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ABSTRACT 

 

The demand for real-time drought information in recent years led to the development of a 

suite of objective drought indicators that relies on the high-resolution Stage IV 

precipitation estimates that are produced each day by the National Weather Service in near 

real-time. The drawback to using the Stage IV dataset for this purpose is the presence of 

numerous biases in the estimates, which lead to erroneous assessments of drought 

conditions. Among the types of biases in the Stage IV dataset are 

1. Underestimation of precipitation due to beam blockage. 

2. Range-dependent errors that originating from the measurement of reflectivity 

above the surface. 

3. Mean-field biases resulting from radar calibration and measurement errors. 

A three stage bias correction procedure is developed and evaluated for minimizing the 

biases, methods used to produce an improved, bias-adjusted Stage IV precipitation 

dataset. The original Stage IV data are initially corrected by a beam blockage 

identification procedure and Kriging interpolation to replace the precipitation values in 

grid cells affected by blockage. Next, range-dependent and mean field biases are identified 

and corrected by use of a statistical model based on the vertical profile of reflectivity in 

mixed-phase precipitating systems.  The last bias quantification procedure estimates and 

removes a two-dimensional field of residual biases using available gauges as an assumed 

unbiased estimate of the ground truth.  
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Data withholding testing showed the bias-adjusted Stage IV dataset to have a significant 

reduction in the overall bias relative to the original Stage IV precipitation dataset. This 

includes a reduction in the overall bias at each of the three major steps. The bias-adjusted 

Stage IV dataset will be utilized in the drought indicators to enable a better objective 

assessment of real-time drought conditions. 
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1. CHAPTER I 

 INTRODUCTION 

 

I.1. Motivation 

Drought is one of the costliest forms of natural disaster in the United States, causing an 

estimated $6 billion – $8 billion dollars annually, and in recent decades, drought trails 

only tropical cyclones in terms of economic loss (Elliott et al. 2013). Adjusting for 

inflation, Smith and Katz (2013) estimated that droughts and heat waves caused $210 

billion in damages between 1980-2011, which does not even include the devastating 2012 

drought that may have led to one-year losses totaling $30 billion (Elliott et al. 2013). 

Drought has an almost universally negative impact on agriculture, soil moisture, and water 

resources, and in most of the United States, drought conditions are sensitive to local 

variations in precipitation (McRoberts and Nielsen-Gammon 2012). The goal of this work 

is to provide an unbiased quantification of drought at the local level for the purposes of 

monitoring and planning.  

The United States Drought Monitor (USDM; Svoboda et al. 2002) is a single map that 

provides a national overview of drought intensity on a weekly basis, with a focus on short-

term drought impacts related to agriculture and long-term impacts related to hydrology. 

Though it is meant for regional-level and state-level drought monitoring, the USDM has 

been used in recent years as an assessment of drought conditions by decision makers at 

the county and sometimes even city levels (Quiring 2009). The USDM is a popular tool 

among the leaders of local government, who prefer to make their decisions based on 
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snapshots of drought intensity, i.e., maps, figures, and tables, tailored specifically to their 

municipality rather than taking a more holistic approach to understanding the 

spatiotemporal characteristics of drought conditions (Dow et al. 2009). This type of 

approach by local decision makers over the years has forced the USDM to evolve into a 

one-stop shop for assessment of drought at these smaller spatial scales. 

Local precipitation variations are the primary driver of drought (and non-drought) 

conditions in most locations, and rain gauge data provide the best assessment of 

precipitation in a single location.  However, the usefulness of gauges is directly related to 

the temporal availability and spatial density of available data, so smaller-scale drought 

monitoring capabilities are limited in times with few observations and in regions where 

gauges are sparse. Other than gauges, most of the initial indicators used by the USDM 

were at spatial scales too broad for local interpretation, such as climate division or state 

averages of common drought indices such as the Palmer Drought Severity Index or 

Standardized Precipitation Index (Svoboda et al. 2002). 

Recently, smaller-scale drought monitoring has been enhanced with the use of a 

multisensor approach that combines gauge data with radar and satellite data in a 

Multisensor Precipitation Estimator (MPE) algorithm (Seo and Breidenbach 2002; 

Lawrence et al. 2003; Fulton 2005). The National Weather Service (NWS) River Forecast 

Centers (RFCs) have been producing MPEs at high spatial resolution for more than a 

decade. The MPEs are independently generated at each RFC with a base field of radar 
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precipitation estimates that are quality controlled by gauge data, and when gauge and radar 

data are limited, the MPE algorithm uses satellite precipitation estimates.   

Each day, the MPE data are mosaicked into a single product containing 24-hour 

precipitation totals across the continental United States and Puerto Rico. Each single, daily 

mosaic is known as a Stage IV precipitation estimate (Lin and Mitchell 2005) and is 

available on the Hydrologic Rainfall Analysis Project (HRAP) coordinate system, which 

is a polar stereographic projection with a spatial resolution of roughly 4 km × 4 km. The 

Stage IV precipitation dataset is spatiotemporally complete across the continental United 

States with daily data available from the Advanced Hydrologic Prediction Service website 

(water.weather.gov/precip) dating back to 1 January 2005 and dating back to 2002 upon 

request from the National Center for Atmospheric Research (NCAR). 

I.2. High-Resolution Drought Monitoring Products 

The availability of the Stage IV precipitation estimates and the need for higher resolution 

drought monitoring led an initiative to develop an experimental high-resolution drought 

monitoring tool for the state of Texas, called the MPE drought estimator (MPEDE; 

McRoberts and Nielsen-Gammon 2012). The real-time assessment of drought by the 

MPEDE products was made possible through the use of the daily Stage IV precipitation 

mosaics, readily available on the AHPS website. Fig. 1.1 is the MPEDE Standardized 

Precipitation Index (SPI) for the 12 months period ending on 31 December 2013. 

http://water.weather.gov/precip
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Fig. 1.1. The 12-month MPEDE SPI for the period ending 31 December 2013, available 

on the Texas A&M University MPEDE webpage. 

Most drought monitoring indices classify drought intensity through comparison of a 

current observation of a meteorological parameter(s), e.g., accumulated precipitation, with 

past observations of the same parameter. For a given time of year and temporal scale, 

historical data are used to construct a probability distribution function (PDF) so that 

assessment of drought using current observations is possible. The SPI fits observed 

historical precipitation values to a Gamma or Pearson Type III distribution function, 

which is subsequently mapped onto a Gaussian distribution. The SPI quantifies a 
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precipitation value as the number of standard deviations above or below a normally 

distributed PDF with a mean of zero and standard deviation of zero (McKee et al. 1993), 

i.e., an SPI value of -1 indicates a negative precipitation anomaly of one standard 

deviation. 

The Stage IV estimates only date back a little more than a decade, so the MPEDE made 

use of the NWS Cooperative Observer Program (COOP) network of gauges for historical 

data (McRoberts and Nielsen-Gammon 2012). The historical CDFs computed at each 

COOP gauge used in the MPEDE products were determined by the computation of L-

moment ratios, which non-parametrically describe the shape and scale of a distribution of 

values (Hosking and Wallis 1997; McRoberts and Nielsen-Gammon 2012). Through the 

use of regional frequency analysis (described in great detail by Hosking and Wallis 1997) 

and a thorough testing procedure of candidate parametric distributions, it was determined 

that a Pearson Type III (P3) distribution was a suitable parameterization of the L-moment 

ratios, particularly for characterizing the lower tail, which is critical for an objective 

assessment of drought severity. Computation of the P3 parameters at clusters of COOP 

gauge with sufficient historical records was followed by interpolation of the parameters 

to each HRAP grid cell (McRoberts and Nielsen-Gammon 2012). 

For a given temporal scale, real-time assessment of the MPEDE drought severity at an 

HRAP grid cell compares a normalized Stage IV precipitation estimate to its historical 

CDF (McRoberts and Nielsen-Gammon 2012). The Stage IV estimates are normalized by 

the 1981-2010 Parameter-Elevation Regression on Independent Slopes Model (PRISM; 
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Daly et al. 1994) precipitation normal, which is defined as the P3 “location” parameter at 

all grid cells. The statistical comparison of the current value to the past distribution of data 

values at the same location results in a percentile measure, which allows for simple 

interpretation of drought frequency (Svoboda et al. 2002) that is used in the USDM 

classification of drought (Table 1.1). A Stage IV precipitation estimate P0 in the 4th 

percentile can be expressed as P(P ≤ P0) = 0.04, such that any randomly chosen 

precipitation value P from the historical CDF only has a 4% chance of being less than or 

equal to P0. In everyday language, a P0 value in the 4th percentile is referred to as a “one 

in 25 year drought.” 

Table 1.1. USDM categories of drought severity as in Svoboda et al. (2002). 

Category Qualitative severity Percentile range 

D0 Abnormally dry 20th to 30th 

D1 Moderate drought 10th to 20th  

D2 Severe drought 5th to 10th 

D3 Extreme drought 2nd to 5th 

D4 Exceptional drought ≤ 2nd  

 

The MPEDE experimental products were accepted as a drought monitoring tool for Texas 

by the USDM community of authors and contributors, which led to interest in expansion 

to other parts of the United States. A proposal submitted to and accepted by the United 

States Department of Agriculture (USDA), in collaboration with the state climate offices 

of Indiana (Purdue University) and North Carolina (NC State University), created an 

initiative to spatially expand and improve the MPEDE products. Based on the overall 
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scope of the project, the MPEDE products were rebranded as a High Resolution Drought 

Trigger Tool (HIRDTT), a name that emphasizes the impetus of the project. In the context 

of drought, “trigger” is an objective indicator of drought reaching a pre-specified index 

value that requires a response. The overarching goal of HIRDDT is to provide non-experts 

with the confidence and capability to make local decisions based on an appropriate 

objective indicator. 

I.3. Biases in Stage IV Precipitation Estimates 

The task of improving the quality of the Stage IV precipitation data used as the real-time 

inputs to the HIRDTT products was designated to the Texas state climate office (housed 

at Texas A&M University). There are numerous deficiencies in the Stage IV estimation 

procedure that result in biases in the real-time precipitation values that are used as inputs 

to the MPEDE algorithm. The Stage IV precipitation estimates have improved since their 

initial release back in 2002 thanks to advances in the MPE algorithms at RFCs and the 

recent implementation of dual polarization Doppler radars by the NWS. However, biases 

still plague Stage IV precipitation estimates and the resulting HIRDTT products require 

expert knowledge of these biases for a reasonable estimate of drought severity in some 

regions. For example, Stage IV 36-month precipitation estimates used as input to an 

HIRDTT Standardized Precipitation Index product show clear non-physical 

discontinuities at the edges of the Shreveport, LA radar (KSHV) coverage area that might 

lead a non-expert to underestimate the severity of drought is some regions at an 

intermediate distance from the radar location (Fig. 1.2). An expert user will likely 

recognize the biases present in Fig. 1.2, but this recognition still leaves assessment of 
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quantitative drought severity surrounding the KSHV radar to be a speculative exercise at 

best. 

  

Fig. 1.2. Screenshot of the 36-month SPI for the period ending 31 December 2012 taken 

from the NC State University HIRDTT webpage. The marker denotes the location of the 

KSHV radar and arrows the discontinuities existing at the edges of the KSHV radar 

domain. 

A more focused goal of this work is to improve the Stage IV precipitation estimates 

through objective quantification of biases. Biases in radar precipitation estimates 

(including Stage IV estimates), can be broken into different components, which are 

1. azimuthal-dependent biases B(d, ), 

2. mean-field biases B(r), 

3. range-dependent biases B(d), and 

4. two-dimensional biases B(, ), 
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where d is the distance from the closest radar (range),  is the angular direction from the 

radar location (azimuth), r refers to a given radar, and  is the latitude and  is the 

longitude for a given location. The first four biases are systematic and minimization of 

these biases will allow for a Stage IV precipitation estimate (P0) to more accurately depict 

the true surface precipitation (PT). In equation form, the goal of this work is to minimize 

the first four bias terms on the right-hand-side of 

        0 1 , ,
T

P B d B r B d B
P

       , (1.1) 

so that the ratio of P0 to PT is approximately one for a given time period. 

A methodology will be developed in subsequent chapters to objectively quantify the 

different types of biases. This quantification requires knowledge of the mechanisms 

responsible for different types of biases and the resulting spatiotemporal properties of 

these biases in the Stage IV dataset. The final goal of this work is to produce improved 

Stage IV precipitation estimates through minimization of the four bias terms on the right-

hand-side of (1.1). 

I.4. Outline 

I.4.a. Chapter II 

A literature review details the basics of radar reflectivity measurements and transforming 

these reflectivity values into radar precipitation estimates. This is followed by an overview 

of the operational procedures for processing the radar returns to produce the Stage IV 

precipitation estimates. An understanding of the mechanisms leading to biases in radar 
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precipitation estimates is provided. A discussion of the recent upgrade of radars by the 

NWS to dual polarization and the impact on Stage IV precipitation estimates follows.  

I.4.b. Chapter III 

This chapter will detail a methodology for correcting azimuthal-dependent biases B(d, ), 

which are due to blockage of a transmitted radar beam by a fixed, non-meteorological 

obstacle. Beam blockage results in a systematic under-estimation of precipitation in a 

given azimuth  that is dependent on the range d of the obstacle. Identification of regions 

with Stage IV estimates contaminate by beam blockage is followed by a correction 

procedure for data in the affected locations. 

I.4.c. Chapter IV 

A methodology will be presented to correct mean-field biases BM-F and range-dependent 

biases B(d) in the Stage IV precipitation estimates. This is accomplished through creation 

of a new statistical model that characterizes BM-F and B(d) as a smooth, continuous 

function given a set of spatially irregular and discrete bias data points. The azimuthal 

corrections were done prior to the mean-field and range-dependent bias corrections in 

order to reduce the statistical noise in the bias data points. The resulting bias function will 

be used for correction of the Stage IV precipitation estimates. 

I.4.d. Chapter V 

The final minimization procedure will characterize two-dimensional biases B(, ) 

remaining in Stage IV precipitation estimates (P3) that have been corrected for the other 

three types of biases. For a given P3 precipitation field, a continuous two-dimensional bias 
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field will be constructed using gauge data and this field will be applied to the P3 data to 

produce a Stage IV precipitation estimate Pf that minimizes the four types of biases in 

(1.1). 

I.4.e. Chapter VI 

The final chapter will provide a summary of the bias correction procedures and possible 

future projects resulting from this dissertation.  
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2. CHAPTER II 

 LITERATURE REVIEW 

 

II.1. Overview of Radar Precipitation Estimates 

In the mid-1990s, 158 Weather Surveillance Radar-1988 Dopplers (WSR-88Ds) were 

installed as part of the Next Generation Weather Radar (NEXRAD) program (Crum and 

Alberty 1993), including 142 radars providing coverage across the continental United 

States (Rogalus and Ogden 2011). The Stage IV dataset in this study includes data 

originating from 104 WSR-88D locations in the central and eastern United States (Fig. 

2.1). 

Each WSR-88D has an accumulation algorithm used to estimate precipitation totals on an 

hourly time scale (Fulton et al. 1998). The WSR-88D precipitation estimates are used as 

an initial inputs to the Stage IV algorithm at nine of the twelve National Weather Service 

(NWS) River Forecast Centers (RFCs; Fig. 2.2), which produce hourly, high-resolution 

radar precipitation estimates (Habib et al. 2009). The remaining three RFCs are located in 

the mountainous western United States, outside of the region of this study.  Because the 

complex terrain leads to unreliable radar-based precipitation estimates, those three RFCs 

use gauges to produce the hourly precipitation estimates (Henkel and Peterson 1996). 

Each hour, the analyses produced at the twelve individual RFCs are combined into a single 

Stage IV mosaic that covers all of the continental United States and Puerto Rico (Zhang 

et al. 2011). 
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Fig. 2.1. Locations (crosshairs) and regions covered (polygons with black outlines) for the 

104 WSR-88Ds in the central and eastern United States. 

An overview of the WSR-1988 Doppler (WSR-88D) System estimation of precipitation 

and the algorithm that produces Stage IV precipitation estimates will be provided. This 

will be preceded by a discussion of radar reflectivity measurements and the computation 

of radar precipitation estimates. Following a description of the algorithm, there will be a 

thorough description of error sources in both gauge measurements and radar precipitation 

estimates and the negative impact these errors have on the Stage IV precipitation dataset, 

which includes biases that need to be corrected. 
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Fig. 2.2. The 12 River Forecast Center boundaries in the Continental United States, with 

the three western RFCs that don’t use WSR-88D as initial inputs to the Stage IV algorithm 

(gray shading). 

II.2. Properties of WSR-88D Measurements 

II.2.a. Radar Reflectivity 

Weather radars transmit frequent pulses of radiation with wavelength from an antenna 

that are reflected back to the radar by objects in the atmosphere. The radar reflectivity 

factor (Z) is a quantitative measure of the power returned to the radar from the transmitted 

radiation. The amount of power returned depends on the backscattering properties of both 

meteorological and non-meteorological targets in the path of the transmitted pulse 

(Rinehart 2004). Each transmitted pulse is a three-dimensional beam with power Pt, with 
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a return power (Pr) from each target that is dependent on the scattering cross-section () 

of the target 

 
2 2

464r t
gP P

d
 


 , (2.1) 

where d is the distance from the target to the radar, and g is the antenna gain (Rinehart 

2004). The antenna gain g is the power of the transmitted signal, and the relative gain at 

anywhere within the beam with strength g is the ratio g/g0, where g0 is the gain at the axis 

of the beam, where the transmitted power is the strongest. By convention, the azimuthal 

beamwidth is considered the width of the beam where g ≥ 0.5 (Rinehart 2004), or the half-

power beamwidth (1/2; Fig, 2.3). Any dimensionless quantity X that is the ratio of two 

values (G = g/g0 for example) can be converted to the decibel (dB), where 

  10dB 10logX X . (2.2) 
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Fig. 2.3. Power of the radar beam as a function of azimuthal distance from the beam axis 

for a beam with 1/2, originally in Donaldson (1964). 

This conversion is normally done for quantities that vary over several orders of magnitude, 

and is why the half-power beamwidth 1/2 is often referred to as the -3 dB beamwidth. 

Assuming that backscattering is dominated by the Rayleigh region (D << ), the cross-

sectional area of a spherical target is 

 
25 6

4

K D



 , (2.3) 

which simplifies (2.1) to   

 
2

2r

C K z
P

d
 , (2.4) 

where C is a constant dependent on the properties of the transmitted radiation, D is the 

diameter of an object assumed to be a spherical raindrop, |K|2 is the refractivity of liquid 
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water, and z is the radar reflectivity factor (Battan 1973). Which in terms of size 

distribution with units in mm6m-3 is given by 

  6

0

z D N D dD


  , (2.5) 

where N(D) is the number density of raindrops for a given diameter (Rinehart 2004). The 

radar reflectivity factor z (2.5) assumes Rayleigh scattering of the transmitted radiation by 

spherical liquid particles with D <<  (Battan 1973). Because the range of z is extensive 

for precipitation, z is converted to dimensionless unit Z and is expressed as the decibel of 

Z (dBZ). The value of Z is the ratio of z to z0, where z0 = 1 mm6m-3, expressed as 

 10 6 3dB log
1mm m

zZ


 
  

 
 . (2.6) 

WSR-88Ds transmit waves in the S-band, with  ranging from 10 to 11.1 cm (Villarini 

and Krajewski 2010a). S-band waves are effective at detecting precipitation and limiting 

attenuation, the scattering and absorption of radiation by atmospheric objects that can 

include clouds, precipitation, and hail, in addition to non-meteorological objects such as 

insects and birds (Anagnostou et al. 1998). Attenuation in the atmosphere decreases as the 

wavelength of the radiation increases, though increasing the wavelength of transmitted 

radiation will decrease the detection of smaller objects. 

Each WSR-88D measures radar reflectivity in volume scan sweeps at several tilt angles 

ranging from 0.5° to 20° from an antenna that is located several meters above the surface 
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of the radar site (Klazura and Imy 1993). The radar reflectivity measured at the lowest 

elevation angle (0.5°) is the base reflectivity (Zb) whereas the composite reflectivity (Zc) 

represents the largest Z from all the elevation angles. The WSR-88D has a built-in 

algorithm that switches the radar antenna from clear air mode to precipitation mode when 

Zc indicates the existence of precipitation (Fulton et al. 1998). The time needed for the 

WSR-88D to complete a full multi-elevation volume scan decreases from 10 min in clear 

air mode to 6 min in precipitation mode (Vignal and Krajewski 2001). Four additional 

volume scan sweeps are added at higher elevation angles in precipitation mode to the 5 

elevation angles included in clear air mode. The faster rotation speed of the WSR-88D 

during precipitation mode allows for better temporal resolution of Z and reduces 

attenuation by non-precipitation objects that can be detected in clear air mode (Fulton et 

al. 1998). 

II.2.b. Radar Rainfall Rate 

WSR-88Ds merge the Z values from the four lowest elevation angles into a single hybrid 

scan reflectivity when the radar is in precipitation mode to estimate accumulated 

precipitation (Legates 2000). The estimates of precipitation are on a 1 km  1° azimuthal 

degree polar grid, out to a range of 230 km from each radar site. The choice of scan used 

in the HSR is determined at each grid cell by the tilt angle that captures the “optimum” 

altitude of 1 km above the ground, though some adjustments have been made to account 

for surface elevation changes (Fulton et al. 1998). The default construction of the hybrid 

scan reflectivity value uses the fourth highest tilt out to a range of 20 km from the radar, 
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the third highest tilt from 20 km to 35 km, the highest second tilt from 35 km to 50 km, 

and the lowest tilt beyond 50 km (Smith et al. 1996). 

The radar estimates precipitation at each grid cell from the liquid water content present, 

which is related to the size distribution of raindrops in the atmosphere (Marshall and 

Palmer 1948). The rainfall rate R for a given drop size distribution is 

    3

06
R D N D D dD




  , (2.7) 

where  is the terminal velocity of a spherical raindrop with diameter D (Seo 2010). 

Measured Z (2.6) and assumed R (2.7) are both expressed empirically in terms of raindrop 

distribution size, so these parameters can be combined to derive a precipitation estimate 

from a given value of the hybrid scan reflectivity (Smith et al. 1996). This Z-R relationship 

is 

 bZ aR , (2.8) 

where a and b are coefficients that can vary depending upon rainfall regime (Battan 1973). 

The WSR-88D default coefficients are a = 300 and b = 1.4, which represents a 

compromise between stratiform and convective rainfall events, though a = 250 and b = 

1.2 is used as an alternative in locations dominated by tropically driven precipitation 

(Fulton et al. 1998). 
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II.3. WSR-88D Data Processing 

RFCs began generating regional mosaics of hourly radar precipitation estimates in 1993, 

with most using WSR-88D Stage II data as the initial radar-based input (Young et al. 

2000); the exceptions were the California-Nevada, Colorado Basin, and Northwest RFCs 

(Fig. 2.2; Henkel and Peterson 1996). In an effort to improve the Stage II data, the National 

Severe Storms Laboratory (NSSL) began generating next-generation quantitative 

precipitation estimates (Q2 for short) data in 2006 as part of the National Mosaic and Q2 

(NMQ) project (Vasiloff et al. 2007). Both the Stage II and Q2 algorithms use radar 

reflectivity measurements, with Q2 moving away from the radar-centric Stage II approach 

toward a multi-sensor approach that combines radar, satellite, model, and gauge data 

(Vasiloff et al. 2007; Glaudemans et al. 2008; Chen et al. 2013). Between 2007 and 2011, 

the North Central, Ohio, Southeast, and West Gulf RFCs transitioned from using Stage II 

data to Q2 data as the initial radar-based input for the RMPAs (Zhang et al. 2011). 

II.3.a. Stage II Processing Algorithm 

Each WSR-88D contains a set of built-in algorithms called the Precipitation Processing 

System (PPS), which produces radar precipitation estimates based on Z measurements and 

the specified Z-R relationship (Fulton et al. 1998). The PPS algorithm within each WSR-

88D produces Stage I data used as one the initial inputs to the regional mosaics at most of 

the RFCs (Fig. 2.2). The PPS goes through several sub-algorithms, beginning with the 

determination of R from Z that eventually leads to accumulated precipitation products 

(Rogalus and Ogden 2007). The PPS algorithm determines an initial rainfall rate Ri from 

the WSR-88D Z-R relationship, using Zm as the primary input (Fulton et al. 1998). During 
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a precipitation event, R is integrated over an entire hour to produce an radar-based 

quantitative precipitation estimate (QPE) for hour h, given by 

  
1

sn
i i

i
QPE h R T



 , (2.9) 

where ns is the number of scans and for each scan Ti is the time period of the scan. 

The PPS algorithm eliminates hourly outliers and performs adjustments using available 

hourly precipitation data from available gauges. The real-time gauge data is used to 

compute a multiplicative mean-field bias correction for the entire field with a Kalman 

filter adjustment algorithm (Smith and Krajewski 1991). The mean-field bias is based on 

collocated, non-zero radar-gauge pairs with a requirement that at least three of these pairs 

are present at a given time for the adjustment to occur. The WSR-88D PPS generates 

adjusted Stage I products on a 2 km  1° azimuthal degree polar grid using adjacent radial 

pairs of R on the 1 km  1° azimuthal degree polar grid (Fulton et al. 1998). An additional 

output of each WSR-88D is an hourly digital precipitation array that is produced each 

hour on the HRAP grid (Kalinga and Gan 2012). 

