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ABSTRACT 
 
 

Valve stiction-induced oscillations in chemical processing systems adversely affects 

control loop performance and can degrade the quality of products. Estimating the 

degree of stiction in a valve is a crucial step in compensating for the effect.  

 

This work proposes a neural network approach to quantify the degree of stiction in a 

valve once the phenomenon has been detected. Several degrees of stiction are 

simulated in a closed loop control system by specifying the magnitude of static (fs) and 

dynamic (fd) friction in a physical valve model. Each simulation generates  controller 

output OP(t) and process variable PV(t) time series data. A feed-forward neural 

network (the predictor) is trained to model the relationship between a given OP and PV 

pattern, and the stiction parameters. 

 

 To test the models predictive capability, a separate set of stiction patterns are 

generated with and without added process noise. An inverse neural network-based 

nonlinear principal component analysis (INLPCA) noise-suppressor effectively extracts 

the underlying stiction behaviour from the noise-corrupted OP and PV stiction patterns. 

In the noiseless test patterns, the predictor is shown to estimate fs and fd with a 0.65% 

average error. In the case of the noisy test patterns, the average error achieved was 

1.85%.  

 

Since the predictor is developed offline, the use of computationally intensive real-time 

search/optimization routines to quantify stiction is avoided. The neural networks 
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proved to be easily implementable, highly flexible models for extracting stiction 

behavior from control loops and accurately quantifying stiction, as long as an adequate 

first-principles description of the process dynamics can be developed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

TABLE OF CONTENTS 

                                                                                                                                                    Page 

ABSTRACT 
 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   ii 

TABLE OF CONTENTS 
 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     iv 

LIST OF FIGURES 
 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   vi 

LIST OF TABLES 
 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . viii 

1. INTRODUCTION .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   
  

1 

 1.1 Motivation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     1 
 1.2 Literature Review : Stiction Quantification .  .  .  .  .  .  .  .  .  .  .  .  .   4 
 
 

1.3 Scope of Study .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       8 

2. VALVE STICTION .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     
  

 

 2.1 Introduction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11 
 2.2 Industrial Control Loops with Stiction-Induced Oscillations .  .     15 

 2.3 Modeling Valve Stiction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   22 
 2.4 Simulating Stiction in Single-Input Single-Output (SISO) Closed  
 
 

 Loop Processes 
 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     27 

3. DATA-BASED MODELING USING NEURAL NETWORKS  .  .  .  .  .  .  .  .  .  .  .     
  

29 

 3.1 Introduction    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       29 
 3.2 Feed-forward Neural Network Model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       33 
 3.3 Principal Component Analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     37 

 3.4 Nonlinear Principal Component Analysis (NLPCA) and Inverse  
 
 

 Neural network Model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   42 

4. PROCEDURE FOR STICTION QUANTIFICATION .  .  .  .  .  .  .  .  .  .  .  .  .  .     
  

47 

 4.1 Introduction    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   47 
 4.2 Generation of Stiction Patterns by Closed-Loop Simulation of   
  Single-Input  Single-Output (SISO) Process    .  .  .  .  .  .  .  .  .  .  .  .  .   49 
 4.3 Correlation between OP(t) and PV(t) signals .  .  .  .  .  .  .  .  .  .  .  .   60 

 4.4 Noise Suppression of Test Stiction Patterns using Inverse   
  Network-based Nonlinear PCA (INLPCA) .  .  .  .  .  .  .  .  .  .  .  .  .  .     62 
 4.5 Approximating Periodicity of Test Stiction Patterns using Auto-  

  Correlation Function  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   63 
 4.6 Feed-forward Network Model for Predicting  Stiction   



v 
 

 
 

 Parameters based on OP(t) signal .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   65 

5. STICTION QUANTIFICATION RESULTS AND DISCUSSION .  .  .  .  .  .  .  .     
  

68 

 5.1 Noise Suppression of the Test Stiction Patterns using Inverse   
  Network-based NLPCA .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   68 
 5.2 Estimating Periodicity  of OP(t) patterns .  .  .  .  .  .  .  .  .  .  .  .  .  .     70 
 
 

5.3 Prediction of fs and fd using  Feed-forward neural network .  .   79 

6. CONCLUSION AND FUTURE WORK .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   
  

84 

7. REFERENCES .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   
   

85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 

 

LIST OF FIGURES 

                                                                                                                                                             Page 

1.1 Hammerstein system 
 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4 

2.1 Pneumatic control valve 
 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   11 

2.2 Closed-loop feedback single-input single-output control system 
 

.  .  .  .     12 

2.3 Relationship between controller output (OP) and valve position (MV)   
 under valve stiction 

 
.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   13 

2.4 
 

Industrial control loop with stiction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     18 

2.5 
 

He’s two-parameter stiction model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     22 

2.6 Simulating stiction in linear time invariant processes 
 

.  .  .  .  .  .  .  .  .  .  .        27 

3.1 
 

Perceptron model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       29 

3.2 
 

The sigmoid function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   31 

3.3 
 

Effect of bias on the sigmoid function   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    31 

3.4 
 

Feed-forward neural network .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .      33 

3.5 
 

Gradient descent for 1-dimensional optimization problem   .  .  .  .  .  .  .       36 

3.6 
 

First factor extracted in linear PCA .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   38 

3.7 
 

Second factor extracted in linear PCA .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   39 

3.8 
 

Auto-associative neural network .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   42 

3.9 
 

Inverse neural network .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     44 

4.1 
 

Stiction control loop: no process noise  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       49 

4.2 
 

Stiction test cases: no process noise .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    51 

4.3  Stiction control loop: with input process noise .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   54 



vii 
 

 
4.4 
 

Stiction control loop: with output process noise .  .  .  .  .  .  .  .  .  .  .  .  .  .     55 

4.5 
 

Stiction test cases: with process noise .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   56 

4.6 
 

Correlation between OP(t) and PV(t) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .        61 

4.7 Inverse neural network denoises the circular data structure formed in   
 
 

OP(t) versus PV plot .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       62 

4.8 
 

Pictorial representation of the auto-correlation of a signal .  .  .  .  .  .  .  .     64 

4.9 
 

Normalizing the stiction signals: 1-6 weak to strong stiction .  .  .  .  .  .    65 

4.10 
 

Feedforward neural network predictor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   66 

5.1 OP versus PV plots for 10 test cases red: noisy Trend, Black: actual   
 
 

trend, blue: approximation of actual trend using INLPCA .  .  .  .  .  .  .  .     68 

5.2 
 

Auto-correlation versus lag .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   70 

5.3 OP(t) patterns before and after noise removal and reconstruction: Red:  73 
 
 

Noisy Trend, Blue: Actual Trend .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

5.4 
 

Performance of neural network predictor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   79 

5.5 Regression plot showing relationship between actual and predicted fs 
and fd values for the training data set (80% of the 1275 stiction  

 

 
 

patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   80 

5.6 Regression plot showing relationship between actual and predicted fs 
and fd values for the validation data set (20% of the 1275 stiction 

 

 
 

patterns .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   81 

5.7 Regression plot showing relationship between actual and predicted fs   
 and fd for the 20 test cases .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81 
 

 

 

 

 

 



viii 
 

 

                                                                                                                                                       Page                              

2.1 Typical stiction pattern shapes for different process types 
 

.  .  .  .  .  .  .  .  .   4 

2.2 Simulating stiction in linear time invariant processes 
 

.  .  .  .  .  .  .  .  .  .  .  .   17 

5.1 Estimation error for 10 test cases with no added noise 
 

.  .  .  .  .  .  .  .  .  .  .   82 

5.2 Estimation error for 10 test cases with no added noise 
 

.  .  .  .  .  .  .  .  .  .  .   83 

 

LIST OF 4!",%3



1 
 

1. INTRODUCTION 

 

1.1 Motivation 

 

Chemical processing systems are comprised of many physical components and exhibit 

highly complex,  non-ideal and nonlinear dynamics. A chemical refinery operates 

around the clock and production is halted if or when physical maintenance is necessary. 

Any opportunity to make such systems even marginally more autonomous, efficient or 

perform better in the presence of equipment faults can drastically increase product 

quality and reduce operation costs.  Ideally, these improvements will be achieved 

through the development of easily-implementable, computationally efficient software 

applications as physical maintenance is costly and sometimes infeasible. 

 

A very common problem in a chemical plant is the presence of oscillatory behaviour in 

control loops which can significantly hamper control system performance. There are 

several causes of sustained oscillations in control loops e.g.  aggressive or poor tuning 

of controllers, external disturbances, valve nonlinearities such as stiction, hysteresis, 

deadband, saturation and backlash, and the use of linear controllers for the control of 

processes with highly nonlinear dynamics. External disturbances that cause oscillations 

in control loops can arise from cyclic events such as fluctuations in raw material quality 

and ambient temperature[1]. Process nonlinearities such as stiction that cause 

sustained oscillatory behaviour result from physical defects in valves. These defects  
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are typically caused by seal degradation, lubricant depletion, inclusion of foreign matter 

or tight packing around the valve stem [2]. 

 

Stiction occurs when the controller’s demand for the valve to achieve a certain opening 

or closing position is not met because the stem, a physical component in the valve , is 

stuck due the presence of static friction[3]. Integral action in the controller or the 

process causes the control signal to increase in the same direction until the force that 

moves the stem is great enough to overcome the static friction. The stem position then 

overshoots the desired opening position , and the controller attempts to compensate for 

this by sending an aggressive signal that acts in the reverse direction of the original 

stem movement in an attempt to drive the process variable back to its set point. The 

valve stem gets stuck again and a control signal is sent of high enough magnitude to 

overcome static friction, leading to an undershoot of the setpoint. This successive 

overshooting and undershooting of the set point continues leading to sustained 

oscillations in the process variable. 

 

A chemical processing system can have hundreds or thousands of valves. It is crucial to 

detect the presence of and diagnose stiction (distinguish it from from other sources of 

oscillations), then quantify the degree or extent of it so that appropriate action can be 

taken to compensate for it. Compensating for stiction, either through physical 

maintenance or improved controller design, helps maximize the quality of final 

products. 
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This work is dedicated to the problem of stiction quantification once the phenomenon 

has already been detected. Quantification is accomplished through closed loop 

simulation of stiction in a single-input single-out process by specifying the degree of 

stiction in a valve stiction model. Two neural network models are used to extract 

underlying stiction behaviour from noise-corrupted stiction loops as well as estimate 

the degree of stiction. The first model is a conventional single-hidden layer feedforward 

network trained to model the relationship between a stiction pattern (a data series) 

and the degree of stiction (the magnitude of static and dynamic friction). The second 

model is an inverse neural network that models the underlying relationship between 

the controller output and process variable for a particular stiction control loop, thereby 

effectively removing the noise from the OP versus PV stiction plots. 

 

Artificial Neural Networks (ANN’s) are composed of a number of neuron-like nodes or 

processing elements that interact with each other through a set of weighted 

connections. They adapt themselves to inputs from actual processes by modifying these 

weights, thereby ‘learning’ certain relationships which allow for representation of 

complex systems. ANN’s are efficient at processing noisy, incomplete or inconsistent 

data. These models are used in this study for the purpose of noise filtering and 

prediction or estimation of the degree of stiction present in a control loop. 
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1.2 Literature Review: Stiction Quantification 

 

An extensive amount of literature has been produced on stiction detection and 

diagnosis but significantly less work has been done in the area of estimation and 

quantification techniques. Several of the stiction quantification literature is based on 

Hammerstein system identification[4].  

