
i

NEURAL NETWORK-BASED NOISE SUPPRESSOR & PREDICTOR FOR QUANTIFYING

VALVE STICTION IN OSCILLATORY CONTROL LOOPS

A Thesis

by

CARL ASHIE ANNAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Muhammad N. Karim
Committee Members, Mahmoud El-Halwagi
 Mahboobul Mannan
Head of Department, Muhammad N. Karim

December 2014

Major Subject: Chemical Engineering

Copyright 2014 Carl Ashie Annan

ii

ABSTRACT

Valve stiction-induced oscillations in chemical processing systems adversely affects

control loop performance and can degrade the quality of products. Estimating the

degree of stiction in a valve is a crucial step in compensating for the effect.

This work proposes a neural network approach to quantify the degree of stiction in a

valve once the phenomenon has been detected. Several degrees of stiction are

simulated in a closed loop control system by specifying the magnitude of static (fs) and

dynamic (fd) friction in a physical valve model. Each simulation generates controller

output OP(t) and process variable PV(t) time series data. A feed-forward neural

network (the predictor) is trained to model the relationship between a given OP and PV

pattern, and the stiction parameters.

 To test the models predictive capability, a separate set of stiction patterns are

generated with and without added process noise. An inverse neural network-based

nonlinear principal component analysis (INLPCA) noise-suppressor effectively extracts

the underlying stiction behaviour from the noise-corrupted OP and PV stiction patterns.

In the noiseless test patterns, the predictor is shown to estimate fs and fd with a 0.65%

average error. In the case of the noisy test patterns, the average error achieved was

1.85%.

Since the predictor is developed offline, the use of computationally intensive real-time

search/optimization routines to quantify stiction is avoided. The neural networks

iii

proved to be easily implementable, highly flexible models for extracting stiction

behavior from control loops and accurately quantifying stiction, as long as an adequate

first-principles description of the process dynamics can be developed.

iv

TABLE OF CONTENTS

 Page

ABSTRACT

. ii

TABLE OF CONTENTS

. iv

LIST OF FIGURES

. vi

LIST OF TABLES

. . viii

1. INTRODUCTION .

1

 1.1 Motivation . 1
 1.2 Literature Review : Stiction Quantification 4

1.3 Scope of Study . 8

2. VALVE STICTION .

 2.1 Introduction . 11
 2.2 Industrial Control Loops with Stiction-Induced Oscillations . . 15

 2.3 Modeling Valve Stiction . 22
 2.4 Simulating Stiction in Single-Input Single-Output (SISO) Closed

 Loop Processes

. 27

3. DATA-BASED MODELING USING NEURAL NETWORKS

29

 3.1 Introduction . 29
 3.2 Feed-forward Neural Network Model 33
 3.3 Principal Component Analysis . 37

 3.4 Nonlinear Principal Component Analysis (NLPCA) and Inverse

 Neural network Model . 42

4. PROCEDURE FOR STICTION QUANTIFICATION

47

 4.1 Introduction . 47
 4.2 Generation of Stiction Patterns by Closed-Loop Simulation of
 Single-Input Single-Output (SISO) Process 49
 4.3 Correlation between OP(t) and PV(t) signals 60

 4.4 Noise Suppression of Test Stiction Patterns using Inverse
 Network-based Nonlinear PCA (INLPCA) 62
 4.5 Approximating Periodicity of Test Stiction Patterns using Auto-

 Correlation Function . 63
 4.6 Feed-forward Network Model for Predicting Stiction

v

 Parameters based on OP(t) signal 65

5. STICTION QUANTIFICATION RESULTS AND DISCUSSION

68

 5.1 Noise Suppression of the Test Stiction Patterns using Inverse
 Network-based NLPCA . 68
 5.2 Estimating Periodicity of OP(t) patterns 70

5.3 Prediction of fs and fd using Feed-forward neural network . . 79

6. CONCLUSION AND FUTURE WORK .

84

7. REFERENCES .

85

vi

LIST OF FIGURES

 Page

1.1 Hammerstein system

. . 4

2.1 Pneumatic control valve

. 11

2.2 Closed-loop feedback single-input single-output control system

. . . . 12

2.3 Relationship between controller output (OP) and valve position (MV)
 under valve stiction

. 13

2.4

Industrial control loop with stiction . 18

2.5

He’s two-parameter stiction model . 22

2.6 Simulating stiction in linear time invariant processes

. 27

3.1

Perceptron model . 29

3.2

The sigmoid function . 31

3.3

Effect of bias on the sigmoid function . 31

3.4

Feed-forward neural network 33

3.5

Gradient descent for 1-dimensional optimization problem 36

3.6

First factor extracted in linear PCA . 38

3.7

Second factor extracted in linear PCA . 39

3.8

Auto-associative neural network . 42

3.9

Inverse neural network . 44

4.1

Stiction control loop: no process noise . 49

4.2

Stiction test cases: no process noise . 51

4.3 Stiction control loop: with input process noise 54

vii

4.4

Stiction control loop: with output process noise 55

4.5

Stiction test cases: with process noise . 56

4.6

Correlation between OP(t) and PV(t) . 61

4.7 Inverse neural network denoises the circular data structure formed in

OP(t) versus PV plot . 62

4.8

Pictorial representation of the auto-correlation of a signal 64

4.9

Normalizing the stiction signals: 1-6 weak to strong stiction 65

4.10

Feedforward neural network predictor . 66

5.1 OP versus PV plots for 10 test cases red: noisy Trend, Black: actual

trend, blue: approximation of actual trend using INLPCA 68

5.2

Auto-correlation versus lag . 70

5.3 OP(t) patterns before and after noise removal and reconstruction: Red: 73

Noisy Trend, Blue: Actual Trend .

5.4

Performance of neural network predictor 79

5.5 Regression plot showing relationship between actual and predicted fs
and fd values for the training data set (80% of the 1275 stiction

patterns . 80

5.6 Regression plot showing relationship between actual and predicted fs
and fd values for the validation data set (20% of the 1275 stiction

patterns . 81

5.7 Regression plot showing relationship between actual and predicted fs
 and fd for the 20 test cases . 81

viii

 Page

2.1 Typical stiction pattern shapes for different process types

. 4

2.2 Simulating stiction in linear time invariant processes

. 17

5.1 Estimation error for 10 test cases with no added noise

. 82

5.2 Estimation error for 10 test cases with no added noise

. 83

LIST OF 4!",%3

1

1. INTRODUCTION

1.1 Motivation

Chemical processing systems are comprised of many physical components and exhibit

highly complex, non-ideal and nonlinear dynamics. A chemical refinery operates

around the clock and production is halted if or when physical maintenance is necessary.

Any opportunity to make such systems even marginally more autonomous, efficient or

perform better in the presence of equipment faults can drastically increase product

quality and reduce operation costs. Ideally, these improvements will be achieved

through the development of easily-implementable, computationally efficient software

applications as physical maintenance is costly and sometimes infeasible.

A very common problem in a chemical plant is the presence of oscillatory behaviour in

control loops which can significantly hamper control system performance. There are

several causes of sustained oscillations in control loops e.g. aggressive or poor tuning

of controllers, external disturbances, valve nonlinearities such as stiction, hysteresis,

deadband, saturation and backlash, and the use of linear controllers for the control of

processes with highly nonlinear dynamics. External disturbances that cause oscillations

in control loops can arise from cyclic events such as fluctuations in raw material quality

and ambient temperature[1]. Process nonlinearities such as stiction that cause

sustained oscillatory behaviour result from physical defects in valves. These defects

2

are typically caused by seal degradation, lubricant depletion, inclusion of foreign matter

or tight packing around the valve stem [2].

Stiction occurs when the controller’s demand for the valve to achieve a certain opening

or closing position is not met because the stem, a physical component in the valve , is

stuck due the presence of static friction[3]. Integral action in the controller or the

process causes the control signal to increase in the same direction until the force that

moves the stem is great enough to overcome the static friction. The stem position then

overshoots the desired opening position , and the controller attempts to compensate for

this by sending an aggressive signal that acts in the reverse direction of the original

stem movement in an attempt to drive the process variable back to its set point. The

valve stem gets stuck again and a control signal is sent of high enough magnitude to

overcome static friction, leading to an undershoot of the setpoint. This successive

overshooting and undershooting of the set point continues leading to sustained

oscillations in the process variable.

A chemical processing system can have hundreds or thousands of valves. It is crucial to

detect the presence of and diagnose stiction (distinguish it from from other sources of

oscillations), then quantify the degree or extent of it so that appropriate action can be

taken to compensate for it. Compensating for stiction, either through physical

maintenance or improved controller design, helps maximize the quality of final

products.

3

This work is dedicated to the problem of stiction quantification once the phenomenon

has already been detected. Quantification is accomplished through closed loop

simulation of stiction in a single-input single-out process by specifying the degree of

stiction in a valve stiction model. Two neural network models are used to extract

underlying stiction behaviour from noise-corrupted stiction loops as well as estimate

the degree of stiction. The first model is a conventional single-hidden layer feedforward

network trained to model the relationship between a stiction pattern (a data series)

and the degree of stiction (the magnitude of static and dynamic friction). The second

model is an inverse neural network that models the underlying relationship between

the controller output and process variable for a particular stiction control loop, thereby

effectively removing the noise from the OP versus PV stiction plots.

Artificial Neural Networks (ANN’s) are composed of a number of neuron-like nodes or

processing elements that interact with each other through a set of weighted

connections. They adapt themselves to inputs from actual processes by modifying these

weights, thereby ‘learning’ certain relationships which allow for representation of

complex systems. ANN’s are efficient at processing noisy, incomplete or inconsistent

data. These models are used in this study for the purpose of noise filtering and

prediction or estimation of the degree of stiction present in a control loop.

4

1.2 Literature Review: Stiction Quantification

An extensive amount of literature has been produced on stiction detection and

diagnosis but significantly less work has been done in the area of estimation and

quantification techniques. Several of the stiction quantification literature is based on

Hammerstein system identification[4].

Figure 1.1: Hammerstein System

Figure 1.1 is a schematic of a typical closed-loop feedback process control system where

OP is the controller output, MV is the manipulated variable (the valve position or

flow rate) ,PV is the process (or controlled) variable and SP is the desired set point of

PV . In a hammerstein identification-based stiction estimation technique, the MV is

usually not explicitly available but OP(t) and PV(t) data are. The goal is essentially to

separate the linear dynamics of the process from the static nonlinearity induced by

stiction. An empirical data-driven valve model, which relates OP to MV and also

contains parameters dictating the degree of stiction, is used to estimate the MV signal

based on the known OP. Then a system identification method is used to model the

linear dynamics of the process, that is, determine PV(t) from the estimated MV(t). The

procedure is repeated until stiction parameters in the valve model are determined such

 Controller Valve
Dynamics

Process
Dynamics

OP MV PV SP

Nonlinear Dynamics Linear Dynamics

Stiction

5

that a certain minimum error criterion between the predicted PV and actual PV(t) is

satisfied.

The methods presented by different authors vary in the search or optimization routine

and type of process identification used. Lee, Ren and Huang propose a method for

stiction estimation using constrained optimization and contour map[5]. The empirical

model developed by He et al., parametrized by static and dynamic friction (fs and fd)

present in the valve, was selected as the suitable description of the valve stiction

nonlinearity[6]. To reduce computational cost, a search space for the stiction model

parameters is effectively defined. Process identification is achieved by ordinary least

squares method which is based on linear regression. A set of the stiction parameters is

selected and MV estimates are generated based on OP(t) data and He’s stiction model.

Different process models are obtained for each MV data and corresponding PV data in

the identification. A multi-start adaptive random search is used to find fs and fd

associated with the minimum model error.

Jelali et al use separable least-squares and gradient-free global search algorithms to

quantify stiction[7]. An Auto-Regressive Moving Average Exogeneous (ARMAX) output

model for process identification and genetic algorithm as a heuristic search of optimal

stiction parameters. Karra and Karim proposed a comprehensive approach for

distinguishing between stiction and other sources of sustained oscillations in control

loops and quantification[1]. In this work, root-cause detection and quantification are

accomplished simultaneously. Power Spectral Density (PSD) and Auto Correlation

6

Function (ACF) are used uncover periodic patterns in OP(t) and PV(t) data from control

loops and detect the presence of stiction, while the identification task is performed with

an extended ARMAX model, which incorporates a model of both stationary stochastic

disturbance and additive non-stationary disturbance affecting the process

simulatenously. Srinivasan and Rengaswamy adopt an ARMAX model structure for

process identification and a grid search technique[4]. A grid of stiction values

S and J (S=fs+fd, J=fs-fd)is created and each point represents a different estimation of

MV(t) and an identified linear process model. The point corresponding to minimum

mean-squared error (MSE) is the optimal value of S and J. He and Wang use a linear and

nonlinear least squares to quantify stiction based on a semiphysical valve model[8]. The

proposed technique uses a curve fitting method to determine fs and fd. Ivan and

Lakshminarayanan’s approach to stiction quantification is similar to Srinivasan and

Rengaswamy’s but based on a one parameter stiction model motivated by He[9].