The digital precipitation array from each WSR-88D is further processed by the individual 

RFCs to produce Stage II data, which undergoes more rigorous quality control with a goal 

to provide an optimal radar-gauge precipitation estimate. The Stage II process used hourly 

gauge observations and the Stage I data (Breidenbach et al. 1998), the latter of which has 

numerous error sources. A Kalman filter approach calculates the mean-field bias at each 
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radar in an approach similar to Stage I, except that the mean-field bias is computed using 

a “memory” of non-zero precipitation values from the recent past at gauges within the 

radar domain (Seo 1998). The number of hours in the memory span (m) can be adjusted 

based on the number of available non-zero hourly gauge measurements and is typically 

inversely proportional to the number of non-zero precipitation measurements. The 

memory span m can extend up to a maximum one year at radars where data are sparse 

(Breidenbach et al. 1998). Using gauge data going back m hours, the Stage II mean-field 

bias at a given WSR-88D uses a Kalman filter modified from the Stage I approach to 

incorporate the memory span (Seo 2002). 

After correcting the mean-field bias of the digital precipitation, the Stage II algorithm 

performs local adjustments at each HRAP grid cell using non-zero gauge measurements, 

considered to be the ground truth during this step (Breidenbach et al. 1998). An “optimal” 

estimate at each HRAP grid is a linear combination of the mean-field bias-adjusted 

estimate and non-zero precipitation values from nearby gauges that minimizes expected 

error variance (Fulton et al. 1998). The relative weight of the mean-field bias-adjusted 

values used in the optimal estimate decreases as distance of the nearest reporting gauge 

increases (Breidenbach et al. 1998). The estimate will be an exact match to a non-zero 

gauge measurement at an HRAP cell containing a non-zero precipitation measurement. 

The result of the Stage II algorithm is an array of HRAP grid cells with bias-adjusted radar 

data merged with gauge data (Habib et al. 2009). 
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II.3.b. Next-Generation Quantitative Precipitation Estimation Algorithm 

As part of the NMQ initiative, Q2 products are generated by the NSSL using radar data 

from WSR-88D, Terminal Doppler Weather Radar, and Canadian operational radars 

(Zhang et al. 2009). The radar data and satellite data are combined with rain gauge data 

and input from numerical weather models (Glaudemans et al. 2008) to produce radar 

precipitation estimates at 1 km resolution over CONUS. Single-radar hybrid scan 

reflectivity fields are constructed using the Z at each location from the volume scan at the 

lowest altitude with acceptable data (Zhang et al. 2011). The hybrid scan reflectivities 

(HSR) produced by the individual radars are combined to create a regional mosaic (RHSR) 
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using each radar i, where wd is a horizontal weighing function defined by 
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and wh is a vertical weighing function defined by 
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2expd
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 (2.12) 

with scaling factors L and H (Zhang et al. 2009). 

 



 
 

24 
  

Table 2.1. List of Z-R relationships, taken from Zhang et al. (2009). 

Precipitation type Z-R relationship 

Convective Z = 300R1.4 

Stratiform Z = 200R1.6 

Tropical Z = 230R1.25 

Snow Z = 75R2.0 

 

The NMQ algorithm produces 3-dimensional reflectivity mosaics using 31 vertical levels 

(Zhang et al. 2011), providing a vertical profile of reflectivity (VPR) at each NMQ grid 

cell (1 km2). The Q2 algorithm then uses the VPR at each grid cell to determine the Z-R 

relationship, using four different Z-R relationships based on the precipitation type (Table 

1; Zhang et al. 2009), providing a major advantage over single-radar processing (Story 

2011). A radar-only Q2 product is produced every 2.5 min, with local gauge-corrected Q2 

products produced at the top of every hour (Zhang et al. 2011). Additive radar-gauge 

biases are calculated and interpolated onto the NMQ grid by using inverse distance 

weighting, which is based on the distance of each gauge from a given grid cell (Kim et al. 

2009). 

II.4. Mosaicking of Radar Precipitation Estimates 

After the WSR-88D network was installed, production of the regional mosaics at most 

RFCs used the Stage III processing algorithm. At each RFC, the Stage II data from each 

individual radar was combined into a single product covering the entire RFC area of 

responsibility (Breidenbach et al. 1998). The Stage III processing algorithm was utilized 
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by RFCs in the central and eastern United States. Because of unreliable radar returns due 

to the complex topography, the western RFCs (Fig. 2.2) utilized a different processing 

algorithm. Mountain Mapper combines gauge observations and the PRISM dataset from 

Oregon State University (Vasiloff et al. 2007) to produce gridded precipitation estimates 

for the regional mosaics. 

During the summer of 1996, the Arkansas-Red Basin RFC transitioned from the Stage III 

algorithm to a processing algorithm called Process 1, which uses Stage II data to spatially 

interpolate gauge estimates (Young et al. 2000) and is now an updated version called as 

Process 3. RFCs still using Stage III processing by the year 2000 transitioned to the Multi-

Sensor Precipitation Estimator (MPE) processing algorithm by 2003, an approach that 

uses satellite, radar, and gauge data to produce an optimal regional mosaic (Habib et al. 

2009). It is not uncommon for people to refer to generically refer to the regional mosaics 

as Stage III data, but in this study Stage III refers specifically to the once-used processing 

algorithm. 

II.4.a. Stage III Processing 

At each RFC, the Stage III was a mosaicking of the Stage II precipitation estimates from 

the radars into a regional product (Fulton et al. 1998). Multiple radars cover most HRAP 

grid cells, in which case a choice was made between using the mean value of all the 

overlapping radar values or the value derived from radar showing the maximum 

reflectivity (Breidenbach et al. 1998). In addition to mosaicking of the Stage II data, RFC 
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personnel had the ability to manually remove anomalous gauge or radar data that might 

have led to significant errors (Kalinga and Gan 2012). 

II.4.b. Multi-sensor Precipitation Estimator (MPE)  

Deficiencies in the Stage III precipitation estimation algorithm led to the development of 

the MPE algorithm, which has been used by RFCs as far back as 2003 to produce regional 

mosaics (Yilmaz et al. 2005). In addition to the use of available gauges and the Stage I 

precipitation estimates, the MPE procedure uses Geostationary Operational 

Environmental Satellite (GOES) precipitation estimates that are available every 15 

minutes at 4 km resolution (Scofield and Kuligowski 2003). Satellite remote sensing of 

precipitation provides estimates in mountainous and remote regions where radar and 

gauge coverage is limited (Villarini et al. 2009). Where multiple radars provide adequate 

coverage, the MPE algorithm is able to select the individual radar that provides the best 

coverage at each HRAP grid cell (Marzen and Fuelberg 2005) with a mosaicking 

procedure that uses the precipitation estimate from the radar with the lowest unobstructed 

sampling volume (Seo 2002). 

A major advantage of the MPE algorithm when compared to the Stage III algorithm is the 

delineation of the effective radar coverage for each radar that use several years of Stage 

II data to produce a radar precipitation climatology (Habib et al. 2009). The delineation 

offers an improved mean-field bias correction factor for each WSR-88D since the use of 

radar data is limited to regions where the radar is able to consistently detect precipitation 

(Seo 2002). MPE has an enhanced memory span feature, with the ability to store the mean-



 
 

27 
  

field bias for 10 different time spans (Marzen and Fuelberg 2005). The mean-field bias 

correction from the shortest time span with a predetermined minimum number of 

gauge/radar pairs is then applied to the Stage I data (Fulton 2005). In addition, the MPE 

program has a local bias correction algorithm that can adjust the value of the multiplicative 

bias determined by the mean-field bias correction at each HRAP grid cell based on nearby 

gauge observations (Seo 2002). 

II.4.c. Process 3 (P3) 

Process 1 (now P3) was developed by the Tulsa District of the US Army Corps of 

Engineers and was implemented in 1996 by the ABRFC, which covers an area that 

includes all of Oklahoma and at least part of every surrounding state (Young et al. 2000). 

Each hour, an initial radar mosaic covering all of the ABRFC is created on the HRAP 

grid, averaging the digital precipitation array estimates from each WSR-88D that overlaps 

a particular grid cell (Schmidt et al. 2000). At each HRAP cell containing at least one 

available hourly gauge measurement, a gauge-to-radar ratio is computed by dividing the 

hourly gauge value by the initial radar-only mosaic. All the available hourly gauge 

measurements from a given time are then used to create a triangulated irregular network 

(TIN; Glaudemans et al. 2008). At HRAP cells not containing gauge data, the gauge-to-

radar ratio is computed using a distance-weighted interpolation of available gauge data 

from the TIN (Young et al. 2000). The final regional mosaic produced by the ABRFC 

multiplies the initial radar-only estimate at each HRAP grid cell by the local gauge-to-

radar ratio. The P3 approach is effective in the ABRFC because the Oklahoma Mesonet 
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provides a spatially dense network compared to most other parts of the United States 

(Young et al. 2000). 

II.4.d. Mountain Mapper 

The Mountain Mapper algorithm was developed due to the inaccuracies of radar 

precipitation estimates in the mountainous western United States caused by the rapid 

changes in topography (Schaake et al. 2004). Mountain Mapper uses the 1 km resolution 

PRISM monthly precipitation climatologies to compute hourly normals (Pn) for a given 

calendar month at each available, non-zero gauge. At each of these gauges, the percent of 

normal precipitation (PoN) is computed as the ratio the of gauge value (PG) to the Pn value 

(see 3.2). All the available PoN data are then interpolated onto the NMQ grid using inverse 

distance weighting (Zhang et al. 2011). The final step in the Mountain Mapper algorithm 

is multiplying the PoN at each grid cell by its PRISM hourly normal to get a resulting 

precipitation field on the HRAP grid (Henkel and Peterson 1996).  

II.5. Production of Stage IV Precipitation Estimates 

The regional QPE mosaics produced by each RFC are mosaicked into hourly QPE 

products that cover all of the continental United States, which are known as Stage IV 

precipitation estimates (Zhang et al. 2011). At any given time, the individual RFCs 

determine the mosaic that best represents precipitation in their region based on experience 

and precipitation regime (Habib and Qin 2013) and produce 1-hour and 6-hour regional 

mosaics that have passed extensive quality control procedures. Every day, the NWS 

produces a daily Stage IV mosaic of the 1200 UTC -1200 UTC precipitation totals on the 
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HRAP grid that is a summation of the 24 hourly mosaics (Lin and Mitchell 2005). 

However, the Stage IV analyses contain a large number of biases that result from 

inaccuracies in the measurement of precipitation, which will be discussed in the following 

section. 

II.6. Precipitation Data Inaccuracies 

II.6.a. Spatial Scales of Gauges and HRAP Grid Cells 

Attempts to correct the inaccuracies of radar-based precipitation estimates typically 

involve the use of gauge data. There are major differences in both the spatial and temporal 

sampling between the two measurement types that can make adjustments of radar 

precipitation estimates difficult when using gauge measurements (Jayakrishnan et al. 

2004). Gauge measurements continuously sample an area only on the order of 100 cm2 

while radar estimates typically cover an area on the order of 10 km2 (Ciach and Krajewski 

1999). Joss and Waldvogel (1990) showed that precipitation rates can vary by one or two 

orders of magnitude within a single storm. Though gauges provide in situ measurements 

of precipitation, the density of most existing gauge networks is too sparse to capture 

spatial variability in a way that is possible using WSR-88D precipitation estimates 

(Jayakrishnan et al. 2004). 

The sampling frequency of gauge data is much different than that of radar sampling, so 

even comparisons of ideal radar and gauge measurements can differ significantly because 

precipitation is being recorded at different intervals (Steiner et al. 1999). WSR-88D 

precipitation estimates are based on instantaneous samples repeated at intervals of several 
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minutes, though rainfall intensity can very significantly between two sampling intervals 

(Austin 1987). Gauges provide continuous, in situ measurements of precipitation, but 

totals are typically recorded at much longer time intervals between measurements than 

radar estimates. 

II.6.b. Radar Precipitation Estimation Error Sources 

Errors in radar precipitation estimates can arise from a number of sources, which can be 

classified as incorrect measurements of Z, uncertainties in the Z-R relationship, and 

variations in the vertical profile of Z that lead to range-dependent errors (Austin 1987; 

Smith et al. 1996; Baeck and Smith 1998; Vignal and Krajewski 2001). An assessment is 

provided here of the various factors that lead to errors in WSR-88D precipitation 

estimates. Knowledge of these error sources is important in the context of this study, 

because systematic errors can result in biases in the Stage IV precipitation estimates, even 

with thorough quality control measures. 

II.6.b.1) Beam Blockage 

Beam blockage at the lowest tilt angles can be a significant source of errors (Baeck and 

Smith 1998) that can lead to significant biases in the Stage IV precipitation estimates. 

Although it is primarily a function of azimuth (), if blockage occurs, it begins at a range 

db that is a function of  which makes beam blockage a two-dimensional problem. These 

errors appear in the Stage IV data as a systematic underestimation of precipitation in an 

azimuthal sector (, beyond the range db of the obstacle. Beam blockage is a major issue 

because the lowest radar tilt angles, for which beam blockage is most likely to occur, 
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provide the best estimate of surface precipitation if unobstructed (Smith 1998). The WSR-

88D algorithm (Fulton et al. 1998) has the capability of correcting for known obstructions 

by using higher tilt angles, but this can lead to significant azimuthal-dependent biases 

(Andrieu et al. 1997; Young et al. 1999). Therefore, even correcting for known blockage 

features for a given radar can still lead to a systematic underestimation of precipitation for 

an azimuthal sector . 

Beam blockage commonly occurs in mountainous regions as a beam traveling from a 

lower elevation encounters the ground. The complex topography of the western United 

States (Westrick et al. 1999) is the reason all bias corrections in this study are limited to 

the central and eastern United States. Other than complex terrain, the main sources of 

beam blockage in the Stage IV precipitation dataset are tall buildings, trees, water towers, 

and cell towers near the radar location (Fabry et al. 1992; Holleman 2006; Overeem et al. 

2009). The size of the sector  can give some insight into the type of obstruction that is 

responsible for the blockage. Beam blockages due to terrain appear as fatter “slices” than 

the blockages due to point structures such as tall buildings, which appear as thinner 

“spikes” in the Stage IV precipitation data. 

II.6.b.2) Other Reflectivity Measurement Errors 

The accuracy of WSR-88D precipitation measurements depends on the stability of the 

radar hardware components, e.g., the antenna, transmitter, and receiver (Harrison et al. 

2000). Hardware calibration is done separately at each WSR-88D radar site. 

Miscalibration of instrumentation has been shown to produce significant errors in Z 
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measurements; Smith et al. (1996) suggested differences in calibration between adjoining 

radars can lead to differences in Z measurements as high as 30% in overlapping areas. The 

PPS algorithm that computes the WSR-88D precipitation estimates has correction 

functions to account for this and other hardware malfunctions, such as missing Z 

measurements (Fulton et al. 1998).  

Ground clutter results when a transmitted beam intercepts a target on the ground, such as 

a permanent building, leading to enhanced returned power over that produced by airborne 

targets (Harrison et al. 2000). Ground clutter is usually limited to the lowest WSR-88D 

tilt angle within 20 to 30 miles of the radar site and is unique to each radar site (Chrisman 

et al. 1995). Sources of ground clutter can include stationary targets such as buildings and 

trees, moving biological targets such as insects, bats, and birds, sun strobes, and electronic 

interference (Zhang et al. 2011). Each WSR-88D utilizes a predefined clutter suppression 

map derived empirically through radar returns during times of fair weather; the clutter 

suppression map can be updated as often as needed using off-line procedures when the 

WSR-88D is in clear air mode (Fulton et al. 1998). The clutter suppression algorithm 

reduces the returned power whose radial velocity is near zero in known ground clutter 

areas when the radar is in precipitation mode (Chrisman et al. 1995). 

Anomalous propagation (AP) of a WSR-88D transmitted beam occurs when the beam is 

directed to the ground and returns non-zero reflectivity values for areas not receiving 

precipitation (Krajewski and Vignal 2001). The occurrence of AP is typically associated 

with cold season temperature inversions or outflow boundaries from thunderstorms, 
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during which super-refraction of the beam directs it toward the ground (Smith et al. 1996). 

The WSR-88D PPS uses higher elevation tilt angles when AP is detected, though the 

detection algorithm is more successful in situations where real precipitation does not exist 

(Fulton et al. 1998).  

Attenuation can become a significant problem during heavy precipitation events and can 

lead to a significant decrease or even total loss of backscattered power from a transmitted 

WSR-88D beam, resulting in erroneously low Z measurements (Harrison et al. 2000). 

Precipitation occurring at the radar site can lead to wet radome attenuation, in which both 

the transmitted and incoming radiation can be attenuated by water collected on the 

radome, a dome that protects the WSR-88D antenna (Legates 2000).  

II.6.b.3) Uncertainty in Z-R Relationship 

Even assuming perfect Z measurements, errors in rainfall estimation can be caused by an 

inaccurate Z-R relationship (Smith and Krajewski 1991). If these errors persist, it could 

lead to a systematic mis-estimation of precipitation and biases in the Stave IV precipitation 

data. The WSR-88D PPS algorithm uses a spatially and temporally constant Z-R 

relationship (Fulton et al. 1998), which assumes the drop size distribution is also constant 

though it is known that large variations can occur within a single precipitation event and 

from storm to storm (Austin 1987). Uijlenhoet et al. (2003) showed that that ideal 

coefficient of a in (2.8) varies from 200 to 450 during the passage of a squall line. 

Accurately characterizing the Z-R relationship is difficult because of the within-storm 
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variations of drop size distribution and because Z is proportional to the sixth power of the 

drop diameters (Harrison et al. 2000). 

The Q2 algorithm determines the Z-R coefficients for individual grid cells based on the 

VPR and is produced every 5 minutes at 1 km resolution, which are major improvements 

over the WSR-88D PPS algorithm (Kim et al. 2009). However, the Q2 computation of R 

from the Z-R relationship is based only on four choices of a and b to represent the 

environmental DSD at a given grid cell (Zhang et al. 2009). The WSR-88D PPS algorithm 

default coefficients of a = 300 and b = 1.4 are viewed as the best compromise between 

stratiform and convective precipitation events, though Battan (1973) listed a total of 69 

possible Z-R relationships, which are based on differences in geography and precipitation 

regime. Even with similar precipitation regimes, the ideal Z-R relationship may depend 

on the measurement and data analysis techniques used (Rogalus and Ogden 2011). 

II.6.b.4) Vertical Profile of Reflectivity 

Range-dependent biases in radar precipitation estimates can be attributed to variations in 

precipitation intensity with height, known as the VPR effect. The curvature of Earth’s 

surface means that the height of the radar beam at the lowest tilt angles increase 

approximately as the square of the distance from the radar site (Rinehart 2004). 

 2 16 4sin
9 3E Eh d d r r

 
    

 
, (2.13) 

where rE is the Earth’s radius and  is the tilt angle of the radar beam. 
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This leads to discrepancies between estimates of R and the precipitation rate occurring at 

the surface at a given location (Vignal and Krajewski 2001). Numerically, the VPR (see 

equation 4.4) is the ratio of reflectivity at height h (Zh) to the reflectivity at the surface 

(Z0) The vertical variability of precipitation and the range-dependence of the height Zh at 

which reflectivity measurements are taken are the primary mechanisms leading to range-

dependent biases in radar precipitation estimates (Bellon et al. 2005), which includes the 

Stage IV dataset. 

An overestimation of precipitation can occur with the presence of solid hydrometeors such 

as hail, sleet, and melting snow that have higher reflectivity values due to the presence of 

water on ice (Legates 2000). Each of the four tilt angles used in the construction of the 

hybrid scan of reflectivity at any given WSR-88D exhibit a significant climatological peak 

in Z measurements in regions where the beam intercepts the melting layer, called the radar 

bright band (Baeck and Smith 1998). Bright-band effects can lead to a significant 

overestimation of precipitation during the mid-latitude cold season at a range of 50-100 

km, where the second tilt angle used in the hybrid scan frequently intersects the melting 

layer (Smith et al. 1996). The WSR-88D PPS algorithm places an upper limit on Z 

measurements used to compute rainfall rates, known as a “hail cap” (default of 53 dBZ). 

This upper limit reduces contamination from hail by changing the reflectivity of all returns 

initially exceeding the hail cap to the reflectivity of the hail cap (Fulton et al. 1998). 

Attempts to correct range-dependent errors due to the VPR effect have used both 

empirically-derived and model VPRs to determine the ratio of estimated precipitation at 
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different tilt angles to the ground (Villarini and Krajewski 2010b for an extensive review). 

Vignal et al. (2000) found using a correction based on the spatial variability of VPR 

provided the most effective correction for radar precipitation estimates. However, any 

approach that uses spatial variability of the VPR requires some knowledge of the vertical 

distribution of reflectivity, information that is not available in the Stage IV dataset. 

Therefore any attempt to model the VPR in this study must do so as a function of range 

(i.e., Ciach et al. 2007; Krajewski et al. 2011) rather than height.  

II.6.b.5) Other Range-Dependent Error Sources 

The beam transmitted by the WSR-88D maintains a constant solid angle as it travels away 

from the radar site, so the beam widens as the distance from the radar increases (Legates 

2000). This leads to an effect called partial beam filling, which can average out small, 

intense rain features imbedded in thunderstorms and lead to an underestimation of Z 

measurements (Villarini and Krajewski 2010b). At long ranges, these beams can 

overshoot cloud tops and completely miss a precipitation event that is being captured at 

the surface by gauge measurements (Smith et al. 1996). Both of these issues can cause 

serious degradation of long-range Z measurements (Fulton et al. 1998). The MPE 

delineation of each radar site’s effective coverage area has diminished the influence of 

errors caused by partial beam filling and the overshooting of cloud tops. At a given HRAP 

grid cell, the MPE delineation assigns the WSR-88D that best minimizes range-dependent 

errors according to the radar climatologies (Seo 2002). However, there is still a general 

underestimation of precipitation in the Stage IV dataset for grid cells that are near the 

radar domain boundaries shown in Fig. 2.1. 
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Strong winds below the beam can produce systematic errors on shorter time scales by 

horizontally displacing a measured raindrop, an effect that has yet to be directly accounted 

for by the Q2 improvement of Stage II data (Zhang et al. 2011). If precipitation occurs in 

a region with a strong prevailing wind, there could be a systematic spatial displacement 

of radar precipitation estimates from the gauge measurements. Below beam evaporation 

can lead to an overestimation of precipitation (Krajewski and Smith 2002), while 

coalescence of raindrops below the beam can lead to the underestimation of precipitation 

by the WSR-88D (Legates 2000). The frequency of these below beam effects increases 

with distance from the radar as the vertical separation between the beam and the ground 

is increased. 

II.6.c. Gauge Measurements 

In reality, gauge measurements are irregularly spaced, point estimates of precipitation that 

suffer from a number of deficiencies (Sevruk 1991) and cannot be directly treated as the 

ground truth for precipitation data (Ciach and Krajewski 1999). Also, gauge networks are 

usually too sparse to properly capture the spatial variability of precipitation (Jayakrishnan 

et al. 2004). Inaccuracies in precipitation measurements taken from a single gauge be 

attributed to a number of sources: inhomogeneities in the precipitation record at the site, 

biases in the precipitation measurements, errors resulting in flawed gauge readings, and 

random errors (Groisman and Legates 1994).  

Inhomogeneities in the precipitation record at a gauge site can appear as a discontinuity 

in time series of accumulated, e.g., annual precipitation or as a gradual change over time 
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that cannot be explained by variations in climate (Peterson and Easterling 1994). Abrupt 

discontinuities are caused by instrumentation changes, exposure changes, and station 

moves. Changes in the environment surrounding the station may result in an artificial 

trend in a time series of precipitation values (Groisman and Legates 1994). The accuracy 

of gauge measurements is most affected by under-catch due to horizontal winds, the wind 

effect, which leads to a systematic underestimation of precipitation (Neff 1997). Changes 

in instrumentation at a gauge site can result in a change in the wind effect and can be 

responsible for inhomogeneities in the precipitation record (New et al. 2000). 

Standard, non-recording precipitation gauges issued by the NWS are 20 cm in diameter, 

are elevated about 1 m above ground level, do not come with wind shields, and are 

susceptible to under-catch (Yang et al. 1998). Past studies have quantified the under-catch 

due to the wind effect by comparing above-ground, wind-exposed gauges to buried pit 

gauges (Neff 1977; Groisman and Legates 1994; Yang et al. 1998; Duchon and Essenberg 

2001) and the underestimation of precipitation in the above-ground gauges relative to the 

collocated pit gauges ranged from 2% to as much as 10%. Under-catch increases with 

increased wind speeds and with a larger fraction of smaller drops and can be as high as 

50% with snow (Nespor and Sevruk 1999). 

The recording, tipping bucket gauge is another common type of gauge that produces 

inaccurate measurements due to the wind effect (because its orifice is similar), but the 

tipping bucket gauge also has a number of other deficiencies (Kalinga and Gan 2012). A 

tipping bucket gauge collects water in a bucket until it is full and then drains the water 
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into a collection funnel, with the rainfall rate computed from the size of the bucket and 

number of tips within a prespecified period of time (Habib et al. 2001). When rainfall rates 

approach 300 mm hr-1, water can accumulate faster than the drainage capacity of the 

tipping bucket gauge, so these gauges systematically underestimate precipitation during 

heavy rainfall events (Tapiador et al. 2011). During convective events, tipping bucket 

gauges can suffer from hardware malfunctions, transmission interruptions, and power 

failures (Habib et al. 2001). 

Splashing, evaporation, and wetting, which occurs when precipitation adheres to a gauge 

and evaporates before being measured and additional reasons for the systematic 

underestimation of gauge measurements (Habib et al. 2001). Improper maintenance can 

lead to the orifice of a tipping bucket gauge to become out-of-level, and this tilt increases 

the magnitude of the wind effect and can lead to double tips (Sieck et al. 2007). The 

accumulation of particulates such as dust, leaves, insects, and bird droppings can clog 

standard gauges and adversely affect the tipping mechanism on tipping bucket gauges 

(Kalinga and Gan 2012). Random gauge errors include damage to gauges, inaccurate 

recording by tipping bucket gauges, and inaccurate observer reporting of non-recording 

measurements (Groisman and Legates 1994). In order to minimize the inaccuracies of 

gauge measurements, Ciach and Krajewski (1999) recommend the installation of two or 

more gauges of different designs at each measurement site to provide redundancy in the 

measurements. 
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Despite the numerous potential issues with individual gauges, any network of gauges 

should be free of spatially dependent biases since each gauge provides an independent 

measurement of precipitation. Though the Stage IV estimation algorithm uses gauge data 

to determine and correct for spatial biases in the radar precipitation estimates, there are 

biases that may aggregate over time that are not accounted for by the RFC correction 

procedure. Since the corrections are done on time scales of 24 hours or less (Lin and 

Mitchell 2005), it is difficult to account for subtle biases that show up more prominently 

in long-term data. However, gauge data aggregated over a period of time can be useful in 

evaluating and correcting these long-term spatial biases. These corrections can be done 

both in a single dimension, i.e. range, or can be applied to a given two-dimensional field 

of Stage IV precipitation data. Chapters IV and V will detail methods for using gauge data 

to minimize these long-term spatial biases. 