 

Figure 1.1: Hammerstein System 

 

Figure 1.1 is a schematic of a typical closed-loop feedback process control system where 

OP is the controller output, MV is the manipulated variable (the valve position or 

flow rate) ,PV is the process (or controlled) variable and SP is the desired set point of 

PV . In a hammerstein identification-based stiction estimation technique, the MV is 

usually not explicitly available but OP(t) and PV(t) data are. The goal is essentially to 

separate the linear dynamics of the process from the static nonlinearity induced by 

stiction. An empirical data-driven valve model, which relates OP to MV and also 

contains parameters dictating the degree of stiction, is used to estimate the MV signal 

based on the known OP. Then a system identification method is used to model the 

linear dynamics of the process, that is, determine PV(t) from the estimated MV(t). The 

procedure is repeated until stiction parameters in the valve model are determined such 

   Controller Valve  
Dynamics 

Process 
Dynamics 
 

OP MV PV SP 

Nonlinear Dynamics Linear Dynamics 

Stiction 
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that a certain minimum error criterion between the predicted PV and actual PV(t) is 

satisfied.  

 

The methods presented by different authors vary in the search or optimization routine 

and type of process identification used. Lee, Ren and Huang propose a method for 

stiction estimation using constrained optimization and contour map[5]. The empirical 

model developed by He et al., parametrized by static and dynamic friction (fs and fd) 

present in the valve, was selected as the suitable description of the valve stiction 

nonlinearity[6]. To reduce computational cost, a search space for the stiction model 

parameters is effectively defined. Process identification is achieved by ordinary least 

squares method which is based on linear regression. A set of the stiction parameters is 

selected and MV estimates are generated based on OP(t) data and He’s stiction model. 

Different process models are obtained  for each MV data and corresponding PV data in 

the identification. A multi-start adaptive random search is used to find fs and fd 

associated with the minimum model error. 

 

Jelali et al use separable least-squares and gradient-free global search algorithms to 

quantify stiction[7]. An Auto-Regressive Moving Average Exogeneous (ARMAX) output 

model for process identification and genetic algorithm as a heuristic search of optimal 

stiction parameters. Karra and Karim proposed a comprehensive approach for 

distinguishing between stiction and other sources of sustained oscillations in control 

loops and quantification[1]. In this work, root-cause detection and quantification are 

accomplished simultaneously. Power Spectral Density (PSD) and Auto Correlation 
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Function (ACF) are used uncover periodic patterns in OP(t) and PV(t) data from control 

loops and detect the presence of stiction, while the identification task is performed with 

an extended ARMAX model, which incorporates a model of both stationary stochastic 

disturbance and additive non-stationary disturbance affecting the process 

simulatenously. Srinivasan and Rengaswamy adopt an ARMAX model structure for 

process identification and a grid search technique[4]. A grid of stiction values 

S and J (S=fs+fd,  J=fs-fd)is created and each point represents a different estimation of 

MV(t) and an identified linear process model. The point corresponding to minimum 

mean-squared error (MSE) is the optimal value of S and J. He and Wang use a linear and 

nonlinear least squares to quantify stiction based on a semiphysical valve model[8]. The 

proposed technique uses a curve fitting method to determine fs and fd. Ivan and 

Lakshminarayanan’s approach to stiction quantification is similar to Srinivasan and 

Rengaswamy’s but  based on a one parameter stiction model motivated by He[9]. 

 

More recently, Zabiri and Omar have applied a neural network based algorithm to the 

Hammerstein system identification problem. The MV(t) signal is estimated using 

Choudhury, Thornhill and Shah’s empirical data-driven stiction model, a two parameter 

(S, J) stiction model which is considerably more complex than He’s model.  An initial 

guess for S and J is chosen and MV(t) is calculated based on the valve stiction model. 

Then a NARX (Nonlinear Autoregressive with Exogeneous Input) neural network, which 

allows for time series forecasting, is used for identification of the process. This type of 

neural network takes as inputs the MV(t) and PV(t) signal at time steps i to k (that is, a 

time window of k) and output PV(t) signal at time step k+1. The window is then moved 
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one time step and the next set of input-output data is MV and PV signal at time steps i+1 

to k+1, and the PV(t) signal at time step k+2. The NARX network uses several such sets 

of input-output data to relate past MV(t) and PV(t) time series information to PV(t) 

signal one time step into the future. The resulting process model is then tested to 

predict PV(t) based on estimated MV and the root mean-squared error (RMSE) is 

calculated for the predicted PV(t). In the next iteration the parameter J is fixed and 𝑆2 is 

chosen such that 𝑆2 < 𝑆1. All the steps in the previous iteration are repeated and 𝑅𝑀𝑆𝐸2 

is calculated. If 𝑅𝑀𝑆𝐸2 > 𝑅𝑀𝑆𝐸1, then all values of 𝑆 < 𝑆1 will yield larger errors and 

they are discarded. The S and J values corresponding to minimum RMSE represents the 

optimal solution. 

 

The aforementioned techniques for stiction quantification have certain drawback. All 

involve using real–time search or optimization routines for the estimation of stiction 

parameters which can be computationally intensive. The genetic algorithm-based 

search technique used by  Jelali is notoriously slow especially if the search space for fs 

and fd cannot be significantly reduced. All employ either He’s or Choudhury’s empirical 

stiction models. Although these models can satisfactorily emulate real stiction 

behaviour  in industrial control loops, they are not as accurate as the physical model, 

which is less favored in stiction quantification works due to need for numerical 

integration. Some of these techniques are very sensitive to even low process noise 

levels or cases where stiction is present along with external disturbances.  Zabiri’s 

method admittedly struggles to estimate J values correctly in the presence of external 

oscillatory disturbances.   
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1.3  Scope of Study 

 

This work focuses on the problem of stiction quantification using neural network 

models, assuming oscillations have already been detected in a control loop and 

diagnosed as being stiction-induced. The aim is to show that neural network models are 

very flexible models capable to modeling complex nonlinear relations by showing that 

 

1) Simply by using a small section of a stiction pattern, which contains all 

information about the shape, amplitude and frequency of the oscillations, the 

degree of stiction can be accurately estimated. 

2) When there is process noise or disturbance in addition to stiction oscillations in 

a control loop, such models can effectively ‘denoise’ such loops and extract the 

underlying stiction trend. 

 

Two neural network models are used: an inverse neural network to extract the 

important stiction pattern for cases were both stiction along with external process 

input and output disturbances (either oscillatory or in the form of colored noise) is 

present. The second neural network is a fully connected feedforward architecture used 

to predict the stiction parameters fs and fd given a stiction pattern. 

 

Chapter 2 begins with a detailed description of what causes stiction, a discussion of 

stiction data  from real industrial control loops and models for valve stiction. Empirical 

data-driven models and a physical model (based on a pneumatic control valve) are 

compared in terms of how well they capture real stiction behaviour. The chapter 
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concludes with an algorithm for closed loop simulation of stiction in a Single-Input 

Single-Output (SISO) process using Proportional-Integral (PI) controller and the 

physical valve model. 

 

In Chapter 3, the theory behind neural networks and their application to predictive 

modeling and noise filtering is presented. Feed-forward and inverse neural network 

algorithms are described. Inverse networks are a derivative/extension of auto-

associative networks (first proposed by Kramer as a nonlinear principal component 

analysis technique), which will first be described first.  

 

Chapter 4 contains the comprehensive procedure for quantifying stiction in a closed 

loop SISO process using OP(t) and PV(t) time series data, based on the physical valve 

stiction model. Starting with the generation of over one-thousand stiction patterns of 

varying degrees of stiction (different values of fs and fd), twenty of which will be 

allocated for testing the accuracy of the stiction quantification approach. Ten of the 

stiction loops will have no external disturbances and 10 will contain stationary and 

non-stationary process disturbances. Then a discussion of how the auto-corerelation 

function and neural network models are used for preprocessing and de-noising of the 

OP(t) and PV(t) data and ultimately, the  prediction of fs and fd for each test pattern. 

 

Finally, the prediction accuracy of the proposed procedure is discussed in Chapter 5.  In 

most cases, control systems will be based on Multiple-Input Multiple-Output (MIMO) 

type: comprised of multiple manipulated variables and process variables. For such 
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multivariate processes, control loops are not necessarily isolated from one another and 

may be highly interacting. The validity of treating each loop in a MIMO system as a SISO 

process for the purpose of stiction quantification is discussed. 

 

Although this work is centered on stiction estimation, neural networks and other data 

based machine learning algorithms can be applied in stiction detection and diagnosis. A 

distinguishing characteristic of stiction control loops is the square or parallelogram-like 

shape of the OP-MV plot. Although in past works, MV operational data is said to be 

unavailable, this data is becoming more and more readily available in chemical plants. 

In that case, stiction can be detected and distinguished from other sources of oscillatory 

phenomena using machine-learning based classification methods such as support 

vector machines and neural networks. Also, the significance of quantifying stiction 

accurately  in order to properly compensate for the effect will be briefly investigated. 

MATLAB’s Neural Network Toolbox and Dr. Matthias’s Scholz’s opensource Inverse 

neural network code is used for the development of the models for stiction 

quantification. 
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2. VALVE STICTION 

 
2.1 Introduction 
 
 
A typical chemical plant has thousands of valves for controlling several key process 

variables and maintaining them at their desired setpoints. Sustained oscillations caused 

by valve stiction cause these variables to fluctuate, leading to poor performance of the 

control system which can potentially impact the variability in product quality and 

economic  profits[10]. 

 

  
Figure 2.1: Pneumatic Control Valve [2] 

 
 
 
Figure 2.1 is a schematic of a typical ‘air-to-open’ pneumatic control valve. To open the 

valve, a control signal is sent to the valve actuator demanding a certain amount of air 

pressure to be applied to the diaphragm. The amount of force acting on the diaphragm 

must be enough to compress the spring in order to get the valve stem and attached plug 

 

 

 

Air Pressure 
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Friction 

Fluid 
plug 

spring actuator 

diaphragm
gn 

valve stem 

packing 
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to move upward, allowing the flow of fluid through the valve. To close the valve, enough 

air pressure is released so that the plug falls into seat and obstructs fluid flow. 

 
In a valve impaired by stiction (or ‘static friction’) the stem does not respond to a 

demand by the control signal to achieve a particular opening position because of 

frictional resistance, typically between the stem and packing. 

