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ABSTRACT

The Texas Plains, which include the Texas High Plains and Rolling Plains, is one of the
largest cotton growing areas in the world. Cotton cultivation in this region is facing severe
challenges from rapidly declining groundwater levels and increasing number of droughts.
Projected changes in climate are expected to further add to the uncertainty of cotton
production in this region. The overall goal of this research was to study the effects of
climate change on cotton yield using the CROPGRO-Cotton Cropping System Model
(CSM) within the Decision Support System for Agrotechnology Transfer (DSSAT). The
future (2041-2070) climate data generated by three Regional Climate Models (RCMs),
namely RCM3-GFDL, RCM3-CGCM3 and CRCM-CCSM was obtained from the North
American Regional Climate Change Assessment Program (NARCCAP) and was bias
corrected using Distribution mapping techniques..

The CROPGRO-Cotton model was calibrated, validated and further evaluated
using the observed data collected from cotton experiments at Chillicothe in the Texas
Rolling Plains during the years 2008 and 2012. A GIS-based distributed modeling
approach was used to predict cotton yields across major cotton-growing counties in the
Texas Plains under historic and future climate scenarios using the calibrated CROPGRO-
Cotton CSM. The RCMs predicted an overall decrease in the average rainfall (30 to 127
mm), increase in the intensity of extreme rainfall events (4% to 14% as per RCM3-GFDL),
and increase in both minimum (1.9 to 2.9 °C) and maximum temperatures (2.0 to 3.2 °C)

(as per three RCMs) in the future. Deficit irrigation simulations indicated that the
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maximum seed cotton yields under normal and dry weather conditions could be achieved
at 100% and 110% ET replacement scenarios, respectively. The cotton yield at Chillicothe
was projected to decrease within a range of 2% to 14.9% under the three RCM future
climate scenarios. Majority of the counties in the Texas Plains showed a decline in average
cotton yield within a range of 2% to 20% under RCM3-GFDL projected future climate
scenario, with the counties in the Texas Rolling Plains being the most affected. A
combination of early planting and adoption of no-till practices can minimize the climate

change-induced yield losses to some extent.
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CHAPTER I

INTRODUCTION

The Texas Plains region, which includes the Texas High Plains (THP) and the Texas
Rolling Plains (TRP) regions, encompasses 67 counties in the north western part of Texas
(Figure 1). The THP region is a treeless, windswept, plain surfaced semi-arid region
within the Great Plains (Webb, 1931). The High Plains were formed as a result of the
alluvial sediment depositions brought by the rivers that originated from the Rocky
Mountains (Weeks, 1986; Allen et al., 2008). The Ogallala Aquifer, a major ground water
source for the THP region, was formed during the Quaternary or late Tertiary age, which
relates to about 10 million years ago (Weeks and Gutentag, 1984; Allen et al., 2008).
Water available from this aquifer has led to agricultural revolution in the region and helped
in building the economy. As time progressed, water from this aquifer has been used at a
faster rate than it is being replenished, resulting in a rapid depletion of the groundwater
Table. A similar, but less severe situation exists in the TRP region, which overlies the
Seymour Aquifer. The Texas Plains region has witnessed an increasing number of
droughts and declining rainfall in the last decade, thus increasing the dependency on the
aquifers.

The 2007 agriculture census indicated that about 94% of total irrigated land in
Texas was distributed over the THP and TRP (USDA, 2007; TWDB, 2007). Irrigation
continues to play an important role in agriculture in the THP and TRP with the economic

value of crops in the THP amounting to $1.1 billion (TAWC, 2008).
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Figure 1. Map showing the study regions: the Texas High Plains and Rolling Plains.

Over 90% and 80% of irrigation in the THP and TRP regions, respectively depends
on ground water resources (Figure 2 and 3). The variation in the extent of irrigated
cropland area in the THP (Figure 2) and the TRP (Figure 3) over the past 50 years followed

the same trend as that of entire Texas. The rural economy of the THP and TRP depends
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heavily on ground water supplies from the Ogallala, Dockum, Blaine and Seymour
Aquifers that underlay these regions. Irrigated crops in these regions yield 2 to 7 times
more than dryland crops (Segarra and Feng, 1994; Colette and Almas, 2005). A recent
estimate indicated that a heavily irrigated land in the THP could provide gross returns of
$593/ha more than minimally irrigated and $1190/ha more than dryland (Yates et al.,
2010). The authors concluded that the rural economy will be drastically affected should

the irrigation be completely eliminated.
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Figure 2. Irrigation water use and cropland statistics for the Texas High Plains (Source:
Texas Water Development Board (TWDB). County data provided by Mark Michon,
Water Science and Conservation division, TWDB, personnel communication on

February 15, 2012).
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Figure 3. Irrigation water use and cropland statistics for the Texas Rolling Plains
(Source: Texas Water Development Board (TWDB). County data provided by Mark

Michon, Water Science and Conservation division, TWDB, personnel communication

on February 15, 2012).

Major crops that are grown in the Texas Plains are cotton (Gossypium hirsutum,
L), winter wheat (Triticum aestivum, L), corn (Zea mays, L) and sorghum (Sorghum
bicolor, L). Texas is the top cotton producing state in the U.S with a total production of
4.17 million bales of cotton in 2013, about 31.5% of the nation’s cotton production
(USDA-NASS, 2013; 2014). The cotton production in the northern and western parts of
Texas, especially in the panhandle region depends on irrigation from the Ogallala Aquifer
(Rajan et al., 2010). Cotton production in the THP and TRP regions has experienced a
noticeable decline in recent years due to reduced rainfall amounts and frequent occurrence
of severe droughts. Since the Texas Plains region receives inadequate rainfall to meet crop

water demands in most years, farmers in this region rely on irrigation for meeting cotton



water requirement. Since this region doesn’t have adequate surface water resources,
farmers use groundwater for irrigation.

The irrigated agriculture in the THP and TRP regions faces severe challenges due
to: 1) the decline of groundwater levels in the aquifers in this region, especially in the
Ogallala Aquifer (Musick et al., 1988; Colaizzi et al., 2009; Chaudhuri and Ale, 2014a;
b), i1) increase in groundwater pumping costs (Nieswiadomy, 1985; Musick et al., 1988;
Colaizzi et al., 2009; Adusumilli et al., 2011), iii) impacts of climate change (Nielsen-
Gammon, 2011), and iv) increase in the number of dairies in the region, which is
promoting farmers to grow more water demanding crops such as corn, which is used as
silage. A 45% increase in corn acreage in the THP between 2005 and 2009 was reported
by Adusumilli et al. (2011). In addition to the above-mentioned reasons, restrictions
imposed on groundwater withdrawals by the Groundwater Conservation Districts (GCDs)
(Johnson et al., 2011) have further compounded the problem. The GCDs in the THP region
have begun implementing restrictions to pump only 53 cm of ground water during 2012
and 2013, 46 cm during 2014 and 2015, and 38 cm in subsequent years, in order to
maintain at least 50% of current saturated thickness of the Ogallala, Edwards-Trinity
(High Plains) and Dockum aquifers by 2060 (popularly known as 50/50 water policy)
(HPUWCD, 2010). These restrictions pose challenges to local farmers and are forcing
them to shift to less-water-demanding crops or completely abandon their farming activities
all-together (Rajan et al., 2013). In addition, increasing number of droughts and declining

rainfall are further worsening the situation.



In order to sustain agriculture and allied industries, proper planning and
management of water resources requires taking climate change into consideration. If these
extreme climate events continue to prevail and predictions of climate models prove to be
correct, the projected future climate patterns may have significant effects on agriculture
and related sectors, food security and water resources, which affect the regional economy.
It is therefore essential to assess the potential impacts of climate change at early stages in
order to develop adaptation/mitigation strategies and preparedness to promote resilient
economies and communities.

The 2012 Texas Water Plan projected a 17% reduction in irrigation demand by the
year 2060. One of the reasons cited for the decline in irrigation demand is the possible
increased use of efficient irrigation methods. Nielson- Gammon’s (2011) future climate
projections for Texas showed an increase in temperature, and the number and severity of
droughts over the next 50 years. Karl et al. (2009) also projected an increase in the number
of warm nights and the number of days with temperatures higher than the normal
temperature across the United States. Increase in temperature intensifies soil water
evaporation and plant transpiration leading to an increase in soil water deficit (Hatfield et
al., 2011). Climate projections across the United States reveal contrasting trends in
intensity and frequency of rainfall events over the next decades, with some areas expecting
to receive more rainfall while other areas are expected to receive less rainfall (Karl et al.,
2009; Hatfield et al., 2011). Climate models predicted an increase in atmospheric CO;
levels from the current 391 ppm (Mauna Loa CO> mean annual value for year 2011) (Tans

and Keeling, 2011) to 450 ppm in the next 50 years (Hatfield et al., 2011). The future



climate datasets generated by the North American Regional Climate Change Assessment
Program (NARCCAP) (Mearns et al., 2007, 2009) are widely used in various climate
change assessment studies (Wang et al., 2009; Takle et al., 2010; Mailhot et al., 2012). In
this study, we used the data from three regional climate models (RCMs), namely: Regional
Climate Model Version3—Geophysical Fluid Dynamics Laboratory (RCM3-GFDL)
(Flato, 2005; Delworth et al., 2006), Regional Climate Model Version3—Third Generation
Coupled Global Climate Model (RCM3-CGCM3) (Flato, 2005), and Canadian Regional
Climate Model-Community Climate System Model (CRCM-CCSM) (Caya et al., 1995)

Agriculture is very sensitive to climate change, and there are positive as well as
negative effects due to climate change (Adams et al., 1990; Hatfield et al., 2011). The
projected increase in CO> concentration due to climate change could enhance crop growth
and yield by increasing photosynthesis (Adams et al., 1990), and increase water use
efficiency (WUE) by decreasing stomatal conductance and thereby reducing transpiration
per unit leaf area (Kimball, 1982; Cure and Acock, 1986; Allen et al., 1987; Morison,
1993; Sage, 1995). However, this positive effect could potentially be annulled by a
projected increase in temperature and variable precipitation (Sage, 1995; Adams et al.,
1990; Adams et al., 1998; Hatfield et al., 2011). A critical understanding of the effects of
the interactions of the changing climate variables on crop growth and yields in the THP
and TRP regions is of utmost importance in order to develop sustainable cropping systems
that will better adapt to climate change. Considering these challenges, the science
questions that need to be addressed include:

® How the climate will vary in the Texas Plains region in the future?
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e How are cotton yields going to be affected due to climate change in this region?

¢  Which irrigation strategies are beneficial for these regions?

¢ What changes to crop management practices are needed to adapt to future climate
change scenarios?

The Decision Support System for Agrotechnology Transfer (DSSAT) Cropping
System model (CSM), CROPGRO-Cotton was used in this study to address the above
mentioned science questions. For this study, the DSSAT model has been chosen due to its
successful application for different cropping systems under different climatic conditions
all over the globe (Paz et al., 2012; Gérardeaux et al., 2013). The DSSAT model, which
was developed by the International Benchmark Site for Agrotechnology Transfer
(IBSNAT, 1989), is a program that integrates the database management system (soil,
climate, and management practices), crop models and various application programs (Tsuji
et al., 2002; Jones et al., 2003). It brings together different individually-developed crop
models to a single platform. The latest DSSAT 4.5 version is equipped with over 28 crop
growth simulation models (Hoogenboom et al., 2010).

Recent advances in geospatial technologies have widened the scope of the DSSAT
model to assess regional crop yield predictions. DSSAT requires input data sets on soil,
weather, management practices, and crops which can be achieved by integrating DSSAT
with the latest geospatial tools. DSSAT provides reliable estimates of crop yields and other
crop related outputs for different homogenous soil and weather combinations, while

Geographic Information System (GIS) aggregates information from individual units to



make regional predictions. Lal et al. (1993) used this model for developing spatial maps
of soybean yield in western Puerto Rico.

The overall goal of this research was to study the impacts of different climate
change scenarios on cotton yields in the Texas Plains region and to use geospatial tools
and web technologies to develop an interactive online application that would provide
easily accessible, bias-corrected, county-based, historic-and future-climate datasets
predicted by the GCM’s, and cotton yields predicted by the DSSAT CROPGRO-Cotton
model. Specific objectives of this study are to:

1) Analyze the spatial and temporal variability of future climate change in the Texas
Plains region.

2) Evaluate the CSM-CROPGRO-Cotton model to simulate cotton plant growth and
yield, and assess the impacts of current and future climate variability and change
on cotton yields.

3) Develop and integrate Geographic Information System (GIS) based methods to
aggregate individual field predictions to the regional scale under historic and
future climate scenarios.

4) Design and develop the climate database and host it within a relational database
management system (Microsoft SQL Server) to provide dynamic access to the
data; and to develop an online interface and host the web service for public access.

1.1  Organization of dissertation
This Dissertation consists of five chapters. Chapter 1 is devoted to a general introduction,

science questions and the objectives of the research. Chapter 2 addresses the first
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objective. It describes the methodology involved in downloading, extracting and, bias
correcting climate data for the Texas Plains region as predicted by the three regional
climate models. It also provides a detailed analysis of climate predictions. Chapter 3
discusses about the calibration, validation, and evaluation of CSM-CROPGRO- Cotton
model based on the observed data from cotton field experiments conducted at Chillicothe
Research Station. In addition to identifying appropriate deficit irrigation strategies, this
chapter also discusses the effects of various climate model predictions on cotton yields.
Chapter 4 is designed to address the objectives 3 and 4. In this chapter, a method to
produce regional productivity analysis maps of cotton under RCM3-GFDL predicted
future climate scenarios was discussed. This chapter also describes the methodology and
technologies involved in developing the interactive web-application. Chapter 5
summarizes the research, draws appropriate conclusions and makes recommendations for

future work.
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CHAPTER I
SPATIO-TEMPORAL ANALYSIS OF CLIMATE MODEL PREDICTED HISTORIC

AND FUTURE CLIMATE DATA FOR THE TEXAS PLAINS REGION

2.1 Introduction

Spatial and temporal uncertainties of climatic conditions have a substantial effect on the
spatial distribution of crops and agriculture production. With an increase in the number
and severity of droughts in the last decade in the Texas Plains region, the competition for
limited irrigation water supplies also increased, thus increasing the dependency on the
aquifers. In addition, future climate projections for Texas showed an increase in
temperature and the number and severity of droughts over the next 50 years (Nielson-
Gammon 2011). This change in climate patterns is posing a serious challenge to local
farmers, and is forcing them to shift to less-water-demanding crops or completely abandon
their farming activities all-together. In order to sustain agriculture and allied industries,
proper planning and management of water resources requires taking climate change into
consideration. If these extreme climate events continue to prevail and predictions of
climate models prove to be correct, then the projected future climate patterns may have
significant effects on agriculture and related sectors, food security and water resources,
which affect the regional economy. It is therefore essential to assess the potential impacts
of climate change at early stages to plan ahead and be prepared to deal with adverse
situations. The scientific question that therefore needs to be addressed is: “How the climate
is going to vary in the Texas Plains region in the future”?

11



Most of the global climate model predictions available in the literature are at
coarser resolution (100 km? — 250 km?), and fail to capture the climate variability at the
regional scale (Hijmans et al., 2005; Wang et al., 2012). Many downscaling methods were
employed to downscale the global climate model predictions to finer resolution (1 km? to
50 km?) (Maurer et al., 2008). During this downscaling process, biases are introduced into
the data due to scaling issues and other approximations resulting in in-accurate climate
data values (Teutschbein et al., 2012). So, in order to assess the future climate change
projections in the Texas Plains region at county level, the bias has to be first removed from
the climate data generated by the climate models. In this study, historic and future climate
data generated by three Regional Climate Models (RCMs), namely Regional Climate
Model Version3—Geophysical Fluid Dynamics Laboratory (RCM3-GFDL) (Flato, 2005;
Delworth et al., 2006), Regional Climate Model Version3—Third Generation Coupled
Global Climate Model (RCM3-CGCM3) (Flato, 2005), Canadian Regional Climate
Model-Community Climate System Model (CRCM-CCSM) (Caya et al., 1995, Collins et
al., 2006) was downloaded from the North American Regional Climate Change
Assessment Program (NARCCAP) (Mearns et al., 2007; 2009).

The specific objectives of this study were to: 1) download, extract, and pre-process
the climate data predicted by three regional climate models (RCMs); 2) bias correct the
climate datasets using distribution mapping techniques; and 3) assess the future climate
change as predicted by the three RCMs.

2.2 Methodology

A detailed description of the steps followed in climate data downloading, processing and

12



bias correction is given in the sections below:

2.2.1 Study area

The Texas Plains comprises of both THP and TRP regions. The semi-arid THP region
includes 39 counties and it is a major producer of irrigated and dryland crops in Texas
(Colaizzi et al. 2009). The major crops grown in the THP region include cotton
(Gossypium hirsutum, L), winter wheat (Triticum aestivum, L), corn (Zea mays, L) and
sorghum (Sorghum bicolor, L). About 90% of irrigation water used in the THP region is
pumped from the Ogallala Aquifer (Stewart, 2003; Jensen, 2004; Colaizzi et al., 2009;
Adusumilli et al., 2011). In addition to the Ogallala Aquifer, the Edwards-Trinity, the
Pecos Valley and the Seymour Aquifers also supply groundwater for irrigation to some
areas in this region. The minor aquifers in THP include the Dockum, Lipan and Rita
Blanca. The major rivers in the THP region are the Canadian River and the Red River.
Major cities in the THP are Amarillo, Lubbock, and Midland. Annual rainfall in this region
ranges from 36 cm in the west to 61 cm in the east.

The TRP region, encompassing 28 counties, lies to the east of the THP and borders
Oklahoma in the north and the Edwards Plateau in the south. About 85% of the ground
water used for irrigation in the TRP region is pumped from the Seymour Aquifer. The
Edwards-Trinity, and the Trinity Aquifers are other minor ground water sources in the
TRP region. The Colorado River, Brazos River, and Red River are major rivers flowing
in the TRP region. Major crops grown in the TRP are winter wheat and cotton. Major
urban developments in the TRP include Wichita Falls and Abilene. Annual rainfall in the

TRP decreases from 76 cm in the east to 46 cm in the west.
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Both THP and TRP regions have the highest number of sunny days in the U.S. The
winters in these regions are colder. March, April and May are the windiest months of the
year, and peak rainfall occurs during the months of May and September. The months from
October to February are generally dry (Allen et al., 2008).

2.2.2 Climate datasets and data processing

The simulated historic (1971-2000) and future (2041-2070) climate datasets were
downloaded from the NARCCAP website (Mearns et al., 2007; 2009). The NARCCAP
climate datasets were generated by RCMs, which were driven by a set of ocean-
atmospheric Global Climate Models (GCMs) that are forced with the A2 Special Report
on Emission Scenarios (SRES) (Nakicenvoic et al., 2000). The A2 scenario (IPCC SRES,
2000) was developed based on the assumptions of high population growth, high energy
requirements, slow use of efficient technologies and regionally-oriented economic growth.
The scenario is oriented towards more fragmented society preserving local identities. The
climate data used in this study include daily rainfall, maximum temperature, minimum
temperature data and solar radiation simulated by three RCMs namely, Regional Climate
Model Version3—Geophysical Fluid Dynamics Laboratory (RCM3-GFDL) (Flato, 2005;
Delworth et al., 2006), Regional Climate Model Version3—Third Generation Coupled
Global Climate Model (RCM3-CGCM3) (Flato, 2005), Canadian Regional Climate
Model-Community Climate System Model (CRCM-CCSM) (Caya et al., 1995; Collins et
al., 2006). A detailed description about these climate models can be found at

https://www.narccap.ucar.edu/data/model-info.html and the characteristics of these

RCMs can be found at https://www.narccap.ucar.edu/data/rcm-characteristics.html .
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These climate datasets have a daily temporal resolution and a 50 km? spatial resolution.
The NARCCAP data was chosen for this study, primarily because of its daily temporal
resolution and high spatial resolution compared to other available future climate data
sources. Additionally, the NARCCAP data was successfully used in many past studies
(e.g. Pryor and Barthelmie, 2011; Chang et al., 2010). An automated program was
developed in R (the statistical software package) to extract the climate variables from the
downloaded netcdf files into CSV format for all grid points in the study area.