II.7. WSR-88D Upgrade to Dual Polarization 

The biggest development in the past few years has been the upgrade from single-

polarization to dual-polarization (D-P) capabilities for the WSR-88D network. The 

upgrade started in 2011 and was completed for all WSR-88Ds in the continental United 

States by the end of June 2013 (Crum et al. 2013). The theoretical potential for D-P to 

reduce errors in radar precipitation measurements has been studied for more than a decade 

(Jameson 1991; Ryzhkov and Zrnic 1995; Doviak et al. 2000). The recent upgrades to D-

P in the WSR-88D network has allowed for evaluation of D-P radar precipitation 

estimates, but because the upgrade was so recent, peer-reviewed publications have on the 

subject have been limited (Vasiloff 2012; Cunha et al. 2013; Ryzhkov et al. 2014). 
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Before the D-P upgrade, single-polarization (S-P) radars transmitted pulses with 

horizontally (H) polarized waves (Fulton et al. 1998). When a S-P radar beam encounters 

an object, it is only able to retrieve a one-dimensional measurement of that object, whether 

meteorological or non-meteorological. In addition to the H polarization, a D-P radar beam 

has the capability of transmitting a radar beam that is polarized in the vertical (V) 

direction. A WSR-88D with D-P capability will alternate between H and V polarization 

of transmitted beams, which allows to retrieve a two-dimensional measurement of an 

intercepted object (Doviak et al. 2000). The additional measurement capabilities of the D-

P WSR-88D allows for a more accurate discrimination of hydrometeors from non-

hydrometeor and characterization of hydrometeor type (Cunha et al. 2013). 

The D-P radar technology has the capability of computing more variables related to the 

distribution of hydrometeors, which ought to improve radar precipitation estimation over 

the traditional single-polarization Z-R relationship. The differential reflectivity (ZDR) 

measures the reflectivity difference of the H and V transmitted pulses in decibels, with the 

equation 

 10log H
DR

V

ZZ
Z

 
  

 
. (2.14) 

Combining ZDR with Z makes identification of hail more straightforward, since hail is 

more spherical and thus has a smaller ZDR than rain drops (Straka et al. 2000). In wintry 

precipitation events, ZDR can help delineate rain (ZDR > 1 dB) from snow (ZDR< 0.5 dB). 

The specific differential phase (KDP) measures the difference in the propagation of the H 
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and V transmitted beams and values of KDP are highest in areas of heavy precipitation 

(Straka et al. 2000), and has a value 

 
   2 1

2 1

1
2

DP DP
DP

d d
K

d d
 




, (2.15) 

where DP is the differential phase 

 DP H V    . (2.16) 

The differential phase measures the difference in the propagation of an H wave relative to 

a V wave, with a larger differential expected as precipitation intensity increases due to 

attenuation of the signal. Ryzhkov et al. (2014) argue that a rainfall estimation algorithm 

based on the specific attenuation is preferable to using Z, ZDR, and KDP as the estimation 

algorithm is less sensitive to knowledge of the drop size distribution. 

The computation of these new parameters in the WSR-88D algorithm has improved D-P 

precipitation estimation relative to the S-P estimates (Vasiloff 2012; Cunha et al. 2013; 

Ryzhkov et al. 2014), particularly in lighter precipitation events. Despite all the 

improvements to the D-P reflectivity measurements relative to the S-P measurements, the 

transmitted beams are still returning backscattered power from some height h above the 

surface that is dependent on range d. Even with a perfect assessment of the measured 

reflectivity, there will still be biases in the radar precipitation estimates that are dependent 

on range, assuming there is not a vertically uniform VPR. The Stage IV 12-month PoN 

precipitation ending on 30 June 2014 (Fig. 2.4a) is based on data collected entirely after 
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the upgrade to D-P at all 104 radars in the central and eastern United States. The number 

of biases in Fig. 2.4a visually appears to be fewer than those in Fig. 2.4b, the Stage IV 12-

month estimate with an ending date of 30 June 2011; however biases are still visible in 

Fig. 2.4a. 

(a)  

Fig. 2.4. Stage IV 36-month PoN precipitation ending (a) 30 June 2014 and (b) 30 June 

2011. The minimum value (black) is PoN = 50% and the maximum value (white) is PoN 

= 150% in both maps. 
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(b)   

Fig. 2.4. Continued. 

The first of the two types of biases that are the most prominent in the long-term Stage IV 

precipitation estimates is beam blockage. In the third (next) chapter, a beam blockage 

detection and correction methodology will be detailed. The fourth chapter will address the 

second and third types of bias prevalent in the Stage IV precipitation data, which are mean-

field biases and range-dependent biases. The fifth chapter will detail a methodology for 

correcting two-dimensional biases remaining following the bias corrections done in 

chapters three and four.  
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3. CHAPTER III 

 PROCEDURE TO DETECT AND CORRECT BEAM BLOCKAGE 

 

III.1. Overview 

This chapter will detail the correction of biases that appear in the Stage IV precipitation 

dataset due to obstacles that block that path of the transmitted beam. In this chapter, the 

term obstacle is used for a fixed, non-meteorological target that inhibits propagation of the 

radar beam. The reduction in radar-estimated precipitation associated with true beam 

blockage in a given azimuth () should be uniform beyond the range of the obstacle (db), 

aside from differences due to detection of hydrometeors at different altitudes. Given our 

conceptual equation of bias sources for radar precipitation estimates (P0), equation (1.1) 

for azimuthal biases is 

  0 ,
T

P B d
P

 . (3.1) 

 Correction for the azimuthal-dependent biases caused by radar beam blockage will be 

done for regions objectively identified by a three-step beam blockage detection procedure. 

The first step of the detection process will flag HRAP grid cells within azimuths with 

anomalously low Stage IV precipitation values relative to grid cells in neighboring 

azimuths. The second step is to identify patterns of flagged grid cells consistent with beam 

blockage, which is done independently for each radar domain and time period. The third 

step in the detection algorithm is a temporal consistency check at each radar domain to 
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prevent the spurious flagging of beam blockage in azimuths and to identify the onset or 

termination of beam blockage due to apparent man-made or man-controlled obstacles such 

as towers or trees. The precipitation values for the grid cells identified as being blocked 

by the beam blockage detection algorithm will be adjusted using neighboring, non-blocked 

grid cells to produce a dataset of beam blockage-adjusted Stage IV precipitation estimates 

(P1), with the subscript 1 used since these data are adjusted for a single type of bias source. 

III.2. Data 

III.2.a. Computing Range  

The location coordinates for both the radar-gauge pair biases and Stage IV PoN 

precipitation are the latitude and longitude at the center of the HRAP grid cell. The 

distance d of any from a nearby WSR-88D radar r is computed using the formula for the 

great circle on a spherical earth is 

  1cos cos cos cos sin sinE r r rd r           , (3.2) 

where  is latitude, and  is longitude. Each HRAP grid cell was assigned to the WSR-

88D in closest proximity, meaning the radar domains are Thiessen polygons given the 

network of available radars (Fig. 2.1). Assuming complete azimuthal coverage, the 

number of grid cells within the two ranges d1 and d2 = d1 + d increases with the square 

of the range. For example, the number of grid cells in an annulus centered at 100 km will 

have four times the number of grid cells as an annulus centered at 50 km. 
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Visual inspection of long-term Stage IV precipitation fields (i.e., Fig. 3.1b) demonstrates 

that maximum range of most beam blockage features are located at or very near a Theissen 

polygon boundary line. Additionally, there are numerous examples of discontinuities in 

the Stage IV precipitation fields occurring at the edges of the Theissen polygons (Figs. 

3.1a and 3.1b). Therefore, the choice to assign each HRAP grid cell to the nearest single 

radar appears visually to be a reasonable one. 

(a)  

Fig. 3.1. The Stage IV (a) 1-month and (b) 36-month PoN precipitation ending on 31 

December 2012. The minimum value (black) is PoN = 25% and the maximum value 

(white) is PoN = 250% in (a). The minimum value (black) is PoN = 50% and the maximum 

value (white) is PoN = 150% in (b). 
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(b)  

Fig. 3.1. Continued. 

III.2.b. Percent of Normal Precipitation 

Beam blockage in the Stage IV precipitation dataset will be identified using 36-month 

PoN precipitation (PN) data. The Stage IV data used in this study are from the period 1 

January 2005 – 31 December 2012. The ending date of each accumulation period falls on 

the last calendar day of a month. In this chapter there are 61 overlapping periods for which 

Stage IV 36-month PoN precipitation was computed, with the first period ending on 31 

December 2007. A time step t = 1 month exists between computed 36-month PoN 

precipitation values. 
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The stage IV PoN at a grid cell is PN = PN(dH, ), with the subscript H specifically 

referring to the grid cell coordinates relative to the nearest radar location. The computation 

of PoN precipitation is straight-forward 

 0
N

n

PP
P

 , (3.3) 

where P0 is the radar precipitation estimate and Pn is the climatological precipitation 

normal. PoN allows for direct comparison of the radar precipitation estimates between 

grid cells with knowledge of the expected spatial variability in the precipitation climate. 

Precipitation normals for the period 1981-2010 have been generated by the PRISM group 

(Daly et al. 1994) at 800m resolution using a digital elevation model, and are available on 

the HRAP grid in the continental United States. It is worth noting that the PRISM normals 

do not use radar inputs, so the normals data are free of any biases that show up in radar 

precipitation estimates. 

The use of 36-month periods, as opposed to shorter time periods, decreases the likelihood 

of both Type I and Type II errors in the identification of azimuthal sectors contaminated 

by beam blockage (Fig. 3.1). If using data from a shorter time scale, random variability 

may allow real swaths of local precipitation minima to be misidentified as beam blockage 

(Type I error). Additionally, the use of shorter time periods may result in failing to identify 

areas actually affected by beam blockage (Type II error) because the ratio of spatial 

variability to precipitation amount is too large. For example, identifying beam blockage 

in the Southeast US during a single summer season could be difficult if the only 
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precipitation mechanism is isolated convection resulting from daytime heating. A time 

period of 36 months ensures a representative sample of actual precipitation at all grid cells 

within each radar domain. However, it is also important to have a time period short enough 

to adequately identify any sources of temporal changes in the beam blockage properties at 

each radar, and 36 months was thought to be a sufficient upper limit. These sources include 

changes in the radar network configuration, the construction or tearing man-made or man-

controlled obstacles, and any changes in the Stage IV processing scheme discussed in the 

previous chapter. 

III.3. Radar Geometry 

III.3.a. Computing HRAP Grid Cell Azimuth Angles 

Computation of the azimuth angle  H for an HRAP grid cell uses the point at the center 

of the HRAP grid cell and the radar r. In degrees, the value of   at the center of the HRAP 

grid cell is 
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, (3.4) 

where (H, H) are the latitude-longitude coordinates of the grid cell center and (r,  r) 

are the coordinates of the WSR-88D, all in radians. However, each grid cell has a width 

WH = 4 km and this cannot be ignored since the azimuthal width dH taken up by each grid 

cell has a functional dependence on range. The azimuthal width d H at dH is approximated 

to be the ratio of WH to the circumference of a circle at that range, given by 
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III.3.b. Azimuthal Sectors 

The half-power beam width 1/2 of an operational WSR-88D is 1° (Fulton et al. 1998; Fig. 

2.3), so each radar domain will be divided into 360 non-overlapping “azimuthal sectors,” 

with each sector  having an azimuthal span of 21/2 = 1°. Each azimuthal sector has a 

width of exactly 1° and the azimuthal endpoints of each azimuthal sector will be whole 

degrees, e.g., the 90° sector will span 90° to 91°. All azimuthal sectors within a given 

domain will originate at the site of the WSR-88D and extend radially to the edge of the 

radar domain (dmax). A span of ranges in a given azimuthal sector will be referred to as a 

“radial span.” For example, the area in the 90° sector from 30 km to 60 km from the radar 

location is the 30 km – 60 km radial span of the 90° sector. 

In the beam blockage detection algorithm, the initial objective is to determine whether or 

not each of these azimuthal sectors may be blocked. If possible blockage is detected for a 

given azimuthal sector, the second objective is to determine at which range db the blockage 

occurs. The basic geometry of the azimuthal sectors dictates that the geographical width 

of each azimuthal sector (W) increases with distance from the radar location. Replacing 

dH with 1° and WH with W in (3.5) and then solving for W, we get 

 
180

dW


 . (3.6) 
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Given that the Stage IV 36-month PoN precipitation data is used to detect beam blockage, 

each HRAP grid cell needs to be assigned to the azimuthal sectors. However, the HRAP 

grid cells have a constant width of WH = 4 km that is independent of range. Given the 

complexity of the geometry, the task of assigning HRAP grid cells to azimuthal sectors is 

not as straight-forward as simply assigning each grid cell to a single azimuthal sector based 

on the value of H found in (3.4). The azimuthal width dH is greater than 1° for dH values 

less than 229.1 km, so in these grid cells beam blockage in any of two or more azimuthal 

sectors may lead to precipitation values that are biased low. Therefore, grid cells cannot 

be restricted to a single azimuthal sector in the beam blockage detection procedure. For 

an HRAP grid cell to be used in the beam blockage detection algorithm for a given 

azimuthal sector, the grid cell must span at least half of the azimuthal sector at range dH. 

III.4. Beam Blockage Detection Procedure 

This section describes a flagging procedure for detection of areas in each radar domain 

that are affected by beam blockage. The foundation of this section is that at a constant 

range and a time period of 36 months, PoN precipitation modeled purely as a function of 

azimuth for all possible azimuths tends toward a smooth and continuous curve. For an 

azimuthal sector to be identified as having beam blockage, it must have the following 

properties flagged. 

1. Sufficiently lower PoN precipitation than predicted by the models. 

2. Continuous radial span of sufficiently lower than expected PoN precipitation. 
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3. Temporal consistency of the continuous radial span having lower than expected 

PoN precipitation. 

The first stage in detecting regions of beam blockage is to assign a “low precipitation” 

flag F1(dH, ) to individual HRAP grid cells with PoN precipitation values that are 

significantly less than the model curve. This initial flagging (F1 = 0 if not flagged, F1 = 1 

if flagged) is done independently for each grid cell. The second stage is to assign a “range 

continuity” flag F2() for azimuthal sectors at each radar with a sufficient number and 

radial consistency of grid cells flagged in the first stage. The third stage is a quality control 

procedure designed to ensure that the azimuthal sectors flagged in the second stage have 

sufficiently low 36-month PoN precipitation values relative to neighboring sectors with 

F2 = 0. If an azimuthal sector fails the third stage quality control test, its F2 value is 

changed from one to zero. 

The first three stages of the beam blockage detection algorithm are done independently 

for all 61 of the 36-month periods in the timeframe of this study. At this point each flag is 

a function of both azimuthal sector  and time t, such that “range continuity” flag F2 = 

F2(, t). The fourth stage checks the temporal consistency of the of the F2 flags for each 

azimuthal sector. A time series of F2 flags is constructed, and for temporal segments of 

the time series with a sufficient consistency of F2 flags, each time t within that segment is 

assigned a “temporal continuity” flag F3(, t) = 1 and at all other times F3(, t) = 0. For a 

given azimuthal sector , each 36-month period t is considered to have beam blockage 

detected if F3(, t) = 1. 
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III.5. “Low precipitation” Flagging Procedure 

III.5.a. Separating PoN Data into Annuli 

The flagging of HRAP grid cells with anomalously low precipitation values is the first 

stage in the beam blockage detection procedure. Ideally, this would be accomplished by 

modeling Stage IV 36-month PoN precipitation purely as a function of azimuth with no 

range dependence of the data. However, each grid cell has a unique dH value, which makes 

it impossible to create a beam blockage detection model using only data with a constant 

range. In order to model the Stage IV PoN values in each WSR-88D domain strictly as 

functions of azimuth angle, the HRAP grid cells need to be grouped in a way that provides 

both sufficient azimuthal sampling and minimizes contamination from range-dependent 

biases. 

The first step in the “low precipitation” flagging process is to divide each radar domain 

into non-overlapping annuli centered at the radar location. Each annulus is bounded by an 

inner ring with radius r and an outer ring with radius R = r + d, where d is the radial 

span of the annulus. The division of each radar domain into annuli allows each HRAP grid 

cell to be grouped with other grid cells having a similar distance to the radar location. The 

choice of d is critical because if it is too small, azimuthal sampling for the model at a 

given annulus may be insufficient and if d is too large, the model may be contaminated 

by range-dependent biases. A universal choice of d = 10 km was decided as an acceptable 

compromise between the two aforementioned and competing factors. Fig. 3.2 shows the 

annuli for the Minneapolis, MN (KMPX) and Slidell, LA (KLIX) radar domains. The 
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KMPX domain (Fig. 3.2a) has complete azimuthal coverage out to a range of roughly 110 

km, whereas the KLIX domain (Fig 3.2b) only has complete coverage out to a range of 

about 30 km. For a given 36-month period, the Stage IV PoN data are grouped by annuli 

and ordered by azimuth angle. 

(a)   

Fig. 3.2. The WSR-88D locations (crosshairs) and the annuli (circles) for the (a) KMPX 

and (b) KLIX radar domains. 
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(b)   

Fig. 3.2. Continued. 

III.5.b. Modeling Percent of Normal as Function of Azimuth Angle 

For a given radar and annulus, the Stage IV 36-month PoN precipitation is modeled using 

a low-order Fourier series function f() in the flagging of “low precipitation” HRAP grid 

cells. This model form was chosen to ensure the function is periodic over the 360° span 

of the annulus. Another desirable property of the Fourier series is that it will provide a 

realistic model form for all possible azimuthal distributions of PoN precipitation. This 

includes an exact fit of f() for an annulus with azimuthally uniform field of PoN 

precipitation values or for a field with linear spatial variations. 
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(a)   

Fig. 3.3. (a) The annulus (gray ring) and HRAP grid cells (black dots) for the 90-100 km 

radial span of the KABR radar domain, centered at the crosshairs. The Stage IV 36-month 

PoN precipitation data, ending 31 December 2012, as a function of azimuth (black 

diamonds) in the annulus with a Fourier series fits (black line) using k = 1 (b), k = 4 (c), 

and k = 16 (d). 
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(b)  

 (c)   

Fig. 3.3. Continued. 
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(d)   

Fig. 3.3. Continued. 

The wavenumber k for the Fourier series fit needed to both be adequate for depicting the 

actual azimuthal variability of rainfall, which is improved with an increase in k, but 

resistant to any overfitting to beam-blockage artifacts that may occur if the wavenumber 

is too large. Fig. 3.3 is the Fourier series function of the annulus with a radial span of 90 

km – 100 km at the Aberdeen, SD (KABR) radar for the 36-month period ending 31 Dec 

2012, using k =1, k = 4, and k = 16. Based on visual inspection of Fig. 3.3 and numerous 

other examples, k = 4 is an appropriate wavenumber for the Fourier series to model the 

azimuthal variations of PoN precipitation in an annulus without overfitting (Fig. 3.3c). 

The form of the Fourier series is  

      
1 1
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    , (3.7) 

where 
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is the mean using all nN Stage IV PoN precipitation data points (Pi). For each order n,   
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and   
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III.5.c. Flagging Algorithm 

In a given radar domain, the Fourier series modeling is done independently for each 

annulus. The “low precipitation” flagging assigns F1(dH, H) = 1 to each HRAP grid cell 

within an annulus having large negative residuals to the model fit f() in (3.7). The 

magnitude of each residual i is measured by the squared residual (ri
2), which is 

   
22

i i ir P f   . (3.11) 

After computing ri
2 for each Pi, the grid cells are ranked and arranged in descending order 

by the magnitude of the squared residual. The flagging process compares the magnitude 

of ri
2 at each grid cell i to the mean squared residual (MSR) for all the grid cells ranked 

higher. For a grid cell with a rank of i, the value of MSRi is 
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where N is the total number of Stage IV PoN data points in the annulus used to compute 

f(). The assumption is that if the ratio Ri of the squared residual for a grid cell i (3.11) to 

the MSR of all the other grid cells with a higher rank (3.12) is sufficiently large, then the 

Stage IV PoN precipitation value is an outlier that may have been caused by beam 

blockage. The ratio Ri in equation form is 

 
2

i
i

rR
MSR

 ,  (3.13) 

and takes into account and normalizes the natural variability of the residuals in the annulus. 

If the residual ri is negative and the ratio Ri is greater than a pre-determined threshold ratio 

value R0, the grid cell is flagged as being blocked. The threshold ratio value R0 = 3.75 was 

determined based on visual inspection of the resulting blockages using several different 

R0 test values. 

The step-wise algorithm for the “low precipitation” flagging of individual HRAP grid cells 

within an annulus is as follows. 

1. Set f(dH, H) = 0 for all N grid cells. 

2. Create a Fourier series model fit f() using all N grid cells within the annulus. 

3. Compute the value ri
2 for each of the N grid cells. 

4. Rank and arrange the grid cells by magnitude of ri
2 in descending order. 
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5. Set i = 1. 

6. Compute Ri. 

7. Is Ri ≥ Ro? If yes, proceed to Step 8. If no, proceed to Step 10. 

8. If ri < 0,  set F1(dH, H) = 0  for the HRAP grid cell with rank i. 

9. Increase i by one and go back to Step 5. 

10. “Low precipitation” flagging algorithm is complete. Store the number of grid cell 

processed by the algorithm (N1). 

  

Fig. 3.4. The same as Fig. 3.3b, but with HRAP grid cells detected by the flagging 

algorithm (gray diamonds) in the 90 km – 100 km annulus in the KABR radar domain. 

Fig. 3.4 shows the same Stage IV 36-month PoN precipitation from the KABR radar 

domain modeled using a Fourier series with k =4 shown in Fig. 3.2c with the grid cells 

flagged by the aforementioned algorithm. Fig. 3.5 shows the Stage IV 36-month PoN and 

the flagged HRAP grid cells for all annuli in the KABR radar domain. Visual inspection 

shows there is likely blockage in the PoN field in azimuthal sectors around 65° and this is 

well-detected for all annuli (Fig. 3.5). The results of the “low precipitation” flagging 
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procedure will be analyzed to detect radial spans with a consistency of F1 values in the 

“range continuity” flagging procedure. 

  

Fig. 3.5. The Stage IV 36-month PoN precipitation, ending 31 December 2012 for the 

KABR radar domain (contoured field); minimum value (black) is PoN = 50% and the 

maximum value (white) is PoN = 150%. The HRAP grid cells detected by the flagging 

algorithm are included (yellow squares). 
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Fig. 3.6. The Stage IV 36-month PoN precipitation, ending 31 December 2012 for the 

Sioux Falls, SD (KFSD) radar domain (contoured field); minimum value (black) is PoN 

= 50% and the maximum value (white) is PoN = 150%. The HRAP grid cells detected by 

the initial flagging algorithm (k = 4; yellow squares) and the secondary flagging algorithm 

(k = 12; blue squares) are included. 

A viable solution found to combat this issue was to rerun the flagging algorithm in each 

annulus to compute a new Fourier series. This version of the algorithm builds the model 

f() using only Stage IV 36-month PoN precipitation data whose residual was not flagged 

in the initial run. The second run of the algorithm models the remaining PoN precipitation 

data using a Fourier series with k = 12 (e.g., Fig. 3.6). The assumption for this second run 

is that it has the capability of capturing beam blockage features in azimuths where the 

variability was too complex for a proper assessment using a lower-wavenumber Fourier 
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series fit. To reduce the variance of the second Fourier series, all grid cells with a rank ≤ 

N1 were not used in its construction, even those with positive residuals and an F1 = 0. 

  

Fig. 3.7. The KFSD Stage IV 36-month PoN precipitation data, ending 31 December 2012, 

as a function of azimuth (all diamonds) in the 90-100 km annulus with the initial Fourier 

series fits (black line). The grid cells with Ri ≥ R0 (black diamonds) are removed for the 

second flagging algorithm Fourier series fit (gray line). 

Fig. 3.7 shows the Fourier series model fit for each HRAP grid cell flagging algorithm run 

for the KFSD annulus with a radial span of 90 km – 100 km, using 36-month PoN 

precipitation data from 31 December 2012. Of note, is the difference in the two models 

for azimuth angles between 135° and 180°. In the second run of the “low precipitation” 

flagging algorithm, the model more accurately characterizes the azimuthal variability. 

This allows the second run of the algorithm to flag HRAP grid cells around 145° as being 

potentially contaminated by beam blockage. 
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III.6. “Range Continuity” Flagging Procedure 

In a given radar domain, azimuthal sectors with Stage IV 36-month PoN precipitation data 

contaminated by beam blockage will ideally have all HRAP grid cells flagged in the “low 

precipitation” flagging procedure beyond a range db where the radar beam intercepts an 

apparent obstacle. However, other types of errors and the reality of the natural spatial 

variability of precipitation add noise to the data, even at the 36-month time scale, and 

prevent proper “range continuity” flagging of these grid cells. The noise in the data may 

also lead to the misidentification of beam blockage within a given annulus (Fig. 3.4 for 

example), but these grid points tend to be random with little consistency with range in a 

given sector. In Fig. 3.4, the azimuthal sectors around 65° that visually appear to suffer 

from beam blockage in the PoN precipitation data are consistently, though not always, 

flagged. The guiding principle of flagging azimuthal sectors in the “range continuity” 

flagging procedure is a consistency of grid cells with F1 = 1 in the radial span beyond the 

point where the radar beam encounters an apparent obstacle. In addition to the noise in the 

data, the basic geometry of the radar domains present issues for the consistency of flagging 

within an azimuthal sector. 
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Fig. 3.8. A conceptual model of the azimuthal coverage (whit-e slices) and blockage (black 

slices) of HRAP grid cells (gray boxes) for ranges of 10 km (top), 20 km (right), 30 km 

(bottom), and 40 km (left). For reference, an azimuthal sector of width 1° was included at 

an azimuth of 45°. 

