06 4.29E+00 
4/8/10 13:30 0.208 5.36 5.19E-01 5.31E-05 1.25E-06 4.51E+00 
4/8/10 14:00 0.208 5.36 5.19E-01 5.31E-05 1.25E-06 4.51E+00 
4/8/10 14:30 0.204 5.26 5.49E-01 5.69E-05 1.34E-06 4.83E+00 
4/8/10 15:00 0.208 5.36 5.19E-01 5.31E-05 1.25E-06 4.51E+00 
4/8/10 15:30 0.211 5.44 4.98E-01 5.04E-05 1.19E-06 4.29E+00 
4/8/10 16:00 0.211 5.44 4.98E-01 5.04E-05 1.19E-06 4.29E+00 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/8/10 16:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/8/10 17:00 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/8/10 17:30 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/8/10 18:00 0.241 6.21 3.12E-01 2.84E-05 6.71E-07 2.42E+00 
4/8/10 18:30 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/8/10 19:00 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/8/10 19:30 0.284 7.30 1.15E-01 8.32E-06 1.96E-07 7.07E-01 
4/8/10 20:00 0.287 7.38 1.04E-01 7.30E-06 1.72E-07 6.20E-01 
4/8/10 20:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/8/10 21:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/8/10 21:30 0.294 7.56 7.75E-02 5.11E-06 1.21E-07 4.34E-01 
4/8/10 22:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/8/10 22:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/8/10 23:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/8/10 23:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/9/10 0:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/9/10 0:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/9/10 1:00 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/9/10 1:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/9/10 2:00 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/9/10 2:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/9/10 3:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/9/10 3:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/9/10 4:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/9/10 4:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/9/10 5:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/9/10 5:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/9/10 6:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/9/10 6:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/9/10 7:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/9/10 7:30 0.314 8.07 9.47E-03 3.84E-07 9.06E-09 3.26E-02 
4/9/10 8:00 0.317 8.14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
4/9/10 8:30 0.314 8.07 9.47E-03 3.84E-07 9.06E-09 3.26E-02 
4/9/10 9:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/9/10 9:30 0.271 6.97 1.68E-01 1.33E-05 3.13E-07 1.13E+00 
4/9/10 10:00 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/9/10 10:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/9/10 11:00 0.218 5.62 4.50E-01 4.45E-05 1.05E-06 3.78E+00 
4/9/10 11:30 0.214 5.51 4.77E-01 4.78E-05 1.13E-06 4.06E+00 
4/9/10 12:00 0.214 5.51 4.77E-01 4.78E-05 1.13E-06 4.06E+00 
4/9/10 12:30 0.214 5.51 4.77E-01 4.78E-05 1.13E-06 4.06E+00 
4/9/10 13:00 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/9/10 13:30 0.214 5.51 4.77E-01 4.78E-05 1.13E-06 4.06E+00 
4/9/10 14:00 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/9/10 14:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/9/10 15:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/9/10 15:30 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/9/10 16:00 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/9/10 16:30 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/9/10 17:00 0.244 6.28 2.96E-01 2.66E-05 6.29E-07 2.26E+00 
4/9/10 17:30 0.25 6.44 2.66E-01 2.33E-05 5.49E-07 1.98E+00 
4/9/10 18:00 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/9/10 18:30 0.28 7.20 1.31E-01 9.74E-06 2.30E-07 8.28E-01 
4/9/10 19:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/9/10 19:30 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/9/10 20:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/9/10 20:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/9/10 21:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/9/10 21:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/9/10 22:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/9/10 22:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/9/10 23:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/9/10 23:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/10/10 0:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/10/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/10/10 1:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 1:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/10/10 2:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/10/10 2:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 3:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 3:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 4:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 4:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 5:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 5:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 6:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 6:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/10/10 7:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/10/10 7:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/10/10 8:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/10/10 8:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/10/10 9:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/10/10 9:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/10/10 10:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/10/10 10:30 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/10/10 11:00 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/10/10 11:30 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/10/10 12:00 0.313 8.04 1.27E-02 5.49E-07 1.30E-08 4.67E-02 
4/10/10 12:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/10/10 13:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/10/10 13:30 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/10/10 14:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/10/10 14:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/10/10 15:00 0.27 6.95 1.73E-01 1.37E-05 3.23E-07 1.16E+00 
4/10/10 15:30 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/10/10 16:00 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/10/10 16:30 0.244 6.28 2.96E-01 2.66E-05 6.29E-07 2.26E+00 
4/10/10 17:00 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/10/10 17:30 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/10/10 18:00 0.26 6.69 2.17E-01 1.82E-05 4.29E-07 1.54E+00 
4/10/10 18:30 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/10/10 19:00 0.277 7.12 1.43E-01 1.09E-05 2.57E-07 9.24E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/10/10 19:30 0.287 7.38 1.04E-01 7.30E-06 1.72E-07 6.20E-01 
4/10/10 20:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/10/10 20:30 0.294 7.56 7.75E-02 5.11E-06 1.21E-07 4.34E-01 
4/10/10 21:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/10/10 21:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/10/10 22:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/10/10 22:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/10/10 23:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/10/10 23:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/11/10 0:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/11/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/11/10 1:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/11/10 1:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/11/10 2:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/11/10 2:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/11/10 3:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/11/10 3:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/11/10 4:00 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/11/10 4:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/11/10 5:00 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/11/10 5:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/11/10 6:00 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/11/10 6:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/11/10 7:00 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/11/10 7:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/11/10 8:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/11/10 8:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/11/10 9:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/11/10 9:30 0.277 7.12 1.43E-01 1.09E-05 2.57E-07 9.24E-01 
4/11/10 10:00 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/11/10 10:30 0.241 6.21 3.12E-01 2.84E-05 6.71E-07 2.42E+00 
4/11/10 11:00 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/11/10 11:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/11/10 12:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/11/10 12:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/11/10 13:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/11/10 13:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/11/10 14:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/11/10 14:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/11/10 15:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/11/10 15:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/11/10 16:00 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/11/10 16:30 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/11/10 17:00 0.24 6.18 3.18E-01 2.90E-05 6.85E-07 2.47E+00 
4/11/10 17:30 0.25 6.44 2.66E-01 2.33E-05 5.49E-07 1.98E+00 
4/11/10 18:00 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/11/10 18:30 0.26 6.69 2.17E-01 1.82E-05 4.29E-07 1.54E+00 