 

 

Figure 2.2: Closed-loop Feedback Single-Input Single-Output Control System 

 

 

For a closed loop feedback control system such as that shown in Figure 2.2, with a 

conventional proportional integral controller, the following equation governs the  

relationship between deviations of  PV(t) from the setpoint and MV(t): 

 

𝑀𝑉(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏 

 
To achieve a certain valve opening position, the controller output OP signals the valve 

actuator to apply adequate force(air pressure ) to effect valve stem movement. If 

stiction is present, the stem does not move. Integral action in the controller causes the 

control signal to increase in the same direction until the actuator applies a force of 

 
PI Controller Valve Process 

OP MV PV 
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magnitude greater than the static friction. Once static friction is overcome, the valve 

slips and overshoots the desired opening position. The integral part of the controller, 

which causes control action to be taken according to 1) how long and 2)by how much 

PV(t) has deviated from the set point, will cause aggressive control action in order to 

compensate for the overshoot and return the PV(t) back to setpoint. However if stiction 

is still present the same scenario happens in the reverse direction, leading to an 

undershoot. These successive overshoots and undershoots lead to continuous 

oscillations in the control loop. 

 

 

Figure 2.3: Relationship between controller output (OP) and valve position (MV) under stiction [7] 

 
 
 
Figure 2.3 describes the relationship between OP and MV in a ‘sticky’ valve. Ideally, MV 

will vary linearly and proportionally with adjustments to the controller output OP 
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according to the line between 𝑙1and 𝑙2. For illustration purposes the bolded lines 

represent  the non-ideal behaviour of a valve with stiction. Let A indicate the resting 

position of the valve. Here, OP,MV, 𝑓𝑠 and 𝑓𝑑  are all expressed as a percentage of the 

total valve travel range. To open the valve, the OP signal is increased. Due to stiction 

present, the valve stem does not move (MV remains constant) until the controller 

demands an amount of force greater than the static friction 𝑓𝑠 (represented by 𝐴′𝐵′). At 

some value of OP (𝐷′) the 𝑓𝑠 is overcome and the valve stem suddenly accelerates and 

jumps to a new opening position C where its movement varies  linearly with OP but 

offset by an amount 𝑓𝑑 , since it is now working against dynamic friction (resistance 

when the valve is moving). It is possible for the valve to get stuck again at D. In that 

case, it will have to overcome frictional resistance in the amount of J=𝑓𝑠 − 𝑓𝑑 . The same 

trajectory is followed in the reverse direction when the valve is closing. Typically, the 

valve stem gets stuck once in each direction leading to a square-like or parallelogram-

like shape of the MV-OP plot that, which is a way of distinguishing stiction oscillations 

from other types of oscillations, that is, if MV(t) data is available. 
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2.2 Industrial Control Loops with Stiction-Induced Oscillations 

 

In general, stiction-induced oscillations in process control loops have characteristic 

shapes that help distinguish them from other sources of oscillatory behaviour such as 

aggressive controller tuning and external disturbances. Several authors have collected 

real stiction data from various industrial systems such as chemical refining, mining and 

metal processing, mineral processing, pulp and paper, and power plants. These have 

been gathered into a database of over 100 sets of OP(t) and PV(t) stiction data.  

 

Stiction oscillations typically have sinusoidal, triangular, saw-tooth or square-like 

shapes. Figure 2.4 shows some OP(t) and PV(t) patterns from pressure, temperature, 

flow and level control loops with stiction. MV(t) data is unavailable in these stiction 

loops. However, if this data is available, detecting stiction and distinguishing it from 

other types of oscillations becomes possible. As mentioned earlier, this is because a 

distinguishing characteristic of stiction phenomena is that the OP-MV plot will adopt a 

parallelogram-like shape due to stick-slip behaviour of the valve in the opening and 

closing directions.  

 

Generally, stiction loops will have the following distinguishing features: OP(t) and 

PV(t): 

 Oscillations due to stiction will contain harmonics. The harmonic of a periodic 

signal is a component frequency of the signal which is an integer multiple of the 

fundamental frequency. Aggressive controller tuning and external disturbances 
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usually lead to sinusoidal waves, which contain only one frequency. Stiction 

patterns will be rectangular, saw-tooth(asymmetric triangular) or 

triangular[11]. A rectangular wave leads to odd harmonics, that is, it contains its  

fundamental frequency f and 3f, 5f, 7f, etc.; while triangular or saw-tooth signals 

contain both even and odd harmonics[11]. 

 For self-regulating processes OP(t) oscillations are typically triangular and for 

integrating processes PV(t) follows triangular wave form [2]. If the MV(t) signal 

(which describes the movement of the valve stem with time)  is explicitly 

available, it will exhibit rectangular or square-like oscillations due to the stick 

slip behaviour of the valve stem. In flow control processes ,where the MV(t) 

signal varies proportionally to PV(t) ( in this case, the flow rate), PV(t) will 

follow a rectangular wave if stiction behaviour is nearly ‘ideal’. 

 When the magnitude of stiction is higher, the amplitude of the oscillations in 

PV(t) and OP(t) is higher and the peaks are sharper and pronounced  and when 

process lag is high, the peaks are more blunt or curved and the patterns is close 

to sinusoidal[11]. 

 

These are only meant to be general guidelines based on extensive studies performed in 

the literature. Of course, process dynamics and controller parameters will affect the 

shapes of stiction-induced oscillations. Table 2.1 is a summary of typical shapes of 

stiction patterns for different process types and control types. 
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Process 
type 

Fast processes (flow) Slow processes Integrating 
processes 

Level with 
PI control 

 Dominant  
I action 

Dominant 
P action 

Pressure & 
temaperature 

Level  

OP 
 

Triangular 
(Sharp) 

Rectangular Triangular 
(Smooth) 

Triangular 
(Sharp) 

Triangular 
(Sharp) 

PV Square Rectangular Sinusoidal Triangular 
(Sharp) 

Parabolic 

Table 2.1:Typical stiction pattern shapes for different process types [12, 13] 
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Flow Control (M. Manum) 

 

Pressure Control with disturbance likely (C. Scali) 

 

Level Control with disturbance likely (C. Scali) 

 

Flow Control with disturbance likely (C. Scali) 

 

Flow Control with stiction likely (C. Scali) 

 

Figure 2.4: Industrial Control loops with stiction  
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Level Control with stiction likely (C. Scali) 

 

Pressure Control with possibility of marginal stability 

 

Flow Control with stiction likely (C. Scali) 

 

Flow Control with stiction likely (C. Scali) 

 

Flow Control with stiction likely (B. Huang) 

 

Figure 2.4 Continued 

0 2000 4000 6000 8000 10000 12000 14000
0.025

0.03

0.035

0.04

time

O
P

0 2000 4000 6000 8000 10000 12000 14000
0.028

0.03

0.032

0.034

time

P
V

0 2000 4000 6000 8000 10000
0.036

0.037

0.038

0.039

time

O
P

0 2000 4000 6000 8000 10000
0.036

0.037

0.038

0.039

0.04

time

P
V

0 5000 10000 15000
0.01

0.02

0.03

0.04

time

O
P

0 5000 10000 15000
0.024

0.025

0.026

0.027

0.028

time

P
V

0 2000 4000 6000 8000 10000
0.025

0.03

0.035

0.04

0.045

0.05

time

O
P

0 2000 4000 6000 8000 10000
0.035

0.036

0.037

0.038

0.039

0.04

time

P
V

0 1 2 3 4 5 6

x 10
4

-0.04

-0.02

0

0.02

0.04

0.06

time

O
P

0 1 2 3 4 5 6

x 10
4

-0.04

-0.02

0

0.02

0.04

0.06

time

P
V



20 
 

Flow Control with stiction (B. Huang) 

 

Pressure Control with stiction (B. Huang) 

 

Pressure Control with stiction (B. Huang) 

 

Flow Control with stiction (P. He) 

 

Level Control with tuning problem (P. He) 

 

Figure 2.4 Continued 
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Flow Control with stiction (A. Horch) 

 

Flow Control with stiction (A. Horch) 

 

 
Figure 2.4 Continued 
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2.3 Modeling Valve Stiction 
 
 
Empirical or data-driven valve stiction models have been developed [3, 6, 14]. He’s two 

and three parameter model employs the most simplistic logic of the valves movement 

under stiction and has been shown to emulate real stiction behaviour in industrial 

control loops very well compared to the others[2]. Figure 2.5  shows the algorithm for 

He’s two-parameter model 

 
 

 
Figure 2.5: He’s two-parameter stiction model [15]. 

 
 

Here, all variables have been translated to be in terms of percent valve travel range. 

OP(t), MV(t) are now expressed as 𝑢(𝑡) and 𝑢𝑣(𝑡) . When stiction is present, the 

residual amount of force being applied that has not effected valve stem movement is 

 𝑢𝑟 . The cumulative force 𝑐𝑢𝑚_𝑢  acting on the valve in the current control instance is 

the sum of  𝑢𝑟 and the change in controller output signal from previous to current 

Controller output u(t) 

 𝑐𝑢𝑚_𝑢 = 𝑢𝑟 + (𝑢(𝑡) − 𝑢(𝑡 − 1)) 

 𝑢𝑣(𝑡) = 𝑢(𝑡) − 𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠)𝑓𝑑 

  𝑢𝑟 = 𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠)𝑓𝑑 

 𝑢𝑣(𝑡) = 𝑢𝑣(𝑡 − 1) 
 𝑢𝑟 = 𝑐𝑢𝑚_𝑢 

 𝑎𝑏𝑠(𝑐𝑢𝑚_𝑢) > 𝑓𝑠? 
𝑦𝑒𝑠 𝑛𝑜 
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control instance 𝑢(𝑡) − 𝑢(𝑡 − 1). If 𝑐𝑢𝑚_𝑢 is of high enough magnitude to overcome the 

static friction 𝑓𝑠, then the valve moves to position 𝑢𝑣(𝑡). The direction of excess force 

applied above what was required to overcome the stiction band is given by 

𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠) and the dynamic or moving friction that resists valve movement is 𝑓𝑑 . 

So 𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠)𝑓𝑑  represents how much valve travel will not be achieved as a 

result of the dynamic friction 𝑓𝑑  that the valve is working against in the direction 

𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠). If the valve stem does not overcome 𝑓𝑠, then it does not move, that is, 

𝑢𝑣(𝑡) = 𝑢𝑣(𝑡 − 1) and  𝑢𝑟 = 𝑐𝑢𝑚_𝑢. 

 
The data-driven models are typically validated against physics-based models, which are 

the most descriptive models of the physics of valves with stiction but are often avoided 

due to the computational cost incurred in solving them. However the purpose of this 

work is to generate stiction patterns offline (i.e. when the chemical processing system is 

not in operation) and use these stiction patterns to develop a predictor (also offline) 

capable of quantifying stiction in real time when the process is in operation.  

 

Here, the motion (position and velocity) of the valve stem of the pneumatic control 

valve shown in Figure 2.1 is governed by newtons law of motion Force = mass ×

acceleration. This model is obtained from [15]. 