III.6.a. Geometric Limitations of “Range Continuity” Flagging Procedure 

The first factor to take into consideration in the “range continuity” flagging procedure is 

the large azimuthal width dH of grid cells close to the radar location. The azimuthal width 

of the HRAP grid cells is displayed graphically in Fig. 3.8 for the outer rings of the first 

four annuli out to 40 km. Real beam blockage caused by a point source within a grid cell 

at close ranges may be smoothed out if adjoining sectors within the same grid cell are not 

affected. The issue of large dH values arises when grid cells at close ranges are flagged 

(F1 = 1) because it is difficult to assess the true azimuthal width of “low precipitation” 

given a single grid cell. However the impact of this issue should be minimal, because the 

azimuthal width of true beam blockage occurring very close to the radar can be determined 
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by grid cells with larger d values. In azimuthal sectors affected by beam blockage, there 

should be a large number of grid cells with F1 = 1 beyond the range of initial blockage. 

(a)   

Fig. 3.9.  (a) The annulus (gray ring) and HRAP grid cells (black dots) for the 170-180 km 

radial span of the KABR radar domain, centered at the crosshairs. (b) The Stage IV 36-

month PoN precipitation data, ending 31 December 2012, as a function of azimuth (black 

diamonds) in the annulus with the initial Fourier series fits (black line). 
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(b)   

Fig. 3.9. Continued. 

The second and more troublesome concern is that for most radar domains, there are Fourier 

series fits for annuli at far ranges that have poor azimuthal coverage. For example, the 

annulus with a radial span of 170 km – 180 km at the KABR radar domain (Fig. 3.9a) only 

has two azimuthal segments; one from about 65° to about 100° and the other from about 

190° to about 260°. The lack of azimuthal coverage is due to the irregular shape of the 

radar boundary polygon and leads to the Fourier series providing a poor fit for the available 

data, particularly for the segment in the western part of the domain (Fig. 3.9b). The poor 

fit leads to the spurious detection of beam blockage for about 40% of the grid cells in the 

western segment of the KABR radar domain, simply because the model fit f() is so much 

better for the eastern segment (Fig. 3.9). 
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Fig. 3.10. Locations (crosshairs) and regions covered (polygons with black outlines) for 

the 104 WSR-88Ds in the central and eastern United States. The HRAP grid cells which 

belong to annuli with at least 180° of azimuthal coverage are included. 

Therefore, a restriction was put in place so that the initial algorithm in the “range 

continuity” flagging procedure will only flag radial spans covering annuli with at least 

180° of azimuthal coverage. The range interval of the outermost annulus meeting this 

coverage criteria will vary from radar domain to radar domain. For a given azimuthal 

sector, the range of the outer ring meeting the coverage criteria is assigned to a variable 

dx() if the range is less than dmax; otherwise dx = dmax. Fig. 3.10 shows the spatial coverage 
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of the grid cells examined in this first step for each of the 104 radar domains in the central 

and eastern United States. Using the criterion of at least 180° rather than some larger 

threshold such as 270° or 360° ensures that the beam blockage detection algorithm can be 

used on most coastal radars, such as Melbourne, FL (KMLB). Only Brownsville, TX 

(KBRO) and Key West, FL (KBYX) do not have at least one annulus meeting this 

criterion. 

III.6.b. Flagging Algorithm  

The guiding principle in the “range continuity” flagging procedure is that true beam 

blockage in a given azimuthal sector should extend to all ranges beyond the point of 

blockage db(). If blockage is identified in an azimuthal sector, the key is to determine a 

value of db() where the blockage initiates. In a given azimuthal sector, the grid cells are 

ranked and arranged in ascending order by range d for all ranges in the radial span d0 – dx, 

with d0 referring to the radar location. For every azimuthal sector, each HRAP grid cell 

has a an F1 value, and each grid cell with F1 = 1 is assessed as a potential beam blockage 

initiation point. In each azimuthal sector, a potential db() is identified an must satisfy the 

following two “range continuity” criteria based on grid cells from db – dx, which are 

1. the number of flagged grid cells nb() in the radial span db – dx is greater than some 

pre-specified minimum threshold value (nb), and 

2. the ratio of flagged grid cells (F1 = 1) to total grid cells in the radial span d-dx is 

greater than some pre-specified minimum threshold value (Rb). 
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Based on visual inspection of several possible combinations, Nb = 12 and Rb = 0.6 were 

chosen as the ideal threshold values. 

If there is more the one value of d that satisfies the “range continuity” criteria within a 

given azimuthal sector, the statistical significance of the blockage for each these ranges 

will be computed. For each range d meeting the two criteria, all the F1 values within the 

sector azimuthal sector are divided into two groups. The first group (g0) contains n0 grid 

cells from ranges d0 – d, with a computed mean of F1 values given by g0̅; the second group 

(gx) contains nx grid cells from ranges d – dx with a computed mean of F1 values  given by 

gx̅. At each potential blockage initiation range, the value dg = gx̅ – g0̅ is computed, where 

gx̅ > g0̅ and  gx̅ ≥ Rb according to the second rule of the “range continuity” criteria. For a 

given range d, the statistical significance of the blockage is represented by the z-score zd 

of the difference dg, given as 
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. (3.14) 

The range d with the maximum value of zd within a given azimuthal sector that also 

satisfies the two “range continuity” criteria is assigned to db(). 

III.6.c. Sequence for “Range Continuity” Flagging Procedure 

The “range continuity” flagging of azimuthal sectors, which is done for sectors with a 

radial span containing a sufficient number of HRAP grid cells with F1 = 1, has several 
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steps. The sequence of this two-step procedure is dictated by the geometrical limitations 

of the irregularly-shaped radar domains. 

III.6.c.1) Flagging Close and Intermediate Ranges 

Given the limitations to using grid cells in the radial span beyond dx in a given radar 

domain, the first step in the “range continuity” flagging procedure is to detect potential 

beam blockage initiation in azimuthal sectors at close and intermediate ranges. At a given 

radar domain, each azimuthal sector  with a radial span meeting the two “range 

continuity” flagging criteria are assigned a value of F2() = 1. In addition, the minimum 

range db() of each sector flagged is stored and beam blockage is assumed to cover the 

entire azimuthal sector in the range interval db() ≤ d ≤ dmax(). 

III.6.c.2) Beam Blockage Flagging at Far Ranges 

The next step in the “range continuity” flagging procedure is to determine if beam 

blockage initiates in ranges beyond dx. This procedure is more important for radar domains 

as the value of dx diminishes for two main reason: 1) there are likely more grid cells beyond 

dx when the value is small and 2) the radar beam is more likely to encounter an obstacle 

at closer ranges given the height of the beam. At this point, we take a step back and 

reexamine the “low precipitation” flagging for HRAP grid cells beyond dx. By convention, 

each annulus examined will have less than 180° coverage, so the “low precipitation” 

flagging algorithm used for close and intermediate ranges needed tweaking to account for 

the lack of coverage. 
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Data from HRAP grid cells in azimuthal sectors with a value F2 = 1 are removed in the 

computation of the Fourier series at each annulus since these data are deemed 

contaminated by beam blockage. The removal of the previously flagged data to compute 

the Fourier series model was done to provide a more accurate fit (Fig. 3.11 for example). 

Unlike the computation of the Fourier series, the data from the blocked sectors are used in 

the flagging of individual HRAP grid cells that is done through analysis of the model 

residuals (Steps 3 – 7 in the “low precipitation” flagging algorithm). Using the data from 

azimuthal sectors flagged prior to the current flagging procedure ensures that new grid 

cells receiving a flag value F1 = 1 have similarly “low precipitation” to grid cells already 

assumed to have beam blockage. 

Following the flagging of “low precipitation” grid cells, the “range continuity” flagging 

procedure looked at azimuthal sectors with F2 = 0 to determine if there was at least one 

radial span now meeting the two “range continuity” flagging criteria. If these criteria were 

met in azimuthal sector , the sector was given a value of F2() = 1, and the range db() 

was determined as the range with the maximum value of zd, computed using (3.14). 
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Fig. 3.11. The KABR Stage IV 36-month PoN precipitation data, ending 31 December 

2012, as a function of azimuth (all diamonds) in the annulus with the initial Fourier series 

fits (black line). The grid cells detected in the initial “low precipitation” and “range 

continuity” flagging algorithms (black diamonds) are removed for the second “low 

precipitation” flagging algorithm Fourier series fit (gray line). 

III.6.d. Results of the “Range Continuity” Flagging Procedure 

Fig. 3.12 shows the results of the “range continuity” flagging procedure for azimuthal 

sectors at the KABR radar domain for Stage IV 36-month PoN precipitation ending 31 

December 2012. The one group of sectors around 65° that visually has beam blockage is 

well detected by the algorithm, but there appears to be spurious detection of beam 

blockage in other sectors. Fig. 3.13 has the results of the beam blockage detection 

algorithm for the KFSD domain using Stage IV PoN precipitation data from the same time 

period. Spurious detection of beam blockage is less of an issue based on the results of the 
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algorithm in the KFSD domain, which identifies the visually apparent beam blockage 

features. 

  

Fig. 3.12. The Stage IV 36-month PoN precipitation, ending 31 December 2012 for the 

KABR radar domain (contoured field); minimum value (black) is PoN = 50% and the 

maximum value (white) is PoN = 150%. The HRAP grid cells in azimuthal sectors 

meeting the criteria of the beam blockage detection algorithm are included (yellow 

circles). 



 
 

77 
  

  

Fig. 3.13. Same as Fig. 3.12, but for the KFSD radar domain. 

Fig. 3.14 shows the results of the beam blockage detection algorithm for most of the radar 

domains in the central and eastern United States, with any boundaries purposefully 

omitted to make visual inspection of the performance a much easier task. Most of the 

visually apparent beam blockage features in the Stage IV 36-month PoN precipitation are 

detected with little in the way of false detection. However, the values of variables such as 

Ro, Nb, and Rb in the algorithm were chosen so that 1) the ratio of Type I errors to Type II 

errors is greater than one and 2) both types of errors were minimized. False detection is 

preferred to non-detection of true blockage in the algorithm as the results of the “range 

continuity” flagging procedure will go through a quality control (QC) test that will result 

in some sectors with F2 = 1 being changed to F2 = 0. 
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(a)  

(b)   

Fig. 3.14.  (a) The Stage IV 36-month PoN precipitation, ending 31 December 2012; 

minimum value (black) is PoN = 50% and the maximum value (white) is PoN = 150% in 

both maps. (b) The same as (a) but azimuthal sectors flagged in the “range continuity” 

flagging procedure included (yellow shading). 
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III.7. Quality Control Test for Flagged Azimuthal Sectors 

A simple QC test will ensure that azimuthal sectors with F2 = 1 have Stage IV 36-month 

PoN precipitation values that are actually less than neighboring and sectors with F2 = 0. 

In the context of this QC test, an azimuthal “slice” will be defined as two or more adjoining 

sectors flagged in the “range continuity” flagging procedure. Each radar domain was 

broken up into the 10 km annuli for the QC test to minimize range-dependent errors in the 

comparison of PoN precipitation values from neighboring sectors. 

 

 

Fig. 3.15. The KABR Stage IV 36-month PoN precipitation data, ending 31 December 

2012, as a function of azimuth (all diamonds) in the 90 km – 100 km annulus. The grid 

cells indicated by the beam blockage detection algorithm are highlighted by gray 

diamonds. 
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At an annulus within a given radar domain, the grid cells are ordered by H and the 

algorithm looks for a sequence of blocked cells. Fig. 3.15 is the Stage IV 36-month PoN 

precipitation at the KABR radar domain for the annulus with a radial span of 90 km – 100 

km (Fig. 3.3a) and has 4 separate slices in which beam blockage has been indicated by the 

“range continuity” flagging procedure. The two azimuthal slices near 65° and 100° have 

a “textbook” blockage signature that we would expect to see in the PoN precipitation data 

within an annulus. However, the other 3 slices, around 20°, 45°, and 355°, don’t appear to 

have any distinction from the neighboring data either visually (Fig. 3.12) or statistically 

(Fig. 3.15). 

The QC test metric for each azimuthal slice of grid points considered blocked is simply 

the ratio of the mean PoN precipitation of the blocked cells (F2 = 1) to the mean PoN 

precipitation of the two bounding non-blocked cells with (F2 = 0). The algorithm scans for 

a couplet where a grid cell i = 1 has a value of F2 = 0 and grid cell i =2 has a value of F2 

= 1. Each ordered grid cell with F2 = 1 is passed over until another grid cell i = n with with 

F2 = 0 is found. Then, the QC test ratio for this sequence (RS) is computed using 
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where P is PoN precipitation. 

For a given sector, computation of RS for each grid cell deemed blocked by the “range 

continuity” flagging algorithm is followed by looking at the RS values along the radial 
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span db() – dmax(). A key decision for analysis of the RS values is determining a proper 

threshold RQ such that grid cells in a given sequence with RS ≤ RQ are considered truly 

contaminated by beam blockage and thus pass the QC test. In Fig. 3.15, RS = 0.87 for the 

sequence near 65°, whereas the other 3 seqences of grid cells have RS values of 1.01, 0.99, 

and 0.99. Three different possibilities for the threshold value of RS were explored: 0.95 

(Fig. 3.16), 0.98 (Fig. 3.17), and 1.00 (Fig. 3.18). For a given sector, we will determine 

the number of grid cells nQP() where RS ≤ RQ and the number of grid cells nQF() where 

RS ≤ RQ. An azimuthal sector  will pass the QC check if nQP() ≥ nQF() and nQP() > NQ. 

After careful consideration, NQ = 10 was chosen as an appropriate threshold. 

Figs. 3.16 – 3.18 show examples of azimuthal sectors passing the QC test in the KABR 

and KFSD radar domains. Based on these two radars and a thorough visual inspection of 

other key radars with PoN significantly visibly affected by beam blockage (Fig. 3.14a), a 

threshold value of RQ = 0.98 appears visually as properly verifying and rejecting sectors 

deemed blocked in the “range continuity” flagging procedure. Azimuthal sectors with an 

initial value of F2 = 1 will continue to be flagged if passing the QC test; otherwise a value 

of F2 = 0 will be assigned. 
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(a)  

(b)  

Fig. 3.16. The Stage IV 36-month PoN precipitation, ending 31 December 2012 for the 

(a) KABR and (b) KFSD radar domains; minimum value (black) is PoN = 50% and the 

maximum value (white) is PoN = 150%. The HRAP grid cells (yellow dots) in azimuthal 

sectors meeting the criteria of the QC test algorithm are included, using RQ = 0.95. 
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(a)  

(b)  

Fig. 3.17. Same as Fig. 3.16, using a threshold value of RQ = 0.98. 
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(a)  

(b)  

Fig. 3.18. Same as Figs. 3.16 and 3.17, using a threshold value of RQ = 1.0. 
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III.8. Temporal Consistency of Beam Blockage 

III.8.a. Characteristics of Monthly Time Series of 36-Month Beam Blockage Detection 

Data 

Up to this point, detection of beam blockage features in each radar domain has been 

described for a single 36-month period. This section examines the temporal consistency 

of beam blockage for azimuthal sectors detected as blocked (F2 = 1) during the timeframe 

of this study (2005-2012). The goal of this section is to remove any inconsistencies that 

may be present in a time series of F2 data points and to identify any significant 

changepoints in detected blockage (Fig. 3.19). 

(a)  

(b)  

(c)  

(d)  

Fig. 3.19. Time series of F2 values for the period December 2007 – December 2012. The 

results for the (a) KMPX 26°, (b) KMPX 296°, (c) KLZK 262°, and (d) KLZK 343° 

azimuthal sectors are shown. 
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III.8.b. Detecting Changepoints in Time Series of the “Range Continuity” Flags 

Each azimuthal sector at each radar is being evaluated independently for the presence of 

a changepoint in a time series of F2 data (Fig. 3.19). The time series is examined 

sequentially from beginning to end for a changepoint, examining each possible 

partitioning of the F2 data points into two groups, given that each group has at least two 

data points. The metric used to determine the suitability of a partition t0 as a changepoint 

is the statistical significance of the difference in the means between the two groups, with 

group 1 (g1) to the left of the partition and group 2 (g2) to the right of the partition t0. 

Similar to zd given by (3.14), the statistical difference (zabs) between the mean of group 1 

(g1̅) and the mean of group 2 (g2̅) is 

 2 1

1 1 2 2

1 2 1 2
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. (3.16) 

A changepoint will partition the data into one group with mostly or all F2 values of zero 

and the other with mostly or all F2 values of one, with g2̅ – g1̅ having a possible range of 

[-1, 1]. The first criterion for a partition of F2 values in a time series to be considered a 

potential changepoint is that zabs exceeds a minimum threshold value zc determined to be 

zc = 4.0 (e.g., Fig. 3.20a). The second criterion is conditional depending on the means of 

the two groups, and is 

a. if g2̅ –  g1̅ > 0, then both g1̅ < 0.5 and g2̅ > 0.5 or 
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b. if g2̅ –  g1̅ < 0, then both g1̅ is > 0.5 and g2̅ < 0.5. 

If more than one zabs value exceeds zc and meets the second, conditional criterion the 

partition t0 with the maximum value of zabs will be chosen as the changepoint of the time 

series. 

 (a)  

(b)  

(c)  

(d)  

Fig. 3.20. Same as Fig. 3.19, with a time series of Zabs values included (gray lines). 

III.8.c. Assigning “Temporal Consistency” Flags 

At each radar domain, the time series of F2 data points is analyzed for changepoints in all 

azimuthal sectors. Given the reality that values of both F2 = 0 and F2 = 1 co-exist in the 

time series of some azimuthal sectors where changepoints were not detected, there needs 

to be an objective determination of a single, constant beam blockage status. If the sum of 
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all the F2 values exceeds ½ of the number of F2 data points (n = 61, so ½n = 30.5), the 

azimuthal sector  is considered blocked throughout the entire period; otherwise d is 

considered free of beam blockage. Therefore, any given sector d with no changepoint is 

assigned a single “temporal consistency” flag F3() value (F3 = 0 if not blocked; F3 = 1 if 

blocked; see Fig 3.21c) for all times. For sectors with a changepoint identified in the 

“temporal consistency” procedure, the value of F3 is a function of time, such that F3 = 

F3(, t). 

(a)  

(b)  

(c)  

(d)  

Fig. 3.21. Same as Fig. 3.20, with values of F3 included (straight black lines). 

Assuming that the “temporal consistency” flag for azimuthal sector  is F3 = 1, there may 

be inconsistency in the values of db, the range at which beam blockage is assume to initiate 
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(in a spatial sense). Given a span of times from t0 to t0 + t, the range db(, t) with the 

highest frequency of occurrence is designated as the single range db at which beam 

blockage is assumed to initiate, with the reality that the obstacle is fixed in nature. 

Assignment of the “temporal consistency” flag F3 is the final say for the beam blockage 

status of a particular azimuthal sector given a time series of Stage IV 36-month PoN 

precipitation data (Fig. 3.22). However, the application of these results is not limited to 

the 36-month time scale and the applicability to shorter time scales needs to be defined, 

which is done in the following section. 

(a)   

(b)  

Fig. 3.22. The time series of independently-found db(d) values from beam blockage 

detection algorithm (black diamonds) and the final value of db(d) (black line). The results 

for the (a) KMPX 26° and (b) KLZK 262° azimuthal sectors are shown. 
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III.9. Beam Blockage Correction 

III.9.a. “Overall” Beam Blockage Designation 

The correction for beam blockage in the Stage IV data will be done using the azimuthal 

sectors identified with the 36-month PoN precipitation beam blockage flagging procedure 

with values of F3 = 1. However, given that the time stamp of an F3 data point is at the end 

of a 36-month period, the estimated changepoint for real beam blockage in this study is t0 

– 18 months, where t0 is the changepoint specified by the three-step beam blockage 

flagging procedure. Each calendar month in the 18 months prior to changepoint t0 will be 

assigned an “overall” beam blockage flag F that is the same value as the F2 value for all 

times t  ≥ t0. In essence, the changepoint in the F time series is the F3 changepoint t0 shifted 

to the left by 18 months. For azimuthal sectors with no changepoints, the single value of 

F3 is assigned as a universal “overall” flag F. 

For a given azimuthal sector, if beam blockage exists in a radial span db()-dmax() for a 

given time period, the data will be flagged as missing and will be replaced by interpolated 

data that uses neighboring, unblocked HRAP grid cells to fill in these gaps. It is important 

to note the interpolation will be done using PoN precipitation as opposed to accumulated 

precipitation values to account for any spatial variations of the climatological precipitation 

that may exist. 

The identification of beam blockage was done using only 36-month PoN precipitation, but 

the results of the detection procedure must be applied to all possible accumulation periods, 

e.g., 1-month, 6-month, 12-month, 24-month, etc. The application of the beam blockage 



 
 

91 
  

results will be done at the shortest possible time period in this study, which is the 1-month 

accumulation period. For HRAP grid cells in an azimuthal sector considered “blocked” (F 

= 1), the original Stage IV 1-month PoN precipitation value is considered missing and a 

new estimated value is found through interpolation of values from neighboring “non-

blocked” grid cells. The interpolated value is then transformed to a 1-month precipitation 

total using an inverse form of (3.3). For a given accumulation period, i.e., 12-months, the 

interpolation procedure is used for to estimate 1-month PoN and total precipitation values 

for each calendar month with a flag F = 1. Continuing with the 12-month example, all 

twelve 1-month totals will be added together to get a 12-month total, which can be used 

to compute other precipitation metrics (PoN, departure from normal, etc.). 

III.9.b. Overview of Ordinary Kriging 

Rather than adjusting the PoN precipitation values of grid cells contaminated by beam 

blockage using some metric measuring the magnitude of blockage, these grid cells will be 

considered missing and neighboring grid cells will be used to produce an estimate of 

precipitation using an established interpolation method. Geostatistical interpolation 

techniques estimate a missing value Ẑ by assigning weights wi to n neighboring grid cells 

with sampled Zi values such that the estimate Ẑ is 
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Inverse distance weighting (IDW) is a commonly used interpolation technique, but the 

weights are found with a function based completely on one-dimensional distance, so 

estimates may be skewed if the sampled points are spatially heterogeneous. Kriging is a 

geostatistical linear interpolation method that is an alternative to IDW that accounts for 

the spatial heterogeneity of samples used to compute the estimates. Kriging interpolation 

weights the neighboring grid cells according to spatial covariance, a measure of the 

similarity between two values of variable as a function of geographical distance, or lag 

(usually dentoed as h), between points (Bohling 2005a). The spatial covariance C(h) for a 

set of n unique pairs of grid points separated by lag h is 
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i

C h Z x Z Z x h Z
n 



    , (3.18) 

where is the mean for the “tail” pair member and is th mean for the “head” pair 

member. An alternative measure to spatial covariance as a measure of similarity as a 

function of lag is the semivariance (h) which for a given lag h is 
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 , (3.19) 

which is typically done for a nominal lag interval. Obviously, the semivariance is zero 

when the lag h is zero, but is assumed a “nugget” value if (h) >> 0 for values approaching 

zero (Bohling 2005a). The values of (h) are plotted against h on a semivariogram, which 

is shown comceptually in Fig. 3.23 (Karl and Maurer 2010). The semivariogram data is 

iZ i hZ 
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fit to an existing semivariogram model g(h) using the value c of the “sill” and the lag a at 

which the sill is located (Bohling 2005a). The corresponding model covariance C(h) can 

be computed using g(h) as 

    C h c g h  . (3.20) 

  

Fig. 3.23. Conceptual semivariogram data and model, taken from Karl and Maurer (2010). 

Reprinted from Ecolo. Inform., 5, Karl, J. W., and B. A. Maurer, Spatial dependence of 

predictions from image segmentation: A variogram-based method to determine 

appropriate scales for producing land-management information, 194-202, 2010, with 

permission from Elsevier. 

Given a set of n neighboring grid cells the n × n model covariance matrix K is computed 

for all pairs of neighbors and the n length vector k of model covariances between each 

neighbor and the unsampled target grid cell (Bohling 2005b), with each covariance 

computed using the pair’s lag (3.18). In simple Kriging, the the mean  is assumed known 

and each weight i assigned to a neighboring grid cell is a vector w with a relationship to 

K and k as 

 Kw k . (3.21) 
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If the mean  is assumed not to be known as is the case when interpolating using ordinary 

Kriging, each matrix is augmented (Bohling 2005b) so that 

 

1,1 1,2 1, 1 1,0

2,1 2,2 2, 2 2,0
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. (3.22) 

III.9.c. Estimating Data at HRAP Grid Cells Contaminated by Beam Blockage 

The Stage IV 1-month accumulated precipitation and PoN precipitation values at grid cells 

deemed blocked for a given radar-month are interpolated using an ordinary Kriging 

procedure that use n = 12 neighboring points. To reduce the effects of range-dependent 

biases, only grid cells from the same radar annulus are used as neighboring points, with 

an equal number of “unblocked” neighbors (n1/2 = 6) on either side of a “blocked” point 

used in the Kriging procedure. The empirical semivariance data in the estimation 

procedure uses a nominal lag interval of 1 km. and the model semivariograms are 

constrcted separately for each radar annulus. 