4/11/10 19:00 0.274 7.05 1.56E-01 1.20E-05 2.84E-07 1.02E+00 
4/11/10 19:30 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/11/10 20:00 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/11/10 20:30 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/11/10 21:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/11/10 21:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/11/10 22:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/11/10 22:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/11/10 23:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/11/10 23:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/12/10 0:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/12/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 1:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 1:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 2:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 2:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 3:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 3:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 4:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 4:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 5:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/12/10 5:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/12/10 6:00 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/12/10 6:30 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/12/10 7:00 0.304 7.81 4.24E-02 2.43E-06 5.74E-08 2.06E-01 
4/12/10 7:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/12/10 8:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/12/10 8:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/12/10 9:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/12/10 9:30 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/12/10 10:00 0.28 7.20 1.31E-01 9.74E-06 2.30E-07 8.28E-01 
4/12/10 10:30 0.254 6.54 2.46E-01 2.12E-05 4.99E-07 1.80E+00 
4/12/10 11:00 0.241 6.21 3.12E-01 2.84E-05 6.71E-07 2.42E+00 
4/12/10 11:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/12/10 12:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/12/10 12:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/12/10 13:00 0.214 5.51 4.77E-01 4.78E-05 1.13E-06 4.06E+00 
4/12/10 13:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/12/10 14:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/12/10 14:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/12/10 15:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/12/10 15:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/12/10 16:00 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/12/10 16:30 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/12/10 17:00 0.241 6.21 3.12E-01 2.84E-05 6.71E-07 2.42E+00 
4/12/10 17:30 0.25 6.44 2.66E-01 2.33E-05 5.49E-07 1.98E+00 
4/12/10 18:00 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/12/10 18:30 0.27 6.95 1.73E-01 1.37E-05 3.23E-07 1.16E+00 
4/12/10 19:00 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/12/10 19:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/12/10 20:00 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/12/10 20:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/12/10 21:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/12/10 21:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/12/10 22:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/12/10 22:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 23:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/12/10 23:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/13/10 0:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/13/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/13/10 1:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/13/10 1:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 2:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 2:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 3:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 3:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 4:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 4:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 5:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/13/10 5:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 6:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 6:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 7:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 7:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/13/10 8:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/13/10 8:30 0.284 7.30 1.15E-01 8.32E-06 1.96E-07 7.07E-01 
4/13/10 9:00 0.27 6.95 1.73E-01 1.37E-05 3.23E-07 1.16E+00 
4/13/10 9:30 0.26 6.69 2.17E-01 1.82E-05 4.29E-07 1.54E+00 
4/13/10 10:00 0.244 6.28 2.96E-01 2.66E-05 6.29E-07 2.26E+00 
4/13/10 10:30 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/13/10 11:00 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/13/10 11:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/13/10 12:00 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/13/10 12:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/13/10 13:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/13/10 13:30 0.217 5.59 4.57E-01 4.53E-05 1.07E-06 3.85E+00 
4/13/10 14:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/13/10 14:30 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/13/10 15:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/13/10 15:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/13/10 16:00 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/13/10 16:30 0.234 6.03 3.51E-01 3.29E-05 7.75E-07 2.79E+00 
4/13/10 17:00 0.247 6.36 2.81E-01 2.49E-05 5.88E-07 2.12E+00 
4/13/10 17:30 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/13/10 18:00 0.267 6.87 1.86E-01 1.50E-05 3.53E-07 1.27E+00 
4/13/10 18:30 0.277 7.12 1.43E-01 1.09E-05 2.57E-07 9.24E-01 
4/13/10 19:00 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/13/10 19:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/13/10 20:00 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/13/10 20:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/13/10 21:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/13/10 21:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/13/10 22:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/13/10 22:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/13/10 23:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/13/10 23:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/14/10 0:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/14/10 0:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/14/10 1:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/14/10 1:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/14/10 2:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/14/10 2:30 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/14/10 3:00 0.307 7.89 3.23E-02 1.74E-06 4.10E-08 1.48E-01 
4/14/10 3:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 4:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 4:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 5:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 5:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 6:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 6:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 7:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 7:30 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
4/14/10 8:00 0.31 7.97 2.24E-02 1.11E-06 2.61E-08 9.41E-02 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/14/10 8:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/14/10 9:00 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/14/10 9:30 0.29 7.46 9.23E-02 6.33E-06 1.49E-07 5.38E-01 
4/14/10 10:00 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/14/10 10:30 0.274 7.05 1.56E-01 1.20E-05 2.84E-07 1.02E+00 
4/14/10 11:00 0.257 6.61 2.31E-01 1.96E-05 4.63E-07 1.67E+00 
4/14/10 11:30 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/14/10 12:00 0.241 6.21 3.12E-01 2.84E-05 6.71E-07 2.42E+00 
4/14/10 12:30 0.237 6.10 3.34E-01 3.09E-05 7.30E-07 2.63E+00 
4/14/10 13:00 0.241 6.21 3.12E-01 2.84E-05 6.71E-07 2.42E+00 
4/14/10 13:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/14/10 14:00 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/14/10 14:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/14/10 15:00 0.221 5.69 4.30E-01 4.22E-05 9.95E-07 3.58E+00 
4/14/10 15:30 0.224 5.77 4.11E-01 3.99E-05 9.41E-07 3.39E+00 
4/14/10 16:00 0.227 5.85 3.93E-01 3.77E-05 8.89E-07 3.20E+00 
4/14/10 16:30 0.231 5.95 3.69E-01 3.49E-05 8.23E-07 2.96E+00 
4/14/10 17:00 0.24 6.18 3.18E-01 2.90E-05 6.85E-07 2.47E+00 
4/14/10 17:30 0.254 6.54 2.46E-01 2.12E-05 4.99E-07 1.80E+00 
4/14/10 18:00 0.264 6.79 1.99E-01 1.63E-05 3.85E-07 1.39E+00 
4/14/10 18:30 0.273 7.02 1.60E-01 1.24E-05 2.94E-07 1.06E+00 
4/14/10 19:00 0.283 7.28 1.19E-01 8.67E-06 2.05E-07 7.36E-01 
4/14/10 19:30 0.287 7.38 1.04E-01 7.30E-06 1.72E-07 6.20E-01 
4/14/10 20:00 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/14/10 20:30 0.293 7.53 8.12E-02 5.41E-06 1.28E-07 4.60E-01 
4/14/10 21:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/14/10 21:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/14/10 22:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/14/10 22:30 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/14/10 23:00 0.297 7.63 6.67E-02 4.25E-06 1.00E-07 3.61E-01 
4/14/10 23:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/15/10 0:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/15/10 0:30 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
4/15/10 1:00 0.3 7.71 5.62E-02 3.44E-06 8.11E-08 2.92E-01 
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Table C - 1 (continued). 