2.2.3 Why bias correction?

In general, RCMs are used to downscale the GCM predictions to a smaller scale (25-50
km?). In the process of downscaling, systematic biases are incorporated into the data due
to scaling issues (spatial averaging at grid level) and errors due to immature/incomplete
concepts (Teutschbein and Seibert, 2012). Teutschbein and Seibert (2012) and Ines and
Hansen (2006) found that the RCMs have a tendency to predict a high frequency of days
with low rainfall in place of dry days. Typical biases in the RCM climate data also include
incorrect estimation of extreme temperatures (Ines and Hansen, 2006), and incorrect
seasonal variations in rainfall (Teutschbein and Seibert, 2010). There are many bias
correction methods available in the literature, ranging from simple to complex statistical
methods. For this study, a distribution mapping technique was used to remove the bias
from the RCM-predicted climate datasets. This method has been successfully used in
previous studies (Hayhoe et al., 2004; Cayan et al., 2008; Li et al., 2010; Teutschbein and
Seibert, 2012). Biases in rainfall and temperature were removed using the Gamma and

Gaussian distribution mapping techniques, respectively. The removal of these biases is

15



important for a realistic representation of future rainfall and temperature which can be
used in various climate change assessment studies (Wood et al., 2004; Piani et al., 2010).
2.2.4 Bias correction by distribution mapping technique

Distribution mapping technique, which is also referred to as quantile matching (Li et al.,
2010) employs a transfer function to correct the RCM-simulated climate data by shifting
the distribution of RCM-simulated data to agree with the distribution of observed data. In
this approach, it was assumed that the bias is stationary under climate change. The RCM
simulated historic climate data of 71 and 94 grid points within the Texas Plains for the
RCM3 and CRCM models, respectively, were bias-corrected to match with the observed
climate data (Figure 4a, Figure 4b). Each county in the study area has a minimum of one
grid point. If a county contains only one grid point, climate data for that grid point was
bias -corrected and assigned to that county. If a county has multiple grid points, an average
of climate parameter for those grid points was estimated and used in bias correction
process. The historic observed climate data for all 67 counties in the Texas Plains were
obtained from the Integrated Agricultural Information and Management System (1AIMS)
Climatic Data Center, which is maintained by the Texas A&M AgriLife Research Centre
at Beaumont (Yang et al., 2010). The iAIMS data center was built based on five weather
data sources: the National Climatic Data Center (NCDC), COOP stations, Meteorological
Aviation Report (METAR), Crop Weather Program Weather Station Network at Corpus
Christi, Texas, and Beaumont Lake research weather stations. The weather station with
maximum historic records for each county was selected and any missing data in that

weather station was filled with the observed data from other weather stations with in the

16



county or from the nearby counties. After applying a bias correction transformation to the

RCM-predicted historic climate data, the same transformation was applied to remove the

bias from the future data.
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Figure 4. a) Regional Climate Model Version3 (RCM3) grid point locations. b)
Canadian Regional Climate Model (CRCM) grid point locations.

2.2.4.1 Bias correction of rainfall

It was observed that the RCM-simulated daily rainfall followed the Gamma distribution
pattern, and hence the Gamma distribution mapping technique was employed to remove
the bias from the rainfall data. This method was also used effectively to remove bias in
past studies (Piani et al. 2010; Teutschbein and Seibert, 2012; Lafon et al., 2013).

The Gamma distribution (Thom, 1958) is expressed as:
17
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y—-1,-x/B
pry © ¢ (1)

fy(x) =

where: x = random variable (Rainfall in this case), x >0

p:scale parameter, B > 0

y:shape parameter,y > 0

I gamma function.

Parameters B and y were estimated for each grid point and each month, and the
methodology used for estimation of these parameters is explained in the following
paragraphs.

After closely evaluating the rainfall values simulated by the three RCMs, it was
observed that all three models simulated many unrealistic low intensity rainfall events,
resulting in an over-prediction of overall frequency of rainfall events (Figure 5).
Teutschbein and Seibert (2012) also observed that the RCMs simulated a large number of
low rainfall events instead of dry conditions. The error in the estimation of the frequency
of daily RCM simulated rainfall events was therefore corrected first, before correcting the

bias in rainfall data.
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Figure 5. Overestimation of historic (01/01/1971-12/31/2000) rainfall events as
simulated by the RCM3-GFDL (Regional Climate Model Version3—Geophysical Fluid

Dynamics Laboratory) model in comparison to observed rainfall events for Hardeman

County, TX.

In order to address this issue of overestimation in frequency of rainfall events,
monthly threshold rainfall amounts for the historic period were estimated and all rainfall
events below the threshold values were made zero (Figure 6). After correcting the
frequency of rainfall events, the RCM simulated rainfall data for the historic period was
bias-corrected with reference to the observed rainfall data for the same period. Cumulative
distribution frequency (CDF) curves were developed for both simulated and observed
rainfall events for each month. First, the cumulative probability of occurrence of a rainy
day within a month was obtained from the generated CDF curve of the RCM simulations.

Then, the associated rainfall value for the same cumulative probability on the CDF of the
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observed values was identified. This observed rainfall value was used as a final bias-

corrected value for the RCM simulations (Figure 7a).
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Figure 6. The bias-corrected rainfall events for Hardeman County, TX, over historic
period (01/01/1971-12/31/2000) as simulated by the Regional Climate Model Version3—
Geophysical Fluid Dynamics Laboratory (RCM3-GFDL) model.
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Figure 7. a) Bias correction of rainfall data using the Gamma distribution mapping
technique. The Regional Climate Model (RCM) simulated daily rainfall cdf curve (red
line) was shifted to align with the observed rainfall cumulative distribution frequency
(cdf) curve (blue line). b) Bias correction of maximum temperature data using the
Gaussian distribution mapping technique. The RCM simulated daily temperature cdf

curve (red line) was shifted to match with the observed temperature cdf curve (blue line).

The process of bias correction of rainfall data can be expressed mathematically in

the following five steps (equations 2 to 6):

(vs, Bs) = gamafit(x,) )

where: y; is a shape parameter for RCM simulated historic rainfall data, S5 is a scale
parameter for RCM simulated historic rainfall data, and x; is RCM simulated historic

rainfall.

Hgp = Fy(xs Vs, Bs) 3)
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where: E, is Gamma CDF.

()/o' ﬂo) = gamafit(x,) “4)

where: y, is a shape parameter for historic observed rainfall data, f3, is a scale parameter

for observed historic rainfall data, and x,, is observed historic rainfall.
Hor = Fy(xo,yo; Bo) )
Hcgr = E7 (Hsg, Yo, Bo) (6)

where: F],"1 is inverse of Gamma CDF, Hy, is historic bias-corrected rainfall.
The following steps (equation 7-9) were then used to bias-correct the RCM

simulated future rainfall data.

(vs, Br) = gamafit(x;) (7)

where: y; is a shape parameter for RCM simulated future rainfall data, B is a scale

parameter for RCM simulated future rainfall data, and x¢ is RCM simulated future rainfall.
Fsgp = E,(xf y5, Br) (8)

Fep = Fy_l(FSR'Yf.V_S;ﬁf Bs) )
Yo " Bo

where: Fp is future bias corrected rainfall.

22



2.2.4.2 Bias correction of temperature

The climate model predicted daily minimum and maximum temperatures were bias-
corrected using the Gaussian distribution mapping technique as the temperature data
followed a Gaussian (normal) distribution. Previous studies (Thom, 1952; Teutschbein et
al., 2012) have also reported that Gaussian distribution was the best fit for temperature.

The Gaussian distribution (Cramer, 1999) is expressed mathematically as:

1 —o-w?

fu@) = —f— e 2 (10)

where: y = random variable (temperature in this case)

u = mean or location parameter

o = standarad deviation or scale parameter.
n and o were estimated for each grid point for each month over the thirty year historic and
future period. This method follows an approach similar to the Gamma distribution
mapping technique (Figure 7b) and each step in the process is expressed mathematically

as follows

(s, 05) = normfit(ys) (11)

where: g is a location parameter for RCM-simulated historic temperature data, g, is a
scale parameter for RCM-simulated historic temperature data, and y, is RCM-simulated

historic temperature.

Her = Fy (s s, 0s) (12)
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where: Fy is Gaussian CDF.

(o, 05) = normfit(y,) (13)

where: u, is a location parameter for observed historic temperature, o, is a scale parameter

for observed historic temperature, and y; is observed historic temperature data.
Hor = FN(YO,MO’O-O) (14)
Hcr = Fy ' (Hsr, to» 95) (15)

where: Fy 1 is inverse of Gaussian CDF, Hy is historic, bias-corrected temperature.

The above five steps (equation 11-15) were used to bias correct the model simulated
historic temperature data in reference to the observed data.

The following steps (equation 16-18) were used to bias correct the RCM simulated future

temperature data

(yf,af) = normfit(yys) (16)

where: i 18 a location parameter for RCM simulated future temperature data, oy is a scale
parameter for RCM simulated future temperature data, and yy is RCM simulated future

temperature.
Fsr = Fy(yr U5, 05) (17)
Fer = Fy'(Fsro by + (Us — Koy, 0, ?) (18)
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where: F.r is future bias corrected temperature.
The above described approach (equations 11-18) was employed to bias correct the
minimum and maximum temperature data also.

Bias correction of rainfall and temperatures has been developed and automated for
all the grid points using MATLAB program. The MATLAB program is made available to
the users through this Dissertation (Appendix I).

2.3  Bias-correction of simulated rainfall and temperature data

The bias correction of simulated rainfall data yielded satisfactory results when compared
to historic observed data (Figure 8). This method not only corrected the frequency of
rainfall events, but also corrected all moments, i.e., mean, variance, and skew (temporal
distribution) (Li et al., 2010). Bias corrected, model predicted daily temperatures also
closely matched with observed mean temperatures over the period of 1971-2000 (Figure.

9).
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Figure 9. Comparison of RCM3-GFDL (Regional Climate Model Version3—Geophysical
Fluid Dynamics Laboratory) model bias corrected daily mean temperature with
uncorrected and observed daily mean temperature for the period 01/01/1971-12/31/2000
for Hardeman County, TX.

24 Climate change analysis

2.4.1 Future changes in rainfall

After bias correcting, the RCM predicted historic and future climate datasets were used to
assess the climate change across the Texas Plains by developing spatial maps. Figure 10
depicts the change in precipitation as predicted by the three RCM’s, namely RCM3-
GFDL, RCM3-CGCM3 and CRCM-CCSM. All of these three models predicted similar
trends in spatial distribution patterns of future rainfall across the region when compared
to historic observations (Figure 10). All models predicted a decrease in average annual
rainfall in the future (2041-2070) when compared to the historic period (1971-2000) in
majority of counties in the Texas Plains (Figure 10). The RCM3-GFDL model predictions
of change in average annual rainfall varied from a decrease in average annual rainfall of
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61 mm in Taylor and Jones counties (Figure 11) to an increase in average annual rainfall
of 32 mm in Lipscomb County (Figure 10a-c). Overall, only 6 out of 67 counties showed
an increase in rainfall (Figure 10c) during the future period. According to the RCM3-
GFDL model, the counties that are most affected due to climate change are located in the
Texas Rolling Plains (TRP) region (Figure 10).

The RCM3-CGCM3 model predictions showed a decline in average annual rainfall
in the counties located in the northern High Plains with in a range from 30 mm (Hemphill
County) to 127 mm (Hartley County), and a slight increase in average annual rainfall
(25.4 mm) in nine counties located in the southern High Plains (Figure 10d-f). The CRCM-
CCSM model predicted a decrease in average annual rainfall in all of the counties except
for Hartley County (Figure 10g-1). In Hartley County, the model predicted a 25.4 mm
increase in rainfall. The county that is mostly affected will be Terry as predicted by
CRCM-CCSM (Figure 10g-1). Based on the average of the three climate models, the most
affected county is the Oldham County located in the Northern High Plains and the least

affected is the Andrew County which is located in the Southern High Plains.

28



2) GFDL-histeric 'b) GFDL-future ©) GFDL-projected change

3 1 I = o ~

d] CGCM3-historic “':) CGCM3-future dfﬂ) CGCM3 —prl)jected cﬁange

L- ]| [ ]
- I : I '. - |__.r-| K
CCSM-haston h) CCSM-future -
g) storie ) i) CCSM-projected change
[ - BT | s
300 400 500 €00 FOU £00 MM 300 400 500 80D 700 500 MM 160 120 0 40 O 40 mm

Figure 10. Spatio-temporal variability of average annual historic (1971-2000) and future
(2041-2070) rainfall in the Texas Plains region as predicted by three Regional Climate
Models: RCM3-GFDL (Regional Climate Model Version3—Geophysical Fluid
Dynamics Laboratory), RCM3-CGCM3 (Regional Climate Model Version3—Third
Generation Coupled Global Climate Model) and CRCM-CCSM (Canadian Regional

Climate Model-Community Climate System Model).
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2.4.1.1 Future changes in rainfall frequency and intensity

In order to assess spatial variability in rainfall patterns across the Texas Plains region, 9
and 11 counties were selected in the east-west and north-south directions, respectively
(Figure 11). These counties were selected in such a way that they represent latitudinal and
longitudinal variation in climate change across the entire region. This detailed analysis of
future rainfall data was carried out for RCM3-GFDL model predictions only. Box plot
analysis (Figure 12a-d, Table 1) of the predicted historic and future daily rainfall data for
the selected counties (Figure 11) indicated an overall decrease in the number of rainfall
events by 6% to 10%, and an overall increase in the intensity of rainfall by about 3% to
8% during the 2041-2070 period (Table 2). The third quartile of the daily rainfall events
showed an increase when compared to the historic events indicating an increase in the
amount of rainfall and in-turn the intensity of moderate to extreme events (Table 1) and
this feature can be observed from north to south (Table 1). The percent reduction in the
total number of rainfall events varied from 7% in the west to 6% in the east and 6% in the
north to 10% in the south.

For the analysis purposes, all outliers in the box plots were (Figure 12a-d)
considered as extreme events. There will be an estimated 4% to 7% decrease in the total
number of extreme events during 2041-2070 when compared to historic period (1970-
2000) according to the RCM3-GFDL model (Figure 13a-d, Table 3). However, further
analysis indicated that the intensity of these extreme events will increase by 4% to 17% in
the future when compared to the historic trends (Table 3). These observations were in-line

with the observations made in the previous studies (Wilby and Wigley, 2002). Figure 13a-

30



b shows that the total number of rainfall events will increase from the west to east and
from figure 13c-d, it can be inferred that the total number of rainfall events will increase

from north to the center and then decreases towards the south.

DALLAM SHERMAN (T OCHILTREE | UFSCOME
HANSFORD
HARTLEY MOORE  HUTCHINSOM| ROBERTS | HEMPHILL
OLDHAM POTTER @ GRAY WHEELER
CARSON
DEAF SMITH RANDALL JARMSTRONGJ] DOMLEY cpLLINGSW ORTH
PARMER CASTRO SWISHER ® HALL  EHILDRESH
BRISCOE
HARD EMAN
BAILEY s ABngs?
@ LAME @ FLOYD @ COTTLE WILBARGER
®FD ol WCHITA
cocHRAML HOCKLEY L LUBBOCK @ DICKENS KING KNOX BAYLOR
CROSBY
YORKUM TERRY LYNN GARZA KENT STONEWALL | HASKELL
GAINES DAWSON SCURRY FISHER JOMES
BORDEN
ANDREWS MARTIN HOWARD J MITCHELL NOLAN TAYLOR
R ai RUNNELS
GLASSCOCK| COLEMAN

Figure 11. Texas Plains counties selected for the RCM3-GFDL (Regional Climate
Model Version3—Geophysical Fluid Dynamics Laboratory) predicted rainfall frequency

and intensity analysis study.
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Table 1. Distribution of the daily rainfall data from the box-plot analysis (figure 12a-d) of selected counties from figure 11.

Counties First Quartile (mm) Median (mm) Third Quartile (mm)
(west to Historic Future Change Historic Future Change Historic  Future  Change
east)
1 1.5 1.2 0.3 34 3.2 0.2 9.1 9.0 0.1
3 1.2 1.1 0.1 3.1 3.0 0.1 8.2 8.6 -0.4
5 1.4 1.2 0.2 3.7 3.5 0.2 10.5 10.4 0.1
7 1.9 2.0 -0.1 4.8 4.9 -0.1 13.6 13.5 0.1
9 1.2 1.2 0 4.0 3.6 0.4 11.0 11.6 -0.6
Counties First Quartile Median Third Quartile
(north to Historic Future Change Historic Future change  Historic  Future  Change
south)
1 1.6 1.4 0.2 3.5 3.6 -0.1 9.7 10.3 -0.6
3 1.2 1.0 0.2 3.1 3.1 0 9.0 9.7 -0.7
5 1.6 1.6 0 3.8 4.0 -0.2 9.6 10.5 -0.9
7 1.2 1.1 0.1 34 33 0.1 9.8 9.9 -0.1
9 2.5 2.6 -0.1 5.6 5.7 -0.1 13.3 13.7 -0.4
11 3.1 3.0 0.1 6.0 6.0 0 13.2 14.2 -1.0
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Table 2. Analysis of RCM3-GFDL (Regional Climate Model Version3—Geophysical
Fluid Dynamics Laboratory) simulated historic (1971-2000) and future (2041-2070)

rainfall data for the selected counties across the Texas Plains region.

Counties Total no of rainfall  Total rainfall (mm) Over all rainfall
(west to east) events intensity (Total
rainfall/no of wet
days) (Solomon et al.,

2007)
Historic ~ Future  Historic ~ Future  Historic Future
1 1622 1497 13083 12421 8.1 8.3
3 1917 1722 15636 15111 8.1 8.8
5 1873 1718 18108 17280 9.7 10.0
7 1734 1633 21664 21658 12.5 13.3
9 2183 2050 22609 22528 10.3 11.0
Counties Total no of rainfall  Total rainfall (mm) Over all rainfall
(north to events intensity (Total
south) rainfall/no of wet
days)
Historic  Future  Historic  Future Historic Future
1 1769 1654 15644 15398 8.8 9.3
3 2130 1907 17549 17085 8.2 8.9
5 1970 1757 17273 16391 8.8 9.3
7 1954 1774 18017 17109 9.2 9.6
9 1300 1166 15420 14772 11.9 12.7
11 1090 979 13511 12978 12.4 13.2
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Table 3. Analysis of the RCM3-GFDL (Regional Climate Model Version3—Geophysical
Fluid Dynamics Laboratory) simulated historic (1971-2000) and future (2041-2070)

extreme rainfall events for the selected counties across the Texas Plains region.