More recently, Zabiri and Omar have applied a neural network based algorithm to the

Hammerstein system identification problem. The MV(t) signal is estimated using

Choudhury, Thornhill and Shah’s empirical data-driven stiction model, a two parameter

(S, J) stiction model which is considerably more complex than He’s model. An initial

guess for S and J is chosen and MV(t) is calculated based on the valve stiction model.

Then a NARX (Nonlinear Autoregressive with Exogeneous Input) neural network, which

allows for time series forecasting, is used for identification of the process. This type of

neural network takes as inputs the MV(t) and PV(t) signal at time steps i to k (that is, a

time window of k) and output PV(t) signal at time step k+1. The window is then moved

7

one time step and the next set of input-output data is MV and PV signal at time steps i+1

to k+1, and the PV(t) signal at time step k+2. The NARX network uses several such sets

of input-output data to relate past MV(t) and PV(t) time series information to PV(t)

signal one time step into the future. The resulting process model is then tested to

predict PV(t) based on estimated MV and the root mean-squared error (RMSE) is

calculated for the predicted PV(t). In the next iteration the parameter J is fixed and 𝑆2 is

chosen such that 𝑆2 < 𝑆1. All the steps in the previous iteration are repeated and 𝑅𝑀𝑆𝐸2

is calculated. If 𝑅𝑀𝑆𝐸2 > 𝑅𝑀𝑆𝐸1, then all values of 𝑆 < 𝑆1 will yield larger errors and

they are discarded. The S and J values corresponding to minimum RMSE represents the

optimal solution.

The aforementioned techniques for stiction quantification have certain drawback. All

involve using real–time search or optimization routines for the estimation of stiction

parameters which can be computationally intensive. The genetic algorithm-based

search technique used by Jelali is notoriously slow especially if the search space for fs

and fd cannot be significantly reduced. All employ either He’s or Choudhury’s empirical

stiction models. Although these models can satisfactorily emulate real stiction

behaviour in industrial control loops, they are not as accurate as the physical model,

which is less favored in stiction quantification works due to need for numerical

integration. Some of these techniques are very sensitive to even low process noise

levels or cases where stiction is present along with external disturbances. Zabiri’s

method admittedly struggles to estimate J values correctly in the presence of external

oscillatory disturbances.

8

1.3 Scope of Study

This work focuses on the problem of stiction quantification using neural network

models, assuming oscillations have already been detected in a control loop and

diagnosed as being stiction-induced. The aim is to show that neural network models are

very flexible models capable to modeling complex nonlinear relations by showing that

1) Simply by using a small section of a stiction pattern, which contains all

information about the shape, amplitude and frequency of the oscillations, the

degree of stiction can be accurately estimated.

2) When there is process noise or disturbance in addition to stiction oscillations in

a control loop, such models can effectively ‘denoise’ such loops and extract the

underlying stiction trend.

Two neural network models are used: an inverse neural network to extract the

important stiction pattern for cases were both stiction along with external process

input and output disturbances (either oscillatory or in the form of colored noise) is

present. The second neural network is a fully connected feedforward architecture used

to predict the stiction parameters fs and fd given a stiction pattern.

Chapter 2 begins with a detailed description of what causes stiction, a discussion of

stiction data from real industrial control loops and models for valve stiction. Empirical

data-driven models and a physical model (based on a pneumatic control valve) are

compared in terms of how well they capture real stiction behaviour. The chapter

9

concludes with an algorithm for closed loop simulation of stiction in a Single-Input

Single-Output (SISO) process using Proportional-Integral (PI) controller and the

physical valve model.

In Chapter 3, the theory behind neural networks and their application to predictive

modeling and noise filtering is presented. Feed-forward and inverse neural network

algorithms are described. Inverse networks are a derivative/extension of auto-

associative networks (first proposed by Kramer as a nonlinear principal component

analysis technique), which will first be described first.

Chapter 4 contains the comprehensive procedure for quantifying stiction in a closed

loop SISO process using OP(t) and PV(t) time series data, based on the physical valve

stiction model. Starting with the generation of over one-thousand stiction patterns of

varying degrees of stiction (different values of fs and fd), twenty of which will be

allocated for testing the accuracy of the stiction quantification approach. Ten of the

stiction loops will have no external disturbances and 10 will contain stationary and

non-stationary process disturbances. Then a discussion of how the auto-corerelation

function and neural network models are used for preprocessing and de-noising of the

OP(t) and PV(t) data and ultimately, the prediction of fs and fd for each test pattern.

Finally, the prediction accuracy of the proposed procedure is discussed in Chapter 5. In

most cases, control systems will be based on Multiple-Input Multiple-Output (MIMO)

type: comprised of multiple manipulated variables and process variables. For such

10

multivariate processes, control loops are not necessarily isolated from one another and

may be highly interacting. The validity of treating each loop in a MIMO system as a SISO

process for the purpose of stiction quantification is discussed.

Although this work is centered on stiction estimation, neural networks and other data

based machine learning algorithms can be applied in stiction detection and diagnosis. A

distinguishing characteristic of stiction control loops is the square or parallelogram-like

shape of the OP-MV plot. Although in past works, MV operational data is said to be

unavailable, this data is becoming more and more readily available in chemical plants.

In that case, stiction can be detected and distinguished from other sources of oscillatory

phenomena using machine-learning based classification methods such as support

vector machines and neural networks. Also, the significance of quantifying stiction

accurately in order to properly compensate for the effect will be briefly investigated.

MATLAB’s Neural Network Toolbox and Dr. Matthias’s Scholz’s opensource Inverse

neural network code is used for the development of the models for stiction

quantification.

11

2. VALVE STICTION

2.1 Introduction

A typical chemical plant has thousands of valves for controlling several key process

variables and maintaining them at their desired setpoints. Sustained oscillations caused

by valve stiction cause these variables to fluctuate, leading to poor performance of the

control system which can potentially impact the variability in product quality and

economic profits[10].

Figure 2.1: Pneumatic Control Valve [2]

Figure 2.1 is a schematic of a typical ‘air-to-open’ pneumatic control valve. To open the

valve, a control signal is sent to the valve actuator demanding a certain amount of air

pressure to be applied to the diaphragm. The amount of force acting on the diaphragm

must be enough to compress the spring in order to get the valve stem and attached plug

Air Pressure

Air

Friction

Fluid
plug

spring actuator

diaphragm
gn

valve stem

packing

12

to move upward, allowing the flow of fluid through the valve. To close the valve, enough

air pressure is released so that the plug falls into seat and obstructs fluid flow.

In a valve impaired by stiction (or ‘static friction’) the stem does not respond to a

demand by the control signal to achieve a particular opening position because of

frictional resistance, typically between the stem and packing.

Figure 2.2: Closed-loop Feedback Single-Input Single-Output Control System

For a closed loop feedback control system such as that shown in Figure 2.2, with a

conventional proportional integral controller, the following equation governs the

relationship between deviations of PV(t) from the setpoint and MV(t):

𝑀𝑉(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏

To achieve a certain valve opening position, the controller output OP signals the valve

actuator to apply adequate force(air pressure) to effect valve stem movement. If

stiction is present, the stem does not move. Integral action in the controller causes the

control signal to increase in the same direction until the actuator applies a force of

PI Controller Valve Process

OP MV PV

13

magnitude greater than the static friction. Once static friction is overcome, the valve

slips and overshoots the desired opening position. The integral part of the controller,

which causes control action to be taken according to 1) how long and 2)by how much

PV(t) has deviated from the set point, will cause aggressive control action in order to

compensate for the overshoot and return the PV(t) back to setpoint. However if stiction

is still present the same scenario happens in the reverse direction, leading to an

undershoot. These successive overshoots and undershoots lead to continuous

oscillations in the control loop.

Figure 2.3: Relationship between controller output (OP) and valve position (MV) under stiction [7]

Figure 2.3 describes the relationship between OP and MV in a ‘sticky’ valve. Ideally, MV

will vary linearly and proportionally with adjustments to the controller output OP

J

J

H

K

L

J

𝑓𝑑

𝑓𝑠

𝐴′ 𝐵′ 𝐷′

J

J

E

G

Stick+deadband=S

Required valve position/

Controller output (OP)

Stickband

Deadband

C

D

F

M
A

B

𝑙1

𝑙2

A
c
tu

a
l
v

a
lv

e
 p

o
s
it

io
n

/

M
a
n

ip
u

la
te

d
 v

a
ri

a
b

le
 (

M
V

)

Slip jump J= stickband

14

according to the line between 𝑙1and 𝑙2. For illustration purposes the bolded lines

represent the non-ideal behaviour of a valve with stiction. Let A indicate the resting

position of the valve. Here, OP,MV, 𝑓𝑠 and 𝑓𝑑 are all expressed as a percentage of the

total valve travel range. To open the valve, the OP signal is increased. Due to stiction

present, the valve stem does not move (MV remains constant) until the controller

demands an amount of force greater than the static friction 𝑓𝑠 (represented by 𝐴′𝐵′). At

some value of OP (𝐷′) the 𝑓𝑠 is overcome and the valve stem suddenly accelerates and

jumps to a new opening position C where its movement varies linearly with OP but

offset by an amount 𝑓𝑑 , since it is now working against dynamic friction (resistance

when the valve is moving). It is possible for the valve to get stuck again at D. In that

case, it will have to overcome frictional resistance in the amount of J=𝑓𝑠 − 𝑓𝑑 . The same

trajectory is followed in the reverse direction when the valve is closing. Typically, the

valve stem gets stuck once in each direction leading to a square-like or parallelogram-

like shape of the MV-OP plot that, which is a way of distinguishing stiction oscillations

from other types of oscillations, that is, if MV(t) data is available.

15

2.2 Industrial Control Loops with Stiction-Induced Oscillations

In general, stiction-induced oscillations in process control loops have characteristic

shapes that help distinguish them from other sources of oscillatory behaviour such as

aggressive controller tuning and external disturbances. Several authors have collected

real stiction data from various industrial systems such as chemical refining, mining and

metal processing, mineral processing, pulp and paper, and power plants. These have

been gathered into a database of over 100 sets of OP(t) and PV(t) stiction data.

Stiction oscillations typically have sinusoidal, triangular, saw-tooth or square-like

shapes. Figure 2.4 shows some OP(t) and PV(t) patterns from pressure, temperature,

flow and level control loops with stiction. MV(t) data is unavailable in these stiction

loops. However, if this data is available, detecting stiction and distinguishing it from

other types of oscillations becomes possible. As mentioned earlier, this is because a

distinguishing characteristic of stiction phenomena is that the OP-MV plot will adopt a

parallelogram-like shape due to stick-slip behaviour of the valve in the opening and

closing directions.

Generally, stiction loops will have the following distinguishing features: OP(t) and

PV(t):

 Oscillations due to stiction will contain harmonics. The harmonic of a periodic

signal is a component frequency of the signal which is an integer multiple of the

fundamental frequency. Aggressive controller tuning and external disturbances

16

usually lead to sinusoidal waves, which contain only one frequency. Stiction

patterns will be rectangular, saw-tooth(asymmetric triangular) or

triangular[11]. A rectangular wave leads to odd harmonics, that is, it contains its

fundamental frequency f and 3f, 5f, 7f, etc.; while triangular or saw-tooth signals

contain both even and odd harmonics[11].

 For self-regulating processes OP(t) oscillations are typically triangular and for

integrating processes PV(t) follows triangular wave form [2]. If the MV(t) signal

(which describes the movement of the valve stem with time) is explicitly

available, it will exhibit rectangular or square-like oscillations due to the stick

slip behaviour of the valve stem. In flow control processes ,where the MV(t)

signal varies proportionally to PV(t) (in this case, the flow rate), PV(t) will

follow a rectangular wave if stiction behaviour is nearly ‘ideal’.

 When the magnitude of stiction is higher, the amplitude of the oscillations in

PV(t) and OP(t) is higher and the peaks are sharper and pronounced and when

process lag is high, the peaks are more blunt or curved and the patterns is close

to sinusoidal[11].

These are only meant to be general guidelines based on extensive studies performed in

the literature. Of course, process dynamics and controller parameters will affect the

shapes of stiction-induced oscillations. Table 2.1 is a summary of typical shapes of

stiction patterns for different process types and control types.