DATE & TIME Δ V Δ T K U F F 

 
[MILLIVOLTS] [ºC] 

 
[M/S] [M3/S] [L/HR.] 

4/15/10 1:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 2:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 2:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 3:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 3:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 4:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 4:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 5:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 5:30 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 6:00 0.303 7.79 4.58E-02 2.67E-06 6.31E-08 2.27E-01 
4/15/10 6:30 No Data 
4/15/10 7:00 No Data 
4/15/10 7:30 No Data 
4/15/10 8:00 No Data 
4/15/10 8:30 No Data 
4/15/10 9:00 No Data 
4/15/10 9:30 0.293 7.53 1.15E-01 8.30E-06 1.96E-07 7.05E-01 
4/15/10 10:00 0.27 6.95 2.09E-01 1.73E-05 4.09E-07 1.47E+00 
4/15/10 10:30 0.247 6.36 3.21E-01 2.94E-05 6.93E-07 2.50E+00 
4/15/10 11:00 0.234 6.03 3.94E-01 3.78E-05 8.92E-07 3.21E+00 
4/15/10 11:30 0.227 5.85 4.36E-01 4.29E-05 1.01E-06 3.64E+00 
4/15/10 12:00 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
4/15/10 12:30 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
4/15/10 13:00 0.221 5.69 4.75E-01 4.76E-05 1.12E-06 4.05E+00 
4/15/10 13:30 0.217 5.59 5.02E-01 5.10E-05 1.20E-06 4.33E+00 
4/15/10 14:00 0.24 6.18 3.59E-01 3.37E-05 7.96E-07 2.87E+00 
4/15/10 14:30 0.227 5.85 4.36E-01 4.29E-05 1.01E-06 3.64E+00 
4/15/10 15:00 0.227 5.85 4.36E-01 4.29E-05 1.01E-06 3.64E+00 
4/15/10 15:30 0.231 5.95 4.12E-01 3.99E-05 9.42E-07 3.39E+00 
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APPENDIX D 

EVAPOTRANSPIRATION DATA (HARGREAVES METHOD)
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Table D - 1. Summary of calculated evapotranspiration values using the Hargreaves method. Formula components are 
presented on the right-hand side of the table. 

DATE PET FORMULA COMPONENTS 
CONSTANT 1 EXTRATERRESTRIAL  

RADIATION  
MONTHLY 
TEMPERATURE 
DIFFERENCE  

DAILY 
TEMPERATURE 
DIFFERENCE  

CONSTANT 2 

[MM/DAY]  [MM/DAY] [DEGREES CELSIUS] [DEGREES CELSIUS]  
12/23/2009 -10.9289 0.0023 195.02 9.0 9.7 17.8 
12/24/2009 -11.6815 0.0023 195.195 9.0 9.15 17.8 
12/25/2009 -13.1764 0.0023 195.335 9.0 8.05 17.8 
12/26/2009 -19.2144 0.0023 195.58 9.0 3.6 17.8 
12/27/2009 -19.9836 0.0023 195.825 9.0 3.05 17.8 
12/28/2009 -9.09514 0.0023 196.21 9.0 11.1 17.8 
12/29/2009 -4.55649 0.0023 196.595 9.0 14.45 17.8 
12/30/2009 0.340703 0.0023 196.98 9.0 18.05 17.8 
12/31/2009 -7.65072 0.0023 197.47 9.0 12.2 17.8 
1/1/2010 -18.1604 0.0023 198.065 10.6 5.55 17.8 
1/2/2010 -14.4874 0.0023 198.52 10.6 8.05 17.8 
1/3/2010 -8.26995 0.0023 199.08 10.6 12.25 17.8 
1/4/2010 -6.65301 0.0023 199.745 10.6 13.35 17.8 
1/5/2010 -1.65062 0.0023 200.48 10.6 16.7 17.8 
1/6/2010 -7.529 0.0023 201.18 10.6 12.8 17.8 
1/7/2010 -13.4506 0.0023 201.915 10.6 8.9 17.8 
1/8/2010 -13.8859 0.0023 202.755 10.6 8.65 17.8 
1/9/2010 -8.45751 0.0023 203.595 10.6 12.25 17.8 
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Table D - 1 (continued). 

DATE PET FORMULA COMPONENTS 
CONSTANT 1 EXTRATERRESTRIAL  

RADIATION  
MONTHLY 
TEMPERATURE 
DIFFERENCE  

DAILY 
TEMPERATURE 
DIFFERENCE  

CONSTANT 2 

[MM/DAY]  [MM/DAY] [DEGREES CELSIUS] [DEGREES CELSIUS]  
1/10/2010 -10.6383 0.0023 204.505 10.6 10.85 17.8 
1/11/2010 -14.1474 0.0023 205.45 10.6 8.6 17.8 
1/12/2010 -11.5902 0.0023 206.465 10.6 10.3 17.8 
1/13/2010 -0.07765 0.0023 207.48 10.6 17.75 17.8 
1/14/2010 4.292237 0.0023 208.53 10.6 20.55 17.8 
1/15/2010 -10.0395 0.0023 209.58 10.6 11.4 17.8 
1/16/2010 -20.1897 0.0023 210.735 10.6 5 17.8 
1/17/2010 -18.08 0.0023 211.89 10.6 6.4 17.8 
1/18/2010 -14.6752 0.0023 213.115 10.6 8.6 17.8 
1/19/2010 -17.4067 0.0023 214.34 10.6 6.95 17.8 
1/20/2010 -20.6658 0.0023 215.705 10.6 5 17.8 
1/21/2010 -14.0426 0.0023 216.895 10.6 9.15 17.8 
1/22/2010 -14.9478 0.0023 218.26 10.6 8.65 17.8 
1/23/2010 -18.3349 0.0023 219.695 10.6 6.65 17.8 
1/24/2010 -20.2688 0.0023 221.06 10.6 5.55 17.8 
1/25/2010 -16.2371 0.0023 222.495 10.6 8.05 17.8 
1/26/2010 -21.9669 0.0023 224.035 10.6 4.7 17.8 
1/27/2010 -24.3935 0.0023 225.54 10.6 3.35 17.8 
1/28/2010 -19.4581 0.0023 227.045 10.6 6.35 17.8 
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Table D - 1 (continued). 