Counties No of extreme Total rainfall from Rainfall intensity
(west to east) events extreme events during extreme events
(mm) (Total rainfall/no of
wet days)(Solomon et
al., 2007)
Historic ~ Future  Historic ~ Future  Historic Future
1 323 289 8626 8416 26.7 29.1
3 394 348 11052 10947 28.0 314
5 378 334 12542 12187 33.2 36.5
7 346 327 14458 15113 41.8 46.2
9 427 391 15726 15789 36.8 40.4
Counties No of extreme Total rainfall from Rainfall intensity
(north to events extreme events during extreme events
south) (mm) (Total rainfall/no of
wet days)
Historic  Future = Historic  Future Historic Future
1 355 339 10473 10536 29.9 31.1
3 420 357 12115 11879 28.8 333
5 411 342 9633 9332 23.4 27.3
7 377 349 12372 12181 32.8 34.9
9 270 247 9942 9851 36.8 39.9
11 232 202 8725 8423 37.6 41.7
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Figure 13. Distribution of rainfall events in selected Texas Plains counties (shown in figure 11) as predicted by RCM3-GFDL
(Regional Climate Model Version3—Geophysical Fluid Dynamics Laboratory). The orange portion of the do-nut represents

total rainfall received during extreme events and blue portion represents rainfall received during smaller events.
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2.4.2 Future changes in air temperature

Both maximum temperature and minimum temperatures under historic (1971-2000) and
future climate scenarios across the Texas Plains region, as predicted by three RCMs were
analyzed separately. Interestingly, all three models predicted an increase in both maximum
and minimum temperature across the region (Figures 14 and 15). The RCM3-GFDL
predicted an increase in maximum temperature within a range of 2.0 to 2.6 °C (Figure 14a-
¢) and minimum temperature within a range of 1.9 to 2.4 °C (Figure 15a-c) in the future
(Figures 14 and 15). According to the RCM3-CGCM3 model, future increases in
maximum temperatures and minimum temperatures ranged between 2.1 to 3.2 °C (Figure
14d-f) and 2.1 to 2.7 °C (Figure 15d-f), respectively. The CRCM-CCSM model predicted
an increase of 2.1 to 3.2 °C in maximum temperature (Figure 14g-1) and 1.9 to 2.9 °C in
minimum temperature (Figure 15g-1) under future climate scenarios. The counties in the
northern High Plains are predicted to experience greater increases in both maximum
temperatures and minimum temperatures when compared to other counties, according to

all three models considered in this study.
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Figure 14. Spatial variability in maximum temperature (TMAX) in the Texas Plains

region under historic and future climate scenarios, as predicted by three Regional

Climate Models: RCM3-GFDL (Regional Climate Model Version3—Geophysical Fluid
Dynamics Laboratory), RCM3-CGCM3 (Regional Climate Model Version3—Third
Generation Coupled Global Climate Model) and CRCM-CCSM (Canadian Regional
Climate Model-Community Climate System Model).
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Figure 15. Spatial variability in minimum temperature (TMIN) in the Texas Plains
region under historic and future climate scenarios, as predicted by three Regional
Climate Models: RCM3-GFDL (Regional Climate Model Version3—Geophysical Fluid
Dynamics Laboratory), RCM3-CGCM3 (Regional Climate Model Version3—Third
Generation Coupled Global Climate Model) and CRCM-CCSM (Canadian Regional

Climate Model-Community Climate System Model).
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2.5 Summary and conclusions

The historic (1971-2000) and future (2041-2070) daily rainfall, maximum temperature,
and minimum temperature data predicted by three RCMs namely, RCM3-GFDL, RCM3-
CGCM3 and CRCM-CCSM were downloaded from the NARCCAP website. The bias
associated with the downscaling of climate model projected rainfall and temperature data
were successfully removed using the Gamma and Gaussian distribution mapping
techniques, respectively. The bias-corrected data was then analysed for studying the
spatial and temporal variability of daily rainfall and temperature across the Texas Plains
region.

When compared to the historic period (1971-2000), the RCMs predicted i) a
decrease in average annual rainfall (30 to 127 mm), ii) a decrease in the number of rainfall
events by 6% to 10% and iii) an increase in the intensity of rainfall by about 3% to 8%
indicating an increase in the extreme events, in the future (2041-2070). The three RCMs
predicted an average increase in the maximum temperature in the range of 2.0 °C to 3.2

°C and an average increase in the minimum temperature in the range of 1.9 °C to 2.9 °C.
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CHAPTER III
EVALUATION OF THE CSM-CROPGRO-COTTON MODEL FOR THE TEXAS
ROLLING PLAINS REGION, SIMULATION OF DEFICIT IRRIGATION
STRATEGIES FOR INCREASING WATER USE EFFICIENCY, AND ASSESSING

FUTURE CLIMATE IMPACTS ON COTTON PRODUCTION

3.1 Introduction

In the agriculture industry across the globe, crop models are being extensively used by
researchers and policy makers as important decision making tools for studying the impacts
of climate change, management practices and irrigation strategies on crop yields (Thorp
et al., 2014). Field experiments in these research areas are resource-intensive and
challenging to implement. Under these circumstances, calibrated and validated crop
models offer alternative solutions with comparable outcomes. Crop models differ in
complexity with some being very simple to use and requiring few input variables and
others are complex and require many input variables. The Decision Support System for
Agrotechnology Transfer (DSSAT) (Hoogenboom et al., 2012) suite of crop models are
complex as they require many input parameters to provide in-depth assessments of crop
growth and development and water and nutrient dynamics. DSSAT is a platform which
encompasses 28 crop growth models covering fruit crops, vegetable crops, fiber crops,
cereals, legumes, oil crops, and root crops. Each crop model simulates crop growth and
development in response to weather conditions, soil properties, cultivar characteristics,

and crop management data.
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The Cropping System Model (CSM), CROPGRO-Cotton distributed with DSSAT
can be used to study the impacts of climate change and management practices on crop
growth, crop yields, and crop water use. The CSM-CROPGRO-Cotton model has so far
been used in very few applications, mostly in the southeastern U.S, Africa, and Australia.
Paz et al. (2012) used the CSM-CROPGRO-Cotton model to study the impacts of El
Nifio/La Nifia Southern Oscillation along with different planting dates on cotton yields at
various spatial aggregations in 97 cotton-producing counties of Georgia. In another study,
CSM-CROPGRO-Cotton model was used to estimate spatial and temporal distribution of
water use efficiency of rainfed cotton across cotton growing counties of Alabama, Florida,
and Georgia (Garcia y Garcia et al., 2010). In another Georgia study, the CSM-
CROPGRO-Cotton model was used in combination with spatial tools to assess the spatial
distribution of monthly irrigation water use for cotton (Guerra et al., 2007). The CSM-
CROPGRO-Cotton model was also used to study cotton growth and yields under the
influence of southern root-knot nematode (Meloidogyne incognita) based on the
experiments conducted during 2007 at Gibbs farm in Tifton, Georgia (Ortiz et al., 2009).

A limited number of modeling studies in the past have focused on establishing a
well-calibrated CSM-CROPGRO-Cotton model for their study regions. Pathak et al.
(2012) presented a detailed methodology and described a range of parameters that were
needed to be adjusted for CSM-CROPGRO-Cotton calibration based on four experimental
studies conducted at Quincy and Citra in Florida, and Griffin in Georgia. A well-calibrated
CSM-CROPGRO-Cotton model was also developed based on the experiments conducted

at West Florida Research and Education Center Farm located near Jay, FL, by Zamora et

42



al. (2009), to study the effects of shading on specific leaf area, leaf area index, maximum
leaf partitioning, carbon partitioning, and cotton production in a pecan alley cropping
system. Gérardeaux et al. (2013) developed a calibrated CROPGRO model to study the
effects of an ensemble of six regional climate projections on cotton yields in Cameroon.
Their results showed an average increase in cotton yield by 1.3 kg ha™! year! during the
2005-2050 period due to increase in temperature and CO; concentration, and decrease in
precipitation. All of the above studies demonstrated the importance of the CSM-
CROPGRO-Cotton model calibration in model application and described the
methodologies they adopted for successful model implementation.

Texas is the top cotton producing state in the U.S with a total production of 4.17
million bales of cotton in 2013, about 31.5% of the nation’s cotton production (USDA-
NASS, 2013, 2014). The Texas Rolling Plains (TRP) region in the north central Texas
accounts for approximately 13% of the total cotton production in the state (DeLaune et al.,
2012). Cotton production in the TRP region has experienced a noticeable decline in recent
years due to reduced rainfall amounts and frequent occurrence of severe droughts. Since
the TRP region receives inadequate rainfall to meet crop water demands in most years,
farmers in this region rely on irrigation for meeting cotton water requirement. Since this
region doesn’t have adequate surface water resources, farmers use groundwater for
irrigation. About 85% of the total water used for irrigation in the TRP region is pumped
from the aquifers and the remaining is taken from the surface water sources (County data
provided by Mark Michon, Water Science and Conservation division, Texas Water

Development Board, personnel communication on February 15" 2012). Nielsen-Gammon
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(2011) has predicted warmer summers in the future for this region, which will necessitate
larger groundwater withdrawals to meet higher evapotranspiration needs. Studying the
effects of various crop and irrigation management practices on cotton yields under current
and future climate change scenarios, and development of strategies for water conservation
and climate change adaptation is therefore necessary for the TRP region as cotton is one
of the major revenue contributors to the local economy. The specific objectives of this
study were to: 1) evaluate CSM-CROPGRO-Cotton simulations of cotton growth and
yield in the TRP region, 2) identify appropriate deficit irrigation strategies that conserve
water while obtaining optimum crop yields, 3) study the impacts of climate change on
cotton yields, and 4) evaluate adaptation strategies that can minimize the losses due to
climate change. The study emphasizes the establishment of a well-calibrated CSM-
CROPGRO-Cotton model for the TRP region, the description of model calibration,
validation and evaluation approaches.

3.2  Materials and methods

3.2.1 Study area

The TRP region, encompassing 28 counties, lies in north central Texas and borders
Oklahoma to the north (Figure 16). The Seymour aquifer is the major source of irrigation
water for this region. The TRP region receives about 46 to 76 cm of annual rainfall with
maximum rainfall occurring from May to September. The 30-year average growing season
(May—October) precipitation is about 26 cm (DeLaune et al., 2012) and the mean
temperature during this period is about 24°C. In general, precipitation decreases from east

to west. The most common method of irrigation in the TRP is center pivot sprinkler
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irrigation. About 95% of the groundwater pumped from the Seymour aquifer is used for
irrigation. Major crops grown in the TRP are cotton (Gossypium hirsutum, L), winter
wheat (Triticum aestivum, L) and sorghum (Sorghum bicolor, L) and the dominant soil

type in the TRP region is Abilene clay loam.

% Chillicothe Research Station
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Source: Texas Natural Rescurces Information system

Figure 16. Spatial extent of the Texas Rolling Plains region and location of the

Chillicothe Research Station.
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3.2.2 Field sites and measured data sets

The observed data for evaluating the CSM-CROPGRO-Cotton model was obtained from
the cotton field experiments conducted at Chillicothe Research Station (34.25° N, 99.51°
W, 447 m above sea level) in the Hardeman County, Texas (Figure 16) during the period
from 2008 to 2012. While data from the 2012 irrigation scheduling experiment (Rajan et
al., 2013) were used for model calibration and validation, the data from irrigation and
tillage experiments conducted during 2008-2010 period (DeLaune et al., 2012) were used
for model evaluation. In 2012, four irrigation scheduling treatments (100% ET
replacement, 75% ET replacement, tensiometer based-, and soil moisture based irrigation
scheduling) with three blocks were implemented in a randomized complete block design
with each plot measuring 23 m by and 4.6 m. The 2008-2010 experiments were also
conducted in a randomized block design with each plot measuring 8 m by and 45.7 m to
study the combined impacts of different tillage (conventional and conservational till) and
irrigation regimes (0%, 33%, 66%, 100%, and 133% ET replacement) on cotton
production. Experimental treatments were replicated three times.

In the 2012 irrigation scheduling experiment, soil moisture tension was measured
using irrometers and soil moisture was measured using CS 616 time domain reflectometry
(TDR) probes. Data related to crop growth, crop development and crop yields were
collected during the study. The leaf area index (LAI), canopy height, phenology, and
number of main stem nodes were also measured at various crop development stages. LAI
was measured destructively using an LI-3100C leaf area meter (LICOR Biosciences,

Lincoln, NE). Experimental plots were machine harvested and the lint yields were
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estimated after ginning. Details about the 2008-2010 experiments can be found in
DeLaune et al. (2012).

3.2.3 Description of CSM CROPGRO Cotton model

For this study, the CSM-CROPGRO-Cotton model was chosen due to its successful
application for different cropping systems under different climatic conditions by various
researchers across the globe. DSSAT is a platform that integrates the database management
system (soil, climate, and management practices), crop models and various application
programs including sensitivity analysis and spatial analysis (Tsuji et al., 2002; Jones et al.,
2003) by bringing together a diverse array of crop models to a single platform. The latest
DSSAT 4.5 (Hoogenboom et al., 2012) version is equipped with over 28 crop growth
simulation models. Each crop growth model incorporated in the DSSAT predicts crop
growth, development, and yield, and soil water balance, evapotranspiration, and nutrient
dynamics models are also available for simulating soil moisture, carbon and nitrogen
processes over time based on weather, soils, crop management, and crop cultivar
information.

The CSM-CROPGRO-Cotton model, which was developed from the CROPGRO-
Soybean model, simulates crop growth and development on a daily timescale. It simulates
different crop growth stages such as the emergence, first leaf, first flower, first seed, first
cracked boll, and 90% open boll based on the accumulation of heat units or photothermal
time (Thorp et al., 2014). The CSM-CROPGRO-Cotton model requires soil, management,
environment, and cultivar parameters as inputs (Hunt et al., 2001). Required soil

parameters include soil texture, slope, albedo, color, drainage, drained upper limit (DUL),
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lower limit (LL), saturated water content (SAT), hydraulic conductivity, organic carbon,
bulk density and total soil nitrogen. Management parameters required include: (i) type of
irrigation system, irrigation dates, and amounts, (ii) fertilizer application method,
amounts, and dates, and (iii) tillage method (conservation tillage), tillage depth and dates.
Additionally, cropping system characteristics such as plant population, seeding depth, row
spacing, planting dates, planting method, cultivar variety, and harvest dates are required.
Environmental variables such as daily maximum temperature, minimum temperature,
incoming solar radiation, and precipitation are also required while dew point temperature
and wind speed are optional. Cultivar information is input in three data files. More details
about the cultivar files are described in the model calibration section. The model is capable
of simulating the effects of various management practices, insect damage, disease damage,
and climate change. A feature called environmental modification is available in the model,
and it allows the user to incorporate changes to the climate variables. The model also
allows the user to input ambient CO> concentration values which are based on the values
measured at Mauna Loa in Hawaii (Thorp et al., 2014).

The CSM-CROPGRO-Cotton model works by calculating various rate variables
on a daily time step, integrating the model states over time, and finally updating the state
variables (Jones et al., 2003). A warm-up period can be simulated in the model before
planting for establishing the soil hydrological conditions. After planting, the model
simulates carbon, nitrogen and water dynamics as well as plant processes like
photosynthesis, and respiration. The vegetative phase mostly depends on the supply of

carbon and nitrogen (Jones et al., 2003). During the vegetative phase, carbon and nitrogen
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are partitioned between stems, leaves and roots. These routines estimate the carbon and
nitrogen assimilation and their allocation to growing tissues (Jones et al., 2003). Total
carbon available for growth in a day is equal to the day’s photosynthesis plus mobilized
carbon from carbon reserves in leaves, stems, shells, and roots minus maintenance
respiration. Maximum carbon available for various plant processes like growth, nitrogen
reduction, nitrogen fixation, and growth respiration during the day is calculated as the
difference between the sum of carbon synthesized during photosynthesis, and the potential
amount of carbon mined in a day; and the maintenance respiration (Jones et al., 2003).
During the reproductive phase, the partition mainly depends on the availability of
carbohydrates (Jones et al., 2003). If any excess carbohydrates are available after
reproductive feature developments, those carbohydrates will be directed for vegetative
tissue growth. Photosynthesis is calculated based on the light intercepted by hedgerow
canopy (Boote and Pickering, 1994). The model estimates both maintenance respiration
and growth respiration losses. All these processes are affected by the amount of water
available in the soil. Soil water balance routine in the DSSAT simulates daily soil water
processes that affect the availability of soil water (Ritchie, 1985). Daily change in soil
water availability is calculated based on the following equation:
AS=P+I1—-ES—EP—-—R-D (19)

where AS = change in storage, P = Precipitation, I = Irrigation, ES = Soil Evaporation,
EP = Transpiration, R = Runoff, D = Drainage.

Soil moisture is distributed in several layers with depth increments specified by

the user (Ritchie, 1985). Runoff is calculated using the modified Soil Conservation Service
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curve number technique (USDA-SCS, 1972) in which the wetness of the soil, calculated
from the previous rainfall, replaces antecedent rainfall condition (Williams et al., 1991).
This modified procedure is the most conservative method of estimating runoff under
known daily precipitation (Ritchie, 1985). This method, however, ignores rainfall
intensity and assumes complete infiltration of applied irrigation water.

Drainage in the DSSAT model is estimated based on the “tipping bucket” approach
in which the drainage occurs when the water content in the given soil layer is above the
drained upper limit (equivalent to field capacity). It is assumed that saturated volumetric
water content and drained upper limit of soil water content for each soil layer are fixed.
The water content in each layer varies between saturation, the drained upper limit, and the
lower limit (equivalent to permanent wilting point) (Ritchie, 1985). Infiltration is
estimated as the difference between precipitation plus irrigation and runoff.

DSSAT estimates soil evaporation and plant transpiration separately. DSSAT uses
Priestly-Taylor (Priestly and Taylor, 1972) and FAO-56 methods (Allen et al., 1998) to
estimate ET. The Priestly-Taylor method does not account adequately for advection
(Ritchie, 1981). Since the TRP region experiences high wind speeds during some parts of
the year, the FAO-56 method, which considers wind speed, was used for estimating
evapotranspiration in this study. The amount of solar energy that reaches the soil surface
was used to estimate soil evaporation, which was proportional to daytime temperature,
LALI and soil albedo. Potential plant transpiration was calculated as a function of potential

evapotranspiration, and light intercepted by canopy.
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Root water uptake was calculated using the law of limiting approach, wherein soil
resistance, root resistance or atmospheric demand dominates the flow rate of water into
roots (Ritchie, 1998). Detailed information about methodologies and processes used in
DSSAT can be found in the DSSAT documentation (Hoogenboom et al., 2010).

3.2.4 Model inputs

3.2.4.1 Weather inputs

Daily maximum temperature, minimum temperature, incoming solar radiation,
precipitation, wind speed, dew point temperature for the years 2008, 2009, 2010 and 2012
were obtained from the Texas High Plain Evapotranspiration Network (TXHPET) for the
Chillicothe station (Porter et al., 2005). Table 4 provides the monthly summary of
observed climate data. Average soil temperature parameter (TAV) and the soil temperature
amplitude parameter (AMP) were estimated separately for each year. TAV and AMP were
set to 25.7 °C and 14.3 °C, respectively for the 2012 irrigation experiments. TAV and AMP,
respectively were estimated to be 24 °C and 13.5 °C for 2008, 26.1°C and 14.5 °C for

2009, and 25 °C and 13.5°C for 2010.
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Table 4.Monthly summary of climate data for the years 2008-2010 and 2012.