The ordinary Kriging procedure for correcting the 1-month Stage IV PoN data at a grid 

cell contaminated by blockage is best explained using a straightforward example. Fig. 3.24 

is the Stage IV PoN data for January 2012 for the 100 km – 110 km annulus at the KABR 

radar domain. 
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Fig. 3.24. The Stage IV 1-month PoN precipitation data for January 2012 at the KABR 

radar domain in the 100 km – 110 km annulus as a function of azimuth. “Unblocked” 

(black diamonds) and “blocked” (gray diamonds) data points are differentiated. 

  

Fig. 3.25. Empirical and model semivariogram constructed using pairs of “unblocked” 

Stage IV PoN precipitation data points from Fig. 3.24. 



 
 

96 
  

The nominal semivariance (h) is computed for each nominal lag less than 100 km with 

available data using only pairs for which both data points are considered “unblocked” (Fig. 

3.25). Using the available (h) data, a continuous model semivariogram function g(h) is 

fit to the data points (also included on Fig. 3.25). Given inspection of several plots of (h) 

data for several different radar-months, it was determined that a straight line model fit was 

most appropriate as a universal g(h) model form. The slope and intercept parameters of 

the straight line model are found using simple linear regression (SLR), which minimizes 

the residual sum-of-squares (RSS). 

  

Fig. 3.26. Matrix equation used to solve for the ordinary Kriging weights for each of the 

12 neighboring grid cells used to determine the corrected Stage IV 1-month PoN 

precipitation for January 2012 at HRAP grid cell 618583.  

Using (3.20), all the covariance terms on both the right-hand and left-hand sides of (3.22) 

are computed from c and the semivariogram function g(h) shown in Fig. 3.25. The value 

of the sill c is assumed to be the sample variance s2 for all the data “unblocked” data points 

in the 100 km – 110 km annulus. The matrix equation used to solve for the weights (each 
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neighbor assigned a number between 1 and 12) and determine the corrected January 2012 

Stage IV PoN precipitation value for HRAP grid cell 618583 is shown in Fig. 3.26. Grid 

cell  618583 has = 65°and is a local minimum in a series of “blocked” grid cells within 

the 100 km – 110 km annulus. Fig. 3.27 shows the neighboring grid cell weights and PoN 

precipitation values used in the ordinary Kriging estimation at grid cell 618583. 

  

Fig. 3.27. Map of the neighboring gird cells (white boxes) used in the ordinary Kriging 

estimation of the corrected Stage IV 1-month PoN precipitation for January 2012 at HRAP 

grid cell 618583 (gray box). The neighbor ID (red number), neighbor interpolation weight 

(blue number), and  Stage IV PoN precipitation values (black numbers) are shown. 
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Given the spatial configuration of the neighboring grid cells in Fig. 3.27, it is apparent that 

the ordinary Kriging weights give preferential treatment to the first grid cell encountered 

in a particular direction, i.e., neighboring grid cells 1,3, 7, and 8. Neighbors with other 

grid cells lying between their location and the target grid cell (in this case 618583) have 

negative weights, i.e., 4, 5, 9, and 10. Fig. 3.27 is an example of how Kriging reduces the 

effect of clustering by giving members of a cluster in closer proximity to the interpolation 

point a much higher weight than members of the cluster farther away. 

The ordinary Kriging procedure was used to estimate Stage IV 1-month precipitation for 

all “blocked” grid cells during the period January 2005 – December 2012. The resulting 

precipitation dataset, corrected for beam blockage using the methodology described in this 

chapter (example in Fig. 3.28), will go through a procedure that corrects for both mean-

field and range-dependent biases that will be detailed in the next chapter. 
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Fig. 3.28. Same as Fig. 3.14a, but with Stage IV 36-month PoN precipitation corrected for 

beam blockage and the boundaries of radar domains included. The minimum value (black) 

is PoN = 50% and the maximum value (white) is PoN = 150%. 

III.9.d. Error Reduction in Data Corrected for Beam Blockage 

At each grid cell and time t at which blockage was detected, a raw 1-month Stage IV PoN 

precipitation value (PN0) and 1-month beam-blockage adjusted PoN precipitation value 

(PN1) exists. Using the 1981-2010 PRISM precipitation normals (Pn), the precipitation 

total P can be computed for each of the two PN values using 

 N nP P P  . (3.23) 
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Because the beam blockage detection and correction methodology presented is done using 

only Stage IV PoN precipitation data, the performance of the methodology can be 

evaluated using gauge data (G) as a proxy for the true surface precipitation PT. At each 

time t and each gauge i located within a grid cell for which the 1-month Stage IV PoN 

precipitation was adjusted for beam blockage, the error i was computed as 

 i P G    (3.24) 

for both the raw (P0) and beam blockage-adjusted (P1) precipitation values. The error 

checking is done to ensure the beam blockage corrections led to systematically lower i 

values in the P1 data relative to the original Stage IV precipitation dataset.  

The two evaluation metrics, the overall root mean square error (RMSE) and overall mean 

bias (MB) were computed for both the P0 and P1 data using 1-month data from all possible 

gauges with 100% data completeness during the period January 2005 – December 2012 

(Table 3.1). The overall RMSE in Table 3.1 was computed as 
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   , (3.25) 

where N is the total number of times (N = 96) and nt is the number of collocated gauges 

available at each time t. The overall mean bias was computed similarly to (3.25) as 
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   . (3.26) 
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The two evaluation metrics were also computed for longer accumulation periods (Table 

3.1). For a given gauge with 100% data completeness for accumulation period a, i was 

computed only if each and every 1-month period t within the accumulation period was 

considered “blocked” at the collocated HRAP grid cell. 

Table 3.1 indicates a significant reduction in the RMSE for the beam blockage-adjusted 

data (P1) relative to the original Stage IV dataset (P0) for all accumulation periods. 

Additionally, the overall underestimation of the P0 dataset relative to gauge data at grid 

cells considered blocked is improved significantly in the P1 dataset. For example, the 

magnitude of the 36-month beam blockage-adjusted overall mean bias (MB1) is more than 

5 times lower than the magnitude of the overall raw bias (MB0). 

Table 3.1. The RMSE and MB used for comparison of raw Stage IV (subscript 0) and beam 

blockage-adjusted (subscript 1) precipitation errors for selected accumulation periods. 

  1 3 6 12 18 24 36 

MSE0 16.9 mm 38.3 mm 66.0 mm 123.7 mm 186.2 mm 256.1 mm 405.3 mm 

MSE1 16.1 mm 34.8 mm 57.7 mm 99.1 mm 142.7 mm 187.8 mm 267.8 mm 

MB0 -6.7 mm -18.3 mm -35.5 mm -77.6 mm -122.4 mm -178.8 mm -314.9 mm 

MB1 -1.8 mm -4.0 mm -7.1 mm -16.2 mm -23.9 mm -35.3 mm -55.1 mm 
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4. CHAPTER IV 

MODELING MEAN-FIELD AND RANGE-DEPENDENT BIASES 

 

IV.1. Introduction 

The focus in this chapter is on correcting the systematic range-dependent biases in the 

Stage IV precipitation estimates. Range-dependent biases are those that can be described 

as strictly as a function of d (3.2) using a continuous function. In addition to correcting 

biases as a function of range, any correction applied will correct the mean-field bias of a 

given precipitation field within a radar domain. Given our conceptual equation of bias 

sources for radar precipitation estimates (1.1), the equation for Stage IV data biases in this 

chapter is 

  0
M F

T

P B d B
P   . (4.1) 

A procedure will be developed to estimate the range-dependent bias as a function of range, 

given a set of discrete bias data points. The algorithm includes finding a suitable set of 

bias data points and developing a parametric model to accurately assess the range-

dependent biases. This range-dependent bias model must be robust enough to handle the 

geographical and seasonal variations in range-dependent biases that occur in central and 

eastern CONUS. For any given WSR-88D and any time period defined by ending date t 

and accumulation period a, the resulting range-dependent bias estimation model will be 

applied to the all the Stage IV P1 precipitation estimate at the radar, which has already 

been corrected for errors due to beam blockage. The resulting dataset will contain Stage 
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IV precipitation estimates (P3) corrected for beam blockage, mean field biases, and range 

dependent biases using the model bias values.  

Here are some desirable properties that the developed model chosen to estimate the Stage 

IV range-dependent bias as a function of range should have.  

1. The model should be able to represent the true bias as a continuous function of d 

for all ranges in a radar domain, which includes realistic values for the biases and 

for the range-dependent bias corrected precipitation data, i.e., no negative values. 

2. The model should be able to account for known processes that lead to range-

dependent or mean-field biases (see Section II.6).  

3. The model should be resistant to overfitting of the available bias data. 

4. The model should be resistant to outliers. 

This chapter will discuss the properties of the Stage IV biases in the context of how an 

ideal model should handle the range dependence of biases within a WSR-88D radar 

domain. A testing procedure called leave-one-out cross validation (LOOC-V) is used to 

determine the ideal form of the model and to objectively test different model 

parameterizations and specifications. The outcome was development of a decision-based 

model that determines whether or not there exists a maximum in the bias data associated 

with the vertical profile of reflectivity (VPR). 
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IV.2. Properties of Range-Dependent Biases 

The term true surface precipitation (PT) is the actual amount of liquid water falling on a 

pre-specified area over a specific time interval (Villarini and Krajewski 2010b; Rinehart 

2004). Range-dependent bias corrections of radar precipitation estimates use rain gauge 

data (PG) as an approximation for PT. Although individual gauge measurements may 

contain errors, gauge networks as a whole are assumed to be unbiased. Any computed 

Stage IV precipitation bias relative to PT measured at HRAP grid cell i is 

 1 1
i

i
i

T

PB
P

  , (4.2) 

but given that the dataset used in the chapter has already been corrected for beam blockage, 

the biases in this chapter are conceptually 

  01 1 , 1
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     . (4.3) 

The following summarizes sources of errors in radar precipitation estimates that could 

potentially lead to either mean-field biases or range-dependent biases in Stage IV 

precipitation estimates. 

IV.2.a. Mean-Field Bias Sources 

Radar miscalibration and incorrect Z-R relationships may lead to biases are roughly equal 

in magnitude across an entire radar domain. Miscalibration occurs when the constant C in 

the equation that measures total backscattered power is in inaccurate because of changes 



 
 

105 
  

over time to different radar components (Villarini and Krajewski 2010b). Miscalibration 

is most easily identified by measurements of a storm at the same location by more than 

one radar. Z-R relationships contribute to mean-field bias when storms with relatively 

homogeneous drop size distributions (DSD) are incorrectly characterized by given Z-R 

relationships. Heterogeneities in DSDs may lead to random errors, which are neither 

mean-field nor range-dependent bias sources. 

IV.2.b. Range-Dependent Bias Sources 

Range-dependent biases can occur because radars measuring reflectivity at a height h 

above the surface that increases with increasing range d, with h dependent on both d and 

the tilt angle  of the radar beam (2.13). In a typical precipitation event, the hydrometeors 

being measured have different properties at height h than when they reach the surface. The 

VPR is a dimensionless quantity that is an estimate of the ratio of the measured reflectivity 

at height h relative to the surface, given as 

  
 

0

Z h
VPR h

Z
 . (4.4) 

Assuming a spatially-invariant VPR throughout a given radar domain, the VPR influence 

may result in a maximum of (4.4) at an intermediate range related to the radar bright-band. 

In addition to the VPR influence, the effects of attenuation, beam filling, and overshooting 

due to the radar beam geometry can lead to a systematic underestimation of PT as d 

increases. 
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IV.3. Point Bias Data 

There are two types of bias data points that were deemed useful for construction of a range-

dependent bias estimation model. Radar-gauge pair bias data points (BG) were computed 

using (4.2) as the ratio between Stage IV precipitation and gauge precipitation 

accumulated over the same time span at the same location. The second, more novel, type 

of bias data points (BN) were computed from Stage IV PoN precipitation data, which were 

also used to identify regions of beam blockage in the previous chapter. PoN precipitation 

is used as a proxy of the range-dependent bias as it can characterize spatial variations, but 

it cannot be used to characterize bias magnitude. PoN is more useful than other 

dimensionless measures of precipitation, such as each precipitation value divided by the 

mean-field precipitation, because it eliminates the effects of climatological range-

dependent variations of precipitation within the radar domain.  

For a given radar, ending date t, and accumulation period of a months, the radar-gauge 

pair bias data points and PoN-based bias data points will be used in the range-dependent 

bias estimation model. A testing procedure described in the next section determined the 

appropriate form of the parametric model. Separate models will be built for both data types 

using only bias data within the a previous months preceding ending date t. For each 

parameter in the model, the radar-gauge pair value will be combined with the Stage IV 

PoN precipitation value into a single parameter value. The relative weights of the two 

parameter values are maximum-likelihood estimates of the statistical confidence of the 

two model fits. Validation of the range-dependent bias estimation model will use only the 
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radar-gauge pairs, because unlike Stage IV PoN precipitation, these data points are a direct 

assessment of Stage IV biases. 

IV.3.a. Radar-Gauge Pair Bias Data 

The latitude and longitude coordinates of each COOP, WBAN, and CoCoRaHS gauge 

(Fig. 4.1) were used to pair each gauge with the HRAP grid cell it is located within. For a 

given radar and time period all gauges with 100% data availability at the monthly time 

scale were used in the development of range-dependent bias estimation model. In the last 

section of this chapter, an analysis will determine an appropriate threshold for other time 

periods, given that the number of gauges with data completeness diminishes as time scales 

get longer. The radar-gauge pair bias value BG for a single data point i and time period of 

length nd days is 
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, (4.5) 

where d is a single day within the period and wd is a daily weighting coefficient that equals 

zero if a gauge measurement is missing and one if it is non-missing. 
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Fig. 4.1. Locations of the available radar-gauge pairs in the central and eastern CONUS. 

To avoid dividing by very small numbers, only BG values computed from pairs with both 

P0 and PG values above some minimum threshold will be included in the range-dependent 

bias estimation model, which was determined to be 3.0 mm based on inspection of the 

effect low precipitation values can have on computed bias values (Fig. 4.2). For a given 

radar-gauge pair bias, the larger of the P0 and PG values is assigned to A and the smaller 

to B, and Fig 4.2 shows the ratio A:B plotted as a function of B. 
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Fig. 4.2. The ratio A:B of the larger value precipitation value (A) to the smaller value 

precipitation value (B) in a radar-gauge pair as a function of B. 

IV.3.b. Stage IV Percent of Normal Precipitation Bias Data 

Unlike the irregularly spaced radar-gauge pair bias data, the Stage IV PoN precipitation 

data has complete two-dimensional spatial coverage across a given radar domain (see 

Section III.2 for a more detailed description). Therefore, it is possible to obtain generally 

equal azimuthal sampling for most intermediate range intervals at most ranges. The main 
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assumption is that PoN gives an indication of the spatial variability of bias that does not 

rely upon the availability of gauges, which makes it quasi-independent from the radar-

gauge pair biases. One drawback is that the mean-field bias cannot be computed using 

strictly PoN precipitation. A secondary assumption guiding the use of Stage IV PoN 

precipitation as a proxy for range-dependent bias is that averaging all the samples for a 

given range interval minimizes any azimuthal dependencies. 

In a given radar domain, all the HRAP grid cells were arranged in order of increasing 

distance and then split into n separate bins, each of which will represent a single Stage IV 

PoN bias data point. The choice was made that the number of bins should equal the number 

of radar-gauge pair bias data points and that the bins should be constructed without 

knowledge of azimuthal angles. The bins were constructed to be of roughly equal size, so 

that the difference in the number of members for any two randomly selected bins j1 and j2 

has an absolute value of zero or one. All nj members of bin j have lie within an annulus 

that is unique to that bin. Fig. 4.3 is an example of the bins constructed for the Little Rock, 

AR (KLZK) radar domain for the 1-month period ending 31 December 2012. 
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Fig. 4.3. The 56 bins used to create the 1-month S4 PoN precipitation bias data points at 

the Little Rock, AR (KLZK) WSR-88D for the period ending 31 December 2012. 

The single data point from each bin j has both a single range value (dN) and Stage IV PoN 

bias value (BN) computed as an equal-weighted average of all nj member values 

 
1

1 jn
j i

N N
ij

B P
n 

  . (4.6) 

Combining the Stage IV BN parameters with the radar-gauge pair parameters in the range-

dependent bias estimation model requires an adjustment of the BN value at each bin by an 

amplitude A. For a given radar domain and set of bias data points for each type 



 
 

112 
  

 1

1

Gi n

Ni n

med B
A

med B
 

 

 , (4.7) 

using the median of the n data points for each data type. The Stage IV PoN bias data point 

for bin j is simply the Stage IV PoN bias value computed in (4.6) multiplied by the 

amplitude A. 

IV.4. Bias Estimation Model Testing 

IV.4.a. Leave One Out Cross-Validation 

The range-dependent bias estimation model is an idealization of bias as a continuous 

function of range, predicted using only discrete data points at random ranges. Cross-

validation (C-V) is a widely used testing procedure for estimating model prediction error 

for random and irregularly-spaced datasets (Hastie et al. 2005). In K-fold C-V, n sample 

data points are split into K equal-sized or roughly equal-sized parts. K prediction models 

are constructed, each time leaving a different part k out as “validation data” while the 

model is constructed using data points from the remaining K – 1 parts, which are referred 

to as “training data”. The prediction error for each individual model is computed using the 

data points in the kth validation group. The most commonly used metric for prediction 

error and the one used in this study is mean squared error (MSE; Hastie et al. 2005). MSE 

is simply the sum of squared error (SSE) divided by the total number of validation groups. 

Separating data into a training group and validation group allows one to ensure that the 

model does not overfit the n sample data points. If the prediction error was estimated using 
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only training data points, the value of the error would get smaller and smaller as more 

parameters were included in the model (Hastie et al. 2005).   

Table 4.1. The overall MSE of the LOOC-V tests done for all radar-months on the radar-

gauge pair bias data points. Each test looked at the two different possibilities, each of 

which is listed. 

Test Possibility 1 Possibility 2 

1 MK2011 model form *SLR single straight line model form 

0.1675 0.1480 

2 *SLR single straight line model form T-S single straight line model form 

0.2205 0.2206 

3 SLR single straight line model form *T-Sw single straight line model form 

0.22052 0.22049 

4 *T-Sw CDF approximately 0.5 T-Sw CDF = 0.5 

0.220487 0.220491 

5 *CoCoRaHS not used CoCoRaHS used 

0.2205 0.2209 

6 *T-Sw single straight line model form T-Sw merged maximum model form 

0.1966 0.1949 

7 All partitions mT-S1 > 0 and mT-Sw2 < 0 Only partitions MSE1 > MSE2 

0.2040 0.2019 

 

Leave-one-out C-V (LOOC-V) is a special case of K-fold C-V where K = n, the total 

number of data points in the complete sample. LOOC-V is approximately unbiased for the 

true prediction error, whereas cross-validation testing with lower values of K may be 

biased (Hastie et al. 2005). Therefore, LOOC-V testing will be used to determine 
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appropriate choices for the range-dependent bias estimation model, which includes the 

model form, the number of parameters, the method for determining the parameters, and 

any restrictions needed to be implemented in the model construction. 

IV.4.b. Details of Testing 

For a given radar domain, LOOC-V testing will use all n COOP and WBAN radar-gauge 

pair bias data points as validation data points. The CoCoRaHS stations will not be used as 

validation gauges since the network does not have any automated quality control process, 

unlike the other two networks (Cifelli et al. 2005). Each LOOC-V test will determine the 

preferred choice from a set of two possible outcomes, based on the choice with the lower 

overall MSE value. For instance, one of the initial LOOC-V tests will determine whether 

the inclusion of CoCoRaHS radar-gauge pair biases in the training group is preferred to 

their exclusion. Table 4.1 will summarize the overall MSE for each of the two choices. 

Since this study is concerned with correcting biases on monthly and longer time scales, 

the accumulation period a = 1 was chosen for the LOOC-V testing procedure. Another 

assumption is that noise in the bias data points due to random errors is highest at the 

shortest time scales, and any model form that can handle 1-month biases is more than 

capable of handling biases at longer time scales. Only radar-gauge pairs with no missing 

gauge data were used for testing at each of the 104 WSR-88Ds and 96 calendar months in 

the testing period for a total of 9,984 “radar-months.” Further LOOC-V testing on longer 

accumulation periods will examine if the prediction provided by the training group is 

improved using radar-gauge pairs from stations with missing gauge data. 
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Fig. 4.4. 1-month BG (solid diamonds) and BN (open diamonds) data points at the KLZK 

radar domain for the period ending 31 December 2012. Data included (minus one outlier, 

which is shown in Fig. 4.6) have bias values between -1.0 < B < 1.0. 

The Stage IV PoN bias data points will not be included in the LOOC-V testing, with the 

assumption for a given radar domain and time period these data will have significantly 

less noise than the radar-gauge pair bias data points. The Stage IV PoN has complete 

spatial coverage, so the range-interval averaged bias data points will have greater spatial 

consistency and there is no introduction of random errors due to the gauge data. Therefore, 

the model form found appropriate for the radar-gauge pair bias data points will be applied 

to the PoN bias data points. Fig. 4.4 is an example of both types of data points for the 

Little Rock, AR (KLZK) radar domain for the 1-month period ending 31 Dec 2012. Both 

types of bias data points for the KLZK December 2012 radar-month show the same the 

basic dependence on range, with a bit of disagreement at shorter ranges, but there is much 

less variance and greater spatial consistency with the Stage IV PoN bias data points. 
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IV.5. Determining Appropriate Model Form 

The initial stage of determining the range-dependent bias estimation model form was 

seeing if there was an existing model form that was appropriate given the properties of our 

bias data points. The single most important factor leading to range-dependent biases is the 

VPR. For single storms, spatial non-uniformity of the VPR may cause random biases. For 

longer accumulation periods the overall VPR influence can cause overestimation of PT 

and a maximum in B data at range intervals where the radar beam typically intercepts the 

bright-band. In this section, LOOC-V testing only used COOP and WBAN stations in the 

training group to determine an appropriate form of a D-R bias estimation model form.  

IV.5.a. Krajewski et al. (2011) VPR Model 

There has been a great deal of work done to correct for range dependent biases caused by 

the VPR, including correction algorithms by Andrieu and Creutin (1995), Seo et al. 

(2000), Vignal and Krajewski (2001), and Zhang et al. (2008). However, these and most 

other correction procedures require that availability of reflectivity scans at a number of 

different tilt angles, information that is not available in the Stage IV precipitation dataset. 

Krajewski et al. (2011) created a conceptual statistical model (K2011 model) of the 

“climatological” VPR at a given WSR-88D as a function of height h above the surface, or 

VPR(h). The objective of the Krajewski et al. (2011) study was to create a model of the 

range-dependent errors that targets the VPR as the source of uncertainty in radar 

precipitation estimates, which falls in line with the goal of this section. Also, the 

conceptual model is useful in the context of correcting the Stage IV dataset as it can 
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created without a priori knowledge of the vertical structure of the reflectivity 

measurements. 

The K2011 model is a continuous model characterized by three primary vertical layers. 

The lowest K2011 vertical layer is a below-bright-band region where VPR(h) is one. The 

middle layer is where a bright-band is located and the VPR(h) is assumed greater than one. 

The top layer is an above-bright-band region where VPR(h) is assumed to decrease linearly 

with height. 

Parameterization of the K2011 model begins with characterizing the enhanced reflectivity 

associated with the climatological bright-band region. The height of the maximum bright-

band enhancement (hBB), the ratio of the reflectivity maximum at hBB relative to h0 (Zmax), 

and the vertical depth of the bright-band region (ebb) are combined so that within the 

K2011 bright-band region, 

  
2

1 exp bb
max

bb

h hVPR h Z
e

  
    
   

. (4.8) 

The above-bright-band layer in the K2011 model is characterized by a single parameter 

quantifying the linear decrease in VPR with altitude (sbb) so that 

    
ln10exp
10 bb bbVPR h s h h 

   
 

. (4.9) 
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Fig. 4.5. The vertical profile of reflectivity as a function of height in the Krajewski et al. 

(2011) conceptual model for the 1.48° tilt of the Tulsa, OK (KINK) WSR-88D. The cold 

season (black line) parameters are hbb = 2.51, ebb = 0.98, Zmax = 0.86, and slop = 1.94 and 

the warm season (gray line) parameters are hbb = 3.86, ebb = 1.73, Zmax = 0.83, and slop = 

1.90, taken from Krajewski et al. (2011). 

Combining (4.8) and (4.9) into a single equation to describe the magnitude of the VPR 

influence at any height h with the K2011 parameterization is 



 
 

119 
  

    
2

ln101 exp exp
10

bb
max h bb bb

bb

h hVPR h Z s h h
e


      

         
      

, (4.10) 

where h is a delta function that is zero if h < hbb and one if h ≥ hbb. Fig. 4.5 shows the 

Krajewski et al. (2011) VPR for the 1.48° tilt of the Tulsa, OK (KINX) WSR-88D, given 

separate parameterization for the cold season and warm season. The parameterization was 

determined by minimizing the sum-of-square differences between the model VPR and 

empirical VPR data. 

One drawback to the K2011 model is that it is not possible to do a direct transformation 

of the VPR from height coordinates to range coordinates without knowledge of the tilt 

angles used in the radar precipitation estimates. For each of the three lowest tilt angles, 

Krajewski et al. (2011) model the VPR influence at distance d from the radar by 

integrating the VPR found in (4.10) throughout the vertical width of the beam, which is 

dependent on range. 

IV.5.b. Modified Krajewski et al. (2011) VPR Model 

The K2011 was considered to be a good starting point for the range-dependent bias 

estimation model given the model form properties we are looking for. However, 

adjustments to the K2011 model form were necessary if it was to be considered a 

candidate. The most obvious modification is that the model needs to be a function of range 

rather than height given the bias data points are in range coordinates. Only transforming 

to range coordinates might be sufficient if the goal was to find a range-dependent VPR 

estimation model. However, the K2011 VPR model characterizes biases at ranges between 
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the radar location and the region with enhanced reflectivity due to the bright-band as 

approximately one. This approximation is not sufficient for a candidate model since it 

assumes a mean-field bias of one, and this shortcoming was addressed with the addition 

of a mean-field bias term to the modified Krajewski et al. (2011) model (MK2011 model). 