17

Process
type

Fast processes (flow) Slow processes Integrating
processes

Level with
PI control

 Dominant
I action

Dominant
P action

Pressure &
temaperature

Level

OP

Triangular
(Sharp)

Rectangular Triangular
(Smooth)

Triangular
(Sharp)

Triangular
(Sharp)

PV Square Rectangular Sinusoidal Triangular
(Sharp)

Parabolic

Table 2.1:Typical stiction pattern shapes for different process types [12, 13]

18

Flow Control (M. Manum)

Pressure Control with disturbance likely (C. Scali)

Level Control with disturbance likely (C. Scali)

Flow Control with disturbance likely (C. Scali)

Flow Control with stiction likely (C. Scali)

Figure 2.4: Industrial Control loops with stiction

0 0.5 1 1.5 2 2.5 3

x 10
4

0.0175

0.018

0.0185

0.019

0.0195

time

O
P

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.04

-0.02

0

0.02

0.04

time

P
V

0 2000 4000 6000 8000 10000
0.028

0.03

0.032

0.034

0.036

0.038

time

O
P

0 2000 4000 6000 8000 10000
0.031

0.032

0.033

0.034

0.035

0.036

time

P
V

0 2000 4000 6000 8000 10000
0.034

0.0345

0.035

0.0355

0.036

0.0365

time

O
P

0 2000 4000 6000 8000 10000
0.033

0.034

0.035

0.036

0.037

0.038

time

P
V

0 2000 4000 6000 8000 10000
0.03

0.035

0.04

0.045

time

O
P

0 2000 4000 6000 8000 10000
0.034

0.036

0.038

0.04

time

P
V

0 0.5 1 1.5 2

x 10
4

0.015

0.02

0.025

0.03

time

O
P

0 0.5 1 1.5 2

x 10
4

0.02

0.022

0.024

0.026

time

P
V

19

Level Control with stiction likely (C. Scali)

Pressure Control with possibility of marginal stability

Flow Control with stiction likely (C. Scali)

Flow Control with stiction likely (C. Scali)

Flow Control with stiction likely (B. Huang)

Figure 2.4 Continued

0 2000 4000 6000 8000 10000 12000 14000
0.025

0.03

0.035

0.04

time

O
P

0 2000 4000 6000 8000 10000 12000 14000
0.028

0.03

0.032

0.034

time

P
V

0 2000 4000 6000 8000 10000
0.036

0.037

0.038

0.039

time

O
P

0 2000 4000 6000 8000 10000
0.036

0.037

0.038

0.039

0.04

time

P
V

0 5000 10000 15000
0.01

0.02

0.03

0.04

time

O
P

0 5000 10000 15000
0.024

0.025

0.026

0.027

0.028

time

P
V

0 2000 4000 6000 8000 10000
0.025

0.03

0.035

0.04

0.045

0.05

time

O
P

0 2000 4000 6000 8000 10000
0.035

0.036

0.037

0.038

0.039

0.04

time

P
V

0 1 2 3 4 5 6

x 10
4

-0.04

-0.02

0

0.02

0.04

0.06

time

O
P

0 1 2 3 4 5 6

x 10
4

-0.04

-0.02

0

0.02

0.04

0.06

time

P
V

20

Flow Control with stiction (B. Huang)

Pressure Control with stiction (B. Huang)

Pressure Control with stiction (B. Huang)

Flow Control with stiction (P. He)

Level Control with tuning problem (P. He)

Figure 2.4 Continued

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.1

-0.05

0

0.05

0.1

time

O
P

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.1

-0.05

0

0.05

0.1

time

P
V

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.1

-0.05

0

0.05

0.1

time

O
P

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.05

0

0.05

time

P
V

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.06

-0.04

-0.02

0

0.02

0.04

time

O
P

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.05

0

0.05

time

P
V

0 50 100 150 200
0.07

0.0705

0.071

0.0715

time

O
P

0 50 100 150 200
0.07

0.0705

0.071

0.0715

0.072

time

P
V

0 50 100 150 200
0.05

0.06

0.07

0.08

0.09

0.1

time

O
P

0 50 100 150 200
0.05

0.06

0.07

0.08

0.09

time

P
V

21

Flow Control with stiction (A. Horch)

Flow Control with stiction (A. Horch)

Figure 2.4 Continued

0 200 400 600 800 1000
0.025

0.03

0.035

0.04

time

O
P

0 200 400 600 800 1000
0.025

0.03

0.035

0.04

time

P
V

0 500 1000 1500 2000
0.0244

0.0246

0.0248

0.025

0.0252

time

O
P

0 500 1000 1500 2000
0.024

0.0245

0.025

0.0255

0.026

time

P
V

22

2.3 Modeling Valve Stiction

Empirical or data-driven valve stiction models have been developed [3, 6, 14]. He’s two

and three parameter model employs the most simplistic logic of the valves movement

under stiction and has been shown to emulate real stiction behaviour in industrial

control loops very well compared to the others[2]. Figure 2.5 shows the algorithm for

He’s two-parameter model

Figure 2.5: He’s two-parameter stiction model [15].

Here, all variables have been translated to be in terms of percent valve travel range.

OP(t), MV(t) are now expressed as 𝑢(𝑡) and 𝑢𝑣(𝑡) . When stiction is present, the

residual amount of force being applied that has not effected valve stem movement is

 𝑢𝑟 . The cumulative force 𝑐𝑢𝑚_𝑢 acting on the valve in the current control instance is

the sum of 𝑢𝑟 and the change in controller output signal from previous to current

Controller output u(t)

 𝑐𝑢𝑚_𝑢 = 𝑢𝑟 + (𝑢(𝑡) − 𝑢(𝑡 − 1))

 𝑢𝑣(𝑡) = 𝑢(𝑡) − 𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠)𝑓𝑑

 𝑢𝑟 = 𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠)𝑓𝑑

 𝑢𝑣(𝑡) = 𝑢𝑣(𝑡 − 1)
 𝑢𝑟 = 𝑐𝑢𝑚_𝑢

 𝑎𝑏𝑠(𝑐𝑢𝑚_𝑢) > 𝑓𝑠?
𝑦𝑒𝑠 𝑛𝑜

23

control instance 𝑢(𝑡) − 𝑢(𝑡 − 1). If 𝑐𝑢𝑚_𝑢 is of high enough magnitude to overcome the

static friction 𝑓𝑠, then the valve moves to position 𝑢𝑣(𝑡). The direction of excess force

applied above what was required to overcome the stiction band is given by

𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠) and the dynamic or moving friction that resists valve movement is 𝑓𝑑 .

So 𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠)𝑓𝑑 represents how much valve travel will not be achieved as a

result of the dynamic friction 𝑓𝑑 that the valve is working against in the direction

𝑠𝑖𝑔𝑛(𝑐𝑢𝑚_𝑢 − 𝑓𝑠). If the valve stem does not overcome 𝑓𝑠, then it does not move, that is,

𝑢𝑣(𝑡) = 𝑢𝑣(𝑡 − 1) and 𝑢𝑟 = 𝑐𝑢𝑚_𝑢.

The data-driven models are typically validated against physics-based models, which are

the most descriptive models of the physics of valves with stiction but are often avoided

due to the computational cost incurred in solving them. However the purpose of this

work is to generate stiction patterns offline (i.e. when the chemical processing system is

not in operation) and use these stiction patterns to develop a predictor (also offline)

capable of quantifying stiction in real time when the process is in operation.

Here, the motion (position and velocity) of the valve stem of the pneumatic control

valve shown in Figure 2.1 is governed by newtons law of motion Force = mass ×

acceleration. This model is obtained from [15].

𝑀
𝑑2𝑥

𝑑𝑡2
=∑Forces = 𝐹𝑎 + 𝐹𝑟 + 𝐹𝑓 + 𝐹𝑝 + 𝐹𝑖

𝑥: relative valve stem position

𝐹𝑎 = 𝐴𝑢
𝐹𝑎: force applied by pneumatic actuator

24

𝐴 ∶ area of the diaphragm
𝑢 ∶ actuator air pressure or the valve input signal

𝐹𝑟 = −𝑘𝑥
𝐹𝑟: spring force
𝑘 ∶ spring constant

𝐹𝑝 = −𝐴𝑝∆𝑝

𝐹𝑝 ∶ force due to fluid pressure

𝐴𝑝: plug unbalance area

∆𝑝: fluid pressure drop across the valve

𝐹𝑖 : extra force required to force the valve into seat

𝐹𝑓: friction force (includes static and dynamic/moving friction)

𝐹𝑝 & 𝐹𝑖 are assumed negligible

𝐹𝑑: Dynamic friction (velocity independent term)

𝑣𝐹𝑣: viscous friction term that depends linearly on the velocity

𝐹𝑓 = {
−Fdsign(v) − vFv − (Fs − Fd)𝑒

−(
𝑣
𝑣s
)
2

sign(v), if v ≠ 0

−(Fa + Fr), if v = 0 and |Fa + Fr| ≤ Fs
−Fssign(Fa + Fr), if v = 0 and |Fa + Fr| > Fs

Fs:maximum static friction

vs: empirical stribeck velocity parameter

The friction term is represented as a piecewise function, each describing the amount of

friction present when the valve is stuck, about to become unstuck, or moving. The first

line is the condition when the valve is moving. In this case, the valve acts against

dynamic friction, which acts in the opposite direction of the valves intended movement

-sign(v). The second expression is the viscous friction accounts for resistance to the

valve stems motion due to properties of the flowing fluid and is proportional to the

25

velocity of the valve. Finally, the last the stribeck term (Fs − Fd)exp [−(𝑣/𝑣s)
2]sign(v)

addresses the discontinuity at the stick-slip moment , where the valve goes from acting

against friction of amount Fs to Fd, when the valve stem just begins to move. An

empirical velocity parameter 𝑣s controls the rate at which that point of discontinuity is

approached. The second line indicates the condition where the valve is stuck, in which

case the force |Fa + Fr| acting to move the valve is less than Fs. At the instance where

the stem breaks free of the stiction, that is, |Fa + Fr| > Fs, the valve stem is resisted by a

force Fssign(Fa + Fr). The negative signs on all terms indicate that the friction acts in

opposition to the direction in which the valve moves.

The equation describing the motion of the valve stem can be rewritten as follows:

�̇� = 𝑣

𝑚�̇� = Fa + Fr + Ff + Fp + Fi

This stiff system of ordinary differential equations can be solved by numerical

integration. However, But if used directly, difficulties in numerical integration exist due

to hash discontinuity caused by sign function at zero velocity (Detection and Diagnosis

of stiction in control loops).

So Ff is approximated using piecewise function, where |𝑣| < 𝛿 is used to approximate

𝑣 = 0.

Therefore, the ODEs we use to simulate the sticky valve are the following, with

δ = 1 × 10−6𝑖𝑛/𝑠 :

𝐹𝑓 = {
−Fcsign(v) − vFv − (Fs − Fc)𝑒

−(
𝑣
𝑣s
)
2

sign(v), if v ≠ 0

−(Fa + Fr), if v = 0 and |Fa + Fr| ≤ Fs
−Fssign(Fa + Fr), if v = 0 and |Fa + Fr| > Fs

�̇� = 𝑣

26

𝑚�̇�

=

{

 Sa𝑢 − 𝑘𝑥−Fc − 𝑣Fv − (Fs − Fc)𝑒

−(
𝑣
𝑣s
)
2

, if v > δ

Sa𝑢 − 𝑘𝑥−Fc, if − δ ≤ v ≤ δ and (Sa𝑢 − 𝑘𝑥) > Fs

0, if − δ ≤ v ≤ δ and − Fs ≤ (Sa𝑢 − 𝑘𝑥) ≤ Fs
Sa𝑢 − 𝑘𝑥−Fc, if − δ ≤ v ≤ δ and (Sa𝑢 − 𝑘𝑥) < −Fs

Sa𝑢 − 𝑘𝑥−Fc − 𝑣Fv − (Fs − Fc)𝑒
−(

𝑣
𝑣s
)
2

, if v < −δ

𝐽 = [
0 1
𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑣

]

𝜕𝑓2
𝜕𝑥

= {
0, 𝑖𝑓 − δ ≤ v ≤ δ and − Fs ≤ (Sa𝑢 − 𝑘𝑥) ≤ Fs

−
𝑘

𝑚
, 𝑒𝑙𝑠𝑒

𝜕𝑓2
𝜕𝑣

=

{

1

𝑚
[−Fv −

2𝑣

𝑣s2
(Fs − Fc)𝑒

−(
𝑣
𝑣s
)
2

] , 𝑖𝑓 − δ ≤ v ≤ δ and − Fs ≤ (Sa𝑢 − 𝑘𝑥) ≤ Fs

0, 𝑖𝑓 − δ ≤ v ≤ δ

1

𝑚
[−Fv +

2𝑣

𝑣s2
(Fs − Fc)𝑒

−(
𝑣
𝑣s
)
2

] , 𝑖𝑓 𝑣 < −δ

In some cases, especially for stiff systems, ODE solver performance can be enhanced or

accelerated by including analytically computed jacobian matrix specially coding your

ODE file. Software such as MatLab contain built in functions that compute the jacobian

numerically, and in this work, the analytically computed jacobian did not lead to any

noticeable speed up.