2008 2009
Month SRAD TMAX TMIN  RAIN DEW WIND SRAD TMAX TMIN RAIN DEW WIND
MIm?) (0 (°C)  (mm) 4O (kmd™) (MJ m?) 4(®) (0 (mm) (O  (kmd"h
May 851 38.1 16.8 79 11.9 287.6 692.7 36.1 7.0 59.1 133 256.0
Jun 852.5 40.2 15.4 109.5 17.0 355.9 768.4 40.4 17.7 67.7 13.0 269.7
Jul 827.3 41.6 18.3 39 17.1 268.2 853.0 42.6 17.6 54.6 16.9 260.8
Aug 665.1 40.3 17.6 82.5 18.1 210.8 833.9 40.9 16.1 36.6 16.2 295.1
Sep 596.4 352 10 48.2 14.6 164.8 567.9 38.1 8.3 75.6 14.5 227.7
Oct 539.6 34 -0.6 54.6 8.0 249.7 383.0 28.5 0.1 87.3 8.5 243.1
Sum 4332.1 -- -- 412.4 -- -- 4099.0 -- -- 381.0 -- --
Mean -- 32.8 9.5 -- 12.3 2193 -- 324 8.9 -- 12.5 221.8
2010 2012
Month SRAD TMAX TMIN  RAIN DEW WIND SRAD TMAX TMIN RAIN DEW WIND
MIm?) (0 (°C)  (mm) (O (kmd™) (MJ m?) 4(®) (0 (mm) (O  (kmd"h
May 820.8 36.8 35 63.0 133 260.4 861.5 40.9 8.1 20.3 12.2 335.7
Jun 930.6 39.1 18.4 68.0 19.3 298.1 925.4 44.4 14.5 79.1 16.3 289.2
Jul 798.0 38.2 18.7 166.1 21.0 231.4 966.9 44.1 20.2 36.4 15.3 248.0
Aug 900.0 40.2 13.4 34.1 17.8 218.4 714.1 44.2 16.1 80.2 14.6 214.5
Sep 705.1 375 6.3 51.0 17.3 251.8 639.4 39.3 12.7 116.1 13.5 202.1
Oct 594.8 32.6 2.4 38.1 6.8 195.4 551.1 353 -3.1 8.7 7.0 233.0
Sum 4750.0 -- -- 420.3 -- -- 4658.4 -- -- 340.8 -- --
Mean -- 32.0 8.9 -- 13.6 207.3 -- 354 9.8 -- 11.3 217.5

SRAD = incoming solar radiation, TMAX = maximum daily temperature, TMIN = minimum daily temperature, RAIN = precipitation,
DEW = dew point temperature, and WIND = wind speed
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3.2.4.2 Management inputs

The details of crop, fertilizer and irrigation management practices adopted during different
years are outlined in Table 5. The 'Deltapine 0912' cotton variety was planted at a seeding
rate of 8 seeds per m of row and a row spacing of 1 m. The pre-plant soil analysis report
had shown higher levels of nitrogen residue in the soil and hence no pre plant nitrogen
was applied. Nitrogen was knifed in as liquid fertilizer (28-0-0) during square formation
at the rate of 35 kg ha!. Nitrate present in the irrigation water was not accounted for in
this study.

In the irrigation and tillage experiments conducted in 2008-2010, the 'Stoneville
4554 B2RF' cotton cultivar was planted with a seeding rate of 13.8 seeds per m of row.
The nitrogen fertilizer was knifed on each side of the row three weeks after planting, prior
to square formation (Table 5). Seed cotton yields and lint yields were obtained from these
experimental studies.

The CSM-CROPGRO-Cotton model does not have a provision to directly select
tillage practices. Instead, user can select a tillage implement used in an experiment and
specify tillage depth to represent conventional and conservation tillage practices. For
conventional tillage, a bedder and row cultivator were used to a depth of 20 cm. For
conservation tillage, a tandem disk was used to a depth of 10 cm. The irrigation efficiency
of the subsurface drip irrigation system was assumed to be 95%, in view of very

small/negligible percentages of losses via evaporation.
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Table 5. Management practices implemented in 2008 — 2010, and 2012 experiments.

Management 2008 2009 2010
ractice
Planting Date 15 May 21 May 20 May
Irrigation System sub surface drip sub surface drip sub surface drip sub surface drip
Irrigation Start date 22 May!>3 29 May!2>34 29 May!2>34
L 1234 10 September"*3;17 1234
Irrigation End date 3 September September* 7 September
L 1 2 3
Irrigation amount 416 317, 344¢, 204¢ 641, 1322, 200%, 265 1341, 2702, 380°, 546 97, 1917, 283"
(mm) 377
Ammonium Ammonium erﬁgslﬁﬁe
Type of Fertilizer Urea Ammonium nitrate polyphosphate, urea polyphosphate, urea polyphosphate,
. ; . : urea ammonium
ammonium nitrate ammonium nitrate .
nitrate
- 45kgNha',22kg P 4 4 67kgNhal' 34
Amount of Fertilizer ha! 67 kg Nha',34kg Pha ke P ha'
Tillage conventional and

conservation

conventional and
conservation

conventional and

conservation
a=100% ET replacement, b = 75% ET replacement, ¢ = Tensiometer based scheduling, d = soil moisture based scheduling; 1 =33%

ET replacement, 2 = 66% ET replacement, 3 = 100% ET replacement, 4 = 133% ET replacement.
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3.2.4.3 Soil inputs

The dominant soil type at the study site is Abeline clay loam (fine mixed, super active,
thermic parchic argiustol), which has good drainage and moderately high saturated
hydraulic conductivity (DeLaune et al., 2012). The soil profile was divided into 6 layers,
namely, 0-5, 5-12, 12-30, 30-45, 45-60, and 60-160 cm to account for heterogeneity in soil
properties. Soil samples to a depth of 60 cm were collected before planting in the year
2012 and were analyzed for common soil properties. Regression equations were developed
for each soil property based on the analyzed data. The regression equations were used to
estimate the soil properties for the deeper layers (60-160 cm). Soil samples were analyzed
for bulk density, pH, organic carbon, and percent silt and clay. The soil hydrological
properties like DUL, LL, saturated soil water content, and saturated hydraulic conductivity
were estimated using the ROSETTA pedotransfer tool (Table 6) (Schaap et al., 2001). The
neural network based ROSETTA tool uses five hierarchical pedotransfer functions to
estimate soil hydrological properties based on the soil texture and bulk density. Soil bulk
density was estimated based on soil texture within DSSAT. The root growth factor values
were estimated using an exponential decay function in DSSAT. The runoff curve number
(SLRO) was adjusted to 25.0 to simulate no runoff, as no runoff observed was due to dry
weather conditions and subsurface drip irrigation. The same soil composition and

hydrological properties were used for all the experiments.
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Table 6. Soil composition and hydrological properties used for all simulations

Depth SLCL SLSI SLOC SLHW CEC SLNI LL DUL SSAT SBDM SSKS SRG
(cm) (%) (%) (%) (cmol kg’ (%) (cm cm™) (cmcm?)  (mcem!)  (gem®)  (emh?) F
0-5 26 40 1 73 20.0 0.1 0.103 0.319 0.440 1.32 0.67 0.950
5-15 26 40 1 73 20.0 0.1 0.103 0.319 0.440 1.32 0.67 0.950
15-30 28 32 0.67 7.7 20.3 0.07 0.109 0.301 0.428 1.40 0.46 0.850
30-45 34 27 0.64 7.6 21.4 0.07 0.126 0.311 0.439 1.41 0.45 0.775
45-60 32 34 0.48 7.9 235 0.05 0.118 0.314 0.439 1.39 0.44 0.700
60-160 32 34 0.31 79 23.5 0.04 0.117 0.311 0.434 1.41 0.39 0.320

SLCL = clay content, SLSI = silt content, SLOC = organic carbon, SLHW = pH in water, CEC = cation exchange capacity, SL NI = Total nitrogen concentration, LL = lower limit, DUL =
drained upper limit, SSAT = saturation, SBDM = bulk density, SSKS = saturated hydraulic conductivity, and SRGF = soil root growth factor.
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33 CSM-CROPGRO-Cotton model calibration, validation and evaluation

The CSM-CROPGRO-Cotton model was calibrated using observed data from the 100%
ET replacement treatment, which is expected to represent minimum/no stress conditions,
implemented at Chillicothe in the year 2012 (Rajan et al., 2013). Data from the remaining
three irrigation scheduling treatments including 75% ET replacement, tensiometer- and
soil moisture-based scheduling, were used for validation. The calibrated model was further
evaluated using the seed cotton yield data from 30 treatments of a 3-year (2008-2010)
cotton irrigation and tillage study at Chillicothe (DeLaune et al., 2012).

Since the DSSAT cultivar database does not include Deltapine 0912 variety, we
used the closest cultivar variety, GP 3774, that is already incorporated in the database for
calibrating the CSM-CROPGRO-Cotton model for crop growth and development. A
manual calibration approach was followed, in which sensitive model parameters were
adjusted and their effect on modeled processes were studied by visually comparing
simulated versus observed crop growth and yield data and simultaneously assessing the
model performance statistics (Table 7). Four different statistical parameters including
percent error, root mean square error (RMSE), coefficient of determination (R?), and
coefficient of agreement, were used to assess the performance of CSM-CROPGRO-
Cotton model. The model parameters were varied in such a way that the resultant RMSE
was low (<0.5), co-efficient of agreement was high (>0.85) and coefficient of
determination (R?) was high (>0.85). Finally, selected model parameter values were
compared to the previously published studies (Pathak et al., 2012; Pathak et al., 2007;

Ortiz et al., 2009). In this procedure, first the cultivar specific parameters affecting the
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crop phenology (Table 8) were adjusted until the simulated crop phenology stages
matched reasonably well with observed data. Secondly, the parameters affecting the crop
growth (Table 8) were adjusted until a satisfactory match between simulated and observed
LATI and canopy height were achieved. Finally, the parameters affecting crop yields (Table
8) have been adjusted until the predicted and observed seed cotton yields matched well.
The cultivar specific parameters that were adjusted during calibration are included in
cultivar (COGRO046.CUL), ecotype (COGRO046.ECO) and species (COGRO046.SPE)
files. Model developers generally recommended to not change the parameters in the
COGROO046.SPE file, but in our study, two cultivar parameters XVSHT (number of
average observed nodes) and YHWTEM (effect of temperature on the length of each node)
in this file had to be adjusted in order to better simulate cotton growth and yield at the
study site. The cotton parameters that were adjusted during the model calibration are listed

in Table §.
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Table 7. Statistical parameters that were used for evaluating the model efficiency.

Indicators Equation Source
Root mean N 05 Willmott,
— -1 . A\ 2 .
square error RMSE = [N Z(Yl - Yi) 1981;
i=1 ,
ici N i —Y)W(Yi=Yi Legates and
- 4 (\Yi—=Y)Xi-Yi
Elgt:fif;z?fo?qf e = il —= ) - ) McCabe, 1999
La(Yi-Y) EL,(Fi-¥i?
Co-efficient of . N (Yi—Yi)? Willmott,1981;
index =1 — — _
agreement ﬁ\’=1(|Yi _ Y| n |Yi _ Yl)z

Vi — Yi

Percent error  error = [ l * 100

where Yi = measured value, Yi = simulated value,Y = average of observed values, Yi = avergae of simulated values,
N = no of observations.
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Table 8. CSM-CROPGRO-Cotton model parameters adjusted during the model

calibration.
Parameter Description Default value Testing Calibrated
range value
Crop phenology and development
PL-EM Time between planting and 4 3-4 3
emergence
FL-LF Time between first flower and end of 75 40-175 50
leaf expansion
FL-VS Time from first flower to last leaf on 75 45 -175 45
main stem
Crop growth
LFMAX Maximum leaf photosynthesis rate at 1.1 04-18 1.7
30 °C, 350 ppm CO», and high light
(mg CO, m2s7!)
RHGHT Relative height of this ecotype in 0.95 0.55-0.95 0.6
comparison to the standard height per
node (YVSHT) defined in the species
file
RWDTH Relative width of this ecotype in 0.85 0.30-10.85 0.35
comparison to the standard width per
node (YVSWH) defined in the
species file
TRIFL Rate of appearance of leaves on the 0.2 0.18-0.30 0.3
mainstem
YHWTEM Effect of temperature on the length 0.01, 0.01, 0.33, - 0.01, 0.02,
of each internode 1.0,1.0 0.43, 0.85,
0.85
SLAVR Specific leaf area of cultivar under 170 120 - 200 130
standard growth conditions (cm?g™!)
Crop yield
XFRT Maximum fraction of daily growth 0.55 0.3-0.9 0.75
that is partitioned to seed + shell
SFDUR Seed filling duration for pod cohort 24 20-35 30
at standard growth conditions
LNGSH Time required for growth of 8 7-15 14

individual shells
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3.4  Determination of appropriate deficit irrigation strategies for the Texas
Rolling Plains

The calibrated model was used to determine appropriate deficit irrigation strategies for the
TRP region that conserve water under different climatic conditions. For the years 2008 to
2010, deficit irrigation strategies with 0%, 33%, 66%, 100% and 133% ET replacement
were implemented in the calibrated model to compare the simulated results with observed
data for these treatments (DeLaune et al., 2012). For the year 2012, deficit irrigation
strategies with 0% to 130% ET replacement with an increment of 10% were simulated and
analyzed.

3.5  Assessment of the impacts of future climate change on cotton yields at
Chillicothe

The calibrated CSM-CROPGRO-Cotton model was used to study the impacts of future
climate change on seed cotton yields. Bias corrected future (2041-2070) daily rainfall,
maximum temperature, minimum temperature data as predicted by three regional climate
models (RCM3-GFDL, RCM3-CGCM3, CRCM-CCSM) for the Chillicothe region were
used as inputs for simulating historic and future climate scenarios in the CSM-
CROPGRO-Cotton model. The solar radiation data (not corrected for bias) predicted by
three climate models and the weather generator generated wind speed data were also used
with the CSM-CROPGRO-Cotton model in the future climate scenarios. All management
practices were assumed to be the same as those adopted for the 2012 100% ET replacement
experiment at Chillicothe, except for irrigation. Automatic irrigation method was used in

the model. Whenever the soil water content was below 50% of the available water
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(difference of field capacity and permanent wilting point soil moisture contents), irrigation
was triggered until the available soil water content reached 85% level (deficit irrigation
strategy). The soil properties that were used in the 2012 experiment were also maintained
the same for the CSM-CROPGRO-Cotton model simulations under future climate change
scenarios.

For analysis purposes, the climate data for both historic and future periods have
been classified into three categories: dry, normal and wet periods based on the growing
season rainfall (May to October). The rainfall data was first arranged in ascending order
and the top 5 years have been classified as “dry”, the middle five years as “normal” and
the last five years as “wet” periods. In addition, the calibrated CSM-CROPGRO-Cotton
model was used to evaluate few potential climate change adaptation strategies such as
early planting and no-till practice under the RCM3-GFDL predicted future climate
scenario.

3.6  Results and discussions

3.6.1 Calibration

With default parameters, the model predicted plant emergence as 8 days after planting
(DAP) (results not shown), so the phenology parameter PL-EM in the cultivar file was
adjusted to 3 photothermal days to simulate plant emergence as 5 DAP as measured during
the experiment. Parameter FL-LF in the cultivar file and parameter FL-VS in the ecotype
file were adjusted to simulate end of leaf expansion stage and end of node expansion stage,
respectively, according to field observations. After these adjustments, simulated dates of

anthesis, first flower, 50% boll open, and physiological maturity fell within the range of
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observed dates in the TRP region (Table 9).

Table 9. Comparison of observed and simulated dates of crop phenological stages

Crop phenological stage Observed Simulated
(days after planting) (days after planting)
Emergence 5 5
Onset of anthesis 46 49
Planting to harvest* 130-160 154

>I<http:// www.cotton.org/tech/ace/growth-and-development.cfm

With default cultivar characteristics, the model underestimated LAI across all
growth stages and overestimated canopy height by 45% (figures not shown). Maximum
leaf photosynthesis rate (LFMAX) (Table 8) value was adjusted to 1.7 after making sure
that model is not simulating any water and nitrogen stresses. A value of 180 was obtained
for the specific leaf area (SLAVR) of the cultivar, which is the ratio of leaf area to leaf
weight, by averaging the field observed leaf area and leaf weight values. Parameters
TRIFL (rate of appearance of leaves on the main stem) and SLAVR were adjusted (Table
8) to improve simulated versus observed LAI (Figure 17a). After adjusting the above
mentioned parameters, the model was able to simulate LAI trend satisfactorily, however
the model underestimated the LAI values after entering the reproductive phase (Figure
17a, Table 11). CSM-CROPGRO-Cotton model calibration for canopy height prediction
required the change of parameters in species file. The number of nodes on main stem
(XVSHT) was adjusted based on average observed field data at various growth stages

(Table 10).
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Table 10. Number of nodes observed at various crop developmental stages.

Plant development stage No of average
observed nodes
Planting 0
Emergence 1
V1 phase 5
End of Juvenile stage 10
Flower induction 10
First flower 16
First peg 18
First pod 20
First seed 24
Last seed 25
5
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Figure 17. Comparison of simulated and observed a) leaf area index (LAI) and (b)

canopy height (CH) of cotton during model calibration.

Table 11. Model performance in leaf area index (LAI) and canopy height prediction

during calibration.

Variable R? Root Mean Coefficient of
Square Error agreement
LAI 0.98 0.35 0.98
Canopy height 0.97 0.06 0.96
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Since the uncalibrated model under-predicted the canopy height during the early
growing season and over-predicted the canopy height during the late growing season, a
species file parameter YHWTEM, which defines the effect of temperature on the length
of each internode, was increased during the initial vegetative phase and decreased during
the beginning of the anthesis phase (Table 8). Parameters RHGHT and RWDTH were also
adjusted to get a reasonable canopy height simulation (Figure 17b, Table 8, Table 11).
Finally, the cultivar parameters XFRT, SFDUR, LNGSH and TRIFL were adjusted during
model calibration for attaining a better match between observed and simulated seed cotton
yield (Table 8). The calibrated model simulated a seed cotton yield of 4831 kg ha™! as
compared to observed seed cotton yield of 4781 kg ha™! with an error of 1%.

3.6.2 Validation

The calibrated CSM-CROPGRO-Cotton model was validated using the data from three
other irrigation scheduling treatments implemented in 2012. These three treatments had
the same experimental setup as the 100% ET replacement treatment, except for the method
of estimating daily irrigation amounts. The total irrigation amounts applied during the
growing season were 329 mm for the 75% ET treatment, 344 mm for the tensiometer
based experiment and 295 mm for the soil moisture based scheduling method. The model
performance during the validation was satisfactory as indicated by agreement between the
observed and simulated LAI (R? >0.85) (Figure 18a, Table 12) and canopy height (R? =
0.83 — 0.97) (Figure 18b, Table 12). However, the model slightly under predicted canopy

height among all treatments. The model simulated crop yields for these three treatments
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also matched satisfactorily as indicated by low percent error, which fell within an

acceptable range of -1.4 to -9.2 (Table 13).

. . . ——75 ET simulated A 75ET observed
A 75ET replacement A soil moisture based A Tensiometer Tensiometer simulated A Tensiometer observed
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Figure 18. Comparison of simulated and observed a) leaf area index (LAI) and (b)

canopy height of cotton during model validation.

Table 12. Model performance statistics for Leaf Area Index (LAI) and canopy height

prediction during the validation.

R? Root Mean Coefficient of
Square Error agreement
Treatments 1 2 1 2 1 2

75% ET
replacement 099 0.92 0.16 0.12 1.00 0.85

Tensiometer 0.98 097 0.25 0.05 0.99 0.97
Soil moisture

based 094 0.83 0.38 0.11 0.98 0.86
1 =LAL 2 = Canopy height
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Table 13. Comparison of observed and simulated seed cotton yields during the model
validation.