The MK2011 model of range-dependent biases, with a vector of parameters a = {dbb, bb, 

max, bb, }, is given by 

    
2

1 exp expbb
max d bb bb

bb

d dB d d d  


    
           
     

, (4.11) 

where is mean-field bias adjustment factor, dbb is the distance from the radar of the 

maximum VPR enhancement, max is the magnitude of the maximum enhancement, bb is 

the horizontal width of the enhancement region, bb characterizes the decrease is VPR 

beyond the bright-band region, and D is a delta function that is zero if d < dbb and one if 

d ≥ dbb. Since there is no simple analytical solution, determination of the MK2011 

parameters must be done through numerical methods. Because the MK2011 best-fit vector 

of a is found numerically, a reasonable numerical range for the possible values of each 

parameter was determined (Table 4.2), with a possible 115 or 161,051 permutations. In the 

MK2011 model, the range is normalized by the dmax of the radar domain such that the 

possible range of the bias data points is (0, 1]. The best-fit vector of a given a set of bias 

data points is the permutation which minimizes the RSS. Fig. 4.6 is an example of the 
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MK2011 constructed for the Little Rock, AR (KLZK) radar domain for the 1-month period 

ending 31 December 2012. 

Table 4.2. Numerical possibilities for the five parameters in the MK2011 model form. 

Parameter Minimum Interval Maximum 

Dbb -1.0 0.3 2.0 

bb 0.0 0.05 0.5 

max 0.0 0.5 5.0 

bb 0.0 0.3 3.0 

 0.5 0.1 1.5 

 

 

  

Fig. 4.6. The modified Krajewski et al. (2011) model fit (solid black line) to the radar-

gauge pair BG data at the Little Rock, AR (KLZK) WSR-88D for the 1-month period 

ending 31 December 2012. 
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IV.5.c. MK2011 Model Form vs. Single Straight Line Model Form 

The performance of the 5-parameter MK2011 model form was compared using the 

LOOC-V testing procedure to a 2-parameter single straight line model form, which uses 

SLR for parameter estimation. The two SLR estimated parameters are the slope (mSLR) and 

y-intercept (bSLR) found through minimization of the RSS. The objective of the testing was 

to determine if the MK2011 model is overfitting the radar-gauge pair bias data. The 

computational expense of finding the MK2011 model best-fit a meant only one randomly 

chosen data point was used for validation at each radar-month. Both the best-fit MK2011 

parameters and SLR parameters of the training group were determined and each model 

estimate was computed for the d value of the validation data point. 

The LOOC-V testing results show a lower overall MSE was lower for the single straight 

line model than for the MK2011 model (Table 4.1). Both model types determine 

parameters based on minimization of the RSS, and extreme outliers can lead to large 

residual values. However, the 5-parameter MK2011 model gives has a greater capability 

of adjusting its model shape to fit outliers and thus minimize the RSS, which leads to 

overfitting. Fig. 4.7 is an example of overfitting by the MK2011 model that is handled 

better by a SLR model for the Norfolk, VA (KAKQ) radar domain for the 1-month period 

ending 31 October 2008. The removal of only a single radar-gauge pair bias data point 

from COOP station 444044 (Holland 1E, VA) completely changes the shape of the 

MK2011 model fit in the KAKQ domain for the same period. In this case, there are 43 

available radar-gauge pair biases in Fig. 4.7, so one it would be difficult to attribute the 

overfitting a lack of training data. 



 
 

123 
  

  

Fig. 4.7. The modified Krajewski et al. (2011) model fit (solid black line) to the radar-

gauge pair BG data at the KAKQ radar domain for the 1-month period ending 31 October 

2008; the solid gray line is the MK2011 model fit removing only the open diamond. The 

SLR model fit (dashed black line) using all the data points and the SLR model fit removing 

only the open diamond (dashed gray line) are included for comparison. 

The SLR model was found to be preferable to the MK2011 model because it has fewer 

parameters, which makes it more resistant to overfitting. However, a single straight line 

model form does not have the capability to model a maximum in the VPR, which was a 

desirable property of the MK2011 model. Looking back at the desired properties of an 

ideal range-dependent bias estimation model form, both model forms satisfy property 1 

(continuous function of D for all possible ranges), the MK2011 model form satisfies 

property 2 (ability to model both range-dependent and mean-field bias processes), and the 

single straight line model form satisfies property 3 (resistant to overfitting). So one would 

assume the logical next step is to merge the two model forms into a single model. 
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However, SLR parameter estimation still doesn’t quite satisfy property 4, as it is sensitive 

to outliers since it is based on minimization of the RSS. Also, the SLR model form is 

based on parametric statistics and assumes homoscedasticity of the radar-gauge pair biases 

throughout the radar domain with increasing range. To better satisfy property 4 in a 

merged model form, an alternative method of single straight line parameter estimation 

called Theil-Sen was explored and its ability to handle radar-gauge pair bias data relative 

to SLR was assessed using LOOC-V testing. 

IV.5.d. Alternative Estimator of Regression Model Parameters  

IV.5.d.1) Theil-Sen Estimation of Parameters 

Theil (1950) introduced a method for estimating the slope as an alternative to traditional 

regression techniques that uses non-parametric statistics. The Theil (1950) slope is the 

median of the slopes computed from each possible pair of data points. Sen (1968) limited 

the set of possible slopes to only pairs of points i and j in which xi ≠ xj, which in our case 

limits pairs to having points from different HRAP grid cells. For a given radar domain, 

ending date t, and accumulation period a, the data points are initially ordered by increasing 

range. Candidate Theil-Sen slopes (mij) are computed for each pair of data points for which 

i < j as 

 
j i

ij
iji j

B Bm
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 , (4.12) 

where dij = dj – di.  The Theil-Sen slope (mT-S) is the median of all nm candidate slopes, 

written as 
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The Theil-Sen y-intercept (bT-S) is determined by passing a straight line with slope mT-S 

through all the data points. For each point i a y-intercept bi is computed as 

 i i i
T Sb B m d   (4.14) 

and bT-S is the median of all n ordered y-intercepts, written as 

  
1
med i i

T S T Si n
b B m d 

 
  . (4.15) 

Theil-Sen parameter estimation is more robust than SLR and is able to handle a dataset 

with up to 29.3% of the data points being corrupt or outliers (Rousseeuw and Leroy 2003), 

an advantage that is desirable for the irregularly-spaced radar-gauge pair bias data. The 

LOOC-V testing revealed that the performance of the SLR and Theil-Sen methods was 

nearly identical with a slight edge to SLR (Table 1.2). 

IV.5.d.2) Weighted Theil-Sen Estimation of Parameters 

Because the Theil-Sen method was slightly outperformed by the SLR, a minor tweak to 

the T-S method was made. The traditional Theil-Sen slope estimate is based on equal 

weighting of each pair for which a slope is computed, regardless of the distance between 

the two data points. However, the magnitude of each slope computed from a pair of data 

points i and j is sensitive to the distance between the two points (Fig. 4.8). In our case, the 

slope of a line is less sensitive to noise in BG values when the distance between the two 
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points increases. Sievers (1978) suggests that each pair should have a computed weight 

based on the value dij instead of using a single universal weight of 1/nm. The weight of 

each pair (wij) is formulated as 
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1 1
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ij

n ni j ij
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, (4.16) 

with the computation of mij is shown in (4.12). 

  

Fig. 4.8. The absolute value of the computed slope (|m|) for each pair of radar-gauge pair 

bias data points as a function of the distance (d) between each pair at the KFDR radar 

domain for the 1-month period ending 30 November 2005. 

Instead of the traditional Theil-Sen method of estimating the slope as the median out of a 

set of equally-weighted candidates, the weighted Theil-Sen (T-Sw) method introduced by 

Sievers (1978) estimates the slope (mT-Sw) using a weighted rank procedure. After 
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computing the slope mij and weight wij of each pair, the pairs are ordered by increasing 

slope and each is assigned a rank rij. The pair with the lowest slope value was assigned rij 

= 1 and rij = nm was assigned to the pair with the largest slope value. A cumulative 

weighting function W is then introduced with an initial value of zero and for any rank R 

has a value 
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R
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   . (4.17) 

The function W is increased until it reaches a value ≥ 0.5 corresponding to rank r1/2. The 

T-Sw slope is then computed as 

    1/2 1/2
1 11
2 2

ij ij ij ij
T Swm m r r m r r         (4.18) 

by Sievers (1978). The stated goal of the T-Sw is to find the median of the weighted 

cumulative distribution function, i.e. W = 0.5. The Sievers (1978) determination of the 

median was modified to allow for differential weighting of the two slopes on either side 

of W = 0.5, such that  

    1 1/2 2 1/2
1 11
2 2

ij ij ij ij
T Swm W m r r W m r r

      
              

      
, (4.19) 

where W1 < 0.5 ≤ W2. Table 4.1 indicates the overall MSE in LOOC-V testing was nearly 

identical for determining mT-Sw, with a slight preference for (4.18) instead of (4.19) and 

better performance than both SLR and traditional Theil-Sen regression. Therefore, the 
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Sievers (1978) computation of the single straight line slope parameter is preferred to the 

unweighted Theil-Sen. The T-Sw y-intercept is found in the same manner as the traditional 

Theil-Sen method, substituting mT-Sw for mT-S in both (4.14) and (4.15). 

IV.5.d.3) Comparison of Theil-Sen and Weighted Theil-Sen 

The T-Sw method of finding parameters performed marginally better in LOOC-V testing 

than both SLR and traditional Theil-Sen (Table 4.1). The Altus AFB, OK (KFDR) radar 

domain for November 2005 is an example of a radar-month where the traditional Theil-

Sen and T-Sw methods produced noticeably different values for parameter estimation 

(Fig. 4.9). The KFDR bias data points prove to be something of a worst-case scenario for 

the traditional Theil-Sen method, which is that most range intervals are unsampled and 

data points are clustered into narrow range intervals with large variability. The median 

slope value mT-S to be -0.0030 km-1, whereas the value of mT-Sw was -0.0085 km-1. 

IV.5.e. Testing for Inclusion of CoCoRaHS Gauges 

The appropriateness of using (or not using) CoCoRaHS gauges was assessed for T-Sw 

parameter estimation of a single straight line using LOOC-V testing. For a given radar-

month, each COOP and WBAN gauge was withheld as a validation point and the T-Sw 

parameters of two single straight lines were computed, each using a different training 

group. The first training group only contained the other COOP and WBAN radar-gauge 

pair biases while the second training group contained all the data points from the first 

training group in addition to CoCoRaHS radar-gauge pair biases. The results indicate a 
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slightly lower overall MSE using only COOP and WBAN gauges in the training group 

(Table 4.1). 

  

Fig. 4.9. Radar-gauge pair BG data (solid numbered diamonds) at the KFDR radar domain 

for the 1-month period ending 30 November 2005. The straight line model fit using the 

traditional Theil-Sen method (dashed line) and the Sievers (1978) weighted T-S method 

model fit (solid line) are included. 

IV.6. Conditional-VPR (conVPR) Model 

IV.6.a. Overview 

The Sievers (1978) T-Sw method of finding the slope and intercept of a single straight line 

satisfies properties 1, 3, and 4 of a preferred range-dependent bias estimation model. 

However, a single straight line model form will not be able to account for the VPR effect 

that leads to range-dependent biases, and thus, is not able to account for all significant 

physical processes (property 2). This section will introduce a new model that combines T-

Sw estimation with the MK2011 conceptual model form that approximates the VPR as a 
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function of range and satisfies all the properties of an ideal model. Based on LOOC-V 

testing of the T-Sw single straight line model form, only COOP and WBAN stations will 

be used in the merged, decision-based model form called the conditional-VPR (conVPR) 

model. 

The basic concept of a conVPR model is to determine the existence or non-existence of a 

VPR maximum in the bias data points for a given radar-month. The non-existence of a 

maximum in the bias data points indicates one of three possibilities, which are 

1. the VPR maximum is at a height corresponding to a range beyond the spatial 

footprint of a given radar domain, 

2. a VPR maximum is not present, or 

3. the VPR maximum is not statistically significant. 

The first possibility likely indicates a primarily convective VPR structure where the height 

of the VPR corresponds to a range beyond the maximum of the radar domain. Therefore, 

a model with a single straight line having positive slope is more likely in the warm season 

in most locations. The second possibility can occur when temperatures throughout the 

radar domain are below freezing, which means there is no melting layer and thus no VPR 

maximum. 

For each radar-month, the conVPR model will be constructed independently for both the 

radar-gauge pair biases (BG) and the Stage IV PoN biases (BN). If the bias data points 

indicate that a VPR maximum exists, the conVPR model will be a combination of two 



 
 

131 
  

separate T-Sw single straight lines merged at a single range d∩, which we will call the T-

Sw merged maximum model form with a VPR maximum B∩. If the bias data points do not 

indicate a VPR maximum, the conVPR model will contain a single T-Sw straight line 

found using the Sievers (1978) T-Sw method described in the previous section and we will 

call this the single conVPR model form. 

IV.6.b. Defining a Candidate VPR Maximum 

To determine each candidate T-Sw merged maximum model form maximum (Bmax) for a 

given radar-month, the bias data points are partitioned several times. Each partition 

contains two non-overlapping groups such that Group 1 contains bias data points for 0 ≤ 

d < dp and Group 2 from dp ≤ d ≤ dmax, with dp defined as the changepoint for each partition. 

This first partition examined is at dp = 10 km and for each subsequent partition, the range 

at which the partitioning occurred was increased by 10 km, which is consistent with the 

spatial step in the beam blockage detection procedure. The two criteria for a partition to 

contain a candidate Bmax is that the T-Sw slope of Group 1 is positive (mT-Sw1 > 0) and the 

T-Sw slope of Group 2 is negative (mT-Sw2 < 0). If the slope criteria are met for a particular 

partition, y-intercepts (bT-Sw1 and bT-Sw2) are determined for each group. The term 

“candidate” is used because there may be more than one partition at a given radar-month 

satisfying the two slope criteria. 
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(a)   

(b)   

Fig. 4.10. Radar-gauge pair BG data points for Group 1 (black diamonds) and Group 2 

(gray diamonds), with the T-Sw single straight lines for each group. Data are from the (a) 

KSJT radar domain for the 1-month period ending 31 July 2012 and the (b) KGSP radar 

domain for the 1-month period ending 31 March 2007. 

If a partition containing a candidate Bmax with changepoint dp satisfies mT-Sw1 > 0 and mT-

Sw2 < 0, the two T-Sw straight lines from each group are merged into a single continuous 
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function. A restriction to the T-Sw merged maximum model is that intersection of the 

straight lines in a partition with a candidate Bmax occurs at dp and rather than the natural 

intersection point of the two lines. Fig. 4.10 shows an example of dp being a poor 

representation (Fig. 4.10a) and dp being a good representation (Fig. 4.10b) of the actual 

intersection point of two T-Sw single straight lines, given a set of radar-gauge pair BG data 

points. A metric used to determine the goodness of dp as an intersection point is the 

absolute difference in the two model bias values B1 and B2 at the intersection range 

      2 2 2 1 2 1p p p T Sw T Sw p T Sw T SwdB B d B d m m d b b        . (4.20) 

Using a candidate dp = 100 km for the San Angelo, TX (KSJT) radar domain for the 1-

month period ending 31 July 2012, the two lines have an actual intersection at a range of 

53.9 km and |dBp| = 1.34 (Fig. 4.10a). Fig. 4.10b shows the two lines for a candidate dp = 

40 km at the Greer, SC (KGSP) radar domain for the 1-month period ending 31 March 

2007, which have an intersection at a range dp of 41.8 km and |dBp| = 0.01. 

IV.6.c. Merging in T-Sw Merged Maximum Model Form 

Up to this point, the T-Sw merged maximum model form has been described by five 

parameters (dp, mT-Sw1, mT-Sw2, bT-Sw1, bT-Sw2), for which there is a difference |dBp| in the two 

bias estimates at dp for partitions with a candidate Bmax. Eliminating the y-intercept of 

Group 2, the two straight lines can be merged into a single continuous function of range d 

with a model bias B(d) of 
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However (4.21) results in a non-continuous first derivative at dp characterized by an abrupt 

transition in the function. Replacing the sign function (4.22) in (4.21) with a hyperbolic 

tangent transition function 
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provides a continuous first derivate at dp. The scale parameter trn in (4.23) is proportional 

to the amount of smoothing at dp. In the T-Sw merged maximum model form, the value 

of the scale parameter was chosen to be trn = 0.01, which provides a minimal amount of 

smoothing. Substituting the transition function (4.23) for the sign function (4.22) in (4.21) 

gives a model bias of 
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Fig. 4.11. Radar-gauge pair BG data points for Group 1 (black diamonds) and Group 2 

(gray diamonds), with the T-Sw single straight lines for each group. The dotted black line 

is merged model fit in Group 2 using (4.24). Data are from the KSHV radar domain for 

the 1-month period ending 31 January 2012. 

Fig. 4.11 is an example of (4.24) using the set of radar-gauge pair bias data points at the 

KSHV radar domain for the 1-month period ending 31 January 2012. The merged model 

form in (4.24) is the single Group 1 straight line for ranges of 0 ≤ d ≤ dp and the Group 2 

straight line offset by a value dBp = B2(dp) – B1(dp) for ranges of dp ≤ d ≤ dmax, with 

smoothing by the hyperbolic transition function near dp. The value of dBp for the two T-

Sw single straight lines is 0.06 with a dp value of 140 km. 

The continuous 4-parameter function in (4.24) was modified to correct the systematic 

offset in Group 2 with the addition of a weighting term (wD), which is 
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The inclusion of the weighting term in (4.24) gives the final T-Sw merged maximum 

model form 
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Fig. 4.12. Radar-gauge pair BG data points for Group 1 (black diamonds) and Group 2 

(gray diamonds), with the T-Sw merged model fit using (4.26) included (solid line). Data 

are from the KSHV radar domain for the 1-month period ending 31 January 2012. 

The value of wD at d = 0 is zero, the value of wD at d = dp is 0.5dBp, and the value of wD at 

d = dmax is dBp. In more general terms, the weighting term wD allows the T-Sw merged 
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maximum model to be a simple average of B1 and B2 at the intersection range. As distance 

increases from dp in either direction, the T-Sw merged maximum model approaches the 

T-Sw single straight line from that group. Fig. 4.12 is the T-Sw merged maximum model 

form (4.26) using the partitioning of the same KSHV radar-gauge pair bias data points in 

Fig. 4.11. 

IV.7. Adaptively Choosing conVPR Model Form 

The development of the conVPR model uses radar-gauge pair bias data points, with 

choices made using the results of LOOC-V tests. A complete description will be provided 

for when it is appropriate to use the T-Sw single straight line model form or the T-Sw 

merged maximum model form. LOOC-V testing showed the T-Sw merged maximum 

model form had a higher overall MSE than the T-Sw single straight line model form for 

all partitions with a candidate Bmax meeting the criteria of mT-Sw1 > 0 and mT-Sw2 < 0 (Table 

4.1), which are the two most basic criteria for using the merged maximum model form. 

Given this result, there needs to be more stringent criteria for the merged maximum model 

form to be preferred to the single straight model form. 

This section will describe the sequence of tests to determine metrics for when it is 

objectively desirable to use the T-Sw merged maximum model form, assuming a null 

hypothesis that the T-Sw single straight line model form provides a better fit. The results 

of each LOOC-V test will be applied to subsequent tests. The variables tested were 

arranged in a sequence that each test should intuitively have decreasing sensitivity to 

change in the variables. The general properties of the conVPR testing using radar-gauge 
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pair bias data will be applied to Stage IV PoN precipitation bias data, described in the next 

section. 

IV.7.a. Effect of Training Group MSE on Choice of conVPR Model Form 

Testing was done for partitions with a candidate Bmax to determine if the choice of model 

form should be dependent on the training group residual sum of squares. The assumption 

here is that with a sufficient sample size, a model fit based on the training group data 

should not deviate too far from a fit that includes the withheld data point. This test 

determines if the merged maximum model form should be used only if the RSS of the 

training group is lower than the RSS found using the single straight line model form. For 

each validation point and partition of the training data points satisfying the two slope 

criteria, the RSS of both the T-Sw single straight line model form (RSS1) and the MSE of 

the T-Sw merged maximum model form (RSS2) were computed. 

The two possibilities tested were 

1. always using the T-Sw merged maximum model form when mT-Sw1 > 0 and mT-Sw2 

< 0 and, 

2. when mT-Sw1 > 0 and mT-Sw2 < 0, use the T-Sw merged maximum model form if 

RSS1 > RSS2 and use the T-Sw single straight line model form if RSSs ≤ RSSc. 

The results of this LOOC-V test showed possibility 2 to have a lower overall MSE (Table 

4.1), which led to a third criterion for a partition with mT-Sw1 > 0 and mT-Sw2 < 0 to be 

considered to have a candidate Bmax, which is RSS1 > RSS2. 
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IV.7.b. Additional Attributes of T-Sw Merged Maximum Model Form Candidate 

Partitions 

In addition to the three criteria already addressed {mT-Sw1 > 0; mT-Sw2 < 0; RSS1 > RSS2}, 

the following three metrics were used to define additional attributes for partitions with a 

candidate Bmax and are 

1. the absolute difference of the two model bias values B1 and B2 at dp (|dBp|), 

2. the range of the candidate changepoint (dp), and 

3. the statistical significance of the difference between mT-Sw1 and mT-Sw2 (p). 

Computation of |dBp| is done using (4.20) and dp is determined by equidistant iteration (10 

km) through a given set of BG data points; the computation of the p-value for attribute 3 is 

a bit more complicated. The p-value is the probability of a student’s t-test with a value t 

and df degrees of freedom and measures the statistical difference of the two partitioned 

slopes. 

Computation of t requires knowledge of the standard error of the Group 1 (sm1) slope, 

which has n1 data points and slope mT-Sw1, and the standard error of Group 2 (sm2), which 

has n2 data points and a slope mT-Sw2. For a given group, the standard error of the is 
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and t is computed as 
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The student’s t-test of the difference between the two T-Sw slopes has a p-value found 

using a lengthy numerical solution and determined by the value of t and the number of 

degrees of freedom 

 1 2 4df n n   . (4.29) 

The p-value has a range of possible values from (0, 1], with the statistical significance of 

the difference between mT-Sw1 and mT-Sw2 increasing as p-value approaches zero. 

IV.7.c. LOOC-V Testing of Model Attributes 

LOOC-V testing was done to determine the appropriateness of using the three attributes 

|dBp|, dp, and p-value as restrictive criteria for partitions containing a candidate Bmax. To 

this point, there are only three restrictive criteria {mT-Sw1 > 0; mT-Sw2 < 0; and RSSs > RSSc} 

for a candidate Bmax in a partition. The goal of the testing was to determine the appropriate 

threshold values for 

1. the maximum value of |dBp| (dBmax), 

2. the minimum value of dp (dpmin), 

3. the maximum value of dp (dpmax), and 

4. the maximum p-value (pmax), 
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for which using the T-Sw merged maximum model form is a better fit than using the T-

Sw single straight line model form when the three established criteria for a candidate Bmax 

were met. For each attribute, several different values were tested (Table 4.3) and each 

LOOC-V test was done independently of the other attributes and in the order listed. The 

attribute threshold value j with the lowest overall MSE (MSEj) was considered to be 

superior to all other threshold values. The tests were conducted in the order listed and the 

results of each test were applied to subsequent tests. 

Table 4.3. LOOC-V test values for different thresholds of T-Sw merged maximum model 

attributes and the one chosen having the smallest MSE. 

Parameter Minimum Interval Maximum Smallest MSE 

dBmax dBmax ≤ 0.05 0.05 dBmax ≤ 5.00 dBmax ≤ 1.70 

dpmin dpmin > 0 km 10 km dpmin > 340 km dpmin > 20 km 

dpmax dpmax ≤ 10 km 10 km dpmax ≤ 350 km dpmax ≤ 310 km 

pmax pmax ≤ 0.05 0.05 pmax ≤ 1.00 pmax ≤ 1.00 

 

IV.7.c.1) Finding an Ideal Maximum Threshold Value for |dBp| 

The first attribute tests seeks to find the maximum value of |dBp| a partition may have to 

consider the conVPR model form preferable to the T-Sw single straight line model form. 

For a given radar-month and a partition with a candidate Bmax, found using the training 

data for validation point i, the value of |dBp| is computed. For each attribute threshold value 

j with a dBmax less than |dBp|, the squared error of the T-Sw single straight line model (SEs) 

at point i was added to SSEj. For each attribute threshold value j with a dBmax greater than 

or equal to |dBp|, the squared error of the T-Sw merged maximum model (SEc) at point i 
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was added to SSEj. The overall LOOC-V testing indicated that dBmax = 1.70 was an ideal 

threshold value and use of the T-Sw merged maximum model should be limited to 

partitions with |dBp| ≤ 1.70. 

Table 4.4. Summary of criteria necessary for a partition of data to have a candidate Bmax. 

Criteria Restriction 

1 mT-Sw1 > 0 

2 mT-Sw2 < 0 

3 RSS1 > RSS2 

4 dBmax ≤ 1.70 

5 dpmin > 20 km 

6 dpmax ≤ 310 km 

7 pmax ≤ 1.00 

 

IV.7.c.2) Finding Ideal Values for dp and for p-value 

The testing for minimum and maximum values of dp and for a maximum p-value was done 

for partitions restricted to mT-Sw1 > 0, mT-Sw2 < 0, and RSSs > RSSc, and |dBp| ≤ dBmax. The 

LOOC-V testing for the minimum threshold value of dp indicated dpmin = 20 km was ideal 

when looking at partitions every 10 km and the maximum threshold value for dp was found 

to be dpmax = 310 km. Therefore, the use of the T-Sw merged maximum model should be 

limited to the interval 20 km ≤ dp ≤ 310 km in addition to the four aforementioned 

restrictions. The testing for a maximum threshold p-value found there should be no 

restriction as pmax = 1.0, given that the range of possible p-values is (0, 1]. A summary of 

the criteria for a partition at range dp to be considered to have a candidate Bmax is found in 
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Table 4.4; if these all these criteria are not met, a T-Sw single straight line model form 

will be used as a fit to the bias data points in the conVPR model. 