 
 

𝑀
𝑑2𝑥

𝑑𝑡2
=∑Forces = 𝐹𝑎 + 𝐹𝑟 + 𝐹𝑓 + 𝐹𝑝 + 𝐹𝑖  

𝑥: relative valve stem position 

𝐹𝑎 = 𝐴𝑢 
𝐹𝑎: force applied by pneumatic actuator 
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𝐴 ∶ area of the diaphragm 
𝑢 ∶ actuator air pressure or the valve input signal 
 

𝐹𝑟 = −𝑘𝑥 
𝐹𝑟: spring force 
𝑘 ∶ spring constant 
 

𝐹𝑝 = −𝐴𝑝∆𝑝 

 

𝐹𝑝 ∶ force due to fluid pressure 

𝐴𝑝: plug unbalance area 

∆𝑝: fluid pressure drop across the valve 

 

𝐹𝑖 : extra force required to force the valve into seat 

 

𝐹𝑓: friction force (includes static and dynamic/moving friction) 

 

𝐹𝑝 & 𝐹𝑖 are assumed negligible 

 

𝐹𝑑: Dynamic friction  (velocity independent term) 

𝑣𝐹𝑣: viscous friction term that depends linearly on the velocity 

𝐹𝑓 = {
−Fdsign(v) − vFv − (Fs − Fd)𝑒

−(
𝑣
𝑣s
)
2

sign(v), if v ≠ 0

−(Fa + Fr), if v = 0 and |Fa + Fr| ≤ Fs
−Fssign(Fa + Fr), if v = 0 and |Fa + Fr| > Fs

 

Fs:maximum static friction 

vs: empirical stribeck velocity parameter 

 

 

The friction term is represented as a piecewise function, each describing the amount of 

friction present when the valve is stuck, about to become unstuck,  or moving. The first 

line is the condition when the valve is moving. In this case, the valve acts against 

dynamic friction, which acts in the opposite direction of the valves intended movement 

-sign(v). The second expression is the viscous friction accounts for resistance to the 

valve stems motion due to properties of the flowing fluid and is proportional to the 
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velocity of the valve. Finally, the last the stribeck term (Fs − Fd)exp [−(𝑣/𝑣s)
2]sign(v) 

addresses the discontinuity at the stick-slip moment , where the valve goes from acting 

against friction of amount  Fs to Fd, when the valve stem just begins to move. An 

empirical velocity parameter 𝑣s controls the rate at which that point of discontinuity is 

approached. The second line indicates the condition where the valve is stuck, in which 

case the force |Fa + Fr| acting to move the valve is less than Fs. At the instance where 

the stem breaks free of the stiction, that is, |Fa + Fr| > Fs, the valve stem is resisted by a 

force Fssign(Fa + Fr). The negative signs on all terms indicate that the friction acts in 

opposition to the direction in which the valve moves. 

The equation describing the motion of the valve stem can be rewritten as follows: 

�̇� = 𝑣 

𝑚�̇� = Fa + Fr + Ff + Fp + Fi 

 

 

This stiff system of ordinary differential equations can be solved by numerical 

integration. However, But if used directly, difficulties in numerical integration exist due 

to hash discontinuity caused by sign function at zero velocity (Detection and Diagnosis 

of stiction in control loops). 

 

So Ff is approximated using piecewise function, where |𝑣| < 𝛿 is used to approximate 

𝑣 = 0. 

Therefore, the ODEs we use to simulate the sticky valve are the following, with 

δ = 1 × 10−6𝑖𝑛/𝑠 : 

 

𝐹𝑓 = {
−Fcsign(v) − vFv − (Fs − Fc)𝑒

−(
𝑣
𝑣s
)
2

sign(v), if v ≠ 0

−(Fa + Fr), if v = 0 and |Fa + Fr| ≤ Fs
−Fssign(Fa + Fr), if v = 0 and |Fa + Fr| > Fs

 

 

�̇� = 𝑣 
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𝑚�̇�

=

{
  
 

  
 Sa𝑢 − 𝑘𝑥−Fc − 𝑣Fv − (Fs − Fc)𝑒

−(
𝑣
𝑣s
)
2

, if v > δ 

Sa𝑢 − 𝑘𝑥−Fc, if − δ ≤ v ≤ δ and (Sa𝑢 − 𝑘𝑥) > Fs 

0, if − δ ≤ v ≤ δ and − Fs ≤ (Sa𝑢 − 𝑘𝑥) ≤ Fs
Sa𝑢 − 𝑘𝑥−Fc, if − δ ≤ v ≤ δ and (Sa𝑢 − 𝑘𝑥) < −Fs

Sa𝑢 − 𝑘𝑥−Fc − 𝑣Fv − (Fs − Fc)𝑒
−(

𝑣
𝑣s
)
2

, if v < −δ

 

 

𝐽 = [
0 1
𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑣

] 

 

 

𝜕𝑓2
𝜕𝑥

= {
0, 𝑖𝑓 − δ ≤ v ≤ δ and − Fs ≤ (Sa𝑢 − 𝑘𝑥) ≤ Fs 

−
𝑘

𝑚
, 𝑒𝑙𝑠𝑒

 

𝜕𝑓2
𝜕𝑣

=

{
 
 

 
 
1

𝑚
[−Fv −

2𝑣

𝑣s2
(Fs − Fc)𝑒

−(
𝑣
𝑣s
)
2

] , 𝑖𝑓 − δ ≤ v ≤ δ and − Fs ≤ (Sa𝑢 − 𝑘𝑥) ≤ Fs 

0, 𝑖𝑓 − δ ≤ v ≤ δ

1

𝑚
[−Fv +

2𝑣

𝑣s2
(Fs − Fc)𝑒

−(
𝑣
𝑣s
)
2

] , 𝑖𝑓 𝑣 < −δ 

 

 

In some cases, especially for stiff systems, ODE solver performance can be enhanced or 

accelerated by including analytically computed jacobian matrix specially coding your 

ODE file. Software such as MatLab contain built in functions that compute the jacobian 

numerically, and in this work, the analytically computed jacobian did not lead to any 

noticeable speed up. 
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2.4 Simulating Stiction in Single-Input Single-Output (SISO) Closed Loop Processes 

 
The following are some valve stiction simulations based on this physical model and the 

processes described by the transfer functions in Table 2.2. 

 

 Level Concentration 
Process  1

15𝑠
 

3

10𝑠 + 1
 

PI Controller 
𝐺𝑐 = 3(1 +

1

30𝑠
) 𝐺𝑐 = 0.2 (1 +

1

2𝑠
) 

Table 2.2 Simulating stiction in linear time invariant processes 

 
 
 
Level Control: Fs=500 lbf  Fd=482lbf 

  

 
 
Level Control: Fs=300lbf  Fd=200 lbf 

  

 
 
Level Control: Fs=40 Fd=10 

  
 
Figure 2.6: Simulating stiction in linear time invariant processes 
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Concentration Control: Fs=500 Fd=482 
 

 
 

 
 
 
Concentration Control: Fs=300 Fd=200 

  

 
 
Concentration Control: Fs=40 Fd=10 

  

 

Figure 2.6 Continued 
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3. DATA-BASED MODELING USING NEURAL NETWORKS 

 

3.1 Introduction 

 

It is difficult to develop first principles mathematical models that describe the dynamics 

of complex systems with high non-linearity, uncertainty and noise. However, if 

sufficient data is available from such systems, models can be developed based on this 

data using powerful data-based modeling algorithms from the field of machine learning.  

Artificial neural networks (ANN’s) are a class of machine learning algorithms containing 

nonlinear mapping functions that together can approximate any function or ‘fit’ any 

data to arbitrary accuracy [14]. ANNs which are imported from statistical learning 

theory [16]  , can perform a nonlinear mapping of input-output data, learn relationships 

and produce a certain desired output given new inputs. 

 

 
Figure 3.1 Perceptron Model 

 

 

 ∑⬚  

𝑥2 𝑤𝑘1 

𝑣𝑘 𝑤𝑘2 

𝑥1 

𝑥3 
𝑤𝑘3 

𝑥𝑛 

𝑤𝑘𝑛 

𝑢𝑘 =∑ 𝑥𝑗

𝑛

𝑗=1

𝑤𝑘𝑗      𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘    

𝑏𝑘 

  

𝑦𝑘 

  

𝑓(𝑣𝑘) 

   )
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ANN’s are composed of computational nodes (or ‘neurons’) that interact with each 

other via weighted, adjustable interconnections. Figure3.1 shows a perceptron model, 

the basic building block of a neural network. For illustration purposes. Say one has a set 

X of N vectors 

 𝑋 = �̂�𝑖       𝑖 = 1,… . . , 𝑁  

 and each vector �̂�𝑖  is of length n, as shown in the model. Suppose each vector has an 

associated value 𝑦𝑖.This perceptron model can ‘learn’ or model the relationship 

between a given �̂�𝑖  and its associated 𝑦𝑖 as long as the �̂�𝑖′𝑠 are related with one another 

in some way. For instance, each �̂�𝑖 is data collected from a specific type of experiment 

where numbers were to be recorded at equally spaced time intervals (i.e. time series 

data was obtained) and each �̂�𝑖  represents a different trial of this experiment run under 

different conditions. For a particular �̂�𝑖 , its elements are weighted and summed up, then 

passed through some linear or nonlinear mapping function 𝑓(𝑢𝑘) to obtain an estimate 

of 𝑦𝑘, which will be denoted 𝑦′𝑘. The subscript k is simply a ‘label’ for the node, and it 

will be clear why it is needed when the perceptron model is extended to a neural 

network model which has multiple nodes. The weights 𝑤𝑘𝑗 are initially randomly 

generated. Then the error between 𝑦′𝑘and the actual 𝑦𝑘will be determined. This 

procedure, known as forward propagation, will be repeated for all the vectors using the 

same randomly generated weights so that N 𝑦′𝑘 values are obtained. The total error will 

be propagated back into the network to determine how the parameters 𝑤𝑘𝑛 should be 

adjusted such that the model produces a better prediction of 𝑦′𝑘 values in the 

subsequent iteration. The goal is to execute enough iterations so that the total error 

satisfies some minimum criterion. So the final model is defined by the weight 
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parameters, which essentially determine the contribution of a particular element in the 

vector in describing the relationship between the input vectors and the outputs.  

So given  a new �̂�𝑖  which the network has not previously seen, the network predicts 𝑦′𝑘.  

The mapping function is typically a linear, sigmoid or hyperbolic tangent function.  The 

sigmoid function is given by  

𝑓( 𝑣𝑘 ) =
1

1 + exp (−𝑎𝑣𝑘)
= 𝑦𝑘                 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 

 

 

Figure 3.2 The sigmoid function  
 
 

 

Figure 3.3 Effect of bias on the sigmoid function  
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Modifying the weights therefore affects the shape and curvature of the sigmoid transfer 

function whereas the bias neurons adds an additional degree of freedom that allows the 

curve to shift left or right. Without the sigmoid function, the ANN can only model 

functions which are linear combinations of the inputs. The function varies from 0 to 1, 

which is an important property in neural networks used for binary classification 

problems where the inputs vectors are to be categorized into one of two classes. Thus if 

the network yields a prediction closer to one, the input vector is classified as being in 

one category and if closer to 0, the vector belongs to the other category. Another 

important property of  the sigmoid function that makes it useful in regression tasks is 

that for very high or low values of the input v(k) , that is, near the limiting values 0 and 

1 of the function,  the rate of change of the slope of the curve is very small. Therefore 

large changes in the input near these limits do not cause the output to ‘blow up’. This is 

a very useful property in the back-propagation learning algorithm, which is based on 

gradient descent optimization. This prevents large changes in the calculated error and 

consequently, modest changes in the weights when those limits are approached. 
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3.2 Feed-forward Neural Network Model 

 

Here the perceptron model, which can only be used for simple modeling to multilayer, 

is extended to a multimode network which are meant for complex nonlinear modeling. 