Observed yield  Simulated yield  Percent

Treatments (kg ha'!) (kg ha'!) error
75% ET
replacement 4783 4402 -7.9
Tensiometer
based 4613 4188 9.2
Soil moisture
based 4279 4217 -1.4

3.6.3 Model evaluation

The CSM-CROPGRO-Cotton model was further evaluated using the data from a 3-year
study on cotton irrigation and tillage management conducted on an adjacent subsurface
drip irrigated field between 2008 and 2010 (DeLaune et al., 2012). The CSM-CROPGRO-
Cotton model simulated seed cotton yields for all irrigated treatments, were in error range
of -24% to 13%, except for 0% (rainfed) and 33% ET replacement treatments (Table 14).
For the dry (0% and 33% ET) replacements, the model mostly overestimated cotton seed
yield for conservation tillage experiments in all the years except for the 2008 rainfed
treatment and 33% ET replacement in 2010; and underestimated for conventional tillage
except for the 33% ET replacement in 2008 and rainfed treatment in 2010 (Table 14).
The model predictions for conservation tillage were slightly better than those for the
conventional tillage (Table 14). Overall, the model predicted seed cotton yield reasonably
well (R? = 0.90) for 15 conventional (Figure 19a) and 15 conservational tillage (Figure

19b) treatments during the 2008-2010 cropping seasons.
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Figure 19. Comparison of simulated and observed crop yields from various irrigation
treatments under (a) conventional tillage (b) conservational tillage during model

evaluation.

Table 14. Measured and simulated seed cotton yields for various treatments from year

2008 — 2010 during model evaluation.

Conventional Tillage Conservational Tillage
Treatments

(ET %
replacement) Observed Simulated % error Observed Simulated error

0 1603 691 -56.9 2189 2028 -7.3
33 3082 3788 22.9 3310 3893 17.6

2008 66 3912 4044 34 4284 4130 -3.6
100 4279 4080 -4.6 4123 4224 24

133 4507 4231 -6.1 4139 4153 0.3
0 607 455 -25 548 723 31.9
33 1859 1733 -6.8 1752 2348 34.0
2009 66 2391 2239 -6.4 2624 2971 13.2
100 3156 2838 -10.1 3319 3053 -8.0

133 2936 3035 34 2845 3119 9.6
0 901 934 3.7 854 1010 18.3
33 1678 1137 -32.2 1515 1307 -13.7

2010 66 2269 1845 -18.7 2329 2201 -5.5
100 2215 1998 -9.8 2593 2362 -8.9
133 2573 1959 -23.9 2616 2351 -10.1
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The Irrigation Water Use Efficiency (IWUE), a ratio of difference between
irrigated seed cotton yield and dryland seed cotton yield divided by the total amount of
irrigation water applied (Howell, 2003; DeLaune et al., 2012), was also estimated for these
experiments and compared with the observed efficiencies (Table 15). The IWUE values
calculated from the model simulated seed cotton yields were in close agreement with the
observed values, except for the deficit irrigation treatments. The simulated IWUE values
for 33% ET replacement treatments were higher when compared to observed values (Table
15) as the model under-predicted seed cotton yields (Table 14). However, simulated
IWUE decreased with increased irrigation amounts, a trend that was also observed in other

field studies (DeLaune et al., 2012; Bordovsky et al., 1992).

Table 15. Comparison of estimated Irrigation water use efficiency (IWUE) values with

reported IWUE values.

ET Irrigation water use efficiency Irrigation water use efficiency

replacement  values estimated from DSSAT values reported in DeLaune et
% simulations (mean)(kg m™) al., 2012 (mean) (kg m™)
33 1.42 1.25
66 0.98 1.01
100 0.74 0.80
133 0.55 0.58

3.7  Model application

The calibrated model was used to determine suitable deficit irrigation strategies for the
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TRP region for the weather conditions during the 2008 and 2012 period. Simulated
average (2008-2010) seed cotton yield under different ET replacement strategies (0% to
133% ET replacement) for both conventional and conservation tillage scenarios followed
a similar trend that was observed by DeLaune et al. (2012) in their field experiments
(Figure 20). The maximum simulated yields were obtained for the 133% ET replacement
under conventional tillage and for the 100% ET replacement scenario under conservational
tillage. When the irrigation strategy was switched from 100% ET replacement to 133%
ET replacement, the simulated seed cotton yield increased by 3.5% under conventional
tillage and slightly decreased by 0.2% under conservational tillage (Figure 20). When the
irrigation strategy was changed from 66% ET replacement to 100% ET replacement (a
31% increase in the amount of irrigation water applied), the simulated seed cotton yield
increased by only 9.7% and 3.6% under conventional and conservation tillage practices,

respectively.
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Figure 20. Seed cotton yields in response to deficit irrigation amounts using 2008-2010

irrigation and tillage management experiments.

In 2012, the CSM-CROPGRO-Cotton model simulated the maximum seed cotton
yield of 5217 kg ha™! with the 110% ET replacement scenario, and the simulated yield for
the 100% ET replacement case was 4831 kg ha'!. The crop yields started declining from
120% ET replacement scenario (Figure 21). For achieving a 6% increase in seed cotton
yield, about 20% of additional irrigation water (100% ET replacement to 120% ET
replacement) was therefore needed. Similarly, for achieving a 21% increase in seed cotton
yield from the 70% ET replacement scenario to 100% ET replacement scenario, about
43% of additional irrigation water was needed (Figure 21). The yield productivity was
therefore higher between the 70% ET replacement and the 100% ET replacement, when

compared to the treatments with greater than 100% ET replacement.
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Figure 21. Seed cotton yields in response to deficit irrigation amounts using 2012 Cotton

experiment.

From the above two simulated expefiments, it can be noted that the relationship
between seed cotton yield and various % ET replacements was very different among the
years studied (Figures 20 and 21), mainly because of the differences in weather conditions.
The weather conditions in the TRP region during the 2008-2010 period were normal
(Table 4), but the year 2012 was substantially drier with a 16% decrease in rainfall and
an increase in mean temperature by 1.85°C during the growing season as compared to
2008-2010. The results indicated that the application of any additional amount of irrigation
water above the 100% ET replacement would not be advantageous under both normal and
drier weather conditions. A substantial savings in irrigation water can be achieved without

adversely impacting cotton yields in a normal year by adopting deficit (<100% ET
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replacement) irrigation strategies. However, in a drier (less than normal rainfall) year,
adoption of deficit irrigation strategies could substantially affect cotton yields and hence
100% ET replacement would be necessary to maintain crop yields (Figure 21). From
figures 20 and 21 we can say that some of the allowed deficit will be removed at random
times due to rainfall, lessening the impact of a deficit irrigation strategy on
yield. However, there is a risk of increased yield loss in years where no rainfall occurs
and producers should consider that risks when adopting deficit irrigation strategies. The
simulated trends obtained in this study are comparable to the findings of Bronson et al.
(2001) for the nearby Southern High Plains region, who reported that the optimum cotton
yields under surface drip irrigation method could be achieved by adopting deficit irrigation
strategies with 71% to 97% ET replacement.

3.8  Effects of future climate change on cotton yields at Chillicothe

On an average, the CSM-CROPGRO-Cotton model simulated a decrease in seed cotton
yield ranging from 2.0% to 14.9% (Table 16) under future climate scenarios predicted by
all three climate models when compared to the simulated historic average seed cotton
yield. The reduction in seed cotton yield under the RCM3-GFDL model scenarios was the
highest (14.9%) when compared to other two climate models (Table 16). The reduction in
seed cotton yields under three future climate model simulated scenarios can be attributed
to the combined effect of increase in both average annual minimum (2.2 to 2.5°C) and
maximum temperature (2.3 to 2.7°C) as well as decrease in average annual rainfall (11.4
to 67 mm). The simulated minimum seed cotton yield under future climate projections
ranged from 2163 kg/ha (RCM3-GFDL model) to 2866 kg/ha (RCM3-CGCM3 model),
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and the simulated future maximum cotton yields ranged from 3699 kg/ha (CRCM-CCSM
model) to 4070 kg/ha (RCM3-CGCM3 model), respectively (Table 16). On an average,
simulated future seed cotton yield under the three climate model projections was reduced

by 9.8% when compared to historic cotton yield.

Table 16. Comparison of CSM-CROPGRO-Cotton model simulated seed cotton yields

under three climate model predicted historic and future climate scenarios.

Climate RCM3-GFDL RCM3-CGCM3 CRCM-CCSM
Models seed cotton yields (kg/ha) seed cotton yields seed cotton yields
(kg/ha) (kg/ha)
Historic Future Decrease Historic Future Decrease Historic Future Decrease
(%) (%) (%)
Minimum 3148 2163 31.2 3101 2866 7.6 3378 2621 22.4
Mean 3769 3207 14.9 3603 3530 2.0 3900 3341 14.3
Maximum 4255 3714 12.7 4462 4070 8.9 4398 3699 15.9

A separate analysis of average seed cotton yields for three 5-year (dry, normal and
wet) periods under future climate scenarios showed that the simulated seed cotton yields
in all three periods (dry, normal and wet) were higher under the RCM3-CGCM3 model
projected future climate scenarios when compared to other two climate models (Figure
22). Under wet conditions, the simulated seed cotton yields were the highest under the
RCM3-CGCM3 projected future climate scenario followed by the RCM3-GFDL model
(Figure 22). Interestingly, higher yields were achieved in dry period under two RCM
scenarios, mainly because of enabling the auto irrigation feature. The amount of irrigation
water applied to achieve reasonable yields was substantially higher under dry conditions

when compared to normal and wet periods (Table 17).
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Figure 22. Comparison of simulated average seed cotton yield under dry, average and

wet year periods as predicted by three climate models.

Table 17. Comparison of simulated average (2041-2070) seasonal irrigation water

applied under dry, normal and wet periods.

Dry period Normal period Wet period
(mm) (mm) (mm)
RCM3-GFDL 369 243 132
RCM3-CGCM3 339 295 219
CRCM-CCSM 366 297 190

3.9 Climate change adaptation strategies
3.9.1 Changing planting date
CSM-CROPGRO-Cotton model simulations under A2 future climate scenario simulated

by RCM3-GFDL showed an average (2041-2070) increase of 0.8%, 0.8% and 0.6% in
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the seed cotton yield with the preponement of planting dates by 15, 10, and 5 days,
respectively, with reference to the 2009 planting date of May 23 (Baseline scenario)
(Figure 23, Table 18). Early planting of cotton in the future can therefore help to some
extent to compensate for some of the potential yield losses that could occur due to increase
in temperature (Figure 14-c and 15-c) and decrease in rainfall (Figure 10-c). A further
analysis of the effects of changing planting date on cotton yield in dry, wet and normal
years indicated interesting results (Table 18). In dry years, the predicted cotton yields
increased by 8.0%, 8.4% and 11.9% (with reference to base line scenario) when planting
was done early by 15, 10 and 5 days, respectively. In wet years, predicted cotton yields
were increased between 2.8% and 5.3% (with reference to base line scenario) when
planting date was preponed by 5 to 15%. The effect of changing planting date on cotton

yield in normal years was inconsistent, however. These results need further assessment.

Table 18. Effect of planting date on seed cotton yield (with reference to simulated
average (2041-2070) cotton yield under baseline scenario — planting date of May 23) in

dry, normal and wet years (5-years each).

Percent change in comparison to the baseline scenario

(planting on May 23)
Planting 15 days Planting 10 Planting 5 days
early days early early
Dry years 8.0 8.4 11.9
Normal years 1.0 -3.0 -6.0
Wet years 2.8 5.3 5.3
Average (2041-2070) 0.8 0.8 0.6
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Figure 23. Effect of planting date on cotton lint yield under RCM3-GFDL (Regional
Climate Model Version3—Geophysical Fluid Dynamics Laboratory) predicted A2 future
climate scenario for the period 2041-2070. Analysis is conducted for Chillicothe

(Hardeman County). Arrow represents the baseline scenario (planting date of May 23).

3.9.2 Adoption of no-tillage

The simulated seed cotton yields under no-till conditions and RCM3—-GFDL projected
future climate scenarios showed an average (2041-2070) increase of 0.4% in seed cotton
yields (Table 19). Evapotranspiration by plants is expected to increase in the future due to
predicted increase in temperatures (Figure 14-c and 15-c). Under no-till conditions, the
water losses due to evapotranspiration are reduced, thus making more water available for

the crop.
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Table 19. Average simulated seed cotton yields under no-till and combined effect of no-
till and early planting (the RCM3-GFDL (Regional Climate Model Version3—

Geophysical Fluid Dynamics Laboratory) climate model predictions.

Management practice Average simulated seed Percent increase from the
cotton yields (2041-2070) base line scenario (%)
(kg/ha)
Conventional tillage (base 3207 -
line scenario)
No-Till 3218 .
No-Till+ Early Planting 3240 1.1

(10days)

A combination of both no-till and early planting gave slightly better results. The combined
effect resulted in an average increase of 1.1% of seed cotton yields when compared to the
average simulated yields under conventional tillage and planting date of May 23™ (Table
19).

3.10 Summary and conclusions

A well-calibrated CSM-CROPGRO-Cotton model was successfully established for
Chillicothe in the TRP region after its extensive testing on two different experiments that
were conducted during 2008 to 2012. The model predicted crop phenology stages, LAI
(R? = 0.98), canopy height (R? = 0.97), and crop yield (% error= 1.0) adequately for the
100% ET replacement treatment during model calibration. The model responded well to
the changes in the irrigation amounts during validation as indicated by a close match
between the simulated and observed LAI, canopy height, and crop yields on three other
(75% ET replacement, tensiometer-based and soil moisture based) irrigation scheduling

treatments. The model was further evaluated on a three-year (2008-2010) tillage and
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irrigation experiment, and the simulated seed cotton yields were within the acceptable
error range (-24% to 13%), except for dry treatments (rainfed and 33% ET replacement).
Overall, the evaluated CSM-CROPGRO-Cotton model demonstrated the potential to
simulate cotton growth and development in the TRP region, and predicted seed cotton
yields in response to different management practices and climatic conditions reasonably
well.

The calibrated model was used to evaluate deficit irrigation strategies for this
region. It was found that significant water savings could be achieved without severely
affecting crop yields by adopting deficit irrigation strategies under normal weather
conditions such as those during 2008 to 2010. However, during drier conditions such as
in 2012, practicing deficit irrigation can significantly reduce crop yields. Even in a dry
year, deficit will probably be an optimum strategy, especially if applied at critical growth
stages.

The seed cotton yield predictions by CSM-CROPGRO-Cotton model over the
future climate period (2041-2070) showed an average decline in the range of 2% (RCM3-
CGCM3) to 14.9% (RCM3-GFDL). A combination of no-till and early planting date could
potentially minimize the yield losses due to climate change by about 1.1% according to

climate projections made by the RCM3-GFDL model.
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CHAPTER 1V
TEXAS PLAINS CLIMATE CHANGE INTERACTIVE GIS WEB APPLICATION: A

GEOSPATIAL DECISION SUPPORT TOOL TO REACH WIDER USER BASE

4.1 Introduction
Multi-billion dollar decisions in several sectors are dependent on climate data predictions.
Hence, it is essential to make climate predictions with minimal uncertainty and share them
freely (Overpeck et al., 2011). Accessing, processing and understanding future climate
change from current available sources is quite challenging. Previously, Global Climate
Models (GCMs) predictions were used mostly by research scientists, but recently resource
managers, policy makers, farmers, public health officials, etc. have begun increasingly
seeking access to these climate datasets to make informed decisions and plan for potential
climate change in the future (Overpeck et al., 2011). Climate scientists should make sure
that their research findings are not only shared within their community, but also made
available to the public, so that maximum benefits can be reaped (Overpeck et al., 2011).
The recent developments in web based geospatial technology have made it possible to
spatially and temporally view and share the climate datasets in usable formats. GIS
technology provides tools to not only visualize the data, but also enable users to analyse
the spatially explicit data (Takow et al., 2013).

One of the main objectives of this work was to enable users in the Texas Plains
region a new way of interacting with the climate data, which were not available before.

Previously, the data formats prevented all but domain experts from being able to visualize
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or utilize the data. This meant that important climate data which can potentially impact
billions of dollars was being underutilized. Most of the climate datasets were available in
netcdf or raster grid formats. The development of netcdf tools that were compatible with
GIS software has enabled users to view the climate data spatially. However, much of
development in processing of the netcdf files in GIS has to be done before using the tools
effectively. The existing statistical tools in MATLAB and R enabled users to extract and
process the netcdf files in a more efficient manner than the tools available in GIS.

Until recently, the GCM climate predictions were provided at monthly temporal
resolution over a spatial resolution of 200-250 km?. At this coarser spatial resolution, it
was difficult to capture the variability of climate change within a region (Wang et al.,
2012, Hijmans et al., 2005). With the development of new statistical downscaling
methods and weather generators, it became possible to downscale the GCM data to a
smaller spatial resolution of 25-50 km? (Maurer et al., 2008). Several data sources that
provide climate data in finer resolution grid formats such as PRISM (Daly et al., 2008)
and WorldClim (Hijmans et al., 2005) already exist. These climate data sources have been
traditionally utilized by the domain experts. In order to make this data easily accessible to
a wider range of users, the data from these sources have to be converted to a meaningful
scale and into a readily usable format (Wang et al., 2012). Some users who conduct
research on ecology or hydrology require finer spatial resolution datasets, while others
who perform research related to agricultural applications require datasets with increased

temporal resolution. Even at 25-50 km? resolution, some systematic biases are
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incorporated in to these datasets (Teutschbein et al., 2012), and this study presented an
approach that minimizes bias in climate datasets (see Chapter 2).

This study addresses the need to provide a comprehensive historical climate data
and future climate change projections at a scale suitable for the use of researchers, resource
managers, and policy makers in the Texas Plains. The web application is also designed to
provide projected cotton yields under future climate change scenarios. This work was built
on existing climate datasets that were generated by the North American Regional Climate
Change Assessment Program (NARCCAP) (Mearns et al., 2007; 2009). The overall goal
of this research was to use geospatial tools and web technologies to develop an interactive
online application that would provide easily accessible, bias-corrected, county-based,
historic-and future-climate datasets predicted by the GCM’s, and the projected cotton
yields predicted by DSSAT-CROPGRO-Cotton model under future climate change
scenarios. The specific objectives of this research were to: 1) design and develop the
climate database and host it within a relational database management system (Microsoft
SQL Server) to provide dynamic access to the data; and 2) develop an online interface and
host the web service for public access.

This chapter is divided into two sections, which address the objectives 3 and 4. In
order to incorporate the projected cotton yields into web-application, the regional
productivity study has been conducted first to predict cotton yield for each county. In the
first section, a methodology is proposed to generate the regional productivity analysis
maps of cotton for the Texas Plains region and then to analyze the results. This

methodology integrates Geographic Information System (GIS) with the CSM-
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CROPGRO-Cotton model to expand the scope of site-specific simulations to a regional
scale. GIS was also used to generate the regional productivity maps which are useful for
regional planning. In the second section, methodology and technologies used to create the
Texas Plains Climate Change (TPCC) web application are discussed.
4.2 Methodology
4.2.1 Regional cotton productivity analysis
All major cotton growing counties in the Texas Plains with at least 400 ha of cotton
acreage were included in the regional productivity analysis. A total of 32 counties in the
Texas Plains met the above criteria. In this analysis, each county was considered as a
mapping unit. A GIS based distributed modeling approach was used to aggregate
predictions from all mapping units to make regional predictions of cotton yields. Each
mapping unit consisted of one or more NARCCAP climate grids. For the 32 counties
included in the analysis, a total of 1920 DSSAT cotton projects ((32 counties * 30 historic
years) + (32 counties * 30 future years)) were created. The bias-corrected, RCM3-GFDL
model predicted historic (1971-2000) and future (2041-2070) climate data (precipitation,
minimum and maximum temperature, and solar radiation) for the selected counties was
input as weather data for the DSSAT cotton projects. The genotype and phenotype
characteristics that were established for Chillicothe experimental site in the Texas Rolling
Plains (Modala et al., 2014), were used in the regional productivity analysis.

The management practices (such as fertilizer application, cropping window, tillage
practices, etc.) were assumed to be the same as those followed in Chillicothe experiments.