DATE PET FORMULA COMPONENTS 
CONSTANT 1 EXTRATERRESTRIAL  

RADIATION  
MONTHLY 
TEMPERATURE 
DIFFERENCE  

DAILY 
TEMPERATURE 
DIFFERENCE  

CONSTANT 2 

[MM/DAY]  [MM/DAY] [DEGREES CELSIUS] [DEGREES CELSIUS]  
1/29/2010 -19.0768 0.0023 228.585 10.6 6.65 17.8 
1/30/2010 -33.0811 0.0023 230.195 10.6 -1.4 17.8 
1/31/2010 -31.8281 0.0023 231.735 10.6 -0.55 17.8 
2/1/2010 -28.7631 0.0023 233.45 9.7 0.6 17.8 
2/2/2010 -23.4014 0.0023 235.025 9.7 3.9 17.8 
2/3/2010 -15.6017 0.0023 236.74 9.7 8.6 17.8 
2/4/2010 -16.6542 0.0023 238.455 9.7 8.05 17.8 
2/5/2010 -11.0106 0.0023 240.17 9.7 11.4 17.8 
2/6/2010 -12.1254 0.0023 241.815 9.7 10.8 17.8 
2/7/2010 -15.9689 0.0023 243.635 9.7 8.65 17.8 
2/8/2010 -12.7456 0.0023 245.42 9.7 10.55 17.8 
2/9/2010 -9.38527 0.0023 247.205 9.7 12.5 17.8 
2/10/2010 1.962227 0.0023 249.025 9.7 18.9 17.8 
2/11/2010 1.437504 0.0023 250.845 9.7 18.6 17.8 
2/12/2010 1.447733 0.0023 252.63 9.7 18.6 17.8 
2/13/2010 -4.10221 0.0023 254.52 9.7 15.55 17.8 
2/14/2010 -3.58214 0.0023 256.445 9.7 15.85 17.8 
2/15/2010 -5.73665 0.0023 258.335 9.7 14.7 17.8 
2/16/2010 -12.9536 0.0023 260.19 9.7 10.85 17.8 



 

 

212 

Table D - 1 (continued). 

DATE PET FORMULA COMPONENTS 
CONSTANT 1 EXTRATERRESTRIAL  

RADIATION  
MONTHLY 
TEMPERATURE 
DIFFERENCE  

DAILY 
TEMPERATURE 
DIFFERENCE  

CONSTANT 2 

[MM/DAY]  [MM/DAY] [DEGREES CELSIUS] [DEGREES CELSIUS]  
2/17/2010 -12.1106 0.0023 262.115 9.7 11.35 17.8 
2/18/2010 -6.33451 0.0023 263.97 9.7 14.45 17.8 
2/19/2010 -3.80887 0.0023 265.86 9.7 15.8 17.8 
2/20/2010 -12.2799 0.0023 267.855 9.7 11.4 17.8 
2/21/2010 -27.3345 0.0023 269.675 9.7 3.65 17.8 
2/22/2010 -29.2881 0.0023 271.67 9.7 2.75 17.8 
2/23/2010 -22.8351 0.0023 273.63 9.7 6.15 17.8 
2/24/2010 -15.9864 0.0023 275.52 9.7 9.7 17.8 
2/25/2010 -16.1002 0.0023 277.48 9.7 9.7 17.8 
2/26/2010 -15.011 0.0023 279.405 9.7 10.3 17.8 
2/27/2010 -12.3954 0.0023 281.365 9.7 11.65 17.8 
2/28/2010 -14.1036 0.0023 283.29 9.7 10.85 17.8 
3/1/2010 -19.6315 0.0023 285.215 11.3 8.9 17.8 
3/2/2010 -8.10743 0.0023 287.21 11.3 14.15 17.8 
3/3/2010 -23.7027 0.0023 289.135 11.3 7.2 17.8 
3/4/2010 -31.2812 0.0023 290.99 11.3 3.9 17.8 
3/5/2010 -29.5697 0.0023 292.985 11.3 4.75 17.8 
3/6/2010 -32.9649 0.0023 294.98 11.3 3.35 17.8 
3/7/2010 -24.9137 0.0023 296.905 11.3 6.95 17.8 



 

 

213 

Table D - 1 (continued). 

DATE PET FORMULA COMPONENTS 
CONSTANT 1 EXTRATERRESTRIAL  

RADIATION  
MONTHLY 
TEMPERATURE 
DIFFERENCE  

DAILY 
TEMPERATURE 
DIFFERENCE  

CONSTANT 2 

[MM/DAY]  [MM/DAY] [DEGREES CELSIUS] [DEGREES CELSIUS]  
3/8/2010 -13.5167 0.0023 298.76 11.3 11.95 17.8 
3/9/2010 -26.5099 0.0023 300.685 11.3 6.4 17.8 
3/10/2010 -26.6734 0.0023 302.54 11.3 6.4 17.8 
3/11/2010 -24.253 0.0023 304.465 11.3 7.5 17.8 
3/12/2010 -23.6982 0.0023 306.425 11.3 7.8 17.8 
3/13/2010 -14.6576 0.0023 308.175 11.3 11.65 17.8 
3/14/2010 -14.7475 0.0023 310.065 11.3 11.65 17.8 
3/15/2010 -2.05047 0.0023 311.92 11.3 16.95 17.8 
3/16/2010 -12.1333 0.0023 313.775 11.3 12.8 17.8 
3/17/2010 -31.8552 0.0023 315.63 11.3 4.75 17.8 
3/18/2010 -26.6377 0.0023 317.45 11.3 6.95 17.8 
3/19/2010 -26.7874 0.0023 319.235 11.3 6.95 17.8 
3/20/2010 -9.06183 0.0023 321.02 11.3 14.15 17.8 
3/21/2010 -15.9793 0.0023 322.84 11.3 11.4 17.8 
3/22/2010 -18.9548 0.0023 324.625 11.3 10.25 17.8 
3/23/2010 -16.1526 0.0023 326.34 11.3 11.4 17.8 
3/24/2010 -20.5505 0.0023 328.055 11.3 9.7 17.8 
3/25/2010 -19.8949 0.0023 329.805 11.3 10 17.8 
3/26/2010 -17.1745 0.0023 331.45 11.3 11.1 17.8 
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Table D - 1 (continued). 

