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ABSTRACT 

 

Coxiella burnetii, the causative agent of Q fever in humans, is a Gram-negative 

intracellular bacterium. Although the organism was first isolated in the 1930s, little is 

known about the specific mechanisms underlying its virulence. This is largely due to its 

obligate intracellular lifestyle. Recent advances in both axenic growth and genetic 

manipulation of C. burnetii allowed efficient generation and isolation of random 

mutations and enabled more definitive studies of the genes essential for virulence. The 

goal of this project was to generate a large collection of specific isogenic C. burnetii 

mutants and employ in vitro and in vivo screens to determine the individual contributions 

of their affected genes to pathogenicity. We used a Himar1 transposon system to 

generate a library of 1) defined clonal mutants and 2) pools of random transposon 

mutants in order to approach saturation with non-lethal mutants of the low virulence C. 

burnetii isolate, Nine Mile, phase II (NMII), RSA 439, which is approved for use in a 

biosafety level two laboratory. Mutants from both libraries were compared in various 

growth conditions or infection models to identify differences in growth phenotype 

relative to wild-type C. burnetii. The libraries are also amenable to high-throughput 

analysis using transposon sequencing or transposon directed insertion site sequencing 

(TraDIS) to compare pooled mutants between input and output infection assays.  

In this study, we optimized methods to generate defined transposon mutants, 

resulting in mutations in nearly 20% of the predicted open reading frames (ORFs) and 

provide methodology to expand the library for future studies. Included in these mutants 
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were a number of bioinformatically predicted virulence factors based on phenotypes in 

other bacterial pathogens that we further compared in cellular and animal models of 

infection. Our findings are consistent with previous studies that demonstrate the Dot/Icm 

T4BSS is essential for generating and replicating in a large parasitophorous vacuole 

(PV). We developed methods for high throughput screening of Tn mutants in vitro by 

imaging on either confocal microscope or BioTek Cytation3 imaging system. We 

generated a genome saturation transposon mutant pool by combining transposon mutant 

pools from 35 independent transformation reactions. These combined in vitro and in vivo 

screens dramatically improve our knowledge of specific virulence determinants for this 

pathogen and provide a substantial amount of data for future studies. 



 

iv 

 

DEDICATION 

 

To my husband, James. Your love and support give me strength. 

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank my committee chair, Dr. Samuel, and my committee 

members, Dr. de Figueiredo, Dr. McMurray, and Dr. Skare, for your guidance and 

support throughout the course of this research. 

I am very grateful to Erin van Schaik for her guidance and helpful scientific 

discussions, Elizabeth Case for a thorough review of this document, members of the 

Samuel lab for their friendship and support, and the MPIM department faculty and staff 

for making sure all we have to worry about is our research. 

 This work was supported by funding to James E. Samuel from NIH 

1RO1A1090142-01A1 and DTRA HDTRA1-13-1-0003. 



 

vi 

 

NOMENCLATURE 

 

CCV Coxiella Containing Vacuole 

CDC Centers for Disease Control and Prevention 
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HITS High-throughput Insertion Tracking by deep Sequencing 

Kan Kanamycin 

LPS lipopolysaccharide 
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NMI Coxiella burnetii strain RSA493, Nine Mile Phase I 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Background 

Coxiella burnetii is a Gram-negative, intracellular bacterium that causes acute 

and chronic Q fever in humans. It is highly infectious, requiring very few organisms to 

cause disease. Infection in most animals is asymptomatic but causes abortion and 

infertility in domestic animals including cattle, sheep, and goats [1]. Acute Q fever is a 

self-limiting illness in humans typically presenting as a flu-like syndrome, pneumonia, 

or granulomatous hepatitis with symptoms developing within a few days to a few weeks 

after exposure. The acute disease is effectively treated by antibiotics, which reduce the 

duration of symptoms and likelihood of chronic infection [2]. Still, many people never 

receive treatment because they do not show symptoms of the disease. While most 

patients recover from the acute infection, others can develop severe, chronic disease 

most often presenting as endocarditis. Chronic infection, which is fatal in some cases, 

may develop weeks or even years after the acute infection. The disease is distributed 

worldwide, with 100-200 cases reported annually in the United States [3]. 

Due to its non-specific disease presentation, C. burnetii infection can be difficult 

to distinguish from other diseases, making early detection a challenge. While antibiotic 

therapy is most effective if started within a few days of infection, antibodies cannot be 

detected until a week or two after infection. Physicians must therefore rely on clinical 

suspicion when diagnosing Q fever. This diagnosis can later be confirmed by an indirect 
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immunofluorescence assay (IFA), a serological test for reactivity of serum with fixed 

whole cell C. burnetii. Antibiotic treatment with doxycycline is most effective and 

should be started early, even before lab results confirm the disease [4]. 

C. burnetii can survive in extreme weather and environmental conditions for long 

periods of time and can resist many common disinfectants. Humans typically become 

infected by inhaling contaminated dust particles. Personnel working with livestock and 

in research laboratories are considered high risk as infection commonly occurs via the 

respiratory route following inhalation of infectious aerosols produced by these animals. 

Infection by ingestion and human-to-human transmission are possible, but rare [5].  

 Genome sequencing indicates the Coxiella genome ranges between ~2.0 – 2.2 

Mb and are organized as circular chromosomes normally associated with a single 

autonomous plasmid [6]. C. burnetii isolates were analyzed and differentiated into six 

distinct genomic groups (I to VI) based on DNA restriction fingerprints [7]. Human 

isolates within groups I, II, and III were derived from acute disease patients, while 

isolates in groups IV and V were from chronic disease patients. Isolates in group VI 

were isolated from rodents near Dugway, Utah [7]. Four plasmid types have been 

designated, termed QpH1, QpRS, QpDV, and QpDG [8,9]. These plasmids share a 

common 25-kb region. Strains that lack plasmids contain chromosomally integrated 

plasmid-like sequences (IPS), suggesting plasmid and IPS genes are important for 

infection [10].  

 Early studies showed a correlation between the plasmids and a distinct genomic 

group. However, since nucleotide sequences were determined for these plasmids [6] and 
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genotyping revealed crossover between plasmids with different groups [11], human 

disease may not be determined by plasmid type. However, because these sequences are 

maintained by all C. burnetii isolates, they are believed to be critical for survival [10]. 

Gene designations distinguish between chromosome and plasmid sequences. Three 

letters (CBU) followed by four numbers designate genes located on the chromosome, 

while four letters (CBUA) followed by four numbers designate genes on the plasmid. 

 The Coxiella strain used in this study was isolated from a tick in 1935 collected 

in Nine Mile Creek, Montana, and therefore designated the Nine Mile (NM) strain. A 

group studying Rocky Mountain spotted fever discovered this unknown agent about the 

same time the first outbreak of Q fever occurred in Australia [12]. A laboratory-acquired 

infection led to the determination that the Q fever and Nine Mile agents were the same 

pathogen [4]. The NM strain is in chromosomal group I and contains the cryptic QpH1 

plasmid. C. burnetii plasmids and IPS have been shown to encode Dot/Icm T4SS 

substrates, including three that are specific to QpH1 [10]. Generating mutants in these 

genes will be important in defining their roles in infection and virulence.  

 Unlike many other bacterial pathogens, C. burnetii requires a eukaryotic host 

vacuole for metabolism and replication. This presents a particularly unique problem for 

the host immune system, since the bacterium actually resides in macrophages, the cells 

responsible for killing invading pathogens [13]. C. burnetii lipopolysaccharide (LPS), 

studied for its potential role in virulence, undergoes phase variation in the laboratory 

setting from virulent or “phase I” (PI or NMI) to avirulent or “phase II” (PII or NMII). 

Virulent C. burnetii produces a full-length, smooth LPS with a complete O-antigen that 
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becomes truncated after serial passage in vitro. PII Coxiella have rough LPS, which 

lacks O-antigen sugars, and some LPS core components [5]. A second LPS variant of 

NMI, Nine Mile Crazy (NMC), has been described as producing intermediate-length 

LPS and having intermediate virulence [14]. As the O-antigen is the only known 

alteration between virulent and avirulent C. burnetii, PI-LPS is hypothesized to play a 

critical role in virulence. Comparisons of disease caused by PI and PII C. burnetii in 

SCID mice demonstrated that acquired immunity is essential to overcome both 

infections [15].  

 While there are control measures that can be taken to prevent the spread of Q 

fever, immunization is the most practical method for preventing the disease in both 

animals and at-risk humans. A PI inactivated whole cell vaccine, derived from the Nine 

Mile C. burnetii strain (Coxevac, CEVA, France) has proven effective for immunizing 

ruminants [16]. The only human vaccine currently in use is a formalin-inactivated C. 

burnetii PI whole cell vaccine, Q-VAX
®
, derived from the purified LPS of the 

Henzerling strain (Commonwealth Serum Laboratories, Parkville, Victoria, Australia), 

which is produced and licensed for use in Australia. Neither of these vaccines is 

approved for use in the United States [17]. 

  Though the protective efficacy of Q-VAX
®
 approaches 100%, this vaccine 

causes severe reactions in individuals who have previously been exposed to C. burnetii 

[18].  A number of individuals who have not previously had contact with the bacterium 

experience less severe, but still serious side effects. Therefore, this vaccine requires 

costly, time intensive, and unreliable prescreening prior to administration [19]. 
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Consequently, there is a need for a safe and effective subunit vaccine for human use 

against C. burnetii.  

 Understanding the mechanisms of protection induced by the PI vaccine would be 

valuable in developing a safe and effective new generation vaccine against Q fever. 

Components of Q-VAX
®
 that may allow it to be an effective vaccine include PI LPS or a 

component of it, proteins that stimulate the cell-mediated immune (CMI) response or 

antibody-mediated immune (AMI) response, or possibly the slow biodegradability of the 

small cell variants of C. burnetii [20]. A study evaluating the protective activity of PI-

LPS and PII-LPS suggests PI-LPS might be responsible for PI vaccine-induced 

protection against C. burnetii infection [5]. Both AMI, or humoral, and CMI responses 

are believed to be important for developing protective immunity against C. burnetii 

infection [21]. This was demonstrated in a study examining PI vaccinated mice. Passive 

transfer of immune sera provided significant protection against C. burnetii infection. 

Similarly, bacterial loads were significantly reduced in mice receiving immune 

splenocyte and T cells [5]. Future Q fever vaccine approaches should focus on boosting 

both the AMI and CMI responses.  

 Between 2007 and 2011 in the Netherlands, a Q fever outbreak involved more 

than 3500 human cases, leading to 24 deaths [22]. Most cases occurred in the spring and 

early summer and were concentrated in the south of the country. A vaccination program 

was put into effect when dairy goats were identified as the source of the human Q fever 

cases, and farmers had to vaccinate their animals whether infected or not [23]. More 

drastic veterinary measures were taken when vaccination did not successfully contain the 
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outbreak. Between December 2009 and June 2010, over 50,000 animals were culled on 

infected farms [24]. This outbreak is a reminder that Q fever remains a threat worthy of 

continued research to improve our understanding and overcome challenges with 

diagnosis and treatment. 

 Its highly infectious nature, aerosol transmission, and ability to survive in 

adverse environments make C. burnetii a potential biological weapon and have led to its 

classification by the Centers for Disease Control and Prevention (CDC) as a Category B 

select agent [25]. A biological warfare attack with Q fever would cause a disease similar 

to that occurring naturally. Though the disease is rarely fatal, it would put a significant 

strain on our healthcare system. If used in a cocktail with a Category A agent, Q fever 

would certainly complicate the response to an outbreak. In addition to its relevance as a 

potential bioterrorism agent, C. burnetii also presents a risk for natural infection in 

deployed military personnel. There have been greater than 30 cases reported among US 

service members deployed to Iraq and Afghanistan, and the disease continues to be a 

global threat to both humans and livestock [26].   

Virulence Model  

 C. burnetii has a biphasic lifecycle and is able to transition between two 

developmental stages that contribute to its environmental stability. Small cell variants 

(SCV) are typically rod shaped, 0.2-0.5 μm long, infectious particles that are 

metabolically inactive [27]. SCVs exist in the extracellular environment and are resistant 

to harsh environmental conditions [1]. Once inside the host cell, the SCV transitions to a 

large cell variant (LCV), which is metabolically active and can exceed 1 μm in length 
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[27]. This shift from SCV to LCV occurs alongside maturation and acidification of the 

PV, without replication, and accounts for the initial lag phase in C. burnetii growth [27]. 

LCVs replicate for many days, expanding the PV. Once large numbers of LCVs 

accumulate, C. burnetii converts back to SCVs which are then released by a still 

unknown mechanism [28]. Proteins expressed between these two cell variants could 

potentially be virulence factors. A comparison of protein profiles between the two 

variants found 48 proteins that were greater than two-fold more abundant in LCVs than 

SCVs and six proteins that were at least two-fold more abundant in SCVs [25]. These 

proteins could potentially be involved in immune evasion and should be studied further. 