The feed forward network shown in the Figure 3.4 contains three layers: the input layer 

which receives the input vector, the hidden layer which performs nonlinear mapping of 

the inputs to the outputs, and an output layer. Here, the blue dot on the left of a 

particular node implies the elements entering a node are weighted according to their 

associated connection and summed before entering the node. It is also implied that 

there are biases to each node. 

 

  

 

Figure 3.4 Feed-forward neural network 
 
 
 

Throughout this presentation, the compact notation of Kirby and Miranda for 

mathematical theory behind neural networks is adopted [17]. The goal here is to model 
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the relationship of several sets of input vectors of length n and their corresponding 

output vectors of length m, such that given new input vectors previously unseen by the 

network, their output vectors are predicted accurately.  The first step in neural network 

learning is forward propagation. 

 

The weighting parameters of the network are randomly generated and for each input 

vector, an output vector is calculated according to the following expressions. There are 

L layers in the neural network , the first layer being layer 0 and the last layer, L-1. Each 

layer contains 𝑁𝑖nodes numbered j=0 to j=𝑁(𝑖) − 1. So a node  j in layer i which will be 

identified as 𝑁𝑗
(𝑖). The state value of each node is 𝑆𝑗

(𝑖) and 𝑃𝑗
(𝑖) denotes the value of the 

input to a node or pre-state value. Each node 𝑁𝑗
(𝑖) has an associated weight 𝑤𝑘𝑗

(𝑖−1) that 

connects node 𝑁𝑘
(𝑖−1) from the previous layer to it (k is the index for nodes in the 

previous layer). Thus the inputs to a particular sigmoidal node  𝑁𝑗
(𝑖)

 (𝑖 ≥ 1) its pre-state 

value is 

𝑃𝑗
(𝑖)
= ∑ 𝑤𝑘𝑗

(𝑖−1)

𝑁𝑖−1−1

𝑘=0

𝑆𝑘
(𝑖−1)

+ 𝑏𝑗
(𝑖)
           𝑆𝑗

(𝑖)
= 𝜎𝑗

(𝑖)
(𝑃𝑗

(𝑖)) =
1

1 + exp (−𝑎 ∗ 𝑃𝑗
(𝑖))

       𝑆𝑗
(𝑖)

 

 

The sum squared error between calculated outputs 𝑆𝑘
(𝐿−1)

 and actual outputs  𝐺𝑗 is given by 

𝐸 =
1

2
∑ (𝑆𝑘

(𝐿−1)
− 𝐺𝑗)

2
𝑁𝐿−1−1

𝑗=0
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Once  forward propagation is complete and the error is calculated, the back-

propagation algorithm is implemented. The gradient of the error with respect to all the 

weights 𝑤𝑗𝑘
(𝑖)

 in the network are calculated according to the following expressions: 

𝜕𝐸

𝜕𝑆𝑗
(𝐿−1)

= 𝑆𝑗
(𝐿−1)

− 𝐺𝑗 

𝜕𝐸

𝜕𝑏𝑗
(𝑖)
=

𝜕𝐸

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑗
(𝑖)

𝜕𝑏𝑗
(𝑖)

 

𝜕𝐸

𝜕𝑤𝑗𝑘
(𝑖)
=

𝜕𝐸

𝜕𝑆𝑗
(𝑖+1)

𝜕𝑆𝑗
(𝑖+1)

𝜕𝑤𝑗𝑘
(𝑖)

=
𝜕𝐸

𝜕𝑆𝑗
(𝑖+1)

𝜕 [𝜎𝑗
(𝑖)(𝑃𝑗

(𝑖))]

𝜕𝑤𝑗𝑘
(𝑖)

 

𝜕𝐸

𝜕𝑆𝑗
(𝑖−1)

= ∑
𝜕𝐸

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑘
(𝑖−1)

𝑁(𝑖)−1

𝑗=0

 

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑘
(𝑖−1)

=
𝜕𝑆𝑗

(𝑖)

𝜕𝑏𝑗
𝑖

𝜕𝑏𝑗
𝑖

𝜕𝑆𝑘
(𝑖−1)

 

 

 Adjustments to the weights are given by the following expression 

∆𝑤𝑗𝑘
(𝑖) = −𝜇

𝜕𝐸

𝜕𝑤𝑗𝑘
(𝑖)

 

Where 𝜇 is the learning rate parameter and controls how fast convergence to the 

optimal solution is reached. Too large a learning rate will lead to large adjustments in 

the weight but may lead to oscillations around the optimum and ultimately, divergence. 

To illustrate this point, consider the one-dimensional optimization problem where one 

adaptable parameter w is used to determine the minimum of some convex error 

function E(w) in Figure 3.5. Say, the initial guess for the weight w and the associated 

error E is indicated by the red point on the graph. 
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Figure 3.5 Gradient descent for 1-dimensional optimization problem 

 

 

The dotted line is the derivative (tangent line) of the curve at that point and moving in 

the direction of steepest descent by an amount −𝜇 𝜕𝐸 𝜕𝑤⁄ , the new estimate for w is 

shown by the green dot. The figure demonstrates what can happen when the learning 

rate is too large. The solution oscillates about the optimum (the minimum of the curve). 

So the learning rate should be high enough for fast convergence but not too high. 

 

Multidimensional (higher than three dimensions) optimization problems, such as back-

propagation networks with more than two weighting parameters are more difficult to 

visualize, but the same idea applies. 
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3.3 Principal Component Analysis 

 

Principal component Analysis (PCA) is a method for extracting the most significant features of a 

data set. More specifically, it is a statistical technique used to extract linear factors that 

represent the maximum variation in a multidimensional data set. These sources of 

variation are expressed as vectors of the original data set. As an illustration, consider a 

line in three-dimensional space described by the parametric equations of variables x, y 

and z: 

 

𝑥 = 20 + 4𝑡      𝑦 = 50 + 8𝑡     𝑧 = 30 + 6𝑡         where t = 1, 2, 3, … ,50  

         

This line is shown in black in Figure3.6. Normally distributed random noise is added to 

the points of the line and the result is the ‘noisy line’ whose points are shown in blue. 

Then the objective of PCA is to find D orthogonal vectors that represent the maximum 

variation in the data set. D, which is the dimensionality of the data set, is 3 in this case. 

Alternatively, PCA seeks to find vectors (lines in this case) such that if all the points of 

the data set are projected or mapped onto those vectors, we retain as much of the 

variation in or information from the original data set as possible, in other words, the 

variance is minimized. So PCA can be thought of as three-dimensional regression.  
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Figure 3.6 First factor extracted in linear PCA 

 

 

In Figure 3.6, the red line shows the first factor (or component) obtained using PCA. The 

second factor found by PCA is a line perpendicular to the first factor, indicated by the 

orange line in Figure 3.7. It is found by imposing the constraint that this line is 

orthogonal to the first factor. An initial guess for the line is constructed and it is then 

rotated about the axis of the first factor until the axis of largest variation is found in the 

data set. There would be a third component (not shown in the figure) perpendicular to 

the plane formed by the first two factors. 
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Figure 3.7 Second factor extracted in linear PCA 

 

 

These component vectors are obtained as follows. First the covariance matrix is 

calculated. The covariance is a statistical measure of the linear relationship between 

two variables. If a M by N data matrix D is created for a data set of M variables each with 

N observations or elements, the covariance matrix which relates the variables with one 

another can be found with the following equations: 

𝑅(𝑖,𝑗) = 𝐷(𝑖,𝑗) −
1

𝑁
∑ 𝐷(𝑖,𝑗)

𝑁

𝑗=1
        𝑉 =

𝑅 ∗ 𝑅𝑇

𝑁 − 1
   

Where i and j represent the row and column number of matrix D and the residuals 

matrix is R. So 𝑅(𝑖,𝑗)  is the deviation between all observations of variable i and the 

average of the observations. Then the covariance matrix V will be an M by M symmetric 

matrix whose diagonal elements are the covariance between each individual variable 
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and itself, that is, the variance of the variable. The covariance matrix will have same 

dimensionality as the data matrix. 

The goal is to minimize 𝑅(𝑖,𝑗) and it can be shown that in order to minimize 𝑅(𝑖,𝑗), the 

covariance matrix V needs to be maximized. Once the covariance matrix is found, 

eigenvalue decomposition algorithms are applied on the matrix  to find a unit vector �⃗⃗�  

such that 

𝑉�⃗⃗� = 𝜆�⃗⃗�            (𝑉 − 𝜆𝐼)�⃗⃗� = 0 

Where �⃗⃗�  is an eigenvector of 𝑉, 𝜆 is the eigenvalue of V and 𝐼 is the identity matrix. It 

can be shown that in order to minimize the residuals or maximize  variance this relation 

is satisfied. It can also be proved that since V is symmetric (𝑉𝑇), its eigenvectors are 

orthogonal. The eigenvectors of 𝑉 are the principal components of the data matrix. 

The result for the M by N data matrix is a vector of M eigenvalues which represent the 

magnitude of the components and an M by M matrix with each column containing an 

eigenvector that corresponds to the eigenvalue of the same index. Each 

column/eigenvector describes a factor or component. 

Lastly, the magnitude of the components (the eigenvalues) are used to select 

components that contribute the most to the variation in the data set. The percent 

contribution of each eigenvector i is calculated by dividing its associated eigenvalue by 

the sum of all eigenvalues: 

𝜆𝑖
∑ 𝜆𝑗
𝑀
𝑗=1
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Typically the aim is to select as few components as possible whose total percent 

contribution is greater than a certain desired threshold. Then say the largest q 

eigenvalues are selected, their eigenvectors will be used to construct a 𝑃 × 𝑄 

dimensional matrix T which is used to transform the 𝑀 ×𝑁  data matrix D into a 𝑃 × 𝑁  

data matrix (𝑃 < 𝑀) of principal components. 

 

As mentioned earlier linear PCA techniques aim to project high-dimensional data into a 

lower dimensional representation. This linear transformation then takes on the form 

𝑇 = 𝑃 ∙ 𝐷 

Naturally, expressing 𝐷 as it’s lower dimensional counterpart T leads to a loss of some 

of the information in 𝐷. The following reverse transformation reconstructs the data set 

so that the amount of information lost can be determined: 

𝐷′ = 𝑇𝑃𝑇 

𝑃 is such that the error between 𝑋 and the reconstructed data set 𝐷′ (of the same 

dimension as 𝐷) is minimized[18]. The loss of information referred to earlier translates 

into application of PCA in noise-filtering. 
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3.4 Nonlinear Principal Component Analysis and Inverse Neural Network Model 

 

Nonlinear principal component analysis (NLPCA) is a generalization of standard PCA 

that allows for dimensionality reduction through the use of nonlinear mapping 

functions. Auto-associative neural network-based NLPCA  [18, 19] is a three hidden-

layer feed-forward network with a mapping, bottleneck and de-mapping layer. Once 

again, the notation of Kirby and Miranda[17] is adopted in  the following explanations 

of the mathematical theory behind neural networks. 