27

2.4 Simulating Stiction in Single-Input Single-Output (SISO) Closed Loop Processes

The following are some valve stiction simulations based on this physical model and the

processes described by the transfer functions in Table 2.2.

 Level Concentration
Process 1

15𝑠

3

10𝑠 + 1

PI Controller
𝐺𝑐 = 3(1 +

1

30𝑠
) 𝐺𝑐 = 0.2 (1 +

1

2𝑠
)

Table 2.2 Simulating stiction in linear time invariant processes

Level Control: Fs=500 lbf Fd=482lbf

Level Control: Fs=300lbf Fd=200 lbf

Level Control: Fs=40 Fd=10

Figure 2.6: Simulating stiction in linear time invariant processes

-2

0

2

OP

-2

0

2

MV

0 100 200 300 400 500
-2

0

2

time

PV

-2

0

2

PV

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

0

2

OP

MV

-2

0

2

OP

-2

0

2

M
V

0 100 200 300 400 500
-2

0

2

time

PV

-2

0

2

PV

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

0

2

OP

M
V

-2

0

2

OP

-1

0

1

M
V

0 100 200 300 400 500
-2

0

2

time

PV

-2

0

2

PV

-1.5 -1 -0.5 0 0.5 1 1.5
-1

0

1

OP

M
V

28

Concentration Control: Fs=500 Fd=482

Concentration Control: Fs=300 Fd=200

Concentration Control: Fs=40 Fd=10

Figure 2.6 Continued

-2

0

2

O
P

-2

0

2

M
V

0 100 200 300 400 500
-2

0

2

time

P
V

-2

0

2

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

0

2

OP

M
V

-2

0

2

O
P

-2

0

2

M
V

0 100 200 300 400 500
-2

0

2

time

P
V

-2

0

2

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

0

2

OP

M
V

-2

0

2

O
P

-2

0

2

M
V

0 100 200 300 400 500
-2

0

2

time

P
V

-2

0

2

P
V

-1.5 -1 -0.5 0 0.5 1 1.5
-2

0

2

OP

M
V

29

3. DATA-BASED MODELING USING NEURAL NETWORKS

3.1 Introduction

It is difficult to develop first principles mathematical models that describe the dynamics

of complex systems with high non-linearity, uncertainty and noise. However, if

sufficient data is available from such systems, models can be developed based on this

data using powerful data-based modeling algorithms from the field of machine learning.

Artificial neural networks (ANN’s) are a class of machine learning algorithms containing

nonlinear mapping functions that together can approximate any function or ‘fit’ any

data to arbitrary accuracy [14]. ANNs which are imported from statistical learning

theory [16] , can perform a nonlinear mapping of input-output data, learn relationships

and produce a certain desired output given new inputs.

Figure 3.1 Perceptron Model

 ∑⬚

𝑥2 𝑤𝑘1

𝑣𝑘 𝑤𝑘2

𝑥1

𝑥3
𝑤𝑘3

𝑥𝑛

𝑤𝑘𝑛

𝑢𝑘 =∑ 𝑥𝑗

𝑛

𝑗=1

𝑤𝑘𝑗 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘

𝑏𝑘

𝑦𝑘

𝑓(𝑣𝑘)

)

30

ANN’s are composed of computational nodes (or ‘neurons’) that interact with each

other via weighted, adjustable interconnections. Figure3.1 shows a perceptron model,

the basic building block of a neural network. For illustration purposes. Say one has a set

X of N vectors

 𝑋 = �̂�𝑖 𝑖 = 1,… . . , 𝑁

 and each vector �̂�𝑖 is of length n, as shown in the model. Suppose each vector has an

associated value 𝑦𝑖.This perceptron model can ‘learn’ or model the relationship

between a given �̂�𝑖 and its associated 𝑦𝑖 as long as the �̂�𝑖′𝑠 are related with one another

in some way. For instance, each �̂�𝑖 is data collected from a specific type of experiment

where numbers were to be recorded at equally spaced time intervals (i.e. time series

data was obtained) and each �̂�𝑖 represents a different trial of this experiment run under

different conditions. For a particular �̂�𝑖 , its elements are weighted and summed up, then

passed through some linear or nonlinear mapping function 𝑓(𝑢𝑘) to obtain an estimate

of 𝑦𝑘, which will be denoted 𝑦′𝑘. The subscript k is simply a ‘label’ for the node, and it

will be clear why it is needed when the perceptron model is extended to a neural

network model which has multiple nodes. The weights 𝑤𝑘𝑗 are initially randomly

generated. Then the error between 𝑦′𝑘and the actual 𝑦𝑘will be determined. This

procedure, known as forward propagation, will be repeated for all the vectors using the

same randomly generated weights so that N 𝑦′𝑘 values are obtained. The total error will

be propagated back into the network to determine how the parameters 𝑤𝑘𝑛 should be

adjusted such that the model produces a better prediction of 𝑦′𝑘 values in the

subsequent iteration. The goal is to execute enough iterations so that the total error

satisfies some minimum criterion. So the final model is defined by the weight

31

parameters, which essentially determine the contribution of a particular element in the

vector in describing the relationship between the input vectors and the outputs.

So given a new �̂�𝑖 which the network has not previously seen, the network predicts 𝑦′𝑘.

The mapping function is typically a linear, sigmoid or hyperbolic tangent function. The

sigmoid function is given by

𝑓(𝑣𝑘) =
1

1 + exp (−𝑎𝑣𝑘)
= 𝑦𝑘 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘

Figure 3.2 The sigmoid function

Figure 3.3 Effect of bias on the sigmoid function

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v(k)

y(
k)

a=0.5, b=0

a=1, b=0

a=2, b=0

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v(k)

y(
k)

a=1, b=-5

a=1, b=0

a=1, b=5

32

Modifying the weights therefore affects the shape and curvature of the sigmoid transfer

function whereas the bias neurons adds an additional degree of freedom that allows the

curve to shift left or right. Without the sigmoid function, the ANN can only model

functions which are linear combinations of the inputs. The function varies from 0 to 1,

which is an important property in neural networks used for binary classification

problems where the inputs vectors are to be categorized into one of two classes. Thus if

the network yields a prediction closer to one, the input vector is classified as being in

one category and if closer to 0, the vector belongs to the other category. Another

important property of the sigmoid function that makes it useful in regression tasks is

that for very high or low values of the input v(k) , that is, near the limiting values 0 and

1 of the function, the rate of change of the slope of the curve is very small. Therefore

large changes in the input near these limits do not cause the output to ‘blow up’. This is

a very useful property in the back-propagation learning algorithm, which is based on

gradient descent optimization. This prevents large changes in the calculated error and

consequently, modest changes in the weights when those limits are approached.

33

3.2 Feed-forward Neural Network Model

Here the perceptron model, which can only be used for simple modeling to multilayer,

is extended to a multimode network which are meant for complex nonlinear modeling.

The feed forward network shown in the Figure 3.4 contains three layers: the input layer

which receives the input vector, the hidden layer which performs nonlinear mapping of

the inputs to the outputs, and an output layer. Here, the blue dot on the left of a

particular node implies the elements entering a node are weighted according to their

associated connection and summed before entering the node. It is also implied that

there are biases to each node.

Figure 3.4 Feed-forward neural network

Throughout this presentation, the compact notation of Kirby and Miranda for

mathematical theory behind neural networks is adopted [17]. The goal here is to model

𝑆1
(0)

.

.

.

𝑤𝑗𝑘
(𝑖)

.

.

.

.

.

.

𝑆2
(0)

𝑆𝑗
(0)

𝑆1
(𝐿−1)

𝑆2
(𝐿−1)

𝑆𝑗
(𝐿−1)

𝑆
𝑁(𝑖)−1

(0)
 𝑆

𝑁(𝑖)−1

(𝐿−1)

hidden layer
output layer

34

the relationship of several sets of input vectors of length n and their corresponding

output vectors of length m, such that given new input vectors previously unseen by the

network, their output vectors are predicted accurately. The first step in neural network

learning is forward propagation.

The weighting parameters of the network are randomly generated and for each input

vector, an output vector is calculated according to the following expressions. There are

L layers in the neural network , the first layer being layer 0 and the last layer, L-1. Each

layer contains 𝑁𝑖nodes numbered j=0 to j=𝑁(𝑖) − 1. So a node j in layer i which will be

identified as 𝑁𝑗
(𝑖). The state value of each node is 𝑆𝑗

(𝑖) and 𝑃𝑗
(𝑖) denotes the value of the

input to a node or pre-state value. Each node 𝑁𝑗
(𝑖) has an associated weight 𝑤𝑘𝑗

(𝑖−1) that

connects node 𝑁𝑘
(𝑖−1) from the previous layer to it (k is the index for nodes in the

previous layer). Thus the inputs to a particular sigmoidal node 𝑁𝑗
(𝑖)

 (𝑖 ≥ 1) its pre-state

value is

𝑃𝑗
(𝑖)
= ∑ 𝑤𝑘𝑗

(𝑖−1)

𝑁𝑖−1−1

𝑘=0

𝑆𝑘
(𝑖−1)

+ 𝑏𝑗
(𝑖)
 𝑆𝑗

(𝑖)
= 𝜎𝑗

(𝑖)
(𝑃𝑗

(𝑖)) =
1

1 + exp (−𝑎 ∗ 𝑃𝑗
(𝑖))

 𝑆𝑗
(𝑖)

The sum squared error between calculated outputs 𝑆𝑘
(𝐿−1)

 and actual outputs 𝐺𝑗 is given by

𝐸 =
1

2
∑ (𝑆𝑘

(𝐿−1)
− 𝐺𝑗)

2
𝑁𝐿−1−1

𝑗=0

35

Once forward propagation is complete and the error is calculated, the back-

propagation algorithm is implemented. The gradient of the error with respect to all the

weights 𝑤𝑗𝑘
(𝑖)

 in the network are calculated according to the following expressions:

𝜕𝐸

𝜕𝑆𝑗
(𝐿−1)

= 𝑆𝑗
(𝐿−1)

− 𝐺𝑗

𝜕𝐸

𝜕𝑏𝑗
(𝑖)
=

𝜕𝐸

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑗
(𝑖)

𝜕𝑏𝑗
(𝑖)

𝜕𝐸

𝜕𝑤𝑗𝑘
(𝑖)
=

𝜕𝐸

𝜕𝑆𝑗
(𝑖+1)

𝜕𝑆𝑗
(𝑖+1)

𝜕𝑤𝑗𝑘
(𝑖)

=
𝜕𝐸

𝜕𝑆𝑗
(𝑖+1)

𝜕 [𝜎𝑗
(𝑖)(𝑃𝑗

(𝑖))]

𝜕𝑤𝑗𝑘
(𝑖)

𝜕𝐸

𝜕𝑆𝑗
(𝑖−1)

= ∑
𝜕𝐸

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑘
(𝑖−1)

𝑁(𝑖)−1

𝑗=0

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑘
(𝑖−1)

=
𝜕𝑆𝑗

(𝑖)

𝜕𝑏𝑗
𝑖

𝜕𝑏𝑗
𝑖

𝜕𝑆𝑘
(𝑖−1)

 Adjustments to the weights are given by the following expression

∆𝑤𝑗𝑘
(𝑖) = −𝜇

𝜕𝐸

𝜕𝑤𝑗𝑘
(𝑖)

Where 𝜇 is the learning rate parameter and controls how fast convergence to the

optimal solution is reached. Too large a learning rate will lead to large adjustments in

the weight but may lead to oscillations around the optimum and ultimately, divergence.

To illustrate this point, consider the one-dimensional optimization problem where one

adaptable parameter w is used to determine the minimum of some convex error

function E(w) in Figure 3.5. Say, the initial guess for the weight w and the associated

error E is indicated by the red point on the graph.

36

Figure 3.5 Gradient descent for 1-dimensional optimization problem

The dotted line is the derivative (tangent line) of the curve at that point and moving in

the direction of steepest descent by an amount −𝜇 𝜕𝐸 𝜕𝑤⁄ , the new estimate for w is

shown by the green dot. The figure demonstrates what can happen when the learning

rate is too large. The solution oscillates about the optimum (the minimum of the curve).