 Once inside the host cell, intracellular pathogens typically employ mechanisms to 

subvert phagosomal maturation. Mycobacterium tuberculosis, for example, arrests 

phagosome maturation at an early stage. Legionella pneumophila promotes fusion of the 

Legionella containing vacuole with endoplasmic reticulum-derived membranes instead 

of endolysosomal compartments, and Listeria monocytogenes escapes the phagosome 

and replicates in the cytoplasm [29]. C. burnetii, however, actively directs the 

maturation of a phagolysosome-like compartment known as the Coxiella-containing 

vacuole (CCV) [30]. This parasitophorous vacuole (PV) has lysosomal characteristics, 

containing LAMP-1 and cathepsin D [31]. C. burnetii actively modifies this PV, but the 

specific proteins involved are still being identified. Recently, T4SS effectors were shown 

to be secreted through the membrane of the PV, a requirement for C. burnetii maturation 

and replication [32]. Additional work is needed to determine potential virulence factors 

involved in PV development and C. burnetii replication inside this harsh environment. 
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Virulence Determinants  

 Bacterial virulence factors are expressed proteins or toxins that enable the 

organism to enter, replicate, and persist in a host. They are typically defined by 

comparing mutated strains to wild type and looking for avirluent phenotypes. This 

hypothesis is based on Koch’s postulates, which establish criteria to determine if a 

specific microbe causes a disease [33]. Currently, only two virulence factors have been 

confirmed for C. burnetii: LPS and a type IVb secretion system [34,35]. The 

identification of additional C. burnetii virulence factors using recently developed genetic 

techniques will be instrumental in finding targets for new therapies. Several putative C. 

burnetii virulence factors will be discussed here. 

 Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-

negative bacteria and is exposed on the cell surface of unencapsulated bacteria. 

Lipopolysaccharides are made up of three structural components: lipid A, a hydrophobic 

lipid section responsible for its endotoxic properties; a hydrophilic inner and outer core 

polysaccharide chains; and a species-specific O-antigen oligosaccharide side chain [36]. 

LPS phase variation is a shift from virulent phase I cells containing smooth, full-length 

LPS I to avirulent, rough phase II cells with a modified LPS II that lacks the O-antigen. 

This occurs after passage of Coxiella in a non-immunologically competent host. In 

contrast to other bacterial pathogens, phase variation in C. burnetii phase II is 

irreversible due to the large chromosomal deletion associated with the rough phenotype 

[37]. The deletion includes 21 ORFs (CBU_0679 to CBU_0698); however, there are 
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likely additional mutations since NMII has a shorter deletion but produces a more 

truncated LPS than NMC [38].  

 NMI LPS is hypothesized to shield potential TLR ligands, such as lipoproteins, 

from recognition. NMI bacteria can persist in DCs without activating them in vitro. 

Infection of DCs with the avirulent NMII strain, however, induces a robust immune 

response that efficiently clears the bacteria. [34]. This is interesting given the primary 

function of a dendritic cell (DC) is to alert the immune system, not clear invading 

pathogens. 

 Adherence is the first major interaction between an intracellular pathogen and its 

host and is a prerequisite for bacterial pathogenesis. Adhesins mediate adherence to the 

host cell by exploiting and binding to cell surface receptors typically used for normal 

cell processes. Integrins are a group of eukaryotic cell surface receptors that have been 

shown to be used by a number of pathogens for adherence [39]. While internalization of 

C. burnetii by the host cell requires attachment, the specifics of this interaction remain to 

be determined. The current understanding is that virulent C. burnetii bind monocytes and 

macrophages, their primary target cells, using leukocyte response integrin (αvβ3 integrin) 

as the dominant receptor and CR3 (αMβ2 integrin) as a secondary receptor for NMII [40]. 

The same study showed avirulent phase II C. burnetii are more efficiently phagocytosed 

than virulent organisms. However, this could result from a more hydrophobic membrane 

on phase II organisms lacking O-antigen. The effects of these receptors on virulence and 

the adhesion for αvβ3 are yet to be determined [41].  
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 A number of different cellular responses are triggered when C. burnetii binds 

host cells, but their involvement in the establishment and/or clearance of an infection is 

unknown. C. burnetii induces macrophages to produce TNF-α and IL-1α; however, a 

different response is seen in phase I and phase II organisms. Phase I induces greater 

TNF-α production early in infection, while secretion of TNF-α occurs later with phase II 

[42]. Also, TNF-α production is specific to phase I in dendritic cells [34] , as is IL-1α 

production in macrophages [42]. Phase I C. burnetii induce actin cytoskeleton 

reorganization and membrane ruffling when bound to host cells, a response not seen 

with phase II bacteria. This is intriguing because activation of the protein tyrosine kinase 

(PTK) inhibitors that causes membrane ruffling negatively regulates bacterial 

phagocytosis [43]. Further studies are necessary to understand exactly how the 

differences in phase I and phase II C. burnetii contribute to their distinct pathogenesis. 

 Toll-Like Receptors (TLRs) are an important innate host defense against 

microbial infection. TLRs recognize structural motifs known as pathogen-associated 

molecular patterns (PAMPs), expressed by pathogens, or danger-associated molecular 

patterns (DAMPs), released by necrotic or dying cells [44]. Of the ten human and twelve 

murine TLRs characterized, two have been shown to be activated by C. burnetii PAMPs: 

TLR 2, which typically recognizes Gram-positive bacteria, and TLR 4, which is 

predominantly activated by LPS [34,45,46]. Unfortunately, the findings of these studies 

are not in agreement. Results from one study, for example, suggest that interaction of 

phase I C. burnetii interacting with TLR 4 induces uptake [46], although it was shown 

that C. burnetii LPS acts as a TLR 4 antagonist [45]. How C. burnetii interfaces with the 
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immune system is important to understand the dynamics of infection, and additional 

studies should be conducted to better characterize the interactions that occur between C. 

burnetii and host cell receptors. 

 The second major virulence factor that has been identified for C. burnetii is the 

Type IVb Secretion System (T4BSS). It is essential for the formation of the spacious 

parasitophorous vacuole (PV) required for intracellular replication of C. burnetii. This 

T4BSS is conserved with the Dot/Icm secretion system of Legionella pneumophila, 

encoding 23 of the 26 Dot/Icm homologs [47]. This system will be discussed in detail in 

the following section. 

 There is some evidence that the Coxiella T4BSS has a role in subverting the host 

autophagic pathway. Autophagy is a pathway whereby cytoplasmic components are 

sequestered within a double-membraned compartment (the autophagosome) and 

degraded upon lysosomal fusion. Generally, autophagy is employed to maintain cellular 

homeostasis in eukaryotic cells; however, it also assists in the eradication of invading 

pathogens. Many intracellular bacterial pathogens, including C. burnetii, subvert or 

modulate the autophagic pathway to maintain a replicative niche [48]. While other 

intracellular pathogens lyse and escape from the phagosome or modify the phagosomal 

compartment, C. burnetii is the only bacterial pathogen known to actually survive and 

replicate in the acidic, degradative PV [49].  

 One study hypothesizes that C. burnetii exploits the autophagic pathway to delay 

fusion with lysosomes, allowing the organism to efficiently replicate inside the host cell 

[50]. Proteins implicated in this process include host Beclin 1 and Bcl-2 [51] , and the C. 
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burnetii T4BSS substrates AnkG and Cig2 [52,53]. Interaction between the autophagic 

protein Beclin 1 and the anti-apoptotic mitochondrial protein Bcl-2 induces anti-

apoptotic activity. This suggests a link between C. burnetii’s interaction with 

autophagosomes and its anti-apoptotic activity [51] (Figure 1). 

 

 
 

Figure 1: Modulation of the autophagy and apoptosis pathways by C. burnetii. 

(modified from Vazquez and Colombo [51]). Once Cb is phagocytosed into the host cell, 

it uses a T4BSS to secrete proteins which induce the autophagy pathway. The 

compartment containing Cb fuses with autophagosomes, acquiring autophagic key 

proteins such as LC3, Rab24 and Beclin 1, which favor the generation of the large 

replicative vacuoles in which Cb survives and multiples. Cb recruits the anti-apoptotic 

protein Bcl-2 and inhibits apoptosis to establish a persistent infection.  
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 C. burnetii induces apoptosis through the release of cytochrome c. Prevention of 

apoptosis could be used by C. burnetii to cause persistent infection, while induction of 

apoptosis later on would enable the infection to spread [54]. The T4BSS effector protein 

AnkG has been described to be involved in apoptosis by its interaction with host protein 

p32 [52]. Two other very recent studies implicate the Dot/Icm T4SS and its effectors in 

autophagy subversion and the recruitment and fusion of autophagosomes during C. 

burnetii infection [53,55]. Continued studies will identify and characterize individual 

effectors involved in and specific pathogenic mechanisms directing C. burnetii 

interaction with these pathways. 

 Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are anti-

microbial agents produced by host cell phagocytes to help control infection. Therefore, 

the evasion or suppression of the toxic effects of oxidative stress is crucial to the survival 

of pathogenic bacteria. C. burnetii, when phagocytosed by human neutrophils, prevents 

ROS production by preventing assembly of NADPH oxidase on the phagosomal 

membrane [56]. C. burnetii has also been shown to secret an acid phosphatase 

(CBU_0335) that inhibits the release of reactive oxygen intermediates [57]. Expression 

of a subset of DNA repair genes was reported to be strongly upregulated in response to 

oxidative stress [58]. Interestingly, C. burnetii remains microaerophilic, though it has 

evolved complex mechanisms to evade or resist oxidative stress [59]. Further 

investigation into this intricate relationship will aid in our understanding of important 

mechanisms of immune evasion and bacterial persistence. 
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Secretion systems 

 Gram-negative bacteria employ several secretion systems to translocate proteins 

across two lipid bilayers (the inner and outer bacterial membranes) and the host cell 

membrane. Intracellular bacteria depend on these secretion systems to modulate 

interactions with the host and subvert host pathways in order to survive. Sec-dependent 

secretion is a very well-studied, general secretion pathway universal to eubacteria. Most 

of the Sec system components are found in the C. burnetii genome [60]. Other secretion 

systems predicted to be functional in C. burnetii include: a type I secretion system 

(T1SS); a type IV pilus (T4P)-related type two secretion system (T2SS); and a type IVB 

secretion system (T4BSS) called Dot/Icm (Defect in organelle trafficking/Intracellular 

multiplication) [1]. Current understanding of these secretion systems is based largely on 

homology to Legionella pneumophila. The C. burnetii genome encodes genes, such as 

tolC, enhC, and dot/icm, that are predicted to play roles in the T1S, T4P, and T4B 

systems, respectively [61].  

 The canonical Sec pathway functions to transport proteins across the bacterial 

inner membrane into the periplasm. A recent study suggests outer membrane vesicles 

(OMVs) contribute to Sec-mediated secretion by C. burnetii (Figure 2) [62]. Portions of 

the outer membrane pinch off from the cell envelope and form OMVs containing 

periplasmic components, including virulence factors, used to manipulate the 

environment. Stead et al. recorded obvious membrane blebbing and OMV production 

during C. burnetii growth. The authors hypothesize that OMVs provide a protective 

environment for secreted cargo inside the harsh parasitophorous vacuole. 
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 Very little is known about the role a T1SS may play in C. burnetii infection, but 

the presence of a tolC gene in its genome suggests the organism is competent for type I 

secretion. Proteins secreted through the T2SS are initially transported into the periplasm 

through the Sec or Tat system. While C. burnetii doesn’t have all the components 

required for T2S, it does encode genes involved in T4P assembly. The type II secretion 

apparatus in most Gram-negative bacteria is composed of 12-15 proteins. Francisella 

spp. requires fewer proteins to produce functional type 4 pili capable of secretion [63], 

most of which have homologues in C. burnetii. Mutations in the genes involved in these 

secretion systems would greatly aid in increasing our understanding of the roles they 

play in C. burnetii virulence and survival. 

 

Figure 2: Possible Sec-mediated secretion mechanisms of C. burnetii. Proteins 

transported across the inner membrane by the Sec translocase could be secreted by a 

T1SS mediated by TolC, a T4P-like T2SS mediated by 13 pil genes, or sequestration by 

OMVs [62]. 
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 Many pathogens depend on T4SSs to transport DNA or proteins during infection 

of a host. The T4SSs are classified into two subgroups, type IVA and type IVB 

(T4BSS). A functional T4BSS was first discovered to be required for L. pneumophila 

infection by both Ralph Isberg’s and Howard Shuman’s laboratories [64]. These groups 

independently named the genes involved in this secretion system as: dot (for defect in 

organelle trafficking) or icm (for intracellular multiplication). C. burnetii encodes 

dot/icm genes closely related to those found in L. pneumophila (Figure 3), some of 

which have been successfully substituted and function for intracellular replication [65].  