 

Figure 3.8 Auto-Associative Neural Network [17, 20] 

 

 

The nodes in the mapping and de-mapping layers are nonlinear transfer functions 

(usually sigmoidal or hyperbolic tangent). The bottleneck layer encodes the lower 

dimensional representation of the original data set, it’s outputs are the nonlinear 

principal components. This layer may contain either a linear or nonlinear function 
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without affecting the nonlinear modeling capability of the entire network.  All three 

layers are essential to achieve optimal nonlinear feature extraction. The mapping and 

bottle neck layers perform nonlinear feature extraction and data compression, while 

the de-mapping layer does the data reconstruction. If the pre and post bottleneck layers 

are omitted, the network merely performs linear PCA  regardless of the nonlinear 

bottleneck node[18]. This is because linear combinations of the inputs are simply 

passed through the circular node. Also omitting the bottleneck layer and keeping the 

pre and post bottle-neck layers will lead to a trivial identity mapping: data will not be 

compressed to a lower dimension 

 

The low dimensional features are transmitted to the demapping layer which performs 

data re-construction. The presence of the bottle neck layer of fewer nodes (lower 

dimension) than the input and output layers guarantees this underfitting or imperfect 

reconstruction of the data set which as will be seen later, translates to the use of NLPCA 

in noise-filtering applications[21].  

 

In contrast to conventional NLPCA which is meant for open curve solutions , Kirby and 

Miranda introduced the use of circular nodes in the bottle neck layer to approximate 

data using closed continuous curves. Otherwise this network architecture is totally 

identical to that proposed by Kramer. This type of network has proved to be useful for 

cases were the original data set contains periodic or oscillatory patterns or circular data 

structures [21-24], as will be seen once inverse networks and their specific application 

to data sets with stiction-induced oscillations is discussed. 
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The bottleneck layer of the network consists of a circular unit. This unit is internally 

represented by a pair of nodes 𝑆𝑗
(𝑖)
 and 𝑆𝜏(𝑗)

(𝑖)
 but together they represent a single angular 

variable 𝜃 since their outputs are constrained to lie on a point on the unit circle: 

 

𝑃𝑗
(𝑖)
= cos(𝜃)          𝑃𝜏(𝑗)

(𝑖)
= sin(𝜃)          (𝑆𝑗

(𝑖))
2

 + (𝑆𝜏(𝑗)
(𝑖) )

2

 = 1 

 

        𝑅𝑗
(𝑖)
= √(𝑃𝑗

(𝑖)
)
2
+ (𝑃𝜏(𝑗)

(𝑖)
)
2
     𝑆𝑗

(𝑖)
=
𝑃𝑗
(𝑖)

𝑅𝑗
(𝑖)
           𝑆𝜏(𝑗)

(𝑖)
=
𝑃𝜏(𝑗)
(𝑖)

𝑅𝑗
(𝑖)

 

 
       

A recent modification of auto-associative neural network architecture , proposed by 

Scholz, is the Inverse neural network. This network is shown in figure 3.9 and only 

contains the ‘inverse mapping’ or data reconstruction section of an auto-associative 

network.  

 

 

Figure 3.9 Inverse Neural Network [20] 

  

  

𝜃 

𝑆𝜏(𝑗)
(𝑖)

 

 

𝑆𝑗
(𝑖)

 

 

𝑆𝑗
(𝑖)

 

 

𝑆𝜏(𝑗)
(𝑖)

 

𝑆
(𝑖)

 
  

  

  

  

. 

. 

.  

  

𝑃𝑗
(𝑖)

 

 

𝑃𝜏(𝑗)
(𝑖)

 

 

𝑤𝑘𝑗
(𝑖)

 

  
𝑆0
(𝐿−1)

 

  

  

𝑆1
(𝐿−1)

 

𝑆
𝑁𝑖−1

(𝐿−1)
 



45 
 

Given the original data set as target outputs, the network estimates principal 

components  such that the squared error between the reconstructed and original data 

sets is minimized. So this network estimates the principal components that reconstruct 

the data set such that the error between the reconstructed and actual data set is 

minimized. But just as an auto-associative network, since the principal components are 

a ‘compressed’ or low dimensional representation of the data set, there is a loss of 

information in the reconstructed data set. 

 

The weights are denoted as 𝑤𝑘𝑗
(𝑖)

 , the weight that connects node 𝑗 in the previous layer to 

node 𝑘 in the current layer 𝑖. For instance 𝑤31
(2)

 is the weight that connects node 1 in the 

bottle-neck layer (first layer) to node 3 in the mapping layer (second layer ).  

 

The unknown inputs 𝑃𝑗
(𝑖) and 𝑃𝜏(𝑗)

(𝑖)  are to be determined along with the weights 𝑤𝑘𝑗
(𝑖)

in 

the network by the back-propagation algorithm. Equations (2) are parametric 

equations that force 𝑃𝑗
(𝑖)and 𝑃𝜏(𝑗)

(𝑖) to be the coordinates of points on a circle. These 

equations ensure that the trigonometric constraint in (1) that is, point 𝑆𝑗
(𝑖)
, 𝑆𝜏(𝑗)
(𝑖)
 lies on a 

unit circle, is satisfied. The point 𝑆𝑗
(𝑖), 𝑆𝜏(𝑗)

(𝑖)  is represented by a single angle 𝜃, the 

principle component for one sample ( a d-dimensional vector) of the original data set.  

 

Initially, the parameters 𝑃𝑗
(𝑖), 𝑃𝜏(𝑗)

(𝑖)
 and  𝑤𝑘𝑗

(𝑖)
 are randomly generated and 𝐺𝑗′𝑠 are 

calculated.The sum squared error over all samples/observations N: 
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4.  PROCEDURE FOR STICTION QUANTIFICATION 

 

4.1 Introduction 

 

This section demonstrates the development of two neural network models: the noise 

suppressor, which removes noise from the stiction patterns and the predictor, which 

estimates the degree of stiction given the controller output OP(t) signal from a stiction 

pattern. There are also  data pre-processing and post processing steps involved in the 

development of both models. The procedure is outlined as follows: 

1. 1275 degree of stiction patterns i.e. OP(t) and PV(t) are generated by closed 

loop simulation of a Single-Input Single Output process. Each pattern is 

generated by specifying a particular value of static and dynamic friction (fs and 

fd) in the valve stiction model.  

2. 20 separate degrees of stiction are simulated and will be used as the‘test’ 

patterns. 10 of these will have no added noise and the other 10 will contain 

noise. 

3. A 100 time step interval of the controller output OP(t) signal from each of 

the1275 patterns and associated (fs,fd) values are used to train a feedforward 

network to predict fs given OP(t). The is the predictor model 

4. The OP(t)-PV(t) signal from the 10 ‘noisy’ test cases are denoised using the 

inverse neural network model described in the previous section. This is the 

noise-suppresor model. The OP(t) signal is then extracted. 
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5. The OP(t) ‘test’ signals, whose degrees of stiction are known,  are then fed into 

the predictor model to test if the model is capable of accurately estimating fs 

and fd. 

Neural networks (or in general, data based modeling) are used here for 3 major 

reasons: 

1. Ease of implementation and the speed at which they model complex nonlinear 

behavior 

2. The high flexibility of these models. The same exact neural network 

architectures used here can be used in a different application, regardless of 

process type, nature of valve model or controller.  

3. It is difficult to find non-data based models that can perform the type of complex 

modeling involved in this work. That is, take several sets of large time series 

oscillations and model the relation between these series and other parameters. 
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4.2 Generation of Stiction Patterns by Closed-Loop Simulation of Single- Input Single-             

Output  (SISO) Process    

 

The goal  is to create a predictive model that takes a controller output OP(t) or process 

variable PV(t) stiction pattern  from a particular process control loop as input and 

produces an estimate of the static and dynamic friction (𝑓𝑠, 𝑓𝑑). The process model used 

throughout this demonstration is a single-input single-output (SISO) linear time 

invariant (LTI) level control process described by the following discrete time state 

space equations: 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) 

Note that there is no noise or disturbances in the model so that predictor is based on 

‘ideal’ stiction behavior in this particular process. The physical valve model for the 

pneumatic control valve described in section 2.3 serves as the valve stiction model and 

by specifying a value for 𝑓𝑠, 𝑓𝑑  and simulating the closed loop system shown in Figure 

4.1 OP(t), MV(t) and PV(t) stiction-induced oscillations can be generated. Both 𝑓𝑠   and 

𝑓𝑑 both have units of pound forces lbf. 

 

 

Figure 4.1: Stiction control loop: no process noise or disturbance 
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 1275 such simulations were run to generated 1275 sets of OP(t=1…1000) and 

PV(t=1…1000). An assumption made in all runs is that 𝑓𝑑  is less than 𝑓𝑠, which is 

typically the case. If static friction is overcome and the valve stem experiences a slip 

jump and begins to move, then the dynamic or moving friction  𝑓𝑑  must be less than the 

friction 𝑓𝑠 that was preventing the valves movement in the first place. A maximum value 

of 𝑓𝑠 is arbitrarily chosen as 500 𝑙𝑏𝑓. Keeping in mind that 𝑓𝑑 < 𝑓𝑠 the following 

algorithm was implemented in MatLab to generate the 1275 sets of 〈𝑓𝑠 , 𝑓𝑑〉 values, each 

set representing a different degree of stiction: 

 

𝑓𝑜𝑟 𝑓𝑠 = 500:−10: 10 
       𝑓𝑜𝑟 𝑓𝑑 = 𝑓𝑠 − 10:−10: 0 
                  simulate 〈𝑓𝑠, 𝑓𝑑〉 for the closed loop system       
       end 
end 
 
So in the first simulation 〈𝑓𝑠, 𝑓𝑑〉 = 〈500,490〉  ,in the second 〈𝑓𝑠, 𝑓𝑑〉 = 〈500,480〉 

〈𝑓𝑠, 𝑓𝑑〉 = 〈500,470〉 in the third  and so on until 〈𝑓𝑠 , 𝑓𝑑〉 = 〈500,0〉 . Then in the second 

iteration of the outer loop, 𝑓𝑠 is decremented by 10 to a fixed value of 490, and 𝑓𝑑  is 

reduced from 480 to 0 also in decrements of 10 lbf. A total of 1275 stiction patterns are 

generated. The degree of stiction 𝑓𝑠 and 𝑓𝑑will be expressed in terms of percentages 

from now on, with 500 lbf being the maximum possible amount of friction 

 

Next, a separate set of 20 stiction patterns with different degrees of stiction than the 

1275 patterns generated as the ‘test’ cases: 10 of these contain no added noise and the 

other 10 will contain input and output process noise. 
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Loop 1: 𝑓𝑠 = 97.40%, 𝑓𝑑 = 64.40%   

 

Loop 2: 𝑓𝑠 = 47.20%, 𝑓𝑑 = 4.60%   

 

Loop 3: 𝑓𝑠 = 73.80%, 𝑓𝑑 = 69.00%   

 

Figure 4.2: Stiction test cases: no process noise  
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Loop 4: 𝑓𝑠 = 70.40%, 𝑓𝑑 = 21.00%   

 

Loop 5: 𝑓𝑠 = 62.60%, 𝑓𝑑 = 16.80%   

 

Loop 6: 𝑓𝑠 = 10.60%, 𝑓𝑑 = 4.80%   

 

Figure 4.2 Continued 
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Loop 7: 𝑓𝑠 = 16.00%, 𝑓𝑑 = 11.20%   

 

Loop 8: 𝑓𝑠 = 9.40%, 𝑓𝑑 = 6.00%   

 

Loop 9: 𝑓𝑠 = 33.20%, 𝑓𝑑 = 19.40%   

 

Figure 4.2 Continued 
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Loop 10: 𝑓𝑠 = 64.80%, 𝑓𝑑 = 7.20%   

 

Figure 4.2 Continued 

 

The 10 noisy patterns are generated by incorporating disturbance terms into the state 

space model 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵[𝑢(𝑡) + 𝑤(𝑡)] 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑧(𝑡) 

where 𝑤(𝑡) and z(t)  are input and output process noise, respectively. Each case has 

stiction case has either one or the other as shown in Figures 4.3 and 4.4. 