So the learning rate should be high enough for fast convergence but not too high.

Multidimensional (higher than three dimensions) optimization problems, such as back-

propagation networks with more than two weighting parameters are more difficult to

visualize, but the same idea applies.

E(w)

w

37

3.3 Principal Component Analysis

Principal component Analysis (PCA) is a method for extracting the most significant features of a

data set. More specifically, it is a statistical technique used to extract linear factors that

represent the maximum variation in a multidimensional data set. These sources of

variation are expressed as vectors of the original data set. As an illustration, consider a

line in three-dimensional space described by the parametric equations of variables x, y

and z:

𝑥 = 20 + 4𝑡 𝑦 = 50 + 8𝑡 𝑧 = 30 + 6𝑡 where t = 1, 2, 3, … ,50

This line is shown in black in Figure3.6. Normally distributed random noise is added to

the points of the line and the result is the ‘noisy line’ whose points are shown in blue.

Then the objective of PCA is to find D orthogonal vectors that represent the maximum

variation in the data set. D, which is the dimensionality of the data set, is 3 in this case.

Alternatively, PCA seeks to find vectors (lines in this case) such that if all the points of

the data set are projected or mapped onto those vectors, we retain as much of the

variation in or information from the original data set as possible, in other words, the

variance is minimized. So PCA can be thought of as three-dimensional regression.

38

Figure 3.6 First factor extracted in linear PCA

In Figure 3.6, the red line shows the first factor (or component) obtained using PCA. The

second factor found by PCA is a line perpendicular to the first factor, indicated by the

orange line in Figure 3.7. It is found by imposing the constraint that this line is

orthogonal to the first factor. An initial guess for the line is constructed and it is then

rotated about the axis of the first factor until the axis of largest variation is found in the

data set. There would be a third component (not shown in the figure) perpendicular to

the plane formed by the first two factors.

50

100

150

200

50100150200250300350400450

50

100

150

200

250

300

350

x

y

z

39

Figure 3.7 Second factor extracted in linear PCA

These component vectors are obtained as follows. First the covariance matrix is

calculated. The covariance is a statistical measure of the linear relationship between

two variables. If a M by N data matrix D is created for a data set of M variables each with

N observations or elements, the covariance matrix which relates the variables with one

another can be found with the following equations:

𝑅(𝑖,𝑗) = 𝐷(𝑖,𝑗) −
1

𝑁
∑ 𝐷(𝑖,𝑗)

𝑁

𝑗=1
 𝑉 =

𝑅 ∗ 𝑅𝑇

𝑁 − 1

Where i and j represent the row and column number of matrix D and the residuals

matrix is R. So 𝑅(𝑖,𝑗) is the deviation between all observations of variable i and the

average of the observations. Then the covariance matrix V will be an M by M symmetric

matrix whose diagonal elements are the covariance between each individual variable

50

100

150

200

50100150200250300350400450

50

100

150

200

250

300

350

x

y

z

40

and itself, that is, the variance of the variable. The covariance matrix will have same

dimensionality as the data matrix.

The goal is to minimize 𝑅(𝑖,𝑗) and it can be shown that in order to minimize 𝑅(𝑖,𝑗), the

covariance matrix V needs to be maximized. Once the covariance matrix is found,

eigenvalue decomposition algorithms are applied on the matrix to find a unit vector �⃗⃗�

such that

𝑉�⃗⃗� = 𝜆�⃗⃗� (𝑉 − 𝜆𝐼)�⃗⃗� = 0

Where �⃗⃗� is an eigenvector of 𝑉, 𝜆 is the eigenvalue of V and 𝐼 is the identity matrix. It

can be shown that in order to minimize the residuals or maximize variance this relation

is satisfied. It can also be proved that since V is symmetric (𝑉𝑇), its eigenvectors are

orthogonal. The eigenvectors of 𝑉 are the principal components of the data matrix.

The result for the M by N data matrix is a vector of M eigenvalues which represent the

magnitude of the components and an M by M matrix with each column containing an

eigenvector that corresponds to the eigenvalue of the same index. Each

column/eigenvector describes a factor or component.

Lastly, the magnitude of the components (the eigenvalues) are used to select

components that contribute the most to the variation in the data set. The percent

contribution of each eigenvector i is calculated by dividing its associated eigenvalue by

the sum of all eigenvalues:

𝜆𝑖
∑ 𝜆𝑗
𝑀
𝑗=1

41

Typically the aim is to select as few components as possible whose total percent

contribution is greater than a certain desired threshold. Then say the largest q

eigenvalues are selected, their eigenvectors will be used to construct a 𝑃 × 𝑄

dimensional matrix T which is used to transform the 𝑀 ×𝑁 data matrix D into a 𝑃 × 𝑁

data matrix (𝑃 < 𝑀) of principal components.

As mentioned earlier linear PCA techniques aim to project high-dimensional data into a

lower dimensional representation. This linear transformation then takes on the form

𝑇 = 𝑃 ∙ 𝐷

Naturally, expressing 𝐷 as it’s lower dimensional counterpart T leads to a loss of some

of the information in 𝐷. The following reverse transformation reconstructs the data set

so that the amount of information lost can be determined:

𝐷′ = 𝑇𝑃𝑇

𝑃 is such that the error between 𝑋 and the reconstructed data set 𝐷′ (of the same

dimension as 𝐷) is minimized[18]. The loss of information referred to earlier translates

into application of PCA in noise-filtering.

42

3.4 Nonlinear Principal Component Analysis and Inverse Neural Network Model

Nonlinear principal component analysis (NLPCA) is a generalization of standard PCA

that allows for dimensionality reduction through the use of nonlinear mapping

functions. Auto-associative neural network-based NLPCA [18, 19] is a three hidden-

layer feed-forward network with a mapping, bottleneck and de-mapping layer. Once

again, the notation of Kirby and Miranda[17] is adopted in the following explanations

of the mathematical theory behind neural networks.

Figure 3.8 Auto-Associative Neural Network [17, 20]

The nodes in the mapping and de-mapping layers are nonlinear transfer functions

(usually sigmoidal or hyperbolic tangent). The bottleneck layer encodes the lower

dimensional representation of the original data set, it’s outputs are the nonlinear

principal components. This layer may contain either a linear or nonlinear function

𝑆2
0

.

.

.

𝑆𝜏(𝑗)
(𝑖)

.

.

.

𝑆1
0

𝑆
𝑁(𝑖)−1
0

𝑆1
𝐿−1

𝑆2
𝐿−1

𝑆
𝑁(𝑖)−1
𝐿−1

.

.

.

.

.

.

𝜃 𝑆𝑗

(𝑖)

𝑆𝜏(𝑗)
(𝑖)

𝑆𝑗
(𝑖)

43

without affecting the nonlinear modeling capability of the entire network. All three

layers are essential to achieve optimal nonlinear feature extraction. The mapping and

bottle neck layers perform nonlinear feature extraction and data compression, while

the de-mapping layer does the data reconstruction. If the pre and post bottleneck layers

are omitted, the network merely performs linear PCA regardless of the nonlinear

bottleneck node[18]. This is because linear combinations of the inputs are simply

passed through the circular node. Also omitting the bottleneck layer and keeping the

pre and post bottle-neck layers will lead to a trivial identity mapping: data will not be

compressed to a lower dimension

The low dimensional features are transmitted to the demapping layer which performs

data re-construction. The presence of the bottle neck layer of fewer nodes (lower

dimension) than the input and output layers guarantees this underfitting or imperfect

reconstruction of the data set which as will be seen later, translates to the use of NLPCA

in noise-filtering applications[21].

In contrast to conventional NLPCA which is meant for open curve solutions , Kirby and

Miranda introduced the use of circular nodes in the bottle neck layer to approximate

data using closed continuous curves. Otherwise this network architecture is totally

identical to that proposed by Kramer. This type of network has proved to be useful for

cases were the original data set contains periodic or oscillatory patterns or circular data

structures [21-24], as will be seen once inverse networks and their specific application

to data sets with stiction-induced oscillations is discussed.

44

The bottleneck layer of the network consists of a circular unit. This unit is internally

represented by a pair of nodes 𝑆𝑗
(𝑖)
 and 𝑆𝜏(𝑗)

(𝑖)
 but together they represent a single angular

variable 𝜃 since their outputs are constrained to lie on a point on the unit circle:

𝑃𝑗
(𝑖)
= cos(𝜃) 𝑃𝜏(𝑗)

(𝑖)
= sin(𝜃) (𝑆𝑗

(𝑖))
2

 + (𝑆𝜏(𝑗)
(𝑖))

2

 = 1

 𝑅𝑗
(𝑖)
= √(𝑃𝑗

(𝑖)
)
2
+ (𝑃𝜏(𝑗)

(𝑖)
)
2
 𝑆𝑗

(𝑖)
=
𝑃𝑗
(𝑖)

𝑅𝑗
(𝑖)
 𝑆𝜏(𝑗)

(𝑖)
=
𝑃𝜏(𝑗)
(𝑖)

𝑅𝑗
(𝑖)

A recent modification of auto-associative neural network architecture , proposed by

Scholz, is the Inverse neural network. This network is shown in figure 3.9 and only

contains the ‘inverse mapping’ or data reconstruction section of an auto-associative

network.

Figure 3.9 Inverse Neural Network [20]

𝜃

𝑆𝜏(𝑗)
(𝑖)

𝑆𝑗
(𝑖)

𝑆𝑗
(𝑖)

𝑆𝜏(𝑗)
(𝑖)

𝑆
(𝑖)

.

.

.

𝑃𝑗
(𝑖)

𝑃𝜏(𝑗)
(𝑖)

𝑤𝑘𝑗
(𝑖)

𝑆0
(𝐿−1)

𝑆1
(𝐿−1)

𝑆
𝑁𝑖−1

(𝐿−1)

45

Given the original data set as target outputs, the network estimates principal

components such that the squared error between the reconstructed and original data

sets is minimized. So this network estimates the principal components that reconstruct

the data set such that the error between the reconstructed and actual data set is

minimized. But just as an auto-associative network, since the principal components are

a ‘compressed’ or low dimensional representation of the data set, there is a loss of

information in the reconstructed data set.

The weights are denoted as 𝑤𝑘𝑗
(𝑖)

 , the weight that connects node 𝑗 in the previous layer to

node 𝑘 in the current layer 𝑖. For instance 𝑤31
(2)

 is the weight that connects node 1 in the

bottle-neck layer (first layer) to node 3 in the mapping layer (second layer).

The unknown inputs 𝑃𝑗
(𝑖) and 𝑃𝜏(𝑗)

(𝑖) are to be determined along with the weights 𝑤𝑘𝑗
(𝑖)

in

the network by the back-propagation algorithm. Equations (2) are parametric

equations that force 𝑃𝑗
(𝑖)and 𝑃𝜏(𝑗)

(𝑖) to be the coordinates of points on a circle. These

equations ensure that the trigonometric constraint in (1) that is, point 𝑆𝑗
(𝑖)
, 𝑆𝜏(𝑗)
(𝑖)
 lies on a

unit circle, is satisfied. The point 𝑆𝑗
(𝑖), 𝑆𝜏(𝑗)

(𝑖) is represented by a single angle 𝜃, the

principle component for one sample (a d-dimensional vector) of the original data set.