  

 

Figure 3: Type IVB secretion system of C. burnetii. Coxiella encodes 24 T4BSS 

components, including those that are hypothesized to make up the core transport 

complex [1].  
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Before C. burnetii was able to be grown outside of host cells, L. pneumophila was used 

as a surrogate host to screen a large collection of candidate protein substrates for the C. 

burnetii Dot/Icm T4BSS. Over 100 proteins have been identified as Dot/Icm substrates 

from these screens [32,47,66,67].  

 While the Dot/Icm system functions similarly in C. burnetii and L. pneumophila, 

not all genes correspond directly. Four Coxiella genes: icmS, icmT, icmW, and dotB, 

restored intracellular growth, either fully or partially, when expressed in a corresponding 

L. pneumophila deletion strain. No complementation was observed, however, with four 

other C. burnetii Dot/Icm homologous genes: icmB, icmJ, icmO, and icmP [68]. Unlike 

L. pneumophila, which requires effectors to be translocated by the Dot/Icm system 

within minutes of uptake, C. burnetii has been shown to remain viable within the 

lysosome independent of a functional T4BSS [69]. It is not surprising that the effector 

proteins would function differently in the two pathogens because C. burnetii does not 

escape the phagosome as other pathogens do. Instead, the Dot/Icm system is necessary to 

make the environment of the phagolysosome permissive for C. burnetii replication [32].  

 There are still many unanswered questions regarding the structure and function 

of the secretion systems in C. burnetii. The ability to apply genetic tools, including 

transposon mutant libraries, will undoubtedly increase our understanding of the 

pathogenic process and lead to the development of more efficient therapies and vaccines.  

Animal Model of Disease 

 Animal models commonly used in the study of Q fever include mice, guinea 

pigs, nonhuman primates, and livestock. Nonhuman primate models of Q fever are 
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essential for evaluating vaccine candidates. Rhesus and cynomolgus macaques have 

been used to assess C. burnetii infection since the 1970s [70]. These primates are an 

excellent model, showing strong similarity to acute disease in humans, including 

pulmonary radiologic changes, bacteremia, antibody response, and clinical symptoms 

[71]. However, non-human primate models are expensive, cannot be used in large 

numbers, and ethically cannot be justified during all stages of the research process. 

Because of this, small animal models of C. burnetii infection are also quite necessary. 

 The guinea pig model of clinical disease is more relevant for testing vaccines or 

antibiotic regimens than the mouse model. With this model, fever is the primary 

indicator of disease, which closely mimics human acute Q fever [70]. The guinea pig 

aerosol challenge model requires a low dose of C. burnetii organisms for the animals to 

display relevant clinical and pathological evidence of the disease, making this the small 

animal model of choice for acute Q fever [72]. Guinea pigs have also been used to model 

Q fever endocarditis by damaging the animals’ heart valves using various methods, such 

as electrocoagulation, prior to exposure with C. burnetii [73].  

 Mice are the most commonly used animal model of Q fever because of the many 

relevant genetic and immunologic tools available. For example, overexpressing IL-10 in 

transgenic mice elicits an antibody-mediated (Th2) immune response, which can be used 

to model chronic Q fever. This model allows for disease pathology to be studied [74]. 

BALB/c mice are widely used in C. burnetii research, including studies to test proteins 

for protective immunity against challenge with NMI [75]. Though A/J mice are more 

susceptible to C. burnetii infection than other inbred mouse strains [76], they are not as 
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widely used as the immunocompetent BALB/c or the immunocompromised SCID mice 

(lacking functional B and T cells). Mice do not present with many clinical signs of 

illness, so splenomegaly is primarily used for disease determination [77]. 

 In an effort to more closely mimic natural infection and determine the 

mechanism of pulmonary immunity against C. burnetii infection, studies are conducted 

using aerosol challenge. Although this is a more natural route of infection, it is difficult 

to precisely determine the number of organisms the animals receive. One study infected 

BALB/c and SCID mice with 10
8
 organisms of either the NMI or Q212 strain (human 

chronic endocarditis isolate, G). Infection developed in both immunocompetent and 

immunocompromised mice. [78]. BALB/c and SCID mice were also used to study 

innate response in lung neutrophils and macrophages after nose-only aerosol challenge 

with 10
9
 bacteria (mice received approximately 10

7
 bacteria). This was determined to be 

a working infection model resulting in splenomegaly and increased genomic copy 

number in the spleen and lungs [79]. An alternative to aerosol challenge is intratracheal 

instillation, a technique we have successfully employed in our laboratory. This is more 

effective than inhalation and results in an exact amount of inoculum delivered deep into 

the lung [80]. 

 There are several animal models of virulent phase I C. burnetii infection 

available, including guinea pig, mouse and primate models; however, SCID mice are the 

only animal model that allows high replication of C. burnetii NMII infection [81,82]. 

Acquired immunity is essential for the host to clear infection by PII C. burnetii. T cells 

specifically are necessary for bacterial clearance, while cytokines such as IFN-γ and 
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TNF-α are important for infection control [15]. Given that most of the recent advances 

with generating and complementing mutants are conducted with the avirulent NMII 

strain, a reliable in vivo model of infection is needed to characterize the phenotypes 

associated with these mutations.  

 Recently, a study of immunocompromised A/J mice was used to evaluate a new 

treatment to potentially replace doxycycline. A head-only aerosol challenge of A/J mice 

with was conducted with approximately 6x10
9
 GE/mL of avirulent NMII. The mice 

received approximately 5x10
6
 bacteria. Liposome-encapsulated ciprofloxacin delivered 

by the intranasal route was found to improve efficacy and was more efficient than 

treatment with doxycycline [83]. In the last few months, an insect model of C. burnetii 

infection was developed that is susceptible to C. burnetii NMII. This model was used to 

characterize T4BSS mutants in an in vivo system. This is the first non-mammalian in 

vivo model of C. burnetii infection, potentially suitable for rapidly characterizing mutant 

phenotypes and screening of novel antimicrobials [84]. 

Shortfalls and Recent Advances 

Axenic Growth  

 Until a recent breakthrough in understanding the organism’s metabolic pathway, 

attempts to grow C. burnetii outside of the host cell were unsuccessful. The bacterium 

had little to no metabolic activity in neutral pH buffers, but acid activation buffers (pH 

4.5) significantly enhanced C. burnetii metabolic potential in vitro [85]. This is 

consistent with the understanding that C. burnetii replicates and grows in a lysosome-

like parasitophorous vacuole (PV) that maintains a pH of approximately 4.5-5.3 [86]. 
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Unfortunately almost three decades passed before C. burnetii was discovered to encode 

terminal oxidases associated with aerobic and microaerobic respiration. Growth was 

tested under various oxygen tensions, and it was found that the number of substrates 

oxidized by C. burnetii increases as less oxygen is available [59]. Once C. burnetii was 

defined as a microaerophile, a medium was successfully developed to supported axenic 

growth of the infectious organism. Axenic growth medium, Acidified Citrate Cysteine 

Medium (ACCM), using microaerophilic conditions, allows the bacterium to replicate 

outside of host cells and to replicate as isolated colonies on solid media [59]. Because of 

this fundamental advance, an increasing number of genetic tools have been adapted, 

including transposon (Tn) systems to generate random mutants, to C. burnetii.  

 In addition to liquid culture, C. burnetii can also be grown as colonies in ACCM-

agarose using a soft agarose overlay method [59]. C. burnetii colonies are grown in the 

top medium layer by mixing 10 ml of filter-sterilized 2x ACCM-2 with 10 ml of 1% 

(wt/vol in water) melted Ultra-Pure agarose (Invitrogen) to create a 0.5% ACCM-2 

agarose base in 100- by 20-mm petri dishes. The bacterial inoculum is mixed with 2.5 ml 

of 0.25% melted ACCM-2 agarose equilibrated to 37 °C, which was prepared by mixing 

together 1.25 ml of 2x ACCM-2 with 1.25 ml of 0.5% melted agarose. This solution is 

then poured on top of the solidified ACCM-2 agarose base. Plates are incubated for 7-10 

days as described above for ACCM-2 to allow colony development. After approximately 

7-10 days incubation, small colonies become visible by the naked eye [59] . Colonies 

can be picked from the agarose by lightly touching them with a micro-pipette tip, then 

expanded in ACCM-2 liquid culture. 
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Genetic Tools 

Transformations 

 Transforming any obligate intracellular bacterium has technical constraints 

associated with it because the pathogen relies on the host cell for replication [87]. 

Coxiella must be purified from host cells before genetic transformation. Because of its 

biphasic lifestyle, bacteria should be purified when host cells contain roughly equal 

numbers of LCVs and SCVs [88]. The first successful transformation of a stably 

maintained exogenous plasmid into C. burnetii was reported nearly twenty years 

ago[89]. This came just two years after the first obligate intracellular bacterium 

(Chlamydia trachomatis) was transformed successfully, proving electroporation could be 

used to genetically transform an obligate intracellular bacterium [90]. Integration 

occurred by homologous recombination between the plasmid autonomous replication 

sequence (ars) [91] and the C. burnetii genome. This was followed by a very lengthy 

selection and expansion process, taking 2-3 months for ampicillin-resistant C. burnetii to 

be recovered from host cells [89]. However, ampicillin-resistant organisms were 

discovered without the β-lactamase gene, indicating the long selection process allowed 

spontaneous mutation [89]. Still, this was a great advance in Coxiella genetics, 

demonstrating electroporation could be used to introduce DNA into C. burnetii. 

Transposon mutagenesis 

 Transposons (Tn) are ‘jumping genes’ that can change their position in the 

genome. These genes can be isolated and put on a plasmid for integration into target cell 

genomes [92]. A transposon that inserts into a functional gene will produce a mutation 
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that will likely disrupt gene function; therefore, transposons have been used in a wide 

variety of mutagenesis studies [92]. Mariner or mariner-like elements are a diverse 

family of transposons from insects, nematods, flatworms, and humans [93]. Lampe et al. 

purified the Himar1 transposase from the horn fly, Haematobia irritans, and discovered 

that it uses a cut-and-paste transposition pathway that inserts exclusively into a TA 

dinucleotide [93]. Recently, genetic transformation was used to successfully generate a 

defined gene mutation in C. burnetii using the mariner-based Himar1 transposon system 

[88]. In this system, transformation with Himar1 required two different suicide plasmids, 

encoding either the transposon or transposase, and containing a ColE1 origin of 

replication for rescue cloning, chloramphenicol acetyltransferase (cat
R
, for 

chloramphenicol resistance), and mCherry red fluorescent protein genes [88]. Vero cells 

were infected with C. burnetii organisms transformed with the two-plasmid Himar1 

system, which resulted in 35 unique Tn insertion sites. This is a very time intensive 

process using host cells, and clonal isolation and expansion of transformants can take 8-

12 weeks [88]. Development of ACCM growth medium and semi-solid ACCM agarose 

dramatically reduces time to expand transformants to only 16 days. Importantly, this also 

allows recovery of transformants that are not capable of growth in vitro [94]. 

 Himar1-based mutant libraries generally result in robust genome coverage due to 

high transposition frequency and low target site specificity (TA dinucleotide). Members 

of our laboratory refined the two-plasmid system described by Beare, et al. by 

establishing a stable single plasmid system, designated pKM225, replacing promoter 

regions of all critical selection markers with C. burnetii-specific promoter regions [95] 
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(Figure 4). The development of a clonal Tn mutant library will significantly enhance 

characterization of C. burnetii secretions systems and increase our understanding of 

specific mechanisms of its virulence. 

 

 

Figure 4: Map of pKM225 plasmid for single-plasmid delivery of Himar1 

transposon system. The ColE1 origin of replication, mCherry fluorescence marker, and 

chloramphenicol resistance gene (cat) are contained within the inverted repeats (IR) and 

are inserted into the genome upon transformation of the plasmid. The transposable 

element, TnC9, is outside the IRs and is therefore not inserted, which keeps the plasmid 

from ‘jumping’ out of a gene once it is inserted. 

 

 

Complementation 

 Transposon mutagenesis is a powerful tool to identify bacterial genes important 

for pathogenesis and subversion of the host immune system. To rule out the possibility 

that observed mutant phenotypes could be due to unlinked loss-of-function mutations, it 
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is important to validate these phenotypes with complementation studies [53]. 

Chloramphenicol and kanamycin have both been established as selectable markers in C. 

burnetii [96]. This allows a Tn mutant expressing one marker to be complemented with a 

Himar1 construct expressing the other marker. Beare, et al. successfully complemented 

an icmD mutant using a Tn7-based transposon system to introduce the icmDJB operon 

into the chromosome in the glmS-CBU_1788 intergenic region [69]. They used the same 

method to complement dotB and dotA mutants a year later [97]. This complementation 

strategy permits verification of virulence factors discovered by transposon mutagenesis. 