DATE PET FORMULA COMPONENTS 
CONSTANT 1 EXTRATERRESTRIAL  

RADIATION  
MONTHLY 
TEMPERATURE 
DIFFERENCE  

DAILY 
TEMPERATURE 
DIFFERENCE  

CONSTANT 2 

[MM/DAY]  [MM/DAY] [DEGREES CELSIUS] [DEGREES CELSIUS]  
3/27/2010 -15.0732 0.0023 333.165 11.3 11.95 17.8 
3/28/2010 -15.1492 0.0023 334.845 11.3 11.95 17.8 
3/29/2010 -8.0664 0.0023 336.455 11.3 14.7 17.8 
3/30/2010 -5.88205 0.0023 338.03 11.3 15.55 17.8 
3/31/2010 4.991751 0.0023 339.71 11.3 19.7 17.8 
4/1/2010 3.196425 0.0023 341.32 9.1 19.15 17.8 
4/2/2010 5.946012 0.0023 342.86 9.1 20.3 17.8 
4/3/2010 -5.97333 0.0023 344.435 9.1 15.3 17.8 
4/4/2010 -5.39894 0.0023 345.905 9.1 15.55 17.8 
4/5/2010 -5.42297 0.0023 347.445 9.1 15.55 17.8 
4/6/2010 -3.99367 0.0023 348.915 9.1 16.15 17.8 
4/7/2010 -12.8822 0.0023 350.385 9.1 12.5 17.8 
4/8/2010 -6.10261 0.0023 351.89 9.1 15.3 17.8 
4/9/2010 -7.47333 0.0023 353.22 9.1 14.75 17.8 
4/10/2010 -4.06017 0.0023 354.725 9.1 16.15 17.8 
4/11/2010 -17.2913 0.0023 356.09 9.1 10.8 17.8 
4/12/2010 -24.7941 0.0023 357.42 9.1 7.8 17.8 
4/13/2010 -16.5494 0.0023 358.75 9.1 11.15 17.8 
4/14/2010 -9.7426 0.0023 360.115 9.1 13.9 17.8 
4/15/2010 -4.26205 0.0023 361.41 9.1 16.1 17.8 
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The extraterrestrial radiation component of the Hargreaves equation requires a daily 
input in millimeters per day. When using data from the National Solar Radiation 
Database (NSRDB), the hourly observations of extraterrestrial radiation on a horizontal 
surface at the top of the atmosphere must be summed to produce a daily extraterrestrial 
radiation value in watt-hours per square meter. The daily value obtained from summing 
the hourly totals must be multiplied by 0.035 to convert to millimeters per day of 
equivalent evapotranspiration. The NSRDB contains location-specific information for 
extraterrestrial radiation on a horizontal surface at the top of the atmosphere, so be sure 
to use the correct station when using NSRDB data. 

Table D - 2. Daily maximum (T-MAX) and minimum (T-MIN) temperature values 
from the weather station at the Houston National Weather Service Office. 

STATION DATE T-MAX T-MAX T-MIN T-MIN 
1/10 
DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

1/10 
DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

GHCND:USC00414333 12/1/2009 111 11.1 83 8.3 
GHCND:USC00414333 12/2/2009 122 12.2 61 6.1 
GHCND:USC00414333 12/3/2009 128 12.8 33 3.3 
GHCND:USC00414333 12/4/2009 83 8.3 -11 -1.1 
GHCND:USC00414333 12/5/2009 94 9.4 -33 -3.3 
GHCND:USC00414333 12/6/2009 161 16.1 61 6.1 
GHCND:USC00414333 12/7/2009 161 16.1 128 12.8 
GHCND:USC00414333 12/8/2009 233 23.3 128 12.8 
GHCND:USC00414333 12/9/2009 194 19.4 50 5 
GHCND:USC00414333 12/10/2009 89 8.9 22 2.2 
GHCND:USC00414333 12/11/2009 94 9.4 67 6.7 
GHCND:USC00414333 12/12/2009 167 16.7 78 7.8 
GHCND:USC00414333 12/13/2009 189 18.9 78 7.8 
GHCND:USC00414333 12/14/2009 217 21.7 117 11.7 
GHCND:USC00414333 12/15/2009 167 16.7 89 8.9 
GHCND:USC00414333 12/16/2009 111 11.1 67 6.7 
GHCND:USC00414333 12/17/2009 106 10.6 67 6.7 
GHCND:USC00414333 12/18/2009 189 18.9 56 5.6 
GHCND:USC00414333 12/19/2009 178 17.8 39 3.9 
GHCND:USC00414333 12/20/2009 150 15 22 2.2 
GHCND:USC00414333 12/21/2009 189 18.9 17 1.7 
GHCND:USC00414333 12/22/2009 211 21.1 144 14.4 
GHCND:USC00414333 12/23/2009 233 23.3 178 17.8 
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Table D – 2 (continued).      
      
STATION DATE T-MAX T-MAX T-MIN T-MIN 
  1/10 

DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

1/10 
DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

GHCND:USC00414333 12/24/2009 206 20.6 22 2.2 
GHCND:USC00414333 12/25/2009 106 10.6 -6 -0.6 
GHCND:USC00414333 12/26/2009 106 10.6 22 2.2 
GHCND:USC00414333 12/27/2009 144 14.4 28 2.8 
GHCND:USC00414333 12/28/2009 117 11.7 22 2.2 
GHCND:USC00414333 12/29/2009 89 8.9 11 1.1 
GHCND:USC00414333 12/30/2009 111 11.1 72 7.2 
GHCND:USC00414333 12/31/2009 117 11.7 56 5.6 
GHCND:USC00414333 1/1/2010 122 12.2 11 1.1 
GHCND:USC00414333 1/2/2010 111 11.1 0 0 
GHCND:USC00414333 1/3/2010 111 11.1 50 5 
GHCND:USC00414333 1/4/2010 83 8.3 11 1.1 
GHCND:USC00414333 1/5/2010 89 8.9 -22 -2.2 
GHCND:USC00414333 1/6/2010 144 14.4 -17 -1.7 
GHCND:USC00414333 1/7/2010 144 14.4 -11 -1.1 
GHCND:USC00414333 1/8/2010 11 1.1 -39 -3.9 
GHCND:USC00414333 1/9/2010 56 5.6 -67 -6.7 
GHCND:USC00414333 1/10/2010 56 5.6 -44 -4.4 
GHCND:USC00414333 1/11/2010 128 12.8 -50 -5 
GHCND:USC00414333 1/12/2010 172 17.2 0 0 
GHCND:USC00414333 1/13/2010 150 15 11 1.1 
GHCND:USC00414333 1/14/2010 128 12.8 100 10 
GHCND:USC00414333 1/15/2010 122 12.2 94 9.4 
GHCND:USC00414333 1/16/2010 106 10.6 67 6.7 
GHCND:USC00414333 1/17/2010 172 17.2 39 3.9 
GHCND:USC00414333 1/18/2010 206 20.6 44 4.4 
GHCND:USC00414333 1/19/2010 228 22.8 150 15 
GHCND:USC00414333 1/20/2010 211 21.1 161 16.1 
GHCND:USC00414333 1/21/2010 261 26.1 111 11.1 
GHCND:USC00414333 1/22/2010 233 23.3 78 7.8 
GHCND:USC00414333 1/23/2010 211 21.1 106 10.6 
GHCND:USC00414333 1/24/2010 211 21.1 83 8.3 
GHCND:USC00414333 1/25/2010 189 18.9 28 2.8 
GHCND:USC00414333 1/26/2010 183 18.3 44 4.4 
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Table D – 2 (continued).      
      