Initially, the parameters 𝑃𝑗
(𝑖), 𝑃𝜏(𝑗)

(𝑖)
 and 𝑤𝑘𝑗

(𝑖)
 are randomly generated and 𝐺𝑗′𝑠 are

calculated.The sum squared error over all samples/observations N:

46

𝑃𝑗
(𝑖)
= ∑ 𝑤𝑘𝑗

(𝑖−1)

𝑁𝐿−1−1

𝑗=1

𝑆𝑘
(𝑖−1)

+ 𝑏𝑗
(𝑖)

𝐸 =
1

2
∑ (𝑆𝑘

(𝐿−1)
− 𝐺𝑗)

2
𝑁𝐿−1−1

𝑗=0

 For Circular Node For Sigmoidal Nodes

𝑆𝑗
(𝑖)
= 𝑃𝑗

(𝑖)

√(𝑃𝑗
(𝑖)
)
2
+ (𝑃𝜏(𝑗)

(𝑖)
)
2

𝜎𝑗
(𝑖)
(𝑃𝑗

(𝑖)
) =

1

1 + exp (−𝑃𝑗
(𝑖)
)

𝜕𝐸

𝜕𝑏𝑗
(𝑖)
= 𝜕𝐸

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑗
(𝑖)

𝜕𝑏𝑗
(𝑖)
+

𝜕𝐸

𝜕𝑆𝜏(𝑗)
(𝑖)

𝜕𝑆𝜏(𝑗)
(𝑖)

𝜕𝑏𝑗
(𝑖)

𝜕𝐸

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑗
(𝑖)

𝜕𝑏𝑗
(𝑖)

𝜕𝐸

𝜕𝑤𝑗𝑘
(𝑖)
= 𝜕𝐸

𝜕𝑆𝑗
(𝑖+1)

𝜕𝑆𝑗
(𝑖+1)

𝜕𝑤𝑗𝑘
(𝑖)

+
𝜕𝐸

𝜕𝑆
𝜏(𝑘)

(𝑖)

𝜕𝑆𝜏(𝑘)
(𝑖)

𝜕𝑤𝑗𝑘
(𝑖)

𝜕𝐸

𝜕𝑆𝑗
(𝑖+1)

𝜕𝑆𝑗
(𝑖+1)

𝜕𝑤𝑗𝑘
(𝑖)

=
𝜕𝐸

𝜕𝑆𝑗
(𝑖+1)

𝜕 [𝜎𝑗
(𝑖)(𝑃𝑗

(𝑖))]

𝜕𝑤𝑗𝑘
(𝑖)

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑘
(𝑖−1)

=
𝜕𝑆𝑗

(𝑖)

𝜕𝑏𝑗
𝑖

𝜕𝑏𝑗
𝑖

𝜕𝑆𝑘
(𝑖−1)

+
𝜕𝑆𝑗

(𝑖)

𝜕𝑏𝜏(𝑗)
𝑖

𝜕𝑏𝜏(𝑗)
𝑖

𝜕𝑆𝑘
(𝑖−1)

𝜕𝑆𝑗
(𝑖)

𝜕𝑏𝑗
𝑖

𝜕𝑏𝑗
𝑖

𝜕𝑆𝑘
(𝑖−1)

𝑆𝑗
(𝑖)
=

𝑃𝑗
(𝑖)

√(𝑃𝑗
(𝑖)
)
2
+ (𝑃𝜏(𝑗)

(𝑖)
)
2
 𝑅𝑗

(𝑖)
= √(𝑃𝑗

(𝑖)
)
2
+ (𝑃𝜏(𝑗)

(𝑖)
)
2
 𝑆𝑗

(𝑖)
=
𝑃𝑗
(𝑖)

𝑅𝑗
(𝑖)

𝜕𝐸

𝜕𝑆𝑗
(𝐿−1)

= 𝑆𝑗
(𝐿−1)

− 𝐺𝑗

𝜕𝐸

𝜕𝑆𝑗
(𝑖−1)

= ∑
𝜕𝐸

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑗
(𝑖)

𝜕𝑆𝑘
(𝑖−1)

𝑁(𝑖)−1

𝑗=0

47

4. PROCEDURE FOR STICTION QUANTIFICATION

4.1 Introduction

This section demonstrates the development of two neural network models: the noise

suppressor, which removes noise from the stiction patterns and the predictor, which

estimates the degree of stiction given the controller output OP(t) signal from a stiction

pattern. There are also data pre-processing and post processing steps involved in the

development of both models. The procedure is outlined as follows:

1. 1275 degree of stiction patterns i.e. OP(t) and PV(t) are generated by closed

loop simulation of a Single-Input Single Output process. Each pattern is

generated by specifying a particular value of static and dynamic friction (fs and

fd) in the valve stiction model.

2. 20 separate degrees of stiction are simulated and will be used as the‘test’

patterns. 10 of these will have no added noise and the other 10 will contain

noise.

3. A 100 time step interval of the controller output OP(t) signal from each of

the1275 patterns and associated (fs,fd) values are used to train a feedforward

network to predict fs given OP(t). The is the predictor model

4. The OP(t)-PV(t) signal from the 10 ‘noisy’ test cases are denoised using the

inverse neural network model described in the previous section. This is the

noise-suppresor model. The OP(t) signal is then extracted.

48

5. The OP(t) ‘test’ signals, whose degrees of stiction are known, are then fed into

the predictor model to test if the model is capable of accurately estimating fs

and fd.

Neural networks (or in general, data based modeling) are used here for 3 major

reasons:

1. Ease of implementation and the speed at which they model complex nonlinear

behavior

2. The high flexibility of these models. The same exact neural network

architectures used here can be used in a different application, regardless of

process type, nature of valve model or controller.

3. It is difficult to find non-data based models that can perform the type of complex

modeling involved in this work. That is, take several sets of large time series

oscillations and model the relation between these series and other parameters.

49

4.2 Generation of Stiction Patterns by Closed-Loop Simulation of Single- Input Single-

Output (SISO) Process

The goal is to create a predictive model that takes a controller output OP(t) or process

variable PV(t) stiction pattern from a particular process control loop as input and

produces an estimate of the static and dynamic friction (𝑓𝑠, 𝑓𝑑). The process model used

throughout this demonstration is a single-input single-output (SISO) linear time

invariant (LTI) level control process described by the following discrete time state

space equations:

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)

Note that there is no noise or disturbances in the model so that predictor is based on

‘ideal’ stiction behavior in this particular process. The physical valve model for the

pneumatic control valve described in section 2.3 serves as the valve stiction model and

by specifying a value for 𝑓𝑠, 𝑓𝑑 and simulating the closed loop system shown in Figure

4.1 OP(t), MV(t) and PV(t) stiction-induced oscillations can be generated. Both 𝑓𝑠 and

𝑓𝑑 both have units of pound forces lbf.

Figure 4.1: Stiction control loop: no process noise or disturbance

 Valve Stiction
Model

 Process
Model

 PI Controller

fs, fd (in lbf)

OP MV P

50

 1275 such simulations were run to generated 1275 sets of OP(t=1…1000) and

PV(t=1…1000). An assumption made in all runs is that 𝑓𝑑 is less than 𝑓𝑠, which is

typically the case. If static friction is overcome and the valve stem experiences a slip

jump and begins to move, then the dynamic or moving friction 𝑓𝑑 must be less than the

friction 𝑓𝑠 that was preventing the valves movement in the first place. A maximum value

of 𝑓𝑠 is arbitrarily chosen as 500 𝑙𝑏𝑓. Keeping in mind that 𝑓𝑑 < 𝑓𝑠 the following

algorithm was implemented in MatLab to generate the 1275 sets of 〈𝑓𝑠 , 𝑓𝑑〉 values, each

set representing a different degree of stiction:

𝑓𝑜𝑟 𝑓𝑠 = 500:−10: 10
 𝑓𝑜𝑟 𝑓𝑑 = 𝑓𝑠 − 10:−10: 0
 simulate 〈𝑓𝑠, 𝑓𝑑〉 for the closed loop system
 end
end

So in the first simulation 〈𝑓𝑠, 𝑓𝑑〉 = 〈500,490〉 ,in the second 〈𝑓𝑠, 𝑓𝑑〉 = 〈500,480〉

〈𝑓𝑠, 𝑓𝑑〉 = 〈500,470〉 in the third and so on until 〈𝑓𝑠 , 𝑓𝑑〉 = 〈500,0〉 . Then in the second

iteration of the outer loop, 𝑓𝑠 is decremented by 10 to a fixed value of 490, and 𝑓𝑑 is

reduced from 480 to 0 also in decrements of 10 lbf. A total of 1275 stiction patterns are

generated. The degree of stiction 𝑓𝑠 and 𝑓𝑑will be expressed in terms of percentages

from now on, with 500 lbf being the maximum possible amount of friction

Next, a separate set of 20 stiction patterns with different degrees of stiction than the

1275 patterns generated as the ‘test’ cases: 10 of these contain no added noise and the

other 10 will contain input and output process noise.

51

Loop 1: 𝑓𝑠 = 97.40%, 𝑓𝑑 = 64.40%

Loop 2: 𝑓𝑠 = 47.20%, 𝑓𝑑 = 4.60%

Loop 3: 𝑓𝑠 = 73.80%, 𝑓𝑑 = 69.00%

Figure 4.2: Stiction test cases: no process noise

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

52

Loop 4: 𝑓𝑠 = 70.40%, 𝑓𝑑 = 21.00%

Loop 5: 𝑓𝑠 = 62.60%, 𝑓𝑑 = 16.80%

Loop 6: 𝑓𝑠 = 10.60%, 𝑓𝑑 = 4.80%

Figure 4.2 Continued

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

53

Loop 7: 𝑓𝑠 = 16.00%, 𝑓𝑑 = 11.20%

Loop 8: 𝑓𝑠 = 9.40%, 𝑓𝑑 = 6.00%

Loop 9: 𝑓𝑠 = 33.20%, 𝑓𝑑 = 19.40%

Figure 4.2 Continued

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

54

Loop 10: 𝑓𝑠 = 64.80%, 𝑓𝑑 = 7.20%

Figure 4.2 Continued

The 10 noisy patterns are generated by incorporating disturbance terms into the state

space model

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵[𝑢(𝑡) + 𝑤(𝑡)]

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑧(𝑡)

where 𝑤(𝑡) and z(t) are input and output process noise, respectively. Each case has

stiction case has either one or the other as shown in Figures 4.3 and 4.4.

Figure 4.3: Stiction control loop: with input process noise

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

 Valve Stiction
Model

 Process
Model

 PI Controller

fs, fd (in lbf)

 Input
Disturbance

OP PV MV

55

Figure 4.4: Stiction control loop: with output process noise

Three noise models are used:

 Sinusdoidal: 𝐴 ∗ sin (𝑓 ∗ 𝑡) , where A is the amplitude and f is the frequency

 Randomly generated normally distributed, gaussian or white noise

 Brownian colored noise is generated filtering zero mean white noise with an

autoregressive model of order 63. MatLab’s model is given by:

∑𝑎𝑘𝑦(𝑛 − 𝑘) = 𝑤(𝑛)

63

𝑘=0

 𝑎0 = 1 𝑎𝑘 = (𝑘 − 1 −
𝛼

2
)
𝑎𝑘−1
𝑘

 𝑘 = 1,2, …

Where 𝑤(𝑛) is a zero mean white noise process. The reader is referred to [25] for a

description of the autoregressive model and power law colored noise generation.

Figure 4.5 shows OP versus time, PV versus time and OP versus PV plots for stiction

cases with and without process noise.

 Valve Stiction
Model

 Process
Model

 PI Controller

fs, fd (in lbf)

 Output
Disturbance

OP PV MV

56

Loop 1: 𝑓𝑠 = 91.40%, 𝑓𝑑 = 20.40%; output disturbance: sin(𝑡) = 0.1 sin (4𝑡)

Loop 2: 𝑓𝑠 = 13.20%, 𝑓𝑑 = 8.80%; output disturbance: sin(𝑡) = 0.06 sin (0.1𝑡)

Loop 3: 𝑓𝑠 = 17.40%, 𝑓𝑑 = 13.00%; input disturbance: sin(𝑡) = 0.15 sin (0.2𝑡)

Figure 4.5: Stiction Test Cases: With Process Noise

-3

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

3

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-3

-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

57

Loop 4: 𝑓𝑠 = 46.80%, 𝑓𝑑 = 4.00%: output disturbance: 0.1 ∗ random gaussian noise

Loop 5: 𝑓𝑠 = 29.00%, 𝑓𝑑 = 16.00%: output disturbance: 0.2 ∗ random gaussian noise

Loop 6: 𝑓𝑠 = 17.80%, 𝑓𝑑 = 8.00% ; input disturbance: 0.3 ∗ random gaussian noise

Figure 4.5 Continued

-2

-1

0

1

2

3

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

3

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-3

-2

-1

0

1

2

3

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-2

-1

0

1

2

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

58

Loop 7: 𝑓𝑠 = 86.00%, 𝑓𝑑 = 42.00%; output disturbance: 0.1 ∗ colored noise

Loop 8: 𝑓𝑠 = 100.00%, 𝑓𝑑 = 67.60% ; output disturbance: 0.1 ∗ colored noise

Loop 9: 𝑓𝑠 = 47.20%, 𝑓𝑑 = 10.40%; input disturbance: 0.1 ∗ colored noise

Figure 4.5 Continued

-2

-1

0

1

2

3

time

O
P

0 200 400 600 800 1000
-3

-2

-1

0

1

2

3

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

OP

P
V

-2

-1

0

1

2

time

O
P

0 200 400 600 800 1000
-3

-2

-1

0

1

2

3

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

OP

P
V

-2

-1

0

1

2

3

time

O
P

0 200 400 600 800 1000
-3

-2

-1

0

1

2

3

time

P
V

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

OP

P
V

59

Loop 10: 𝑓𝑠 = 57.80%, 𝑓𝑑 = 22.20%; output disturbance: 0.1 ∗ colored noise

Figure 4.5 Continued

-4

-2

0

2

4

time

O
P

0 200 400 600 800 1000
-3

-2

-1

0

1

2

3

time

P
V

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

OP

P
V

60

4.3 Correlation between OP(t) and PV(t) Signals

The cross-correlation coefficient measures magnitude and direction of the linear

relationship between two signals. It is defined as the sample covariance of the two

signals divided by their sample standard deviations. For each of the 1275 sets of OP(t)

and PV(t) stiction patterns (each representing a different degree of stiction) the

correlation coefficient is determined. The aim is to show that if OP(t) and PV(t) are

strongly positively or negatively correlated, then it will be redundant to use both

signals to develop the predictor model that estimates the stiction parameters fs and fd

given a stiction pattern. Furthermore, it is assumed that the behaviour of PV(t) is

implicitly accounted for by the OP(t) signal and vice versa. Then it may be possible to

use either the OP(t) or PV(t) signal alone in developing the predictor model that

estimates fs and fd given either OP(t) or PV(t) data. The closer the correlation

coefficient is to -1 or +1, the stronger the linear relationship between the two signals.