Conclusion  

 Q fever, a zoonosis caused by the Gram-negative bacterium C. burnetii, has been 

described in nearly every country worldwide. Q fever is not only an occupational hazard 

for livestock workers, but also a potential biological weapon. The organism is extremely 

stable, efficiently aerosolized and disseminated, and can remain viable over long 

periods. This coupled with its low infectious dose has led the CDC to classify C. burnetii 

as a Category B Select Agent [98]. Though C. burnetii was first isolated nearly 80 years 

ago, its mechanisms of disease are poorly understood. This is largely due to its 

intracellular lifestyle; however, recent advances have significantly progressed Coxiella 

research in the last few years. First, there was the development of a liquid medium 

allowing growth outside of the host cell, followed by colony isolation on solid medium, 

a transposon system to generate mutant libraries, and complementation studies to verify 

phenotypes. The overall goal of these experiments was to generate transposon mutant 

libraries in C. burnetii and then use these libraries to identify genes essential for growth 
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in vitro and in vivo. We optimized methods to generate defined transposon mutants, 

resulting in mutations in nearly 20% of the predicted ORFs. Included in these mutants 

were a number of bioinformatically predicted virulence factors that we further studied in 

cellular and animal models of infection. 
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CHAPTER II  

COXIELLA BURNETII MUTANT LIBRARIES 

 

 All procedures and strains used in this work were approved by the Texas A&M 

University Office of Biosafety (IBC permit #2012080) and the Institutional Animal Care 

and Use Committee (AUP #2013-0138). 

Background 

 Members of our laboratory established a stable single plasmid transposon system, 

designated pKM225, with C. burnetii-specific promoter regions for all critical selection 

markers [95]. This system was used to develop a clonal Tn mutant library, which will 

significantly enhance characterization of C. burnetii secretions systems and increase our 

understanding of specific mechanisms of its virulence. Colony growth was used for 

selection and isolation of C. burnetii insertion mutants. C. burnetii was transformed with 

pKM225 and grown in the presence of 5 μl/ml chloramphenicol (Cm). Individual mutant 

clones were propagated on agar plates, cultivated, stored and characterized genetically 

for location of insertion by rescue cloning (Figure 5). Transposon insertions were 

homogeneously distributed throughout the chromosome and plasmid; however, we also 

encountered several “hot spots” where the transposon inserted for multiple clones. 
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Figure 5: Methods for isolation and insert characterization of each C. burnetii 

mutant. 

 

 

 

 There are roughly 120,000 TA sites evenly distributed in the C. burnetii genome 

among nearly 2100 ORFs [38]. We hypothesize a mutant library of approximately 

25,000 independent clones would saturate the genome. Most or all of the nonessential 

genes would contain insertions, and a subset of lethal gene disruptions would identify 

essential genes in the C. burnetii genome. Pooled libraries were generated by 

transforming C. burnetii with pKM225 using conditions described for the clonal library. 

Cells were recovered in 6 mL ACCM-2 for 4-5 days before being expanded to 40 mL 

and cultured for another 4 days. Pooled transformations were either analyzed 

individually or combined into a genome saturation pool (Figure 6). Estimating 500-1000 

inserts per transformation based on colony counts from plated transformations in the 

defined mutant library, 35 transformations should generate the 25,000 clones needed to 

saturate the genome. 
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Figure 6: Methods for generating pools of transposon mutants to saturate the C. 

burnetii genome. 

 

 

 

 Mutant libraries were analyzed by one of two transposon sequencing approaches: 

high-throughput insertion tracking by deep sequencing (HITS) [99] or transposon-

directed insertion-site sequencing (TraDIS) [100]. These techniques for high-throughput 

sequencing of transposon-insertion sites were developed concurrently and follow the 

same basic workflow (Figure 7): transposon mutagenesis and construction of pools of 

single insertion mutants; enrichment of transposon-insertion junctions, purification and 

PCR, and, finally, sequencing. Another method, transposon sequencing (Tn-seq) [101], 

uses enzyme digest instead of manual shearing to cut the bacterial genome while leaving 

the transposon insert intact. 
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Figure 7: Transposon insertion sequencing methods. (modified from van Opijnen and 

Camilli [83]) Two methods of transposon sequencing are illustrated. These methods are 

very similar, beginning with a pool of genomic DNA from the Tn insertion library and 

ending with sequencing of the Tn junctions. 

 

 

 

The aim of this study was to generate a large and diverse C. burnetii transposon 

mutant library near saturation for all non-essential ORFs in ACCM in order to map C. 

burnetii genes essential for growth and viability. We also expect to identify a set of basic 

structure and metabolic related genes that are required for survival and replication in 

ACCM. We expect that 200-300 ORFs are essential for C. burnetii growth in ACCM.  
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ORFs not represented by insertions in the pooled library should also be unavailable in 

the defined insertion library. Currently, only two virulence factors have been confirmed 

for C. burnetii: LPS and a type IVb secretion system [34,35]. The identification of 

additional C. burnetii virulence factors using recently developed genetic techniques will 

be instrumental in finding targets for new therapies. 

Materials and Methods 

Bacterial Strains, cell lines, and growth conditions  

 Escherichia coli strain DH5α was propagated at 37 °C in Luria-Bertani (LB) 

broth or agar, purchased from Difco (Sparks, MD). Media were autoclaved to 121 °C for 

30 minutes and supplemented with the appropriate filter sterilized antibiotic(s) at the 

final concentrations listed: chloramphenicol (Cm) (34 μg/ml) or kanamycin (Kan) (50 

μg/ml). Broth cultures were usually grown overnight (O.N.) in 5 ml of LB and shaken at 

200 rpm. Selected strains were stored at -80 °C after resuspending 5 ml of O.N. culture 

in 1 ml of autoclaved glycerol (10% v/v) in LB without antibiotics.  

 The laboratory derived C. burnetii Nine Mile phase II (NMII), strain RSA 439 

clone 4, was cultivated in T-75 cell culture flasks or 0.2-μm-pore-size-filter-capped 125-

ml Erlenmeyer flasks containing 75 ml of medium or T-25 flasks containing 20 ml of 

medium grown in filter sterilized liquid ACCM-2 or ACCM-agarose. Cultures were 

grown for approximately 7 days at 37 °C in a 2.5% O2 and 5% CO2 environment. 

Oxygen was displaced by nitrogen gas. Where required, Cm was used at 5 µg/ml.  
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Transposon mutagenesis of C. burnetii NMII 

 We used pKM225, a Himar1-based single plasmid transposon system, to 

inactivate a large fraction of the genome. C. burnetii, axenically cultured to stationary 

phase in ACCM-2, was washed twice and resuspended in water to an approximate 

concentration of 1 X 10
9
. 1µg of pKM225 plasmid DNA was added to 50 μl bacteria and 

electroporated under the following conditions: 2.5kV, 200Ω, 25μF. Following 

electroporation, the bacteria were recovered O.N.  in 6 mL ACCM-2. The following day, 

5 μg/mL Cm was added to bacterial cultures. Bacteria was then grown for an additional 

2-3 days and plated on ACCM-agarose plates containing chloramphenicol.  

Colony Formation 

 C. burnetii colonies were established using a modified soft agarose overlay 

method in which bacteria are grown in the top medium layer. A 0.5% ACCM-2 agarose 

base in 100- by 20-mm petri dishes was created by mixing 10 ml of filter-sterilized 2x 

ACCM-2 with 10 ml of 1% (wt/vol in water) melted Ultra-Pure agarose (Invitrogen). 

The bacterial inoculum was mixed with 2.5 ml of 0.25% melted ACCM-2 agarose 

equilibrated to 37 °C, which was prepared by mixing together 1.25 ml of 2x ACCM-2 

with 1.25 ml of 0.5% melted agarose. This solution was poured on top of the solidified 

ACCM-2 agarose base. Plates were refrigerated (4 °C) for 30 min to aid solidification of 

the top agarose and then placed in a laminar airflow biosafety cabinet with lids ajar for 

20 min to remove condensation. Plates were incubated for 7-10 days as described above 

for ACCM-2 to allow colony development. After approximately 7-10 days incubation, 

small colonies become visible by the naked eye. Single colonies were isolated and 
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resuspended in 500ul ACCM-2 in 48 well plates. Following an additional 4-5 days, 

cultures were expanded to 20mL for another 7 days. We then pelleted the cultures and 

isolated DNA for rescue cloning. 

DNA isolation and rescue cloning 

 After approximately 7 days, the turbid bacterial culture was transferred to a 40 

ml oakridge tube and spun at 15k rpm for 20 minutes at 4 °C. The pellet was 

resuspended and transferred to a 1.5 ml eppendorph microcentrifuge tube and spun again 

at 15k rpm for 20 minutes at 4 °C. Genomic DNA was isolated for rescue cloning of 

Himar1-containing fragments following the manufacturer’s directions (GenElute 

Bacterial Genomic DNA Kit, Sigma-Aldrich, St. Louis, MO), eluted in 50 μl of elution 

solution. Purified DNA was digested with the HindIII high fidelity (HF) enzyme (NEB) 

by adding 2 μl enzyme and 5.2 μl cutsmart buffer and incubating the reaction at 37 °C 

for 2h. The enzyme was then heat inactivated at 80 °C for 20 minutes. Ligation reactions 

were carried out in a 16 °C water bath O.N. by adding 5.7 μl of 10X T4 DNA ligase 

buffer and 2 μl of T4 DNA ligase to the reaction tube.  

Transformation 

 To prepare E. coli chemically competent cells, a single colony was inoculated in 

5 ml of LB and incubated O.N. at 37 °C while shaking at 200 rpm. Two ml of the O.N. 

culture was used to inoculate 200 ml of LB medium in a 500 ml flask. Once the OD600 

reached 0.6-0.8, the culture was chilled on ice for 15 minutes. The cells were centrifuged 

at 3300g for 10 minutes at 4 °C. The pellet was resuspended by gently swirling 30-40 ml 

of cold 0.1 M CaCl2 and incubated on ice for 30 minutes. The cells were centrifuged 
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again at 3300g for 10 minutes at 4 °C and gently resuspended in 2 ml of cold 0.1 M 

CaCl2 plus glycerol (15% w/v). Five hundred μl of competent cells were transferred to 

microcentrifuge tubes and frozen at -80 °C. Chemical transformation was performed by 

adding 50 μl gently thawed competent cells to the entire ligation reaction. After gentle 

mixing, the sample was incubated on ice for 30 minutes. Heat shock was performed at 

42 °C for 45 seconds and the reaction was immediately returned to ice. One hundred μl 

of SOC media (900 ml dH2O, 20 g bacto tryptone, 5 g bacto yeast, 2 ml 5 M NaCl, 2.5 

ml 1 M KCl, 10 ml 1 M MgCl2, 10 ml 1 M MgSO4, 20 ml of 1 M glucose) was added to 

the sample and allowed to recover at 37 °C for 1 hour prior to plating on selective media. 

Plates were incubated at 37 °C for 2 days, when pink colonies became visible. One to 

three colonies per transformation were picked and inoculated in 5 ml of LB with Cm and 

incubated O.N. at 37 °C while shaking at 200 rpm. 

Plasmid isolation 

 Plasmids were isolated from bacterial O.N. cultures by alkaline-SDS lysis 

following the manufacturer’s directions (Thermo GeneJet Plasmid Miniprep Kit). 

Plasmid concentrations and purity were determined by evaluating the OD260/280 and 

OD260/230 values determined from a NanoDrop Spectrophotometer. An OD260/280 value 

greater than 1.8 and OD260/230 greater than 2.0 indicated the sample was pure enough for 

sequencing and reliable genetic manipulation.  

Touchdown PCR 

 As an alternative to rescue cloning and transformation into E. coli, we used 

touchdown PCR to identify Tn insertions in the genome [102]. PCR reactions were 
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performed in a 50 μl mixture containing 100 pmol hybrid primer (HIB17 ), 20 pmol Tn 

specific primer (ColE1-R), 100-400 ng gDNA template, 1x PCR buffer (60 mM Tris-

SO4, 18 mM NH4SO4),  0.2 mM each dNTP, and 1.5 U of Platinum® Taq DNA 

Polymerase High Fidelity (Invitrogen). PCR consisted of two phases: phase 1 included 

an initial step of 95 °C for 5 min, followed by 25 cycles of denaturation at 95 °C for 45s, 

annealing at variable temperatures for 45 s, and extension at 72 °C for 2 min. In the first 

cycle, the annealing temperature was set to 60 °C and, at each of the 24 subsequent 

cycles, the annealing temperature was decreased by 0.5 °C per cycle down to 47.5 °C. 

Phase 2 consisted of 25 cycles of 95 °C for 45 s, 50 °C for 45 s, and 72 °C for 2 min. 

After the last PCR cycle, the samples were cooled to 4 °C, and a 6 μl aliquot of the 

amplification products was electrophoresed on a 1% agarose gel (1x TAE), stained with 

ethidium bromide, and visualized under ultraviolet (UV) light.  

Sequencing plasmids for transposon insertions 

 Plasmids or PCR products were sent to Europhins MWG Operon (Huntsville, 

AL) for sequencing in a 96 well plate with 8 μl plasmid DNA and 4 μl primer (CatF or 

ColE1-R) per well to determine genomic insertion site of Himar1 transposon. Sequences 

of primers obtained from Integrated DNA Technologies (San Diego, CA) are listed in 

Appendix C. 