STATION DATE T-MAX T-MAX T-MIN T-MIN 
  1/10 

DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

1/10 
DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

GHCND:USC00414333 1/27/2010 200 20 89 8.9 
GHCND:USC00414333 1/28/2010 172 17.2 144 14.4 
GHCND:USC00414333 1/29/2010 189 18.9 39 3.9 
GHCND:USC00414333 1/30/2010 67 6.7 6 0.6 
GHCND:USC00414333 1/31/2010 44 4.4 11 1.1 
GHCND:USC00414333 2/1/2010 106 10.6 17 1.7 
GHCND:USC00414333 2/2/2010 111 11.1 83 8.3 
GHCND:USC00414333 2/3/2010 111 11.1 83 8.3 
GHCND:USC00414333 2/4/2010 117 11.7 89 8.9 
GHCND:USC00414333 2/5/2010 161 16.1 72 7.2 
GHCND:USC00414333 2/6/2010 178 17.8 39 3.9 
GHCND:USC00414333 2/7/2010 117 11.7 61 6.1 
GHCND:USC00414333 2/8/2010 200 20 83 8.3 
GHCND:USC00414333 2/9/2010 111 11.1 33 3.3 
GHCND:USC00414333 2/10/2010 67 6.7 11 1.1 
GHCND:USC00414333 2/11/2010 67 6.7 28 2.8 
GHCND:USC00414333 2/12/2010 50 5 17 1.7 
GHCND:USC00414333 2/13/2010 122 12.2 17 1.7 
GHCND:USC00414333 2/14/2010 211 21.1 28 2.8 
GHCND:USC00414333 2/15/2010 111 11.1 17 1.7 
GHCND:USC00414333 2/16/2010 139 13.9 -11 -1.1 
GHCND:USC00414333 2/17/2010 156 15.6 -6 -0.6 
GHCND:USC00414333 2/18/2010 156 15.6 0 0 
GHCND:USC00414333 2/19/2010 150 15 83 8.3 
GHCND:USC00414333 2/20/2010 172 17.2 61 6.1 
GHCND:USC00414333 2/21/2010 206 20.6 133 13.3 
GHCND:USC00414333 2/22/2010 178 17.8 78 7.8 
GHCND:USC00414333 2/23/2010 78 7.8 17 1.7 
GHCND:USC00414333 2/24/2010 128 12.8 11 1.1 
GHCND:USC00414333 2/25/2010 156 15.6 -17 -1.7 
GHCND:USC00414333 2/26/2010 211 21.1 72 7.2 
GHCND:USC00414333 2/27/2010 167 16.7 61 6.1 
GHCND:USC00414333 2/28/2010 172 17.2 33 3.3 
GHCND:USC00414333 3/1/2010 156 15.6 72 7.2 
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Table D – 2 (continued).      
      
STATION DATE T-MAX T-MAX T-MIN T-MIN 
  1/10 

DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

1/10 
DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

GHCND:USC00414333 3/2/2010 150 15 44 4.4 
GHCND:USC00414333 3/3/2010 172 17.2 28 2.8 
GHCND:USC00414333 3/4/2010 172 17.2 50 5 
GHCND:USC00414333 3/5/2010 172 17.2 67 6.7 
GHCND:USC00414333 3/6/2010 178 17.8 61 6.1 
GHCND:USC00414333 3/7/2010 194 19.4 100 10 
GHCND:USC00414333 3/8/2010 172 17.2 139 13.9 
GHCND:USC00414333 3/9/2010 233 23.3 161 16.1 
GHCND:USC00414333 3/10/2010 222 22.2 161 16.1 
GHCND:USC00414333 3/11/2010 256 25.6 150 15 
GHCND:USC00414333 3/12/2010 200 20 106 10.6 
GHCND:USC00414333 3/13/2010 228 22.8 83 8.3 
GHCND:USC00414333 3/14/2010 244 24.4 67 6.7 
GHCND:USC00414333 3/15/2010 206 20.6 117 11.7 
GHCND:USC00414333 3/16/2010 139 13.9 111 11.1 
GHCND:USC00414333 3/17/2010 217 21.7 89 8.9 
GHCND:USC00414333 3/18/2010 217 21.7 78 7.8 
GHCND:USC00414333 3/19/2010 217 21.7 106 10.6 
GHCND:USC00414333 3/20/2010 183 18.3 33 3.3 
GHCND:USC00414333 3/21/2010 139 13.9 17 1.7 
GHCND:USC00414333 3/22/2010 206 20.6 17 1.7 
GHCND:USC00414333 3/23/2010 217 21.7 61 6.1 
GHCND:USC00414333 3/24/2010 178 17.8 144 14.4 
GHCND:USC00414333 3/25/2010 200 20 106 10.6 
GHCND:USC00414333 3/26/2010 206 20.6 67 6.7 
GHCND:USC00414333 3/27/2010 228 22.8 106 10.6 
GHCND:USC00414333 3/28/2010 206 20.6 89 8.9 
GHCND:USC00414333 3/29/2010 233 23.3 61 6.1 
GHCND:USC00414333 3/30/2010 222 22.2 100 10 
GHCND:USC00414333 3/31/2010 233 23.3 100 10 
GHCND:USC00414333 4/1/2010 228 22.8 161 16.1 
GHCND:USC00414333 4/2/2010 233 23.3 178 17.8 
GHCND:USC00414333 4/3/2010 267 26.7 183 18.3 
GHCND:USC00414333 4/4/2010 256 25.6 189 18.9 
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Table D – 2 (continued).      
      