The correlation coefficient is given by:

𝑟 =
𝑐

𝑠𝑡𝑑1 × 𝑠𝑡𝑑2

𝑐 =
1

𝑁 − 1
∑(𝑂𝑃𝑡 − 𝑂𝑃)

𝑁

𝑡=1

(𝑃𝑉𝑡 − 𝑃𝑉)

𝑠𝑡𝑑1 = √
∑ (𝑂𝑃𝑡 − 𝑂𝑃)

2
𝑁
𝑡=1

𝑁
 𝑠𝑡𝑑2 = √∑ (𝑃𝑉𝑡 − 𝑃𝑉)

2
𝑁
𝑡=1

𝑁

where 𝑐 is the covariance between 𝑂𝑃𝑡 and 𝑃𝑉𝑡, and 𝑠𝑡𝑑′𝑠 are the standard deviations.

So for each degree of stiction, the correlation coefficient netween between 𝑂𝑃𝑡 and 𝑃𝑉𝑡

𝑟′𝑠 is calculated.

61

Figure 4.6: Correlation between OP(t) and PV(t)

Figure 4.6 plots the correlation coefficient for the 1275 degrees of stiction. The plot

shows a high negative correlation between OP(t) and PV(t), and a particularly high

concentration of points at correlation coefficients closer to -1. This indicates a strong

negative correlation between the two signals for all degrees of stiction (for all possible

combinations of fs and fd values, with the constraint 𝑓𝑠 ≤ 500 and 𝑓𝑑 < 500. So there

is a strong linear relationship between the two signals. Unlike the covariance (which is

used to calculate the correlation), the correlation provides information about the

strength of the linear association between two variables. In this work, It is assumed that

MV(t) may not be explicitly available, as is the case in process control loop from

industrial systems. The OP(t) signals are selected for use as the input into the

feedforward network predictor discussed in the next section.

0

100

200

300

400

500

050100150200250300350400450500

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

Fs
Fd

O
P

-P
V

 C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t
O

P
-P

V
 C

o
rr

e
la

ti
o
n

fd

fs

62

4.4 Noise Suppression of Test Stiction Patterns using Inverse Network-based Nonlinear

PCA (INLPCA)

As seen in the figures in section 4.2, the relationship between PV(t) and OP(t) follows a

closed curve since both are cyclic pattern. As discussed in Section 3.4, the inverse

neural network with a circular node is efficient at approximating circular data

structures. This inverse network model is used to filter the noise from the PV versus

OP(t) trend of the noisy stiction test patterns so that the underlying stiction behavior

can be extracted. The network takes as output a 2 by 100 matrix, the first row being 100

time step interval of the OP(t) signal and the second row is the PV(t) signal for the same

time interval. In Figure 4.7, the network is depicted as a black box model which takes in

the noisy 2-dimensional, 100-sample data set and attempts to construct noiseless PV(t)

and OP(t) signals.

Figure 4.7: Inverse neural network denoises the circular data structure formed in OP(t) versus PV(t)

The input to the network is a 2 by 1000 data matrix. The first row containing PV(t) and

the second row, OP(t) from the noisy test cases.

𝑃𝑉(𝑡) + 𝑛𝑜𝑖𝑠𝑒
𝑂𝑃(𝑡) + 𝑛𝑜𝑖𝑠𝑒

𝑃𝑉(𝑡)
𝑂𝑃(𝑡)

 Inverse Neural
Network Model

63

4.5 Approximating Periodicity of Noisy Test Stiction Patterns using Auto-Correlation

Function

Next, in order to construct a new OP(t) for each of the 10 noisy test cases, the period of

the oscillations in the original noisy signals needs to be approximated using

autocorrelation function. It is a sequence representing the similarity between two wave

signals as a function of the time lag applied to one of them. Autocorrelation is the cross-

correlation between a signal and itself and is useful in uncovering patterns or

repetitions in a signal and can therefore determine durations of cycles in periodic

phenomena. In this case, it is used to estimate the periodicity of the noisy oscillatory

signal.

 The auto-correlation is obtained using the following expressions [26]

𝑟𝑘 =
𝑐𝑘
𝑐0
 𝑐𝑘 =

1

𝑁 − 1
∑(𝑦𝑡 − 𝑦)

𝑁−𝑘

𝑡=1

(𝑦𝑡+𝑘 − 𝑦) 𝑐0 = ∑(𝑦𝑡 − 𝑦)
2

𝑁−𝑘

𝑡=1

Where 𝑐𝑘 is the covariance between 𝑦𝑡 and 𝑦𝑡+𝑘, and 𝑐0 is the sample variance of 𝑦𝑡. So

for all t’s, the autocorrelation coefficient 𝑟𝑘
′𝑠 are calculated. The resulting

autocorrelation coefficients. Figure 4.8 shows a pictorial representation of the

autocorrelation of a signal y.

64

Figure 4.8: Pictorial Representation of the Auto-Correlation of a signal

y

y

y*y

65

4.6 Feedforward Network Model for Predicting Stiction Parameters based on OP(t) Signal

Each of the 1275 OP(t) patterns are 1000 time steps long. However a particular degree

of stiction can be defined by just one cycle of the oscillations, since one cycle contains

information about the frequency, amplitude and shape of the stiction oscillation. In this

work, 100 time interval section of each OP(t) pattern is used from each of the OP(t)

stiction

patterns. Figure 4.4 below shows how the 100 time step intervals were chosen in order

to normalize all the data. For each OP(t) pattern, The first the first point was chosen as

the beginning of the first cycle of oscillations, then the 100 time step window after that

point was extracted as shown in Figure 4.9.

Figure 4.9: Normalizing the stiction signals: 6: strong stiction, 1: weak stiction

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

time

O
P

6

5

4

3

2

1

OP

time

66

Figure 4.10: Feedforward neural network predictor

Matlab’s extensive and highly efficient neural network toolbox was used to develop the

feedforward neural network predictor. In Figure 4.10, it is shown as a black box model

relating certain input vectors to their corresponding output vectors.

In the training and validation phase of developing this neural network-based

predictor, the network learns the relationship between the 1275 OP(t) signals and their

corresponding 𝑓𝑠, 𝑓𝑑 values. 80% of the 1275 OP(t) signals are allocated for training

and 20% for validation. During training, the first input OP(t) vector of the training set is

fed into the network, initial weights are randomly generated in the network and fs and

fd is calculated based on the feed-forward network architecture described in Section

3.2. Note that the number of nodes in the hidden layer of this network is chosen as 25

based on tests done to see the effect of number of nodes on model accuracy. Generally,

the goal is to use the fewest number of nodes necessary for accurately modeling the

relationships between the input and output vectors. Too many nodes may lead to over-

fitting the relationships, which will be discussed shortly.

𝑂𝑃(𝑡 = 1)

𝑂𝑃(𝑡 = 2)

𝑂𝑃(𝑡 = 3)

𝑂𝑃(𝑡 = 100)

.

.

.

Feed-forward

Neural Network

Model

𝑓𝑠

𝑓𝑑

67

fs and fd are calculated for all OP(t) patterns from the training set . The error between

the calculated stiction parameters (𝑓𝑠 , 𝑓𝑑) and actual 𝑓𝑠, 𝑓𝑑 is determined., then the

backpropagation algorithm is applied to update all the weights in the network and

subsequent iterations are implemented until the total error between 𝑓𝑠, 𝑓𝑑 and 𝑓𝑠, 𝑓𝑑is

minimized.

Simultaneously, the same procedure is applied to the validation set. The purpose of

validation is to ensure that the network does not overfit the relationships. So if at a

particular iteration, the mean squared error of the testing cases decreases but the error

of validation sets increases or remains constant, training is stopped to prevent

‘overtraining’ the network.

It is important to note that the network does not ‘fit’ the relationships for validation

sets, only for the testing sets. In other words the weights are adjusted based on errors

of the testing set alone. The validation set only serves as a test of the networks

generalization capability, that the network has effectively ‘understood’ and modeled the

relationship between OP(t) and 𝑓𝑠, 𝑓𝑑 , instead of merely ‘memorizing’ or overfitting. The

network is able to take as input 100 time steps of OP(t) pattern and predicts 𝑓𝑠 and 𝑓𝑑

68

5. STICTION QUANTIFICATION RESULTS AND DISCUSSION

5.1 Noise Suppression of Test Stiction Patterns using Inverse Network-based NLPCA

As mentioned in the previous sections, there are 10 test cases of stiction patterns with

no noise and 10 cases of stiction patterns with added noise. All the stiction simulations

generate OP(t) and PV(t) data. For each of the ‘noisy’ cases, the goal is to use an inverse

neural network-based nonlinear principal component analysis (INLPCA) to remove

noise from the OP(t) versus PV(t) trend, which has a closed curve data structure. Since

the actual or desired trend is known. That is, all stiction patterns are based on

simulation where the degree of stiction (a particular value of fs and fd) is specified.

Loop 1

Loop 2

Loop 3

Loop 4

Figure 5.1: OP versus PV plots for the 10 test cases Red: Noisy Trend, Black: Actual Trend, Blue:

Approximation of Actual Trend using INLPCA

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

OP

P
V

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

OP

P
V

-1.5 -1 -0.5 0 0.5 1 1.5
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

OP

P
V

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

OP

P
V

69

Loop 5

Loop 6

Loop 7

Loop 8

Loop 9

Loop 10

Figure 5.1 Continued

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

OP

P
V

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

OP

P
V

-6 -4 -2 0 2 4 6 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-8 -6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

OP

P
V

-3 -2 -1 0 1 2 3
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

OP

P
V

-4 -3 -2 -1 0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

OP

P
V

70

5.2 Estimating Periodicity of OP(t) Patterns

Next, by the cross-correlation analysis performed in section 4.4, it was concluded that it

is unnecessary to use both OP(t) and PV(t) to determine the degree of stiction, and that

only the OP(t) pattern is needed. In order to construct a ‘noise-free’ OP(t) pattern from

the INPLCA solution from the previous section, the periodicity of the OP(t) pattern for

all ten ‘noisy’ test cases was approximated using the autocorrelation function discussed

in Section 4.5. The INLPCA technique does not know that OP(t) and PV(t) are time

dependent trends, it only estimates the relationship between OP and PV. By

approximating the period of the original noisy OP(t) trend, the frequency of the signal is

approximated as well. In other words, this techniques allows for the determination of

how many points on the closed curve are in one cycle of the oscillation. Then the OP(t)

signals were reconstructed.