Analysis of Transposon-Insertion sites 

 For mapping insertion position within the genome, the sequence reads obtained 

were aligned (BlastN) against the C. burnetii phase I (RSA 493) whole genome 

sequence [60]. For each analyzed sequence, the inverted terminal repeat (ITR) region, 
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5’-ACAGGTTGGCTGATAAGTCCCCGGTCTC-3’, which flanks the transposon, was 

localized and the location where the transposon was inserted within the genome was 

determined by identifying the start and end positions of the matching sequence with 

respect to the genome sequence.  

Generation of Pooled Libraries 

 Approximately 500 independent mutants were expected to be generated per 

transformation. In order to obtain saturation of the C. burnetii genome, 50 independent 

transformations were performed with pKM225 as described above, except 

transformations were not plated on ACCM-agarose. Instead, each transformation was 

recovered in ACCM-2 for 5-7 days then stored separately as well as pooled into a high-

density transposon mutant library. C. burnetii transposon pooled libraries were grown 

and DNA isolated as described above for individual cultures. 

Preparation of pooled libraries for sequencing: HITS 

 Analysis of the input libraries will be performed to demonstrate uniform 

distribution in chromosomes and the identification of genes essential for survival in 

ACCM using HITS. Genomic DNA from pooled C. burnetii Tn libraries was diluted to 1 

μg in 130 μl total volume in TE buffer. DNA was sheared to 300 bp on a Covaris S220 

ultrasonicator using the following settings: duty cycle = 10%, intensity = 4, 200 cycles / 

burst, time = 27 s. Size selection with AMPure XP beads (Beckman Coulter) following 

manufacturer’s instructions. (Always mix 1x beads). Next, Quick Blunting end repair 

was performed at 25 °C for 30 min. PCR purify and elute in 35 μl. A 50 μl total A-

tailing reaction was set up using 5 μl NEB buffer 2, 10 μl 250 μM dATP, and 2 μl 
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Klenow 3’-5’ exo (5 U/ml), and incubated at 37 °C for 30 min. PCR purify and elute in 

45 μl. Adaptors were ligated by adding 1 μl Promega T4 DNA Ligase (3 U/μl), 1 μl 

Adaptor B (3’ adaptor ligates both ends, T-overhang), and 5 μl buffer, and incubating 4 

hours at 15 °C followed by 15 min at 65 °C to inactivate the enzyme. The reaction was 

bead purified twice to remove all extra adaptors and eluted in 40 μl. The first PCR 

reaction, to add the 5’ adaptor (partial) to the Tn sequence, was carried out in a 100 μl 

total volume using 10 ng DNA, Phusion HF buffer, dNTPs, Himar Primer with MID 

sequence, PCR 2.0 primer, and Phusion DNA polymerase (2 U/μl) under the following 

conditions: 98 °C for 10 s, followed by 12 cycles of 98 °C for 30 s, 58 °C for 30 s, and 

72 °C for 30 s, and a final extension of 72 °C for 10 min. Bead purify and elute in 40 μl. 

The second PCR reaction, to pre-select, add biotin and the rest of the 5’ adaptor, was 

carried out in a 200 μl total volume using 125 ng DNA, 5x Phusion HF buffer, 10 μM 

Preselect F1 primer, specific INDX primer, dNTPs, and Phusion DNA polymerase under 

the same conditions as the first PCR, except with 20 cycles instead of 12. PCR purify 

and elute in 55 μl. One to 2 μg DNA was added to DynaBeads (Dynal streptavidin-

coated beads, Invitrogen) to capture and wash the sample, followed by heat denaturation 

and DNA isolation. The final PCR, used to amplify the Tn-insertion product was 

conducted in 100 μl total volume using 5 ng DNA, 5x Phusion HF buffer, 10 μM PCR 

1.0 primer, 1 μM PCR 2.0 primer, 10 μM INDX primer, dNTPs, and Phusion taq DNA 

polymerase under the following conditions: 98 °C for 30 s, followed by 8 cycles of 98 

°C for 10 s, 58 °C for 30 s, and 72 °C for 20 s, with a final extension of 72 °C for 5 min. 

Bead purify and elute in 35 μl. The final product was then analyzed for fragment length 
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on the Bioanalyzer using the High Sensitivity DNA Assay kit following the 

manufacturer’s directions. 

Preparation of pooled libraries for sequencing: TraDIS 

 Libraries for sequencing were prepared from 2.5- 5 μg of genomic DNA 

extracted from transposon libraries. Lo-bind Eppendorf tubes were used throughout the 

protocol. DNA was fragmented using a Bioruptor sonicator for 30 min with 30 s on/off 

pulses with medium intensity. Fragmented DNA was purified using the Qiaquick PCR 

Purification kit (Qiagen) according to the manufacturer’s instructions. DNA was eluted 

in 40 μl EB buffer, followed by 40 μl pure water and eluates were pooled. 1 μl of the 

purified sample was analyzed on a BioAnalyzer (Agilent) using a DNA7500 chip. The 

mean size of the DNA fragments should be below 500 bp. Next, fragments <150-bp in 

size, which would be too small for sequencing, were eliminated from the samples using 

the GeneRead size selection kit (Qiagen) according to the manufacturer’s instructions. 

DNA was eluted in 3x 25 l EB buffer. End repair and dA-tailing of end-repaired DNA 

was performed using the NEBNext DNA library prep reagent set for Illumina 

(NewEngland Biolabs) according to the manufacturer’s instructions, with a DNA clean-

up after both steps using the Qiaquick PCR Purification kit (35 l elution volume) and 

the MinElute PCR purification kit (Qiagen; 22 l elution volume), respectively. 1 μl of 

the sample was analyzed on a BioAnalyzer in order to obtain values for the 

concentration of sample and mean fragment size. Adapter ligation was performed using 

the following adapters: Adapter-1 (5’-GATCGGAAGAGCACACGTC*T) and Adapter 

PCR-1 (5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T), where * 
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symbolizes a phosphorothioate modification, which had previously been phosphorylated 

and annealed by incubating 20 l of each oligonucleotide with 5 l 10x T4 DNA ligase 

buffer and 5 l 10U/l T4 Polynucleotide Kinase enzyme (both NewEngland Biolabs). 

Annealed adapters were ligated to the A-tailed DNA fragments by mixing 17.5 μl of the 

DNA sample plus the calculated volume of annealed adapters plus 5 μl Quick T4 DNA 

Ligase with an equal volume of 2x Quick Ligation Reaction Buffer as part of the 

NEBNext DNA library prep reagent set. DNA was purified using the Qiaquick PCR 

Purification kit and eluted in 35 l PE buffer. PCR enrichment for transposon-containing 

fragments was carried out on small amounts of the ligated material as parallel PCRs in 

order to minimize amplification bias. Eight PCR reactions in volumes of 50 l were set-

up per sample consisting of: 41.9 l nuclease-free water, 5 l 10x PCR buffer with 

MgCl2, 1 l 10 mM dNTP mix, 0.3 l 100 M transposon-specific PCR-3 primer, 0.3 l 

100 M barcoded multiplexing primer (different MPX primer for each library), 1 l 

adapter-ligated DNA fragments as template, and 0.5 l JumpStart Taq DNA polymerase 

(Sigma Aldrich). The thermal cycling conditions consisted of 10 min initial denaturation 

at 94°C, followed by 20 cycles of denaturation at 94°C for 30 s, annealing at 55°C for 30 

s, and extension at 72°C for 60 s, followed by a final extension step at 72°C for 10 min. 

PCR products were pooled and precipitated overnight at -20°C using sodium 

acetate/ethanol. DNA pellets were resuspended in 75 μl of buffer EB. 

1 μl of the sample was analysed on a BioAnalyzer in order to obtain values for the 

concentration of sample and mean fragment size. The yield of transposon-specific and 

total PCR products was also determined by qPCR. The concentration of total and Tn-
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specific PCR products in each sample was determined from the standard curve and was 

corrected for the differences in fragments size between the samples (determined using 

the BioAnalyser) and the standards (=452 bp each). The aim was to obtain samples with 

>50% Tn-specific PCR products. PCR products were size selected by dry-loading the 

samples onto a 2% agarose gel in 1x TBE buffer and electrophoresis at 60V for 90 

minutes. For sequencing, each library was diluted to 2mM and libraries were pooled 

using equal volumes.  

Preparation of pooled libraries for sequencing: Tn-seq 

 Genomic DNA from pooled C. burnetii Tn libraries was diluted to 1 μg in 130 μl 

total volume in TE buffer. Purified DNA was digested to approximately 300 bp with the 

Sau3A1 restriction enzyme (NEB) by adding 2 μl enzyme, 5.5 μl NEB buffer 1, and 5.5 

μl BSA  and incubating the reaction at 37 °C for 2h. The enzyme was then heat 

inactivated at 65 °C for 20 min. 

Sequencing of pooled libraries 

 The resulting DNAs prepared by one of the three methods described above will 

be cluster amplified and sequenced on a HiSeq2500 sequencer (Illumina) as 100 bp 

single read runs. The Illumina sequencing reads that contain the Himar1 inverted 

terminal repeats (ITRs) and the adjacent TA insertion site will be identified and aligned 

to the C. burnetii RSA493 genome sequence. The complexity of the input library will be 

determined and the number of interrupted ORFs will be analyzed after bioinformatics 

assembly. Insertions in genes that are significantly under-represented or missing in the 
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population of mutants will be considered as putative genes that are required for growth 

or survival in ACCM. 

Results  

Defined Transposon Mutant Library 

 A library of Coxiella burnetii mutants was generated by transposon mutagenesis. 

The plasmid pKM225 encoding a Himar1 transposase was used to introduce a 

transposon encoding a mCherry fluorescent protein and chloramphenicol resistance 

randomly onto the genome of the C. burnetii NMII strain RSA439. The C. burnetii 

mutants generated were isolated on ACCM-agarose plates in the presence of 

chloramphenicol and further amplified in liquid ACCM-2 supplemented with 

chloramphenicol for an additional 12 days.  

 The mutagenesis procedure was optimized to yield the greatest number of 

mutated colonies and efficient growth procedures once colonies were isolated, and the 

rescue cloning efficiency was optimized to greater than 50%. The purified plasmids were 

sequenced using the transposon-specific primer, CatF, which recognizes a sequence in 

the 3’ region of the Chloramphenicol Acetyltransferase (CAT) gene. The sequences 

were aligned on the C. burnetii RSA493 annotated genome using automated sequence 

analysis software. This analysis confirmed that isolated clones had single transposon 

insertions and were distributed homogeneously throughout the genome. Approximately 

3000 transposon mutants were isolated as single clones from 30 independent 

transformations. Of these, approximately 960 were successfully rescue cloned and 

sequenced to identify the transposon insertion sites (Figure 8). Overall, 800 transposon 
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insertions were found within C. burnetii annotated ORFs and 160 in intergenic regions 

of the genome (Table 1). The full, detailed list of all transposon insertions identified is 

included as a separate file. 

 

 

 

Figure 8: Sequenced transposon insertions. Transposon insertions were annotated on 

the C. burnetii RSA493 chromosome (large circle) and QpH1 cryptic plasmid (small 

circle). Peaks indicate the site of insertion of each transposon and the height of the peak 

corresponds to the frequency of mutants isolated presenting a transposon insertion in a 

given site (1 inner circle corresponds to 2 insertions). 
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Table 1: Current progress of C. burnetii defined transposon mutant library. Nearly 

1,000 transformants have been isolated and identified. Less than 10% of these are non-

clonal. Approximately 15% of the clonal mutants are intergenic, leaving approximately 

800 clonal mutants in predicted ORFs.  

 

Clonal 

Mutants 
(Total) 

Clonal 

Mutants 
(intergenic) 

Clonal 

Mutants  
(in ORFs) 

Clonal  

Mutants 
(unique ORFs) 

Clonal 

Mutants 
(duplicates) 

Non-Clonal 

Mutants 

961 160 801 390 290 85 

 

 

 Mutations occurred in 373 ORFs on the C. burnetii chromosome and 17 ORFs on 

the QpH1 plasmid. This corresponds to approximately 18.2% and 37% of the total ORFs 

present on the chromosome and plasmid, respectively. There were several areas of 

preferential transposon insertion, which could be due to a high AT content. The genes 

with the most insertions include: CBU_0804 (RND transporter protein), CBU_0950 

(hypothetical protein), CBU_1652 (icmX), CBU_1963 (hypothetical), and CBU_2059 

(T4SS substrate, cirE). We also generated approximately 60 insertions in dot/icm genes. 

A few of these genes are over 2 kb long, which would allow for more insertion sites. 