STATION DATE T-MAX T-MAX T-MIN T-MIN 
  1/10 

DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

1/10 
DEGREE 
CELSIUS 

DEGREES 
CELSIUS 

GHCND:USC00414333 4/5/2010 250 25 189 18.9 
GHCND:USC00414333 4/6/2010 250 25 189 18.9 
GHCND:USC00414333 4/7/2010 256 25.6 172 17.2 
GHCND:USC00414333 4/8/2010 217 21.7 89 8.9 
GHCND:USC00414333 4/9/2010 206 20.6 61 6.1 
GHCND:USC00414333 4/10/2010 189 18.9 117 11.7 
GHCND:USC00414333 4/11/2010 228 22.8 111 11.1 
GHCND:USC00414333 4/12/2010 228 22.8 111 11.1 
GHCND:USC00414333 4/13/2010 244 24.4 161 16.1 
GHCND:USC00414333 4/14/2010 239 23.9 178 17.8 
GHCND:USC00414333 4/15/2010 239 23.9 189 18.9 
GHCND:USC00414333 4/16/2010 244 24.4 178 17.8 
GHCND:USC00414333 4/17/2010 239 23.9 172 17.2 
GHCND:USC00414333 4/18/2010 228 22.8 161 16.1 
GHCND:USC00414333 4/19/2010 211 21.1 161 16.1 
GHCND:USC00414333 4/20/2010 244 24.4 150 15 
GHCND:USC00414333 4/21/2010 256 25.6 133 13.3 
GHCND:USC00414333 4/22/2010 250 25 150 15 
GHCND:USC00414333 4/23/2010 256 25.6 217 21.7 
GHCND:USC00414333 4/24/2010 289 28.9 156 15.6 
GHCND:USC00414333 4/25/2010 283 28.3 133 13.3 
GHCND:USC00414333 4/26/2010 294 29.4 111 11.1 
GHCND:USC00414333 4/27/2010 250 25 128 12.8 
GHCND:USC00414333 4/28/2010 261 26.1 100 10 
GHCND:USC00414333 4/29/2010 267 26.7 172 17.2 
GHCND:USC00414333 4/30/2010 244 24.4 217 21.7 
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Table D - 3. Monthly average maximum and minimum temperature values 
calculated from the weather station at the Houston National Weather Service 
Office presented in Table C-2. 

MONTH AVERAGE MAXIMUM 
TEMPERATURE 

AVERAGE MINIMUM 
TEMPERATURE 

 DEGREES CELSIUS DEGREES CELSIUS 
December 2009 14.8 5.7 
January 2010 14.5 4.0 
February 2010 14.0 4.3 
March 2010 20.0 8.7 
April 2010 24.5 15.4 
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APPENDIX E 

SOIL MOISTURE DATA
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Table E - 1. Soil moisture data. 

DATE CLAY SILT 
SURFACE 100 MM 150 MM SURFACE 100 MM 150 MM 

Θ, V/V Θ, V/V Θ, V/V Θ, V/V Θ, V/V Θ, V/V 
12/23/2009 0.45 0.42 0.41 0.45 0.38 0.37 
12/24/2009 0.45 0.42 0.40 0.45 0.38 0.37 
12/25/2009 0.45 0.42 0.40 0.44 0.38 0.37 
12/26/2009 0.45 0.42 0.40 0.44 0.38 0.37 
12/27/2009 0.45 0.42 0.40 0.44 0.37 0.37 
12/28/2009 0.45 0.42 0.40 0.45 0.39 0.37 
12/29/2009 0.44 0.42 0.40 0.45 0.37 0.37 
12/30/2009 0.45 0.42 0.42 0.44 0.39 0.38 
12/31/2009 0.45 0.43 0.41 0.45 0.37 0.39 

1/1/2010 0.45 0.43 0.41 0.45 0.37 0.39 
1/2/2010 0.45 0.43 0.41 0.45 0.37 0.39 
1/3/2010 0.45 0.43 0.41 0.45 0.37 0.39 
1/4/2010 0.45 0.43 0.41 0.45 0.37 0.39 
1/5/2010 0.45 0.43 0.41 0.45 0.37 0.39 
1/6/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/7/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/8/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/9/2010 0.45 0.43 0.41 0.45 0.37 0.38 

1/10/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/11/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/12/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/13/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/14/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/15/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/16/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/17/2010 0.45 0.43 0.41 0.45 0.37 0.38 
1/18/2010 0.45 0.43 0.41 0.45 0.38 0.38 
1/19/2010 0.45 0.43 0.41 0.45 0.38 0.38 
1/20/2010 0.45 0.43 0.41 0.45 0.38 0.38 
1/21/2010 0.45 0.43 0.41 0.45 0.38 0.38 
1/22/2010 0.45 0.43 0.41 0.45 0.38 0.38 
1/23/2010 0.45 0.43 0.41 0.45 0.38 0.38 
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Table E - 1 (continued). 

DATE CLAY SILT 
SURFACE 100 MM 150 MM SURFACE 100 MM 150 MM 

Θ, V/V Θ, V/V Θ, V/V Θ, V/V Θ, V/V Θ, V/V 
1/25/2010 0.45 0.42 0.41 0.45 0.38 0.37 
1/24/2010 0.45 0.43 0.41 0.45 0.38 0.37 
1/26/2010 0.45 0.42 0.41 0.44 0.38 0.37 
1/27/2010 0.45 0.42 0.41 0.44 0.38 0.37 
1/28/2010 0.45 0.42 0.41 0.44 0.38 0.37 
1/29/2010 0.45 0.42 0.41 0.44 0.38 0.37 
1/30/2010 0.45 0.42 0.41 0.44 0.38 0.37 
1/31/2010 0.45 0.42 0.41 0.44 0.38 0.37 

2/1/2010 0.45 0.42 0.41 0.44 0.38 0.37 
2/2/2010 0.45 0.42 0.41 0.44 0.38 0.37 
2/3/2010 0.45 0.42 0.41 0.44 0.38 0.37 
2/4/2010 0.45 0.42 0.41 0.44 0.38 0.37 
2/5/2010 0.45 0.42 0.41 0.44 0.38 0.37 
2/6/2010 0.45 0.42 0.41 0.44 0.38 0.37 
2/7/2010 0.45 0.42 0.41 0.44 0.38 0.37 
2/8/2010 0.45 0.42 0.41 0.44 0.38 0.37 
2/9/2010 0.45 0.42 0.41 0.44 0.38 0.37 

2/10/2010 0.46 0.42 0.41 0.44 0.38 0.37 
2/11/2010 0.46 0.42 0.41 0.44 0.38 0.37 
2/12/2010 0.46 0.42 0.41 0.44 0.38 0.37 
2/13/2010 0.46 0.42 0.40 0.44 0.38 0.37 
2/14/2010 0.46 0.42 0.40 0.44 0.38 0.37 
2/15/2010 0.46 0.42 0.40 0.44 0.38 0.37 
2/16/2010 0.46 0.42 0.40 0.44 0.38 0.37 
2/17/2010 0.46 0.42 0.40 0.44 0.38 0.37 
2/18/2010 0.46 0.42 0.40 0.44 0.38 0.37 
2/19/2010 0.46 0.42 0.40 0.44 0.38 0.38 
2/20/2010 0.47 0.42 0.40 0.44 0.38 0.38 
2/21/2010 0.47 0.42 0.40 0.44 0.38 0.38 
2/22/2010 0.47 0.42 0.40 0.44 0.38 0.38 
2/23/2010 0.47 0.42 0.40 0.44 0.38 0.38 
2/24/2010 0.47 0.42 0.40 0.44 0.38 0.38 
2/25/2010 0.47 0.42 0.40 0.44 0.39 0.38 
2/26/2010 0.47 0.42 0.40 0.44 0.39 0.38 
2/27/2010 0.47 0.42 0.40 0.44 0.39 0.38 
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Table E - 1 (continued). 