 

Figure 4.3: Stiction control loop: with input process noise  

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

 Valve Stiction 
Model 

 Process 
Model 

 PI Controller 

fs, fd (in lbf) 

 Input  
Disturbance 

OP PV MV 



55 
 

 

Figure 4.4: Stiction control loop: with output process noise  

 

Three noise models are used: 

 Sinusdoidal: 𝐴 ∗ sin (𝑓 ∗ 𝑡) , where A is the amplitude and f is the frequency 

 Randomly generated normally distributed, gaussian or white noise 

 Brownian colored noise is generated  filtering zero mean white noise with an 

autoregressive model of order 63. MatLab’s model is given by: 

∑𝑎𝑘𝑦(𝑛 − 𝑘) = 𝑤(𝑛)

63

𝑘=0

        𝑎0 = 1        𝑎𝑘 = (𝑘 − 1 −
𝛼

2
)
𝑎𝑘−1
𝑘

  𝑘 = 1,2, … 

Where 𝑤(𝑛) is a zero mean white noise process. The reader is referred to [25] for a 

description of the autoregressive model and power law colored noise generation. 

Figure 4.5 shows OP versus time, PV versus time and OP versus PV plots for stiction 

cases with and without process noise. 
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Loop 1: 𝑓𝑠 = 91.40%, 𝑓𝑑 = 20.40%;   output disturbance:   sin(𝑡) = 0.1 sin (4𝑡) 

 

Loop 2: 𝑓𝑠 = 13.20%, 𝑓𝑑 = 8.80%; output disturbance: sin(𝑡) = 0.06 sin (0.1𝑡) 

 

Loop 3: 𝑓𝑠 = 17.40%, 𝑓𝑑 = 13.00%; input disturbance: sin(𝑡) = 0.15 sin (0.2𝑡) 

 

Figure 4.5: Stiction Test Cases: With Process Noise  
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Loop 4: 𝑓𝑠 = 46.80%, 𝑓𝑑 = 4.00%: output disturbance: 0.1 ∗ random gaussian noise 

 

Loop 5: 𝑓𝑠 = 29.00%, 𝑓𝑑 = 16.00%:  output disturbance: 0.2 ∗ random gaussian noise    

 

Loop 6: 𝑓𝑠 = 17.80%, 𝑓𝑑 = 8.00% ; input disturbance: 0.3 ∗ random gaussian noise 
 
 

 

Figure 4.5 Continued 
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Loop 7: 𝑓𝑠 = 86.00%, 𝑓𝑑 = 42.00%; output disturbance: 0.1 ∗ colored noise    

 

Loop 8: 𝑓𝑠 = 100.00%, 𝑓𝑑 = 67.60% ;  output disturbance: 0.1 ∗ colored noise 

 

Loop 9: 𝑓𝑠 = 47.20%, 𝑓𝑑 = 10.40%;  input disturbance: 0.1 ∗ colored noise 

 

Figure 4.5 Continued 
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Loop 10: 𝑓𝑠 = 57.80%, 𝑓𝑑 = 22.20%; output disturbance: 0.1 ∗ colored noise 

 

Figure 4.5 Continued 
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4.3 Correlation between OP(t) and PV(t) Signals 

 

The cross-correlation coefficient measures magnitude and direction of the linear 

relationship between two signals. It is defined as the sample covariance of the two 

signals divided by their sample standard deviations. For each of the 1275 sets of OP(t) 

and PV(t) stiction patterns (each representing a different degree of stiction) the 

correlation coefficient is determined. The aim is to show that if OP(t) and PV(t) are 

strongly positively or negatively correlated, then it will be redundant to use both 

signals to develop the predictor model that estimates the stiction parameters fs and fd 

given a stiction pattern. Furthermore, it is assumed that the behaviour of PV(t) is 

implicitly accounted for by the OP(t) signal and vice versa. Then it may be possible to 

use either the OP(t) or PV(t) signal alone in developing the predictor model that 

estimates fs and fd given either OP(t) or PV(t) data.  The closer the correlation 

coefficient is to -1 or +1, the stronger the linear relationship between the two signals. 

The correlation coefficient is given by: 

𝑟 =
𝑐

𝑠𝑡𝑑1 × 𝑠𝑡𝑑2
 

𝑐 =
1

𝑁 − 1
∑(𝑂𝑃𝑡 − 𝑂𝑃)

𝑁

𝑡=1

(𝑃𝑉𝑡 − 𝑃𝑉) 

𝑠𝑡𝑑1 = √
∑ (𝑂𝑃𝑡 − 𝑂𝑃)

2
𝑁
𝑡=1

𝑁
         𝑠𝑡𝑑2 = √∑ (𝑃𝑉𝑡 − 𝑃𝑉)

2
𝑁
𝑡=1

𝑁
 

where 𝑐 is the covariance between 𝑂𝑃𝑡 and 𝑃𝑉𝑡, and 𝑠𝑡𝑑′𝑠 are the standard deviations. 

So for each degree of stiction, the correlation coefficient netween between 𝑂𝑃𝑡 and 𝑃𝑉𝑡 

𝑟′𝑠 is calculated.  
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Figure 4.6: Correlation between OP(t) and PV(t)  

 

Figure 4.6 plots the correlation coefficient for the 1275 degrees of stiction. The plot 

shows a high negative correlation between OP(t) and PV(t), and a particularly high 

concentration of points at correlation coefficients closer to -1. This indicates a strong 

negative correlation between the two signals for all degrees of stiction (for all possible 

combinations of fs and fd values, with the constraint  𝑓𝑠 ≤ 500 and 𝑓𝑑 < 500. So there 

is a strong linear relationship between the two signals. Unlike the covariance (which is 

used to calculate the correlation), the correlation provides information about the 

strength of the linear association between two variables. In this work, It is assumed that 

MV(t) may not be explicitly available, as is the case in process control loop from 

industrial systems.  The OP(t) signals are selected for use as the input into the 

feedforward network predictor discussed in the next section. 
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4.4 Noise Suppression of Test Stiction Patterns using Inverse Network-based Nonlinear  

PCA (INLPCA)   

 

As seen in the figures in section 4.2, the relationship between PV(t) and OP(t) follows a 

closed curve since both are cyclic pattern. As discussed in Section 3.4, the inverse 

neural network with a circular node is efficient at approximating circular data 

structures. This inverse network model is used to filter the noise from the PV versus 

OP(t) trend of the noisy stiction test patterns so that the underlying stiction behavior 

can be extracted. The network takes as output a 2 by 100 matrix, the first row being 100 

time step interval of the OP(t) signal and the second row is the PV(t) signal for the same 

time interval. In Figure 4.7, the network is depicted as a black box model which takes in 

the noisy 2-dimensional, 100-sample data set and attempts to construct noiseless PV(t) 

and OP(t) signals.  

 

 

Figure 4.7: Inverse neural network denoises the circular data structure formed in OP(t) versus PV(t)  

 

 

The input to the network is a 2 by 1000 data matrix. The first row containing PV(t) and 

the second row, OP(t) from the noisy test cases. 

𝑃𝑉(𝑡) + 𝑛𝑜𝑖𝑠𝑒
𝑂𝑃(𝑡) + 𝑛𝑜𝑖𝑠𝑒

 
𝑃𝑉(𝑡)
𝑂𝑃(𝑡)

 Inverse Neural 
Network Model 
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4.5 Approximating Periodicity of Noisy Test Stiction Patterns using Auto-Correlation  

Function 

 

Next, in order to construct a new OP(t) for each of the 10 noisy test cases, the period of 

the oscillations in the original noisy signals needs to be approximated using 

autocorrelation function. It is a sequence representing the similarity between two wave 

signals as a function of the time lag applied to one of them. Autocorrelation is the cross-

correlation between a signal and itself and is useful in uncovering patterns or 

repetitions in  a signal and can therefore determine durations of cycles in periodic 

phenomena. In this case, it is used to estimate the periodicity of the noisy oscillatory 

signal. 

 

 The auto-correlation is obtained using the following expressions [26] 

𝑟𝑘 =
𝑐𝑘
𝑐0
    𝑐𝑘 =

1

𝑁 − 1
∑(𝑦𝑡 − 𝑦)

𝑁−𝑘

𝑡=1

(𝑦𝑡+𝑘 − 𝑦)         𝑐0 = ∑(𝑦𝑡 − 𝑦)
2

𝑁−𝑘

𝑡=1

 

 

Where 𝑐𝑘 is the covariance between 𝑦𝑡 and 𝑦𝑡+𝑘, and 𝑐0 is the sample variance of 𝑦𝑡. So 

for all t’s, the autocorrelation coefficient  𝑟𝑘
′𝑠 are calculated. The resulting 

autocorrelation coefficients. Figure 4.8 shows a pictorial representation of the 

autocorrelation of a signal y. 
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Figure 4.8: Pictorial Representation of the Auto-Correlation of a signal 
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4.6 Feedforward Network Model for Predicting Stiction Parameters based on OP(t) Signal  

  

Each of the 1275 OP(t) patterns are 1000 time steps long. However a particular degree 

of stiction can be defined by just one cycle of the oscillations, since one cycle contains 

information about the frequency, amplitude and shape of the stiction oscillation. In this 

work, 100 time interval section of each OP(t) pattern is used from each of the OP(t) 

stiction 

 

patterns. Figure 4.4 below shows how the 100 time step intervals were chosen in order  

to normalize all the data. For each OP(t) pattern, The first the first point was chosen as 

the beginning of the first cycle of oscillations, then the 100 time step window after that 

point was extracted as shown in Figure 4.9. 

 

 

Figure 4.9: Normalizing the stiction signals: 6: strong stiction, 1: weak stiction 
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Figure 4.10: Feedforward neural network predictor  

 

Matlab’s extensive and highly efficient neural network toolbox was used to develop the 

feedforward neural network predictor. In Figure 4.10, it is shown as a black box model 

relating certain input vectors to their corresponding output vectors.  