Automatic irrigation method was used in the model. Whenever the soil water content was
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below 50% of the available water (difference of field capacity and permanent wilting point
soil moisture contents), irrigation was triggered until the available soil water content
reached 85% level (deficit irrigation strategy). The soil properties in the selected TRP
counties were assumed to be the same as those found at Chillicothe (Modala et al., 2014).
Using the results of recent analysis of soil samples collected at Bushland and Halfway
(Table 20a-b), soil input files were created for the selected counties in the THP region.
The effects of spatial and temporal variability of climate and soil properties on crop yields
across the two regions were analysed. The following assumptions were therefore made
while conducting the regional productivity analysis:
e All of the selected counties were assumed to follow similar crop and fertilizer
management practices for cotton production.
e There is no spatial variability in weather patterns within each mapping unit
(selected county).
e Soil properties in nearby counties surrounding mapping units where soil samples
were collected (Table 20), were assumed to be similar to those at the sampling

sites.
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Table 20. Soil composition and hydrological properties used in Regional Productivity Analysis

a. Analysis results of soil samples collected at Bushland in the Texas High Plains

Depth SLCL SLSI SLOC SLHW CEC SLNI LL DUL SSAT SSKS SRG
(cm) (%) (%) (%) (cmol kg™ (%) (cm cm™) (cmecm!)  (ecmcem?)  (cmh?) F
0-5 33 46 0.94 7.7 22.4 0.1 0.119 0.342 0.464 0.62 0.950
5-15 33 46 0.94 7.7 22.4 0.1 0.119 0.342 0.464 0.62 0.950
15-30 39 40 0.75 7.7 29.3 0.09 0.133 0.333 0.454 0.39 0.850
30-45 35 46 0.68 8.1 33.9 0.08 0.122 0.330 0.446 0.36 0.775
45-60 37 42 0.68 8.2 36.5 0.07 0.128 0.333 0.453 0.41 0.700
60-75 37 40 0.61 8.3 37.1 0.06 0.127 0.327 0.447 0.37 0.600
60-160 37 40 0.54 8.3 55.5 0.06 0.127 0.327 0.447 0.37 0.320

b. Analysis results of soil samples collected at Halfway in the Texas High Plains

Depth SLCL SLSI SLOC SLHW CEC SLNI LL DUL SSAT SSKS SRG
(cm) (%) (%) (%) (cmol kg™ (%) (cmem!’)  (emcem!)  (ecmem!)  (cmh?) F
0-5 17 19 0.76 8.3 19.5 0.07 0.083 0.235 0.402 1.38 0.950
5-15 17 19 0.76 8.3 19.5 0.07 0.083 0.235 0.402 1.38 0.950
15-30 25 27 0.66 8.1 23.4 0.07 0.104 0.281 0.415 0.58 0.850
30-45 31 27 0.56 7.9 25.4 0.07 0.119 0.299 0.426 0.42 0.775
45-60 36 24 0.54 7.8 28.3 0.07 0.134 0.311 0.435 0.43 0.700
60-75 34 24 0.50 7.9 329 0.06 0.129 0.305 0.429 0.42 0.600
60-160 34 24 0.50 7.9 32.9 0.06 0.129 0.305 0.429 0.42 0.320

SLCL = clay content, SLSI = silt content, SLOC = organic carbon, SLHW = pH in water, CEC = cation exchange capacity, SLNI = Total nitrogen concentration, LL = lower limit, DUL =
drained upper limit, SSAT = saturation, SBDM = bulk density, SSKS = saturated hydraulic conductivity, and SRGF = soil root growth factor.
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For analysis purposes, the cotton yield simulation results have been divided into dry,
normal and wet periods. The growing season (May - October) rainfall data was first
arranged in ascending order and the top 5 years have been classified as “dry”, the middle
five years as “normal” and the last five years as “wet” periods.

4.2.2 Development of the Texas Plains Climate Change web application

The first step in the creation of the TPCC web application was designing a database that
included county polygon geographic information, county general information (e.g.,
population, area), and the county-wise bias-corrected climate datasets for all three RCMs.
The entire database was hosted on a Microsoft SQL Server 2012 (Figure 24). The county
polygon geographic information was extracted from Google fusion Tables. The polygon
geographic information was converted to the required Well-Known Text (WKT) format
for storing on the SQL server. The WKT format was defined by the Open Geospatial
Consortium (OGC). A JavaScript Object Notation (JSON) page containing WKT, general
information, and climate datasets for all three climate models was created for each county
using JQuery as the scripting language to retrieve data and create the output visualizations.
The data from the JSON page was used to generate the county polygons and HighChart
graphs that overlay the Google map. The entire web service was hosted on Microsoft
Internet Information System (IIS) (Figure 24). The page was designed using the Hypertext
mark-up language (HTMLS), cascading style sheets (CSS3) and Google Map API

JavaScript.
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Figure 24. Diagrammatic representation of the architecture involved in creating the

Texas Plains Climate Change (TPCC) web application.

4.3  Results and discussions

4.3.1 Regional productivity analysis

Under the RCM3-GFDL model projected future climate scenario, the CSM-CROPGRO-
Cotton model simulated a decrease in seed cotton yield, ranging from 0.7% to 20.0% in
many counties across the Texas Plains (Figure 25). The counties with the maximum
reduction is seed cotton yields are located in the TRP region. This is due to the decrease
in the rainfall (Figure 10-c from Climate Change Analysis in Chapter 2). According to the
CSM-CROPGRO-Cotton model simulations, a slight increase in seed cotton yield (0.1%
to 3.3%) was predicted in only five counties (Deaf Smith, Lamb, Briscoe, Crosby, and

Dickens), which are located in the Southern High Plains.
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In the TRP region, it was observed that the decrease in seed cotton yields in the
counties located to the east (Foard, Wilbarger, Wichita, etc.) is more when compared to
the counties located to the west (Hall, Childress, Taylor, etc.) (Figure 25). The percent
decrease in rainfall (Figure 10-c from Climate Change Analysis) and percent increase in
temperatures had substantial effect (Figure 14-c and Figure 15-c from Climate Change
Analysis) on the reduction of seed cotton yields in this region. It has to be noted that same
soil properties have been applied across the TRP region.

The cotton yield in the THP region increased under dry conditions; slightly
decreased under normal conditions, and decreased further under wet conditions in the
future as simulated by the CSM-CROPGRO-Cotton model (Figure 26). During the same
period, the cotton yields in the TRP were predicted to be declined by up to 40% under dry
conditions, and 20% under normal and wet conditions when compared to the historic

simulations (Figure. 26).
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Figure 25. DSSAT-CROPGRO-Cotton model simulated seed cotton yields under
historic and future climate scenarios projected by the RCM3-GFDL (Regional Climate
Model Version3—Geophysical Fluid Dynamics Laboratory) climate model (Please note
that this analysis was carried for only those counties that have more than 400 ha of

cotton). Negative sign indicates decrease in cotton yields.
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Figure 26. Maps showing spatial varibility of average percent change (historic-future) in

cotton yields (kg/ha) under dry, normal and wet periods.
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4.3.2 TPCC web application

After ensuring that the bias-corrected climate data matched reasonably well with the
observed data, the bias-corrected climate datasets for each county were used in developing
the database required for the TPCC web application. The TPCC interactive online web
application was designed to provide the user with the ability to view temporal and spatial
variability of historic and future climate change as predicted by three climate models
across the Texas Plains region. Figure 27 shows the home page of the TPCC web
application and the navigation bar from which users can select their choice of climate
model by clicking on the CLIMATE MODELS tab. The ABOUT DATA tab provides the
users with a brief description about the climate models, climate datasets and methodology
employed in correcting the datasets and references. Users can request extractions of
monthly and daily bias corrected climate datasets for all the three models. Users can access
the mean monthly rainfall (Figure 28), mean monthly maximum temperature (Figure 29),
and mean minimum temperature predicted by each climate model for each county. Users
can also access the bias corrected ensemble average of mean temperature and rainfall

predicted by the three climate models (Figure 30).
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Figure 27. Homepage of the Texas Plains Climate Change (TPCC) web application
displaying the RCM3-GFDL (Regional Climate Model Version3—Geophysical Fluid

Dynamics Laboratory) climate predictions for Hardeman County, TX.
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Figure 28. Comparison of bias corrected, RCM3-GFDL (Regional Climate Model
Version3—-Geophysical Fluid Dynamics Laboratory) predicted mean monthly historic

and future rainfall for the Hardeman County, TX.
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Figure 29. Comparison of bias corrected, RCM3-GFDL (Regional Climate Model
Version3—-Geophysical Fluid Dynamics Laboratory) predicted monthly mean historic

and future maximum temperature for the Hardeman County, TX.
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Figure 30. Ensemble average of historic rainfall and mean temperature for the Hardeman

County, TX.

A feature called “Info Bubble” has been added to the TPCC webpage. When a user
clicks on any county polygon, the info bubble will pop up with two different tabs (Figure
30): “County” and “Ensemble Historic”. The “County” tab (Figure 30) provides general
information about the county such as geographic area, population, and the "Ensemble
Historic” tab (Figure 30) provides the ensemble averages of historic mean temperature
and rainfall.

In the graphs located to the right of the webpage (Figure 27), the user is provided
with the options to view only historic, only future, or both climate datasets by clicking the
legend at the base of each chart. When a user hovers the mouse cursor on a marker in the

chart, the month and the associated quantitative value (rainfall/temperature) pop up
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(Figure 28, Figure 29). The default base map used in the application is a Google terrain
map, but the users can also select a satellite base map if they wish. The use of Google
Maps API and HighCharts is expected to enhance the users’ experience as they are
provided with additional tools to interact with the website, like built-in “zoom in” and
“zoom out” functionality, and the ability to pan across the region.

The web-GIS based application developed in this study will expand the reach,
utility, and the impact of the climate data by making it available in forms and formats that
are familiar to a wide range of user groups in the region. There are several potential ways
in which users can use this application tool in several sectors including agriculture, which
is likely to be vulnerable to climate change. For example, Viticulture is an important
agricultural activity in the region. Texas Plains is home to approximately 60 vineyards
totalling 440 ha, and six wineries including the second-largest producer in the state, the
Liano Estacado Winery (Hellman and Takow, 2011). Climate is one of the key controlling
factors in grape and wine production as it affects the suitability of grape varieties to a
particular region as well as the type and quality of the wine produced. Previous studies
emphasized the importance of the availability of bias corrected climate variables for
climate change analyses of wine grape suitability (Diffenbaugh and Scherer, 2013). The
availability of future climate data can help develop and evaluate strategies for mitigating
the effects of climate change so that consistent yields of particular wine varieties can be
maintained under future climatic conditions. Another example of potential use of this
application tool relates to production of cotton, which is a major crop in the Texas Plains

region that could be at risk due to projected climate change. The cotton dependent
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industries can access this readily available bias-corrected daily climate data for studying
the impacts of future climate change on cotton production using crop growth models and
be prepared for the future. Other potential key users include the policy makers who devise
management strategies (e.g. 50/50 Management plan in the Southern High Plains for
prolonging the availability of groundwater from the Ogallala aquifer) for projected climate
change scenarios, and the stakeholders who adopt those management strategies.

4.4 Summary and conclusions

An interactive TPCC web application was developed to display and to provide access to
the bias corrected historic and future rainfall and temperature data for 67 counties in the
Texas High Plains and Rolling Plains regions as well as the predicted cotton yields for 32
counties. The datasets required for creating this web application were obtained from the
NARCCAP website. The historic (1971-2000) and future (2041-2070) climate data
predicted by three RCMs, namely RCM3-GFDL, RCM3-CGCM3, and CRCM-CCS were
used in this application. However, these datasets contained systematic biases and hence
Gamma and Gaussian distribution mapping techniques were effectively used for bias
correcting the rainfall and temperature datasets, respectively.

The TPCC web application was developed using a combination of database,
server, and web based geospatial technologies to store and access the data dynamically.
Through the TPCC web application, users with a limited technical background can easily
access bias corrected mean monthly rainfall, maximum temperature, minimum
temperature predicted by each RCM and also an ensemble average of rainfall and mean

temperature predicted by the three RCMs. Web based geospatial tools used for creation of
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this online application enable the users to interact with the application effectively. In
addition to viewing the spatio-temporal variation in climate data, users can request for the
datasets for their own analysis and planning purposes. The TPCC web application was
designed to meet the needs of a wide range of users in the Texas Plains. The application
will eventually be expanded to include all counties in Texas and climate datasets from all
of the 11 RCMs that are currently available on the NARCCAP website.

The regional productivity analysis study under RCM3-GFDL climate predictions
showed a decline in cotton yields ranging from 0.7% to 20.0% across the cotton-growing
counties in the Texas Plains. The crop modeling simulation results indicated that the

counties located in the Texas Rolling Plains are expected to be affected the most.
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CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Summary

Cotton is one of the major crops cultivated in the Texas Plains region (which includes the
Texas High Plains and Rolling Plains) and it is a major contributor to the regional
economy. Changing climate, declining groundwater levels, and regulatory restrictions on
groundwater pumping are some of the serious challenges being faced by the cotton
producers in the Texas Plains region. The overall goal of this research was to assess the
impacts of climate change on cotton growth and yield in the Texas Plains region using the
CROPGRO-Cotton Cropping System Model (CSM) within the Decision Support System
for Agrotechnology Transfer (DSSAT; version 4.5), and to suggest climate change
adaptation strategies.

As the first step, the future (2041-2070) and historic (1971-2000) climate data
generated by three Regional Climate Models (RCMs), namely RCM3-GFDL, RCM3-
CGCM3, and CRCM-CCSM, for the Texas Plains region was obtained from the North
American Regional Climate Change Assessment Program (NARCCAP) and used in this
study. Gamma and Gaussian distribution mapping techniques were employed for
removing the bias associated with the downscaling of climate model projected rainfall
and temperature (maximum and minimum) data, respectively. The spatial variability of

projected climate change across the Texas Plains region was then assessed.
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The CSM-CROPGRO-Cotton model was initially calibrated, validated and
evaluated based on observed cotton yield and phenology data obtained from the cotton
experiments conducted between the years 2008-2010 and 2012 at Chillicothe Research
Station near Vernon in the Texas Rolling Plains. The calibrated model was first used to
evaluate various deficit irrigation strategies for the Rolling Plains region. The calibrated
model was later used to study the impacts of projected climate change on cotton growth
and yield over the period from 2041 to 2070 at Chillicothe and across 32 cotton-growing
counties in the Texas Plains. Early planting and no-till management strategies were
evaluated as potential climate change adaptation strategies using the RCM3-GFDL
predicted future climate data.

Using the Chillicothe-calibrated CSM-CROPGRO-Cotton model and GIS-based
methods, regional productivity maps of cotton for the Texas Plains region were developed
based on the assumptions of uniform crop and fertilizer management practices across the
region, and spatial uniformity of climate variables within the county. An interactive TPCC
web application was finally developed to display and to provide access to the bias
corrected historic and future rainfall and temperature data for 67 counties in the Texas
Plains region, and predicted cotton yields for 32 counties.

5.2 Conclusions
The following conclusions were drawn from this research:
1. The RCMs predicted a decrease in average annual rainfall in the range of 30 to 127

mm in the future (2041-2070) when compared to the historic period (1971-2000)

across the Texas Plains region. The future (2041-2070) rainfall projections by the
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RCM3-GFDL model indicated an overall decrease in the number of rainfall events
by 6% to 10%, and an overall increase in the intensity of rainfall by about 3% to
8%.

. The RCMs predicted an average increase in the maximum temperature in the range
of 2.0 °C to 3.2 °C and an average increase in the minimum temperatures in the
range of 1.9 °C to 2.9 °C in the future (2041-2070).

. The CSM-CROPGRO-Cotton model demonstrated the potential to simulate the
effects of various crop, tillage and irrigation management strategies on cotton
production in the Texas Plains, and also to assess the effects of future climate
change on cotton yields.

. The CSM-CROPGRO-Cotton model simulated crop phenology stages, LAI (R? =
0.98), canopy height (R? = 0.97), and crop yield (% error= 1.0) accurately during
the model calibration. The model predictions of LAI, canopy height, and crop yield
during model validation and evaluation have also matched closely with observed
data, except under dry conditions (0% ET replacement and 33% ET replacement).
. Under normal rainfall conditions, the simulated percentage reduction in seed
cotton yield was marginal (3.5 to 8.8%) when the amount of irrigation water
applied was decreased from 100% to 66% ET replacement. A significant water
savings could therefore be achieved without severely affecting crop yields by
adopting deficit irrigation strategies under normal weather conditions.

. Under drier conditions, percent decrease in seed cotton yield was substantial (about

21.2%) when irrigation strategy was switched from 100% to 70% ET replacement.

101



Adopting deficit irrigation strategies during drier conditions could substantially
reduce crop yields.

. Under the future climate scenarios predicted by three RCMs, a decline in seed
cotton yield ranging from 2% to 14.9% was predicted at Chillicothe. A
combination of no-till practice and early planting of cotton can potentially
minimize the yield losses due to climate change to some extent.

. Majority of the counties in the Texas Plains showed a decline in average seed
cotton yield (2% to 20%) under RCM3-GFDL predicted future climate scenarios,
with the counties in the Texas Rolling Plains being the most affected.