 There were a number of non-mutated regions (Table 2). Some of these gaps were 

expected since we compared our transposon insertions, which were generated in NMII, 

to the annotated NMI genome. There is a region of approximately 20 ORFs encoding for 

LPS (CBU_0679 – CBU_0698) in the NMI genome that is deleted in the NMII genome 

[38]. There was a large non-mutated region between CBU_0212 and CBU_0264, which 

encodes ribosomal proteins that are likely essential for bacterial survival in all 

conditions. We also saw six other regions of about 20 – 30 continuous ORFs each that 
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did not contain mutations. These could be due to mutations in essential genes or simply 

areas that we have not yet identified a transposon insert.  

 

 

Table 2: Non-mutated regions in defined Tn mutant library. These could be due to 

mutations in essential genes or simply areas that inserts have not yet been isolated. 

 

Non-mutated region Predicted function 

CBU_0115 – CBU_0132 Cell division proteins; ligases 

CBU_0212 – CBU_0264 Ribosomal proteins 

CBU_0599 – CBU_0622 Outer membrane protein precursors; 

acyltransferases and other enzymes 

CBU_0630 – CBU_0660 Enzymes: synthase, kinase, deaminase, 

dehydrogenase, and phosphodiesterase 

CBU_0677 – CBU_0700 LPS 

CBU_0808 – CBU_0854 Transcriptional regulators and activators, 

biosynthesis proteins, and enzymes 

CBU_1335 – CBU_1369 DNA polymerase, cell division proteins, and      

iron-sulfur cluster assembly proteins 

CBU_1417 – CBU_1453 Transcription, translation, and DNA repair proteins; 

NADH-ubiquinone oxidoreductase chain 

 

 

 

Pooled Transposon Mutant Library  

 High-throughput Insertion Tracking by Deep Sequencing (HITS) and Transposon 

Directed Insertion Site Sequencing (TraDIS) represent two methods for a high-

throughput functional analysis of every Coxiella burnetii gene. Using these methods, all 

the genes required for viability (and therefore all the targets for novel drug design) can 

be identified in a single experiment [99,100].  These methods have the potential for 

primarily random insertions of the transposon into the chromosome, that enables equal 

coverage and that every single gene is targeted in theory. However, insertion of the 

Himar1 transposon into the chromosome is not totally random but rather depends on the 
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presence of TA sites [103]. In order to test the suitability of a Himar transposon mutant 

pool for deep sequencing, the genome of C. burnetii RSA493 was searched for TA sites 

using the Artemis motif finder function [104]. A total of 124,724 TA sites were 

identified in the ~2Mbp RSA493 genome, resulting in an average distance of 16 bp 

between sites. No genes without at least one TA site were found, thereby confirming that 

Himar1 mutagenesis is suitable for transposon-insertion sequencing in the C. burnetii 

genome. 

 Initially, we set out to analyze our transposon mutant pools in order to determine 

redundancy and the number of pools needed to saturate the C. burnetii genome with 

mutations. Transformations yielding 250 independent clones would require 100 

transformations to saturate the genome, while a transformation yielding 2500 clones 

would only require 10 transformations. Based on our experience, the number of clones 

generated by each transformation is expected to average within this range. C. burnetii 

RSA439 was transformed with 1 μg of the pKM225 plasmid as described above. The 

transformations were recovered in 20 mL ACCM-2 for 5 days instead of being plated on 

ACCM-agarose. Five mL of the culture was pelleted and stored at -80 °C, while the 

remaining 15 mL was pelleted and DNA isolated for analysis by deep sequencing. We 

compared various purification kits to ensure the greatest yield and purity of genomic 

DNA from the pooled samples. These samples were delivered to our collaborators at 

Texas A&M AgriLife Genomics and Bioinformatics Service for library preparation and 

sequencing on the HiSeq 2500 System (Illumina). Samples were manually sheared on an 

ultrasonicator (Covaris) to an average of 300 bp, followed by a size selection using 
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AMPureXP beads (Beckman Coulter). End repair, A-tailing, and adapter ligation were 

performed with purification after each step. PCR was performed to add the 5’ adapter to 

the transposon sequence. Following a second PCR to preselect and add biotin, the 

remaining portion of the adapter was added. Products with Tn insertions were selected 

with streptavidin-coated DynaBeads
®
 (Life Technologies) followed by a final PCR to 

amplify the transposon junctions. Size and quantity of DNA in the samples were 

analyzed on a 2100 Bioanalyzer (Agilent Technologies) before being sequenced. 

 Two controls were included along with the transposon pooled libraries: one 

positive control, which contained 16 known mutants from our defined insertion library, 

and one negative control, which contained NMII genomic DNA without a Tn insertion. 

Unfortunately, while performing our bioinformatics analysis on the sequencing results, 

we discovered that our control pools did not work properly. A greater number of genes 

showed positive in our control pool than were added, and even our negative control 

yielded positive results. This may be due to PCR bias and the transposon specific primer 

with the 5’ adapter sequence potentially annealing to DNA lacking the transposon ITR 

sequence. PCR primers and procedures would need to be optimized to prevent false 

positives from showing in our libraries. 

 Because the group at Texas A&M AgriLife was inexperienced with these 

specific type of parameters, we partnered with a group at the University of Exeter, UK, 

who had successfully completed comparable sequencing experiments with several 

bacteria [105] and had recently received approval to work with C. burnetii. In addition to 

the control pools and two independent transformation pools, we sent a saturation pool 
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for sequencing. Through a series of 35 independent transformations, we created a library 

with near saturation of mutants in the diversity of genes that can be inactivated yet allow 

the bacterium to remain viable in ACCM. With 500 - 1000 insertions predicted per 

transformation, this saturation pool would be expected to contain a mutant library of 

approximately 25,000 independent clones. Sequencing of a genome saturation 

mutagenesis library could predict essential genes for conditional replication and identify 

potential virulence factors and targets for antimicrobial therapies. 

 DNA samples were prepared as described above. The 35 independent 

transformation pools were combined after recovery and prior to DNA isolation. A 

portion of these pools was plated on ACCM-agarose to confirm transformation 

efficiency. Our collaborators at Exeter used a manual TraDIS protocol for library 

preparations. In brief, the work-flow comprised fragmentation of 5 µg gDNA (or less, if 

not available) of each mutant library using a Bioruptor
®
 ultrasonicator (Diagenode), 

followed by a size-exclusion of fragments <150 bp using the GeneRead kit (Qiagen) and 

DNA purification and quantification. End repair, A-tailing, and adaptor ligation were 

performed using the NEBNext DNA library prep reagent kit (New England Biolabs), 

with purification after each step. PCR reactions were optimized to incorporate 5’ 

barcoded adapters for multiplexing, and PCR fragments were size selected on a 2% TBE 

agarose gel. Finally, the samples were subjected to 20-cycle parallel PCR enrichment for 

transposon-containing fragments on small amounts of the ligated material to minimize 

amplification bias. Products were pooled, ethanol precipitated, size-selected on a gel, 
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and purified before being submitted for sequencing as 100 bp single-end runs on a HiSeq 

2500 system at the Exeter Sequencing Facility.  

 Sequencing resulted in 7-10 million reads per sample. Reads were filtered for the 

transposon sequence, and then mapped back to the C. burnetii RSA493 genome. The 

number of mapped reads per gene (“hits”) was determined for each sample (Table 3). 

The control pools only contained 16 defined transposon mutants, making them very low-

complexity compared to the experimental pools containing all mutants from a single 

transformation, which potentially contain thousands of mutants. The control pools 

showed significantly more insertions than expected, suggesting non-specific noise in the 

system. After increasing the threshold number of hits required for a ‘positive’ result, 11 

of the 16 mutants were successfully identified. Another 3 mutants were potentially 

positive, while the remaining two were not identified in the control pools. The verified 

genes all had >1,000 Tn-insertions on average, which therefore might be used as a cut-

off point for true signals above the noise level. The two mutants from the control pool 

that did not show positive after sequencing were CBU_0372 and CBU_2013. Both genes 

only reached an average of 100 and 50 hits, respectively, which is well below the 

threshold level of 1,000 hits/gene. It remains to be determined if this could have been 

due to a problem during the PCR amplification. Moreover, 4 genes with above threshold 

level of Tn-insertions were identified, which should not have been targeted as no Tn-

mutant had been present in the pool. It remains to be elucidated, if the transposon-mutant 

pools could possibly have been contaminated with transposon mutants in these genes, or 

if these are true false positives. 
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Table 3: Results of TraDIS run with six samples. Control pools contained 16 defined 

mutants. Sample pools 1 and 2 were from single transformations. Saturation pool was a 

combination of 35 independent transformations. 

 

Sample 
# Total 

Reads 

# Filtered 

reads 

# Mapped 

reads 

% 

Mapped 

# hits within 

CDS 

# Genes 

with Tn 

Ctrl pool 1: 16n 7,169,834 7,106,051 4,454,211 62.7 4,454,04 271 

Ctrl pool 2: 16n 9,023,281 8,944,037 6,072,066 67.9 6,071,82 136 

Ctrl pool 3: 16n 8,823,415 8,746,375 5,947,547 68.0 5,947,336 121 

Sample pool 1 9,788,955 9,693,285 1,684,739 17.3 1,609,546 1591 

Sample pool 2 9,306,966 9,226,438 6,390,578 69.3 6,326,146 1259 

Saturation pool 8,435,688 8,359,340 2,933,113 35.0 2,731,88 180 

 

 

 When applying the 1,000 hits threshold to the three sample pools, which 

represent transposon mutant pools of unknown identity and complexity, only 7 genes 

were above threshold in the saturation pool, 6 genes were above threshold in sample 

pool 1, and 89 genes were above threshold in sample pool 2. Each of the six genes that 

were identified in sample pool 1, which correspond to CBU_0014, CBU_0021, 

CBU_0937, CBU_1719, CBU_1720, and CBU_1909, were also identified in at least one 

other sample, and two of them (CBU_1719 and CBU_1909), were present in all three 

samples. This could indicate that these genes represent a hotspot for transposon 

insertions.  

Discussion 

 Understanding host-pathogen interactions and identifying bacterial virulence 

determinants are essential for developing new therapies to be used against C. burnetii 

infection. The aim of this study was to generate both a library of defined C. burnetii 
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transposon mutants and a pooled transposon library to saturate the non-essential genes of 

the genome. Transposon insertions were distributed homogeneously throughout the 

genome, which can be visualized on the genome map. A number of potential T4SS 

substrates identified in our defined transposon mutant library were characterized by 

members of our lab [47]. There were a few gaps or regions where no mutations were 

identified. Some of these gaps were expected since we compared our transposon 

insertions, which were generated in NMII, to the annotated NMI genome. There is an 

approximate 26 kb region from the NMI genome that is deleted in the NMII genome. 

There was a large non-mutated region between CBU_0212 and CBU_0264, which 

encodes ribosomal proteins that are likely essential for bacterial survival in all 

conditions. However, we also identified six other regions of about 20 – 30 continuous 

ORFs each that did not contain mutations. These could be due to mutations in essential 

genes, or simply areas that we have not identified a transposon insert because mutations 

do not approach saturation.  

 We optimized the rescue cloning protocol to an efficiency of nearly 60%. 

Unfortunately, we failed to adapt touchdown PCR to work with our transposon 

mutagenesis system. Future studies should continue to pursue this approach, as we 

achieved approximately 15 – 20% success rate for defining clones (Table 4). New 

primers should be designed to include random, universal, and nested Himar primers 

combining different primer combinations and running multiple PCR reactions to achieve 

the greatest success [106]. Not all clones are successfully rescue cloned, but by 
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optimizing the touchdown approach, these two methods could be combined to allow for 

significantly higher throughput for defining transposon insertions. 

 

Table 4: Comparison of rescue cloning and Touchdown PCR methods for isolating 

and sequencing transposon insertions. 

 

Rescue Cloning Touchdown PCR 

Digest isolated gDNA 

PCR isolated gDNA using non-specific 

degenerate primer 

Ligate PCR clean-up 

Transform into E. coli Sequence 

Isolate plasmid  

Sequence  

60% efficiency, 

but time consuming and costly 
Currently only 15% efficiency 

 

 

 

 A near saturation mutant genome pool could prove extremely beneficial for 

identifying virulence determinants in C. burnetii, but there would still be a subset of 

genes not represented in our mutant libraries. The genes in these non-mutated regions 

will be characterized as essential to C. burnetii’s survival in growth conditions (ACCM) 

used to culture mutants. We generated 50 pools of transposon mutants from independent 

transformations with pKM225. These pools were tested for viability and transposon 

insertion. However, these pools are still undergoing testing to more accurately predict 

the number of ORF insertions in each pool. We combined 35 of these pools into one 

genome saturation pool and provided the purified DNA to our collaborators at the 
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University of Exeter. We obtained our first sequencing data from this saturation pool 

along with two individual pools and three control pools.   