 

In the training and validation phase of developing this neural network-based 

predictor, the network learns the relationship between the 1275 OP(t) signals and their 

corresponding 𝑓𝑠, 𝑓𝑑  values.  80% of the 1275 OP(t) signals are allocated for training 

and 20% for validation. During training, the first input OP(t) vector of the training set is 

fed into the network, initial weights are randomly generated in the network and fs and 

fd is calculated based on the feed-forward network architecture described in Section 

3.2. Note that the number of nodes in the hidden layer of this network is chosen as 25 

based on tests done to see the effect of number of nodes on model accuracy. Generally, 

the goal is to use the fewest number of nodes necessary for accurately modeling the 

relationships between the input and output vectors. Too many nodes may lead to over-

fitting the relationships, which will be discussed shortly. 
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fs and fd are calculated for all OP(t) patterns from the training set . The error between 

the calculated stiction parameters ( 𝑓𝑠 , 𝑓𝑑) and actual 𝑓𝑠, 𝑓𝑑  is determined., then the 

backpropagation algorithm is applied to update all the weights in the network and 

subsequent iterations are implemented until the total error between 𝑓𝑠, 𝑓𝑑  and 𝑓𝑠, 𝑓𝑑is 

minimized.  

 

Simultaneously, the same procedure is applied to the validation set. The purpose of 

validation is to ensure that the network does not overfit the relationships. So if at a 

particular iteration, the mean squared error of the testing cases decreases but the error 

of validation sets increases or remains constant, training is stopped to prevent 

‘overtraining’ the network. 

 

It is important to note that the network does not ‘fit’ the relationships for validation 

sets, only for the testing sets. In other words the weights are adjusted based on errors 

of the testing set alone.  The validation set only serves as a test of the networks 

generalization capability, that the network has effectively ‘understood’ and modeled the 

relationship between OP(t) and 𝑓𝑠, 𝑓𝑑 , instead of merely ‘memorizing’ or overfitting. The 

network is able to take as input 100 time steps of OP(t) pattern and predicts 𝑓𝑠 and 𝑓𝑑 
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5.  STICTION QUANTIFICATION RESULTS AND DISCUSSION 

 

5.1 Noise Suppression of Test Stiction Patterns using Inverse Network-based NLPCA 

 

As mentioned in the previous sections, there are 10 test cases of stiction patterns with 

no noise and 10 cases of stiction patterns with added noise. All the stiction simulations 

generate OP(t) and PV(t) data. For each of the ‘noisy’ cases, the goal is to use an inverse 

neural network-based nonlinear principal component analysis (INLPCA) to remove 

noise from the OP(t) versus PV(t) trend, which has a closed curve data structure. Since 

the actual or desired trend is known. That is, all stiction patterns are based on 

simulation where the degree of stiction (a particular value of fs and fd) is specified. 

 

Loop 1 

 

Loop 2 

 
Loop 3 

 

Loop 4 

 
Figure 5.1: OP versus PV plots for the 10 test cases Red: Noisy Trend, Black: Actual Trend, Blue: 

Approximation of Actual Trend using INLPCA 
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Loop 5 

 

Loop 6 

 

Loop 7 

 

Loop 8 

 

Loop 9  

 

Loop 10 

 
 

Figure 5.1 Continued 
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5.2 Estimating Periodicity of OP(t) Patterns 
 

Next, by the cross-correlation analysis performed in section 4.4, it was concluded that it 

is unnecessary to use both OP(t) and PV(t) to determine the degree of stiction, and that 

only the OP(t) pattern is needed. In order to construct a ‘noise-free’ OP(t) pattern from 

the INPLCA solution from the previous section, the periodicity of the OP(t) pattern for 

all ten ‘noisy’ test cases was approximated using the autocorrelation function discussed 

in Section 4.5. The INLPCA technique does not know that OP(t) and PV(t) are time 

dependent trends, it only estimates the relationship between OP and PV. By 

approximating the period of the original noisy OP(t) trend, the frequency of the signal is 

approximated as well. In other words, this techniques allows for the determination of 

how many points on the closed curve are in one cycle of the oscillation.  Then the OP(t) 

signals were reconstructed. 

 

Loop Approximated Period Actual Period 
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2 

  
Figure 5.2: Auto-Correlation versus Lag 
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Loop Approximated Period Actual Period 
3 
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Figure 5.2 Continued 
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Loop Approximated Period Actual Period 
7 
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Figure 5.2 Continued 
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Loop 1 

 

 

Loop 2 

 

 

Figure 5.3: OP(t) patterns before and after noise removal and reconstruction: Red: Noisy Trend, Blue: 

Actual Trend 
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Loop 3 

 

 

 

Loop 4 

 

 

Figure 5.3 Continued 
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Loop 5 

 

 

 

Loop 6 

 

 

Figure 5.3 Continued 
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loop 7 

 

 

Loop 8 

 

 

Figure 5.3 Continued 
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Loop 9 

 

 

loop 10 

 

 

Figure 5.3 Continued 
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There was a clear improvement in appearance of the trend. Essentially, the goal was to 

extract the actual trend (shown in blue in Figure 5.3) from the noisy red patterns. Not 

only has the drifting nature of the original noisy trends (shown in red) been removed, 

but a fair estimation of the amplitude, frequency and shape of the patterns has been in 

achieved in most of the test cases. 

 

It is important to note that since only a 100 time step interval from the trends will be 

used to predict  fs and fd (that is, quantify stiction) the long term behavior of the trend 

does not affect quantification results. Using a 100 time step interval of a particular 

pattern is justified because only one cycle of a particular stiction pattern can completely 

characterize the oscillations : their  shape, amplitude and frequency.  

 

In other words, although there is a lag in the 1000 time-step reconstructed signals 

shown, it should not affect quantification results because only 100 time steps from each 

will be used. 
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5.3 Prediction of fs and fd using Feed-forward Neural Network 
 
 

In Section 4.6, the neural network predictor, which estimates the degree of stiction (fs 

and fd) given a 100 time step section of an OP(t) pattern was developed.  Details of 

training, validating and testing of feed-forward network were described. Figure 5.4 

shows the performance of the network 

 

 
Figure 5.4: Performance of Neural Network Predictor 

 

 

Each Epoch represents a particular iteration of the back-propagation learning algorithm 

(Section 3.2). As a reminder, the predictor model was developed by simulating 1275 
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learned the relationships and will be able to generalize. That is, given a new stiction 

pattern form the 20 test cases, it would be able to predict fs and fd. 

 

The smooth convergence of the performance plots indicates that the model has not 

over-fitted the relationship between OP(t) and fs and fd. Training is stopped at the 

point circled when the network notices that the training error is decreasing but the 

validation error starts to increase,  a clear sign of ‘overfitting’. 

 

The goodness of fit for the training, validation and testing sets are shown in Figures 5.5, 

5.6 and 5.7, respectively.  

 

 
Figure 5.5: Regression Plot Showing relationship between actual and predicted fs and fd values for 
the training data set (80% of the 1275 stiction patterns) 
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Figure 5.6: Regression Plot Showing relationship between actual and predicted fs and fd values for 
the validation data set (20% of the 1275 stiction patterns) 

 
 
 

 
Figure 5.7: Regression Plot Showing accuracy of the developed model in predicting fs and fd for the 
20 test cases 
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Tables 5.1 and 5.2 show the estimation error of the neural network model in prediction 

the stiction parameters. 

  
Stiction 
Loop Number 

Degree of  
Stiction (%) 

Estimation  
Error fs(%) 

Estimation  
Error fd(%) 

1 𝑓𝑠 = 98.24 
𝑓𝑑 = 65.53 

-1.1176 0.4864 

2 𝑓𝑠 = 47.05 
𝑓𝑑 = 5.40 

-0.9546 0.4864 

3 𝑓𝑠 = 74.37 
𝑓𝑑 = 69.45 

-0.7093 1.3517 

4 𝑓𝑠 = 72.16 
𝑓𝑑 = 21.19 

-0.6616 0.4497 

5 𝑓𝑠 = 61.34 
𝑓𝑑 = 15.83 

0.0147 -0.6926 

6 𝑓𝑠 = 12.25 
𝑓𝑑 = 4.03 

1.7384 -1.0131 

7 𝑓𝑠 = 16.52 
𝑓𝑑 = 11.24 

-0.3538 0.0389 

8 𝑓𝑠 = 9.35 
𝑓𝑑 = 6.27 

1.4614 -0.7636 

9 𝑓𝑠 = 32.59 
𝑓𝑑 = 20.11 

0.4697 0.0681 

10 𝑓𝑠 = 64.86 
𝑓𝑑 = 7.36 

0.0825 0.1383 

Average 
Error 

0.6526%   

 
Table 5.1: Estimation error for 10 test cases with no added noise 
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Table 5.2: Estimation error for 10 test cases with no added noise 

 
 
 
 

 
 
   

    
 

 

 

 

 

 

Stiction 
Loop Number 

Degree of  
Stiction (%) 

Estimation  
Error fs(%) 

Estimation  
Error fd(%) 

1 𝑓𝑠 = 91.40 
𝑓𝑑 = 20.40 

0.1243 0.3617 

2 𝑓𝑠 = 13.20 
𝑓𝑑 = 0.09 

0.4224 -0.4987 

3 𝑓𝑠 = 17.40 
𝑓𝑑 = 13.00 

0.5712 0.3358 

4 𝑓𝑠 = 46.80 
𝑓𝑑 = 4.00 

-1.4786 2.4653 

5 𝑓𝑠 = 29.00 
𝑓𝑑 = 16.00 

-0.2514 -1.2963 

6 𝑓𝑠 = 17.80 
𝑓𝑑 = 8.00 

0.6192 0.0120 

7 𝑓𝑠 = 86.00 
𝑓𝑑 = 42.00 

-2.6176 2.9959 

8 𝑓𝑠 = 100.00 
𝑓𝑑 = 67.60 

7.8813 3.5783 

9 𝑓𝑠 = 47.20 
𝑓𝑑 = 10.40 

-0.2595 -2.5510 

10 𝑓𝑠 = 57.80 
𝑓𝑑 = 22.20 

6.5867 -1.9883 

Average 
Error 

1.8448%   
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6. CONCLUSION AND FUTURE WORK 

 

Neural networks were shown to be very flexible models capable of extracting the 

underlying stiction trend from stiction control loops with added noise and accurately 

predicting the amount of stiction . The INLPCA model was effective at denoising the 

closed curve trend formed by plotting the controller output (OP) versus the process 

variable (PV).  For the 10 stiction test cases with no noise, the prediction accuracy was 

0.6526%, and for the 10 test cases with no added noise, the prediction accuracy 

achieved was 1.8448%. Estimating the degree of stiction present in a control loop can 

be a first step in developing appropriate automatic software compensation techniques 

through predictive control design coupled with installation of hardware such as valve 

positioners. If the amount of stiction present and its effect on the process variable can 

be modeled, stiction can treated as a measured disturbance in a process. 

 

The stiction quantification technique also relies heavily on an accurate process model 

and valve stiction model, since the idea is to develop this predictor model offline not in 

real time. 

 

Real systems involve multivariable or multiple-input multiple-output (MIMO) control, 

where control loops are interacting and not isolated from one another. This introduces 

complexity in the problem of  estimating stiction in a control loop, although, the loops 

may be treated as if they are isolated from one another and fairly accurate stiction 

estimation results are still possible. 
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