. The Texas Plains Climate Change (TPCC) web application was successfully
developed and it demonstrated the potential of using web-based geo-spatial
technology for effectively displaying and sharing the results of high end scientific

research to a wide range of users.
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APPENDIX I

MATLAB PROGRAM CREATED FOR BIAS CORRECTION OF RAINFALL DATA

function [xval] =GFDL_Precp_indexing(x)
current_dir=pwd;
combined_dir=[current_dir \Combined_data\'];
cd(combined_dir);
datal = xlsread(x);
cd..;
current_dir=pwd;
final_dir=[current_dir "\Final_output\T;
if ~isdir(final_dir)

mkdir(final_dir)
end
outfile=[final_dir x(1:length(x)-5) '_final_future.xlsx'];
outfile_2=[final_dir x(1:length(x)-5) '_final_historic.xIsx'];
outfile_mean=[final_dir x(1:length(x)-5) '_monthlymean.xIsx'];
outfile_stats_fut=[final_dir x(1:length(x)-5) '_stats_future.xlsx'];
outfile_stats_hist=[final_dir x(1:length(x)-5) '_stats_historic.xlsx'];

Yo %0 %0 o To Yo Yo Yo To Yo Yo T To Yo Yo Fo To Yo Yo Fo Fo Yo Yo Vo Fo Yo Yo Fo Jo Yo Yo Fo Fo Yo Yo Fo Fo Yo Yo Fo Fo Yo Vo To Fo Yo Yo Fo Yo Yo Yo
Yo %0 %o o To Yo Yo Yo To Yo Yo Yo
count=1;
for i=1:length(datal)-1
data(count,:)=datal(i,:);
% if((rem(datal(i,3),4)==0) && (datal(i,1)==2) && (datal(i,2)==28))
% count=count+1;
% data(count,:)=(datal(i,:)+datal(i+1,:))/2;
% data(count,1)=2;
% data(count,2)=29;

% end
count=count+1;
end

d=isnan(data);

data(d)=0;

mySize = size(data);

nmonths = 12;

coll=6;

col2=9;

col3=15;
precp_obsdata=cell(1,nmonths);
precp_simdata=cell(1,nmonths);
precp_simcorrecteddata=data(:,col2);
precp_simcorrectedthresholddata=data(:,col2);
precp_simoriginaldata=data(:,col2);
precp_simindexdata=cell(1,nmonths);
temp_arr=[];

precp_futureoriginaldata = data(:,col3);
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precp_futurecorrecteddata = data(:,col3);
precp_futurecorrectedthresholddata=data(:,col3);
precp_futuredata=cell(1,nmonths);
precp_futureindexdata=cell(1,nmonths);
90 %o %0 o %o To %o %o Jo % % % To count the number of events in each month % % % % % % %o %0 %o %o %o Yo Yo %o
for j=1:nmonths
fori=1:mySize(l,1)
if(data(i,1) == j && data(i,col1)>0)
temp_arr = [temp_arr ;data(i,coll)];
end
end
precp_obsdata{1,j}=temp_arr;
temp_arr=[];
end
0 %0 Fo To %o Yo o To Yo Yo To Fo Yo Yo To Fo Yo Yo Fo Fo Yo Yo To Yo Yo Yo Fo Fo Yo Yo To Fo Yo Yo To Fo Yo Yo Fo Yo Yo Yo Fo Yo Yo Vo Fo Yo Yo Yo Yo
9o %0 Yo To Yo Yo o Yo Yo Yo Yo To Fo Yo Yo Jo Jo Yo
90 %o %0 Yo %o Yo %o % %o % % To find the thresholds of each month % % % % %o %o % %o Yo Yo %o Jo Yo Jo Yo To Yo To Yo Yo
for j=1:nmonths
thresh=0.01;
count2=0;
count2prev=length(precp_obsdata{1,j});
while(1)
fori=1:mySize(l,1)
if(data(i,1) == j && data(i,col2)>thresh)
count2 = count2+1;
end
end
if(count2==length(precp_obsdata{1,j}))
threshold(j)=thresh;
break;
elseif( (count2prev > length(precp_obsdata{1,j})) && (count2 < length(precp_obsdataf{1,j})))
disp(['Countprev is ', num2str(count2prev), ' and required is ',num2str(length(precp_obsdata{1,j})),

"count is ',num2str(count2),' for month ',num?2str(j), ' from file ', x ])
% error('Couldnt find equal number of events. Increase resolution');
threshold(j)=thresh;
break;
else
count2prev=count2;
count2=0;
thresh=thresh+0.0001;
end
end
end
0% %0 Yo Yo Yo Yo Yo To Yo Fo Yo To Yo To Yo Fo Yo Yo Yo Yo Fo Yo To Yo To Yo Yo Yo To Yo Yo Yo Fo Yo Yo Fo Yo Fo Yo To Yo To Yo Fo Yo Fo Yo Vo Jo Yo
90 %o %0 Yo %o o Yo Yo To Yo To Yo To Yo Jo Yo Yo Yo

o %0 %0 %0 %o %o Yo %o Yo % %o %o % JIndexing of

data% %o %o % Yo %o Yo %o Fo Yo Yo Yo Fo Yo Yo Fo Fo Yo Yo Yo Fo Yo Yo Yo Fo Yo Yo Yo Yo Yo
temp_arr=[];temp_arr2=[];

indexdata_arr=[];

indexfuturedata=[];
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for j=1:nmonths
fori=1:mySize(l,1)

if(data(i,1) == j && data(i,col2)>threshold(j))
temp_arr =[temp_arr ; data(i,col2)];
indexdata_arr=[indexdata_arr ; i];

end

if(data(i,1) == j && data(i,col2)<=threshold(j))
precp_simcorrectedthresholddata(i)=0;

end

if(data(i,1) == j && data(i,col3)>threshold(j))
temp_arr2 =[temp_arr2 ; data(i,col3)];
indexfuturedata=[indexfuturedata ; i];
end
if(data(i,1) == j && data(i,col3)<=threshold(j))
precp_futurecorrectedthresholddata(i)=0;
end
end
precp_simdata{1,j }=temp_arr;
precp_simindexdata{1,j}=indexdata_arr;
temp_arr=[];
indexdata_arr=[];

precp_futuredata{1,j}=temp_arr2;

precp_futureindexdata{ 1,j }=indexfuturedata;

temp_arr2=[];

indexfuturedata=[];
end
Go %o Yo o %o Yo Fo To To Yo Yo Fo To Fo Fo To Yo Yo Fo Yo To Fo Fo Fo Yo T To To Fo Fo To Yo Yo Yo To Fo Fo Fo Fo Yo Yo Yo To Fo Fo To Yo o Yo Fo Fo
o % Yo T %o Yo To %o Yo Yo
precp_simoriginalthresholddata=precp_simcorrectedthresholddata;
precp_futureoriginalthresholddata=precp_futurecorrectedthresholddata;

precp_obs=cell(1,nmonths);
phat_obs=cell(1,nmonths);
y_obs=cell(1,nmonths);

precp_sim=cell(1,nmonths);
precp_simindex=cell(1,nmonths);
phat_sim=cell(1,nmonths);
y_sim=cell(1,nmonths);
corrected_data=cell(1,nmonths);

precp_future=cell(1,nmonths);
precp_futureindex=cell(1,nmonths);
phat_future=cell(1,nmonths);
y_future=cell(1,nmonths);
future_corrected_data=cell(1,nmonths);

for j=1:nmonths
precp_obs{1,j}=sort(precp_obsdata{1,j});
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phat_obs{1,j} = gamfit(precp_obs{1,j});

y_obs{1,j}=gamcdf (precp_obs{1,j},phat_obs{1,j}(1),phat_obs{1,j}(2));
subplot(4,3.));

plot(precp_obs{1,j},y_obs{1,j},'--bo', MarkerSize',2)

xlabel('Daily Precipitation (mm/d)');

ylabel('Cummulative Probability');

title(j);

hold on;

[precp_sim{1,j}, precp_simindex{1,j } ]=sort(precp_simdata{1,j});
phat_sim{ 1,j} = gamfit(precp_sim{1,j});

y_sim{ 1,j }=gamcdf (precp_sim{1,j},phat_sim{1,j}(1),phat_sim{1,j}(2));
plot(precp_sim{1,j},y_sim{1,j},-.r*",'MarkerSize',2);
legend('Obs','Sim',4);

legend boxoff

outfigfilel=[final_dir x(1:length(x)-5) '_precipcdf_fig.jpg'l;
saveas(gcf,outfigfilel);

[precp_future{1,j}, precp_futureindex{1,j}]=sort(precp_futuredata{1,j});
phat_future{1,j} = gamfit(precp_future{1,j});
y_future{1,j}=gamcdf (precp_future{1,j},phat_future{1,j}(1),phat_future{1,j}(2));
end
figure;
simdatal=[];
futuredatal=[];
for j=1:nmonths
corrected_data{1,j} = gaminv(y_sim{1,j},phat_obs{1,j}(1),phat_obs{1,j}(2));
future_corrected_data{1,j} = ...

gaminv(y_future{1,j},(phat_future{1,j}(1)*(phat_obs{1,j}(1)/phat_sim{1,j}(1))),(phat_future{1,j}(2)*(ph
at_obs{1,j}(2)/phat_sim{1,j}(2))));
% subplot(4,3,j);
% plot(corrected_data{1,j},future_corrected_data{1,j},".";
% xlabel('Bias Corrected Precipitation (mm/d)");
% ylabel('Future Corrected Precipitation (mm/d)");
% title(j);
% outfigfile2=[final_dir x(1:length(x)-5) '_precipcorrected_fig.jpg'l;
% saveas(gcf,outfigfile2);
simdatal=[simdatal sum(corrected_data{1,j})/30];
futuredatal=[futuredatal sum(future_corrected_data{1,j})/30];

end

% xlswrite(outfile_mean, {'Month'";}, 'Sheetl’, 'A1")

% xlswrite(outfile_mean, data(:,1), 'Sheetl’, 'A2")

xIswrite(outfile_mean, {'Bias corrected monthly mean historic values';}, 'Sheetl', 'B1")
xIswrite(outfile_mean, simdatal, 'Sheetl’, 'B2")

xlswrite(outfile_mean, {'Bias corrected monthly mean future values';}, 'Sheetl', 'C1")
xlswrite(outfile_mean, futuredatal, 'Sheetl’, 'B3")

plot(simdatal,'--bo','LineWidth',2)

hold on;

plot(futuredatal,'--ro','LineWidth',2)

ylim([0 160])
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xlim([1 12])

xlabel('Months');

ylabel('Mean Monthly Precipitation (mm)');
legend('1971-2000',2041-2070',4);

hold off;

outfigfile=[final_dir x(1:length(x)-5) '_precip_fig.jpg'l;
saveas(gcf,outfigfile);

0% %0 %0 Yo %o %o %o %o % % FoReplacing the data in the original order % % % % %o Yo %o %o Yo Yo Yo Yo %o Yo %o
for j=1:nmonths
for k =1:length(corrected_data{1,j})
precp_simcorrecteddata(precp_simindexdata{ 1,j }(precp_simindex{ 1,j}(k)))=corrected_data{1,j}(k);

precp_simcorrectedthresholddata(precp_simindexdata{ 1,j } (precp_simindex{1,j}(k)))=corrected_data{1,j}
(k);

end

for k =1:length(future_corrected_data{1,j})

precp_futurecorrecteddata(precp_futureindexdata{1,j } (precp_futureindex{1,j } (k)))=future_corrected_data
{Lj});

precp_futurecorrectedthresholddata(precp_futureindexdata{ 1,j } (precp_futureindex{ 1,j } (k)))=future_corre
cted_data{1,j}(k);
end
end
% phat_corr=cell(1,nmonths);
% y_corr=cell(1,nmonths);
% for j=1:nmonths
%  phat_corr{1,j} = gamfit(corrected_dataf{1,j});
% y_corr{l,j}=gamcdf (corrected_data{1,j},phat_corr{1,j}(1),phat_corr{1,j}(2));
% end
%
% temp=[;
% for j=1:nmonths
%  temp= [temp; phat_obs{1,j} phat_sim{1,j} phat_corr{1,j}];
% end
% xlswrite(outfile, {'simoriginaldata’,'simcorrecteddata’;}, 'Sheet1', 'L.1")
% xlswrite(outfile, precp_simoriginaldata, 'Sheetl', T.2")
% xlswrite(outfile, precp_simcorrecteddata, 'Sheetl’, 'M2")
temp1=[];
temp2=[];
Precp_min_fut=[];
Precp_max_fut=[];
Precp_mean_fut=[];
Precp_median_fut=[];
for abc=1:mySize(1,1)-1
current_year=data(abc,12);
current_month=data(abc,10);
next_year=data(abc+1,12);
next_month=data(abc+1,10);
if ((current_year == next_year) && (current_month == next_month))
templ = [temp] precp_futurecorrectedthresholddata(abc,1)];
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if(abc == (mySize(1,1)-1))
templ = [temp] precp_futurecorrectedthresholddata(abc+1,1)];
end
else
temp2=temp 1 (find(temp1));
if isempty(temp?2)
Precp_min_fut=[Precp_min_fut; 0];
else
Precp_min_fut=[Precp_min_fut; min(temp2)];
end
Precp_max_fut=[Precp_max_fut; max(temp1)];
Precp_mean_fut=[Precp_mean_fut; mean(temp2)];
Precp_median_fut=[Precp_median_fut; median(temp2)];
temp 1=[];
end
end

temp1=[];
temp2=[];
Precp_min_hist=[];
Precp_max_hist=[];
Precp_mean_hist=[];
Precp_median_hist=[];
for abc=1:mySize(1,1)-1
current_year=data(abc,3);
current_month=data(abc,1);
next_year=data(abc+1,3);
next_month=data(abc+1,1);
if ((current_year == next_year) && (current_month == next_month))
templ = [temp] precp_simcorrectedthresholddata(abc,1)];
if(abc == (mySize(1,1)-1))
templ = [temp] precp_simcorrectedthresholddata(abc+1,1)];
end
else
temp2=temp 1 (find(temp1));
if isempty(temp?2)
Precp_min_hist=[Precp_min_hist; 0];
else
Precp_min_hist=[Precp_min_hist; min(temp2)];
end
Precp_max_hist=[Precp_max_hist; max(temp1)];
Precp_mean_hist=[Precp_mean_hist; mean(temp2)];
Precp_median_hist=[Precp_median_hist; median(temp?2)];
temp 1=[];
end
end

xIswrite(outfile, { Precipfuturecorrecteddata(mm)';}, 'Sheetl’, D1")
YoxlIswrite(outfile, precp_futureoriginaldata, 'Sheetl', 'N2")
xIswrite(outfile, precp_futurecorrectedthresholddata, 'Sheetl’, 'D2")
YoxIswrite(outfile, precp_futurecorrectedthresholddata, 'Sheetl’, 'G2")
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xIswrite(outfile_2, {"PrecipHistoriccorrecteddata(mm)';}, 'Sheetl’, 'D1")
xIswrite(outfile_2, precp_simcorrectedthresholddata, 'Sheetl', 'D2")

xlswrite(outfile_stats_fut, { "Precp_Min','Precp_Max','Precp_Mean','Precp_Median';}, 'Sheet1’, 'C1")
xIswrite(outfile_stats_fut, Precp_min_fut, 'Sheetl', 'C2")

xIswrite(outfile_stats_fut, Precp_max_fut, 'Sheetl', 'D2")

xIswrite(outfile_stats_fut, Precp_mean_fut, 'Sheetl’, 'E2")

xIswrite(outfile_stats_fut, Precp_median_fut, 'Sheetl', 'F2")

xlswrite(outfile_stats_hist, {'Precp_Min','Precp_Max','Precp_Mean','Precp_Median';}, 'Sheetl', 'C1")
xlswrite(outfile_stats_hist, Precp_min_hist, 'Sheetl', 'C2")

xIswrite(outfile_stats_hist, Precp_max_hist, 'Sheetl', 'D2")

xIswrite(outfile_stats_hist, Precp_mean_hist, 'Sheetl’, 'E2")

xIswrite(outfile_stats_hist, Precp_median_hist, 'Sheetl', 'F2")

Go %o Yo T %o Yo To To To Yo Yo To To Fo Fo To Yo Yo To Yo To Fo Fo Yo Yo T To To To Fo To Yo Yo Fo To Fo Fo Fo Fo Yo Yo Fo To Fo Fo To Yo o Yo Fo Fo
Go %0 Yo o %o Yo To To To Yo %o %o

xval = 0;

MATLAB PROGRAM FOR BIAS CORRECTION OF TEMPERATURE (MINIMUM
AND MAXIMUM)

function [xval] =GFDL_Temp_indexing(x)
current_dir=pwd;
combined_dir=[current_dir \Combined_data\'];
cd(combined_dir);
datal = xlsread(x);
count=1;
cd..;
current_dir=pwd;
final_dir=[current_dir "\Final_output\T;
if ~isdir(final_dir)

mkdir(final_dir)
end
outfile=[final_dir x(1:length(x)-5) '_final_future.xlsx'];
outfile_2=[final_dir x(1:length(x)-5) '_final_historic.xIsx'];
outfile_mean=[final_dir x(1:length(x)-5) '_monthlymean.xIsx'];
outfile_stats_fut=[final_dir x(1:length(x)-5) '_stats_future.xlsx'];
outfile_stats_hist=[final_dir x(1:length(x)-5) '_stats_historic.xlsx'];

for i=1:length(datal)-1
data(count,:)=datal(i,:);
%  if((rem(datal(i,3),4)==0) && (datal(i,1)==2) && (datal(i,2)==28))
% count=count+1;
% data(count,:)=(datal(i,:)+datal(i+1,:))/2;
% data(count,1)=2;
% data(count,2)=29;
% end
count=count+1;
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end
d=isnan(data);
data(d)=0;
mySize = size(data);
nmonths = 12;
Yo %0 Fo Yo %o To Yo Yo To o Yo Yo
coll=7; 90 %0 Yo %o Yo Yo To Yo To %0 Yo FoHistoric Max
col2=13; Yo %0 Fo Yo To To %o Yo To %o %o o Future Max
maxtemp_obsdata=cell(1,nmonths);
maxtemp_simdata=cell(1,nmonths);
maxtemp_simoriginaldata=data(:,coll);
maxtemp_simcorrecteddata=data(:,col1);
maxtemp_simindexdata=cell(1,nmonths);
temp_arr=[];
maxtemp_futureoriginaldata = data(:,col2);
maxtemp_futurecorrecteddata = data(:,col2);
maxtemp_futuredata=cell(1,nmonths);
maxtemp_futureindexdata=cell(1,nmonths);
for j=1:nmonths
fori=1:mySize(l,1)
if(data(i,1) ==j)
temp_arr = [temp_arr ;data(i,4)]; % % % % % % % % Y% % % % Observed Max
end
end
maxtemp_obsdata{ 1,j}=temp_arr;
temp_arr=[;
end
9o %0 %o %0 %o %o Yo %o Yo %o %o %o % %Indexing of
data% % % %o Yo Yo T To Yo To To Yo Yo To Yo Fo To Fo Yo To Fo Yo To Fo Yo Jo To Yo Yo Yo
temp_arr=[];temp_arr2=[];
indexdata_arr=[];
indexfuturedata=[];
for j=1:nmonths
fori=1:mySize(l,1)
if(data(i,1) ==j)
temp_arr =[temp_arr ; data(i,coll)];
indexdata_arr=[indexdata_arr ; i];
end
if(data(i,1) ==j)
temp_arr2 =[temp_arr2 ; data(i,col2)];
indexfuturedata=[indexfuturedata ; i];
end
end
maxtemp_simdata{1,j }=temp_arr;
maxtemp_simindexdata{ 1,j}=indexdata_arr;
temp_arr=[];
indexdata_arr=[];

maxtemp_futuredata{1,j }=temp_arr2;
maxtemp_futureindexdataf{ 1,j }=indexfuturedata;
temp_arr2=[];
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indexfuturedata=[];
end
Yo %0 %o o To Yo Yo o To Yo Yo Fo To Yo Yo Fo To Yo Yo Fo Fo Yo Yo Fo Fo Yo Yo Fo Fo Yo Yo To Fo Yo o Vo Fo Yo Yo Fo Fo Yo Vo To Fo Yo Yo Fo Yo Yo Yo
9o %0 %0 Yo Yo Yo %o Yo Yo Yo Yo Yo
maxtemp_obs=cell(1,nmonths);
mu_obs=cell(1,nmonths);
sigma_obs=cell(1,nmonths);
y_obs=cell(1,nmonths);

maxtemp_sim=cell(1,nmonths);
mu_sim=cell(1,nmonths);
sigma_sim=cell(1,nmonths);
y_sim=cell(1,nmonths);
corrected_data=cell(1,nmonths);
maxtemp_simindex=cell(1,nmonths);

maxtemp_future=cell(1,nmonths);
mu_future=cell(1,nmonths);
sigma_future=cell(1,nmonths);
y_future=cell(1,nmonths);
future_corrected_data=cell(1,nmonths);
maxtemp_futureindex=cell(1,nmonths);

for j=1:nmonths
maxtemp_obs{ 1,j}=sort(maxtemp_obsdata{1,j});
[mu_obs{1,j},sigma_obs{i,j}] = normfit(maxtemp_obs{1,j});
y_obs{1,j}=normcdf (maxtemp_obs{1,j},mu_obs{1,j},sigma_obs{i,j});
%  subplot(4,3.j);
%  plot(maxtemp_obs{1,j},y_obs{1,j},-b")
%  xlabel('Daily Max Temperature (C)");
%  ylabel('Cummulative Probability');
% title(j);
% hold on;
[maxtemp_sim{1,j}, maxtemp_simindex{1,j}]=sort(maxtemp_simdata{1,j});
maxtemp_sim{ 1,j }=sort(maxtemp_simdata{1,j});
[mu_sim{1,j},sigma_sim{i,j}] = normfit(maxtemp_sim{1,j});
y_sim{ 1,j }=normcdf (maxtemp_sim{1,j},mu_sim{1,j},sigma_sim{i,j});
%  plot(maxtemp_sim{1,j},y_sim{1,j},"-r");
% legend('Obs','Sim',4);
% legend boxoff
[maxtemp_future{1,j}, maxtemp_futureindex{ 1,j } |=sort(maxtemp_futuredata{1,j});
maxtemp_future{ 1,j }=sort(maxtemp_futuredata{1,j});
[mu_future{1,j},sigma_future{i,j}] = normfit(maxtemp_future{1,j});
y_future{1,j }=normcdf (maxtemp_future{1,j},mu_future{1,j},sigma_future{i,j});
end

simdatal=[];

futuredatal=[];

for j=1:nmonths
corrected_data{1,j} = norminv(y_sim{1,j},mu_obs{1,j},sigma_obs{i,j});
future_corrected_data{1,j} = ...
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norminv(y_future{1,j},mu_future{1,j}+(mu_obs{1,j}-

mu_sim{1,j}),sigma_future{i,j} *(sigma_obs{i,j}/sigma_sim{i,j}));