 We were unable to achieve a reliable readout using either the HITS or TraDIS 

approach. As an alternative approach, the next attempts could perform transformations 

and plate them on solid medium instead of maintaining liquid culture. Colonies could 

then be picked and pooled into one library, ensuring a greater viability of clones in the 

pool. Another possible improvement could be to use enzyme digestion for DNA 

fragmentation than random shearing. This would allow for more specificity and greater 

efficiency in isolating the Tn junctions. A major problem that we encountered was with 

our positive control pools. The sequencing reads were producing some false positives as 

well as false negatives. About 75% of the clones in the pool were positively identified, 

yet with large variations in apparent copy number. Of the 16 transposon mutants, 14 

were successfully identified, but there were also false negatives. Previous studies 

utilizing these approaches did not include a positive control pool [99-101]. It could be 

that the Illumina sequencer is not designed to accurately read such a small number of 

products in a sample. The software needs a certain amount of diversity in order to 

accurately differentiate between sequences. This system discerns hundreds of thousands 

of clones but may become ‘confused’ with less than 20. Instead of using a positive 

control pool, false positive results could be addressed by repeating the sequencing as 

multiple replicates. Studies into analyzing the genome saturation pool by deep 

sequencing should continue, as the readouts will prove extremely beneficial to Coxiella 

research.   
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CHAPTER III  

DEVELOPING VIRULENCE RELATED SCREENING AND CHARACTERIZATION 

APPROACHES FOR SPECIFIC TRANSPOSON MUTANTS 

 

Background 

 The identification of additional C. burnetii virulence factors using recently 

developed genetic techniques will be instrumental in finding targets for new therapies. 

The aim of this study was to develop methods to identify a set of basic structure and 

metabolic related genes that are required for survival and replication in ACCM, in vitro, 

and in vivo. The mouse macrophage-like cell line, J774.A1, mouse fibroblast cell line, 

L929, and human epithelial cell line, HeLa, were used for in vitro studies. There are 

several animal models of virulent phase I C. burnetii infection available, including 

guinea pig, mouse and primate models; however, SCID mice are the only animal model 

to enable high replication of C. burnetii NMII [81,82]. 

 We predict many genes are required for C. burnetii survival and replication in 

cells or in animals while having no phenotype in ACCM-2, and that many of these genes 

are critical for its pathogenic process. The genes required for replication in cells likely 

include those that contribute to attachment, invasion, formation of a suitable replication 

niche, and persistence. The genes uniquely required for infecting animals may include 

those responsible for immune modulation or evasion. We intended to use the pooled 

mutant library to compare insertion mutant complexity between input and output pools 

from in vitro infected cells (J774.A1 or L929) or infected SCID mice; however, since the 



 

54 

 

methods for analyzing these pools are still being optimized, we have relied on the 

defined clonal mutants to evaluate phenotypes in this thesis. A high-throughput method 

for screening transposon mutants will be essential for comprehensive identification of 

virulence related genes since screening individual clones is time intensive and 

expensive, particularly in animals. 

 To test the hypothesis that a subset of genes will prove attenuated in one or more 

stages of the pathogenic process, bacterial clones containing Tn insertions were 

compared to NMII in tissue culture cells and a mouse model of infection. The growth 

rate and ability to infect and replicate was monitored. Additional studies on phenotypes 

of specific clones were prioritized using bioinformatic prediction of function for specific 

mutations. The results of these combined in vitro and in vivo screens provide a wealth of 

new data for future studies in an effort to understand the critical pathways essential for 

this pathogen.  

Materials and Methods 

Bacterial Strains, cell lines, and growth conditions 

 Escherichia coli strain DH5α was propagated at 37 °C in Luria-Bertani (LB) 

broth or agar, purchased from Difco (Sparks, MD). Media were autoclaved to 121 °C for 

30 minutes and supplemented with the appropriate filter sterilized antibiotic(s) at the 

final concentrations listed: chloramphenicol (Cm) (34 μg/ml) or kanamycin (Kan) (50 

μg/ml). Broth cultures were usually grown overnight (O.N.) in 5 ml of LB and shaken at 

200 rpm. Select strains were stored at -80 °C after resuspending 5 ml of O.N. culture in 1 

ml of autoclaved glycerol (10% v/v) in LB without antibiotics.  



 

55 

 

 The laboratory derived C. burnetii Nine Mile phase II (NMII), strain RSA 439 

clone 4, was cultivated in T-75 cell culture flasks or 0.2-μm-pore-size-filter-capped 125-

ml Erlenmeyer flasks containing 75 ml of medium or T-25 flasks containing 20 ml of 

medium grown in filter sterilized liquid ACCM-2 or ACCM-agarose. Cultures were 

grown for approximately 7 days at 37 °C in a 2.5% O2 and 5% CO2 environment. 

Oxygen was displaced by nitrogen gas. Where required, Cm was used at 5 µg/ml.  

 J774A.1 cells were cultured in Dulbecco’s Modified Eagle’s Media (DMEM) 

supplemented with 10% fetal bovine serum (FBS). Roswell Park Memorial Institute 

(RPMI)-1640 medium supplemented with 10% FBS was used for culturing L929 cells. 

All cell lines were maintained at 37 °C with 5% CO2. 

Real time quantitative PCR 

 Tissue and cells were lysed with 200 μl lysis buffer (1M Tris, 0.5M EDTA, 7 

mg/ml glucose, 28 mg/ml lysozyme) and 10 μl proteinase K (20 mg/ml) and incubated 

O.N. at 60 °C, followed by the addition of 21 μl 10% SDS and incubated at room 

temperature for 1 h. DNA was extracted using High Pure PCR Template Preparation Kit 

(Roche Molecular Biomedicals, Indianapolis, IN), and stored at -20 °C until use. Real 

time PCR (rtPCR) was performed using an Applied Biosystems 7500 Real time PCR 

System. The recombinant plasmid DNA, containing the IS1111 gene, was used as 

standard DNA to quantify copy numbers. 

Growth of transposon mutants in media 

 To rule out general growth defects, growth curves in ACCM-2 were conducted 

by inoculating 20ml ACCM-2 with 1.0x10
6
/ml of CB439, an intergenic mutant, or 



 

56 

 

specific transposon mutants. At 1d, 4d, and 7d post-inoculation, 1ml of culture was 

removed, pelleted, and resuspended in 200µl tissue lysis buffer with 10µl proteinase K 

[107]. DNA was isolated from the ACCM-2 cultures using High Pure PCR Template 

Prep Kit (Roche) per manufacturer’s instructions and purified DNA was quantified using 

qPCR with TaqMan and primers specific for IS1111 [108]. 

Growth of transposon mutants in vitro 

 Individual C. burnetii NMII defined mutants were used to infect HeLa, J774.A1, 

L929, or MH-S cells. Cells were seeded at 1.25x10
4
 cells/well (96-well plate) or 5x10

4
 

cells/well (24 well plate) and infected at a multiplicity of infection (MOI) 100 for 4h. An 

intergenic mutant or mCherry expressing C. burnetii-pKM244 was used as a positive 

control. Concentration of C. burnetii strains axenically cultured in ACCM-2 was 

determined using qPCR with IS1111gene specific primers [108]. Four hours post-

infection (HPI), cells were washed 3 times with 1X PBS to remove un attached bacteria, 

fresh media was added to each well, and cultures were incubated at 37 °C with 5% CO2. 

At 1d, 4d, and 7d, cells were scraped  and pelleted cells were resuspended in tissue lysis 

buffer with 10µl proteinase K [107]. DNA was isolated from the infected cells using 

High Pure PCR Template Prep Kit (Roche) per manufacturer’s instructions and purified 

DNA was quantified using qPCR with TaqMan and primers specific for IS1111 [108].  

High-throughput screening of transposon mutants in vitro 

 An alternative method to screen the large numbers of defined insertion clones in 

vitro is to image infected cells with a Nikon-A1 Confocal Microscope System (Nikon, 

Tokyo, Japan), fluorescence image or a Cytation3 cell imaging microplate reader 
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(BioTek, Winooski, VT) for detection of mCherry expression (594nm). J774.A1, L929, 

or MH-S cells were seeded in 48 or 96 well plates and infected with individual mutants 

in triplicate. Four HPI, cells were washed and fresh media +Cm was added. Cells were 

grown for 7d, fixed, stained, and analyzed.  Vacuole size and number per cell were used 

to determine efficiency of infection compared to wild type. 

Growth in vivo 

 SCID mice were infected with individual C. burnetii defined transposon mutants 

and monitored for bacterial dissemination and clearance. As previously shown by our 

lab, SCID mice (deficient in T and B cells) are susceptible to infection with the low 

virulence C. burnetii NMII strain [82]. Five – 6 week old SCID mice were infected by 

intraperitoneal (IP) route with 10
6
 bacteria (100 ul). As control infections, mice were 

infected with: wild type NMII strain (positive); a Himar1-containing isolate, which has 

inserted into an intergenic region and was determined not to have a growth defect in 

vitro (positive); or PBS buffer (negative). Clinical signs were observed and body weight 

measured daily. Mice were maintained for 14 days, sacrificed, and lung and spleen 

tissues obtained for DNA isolation and quantification by qPCR. Spleens were collected 

and weighed for determination of splenomegaly. Infected spleen and lung tissues were 

homogenized in 1mL ddH2O. To isolate DNA from tissues, 100 μl homogenized tissue 

was added to 900 μl urea or tissue lysis buffer (Roche) with 100 μl proteinase K. DNA 

was isolated from the infected cells using High Pure PCR Template Prep Kit (Roche) per 

manufacturer’s instructions and purified DNA was quantified using qPCR with TaqMan 

and primers specific for IS1111 [108]. 
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Statistical analysis 

 Statistical analyses were performed using a one-way analysis of variance 

(ANOVA) and Prism software (GraphPad Software, Inc., La Jolla, CA). 

Results 

Defined transposon mutant library in vitro 

 The defined transposon mutant library contains approximately 800 clones in 

nearly 400 unique ORFs including roughly 60 insertions in dot/icm genes. The T4BSS is 

a known virulence factor of C. burnetii [35], and studies have shown Tn insertions in 

icm gene loci are defective for intracellular replication [32,69]. One of the first clones 

we identified in our library was the T4SS component, icmX. We tested this icmX::Tn 

mutant in vitro to demonstrate our methods for generating and characterizing defined 

transposon mutants.  

 

 

 

Figure 9: Growth of icmX::Tn mutant in HeLa cells. A T4SS component mutant, 

icmX, was isolated using the mariner-based Himar1 transposon system. HeLa cells were 

infected at an MOI of 100 with each strain and growth was monitored at 7d. The icmX 

mutant displayed diminished growth and reduced vacuole size and bacterial load 

compared to the wild type, mCherry-expressing C. burnetii-pKM244. 
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 HeLa cells were infected at an MOI of 100 with the icmX::Tn mutant or C. 

burnetii-pKM244, and growth was monitored for 7 days. The pKM244 plasmid 

transformed into C. burnetii gives the bacteria Cm resistance and mCherry expression 

for fluorescent observation. The icmX mutant displayed diminished growth and reduced 

vacuole size and bacterial load compared to wild-type (Figure 9).  

 This demonstrated our strategy for generating transposon mutants was 

successful, and we could continue screening the library. However, it would be too 

expensive and time prohibitive to quantify 800 clones for infection using these methods. 

Until a high-throughput method was developed, we prioritized our efforts using 

bioinformatic prediction of function for specific mutations. T4SS components were 

tested and characterized by members of our lab using the defined transposon mutants 

[47]. Other members of our lab are studying potential T2SS components and the 

production of type IV pili and have used pilD::Tn and pilE::Tn mutants generated in our 

library to determine secretion phenotype. Work is also being done to characterize an 

enhA, B, and C ::Tn mutants. Enhanced entry proteins have been shown to be involved 

in entry of L. pneumophila into host cells, as mutations in the enhC gene resulted in a 

significantly reduced-entry phenotype [109]. Because of the similarity between these 

two organisms, we would predict a similar phenotype in C. burnetii. 

 As a method of screening more mutants at once, we seeded L929 fibroblasts in 

24 well plates at 10
5
 cells/ml and infected with comparatively prepared bacteria in 0.5 μl. 

This initial screen was conducted with 66 mutants. Cultures were incubated for 7 days 

before being fixed and analyzed by confocal microscopy. This resulted in 12 mutants 
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with a potential growth defect: CBU_0007, CBU_0053 (enhA), CBU_0062 (dnaJ), 

CBU_0064 (parE), CBU_0072 (ankA), CBU_0206, CBU_0571, CBU_0661, 

CBU_0910, CBU_0945, CBU_2082, and an intergenic mutant before CBU_1050. These 

12 mutants were then quantified by qPCR, and cells were infected on coverslips at MOI 

100 in triplicate. However, no growth defect was observed with these controlled 

infections. The phenotypes seen initially may be due to such a small volume of bacteria 

being added to each well.  

 This experiment was repeated using 170 hypothetical proteins in the defined 

transposon mutant library. These mutants were first grown in 100 μl ACCM in 96 well 

plates. L929 cells were seeded in 96 well plates (1.25 x 10
4
 cells / well). Cells were then 

inoculated with 2 μl mutant for 4 h. Cells were washed to remove unattached bacterium 

and then fresh medium was added and cells were incubated for 7 days. After infection, 

cells were fixed, stained, and analyzed for growth phenotypes on a confocal microscope 

or a Biotek Cytation 3 Imaging Reader (Figure 10).  