IV.7.d. Choosing Single Bias Maximum in Merged Maximum Model Form 

Since the VPR maximum in the MK2011 model form only has a single range dbb, LOOC-

V testing determined an appropriate method for choosing which partition among a set of 

candidate should be chosen. Given a set of radar-gauge pair bias grid points, the values of 

B(dp), |dBp|, MSE2, and the p-value were computed for each partition considered to have a 

candidate Bmax based on the criteria of Table 4.5. LOOC-V testing for the choice of 

partition with range d∩ and chosen bias maximum Bmax looked at four different 

possibilities, each one based on the aforementioned metrics. The possible choices were 

1. the partition with the largest candidate Bmax, 

2. the partition with the smallest value of |dBp|, 

3. the partition with the smallest RSS2, and 

4. the partition with the smallest p-value. 

The results of this LOOC-V testing procedure showed that choice 3, using the candidate 

partition with the RSS2 value equal RSSmin had the lowest overall MSE (Table 4.5). 

Table 4.5. LOOC-V test MSE for choosing a single Bmax among a set of candidates meeting 

all the required criteria for consideration. 

Largest Bmax Smallest |dBp| *Smallest RSS2 Smallest p-value 

0.2049 0.2048 0.2043 0.2051 
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IV.8. The conVPR Model Algorithm 

The LOOC-V testing in the previous section provided objective indicators for determining 

which conVPR model choice was appropriate given a set of radar-gauge pair bias data 

points. The focus in this section shifts to the actual algorithm for determining the conVPR 

model form and the parameters of the model form using all the available data for a given 

radar domain, ending date t, and accumulation period a.  

IV.8.a. Radar-Gauge Pair Bias Data Points  

For a set of radar-gauge pair bias data, criteria have been established to objectively 

determine which conVPR model forms provides the best fit for the given data points; the 

T-SW single straight line or the T-Sw merged maximum model form. Fig. 4.13 is a 

flowchart of the algorithm for objectively determining which conVPR model form should 

be chosen. The key to the decision is whether or not at least one partition exists that meets 

the all the criteria (Table 4.4) necessary to have a candidate Bmax.  

The model fitting algorithm is based largely on the results of the previous LOOC-V test 

of narrowing down a set of Bmax candidates to a single choice. The final choice of a T-Sw 

merged maximum model form means the selected partition must have an RSS2 value 

(RSSmin) both less than the all the other candidate partitions and the T-SW single straight 

line model fit RSS1. Therefore, before iteration through all the possible partitions, the 

initial value of RSSmin = RSS1. When iterating through each possible value of dp for the 

grid points for a given radar-month, the T-Sw merged maximum parameter d∩ is stored 

only for partitions when the value of RSS2 is less than that of RSSmin and the criteria listed 
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in Table 4.5 are met (Fig. 4.13). If there is not a candidate partition meeting the criteria, 

the conVPR model is represented by T-Sw single straight line with slope mT-Sw. 

  

FIG. 4.13. Flowchart of the conVPR algorithm to determine the appropriate model form 

for a set of BG data points. 
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IV.8.b. Stage IV PoN  Precipitation Bias Data Points 

The Stage IV PoN precipitation bias data conVPR model fitting algorithm is more straight-

forward than the radar-gauge pair bias model fitting algorithm. As opposed to the random 

and irregular spatial coverage of gauges, the Stage IV data have complete spatial coverage 

in a given radar domain. Consequently, a collection of Stage IV PoN precipitation bias 

data points for a given radar domain can be approximated to provide a continuous estimate 

of the bias as a function of range for all azimuths. A caveat to this approximation is that 

azimuthal coverage is not complete for all ranges because all radar domains are polygons 

with sharp edges.  

Despite this caveat, we will move forward with the idea that the Stage IV PoN 

precipitation bias data points approximates a true representation of the range-dependent 

bias for a given radar-month. Therefore, the only restrictions for using the T-Sw merged 

maximum model form is that mT-Sw1 > 0 and mT-Sw1 < 0 and RSS1 > RSS2. If there is at least 

one partition with a candidate Bmax, the partition having the smallest RSS2 value is chosen 

for the T-Sw merged maximum model form with changepoint d∩. As with the radar-gauge 

pair bias data points, if RSS1 = RSSmin after examining all candidate partitions, the conVPR 

model will use the T-SW single straight line model best-fit with slope mT-Sw. 

The Stage IV PoN bias data points for the one-month period ending 31 January 2012 at 

the KSHV radar domain shows a clear Bmax, which is captured by the T-Sw merged 

maximum model form (Fig. 4.14). Though not nearly as evident, the radar-gauge pair 

biases for the KSHV December 2012 radar-month have a nearly identical conVPR 
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parameters for the best model fit. Agreement of the conVPR model parameters between 

the two bias data types indicates a high degree of confidence in the range dependence of 

the bias. The KSHV is a radar domain known to suffer from systematic range-dependent 

biases, which appear even to the naked eye when looking at the 36-month PoN 

precipitation ending 31 December 2012 (Fig. 4.15), so the high degree of confidence in 

the model fits (Fig 4.14) is visually justified. 

  

Fig. 4.14. Radar-gauge pair (solid diamonds) and Stage IV PoN precipitation (open 

diamonds) bias data points. The T-Sw merged model fit is included for the BG data (solid 

line) and the BN data (dashed line) from the KSHV radar domain for the 1-month period 

ending 31 January 2012. 
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Fig. 4.15. Stage IV PoN precipitation for the 36-month ending 31 January 2012, with radar 

locations denoted by the white crosshairs. The minimum value (black) is PoN = 50% and 

the maximum value (white) is PoN = 125%. 

IV.9. Combining Bias Data Point Types into Single conVPR Model 

IV.9.a. Overview 

In this section, the conVPR models found individually for each bias data type are 

combined into a single conVPR model (combi-conVPR model). At each HRAP grid cell, 

the resultant model bias value will be used to correct the Stage IV P1 precipitation value. 

Like the conVPR model, the combi-conVPR model can either have a T-Sw single straight 

line or a T-Sw merged maximum model form. Rather than combining the radar-gauge pair 
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and Stage IV PoN bias data conVPR models, the combi-conVPR model initially fuses 

only a single T-Sw estimated parameter from each of the best model fits. For the T-Sw 

single straight line model form, the radar-gauge pair bias mT-Sw (mG) and the Stage IV PoN 

precipitation bias mT-Sw (mN) are fused into a single mT-Sw (m). If the choice is the T-Sw 

merged maximum model form, the d∩ from the radar-gauge pair bias (dG) and the Stage 

IV PoN precipitation (dN) model fits are fused into a single intersection parameter. 

For a given radar domain, ending date t, and accumulation period a, the first step of the 

combi-conVPR model is determining the conVPR model form that best represents each 

available bias data type. If there is agreement in the best-fit radar-gauge pair and Stage IV 

PoN precipitation model forms, the combi-conVPR model will take the same form; the 

relative weight of the parameters from each conVPR model is proportional to the statistical 

confidence of the parameter values.  If the best-fit model form differs between the two 

bias data types, the choice of the combi-conVPR model is the one with more confidence 

in the parameter estimation.  

For both the T-Sw single straight line form and the T-Sw merged maximum forms of the 

conVPR model, the level of confidence in the model fit increases as uncertainty in the 

parameter estimation decreases. The confidence for a given conVPR model fit will be 

assessed solely by the level of uncertainty (2) in the T-Sw slope parameters. This is 

because the T-Sw intercept parameters for the two bias data types are not independent. 

Each of the Stage IV PoN precipitation bias data points were adjusted by amplitude A so 

that the median value of BN is equal to the median value of BG. Because of this, the relative 
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confidence of the T-Sw intercept values for radar-gauge pair and Stage IV PoN 

precipitation conVPR model are assumed to be equal. 

IV.9.b. Radar-Gauge Pair Bias T-Sw Slope Parameter Uncertainty 

For a given set of radar-gauge pair bias data points, the T-Sw slope parameter is the median 

of nm slopes, each computed using a unique pair of (d, B) points. A traditional measure of 

uncertainty for the T-Sw slope estimate mT-Sw is variance (varm), which is formulated as 
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where range di < dj for each computed slope mij. However, (4.30) fails to account for the 

weighting term wij used in the Sievers (1978) T-Sw method of determining the slope 

parameter. A more appropriate measure of uncertainty in the T-Sw slope parameter 

estimation for a set of radar-gauge pair biases (G
2) is  
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and is used to compute the uncertainty in the conVPR T-Sw single straight line model. 

Determining G
2 for the T-Sw merged maximum form merges the uncertainty values from 

the Group 1 (G2
2) and Group 2 (G1

2) slope estimation parameters, each computed 

separately using (4.31), with 
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IV.9.c. Stage IV PoN Precipitation Bias T-Sw Slope Parameter Uncertainty 

Unfortunately, determining the uncertainty of the Stage IV PoN precipitation T-Sw slope 

parameter estimation (N
2) is not as straight-forward as the computation of G

2. As with 

the radar-gauge pair bias conVPR model, the uncertainty is determined independently for 

the two slopes if the model has the T-Sw merged maximum form. 

  

Fig. 4.16. BN values (black diamonds) and Stage IV PoN precipitation values for all HRAP 

grid cells (gray dots), both adjusted by amplitude factor A. Data are from the KSHV radar 

domain for the 1-month period ending 31 January 2012.  
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Each of the Stage IV PoN precipitation bias data points is average of several data points, 

so each BN value has a its own variance N. Fig. 4.16 shows the all the Stage IV PoN 

precipitation values, each adjusted by amplitude A, and the Stage IV PoN precipitation 

bias data points for the KSHV December 2012 radar-month. The computation of N
2 

would be straight-forward if we used all the HRAP grid cells to compute (4.31); however 

the number of potential T-Sw slopes nm is 

  
1

1

Nn

m
i

n i




  ,  (4.33) 

where nN is the number of Stage IV PoN precipitation bias grid points. In Fig. 4.16, the 

number of data points used in the Group1 T-Sw slope estimate mT-Sw1 was manageable 

(nN1 = 45), which leads to nm = 990. However, if the Group 1 T-Sw slope was computed 

using all 2,617 grid cells in the KSHV domain with a d value less than the changepoint 

range d∩ = 140 km, there would be nm = 5.79×106 possible slopes. 

Because of the computational expense is too large, the uncertainty N
2 in the T-Sw slope 

parameter for a given set of BN data will be estimated using the two slope estimates and 

the uncertainty in the gauge data. The estimation begins by assuming that both the radar-

gauge pair slope (mG) and the Stage IV PoN slope (mN) are estimates of the expected slope 

value <m>, each with an error term , such that 

 G G N Nm m m     . (4.34) 

Rearranging the terms in (4.34) to solve for N and squaring each side gives you 
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2 2

N G N Gm m     .  (4.35) 

The expected value of (mN – mG)2 is the variance of the quantity (mN – mG), which will be 

denoted as d
2. Similarly, <N

2> =  N, <G
2> = G, and the expected value of NG is 

zero assuming that the estimates of mG and mN are independent. Using the expected values 

of the quantities in (4.35) and rearranging the terms gives an estimate for the uncertainty 

 N that is 

  2 2 2
N d G    . (4.36) 

The quantity d
2 –  G

2 for a given radar-month should not be used as a direct estimate of 

N
2. Instead, (4.36) should be limited to a general approximation, such as estimating <N

2> 

by using <d
2 –  G

2>. 

IV.9.d. Function for Uncertainty of Stage IV PoN Precipitation Slope Estimate 

Given the approximation in (4.36), it was determined that N
2 for each given radar-month 

should be estimated as a parametric function of the Stage IV PoN precipitation bias data 

points. The two parameters of the N
2 estimation function are 

1. the RSS of the of the BN data points (a) and 

2. the magnitude of the slope estimate (b), 

so that the estimate of N
2 is 

    2
N f a f b    . (4.37) 
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The determination of the form and parameters for the function f(a) was accomplished by 

plotting expected values of d
2 –  G

2, used as an approximation of N
2 in (4.36), as a 

function a for all radar-months (Fig. 4.17). The values of d
2 –  G

2 for all radar-months 

were ordered by the independent variable a and split into 20 groups. Fig. 4.17 shows the 

plot of the expected values of d
2 –  G

2 versus the expected values of a from each group. 

For both quantities, the expected value for each group was represented by the median 

value. A power function fit to the data points with the form 

   Bf a Aa  . (4.38) 

and constants A = 3.87 and B = 0.57 with an R2 = 0.9293. 

  

Fig. 4.17. The approximation for N
2 (d

2 –  G
2, black diamonds) as a function of a for 

all radar-months in the testing period. The data were ordered by a and split into 20 groups, 

with each point representing the median from each group for both a and d
2 –  G

2. The 

solid line is a power function that is fit to the data points. 
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Fig. 4.18. The residuals of d
2 –  G

2 from the power function in Fig. 4.17 as a function of 

b for all radar-months in the testing period. The data were ordered by b and split into 20 

groups, with each point representing the median from each group for both b and the 

residuals. The solid line is an exponential function that is fit to the data points. 

However, the data points in Fig. 4.17 show heteroscedasticity, so the residuals of d
2 – 

G
2 to the model fit f(a) were plotted as a function of the magnitude of the slope estimate 

(b). Fig. 4.18 shows the residuals of d
2 –  G

2 for all radar-months ordered by b and 

split into 20 groups to reduce the noise in the plot. An exponential function fit to the data 

points with the form 

    expf b C Db   (4.39) 

and constants C = 0.10 and D = 1.10 with an R2 = 0.9586. Combining (4.38) and (4.39), 

N
2 can be represented as a combination of the functions f(a) and f(b), such that 

  2 expB
N Aa C Db    . (4.40) 
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Given that the constant C is the value the exponential function when b is zero (Fig. 4.18), 

the final form of the N
2 equation (4.41) subtracts constant C and is 

  2 expB
N Aa C Db C     . (4.41) 

If the conVPR model for a set of Stage IV PoN precipitation bias data is the merged 

maximum model form, the two independent estimates of uncertainty (N1
2 and N2

2) are 

combined into a single N
2 estimate by using the values of d∩ and dmax in (4.32). Now that 

there is a satisfactory method for determining N
2, we can now turn our attention to fusing 

the two parameters from each individual conVPR model into a single combi-conVPR 

model parameter. 

IV.9.e. Combi-conVPR for T-Sw Single Straight Line Model Form 

Fusion of the two T-Sw single straight line slope parameters (mG and mN) into a single 

combi-conVPR slope parameter (m) is given by 

 
2 2

2 2
G N N G

N G

m mm  

 





, (4.42) 

regardless of the appropriate fit for each bias data type. After finding m using (4.42), the 

intercept bi is computed for each of the n radar-gauge pair bias data points and the n Stage 

IV PoN precipitation bias data points (4.15). The combi-conVPR model intercept is the 

median of all the 2n computed bi values. 
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IV.9.f. Combi-conVPR for T-Sw Merged Maximum Model Form 

Rather than fusing the Group 1 and Group 2 slope parameters in the conVPR T-Sw merged 

maximum model form, the choice was made to fuse the changepoints d∩ from the models 

created using each bias data type. No fusion is required if one of the bias data types does 

not have a single changepoint d∩ with a Bmax, and the changepoint d∩ of the other bias data 

type will be chosen. In the case that the best-fit conVPR model forms are both the T-Sw 

merged maximum form, the fusion of the d∩ parameters (dG and dN) is given by 

 
2 2

2 2
G N N G

N G

d dd  

 





. (4.43) 

Once the combi-conVPR d∩ range is determined, both the radar-gauge pair and the BN 

data points are partitioned into two groups. For each group, 

1. the Sievers (1978) T-Sw method is used to independently estimate mG and mN, 

2. determine the measure of uncertainty for mG (G) and mN (N),  

3. fuse mG and mN  into a single slope parameter value m using (39), and 

4. use the fused slope value m to find the combi-conVPR intercept b. 

Within each group the intercept is determined by fitting the slope value m to each and 

every radar-gauge pair bias and Stage IV PoN bias data point. Using the two slope 

parameters (m1 and m2) and two intercept parameters (b1 and b2), the difference |dB∩| 

between the two combi-conVPR model estimates at d∩ is computed (4.20). The final 

combi-conVPR T-Sw maximum merged model form merges the two individual single 

straight lines into a single continuous function at d∩ with the hyperbolic transition function 
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(4.23). The combi-conVPR model fit at any range d is given by (4.26), and the fit for the 

KSHV January 2012 radar-month is shown in Fig. 4.19. 

  

FIG. 4.19. Same as Fig. 4.14, but with the combi-conVPR model fit (gray line) included 

instead of the two independent model fits. 

IV.9.g. Application of Combi-conVPR Model to Multi-Month Periods 

The combi-conVPR model of range-dependent and mean field biases for a given radar 

domain are used to correct the all Stage IV PoN precipitation values for the specific time 

period of the data from which the model was built. For example, correction for range-

dependent and mean field biases for 12-month PoN precipitation will be based on the 

model fit using 12-month BG and BN data. This is different than the beam blockage 

corrections of 1-month precipitation totals that were aggregated to multi-month 

precipitation totals. Beam blockage is temporally invariant, but the mechanisms causing 

range-dependent biases differ in magnitude and variability on different time scales. 
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The combi-conVPR model for an accumulation period a of length n days is computed 

using (4.5), and at each gauge i, using only days with non-missing gauge data. As the 

length a of accumulation periods increases, the percentage of available gauges (defined 

here as have at least a single non-missing gauge value within the period) with missing data 

increases. Fig. 4.20 shows the percentage of available COOP and WBAN gauges 

surpassing different thresholds of data availability, and even for smaller values of a, there 

are not many gauges with a complete time series of daily values. Therefore, it would be 

naïve to use only temporally complete stations to determine the combi-conVPR model fit 

for a radar, accumulation period, and ending date, particularly if the value of a large. 

  

FIG. 4.20. The percentage of available gauges meeting different data availability threshold 

criteria for different values of a; each value is a summary over all available gauges and 

possible ending dates. 

A LOOC-V testing procedure looked at the effects that different data availability 

thresholds had on the robustness of the combi-conVPR fit for several different 
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accumulation periods (Table 4.6). The MSE values from the LOOC-V test indicate that at 

least 90% data availability for radar-gauge pair biases in combi-conVPR models for all 

time scales. The network of gauges with 100% data completeness is sparse for 36 months 

(see Fig. 4.21a), whereas the number of gauges increases significantly for lower thresholds 

(see Fig. 4.21b). 

Table 4.6. LOOC-V test MSE for choosing an optimal data availability threshold in 

determining the combi-conVPR model fit, for different accumulation periods (a). 

a 

Data Availability Thresholds 

≥ 50% ≥ 60% ≥ 70% ≥ 80% ≥ 90% 100% 

1 0.22088 (6) 0.22084 (5) 0.22070 (4) 0.22055 (3) 0.22043 (1) 0.22046 (2) 

6 0.07252 (4) 0.07253 (5) 0.07250 (2) 0.07252 (3) 0.07246 (1) 0.07307 (6) 

12 0.01710 (3) 0.01710 (2) 0.01712 (5) 0.01710 (4) 0.01709 (1) 0.01809 (6) 

18 0.01489 (4) 0.01489 (3) 0.01489 (5) 0.01486 (1) 0.01486 (1) 0.01623 (6) 

24 0.01367 (4) 0.01367 (3) 0.01369 (5) 0.01364 (1) 0.01364 (1) 0.01519 (6) 

36 0.01287 (4) 0.01286 (3) 0.01287 (5) 0.01280 (2) 0.01278 (1) 0.01506 (6) 

 

Once the combi-conVPR model bias (B3) is determined, computation of a Stage IV 

precipitation value P3 corrected for beam blockage, mean-field bias, and range-dependent 

bias at an HRAP grid cell is straightforward and is 

 
 

1
3

3 , , 1
PP

B d r



. (4.44) 
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(a)  

(b)  

Fig. 4.21. The available gauges meeting the data availability thresholds of (a) 100% 

availability and (b) ≥ 90% availability for the period ending 31 December 2012. 
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Fig. 4.22. The Stage IV 36-month PoN precipitation for the period ending on 31 December 

2012, with a focus on the KFWS and KSHV radar domains; data shown are (top) 

uncorrected and (bottom) corrected for beam blockage, mean-field biases, and range-

dependent biases. 

The changes in the Stage IV estimates due to the corrections for biases are shown in Fig. 

4.22 for the 36-month period winding on 21 December 2012, highlighting the Dallas/Fort 

Worth, TX (KFWS) and KSHV radar domains. The primary improvements to the KFWS 
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radar domain are related to the removal of beam blockage to the south of the radar location, 

whereas the KSHV improvements are related to corrections for range-dependent biases, 

i.e., no more donut hole near the radar location. 

(a)  

Fig. 4.23. The Stage IV 12-month PoN precipitation for the period ending on 31 

December 2012 that is (a) uncorrected and (b) corrected for beam blockage, mean-field 

biases, and range-dependent biases. The minimum value (black) is PoN = 50% and the 

maximum value (white) is PoN = 150% in both maps. 
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(b)   

Fig. 4.23. Continued. 

A broader spatial view is provided by Fig. 4.23, which looks at the difference between the 

initial Stage IV 12-month precipitation field and the bias-corrected field for same ending 

date as Fig. 4.22. The improvements due to corrections for beam blockage are more 

obvious than those for the bias correction procedures in this chapter. However, closer 

inspection shows a reduction of the range-dependent bias artifacts in the Stage IV 

estimates for several of the radar domains in the northwest quadrant of Fig. 4.23b. 
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IV.9.h. Combi-conVPR Model Verification 

A straight-forward verification exercise was designed to ensure that the correction 

procedures for beam blockage, mean-field biases, and range-dependent biases are 

providing improved estimates relative to the original Stage IV precipitation data. The basic 

methodology of the verification procedure is to withhold 20% of the available radar-gauge 

pairs in a validation group and use the remaining 80% of the pairs as a training group for 

developing the Combi-ConVPR model at each radar. This verification procedure is similar 

to LOOC-V, except that 20% of the radar-gauge pairs are used for verification rather than 

a single pair. The bias-adjusted Stage IV precipitation estimate (P3) is compared to the 

gauge value (G) at each of the withheld radar-gauge pairs and at each pair, and an RMSE 

value will be computed using (3.25). At each withheld pair, the RMSE values for the 

uncorrected Stage IV precipitation (P0) and beam blockage-corrected Stage IV 

precipitation (P1) estimates are also computed for comparison.  

Evaluation of the errors in the Stage IV P0, P1, and P3 data was done for four different 

four accumulation periods (a) and ending times (t), with a = {1 month; 4 months; 12 

months; 36 months} and t = {January 2008; July 2009; April 2011; October 2012}. The 

procedure was run 10 different times for each possible permutation of (a, t). Each run has 

a unique set of randomly selected radar-gauge pairs in both the training and validation 

groups, with each pair belonging exclusively to either the training or validation group. The 

average RMSE over the 10 runs for each permutation of (a, t) for each of the Stage IV 

precipitation datasets is summarized in Table 4.7, which also includes the overall 

reduction in error of the P1 and P3 datasets relative to the P0 dataset. 
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In all but three of the 16 (a, t) permutations, the overall RMSE was reduced by more than 

a third after corrections for beam blockage and mean field and range-dependent biases. 

Given that the errors in this procedure were evaluated at gauges not used in any of the bias 

corrections, it is reasonable that any randomly selected grid cell should have a similarly 

improved estimation of the true surface precipitation when using the P3 value instead of 

the value of P0. The evaluation procedure summarized in Table 4.7 provides empirical 

evidence in addition to the visual evidence (i.e., Fig. 4.23) that the three types of bias 

corrections provide improved Stage IV precipitation estimates at all time scales. 

Table 4.7. Validation test RMSE values for the P0, P1, P3 datasets for different 

accumulation periods (a) and ending dates (t). 

t a 

RMSE (mm) P0 RMSE Reduction 

P0 P1 P3 P1 P3 

January 2008 

 

1 63.0 62.6 36.6 0.71% 41.91% 
4 189.7 182.8 110.4 3.64% 41.78% 

12 509.9 488.2 298.3 4.25% 41.49% 
36 1328.5 1267.2 849.0 4.61% 36.09% 

July 2009 

 

1 101.5 100.6 53.0 0.93% 47.78% 
4 257.4 253.5 152.3 1.53% 40.84% 

12 1026.6 1002.5 798.7 2.35% 22.20% 
36 1695.0 1602.9 1187.3 5.43% 29.95% 

April 2011 

 

1 89.3 88.4 48.3 0.98% 45.89% 
4 192.1 191.2 110.4 0.50% 42.53% 

12 467.6 456.7 232.2 2.32% 50.33% 
36 1568.1 1478.2 1105.3 5.74% 29.51% 

October 2012 

 

1 76.3 75.9 32.2 0.50% 57.72% 
4 211.5 209.8 111.6 0.78% 47.24% 

12 436.4 423.7 260.0 2.91% 40.42% 
36 1133.7 1087.7 671.3 4.06% 40.79% 
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5. CHAPTER V 

TWO-DIMENSIONAL BIAS CORRECTIONS 

 

V.1. Introduction 

This chapter will build upon the prior bias correction procedures for beam blockage, mean-

fields biases, and range-dependent biases and look to identify any remaining two-

dimensional biases in the P3 dataset. Of particular importance are spatial anisotropies in 

the P3 data that lead to biases which are a function of the RFC and radar domain that a 

particular HRAP grid cell is located in. The original Stage IV P0 dataset contains 

anisotropies related to the individual RFCs at which the analyses were produced, since 

each RFC produces an independent daily analysis and these anisotropies lead to residual 

biases in the P3 product. Anisotropies attributed to the WSR-88Ds are due to the prior bias 

corrections in the P3 data being determined independently at each radar domain. The most 

visible manifestation of these spatial anisotropy sources are discontinuities in analyzed P3 

Stage IV precipitation fields at boundaries of both radar domains and RFC areas of 

responsibility. 