% subplot(4,3.j);

% plot(corrected_data{1,j},'b");

% hold on;

% plot(future_corrected_data{1,j},");

% title(j);

simdatal=[simdatal mean(corrected_data{1,j})];

futuredatal=[futuredatal mean(future_corrected_data{1,j})];
end
YoxIswrite(outfile_mean, {'Bias corrected monthly mean historic values';}, ‘Sheetl', B1")
xIswrite(outfile_mean, simdatal, 'Sheetl’, 'B5")
YoxIswrite(outfile_mean, {'Bias corrected monthly mean future values';}, 'Sheetl', 'C1")
xlswrite(outfile_mean, futuredatal, 'Sheet1', 'B6")
figure;
plot(simdatal,'--bo','LineWidth',2)
hold on;
plot(futuredatal,'--ro','LineWidth',2)
xlim([1 12])
xlabel('Months');
ylabel('GFDL Mean Max Temperature (C)');
legend('1971-2000',2041-2070',4);
outfigfile=[final_dir x(1:length(x)-5) '_MaxTemp_fig.jpg'];
saveas(gcf,outfigfile);
mu_corr=cell(1,nmonths);
sigma_corr=cell(1,nmonths);
y_corr=cell(1,nmonths);
o %0 J0 %0 %0 %o %o %0 %o % % FoReplacing the data in the original order % % % %o %o Yo %o Jo %o Yo %o Yo Yo Yo %o
for j=1:nmonths

for k =1:length(corrected_data{1,j})

maxtemp_simcorrecteddata(maxtemp_simindexdata{ 1,j} (maxtemp_simindex{1,j}(k)))=corrected_data{1,
j1k);

end

for k =1:length(future_corrected_data{1,j})

maxtemp_futurecorrecteddata(maxtemp_futureindexdata{ 1,j } (maxtemp_futureindex{1,j } (k)))=future_cor
rected_dataf1,j}(k);

end
end

% for j=1:nmonths

% [mu_corr{1,j},sigma_corr{1,j}] = normfit(corrected_data{1,j});

% y_corr{l,j}=norminv (corrected_data{1,j},mu_corr{1,j},sigma_corr{1,j});
% end

%

% temp=[];

% for j=1:nmonths

%  temp= [temp;mu_obs{1,j} sigma_obs{i,j} mu_sim{1,j} sigma_sim{i,j} mu_corr{1,j}
sigma_corr{1,j} 1;

% end

temp1=[];
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month_fut=[];
year_fut=[];
Maxtemp_min_fut=[];
Maxtemp_max_fut=[];
Maxtemp_mean_fut=[];
Maxtemp_median_fut=[];
for abc=1:mySize(1,1)-1
current_year=data(abc,12);
current_month=data(abc,10);
next_year=data(abc+1,12);
next_month=data(abc+1,10);
if ((current_year == next_year) && (current_month == next_month))
templ = [temp] maxtemp_futurecorrecteddata(abce,1)];
if(abc == (mySize(1,1)-1))
templ = [temp] maxtemp_futurecorrecteddata(abc+1,1)];
end
else
month_fut=[month_fut; current_month ];
year_fut=[year_fut; current_year];
Maxtemp_min_fut=[Maxtemp_min_fut; min(temp1)];
Maxtemp_max_fut=[Maxtemp_max_fut; max(temp1)];
Maxtemp_mean_fut=[Maxtemp_mean_fut; mean(temp1)];
Maxtemp_median_fut=[Maxtemp_median_fut; median(temp1)];
temp 1=[];
end
end

temp1=[];
month_hist=[];
year_hist=[];
Maxtemp_min_hist=[];
Maxtemp_max_hist=[];
Maxtemp_mean_hist=[];
Maxtemp_median_hist=[];
for abc=1:mySize(1,1)-1
current_year=data(abc,3);
current_month=data(abc,1);
next_year=data(abc+1,3);
next_month=data(abc+1,1);
if ((current_year == next_year) && (current_month == next_month))
templ = [temp] maxtemp_simcorrecteddata(abc,1)];
if(abc == (mySize(1,1)-1))
templ = [temp] maxtemp_simcorrecteddata(abc+1,1)];
end
else
month_hist=[month_hist; current_month |;
year_hist=[year_hist; current_year];
Maxtemp_min_hist=[Maxtemp_min_hist; min(temp1)];
Maxtemp_max_hist=[Maxtemp_max_hist; max(temp1)];
Maxtemp_mean_hist=[Maxtemp_mean_hist; mean(temp1)];
Maxtemp_median_hist=[Maxtemp_median_hist; median(temp1)];
temp 1=[];
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end
end

xIswrite(outfile, {'Month','Day','Year";}, 'Sheetl’, 'A1")
xlswrite(outfile, data(:,10), 'Sheetl’, 'A2")

xIswrite(outfile, data(:,11), 'Sheet1', 'B2")

xIswrite(outfile, data(:,12), 'Sheet1', 'C2")

xlswrite(outfile, {'MaxTempfuturecorrecteddata (c)'}, 'Sheetl’, 'E1")
% xlswrite(outfile, maxtemp_simoriginaldata, 'Sheet1’, 'D2")

% xlswrite(outfile, maxtemp_simcorrecteddata, 'Sheetl', 'E2")

% xlswrite(outfile, maxtemp_futureoriginaldata, 'Sheetl’, 'F2")
xIswrite(outfile, maxtemp_futurecorrecteddata, 'Sheetl’, 'E2")

xlswrite(outfile_2, {'Month','Day','Year';}, '‘Sheet1’, 'A1")
xlswrite(outfile_2, data(:,1), 'Sheetl’, 'A2")

xlswrite(outfile_2, data(:,2), 'Sheetl’, 'B2")

xlswrite(outfile_2, data(:,3), 'Sheetl’, 'C2")

xIswrite(outfile_2, {'MaxTempHistoriccorrecteddata (c)'}, 'Sheetl’, 'E1")
% xlswrite(outfile, maxtemp_simoriginaldata, 'Sheetl', 'D2")

% xlswrite(outfile, maxtemp_simcorrecteddata, 'Sheetl', 'E2")

% xlswrite(outfile, maxtemp_futureoriginaldata, 'Sheetl’, 'F2")
xIswrite(outfile_2, maxtemp_simcorrecteddata, 'Sheetl', 'E2")

xlswrite(outfile_stats_fut, {'Month',"Year";}, 'Sheetl’, 'A1")

xIswrite(outfile_stats_fut, {' Maxtemp_Min', Maxtemp_Max','Maxtemp_Mean', Maxtemp_Median'; },
'Sheetl’, 'G1")

xlswrite(outfile_stats_fut, month_fut, 'Sheetl’, 'A2")

xIswrite(outfile_stats_fut, year_fut, 'Sheetl’, 'B2')

xIswrite(outfile_stats_fut, Maxtemp_min_fut, 'Sheetl’, 'G2')

xlswrite(outfile_stats_fut, Maxtemp_max_fut, 'Sheetl', 'H2')

xlswrite(outfile_stats_fut, Maxtemp_mean_fut, 'Sheetl', 12")

xlswrite(outfile_stats_fut, Maxtemp_median_fut, 'Sheet1’, 'J2")

xlswrite(outfile_stats_hist, {'Month',"Year";}, 'Sheetl’, 'A1")

xIswrite(outfile_stats_hist, {'Maxtemp_Min','Maxtemp_Max',' Maxtemp_Mean','Maxtemp_Median'; },
'Sheetl’, 'G1")

xlswrite(outfile_stats_hist, month_hist, 'Sheetl', 'A2")

xlswrite(outfile_stats_hist, year_hist, 'Sheetl', 'B2')

xlswrite(outfile_stats_hist, Maxtemp_min_hist, 'Sheetl’, 'G2")

xlswrite(outfile_stats_hist, Maxtemp_max_hist, 'Sheetl', 'H2')

xlswrite(outfile_stats_hist, Maxtemp_mean_hist, 'Sheet1’, '12")

xIswrite(outfile_stats_hist, Maxtemp_median_hist, 'Sheet1', 'J2")

clearvars -global -except data mySize nmonths

Yo% Yo o %o Yo To To %o Yo %o Yo

Yo% Yo o %o Yo To To To Yo %o Yo

coll=8; 90 %0 Yo %o Yo Yo Yo o %o %o %o Yo Historic Min
col2=14; 9o % Yo % %0 Jo Yo %o %o %o % YoFuture Min
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mintemp_obsdata=cell(1,nmonths);
mintemp_simdata=cell(1,nmonths);
mintemp_simoriginaldata=data(:,coll);
mintemp_simcorrecteddata=data(:,coll);
mintemp_simindexdata=cell(1,nmonths);
temp_arr=[];
mintemp_futureoriginaldata = data(:,col2);
mintemp_futurecorrecteddata = data(:,col2);
mintemp_futuredata=cell(1,nmonths);
mintemp_futureindexdata=cell(1,nmonths);
for j=1:nmonths
fori=1:mySize(l,1)
if(data(i,1) ==j)
temp_arr = [temp_arr ;data(i,5)]; %% % % %o %o %o %o % % % %Observed Min
end
end
mintemp_obsdataf{ 1,j }=temp_arr;
temp_arr=[];
end
9o %0 %o %0 %o %o Yo %o Yo %o %o %o % FIndexing of
data% % %o %o %o %o Yo Yo Jo Yo Jo Yo Jo Yo To Yo To Yo To Yo Yo Jo Yo Yo Yo Yo Yo Jo Yo Yo
temp_arr=[];temp_arr2=[];
indexdata_arr=[];
indexfuturedata=[];
for j=1:nmonths
fori=1:mySize(l,1)
if(data(i,1) ==j)
temp_arr =[temp_arr ; data(i,coll)];
indexdata_arr=[indexdata_arr ; i];
end
if(data(i,1) ==j)
temp_arr2 =[temp_arr2 ; data(i,col2)];
indexfuturedata=[indexfuturedata ; i];
end
end
mintemp_simdata{ 1,j }=temp_arr;
mintemp_simindexdataf{ 1,j}=indexdata_arr;
temp_arr=[];
indexdata_arr=[];

mintemp_futuredata{1,j }=temp_arr2;
mintemp_futureindexdata{ 1,j }=indexfuturedata;
temp_arr2=[];
indexfuturedata=[];
end
Yo %0 Fo Yo To To Yo To To Yo To To Yo Yo To o Yo To o Yo To Fo Yo To To Yo To To Yo Yo To Fo Yo Fo Fo Yo To To Yo To Fo Yo Fo Yo Yo Fo Yo Fo Yo Yo Yo
Yo %0 Fo Yo %o Yo o Yo To o Yo Yo
mintemp_obs=cell(1,nmonths);
mu_obs=cell(1,nmonths);
sigma_obs=cell(1,nmonths);
y_obs=cell(1,nmonths);
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mintemp_sim=cell(1,nmonths);
mu_sim=cell(1,nmonths);
sigma_sim=cell(1,nmonths);
y_sim=cell(1,nmonths);
corrected_data=cell(1,nmonths);
mintemp_simindex=cell(1,nmonths);

mintemp_future=cell(1,nmonths);
mu_future=cell(1,nmonths);
sigma_future=cell(1,nmonths);
y_future=cell(1,nmonths);
future_corrected_data=cell(1,nmonths);
mintemp_futureindex=cell(1,nmonths);

for j=1:nmonths
mintemp_obs{ 1,j}=sort(mintemp_obsdata{1,j});
[mu_obs{1,j},sigma_obs{i,j}] = normfit(mintemp_obs{1,j});
y_obs{1,j}=normcdf (mintemp_obs{1,j},mu_obs{1,j},sigma_obs{i,j});
%  subplot(4,3.j);
%  plot(mintemp_obs{1,j},y_obs{1,j},-b")
%  xlabel('Daily min Temperature (C)");
%  ylabel('Cummulative Probability');
% title(j);
% hold on;
[mintemp_sim{1,j}, mintemp_simindex{ 1,j } ]=sort(mintemp_simdata{1,j});
mintemp_sim{ 1,j }=sort(mintemp_simdata{1,j});
[mu_sim{1,j},sigma_sim{i,j}] = normfit(mintemp_sim{1,j});
y_sim{1,j }=normedf (mintemp_sim{1,j},mu_sim{1,j},sigma_sim{i,j});
%  plot(maxtemp_sim{1,j},y_sim{1,j},"-r");
% legend('Obs','Sim',4);
% legend boxoff
[mintemp_future{1,j}, mintemp_futureindex{1,j }]=sort(mintemp_futuredata{1,j});
mintemp_future{ 1,j }=sort(mintemp_futuredata{1,j});
[mu_future{1,j},sigma_future{i,j}] = normfit(mintemp_future{1,j});
y_future{1,j}=normcdf (mintemp_future{1,j},mu_future{1,j},sigma_future{i,j});
end
simdatal=[];
futuredatal=[];
for j=1:nmonths
corrected_data{1,j} = norminv(y_sim{1,j},mu_obs{1,j},sigma_obs{i,j});
future_corrected_data{l,j} = ...
norminv(y_future{1,j},mu_future{1,j }+(mu_obs{1,j}-
mu_sim{1,j}),sigma_future{i,j}*(sigma_obs{i,j}/sigma_sim{i,j}));
% subplot(4,3,j);
% plot(corrected_data{1,j},'b");
% hold on;
% plot(future_corrected_data{1,j},r");
% title(j);
simdatal=[simdatal mean(corrected_data{1,j})];
futuredatal=[futuredatal mean(future_corrected_data{1,j})];
end
Y%xlIswrite(outfile_mean, {'Bias corrected monthly mean historic values';}, '‘Sheetl’, 'B1")
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xIswrite(outfile_mean, simdatal, 'Sheetl’, 'B8")
YoxIswrite(outfile_mean, {'Bias corrected monthly mean future values';}, 'Sheetl', 'C1")
xIswrite(outfile_mean, futuredatal, 'Sheet1', 'B9")
figure;
plot(simdatal,'--bo','LineWidth',2)
hold on;
plot(futuredatal,'--ro','LineWidth',2)
xlim([1 12])
xlabel('Months');
ylabel(GFDL Mean Min Temperature (C)');
legend('1971-2000',2041-2070',4);
hold off;
outfigfile=[final_dir x(1:length(x)-5) '_MinTemp_fig.jpg'l;
saveas(gcf,outfigfile);
mu_corr=cell(1,nmonths);
sigma_corr=cell(1,nmonths);
y_corr=cell(1,nmonths);
0% J0 %0 %0 %o %0 %0 %o % % FoReplacing the data in the original order % % % %o %o Yo %o Jo %o Jo %o Yo %o Yo %o
for j=1:nmonths
for k =1:length(corrected_data{1,j})

mintemp_simcorrecteddata(mintemp_simindexdata{ 1,j } (mintemp_simindex{ 1,j}(k)))=corrected_data{1,j
1(k);

end

for k =1:length(future_corrected_data{1,j})

mintemp_futurecorrecteddata(mintemp_futureindexdata{ 1,j } (mintemp_futureindex{ 1,j } (k)))=future_corre
cted_data{1,j}(k);

end
end

% for j=1:nmonths
%  [mu_corr{1,j},sigma_corr{1,j}] = normfit(corrected_dataf{1,j});
% y_corr{1,j}=norminv (corrected_data{1,j},mu_corr{1,j},sigma_corr{1,j});
% end
%
% temp=[];
% for j=1:nmonths
%  temp= [temp;mu_obs{1,j} sigma_obs{i,j} mu_sim{1,j} sigma_sim{i,j} mu_corr{1,j}
sigma_corr{1,j} |;
% end
temp1=[];
Mintemp_min_fut=[];
Mintemp_max_fut=[];
Mintemp_mean_fut=[];
Mintemp_median_fut=[];
for abc=1:mySize(1,1)-1
current_year=data(abc,12);
current_month=data(abc,10);
next_year=data(abc+1,12);
next_month=data(abc+1,10);
if ((current_year == next_year) && (current_month == next_month))
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templ = [temp] mintemp_futurecorrecteddata(abc,1)];
if(abc == (mySize(1,1)-1))
templ = [temp] mintemp_futurecorrecteddata(abc+1,1)];

end

else
Mintemp_min_fut=[Mintemp_min_fut; min(temp1)];
Mintemp_max_fut=[Mintemp_max_fut; max(temp1)];
Mintemp_mean_fut=[Mintemp_mean_fut; mean(temp1)];
Mintemp_median_fut=[Mintemp_median_fut; median(temp1)];
temp 1=[];

end

end

temp1=[];
Mintemp_min_hist=[];
Mintemp_max_hist=[];
Mintemp_mean_hist=[];
Mintemp_median_hist=[];
for abc=1:mySize(1,1)-1
current_year=data(abc,3);
current_month=data(abc,1);
next_year=data(abc+1,3);
next_month=data(abc+1,1);
if ((current_year == next_year) && (current_month == next_month))
templ = [temp] mintemp_simcorrecteddata(abc,1)];
if(abc == (mySize(1,1)-1))
temp1 = [temp]l mintemp_simcorrecteddata(abc+1,1)];
end
else
Mintemp_min_hist=[Mintemp_min_hist; min(temp1)];
Mintemp_max_hist=[Mintemp_max_hist; max(temp1)];
Mintemp_mean_hist=[Mintemp_mean_hist; mean(temp1)];
Mintemp_median_hist=[Mintemp_median_hist; median(temp1)];
temp1=[];
end
end

xlswrite(outfile, {'Minfuturecorrecteddata (c)';}, 'Sheetl’, 'F1')
xIswrite(outfile, mintemp_futurecorrecteddata, 'Sheet1’, 'F2')

xlswrite(outfile_2, { MinTempHistoriccorrecteddata (c)';}, 'Sheet1’, 'F1')
xIswrite(outfile_2, mintemp_simcorrecteddata, 'Sheetl', 'F2")

xlswrite(outfile_stats_fut, { Mintemp_Min','Mintemp_Max','Mintemp_Mean',' Mintemp_Median'; },
'Sheetl’, 'K1")

xlswrite(outfile_stats_fut, Mintemp_min_fut, 'Sheetl’, 'K2')

xlswrite(outfile_stats_fut, Mintemp_max_fut, 'Sheet1', 'L2")

xIswrite(outfile_stats_fut, Mintemp_mean_fut, 'Sheetl’, 'M2")

xIswrite(outfile_stats_fut, Mintemp_median_fut, 'Sheetl', 'N2")

xlswrite(outfile_stats_hist, {' Mintemp_Min', Mintemp_Max','Mintemp_Mean','Mintemp_Median';},
'Sheetl', 'K1")
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xIswrite(outfile_stats_hist, Mintemp_min_hist, 'Sheetl’, 'K2')
xIswrite(outfile_stats_hist, Mintemp_max_hist, 'Sheetl’, 'L.2")
xIswrite(outfile_stats_hist, Mintemp_mean_hist, 'Sheetl', ' M2")
xlswrite(outfile_stats_hist, Mintemp_median_hist, 'Sheet1', 'N2")

clearvars -global -except data mySize nmonths
o % %o To %o T To %o T To To Fo

xval = 0;
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