DATE CLAY SILT 
SURFACE 100 MM 150 MM SURFACE 100 MM 150 MM 

Θ, V/V Θ, V/V Θ, V/V Θ, V/V Θ, V/V Θ, V/V 
2/28/2010 0.47 0.42 0.40 0.44 0.38 0.38 

3/1/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/2/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/3/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/4/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/5/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/6/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/7/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/8/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/9/2010 0.47 0.42 0.40 0.44 0.38 0.37 

3/10/2010 0.47 0.42 0.40 0.44 0.38 0.37 
3/11/2010 0.48 0.42 0.40 0.44 0.38 0.38 
3/12/2010 0.48 0.43 0.40 0.44 0.38 0.38 
3/13/2010 0.48 0.42 0.40 0.44 0.39 0.38 
3/14/2010 0.48 0.43 0.40 0.44 0.39 0.38 
3/15/2010 0.48 0.43 0.40 0.44 0.39 0.38 
3/16/2010 0.48 0.43 0.40 0.44 0.39 0.38 
3/17/2010 0.48 0.43 0.40 0.44 0.39 0.38 
3/18/2010 0.48 0.43 0.40 0.44 0.39 0.38 
3/19/2010 0.48 0.42 0.40 0.44 0.39 0.38 
3/20/2010 0.48 0.42 0.40 0.44 0.39 0.38 
3/21/2010 0.49 0.43 0.40 0.44 0.39 0.38 
3/22/2010 0.49 0.43 0.40 0.44 0.39 0.38 
3/23/2010 0.49 0.42 0.40 0.44 0.39 0.38 
3/24/2010 0.49 0.42 0.40 0.44 0.39 0.38 
3/25/2010 0.49 0.42 0.40 0.44 0.39 0.38 
3/26/2010 0.49 0.42 0.40 0.44 0.38 0.38 
3/27/2010 0.49 0.42 0.40 0.44 0.38 0.38 
3/28/2010 0.47 0.42 0.40 0.44 0.38 0.38 
3/29/2010 0.43 0.42 0.40 0.44 0.38 0.37 
3/30/2010 0.43 0.42 0.40 0.43 0.38 0.37 
3/31/2010 0.42 0.42 0.40 0.43 0.38 0.37 

4/1/2010 0.41 0.42 0.40 0.44 0.38 0.37 
4/2/2010 0.41 0.43 0.40 0.44 0.38 0.37 
4/3/2010 0.41 0.43 0.40 0.44 0.38 0.37 
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Table E - 1 (continued). 

DATE CLAY SILT 
SURFACE 100 MM 150 MM SURFACE 100 MM 150 MM 

Θ, V/V Θ, V/V Θ, V/V Θ, V/V Θ, V/V Θ, V/V 
4/4/2010 0.41 0.43 0.40 0.44 0.38 0.37 
4/5/2010 0.41 0.43 0.40 0.44 0.38 0.37 
4/6/2010 0.40 0.42 0.40 0.44 0.37 0.37 
4/7/2010 0.40 0.42 0.40 0.43 0.37 0.37 
4/8/2010 0.39 0.41 0.39 0.42 0.37 0.36 
4/9/2010 0.37 0.41 0.39 0.41 0.36 0.36 

4/10/2010 0.36 0.40 0.39 0.40 0.36 0.36 
4/11/2010 0.36 0.40 0.39 0.40 0.36 0.36 
4/12/2010 0.35 0.40 0.39 0.39 0.36 0.35 
4/13/2010 0.33 0.40 0.39 0.38 0.35 0.35 
4/14/2010 0.32 0.39 0.38 0.37 0.34 0.35 
4/15/2010 0.31 0.39 0.38 0.37 0.34 0.35 
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APPENDIX F 

SWALE SURVEY 
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Fig. F - 1. Plan view and of the main swale and a tributary to the main swale. This 
survey included the main swale, which from the largest wetland depression in the 
watershed to the flow measuring weir, and ultimately to Armand Bayou. The 
survey began at the weir and moved upslope toward the main depression. Profiles 
of the swales and cross sections for Points B, D, J, and L are provided in subsequent 
figures. A tributary to the main swale, which flows from one of the smaller wetland 
depressions toward the main swale, was partially surveyed. The portion of the 
tributary swale from Point BB to Point CC could not be surveyed because of 
inclement weather. 
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Fig. F - 2. Profile view of main swale, beginning at the weir and ending in the 
largest wetland depression. 

 

Fig. F - 3. Profile view of tributary to the main swale, beginning at the main swale 
and ending in the wetland depression southeast of the largest wetland depression. 
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Table F - 2. Survey index for the main swale. 

POINT ELEVATION HORIZONTAL 
DISTANCE 

[FEET] [FEET] 
Weir 12.000 0.00 
A 12.750 27.76 
B 13.018 60.32 
C 13.266 93.11 
D 13.446 143.67 
E 13.690 187.93 
F 13.795 232.45 
G 14.176 292.38 
H 14.285 331.18 
I 14.289 379.17 
J 14.098 410.12 
K 14.423 431.99 
L 14.299 454.27 
M 14.135 472.53 
N 14.331 544.61 

 

Table F - 3. Survey index for the tributary to the main swale. 

POINT ELEVATION HORIZONTAL 
DISTANCE 

[FEET] [FEET] 
H 14.285 0.00 
AA 14.249 18.79 
BB 14.105 50.09 
CC 14.772 270.09 
DD 14.944 359.20 
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Fig. F - 4. Cross section of the main swale at Point B (looking upslope), from 
centerline to crest. The west side (left) was not surveyed because of dense foliage. 

 

Fig. F - 5. Cross section of the main swale at Point D (looking upslope), from 
centerline to crest. 
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Fig. F - 6. Cross section of the main swale at Point J (looking upslope), from 
centerline to crest. 

 

Fig. F - 7. Cross section of the main swale at Point L (looking upslope), from 
centerline to crest.  
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Table F - 4. Survey index for cross sections of the main swale. All cross sections 
included the centerline of the swale, and the crest on each side of the swale (except 
for the cross section at Point B, where the westward crest could not be surveyed 
because of dense vegetation. Negative distances are to the west and positive 
distances are to the east (looking upslope). 

POINT ELEVATION HORIZONTAL DISTANCE 
FROM CENTERLINE 

[FEET] [FEET] 

Section B 
13.018 0.00 
13.205 3.89 
13.735 7.36 

Section D 

13.527 -10.26 
13.446 0.00 
13.817 28.82 
14.072 40.62 

Section J 
14.444 -4.94 
14.098 0.00 
14.467 2.11 

Section L 
14.835 -5.24 
14.299 0.00 
14.898 5.13 
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