Additionally, the bias corrections of the previous chapters were done for a single 

dimension. In Chapter III, the beam blockage corrections used grid cells with 

approximately the same d value. The mean-field biases were corrected using a single 

constant that is a function only of the WSR-88D and the range-dependent bias corrections 

are solely a function of range at each radar. 
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The remaining anisotropies in the P3 dataset, the corrections being done independently at 

each radar, and the one-dimensional nature of the bias corrections up to this point will be 

addressed in a final bias correction procedure, which will minimize any two-dimensional 

biases still existing in the two-dimensional Stage IV precipitation fields. Given the 

imitations of the previous bias corrections, is important that the bias corrections in this 

chapter are done  

1. in two dimensions and 

2. with no knowledge of the radar domains or RFC areas of responsibility. 

From our conceptual equation of bias sources for radar precipitation estimates (1.1), the 

equation for Stage IV data biases in this chapter is 

  0 ,
T

P B
P

   . (5.1) 

The Stage IV 1-month PoN precipitation field for December 2012 (Fig. 5.1) is an example 

of both sources of spatial anisotropies showing up prominently. It is possible to determine 

many of the radar domain and RFC boundaries (given in Fig. 3.1a) simply using the Stage 

IV PoN precipitation field without any prior knowledge. 

In addition to the already discussed limitations, the bias corrections of the previous two 

chapters may have unintentionally accounted for the anisotropies related to RFC 

boundaries in the corrections for range-dependent biases. In Fig. 5.2, all of the biases in 

the North Central RFC (NCRFC) are biased low, whereas most of the biases in the 
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Missouri Basin RFC (MBRFC) are biased high. These regional bias differences can have 

a large impact on the individual radar scale (Fig. 5.2). Given these issues, even an optimal 

procedure for minimization of beam blockage, mean-field biases, and range-dependent 

biases at the individual radars will leave significant residual biases related to the RFC 

areas of responsibilities. In the following section, a two-dimensional bias adjustment 

procedure will adjust the bias data from the combi-conVPR model to account for two-

dimensional anisotropies.  

  

Fig. 5.1. Same as Fig. 3.1, but without radar locations or boundaries for radar domains. 
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(a)  

Fig. 5.2.  (a) Stage IV 1-month PoN precipitation from December 2012 in the KABR 

radar domain with RFC boundary included; minimum value (black) is PoN = 50% and 

the maximum value (white) is PoN = 150%. (b) Spatial distribution of BG data with values 

> 0 (blue) and values < 0 (red). (c) The same data points in (b) plotted as a function of 

range, divided into the NCRFC (red diamonds) and the MBRFC (blue diamonds). 
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(b)  

 

(c)  

Fig. 5.2. Continued. 
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V.2. Two-Dimensional Bias Adjustment Procedure 

V.2.a. Overview 

The two-dimensional bias adjustment procedure will utilize the combi-conVPR bias data, 

which are used to correct for beam blockage B(d, ), mean field-biases BM-F, and range-

dependent biases B(d) in the P3 dataset. At each HRAP grid cell, the combi-conVPR model 

for the given radar domain determined a model bias value. The corrected Stage IV P3 

dataset, which used modeled biases to correct Stage IV P1 precipitation estimates, was an 

improvement over the original Stage IV P0 dataset uncorrected for any biases (results in 

Table 4.7). In the two-dimensional bias adjustment procedure, an assumption is that the 

combi-conVPR model bias value provides the best initial estimate accounting for the three 

known types of one-dimensional biases that appear in the Stage IV radar precipitation 

estimates. The combi-conVPR model has the desired spatial properties of 

1. reducing the noise in the radar-gauge pair biases associated with the random errors 

in the gauge data and 

2. estimating biases in the Stage IV precipitation dataset where gauge information is 

not available. 

Even though combi-conVPR bias model reduces the overall noise of the radar-gauge pair 

biases, at any given HRAP grid cell containing a gauge, the computed radar-gauge pair 

bias (using 4.5) is the best estimate of the true bias in the Stage IV precipitation estimate. 

However, the combi-conVPR model bias values don’t maintain information about the 

radar-gauge pair biases beyond the model construction. There may be two-dimensional 
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patterns in the radar-gauge pair bias data points that go unnoticed in the one-dimensional 

bias correction steps. In other words, the bias values do not account for the possible two-

dimensional spatial anisotropies since the combi-conVPR model is a function of only the 

distance d from the radar location in a given domain. 

A desirable two-dimensional bias adjustment procedure should combine the information 

provided by the one-dimensional bias correction (combi-conVPR model data) and the 

two-dimensional spatial properties of the radar-gauge pair biases. For example, the grid 

cells in the union of the KABR radar domain and the North Central RFC (Fig. 5.2b) show 

a clear two-dimensional consistency of negative biases that is not apparent in the one-

dimensional combi-conVPR bias model (Fig. 5.2c). 

V.2.b. Data Assimilation Procedure 

The approach for adjusting the biases resulting from the combi-conVPR model for two-

dimensional anisotropies will be data assimilation, a technique in which “observations” 

are combined with a “first guess” model field (Kalnay 2003). At each time step, or 

“increment,” a gridded first guess field is merged with information from irregularly spaced 

observations, which have been interpolated to the regularly spaced grid. Differences 

between the first guess field and the interpolated observation field are known as 

“observational increments” and are used to correct the first guess field. 

For a given time t and accumulation period a, the two-dimensional bias adjustment 

procedure is done for a single increment, using the spatially complete combi-conVPR 

model bias field as a first guess field. The radar-gauge pair biases for the same values of 
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a and t are computed using (4.5) are the “observations”. At each available radar-gauge 

pair bias data point i, the observational increment (OIi) is defined as the difference between 

the observation BG and the first guess (B3) and is computed as 

 3
i i i

GOI B B  . (5.2) 

The subscript “3” in B3 refers to the combi-conVPR model bias value that accounts for 

three different types of biases (beam blockage, mean-field, and range-dependent). After 

the observational increments are computed at available each radar-gauge pair i, the OI data 

are interpolated onto the HRAP grid using ordinary Kriging analysis. The final step is to 

merge an analysis of the observational increments with the first guess field. The merging 

of the Kriged observational increment value OI (H, H) to the first guess bias field B3(H, 

H) at each HRAP grid cell is 

      3, , ,f H H H H H HB B OI        . (5.3) 

This merged bias value Bf resulting from (5.3) will be used to correct the P1 value to 

produce a bias-corrected Stage IV precipitation estimate Pf. 

V.2.c. Optimization of the Two-Dimensional Bias Adjustment Procedure 

The optimization of the two-dimensional bias adjustment procedure is based solely on the 

choices for interpolating the irregularly spaced OI data to the HRAP grid. Ordinary 

Kriging was chosen as the interpolation method, with a detailed discussion of its principles 

included in section III.9. Discussions in this section will be limited to the choices made in 

this specific interpolation scheme. 
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For given values of a and t, interpolation of the observation increments to a continuous 

two-dimensional field make use of each available radar-gauge pair. Additionally, all the 

available OI data will be used to construct an empirical semivariogram constructed, with 

only a single semivariogram constructed for each set of observational increment data. The 

optimal procedure for the ordinary Kriging of analysis increments from irregularly spaced 

observations to HRAP grid cells has two primary considerations, which are 

1. the type of model semivariogram used to fit the semivariance data and 

2. the number of neighbors used in the Kriging interpolation. 

The consideration of model type was narrowed to two choices after investigating 

numerous empirical plots of semivariogram data. Fig. 5.3 shows the empirical 

semivariograms from April 2012, July 2012, and December 2012, each using the 1-month 

OI data. As one would anticipate, the autocorrelation is greater (semivariance lower) for 

cold season precipitation than warm season precipitation. 
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Fig. 5.3. Empirical semivariogram constructed using pairs of 1-month OI data points from 

April 2012 (gray circles), July 2012 (red circles), and December 2012 (blue circles). 

The two semivariogram model types investigated were a single straight line model fit and 

a spherical model fit. For both types of fits, a sill value c is assumed for values of h greater 

than lag a (the value h = a is where the sill begins) and a nugget value b when h = 0.  

The spherical model function gS(h) can be written, using Bohling (2005a), as 

  
 

33 1  if 
2 2

                                               if 

S S
S

h hb c b h a
g h a a

c h a

     
        

       




 . (5.4) 

The value of the sill c in this study is found by averaging the semivariance (h) data 

between 250 km and 500 km, values at which the data is assumed to asymptote with 

increasing lag. The lag a at which the sill begins in the spherical model is determined using 

the slope ms of the (h) data of the 12 nominal lags with the lowest values of h. The slope 
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mS and the intercept (or “nugget” using Kriging terminology) bS of the 12 (h) data points 

is found using the SLR method. The lag a at which the sill begins in the spherical model 

is 

 3
2

S

S

c ba
m

 
  

 
,  (5.5) 

with the constant 3/2 in (5.5) to account for the curvature of the sill. The single straight 

line model function gL(h) can be written as 
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, (5.6) 

using the same values of a and c as the spherical model. Since there is no curvature in the 

single straight line model gL(h), the straight line in this model is assumed to intercept the 

sill at 2/3a. The nugget value bL used in the gL(h) model is found by regressing a straight 

line through all the (h) values at lags h ≤ 2/3a. 
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Fig. 5.4. The single straight line (black line) and spherical (gray line) semivariogram 

model fits for the 1-month semivariance data from January 2012 (blue circles). 

Fig. 5.4 shows an example of the two different model fits to semivariances from the 1-

month OI data from January 2012. A procedure to determine the ideal choices of the three 

considerations listed for optimization of the objective analysis procedure, including the 

semivariogram model type, are discussed in the following section. 

V.2.d. Optimization of the Interpolation Procedure 

The procedure for optimizing the interpolation of radar-gauge pair OI values to the HRAP 

grid cells used an 80/20 cross-validation scheme similar to that used for verification of the 

combi-conVPR model. For each permutation of (a, t), 20% of the OI values were withheld 

for verification and the remaining 80% of the values were used in the interpolation scheme. 

The two ordinary Kriging interpolation considerations tested were (with values) were 

1. the model type: g = {gL, gS} and 
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2. number of neighboring data points used in the interpolation: nI = {4, 8, 12, …, 32, 

36, 40}. 

The optimization procedure used OI data with a = {1 mo., 4 mos., 12 mos., 36 mos.} and 

all possible values of t in the period January 2010 – December 2012. The optimization 

procedure used pairs with data availability A ≥ 90%, a criterion chosen based on the results 

of the combi-conVPR model optimization testing. The radar-gauge pairs withheld for 

validation were randomly selected from the subset of pairs with complete data availability 

(A = 100%). For each permutation, the number of withheld pairs was exactly 20% of the 

total number of pairs with A = 100% used in the testing procedure. 

The results of the testing procedure indicated that the straight line model gL(h) 

outperformed the spherical model gS(h) for all accumulation periods (Table 5.1). In Fig. 

5.4, the nominal OI data seem to approach the sill suddenly rather than gradually 

asymptote the sill. Additionally, the single straight line model is a more robust estimator 

of the slope of the nominal semivariance points in the first 100 km given it uses a higher 

number of data point. The vast majority of neighbors used for the OI interpolation to target 

HRAP grid cells have lags less than 100 km, which would tend to favor use of the gL(h) 

semivariance model. 
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Table 5.1. The MSE for different values of a using different permutations of g and nI 

from the procedure to determine optimal values for ordinary Kriging interpolation of 

bias analysis increments. 

nI 

a = 1 mo. a = 4 mos. a = 12 mos. a = 36 mos. 

gL(h) gS(h) gL(h) gS(h) gL(h) gS(h) gL(h) gS(h) 

4 0.0627 0.0627 0.0270 0.0270 0.0143 0.0143 0.0107 0.0107 

8 0.0585 0.0588 0.0252 0.0253 0.0133 0.0133 0.0100 0.0101 

12 0.0568 0.0573 0.0244 0.0246 0.0128 0.0130 0.0097 0.0098 

16 0.0559 0.0567 0.0239 0.0243 0.0126 0.0128 0.0095 0.0097 

20 0.0554 0.0564 0.0237 0.0242 0.0124 0.0127 0.0094 0.0096 

24 0.0550 0.0561 0.0235 0.0240 0.0123 0.0126 0.0094 0.0096 

28 0.0548 0.0560 0.0234 0.0240 0.0123 0.0126 0.0093 0.0096 

32 0.0547 0.0558 0.0234 0.0239 0.0123 0.0125 0.0094 0.0095 

36 0.0546 0.0556 0.0233 0.0238 0.0123 0.0125 0.0094 0.0095 

40 0.0546 0.0555 0.0233 0.0237 0.0123 0.0124 0.0094 0.0095 

44 0.0547 0.0554 0.0233 0.0237 0.0123 0.0124 0.0094 0.0095 

48 0.0549 0.0552 0.0234 0.0236 0.0124 0.0124 0.0095 0.0094 

52 0.0550 0.0551 0.0234 0.0236 0.0124 0.0123 0.0095 0.0094 

56 0.0551 0.0550 0.0235 0.0235 0.0124 0.0123 0.0095 0.0094 

60 0.0552 0.0549 0.0235 0.0235 0.0124 0.0123 0.0095 0.0094 

 

The number of neighbors nI need for the ordinary Kriging interpolation of OI values 

decreases with an increasing length of accumulation period a. A reasonable extension of 

these results would be that nI = 32 for a = 18 months and nI = 28 for a = 24 months given 

the results in Table 5.1. 
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Fig. 5.5. Field of observational increments for the 12-month period ending 31 December 

2012. The minimum value (black) is OI = -0.25 and the maximum value (white) is OI = 

0.25. 

One would expect that the spatial autocorrelation between OI values in a given region 

would increase with increasing length of accumulation period a. In other words, the bias 

field should get less random with increasing a values, which should reduce the number of 

neighbors needed to provide accurate estimates of the OI where gauges are not available. 

Fig. 5.5 is an example of an analyzed OI field for all the HRAP grid cells in the central 

and eastern United States for the 12-month period ending 31 December 2012. Fig. 5.6 is 

the first guess analysis of the 12-month bias field for the same values of a, t in Fig. 5.5. 
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The radar domain boundaries are clearly distinguishable in Fig. 5.6 since the combi-

conVPR bias models were developed independently in each radar domain. 

  

Fig. 5.6. The first guess bias field (B3) of the Stage IV P1 precipitation for the 12-month 

period ending 31 December 2012. The minimum value (black) is B3 = -0.5 and the 

maximum value (white) is B3 = 0.5. 

The final bias value Bf is computed at each HRAP grid cell in using (5.4) and visually is 

the addition of the OI spatial field from Fig. 5.5 to the first guess bias field (B3) in Fig. 

5.6. The 12-month Bf field for the period ending 31 December 2012 (Fig. 5.7) shows the 

more complex two-dimensional variation that cannot obviously be captured by the first 
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guess field using the combi-conVPR model. The most visibly apparent contribution of the 

first guess field in the Bf spatial field (Fig. 5.7) is seen at the edges of some of the radar 

domains, but the two-dimensional variations in Bf have more in common with Fig. 5.5. 

  

Fig. 5.7. The final bias field (Bf) of the Stage IV P1 precipitation for the 12-month period 

ending 31 December 2012. The minimum value (black) is Bf = -0.5 and the maximum 

value (white) is Bf = 0.5. 

The final step for producing a precipitation field (Pf) corrected for all the biases in (1.1) is 

to apply the bias field Bf to the Stage IV P1 precipitation data, which has only been 
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corrected for beam blockage. The Bf field accounts for range-dependent, mean-field, and 

two-dimensional anisotropies, so at each grid cell the value of Pf is 
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Fig. 5.8. The final Stage IV PoN precipitation field, computed using Pf for the 12-month 

period ending 31 December 2012. The minimum value (black) is PoN = 50% and the 

maximum value (white) is PoN = 150%. 

The analysis for the 12-month Stage IV PoN field for the period ending 31 December 2012 

is shown in Fig. 5.8 and at each HRAP grid cell is computed as Pf / Pn. The final 
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precipitation field Pf (Fig. 5.9) uses the bias field from Fig. 5.7 to correct the Stage IV P1 

field. 

  

Fig. 5.9. The final Stage IV precipitation field Pf for the 12-month period ending 31 

December 2012. 

V.2.e. Two-Dimensional Bias Adjustment Procedure Verification 

The verification procedure described in this section was carried out to confirm that Bf, 

which accounts for the four types of known biases in (1.1), provides an improved Stage 

IV precipitation estimate (Pf) compared to P3, which accounts for only beam blockage, 

mean-field biases, and range-dependent biases. The basic methodology of the verification 
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procedure is to withhold 20% of the available radar-gauge pairs from accumulation period 

a and ending date t, with each withheld pair having a combi-conVPR model B3 value 

already determined. The remaining 80% of the pairs are used to determine the model 

semivariogram and to act as neighboring data points for an ordinary Kriging analysis. 

Observation increments are interpolated to each of the withheld pairs and a Bf(H, H) 

value is determined. The final Stage IV precipitation estimate (Pf) is computed using (5.8) 

and compared to the P3 value computed from (4.44) without the OI adjustment. The two 

precipitation estimates at each withheld pair are compared to the gauge value (G) and 

RMS errors are computed.  

As in the evaluation procedure of the combi-conVPR model from the previous chapter, 

evaluation of the errors in this procedure used a = {1 month; 4 months; 12 months; 36 

months} and t = {January 2008; July 2009; April 2011; October 2012} and 10 different 

randomizations of withheld pairs for each permutation of a and t. The average RMSE 

value over the 10 runs for each permutation of (a, t) for each of the Stage IV precipitation 

datasets is summarized in Table 5.2. 

For all but one of the 16 permutations of a and t, the withheld Pf had a smaller RMSE 

value than the P3 data, and the overall improvement of the Pf estimates relative to the P3 

estimates was about 4.6%. In fact, the overall RMSE value was smaller for 141 out of the 

160 runs. Seven out of the 19 runs where Bf was a worse overall fit came from the 10 

randomizations where a = 36 months and t = January 2008. The verification procedure 

validated Bf as a superior assessment of the overall bias compared to the B3 assessment. 
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Table 5.2. Validation test RMSE values for the P3 and Pf datasets for different 

accumulation periods (a) and ending dates (t). 

t a 

RMSE (mm) 

P3 Pf 

January 2008 

 

1 14.3 13.9 

4 40.8 39.3 

12 117.7 112.5 

36 274.9 278.0 

July 2009 

 

1 26.5 25.5 

4 60.2 56.3 

12 297.0 284.4 

36 364.2 344.9 

April 2011 

 

1 23.8 21.5 

4 47.8 46.6 

12 114.3 107.3 

36 370.3 345.4 

October 2012 

 

1 18.6 17.8 

4 55.8 54.1 

12 107.6 104.8 

36 315.8 299.5 
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6. CHAPTER VI 

SUMMARY AND FUTURE WORK 

 

VI.1. Summary 

This dissertation addresses the need for a reduction in the biases that lead to erroneous 

Stage IV radar precipitation estimates. The general approach for solving this problem was 

to 1) determine the mechanisms of the radar measurements responsible for the biases, 2) 

decide in what manner the radar estimates were affected by these biases, 3) develop 

quantitative methods for evaluating the spatial properties of the biases, and 4) use the 

evaluation of the bias field properties to correct for biases in the Stage IV estimates. The 

bias evaluations and corrections were done primarily with gauge data, which were used to 

compute radar-gauge pair biases, and percent of normal (PoN) precipitation which was 

used as a proxy for biases in the Stage IV estimates. 

The bias minimization procedures were developed to deal specifically with biases due to 

beam blockage, range-dependent biases related to the vertical profile of reflectivity (VPR), 

and mean-field biases related to issues with radar calibration and were done independently 

at each radar domain. An ordinary Kriging interpolation procedure was designed to 

minimize any remaining two-dimensional anisotropies following the minimization of the 

one-dimensional biases. The resulting bias correction procedures will be used to generate 

an improved dataset of Stage IV precipitation estimates on the spatially continuous HRAP 

grid that is continuously updated in real-time. 
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The first bias correction procedure dealt with beam blockage in the Stage IV estimates, 

which visually appear as sudden discontinuities in a long-term precipitation field that can 

be traced along an azimuth back to the radar location. The longest accumulation period in 

the HIRDTT suite of products is 36 months, and PoN precipitation at this time scale was 

utilized in the beam blockage detection procedure. The guiding principle of the procedure 

was that, at a fixed range, the Stage IV PoN precipitation data should be a smooth and 

continuous function for a complete azimuthal sweep. Beam blockage was flagged at 

HRAP grid cells with PoN precipitation values that had extreme minimum residuals 

relative to a Fourier series fit. For the detection algorithm to consider a region of a given 

radar domain “blocked”, there must be a spatiotemporal consistency in the flagging of grid 

cells within the region. Ordinary Kriging interpolation of data from neighboring HRAP 

grid cells estimated the PoN precipitation at HRAP grid cells considered blocked. 

The approach to the second bias correction procedure resulted in the creation of a 

combined mean-field and range-dependent bias model to quantifying VPR and other 

range-dependent effects of radar precipitation estimates as a smooth and continuous 

function of range. The inspiration for this bias quantification model was the Krajewski et 

al. (2011) model of the climatological VPR as a function of height, which was adapted to 

model bias in the Stage IV estimates as a function of range. The bias model data points 

were radar-gauge pair biases computed at gauges and collocated HRAP grid cells and 

Stage IV PoN precipitation data, the latter of which were averaged over range intervals 

and adjusted for magnitude by the radar-gauge pair biases. The resulting combi-conVPR 

model identifies a VPR maximum if signaled by the data points (four parameter model) 
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or uses a single regression line (two parameter model) if the existence of a VPR maximum 

is doubtful. Extensive LOOC-V testing determined objective measures for choosing which 

of the two model forms were appropriate, both of which use weighted Theil-Sen (Sievers 

1978) for parameter estimation. 

The third and final step in the bias minimization procedure was to remove any residual 

two-dimensional anisotropies from the prior two bias corrections procedures. For a given 

Stage IV precipitation field already corrected for beam blockage, mean-field bias, and 

range-dependent biases at the individual radar domains, radar-gauge pair biases were 

computed at each available gauge using the corrected values. A two-dimensional bias field 

was computed from the bias data at the individual gauges using ordinary Kriging 

interpolation, and the corrected precipitation value at each HRAP grid cell was adjusted 

based on that cell’s Kriged bias value. 

For a given time t and accumulation period a, the bias-correction algorithm is designed to 

give an accurate spatial assessment of precipitation for that specific time period. Because 

the bias-correction adjustments are done independently for each precipitation field, an 

additional filter would need to be applied for the bias-adjusted precipitation totals across 

different time periods and accumulation periods to be consistent. For instance, it is 

unlikely that the bias-adjusted precipitation total for a given radar and 12-month period 

can be computed using an aggregation of totals from sub-periods within that timeframe. 

The stated goal of this work is to provide an improved quantification of drought, not the 
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best estimate of total precipitation at each grid cell; potential users of this dataset should 

keep this caveat in mind. 

In addition to providing improved Stage IV precipitation mosaics for use in drought 

monitoring, there are other useful applications of the techniques developed throughout the 

course of this project, particularly in the analysis of precipitation at individual radars. The 

beam blockage detection algorithm offers an improved understanding of the apparent 

obstacles within each radar domain. Precipitation estimates at most radars use very recent 

gauge information, dating back only several hours, to correct for spatial and mean-field 

biases. The aggregation of precipitation totals allows for an improved understanding of 

the spatial properties of existing biases in each radar domain. Additionally, the aggregation 

of the Stage IV precipitation totals provides a better identification of each radar’s effective 

coverage area. If radar-gauge pair bias data is limited to time scales of hours or days, use 

of the bias assessment algorithms can still be used to better assess spatial biases. 

VI.2. Future Work  

The precipitation field resulting from the three bias correction procedures is considered to 

have biases minimized and be an improvement on the Stage IV precipitation estimate as 

an assessment of the true surface precipitation. Based on the preliminary bias-corrected 

PoN precipitation fields (i.e., Figs. 5.8 and 5.9), some additional work is needed to produce 

an optimal field that can be directly interpreted by non-experts. A great deal of time and 

effort went into building appropriate conceptual models for correcting biases; however 

analysis of the precipitation fields resulting from these corrections is in its infancy. 
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Thorough visual inspection of the remaining and new errors in the bias-corrected dataset 

is needed for tweaking of the algorithms to produced less-biased estimates. Further 

refinements of the correction procedures will be explored in the coming months. The 

author is confident that the basic bias correction procedures are fundamentally sound, so 

any improvements will have a marginal impact on the methodology laid out in this 

dissertation. Some details of the correction methodology that need to be addressed are as 

follows. 

1. There appears to be a systematic overcorrection of range-dependent biases toward 

the edge of radar domains, where bias data are sparse. 

2. Extreme minima of Stage IV estimates in the HRAP grid cells near the radar 

location seems to be having an impact on choice of partition for the radar-gauge 

pair bias conVPR model. 

3. There needs to be an additional step in the two-dimensional anisotropy correction 

procedure to specifically address the discontinuities at the boundaries of radar 

domains and the RFCs. 

Once there is confidence in the resulting bias-corrected precipitation fields, the adjusted 

Stage IV estimates will be used as the real-time, high-resolution precipitation input for the 

HIRDTT products. At this point, the broader stated goal of this study will be accomplished 

with the existence of high-resolution drought monitoring products that do not require user 

expertise. 
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