Loop Approximated Period Actual Period

1

2

Figure 5.2: Auto-Correlation versus Lag

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :35.8

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :34

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :74.4

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

Au
to

co
rre

la
tio

n

Period :87.5

71

Loop Approximated Period Actual Period
3

4

5

6

Figure 5.2 Continued

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :95

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

Au
to

co
rre

la
tio

n

Period :114

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :27.5714

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :27.4286

-200 -150 -100 -50 0 50 100 150 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :63

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

Au
to

co
rre

la
tio

n

Period :62.6667

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

Au
to

co
rre

la
tio

n

Period :52

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

Au
to

co
rre

la
tio

n

Period :51

72

Loop Approximated Period Actual Period
7

8

9

10

Figure 5.2 Continued

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
u
to

c
o
rr

e
la

tio
n

Period :59.3333

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :54.3333

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :82.5

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :87.5

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :34

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :34

-200 -150 -100 -50 0 50 100 150 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

A
ut

oc
or

re
la

tio
n

Period :42

-200 -150 -100 -50 0 50 100 150 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lag (seconds)

Au
to

co
rre

la
tio

n

Period :44.75

73

Loop 1

Loop 2

Figure 5.3: OP(t) patterns before and after noise removal and reconstruction: Red: Noisy Trend, Blue:

Actual Trend

0 100 200 300 400 500 600 700 800 900 1000
-4

-3

-2

-1

0

1

2

3

4

5

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-4

-3

-2

-1

0

1

2

3

4

5

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time

OP

74

Loop 3

Loop 4

Figure 5.3 Continued

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time

OP

75

Loop 5

Loop 6

Figure 5.3 Continued

0 100 200 300 400 500 600 700 800 900 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time

OP

76

loop 7

Loop 8

Figure 5.3 Continued

0 100 200 300 400 500 600 700 800 900 1000
-6

-4

-2

0

2

4

6

8

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-5

-4

-3

-2

-1

0

1

2

3

4

5

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-8

-6

-4

-2

0

2

4

6

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-6

-4

-2

0

2

4

6

time

OP

77

Loop 9

loop 10

Figure 5.3 Continued

0 100 200 300 400 500 600 700 800 900 1000
-3

-2

-1

0

1

2

3

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-4

-3

-2

-1

0

1

2

3

4

5

time

OP

0 100 200 300 400 500 600 700 800 900 1000
-4

-3

-2

-1

0

1

2

3

4

5

time

OP

78

There was a clear improvement in appearance of the trend. Essentially, the goal was to

extract the actual trend (shown in blue in Figure 5.3) from the noisy red patterns. Not

only has the drifting nature of the original noisy trends (shown in red) been removed,

but a fair estimation of the amplitude, frequency and shape of the patterns has been in

achieved in most of the test cases.

It is important to note that since only a 100 time step interval from the trends will be

used to predict fs and fd (that is, quantify stiction) the long term behavior of the trend

does not affect quantification results. Using a 100 time step interval of a particular

pattern is justified because only one cycle of a particular stiction pattern can completely

characterize the oscillations : their shape, amplitude and frequency.

In other words, although there is a lag in the 1000 time-step reconstructed signals

shown, it should not affect quantification results because only 100 time steps from each

will be used.

79

5.3 Prediction of fs and fd using Feed-forward Neural Network

In Section 4.6, the neural network predictor, which estimates the degree of stiction (fs

and fd) given a 100 time step section of an OP(t) pattern was developed. Details of

training, validating and testing of feed-forward network were described. Figure 5.4

shows the performance of the network

Figure 5.4: Performance of Neural Network Predictor

Each Epoch represents a particular iteration of the back-propagation learning algorithm

(Section 3.2). As a reminder, the predictor model was developed by simulating 1275

degrees of stiction. 80% of this data The OP(t) and associated fs and fd values were

used to train a feedforward network and 20% to validate that the model had properly

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Best Validation Performance is 0.00014003 at epoch 19

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

25 Epochs

Train

Validation

Test

Best

28 Epochs

M
e

a
n

 S
q

u
a
re

d
 E

rr
o

r
(m

s
e

)

80

learned the relationships and will be able to generalize. That is, given a new stiction

pattern form the 20 test cases, it would be able to predict fs and fd.

The smooth convergence of the performance plots indicates that the model has not

over-fitted the relationship between OP(t) and fs and fd. Training is stopped at the

point circled when the network notices that the training error is decreasing but the

validation error starts to increase, a clear sign of ‘overfitting’.

The goodness of fit for the training, validation and testing sets are shown in Figures 5.5,

5.6 and 5.7, respectively.

Figure 5.5: Regression Plot Showing relationship between actual and predicted fs and fd values for
the training data set (80% of the 1275 stiction patterns)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target

O
u

tp
u

t ~
=

1*
T

ar
g

et
 +

 0
.0

00
87

: R=0.99957

Data

Fit

Y = T

81

Figure 5.6: Regression Plot Showing relationship between actual and predicted fs and fd values for
the validation data set (20% of the 1275 stiction patterns)

Figure 5.7: Regression Plot Showing accuracy of the developed model in predicting fs and fd for the
20 test cases

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target

O
ut

pu
t ~

=
1*

Ta
rg

et
 +

 -0
.0

00
28

: R=0.99928

Data

Fit

Y = T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target

O
ut

pu
t ~

=
1*

Ta
rg

et
 +

 -0
.0

02
7

: R=0.99781

Data

Fit

Y = T

82

Tables 5.1 and 5.2 show the estimation error of the neural network model in prediction

the stiction parameters.

Stiction
Loop Number

Degree of
Stiction (%)

Estimation
Error fs(%)

Estimation
Error fd(%)

1 𝑓𝑠 = 98.24
𝑓𝑑 = 65.53

-1.1176 0.4864

2 𝑓𝑠 = 47.05
𝑓𝑑 = 5.40

-0.9546 0.4864

3 𝑓𝑠 = 74.37
𝑓𝑑 = 69.45

-0.7093 1.3517

4 𝑓𝑠 = 72.16
𝑓𝑑 = 21.19

-0.6616 0.4497

5 𝑓𝑠 = 61.34
𝑓𝑑 = 15.83

0.0147 -0.6926

6 𝑓𝑠 = 12.25
𝑓𝑑 = 4.03

1.7384 -1.0131

7 𝑓𝑠 = 16.52
𝑓𝑑 = 11.24

-0.3538 0.0389

8 𝑓𝑠 = 9.35
𝑓𝑑 = 6.27

1.4614 -0.7636

9 𝑓𝑠 = 32.59
𝑓𝑑 = 20.11

0.4697 0.0681

10 𝑓𝑠 = 64.86
𝑓𝑑 = 7.36

0.0825 0.1383

Average
Error

0.6526%

Table 5.1: Estimation error for 10 test cases with no added noise

83

Table 5.2: Estimation error for 10 test cases with no added noise

Stiction
Loop Number

Degree of
Stiction (%)

Estimation
Error fs(%)

Estimation
Error fd(%)

1 𝑓𝑠 = 91.40
𝑓𝑑 = 20.40

0.1243 0.3617

2 𝑓𝑠 = 13.20
𝑓𝑑 = 0.09

0.4224 -0.4987

3 𝑓𝑠 = 17.40
𝑓𝑑 = 13.00

0.5712 0.3358

4 𝑓𝑠 = 46.80
𝑓𝑑 = 4.00

-1.4786 2.4653

5 𝑓𝑠 = 29.00
𝑓𝑑 = 16.00

-0.2514 -1.2963

6 𝑓𝑠 = 17.80
𝑓𝑑 = 8.00

0.6192 0.0120

7 𝑓𝑠 = 86.00
𝑓𝑑 = 42.00

-2.6176 2.9959

8 𝑓𝑠 = 100.00
𝑓𝑑 = 67.60

7.8813 3.5783

9 𝑓𝑠 = 47.20
𝑓𝑑 = 10.40

-0.2595 -2.5510

10 𝑓𝑠 = 57.80
𝑓𝑑 = 22.20

6.5867 -1.9883

Average
Error

1.8448%

84

6. CONCLUSION AND FUTURE WORK

Neural networks were shown to be very flexible models capable of extracting the

underlying stiction trend from stiction control loops with added noise and accurately

predicting the amount of stiction . The INLPCA model was effective at denoising the

closed curve trend formed by plotting the controller output (OP) versus the process

variable (PV). For the 10 stiction test cases with no noise, the prediction accuracy was

0.6526%, and for the 10 test cases with no added noise, the prediction accuracy

achieved was 1.8448%. Estimating the degree of stiction present in a control loop can

be a first step in developing appropriate automatic software compensation techniques

through predictive control design coupled with installation of hardware such as valve

positioners. If the amount of stiction present and its effect on the process variable can

be modeled, stiction can treated as a measured disturbance in a process.

The stiction quantification technique also relies heavily on an accurate process model

and valve stiction model, since the idea is to develop this predictor model offline not in

real time.

Real systems involve multivariable or multiple-input multiple-output (MIMO) control,

where control loops are interacting and not isolated from one another. This introduces

complexity in the problem of estimating stiction in a control loop, although, the loops

may be treated as if they are isolated from one another and fairly accurate stiction

estimation results are still possible.

85

REFERENCES

[1] S. Karra, M.N. Karim, Comprehensive methodology for detection and diagnosis of
oscillatory control loops, Control Engineering Practice, 17 (2009) 939-956.

[2] M. Jelali, B. Huang, Detection and diagnosis of stiction in control loops: state of the
art and advanced methods, Springer, 2009.

[3] M. Shoukat Choudhury, N.F. Thornhill, S.L. Shah, Modelling valve stiction, Control
engineering practice, 13 (2005) 641-658.

[4] R. Srinivasan, R. Rengaswamy, S. Narasimhan, R. Miller, Control loop performance
assessment. 2. Hammerstein model approach for stiction diagnosis, Industrial &
engineering chemistry research, 44 (2005) 6719-6728.

[5] K.H. Lee, Z. Ren, B. Huang, Stiction estimation using constrained optimisation and
contour map, in: Detection and Diagnosis of Stiction in Control Loops, Springer, 2010,
pp. 229-266.

[6] Q.P. He, J. Wang, M. Pottmann, S.J. Qin, A curve fitting method for detecting valve
stiction in oscillating control loops, Industrial & engineering chemistry research, 46
(2007) 4549-4560.

[7] M. Jelali, Estimation of valve stiction in control loops using separable least-squares
and global search algorithms, Journal of Process Control, 18 (2008) 632-642.

[8] Q.P. He, J. Wang, Quantification of valve stiction based on a semi-physical model, in:
American Control Conference (ACC), 2013, IEEE, 2013, pp. 4362-4367.

[9] L.Z. Xiang Ivan, S. Lakshminarayanan, A new unified approach to valve stiction
quantification and compensation, Industrial & Engineering Chemistry Research, 48
(2009) 3474-3483.

[10] N.F. Thornhill, A. Horch, Advances and new directions in plant-wide disturbance
detection and diagnosis, Control Engineering Practice, 15 (2007) 1196-1206.

[11] M.A.A.S.C. Monir Ahammad, A Simple Harmonics Based Stiction Detection Method,
in: Proceedings of the 9th International Symposium on Dynamics and Control of
Process Systems (DYCOPS 2010), Leuvan, Belgium, 2010.

[12] K. Forsman, On detection and classification of valve stiction, in: Proc TAPPI conf
process control, Williamsburg, USA, 2000.

86

[13] R. Srinivasan, R. Rengaswamy, R. Miller, Control loop performance assessment. 1. A
qualitative approach for stiction diagnosis, Industrial & Engineering Chemistry
Research, 44 (2005) 6708-6718.

[14] M. Kano, H. Maruta, H. Kugemoto, K. Shimizu, Practical model and detection
algorithm for valve stiction, in: IFAC symposium on dynamics and control of process
systems, 2004, pp. 5-7.

[15] S.B. Chitralekha, S.L. Shah, J. Prakash, Detection and quantification of valve stiction
by the method of unknown input estimation, Journal of Process Control, 20 (2010) 206-
216.

[16] V.N. Vapnik, An overview of statistical learning theory, Neural Networks, IEEE
Transactions on, 10 (1999) 988-999.

[17] M. Kirby, R. Miranda, Circular nodes in neural networks, Neural Computation, 8
(1996) 390-402.

[18] M.A. Kramer, Autoassociative neural networks, Computers & chemical engineering,
16 (1992) 313-328.

[19] M.A. Kramer, Nonlinear principal component analysis using autoassociative neural
networks, AIChE journal, 37 (1991) 233-243.

[20] M. Scholz, M. Fraunholz, J. Selbig, Nonlinear principal component analysis: neural
network models and applications, in: Principal manifolds for data visualization and
dimension reduction, Springer, 2008, pp. 44-67.

[21] W.W. Hsieh, Nonlinear principal component analysis of noisy data, Neural
Networks, 20 (2007) 434-443.

[22] W.W. Hsieh, Nonlinear principal component analysis by neural networks, Tellus A,
53 (2001) 599-615.

[23] W.W. Hsieh, Nonlinear multivariate and time series analysis by neural network
methods, Reviews of Geophysics, 42 (2004).

[24] K. Hamilton, W.W. Hsieh, Representation of the quasi‐biennial oscillation in the
tropical stratospheric wind by nonlinear principal component analysis, Journal of
Geophysical Research: Atmospheres (1984–2012), 107 (2002) ACL 3-1-ACL 3-10.

[25] N.J. Kasdin, Discrete simulation of colored noise and stochastic processes and 1/f α
power law noise generation, Proceedings of the IEEE, 83 (1995) 802-827.

[26] G.E. Box, G.M. Jenkins, G.C. Reinsel, Time series analysis: forecasting and control,
John Wiley & Sons, 2013.

	ThesisA
	ThesisB