 We screened these mutants on the confocal microscope using a program to 

conduct automated analysis. Unfortunately, it was too sensitive to autofocus the wells in 

the plastic tissue culture dishes we were using. The confocal software would be better 

able to maintain autofocus on glass bottom plates. Another problem we ran into with this 

experiment was the number of tissue culture cells. By day 7, the wells were nearly 

saturated. Seeding at a lower number of cells per well or in a greater volume in 48-well 

plates would likely solve these issues.  
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 The Biotek Cytation3 Imaging Reader is a fully automated method of analyzing 

vacuole size and number, and relative fluorescence in each well to efficiently obtain 

visual as well as quantitative fluorescence readouts that can easily be compared between 

wells. The first sample shown below, CBU_0197, had an average fluorescence intensity 

of 36,000 (TexasRed), which was comparable to wild type (data not shown). The next 

sample, CBU_1071, showed a reduced growth phenotype, with an average fluorescence 

intensity of 23,000. Finally, the third sample, CBU_0041, has a no growth phenotype, 

and gave an average fluorescence intensity of only 7,000. This is in agreement with data 

previously reported for CBU_0041 [47]. 

 

 

Figure 10: Growth of transposon mutants in L929 cells. A screen of over 150 Tn 

mutants yielded growth defects in a number of samples. Cells were analyzed 7 days post 

infection using the BioTek Cytation3 Imaging Reader (inset) or by confocal microscopy. 

 

  

Defined transposon mutant library in vivo 

 After identifying mutants with reduced growth phenotypes in vitro, we assessed 

these mutants in vivo. We infected 5-6 week old SCID mice by intraperitoneal injection 
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with: NMII, an intergenic Tn mutant (positive control), a T4BSS component mutant 

(icmX), four Tn mutants predicted to be T4BSS substrates (CBU_2052, CBU_0041, 

CBU_0937, and CBU_0425), or a T4P component mutant (pilD). All of these mutants 

except the intergenic and pilD have clear cell growth phenotypes. Organs were harvested 

14 DPI and spleen weight was compared as a percentage of total body weight for each 

animal to determine splenomegaly (Figure 11). Mice infected with wt NMII or the 

intergenic Tn mutant showed severe splenomegaly. However, no splenomegaly was seen 

in mice infected with the other Tn mutants. 

 

 

 
 

Figure 11: In vivo model of infection established for NMII strain. SCID mice were 

infected with wt or killed NMII or a series of Tn mutants, including an intergenic 

mutant. At 14 DPI, splenomegaly was detected in mice infected with both wt NMII and 

the intergenic mutant. The remaining Tn mutants caused little increase in spleen size and 

were comparable to the naïve control group. ‘ns’: P > 0.05; ‘****’: P < 0.0001. 
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 After spleens were weighed, they were homogenized in 1 ml ddH2O. One 

hundred μl of the liquefied organ was used for DNA isolation and quantification of 

bacterial copy number by qPCR (Figure 12). As expected, the amount of bacteria found 

in the spleens correlated with splenomegaly. Spleens of mice infected with wt NMII or 

the intergenic Tn mutant contained levels of bacteria greater than the infected dose.  

 

 

Figure 12: Growth of transposon mutants in vivo. SCID mice were infected with 10
6
 

copies of wt NMII or Tn mutant strains. Spleens were harvested 14 DPI and analyzed for 

genome copy by qPCR. Both the wt and intergenic mutants showed high bacterial loads, 

while mutant strains with insertions in C. burnetii ORFs displayed growth reduced by 2-

4 logs, some as low as the uninfected control. ‘ns’: P > 0.05; ‘*’: P < 0.05. 

 

 

 

 We did not recover detectable levels of bacteria from spleens of mice infected 

with the icmX, CBU_2052, or CBU_0041 Tn mutants, similar to naïve animals. Growth 

of bacteria was present but reduced in spleens of mice infected with CBU_0937, 
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CBU_0425, and pilD Tn mutants. The T4SS substrates CBU_0041, CBU_0937, 

CBU_0425, and CBU_2052, were characterized by members of our lab and determined 

to be crucial for intracellular replication and CCV formation, and were therefore 

renamed cirA, cirB, cirC, and cirD (Coxiella effector for intracellular replication), 

respectively [47]. 

Discussion 

 Transposon mutagenesis is an extremely valuable tool for studying mechanisms 

used by bacterial pathogens to evade the host immune system. The previously generated 

C. burnetii defined transposon mutant library was used to map C. burnetii genes 

essential for growth and viability. To determine which transposon mutants to begin our 

analysis with, we used bioinformatic prediction of function to identify specific genes 

suspected to encode virulence factors as defined by Koch’s postulates. We identified 

nearly 60 insertions in T4SS components (dot/icm genes), another 20 in T4SS substrates 

[47], as well as insertions in genes predicted to be involved in type IV pilus assembly 

(pil genes) and entry (enh genes). These mutants - most of which have displayed growth 

defects in vitro, in vivo, or both - have been, and continue to be, extremely beneficial in 

advancing research in our lab. 

 High-throughput screens are the most effective way to globally identify and 

characterize novel bacterial virulence determinants. Using efficient screening methods to 

analyze clonal transposon mutant libraries should provide a wealth of new knowledge 

that will dramatically improve our understanding of how this pathogen interacts with its 

host. The identification of additional C. burnetii virulence factors using recently 
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developed genetic techniques will be instrumental in finding targets for new therapies. 

The aim of this study was to develop methods to screen a library of C. burnetii 

transposon mutants and identify a set of basic structure and metabolic related genes that 

are required for survival and replication. We proposed two tools for screening host cells 

infected with transposon mutants in vitro. Both methods involve infecting cells in 48- or 

96- well plates and imaging with a high sensitivity automated digital microscopy system 

to detect fluorescence levels and determine vacuole size and number.  

 The first system uses an A1 confocal microscope imaging system, which is 

currently available in our lab. The benefits of this system are the ability to take high 

resolution images with software that can automatically focus, detect fluorescence, take 

multiple images per well, and move from one well to the next. Unfortunately, the high 

sensitivity and high resolution of this machine are also a drawback. The slightest tilt in 

the tissue culture plate will prevent the microscope from focusing in the proper plane, 

precluding detection of the cells. Because this is often a problem with plastic tissue 

culture plates, the confocal system requires use of more costly, glass bottom dishes to 

function at its highest potential. Also, given the small size of C. burnetii, 0.2 – 1 μm long 

[27], the Nikon software requires each well to be imaged at a magnification of at least 40 

or 60x, requiring more images, and thus more time, per well. 

  The second system for in vitro imaging of cells infected with transposon mutants 

uses a Cytation3 cell imaging microplate reader. This is a very high throughput system 

that could potentially result in significant time savings when screening an entire 

transposon mutant library. BioTek is a microplate instrument company, and this machine 
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has been optimized to automatically and efficiently move from well to well. The 

Cytation3 also offers autofocus, auto exposure, and auto LED intensity. It also includes a 

Hit Picking protocol--with built-in plate reader, where the plate can be read first to get 

RFUs of each well and then image only those wells of interest with high enough 

fluorescence intensity values. This also cuts down on data storage amount. Another big 

advantage of the Cytation3 is the ease of use. The user interface is friendly enough for 

untrained users to capture images or read a plate without first going through lengthy 

training. 

 Each of these systems can be extremely advantageous as a high throughput 

method for analyzing infections with Tn mutants. Another option could be to combine 

the two systems, first imaging the entire plate on the Cytation3, then analyzing specific 

wells at a higher resolution using the confocal microscope. The Cytation3 could serve as 

the workhorse, even by inexperienced users, due to its speed and ease of use. This would 

save the confocal for specific imaging and experienced users, and help prevent damage 

to confocal, which is usually expensive to maintain. Any phenotype observed on one of 

these systems would then be further characterized by quantifiable infection studies to 

determine difference in uptake, growth rate, CCV formation, or other phenotypes. 

 Screening a library of defined transposon mutants with a digital imaging system 

is a valuable tool that can be used to identify growth phenotypes in vitro; however, there 

is still a need for a high-throughput method of screening these isolated mutants in vivo. 

Recently, an insect model of C. burnetii NMII infection was developed. This model was 

used to characterize T4BSS mutants in an in vivo system. This is the first non-
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mammalian in vivo model of C. burnetii infection and is potentially suitable for rapidly 

characterizing mutant phenotypes [84].  

 Using pools of random transposon mutants is a well-established method of 

efficiently identifying genes essential for bacterial invasion and replication in the host 

[110]. A Himar1 transposon system is used to generate a pool of random mutants. This 

mutant pool is then subjected to various growth conditions or infection models and 

surviving mutants are recovered in an output pool. The insertion site of the transposon in 

each mutant in the input and output pools are identified by next-generation sequencing 

and compared to each other. Genes in which no transposon insertions are being detected 

in the output pool are considered to be essential for a defined growth or virulence 

condition. This would be an extremely useful tool for identifying genes essential for 

growth in vitro and in vivo, since nearly all genes could be analyzed in a single well or 

animal. 

 A thorough understanding of C. burnetii virulence factors is lacking. Major 

advances in Coxiella research in recent years allow for high throughput screens of large 

libraries of transposon mutants. This study establishes methods for evaluating libraries 

of defined Tn mutants and pools of Tn mutants, which will ultimately lead to the 

identification of bacterial genes involved in host/pathogen interactions.   
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

 C. burnetii is a Gram-negative bacterium that causes the zoonosis Q fever. The 

disease, which has been described in nearly every country worldwide, was first 

identified almost 80 years ago. Despite this, its virulence mechanisms are poorly 

understood [98]. The organism’s intracellular lifestyle has been a major roadblock in the 

field of Coxiella research, but recent advances have helped researchers overcome these 

hurdles and significant progress has been achieved in the past few years. These tools 

should allow identification and characterization of specific mechanisms of C. burnetii 

pathogenesis [4]. 

 The long range goal of this study was to generate transposon mutant libraries in 

C. burnetii, and then use these libraries to identify genes essential for growth in vitro and 

in vivo. The broad objective was to develop methods to identify a set of basic structure 

and metabolic related genes that are required for survival and replication. Recent 

advances in growth medium and the development of a single plasmid Himar1 transposon 

system by our lab supported the hypothesis that a large collection of specific clonal 

mutations in C. burnetii could be isolated and screened for their contribution to the 

pathogenic process in vitro and in vivo. Although we did not approach saturation of the 

genome with our defined Tn mutant library, we optimized methods to generate defined 

transposon mutants, resulting in mutations in nearly 20% of the predicted ORFs. 

Included in these mutants were a number of bioinformatically predicted virulence factors 
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that we further studied in cells and an animal model of infection. Our findings are 

consistent with previous studies that demonstrate the Dot/Icm T4BSS is essential for 

generating and replicating in a large PV [32,47,69,97].  

 We also developed methods for high throughput screening of Tn mutants in vitro 

by imaging on either a Nikon confocal microscope or a BioTek Cytation3 imaging 

system. The confocal is more sensitive and higher resolution but requires more time and 

technical proficiency. The Cytation3 does not produce high resolution images but is easy 

to operate and can analyze an entire microplate very quickly. Similar methods for 

screening C. burnetii Tn mutants have recently been reported [53,111]. 

 We generated a genome saturation transposon mutant pool by combining 

transposon mutant pools from 35 independent transformations. With each transformation 

expected to generate 500-1000 Tn insertions, this should be more than sufficient to 

saturate all of the non-essential ORFs in the C. burnetii genome. Although we were 

unable to analyze the level of genome saturation in the random transposon mutant pools 

by deep sequencing, significant steps were made to optimize this procedure. The first 

step in the library preparation protocol may need to be updated to use enzyme digestion 

instead of an ultrasonicator to shear the DNA. More specificity might also be achieved 

by redesigning the primers and using only 1 adaptor instead of 2. Finally, using needle 

aspiration on output pools to release bacterial DNA from eukaryotic host DNA would 

provide a more pure pool for sequencing. The identification of additional C. burnetii 

virulence factors using these recently developed genetic techniques will be instrumental 

in finding targets for new therapies.  
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Future directions 

 Clonal transposon mutants should continue to be generated to approach 

saturation of all non-essential ORFs in the defined Tn mutant library. In addition to 

rescue cloning, touchdown PCR should be used to identify isolated clones. New or 

additional semi-random primers may be designed and try different primer combinations 

for different clones before this procedure is successful. It may also be advantageous to 

screen every isolated clone, even before identifying the Tn insertion site. This would 

allow us to detect mutants from the library based on their interesting phenotypes and 

prioritize efforts to identify these clones first. It may be beneficial to explore the recently 

described insect model of in vivo infection as a means to efficiently screen Tn mutants.  

 In addition, pools of transposon mutant libraries are a valuable tool to efficiently 

identify genes essential for bacterial invasion and replication in the host. The procedure 

for analyzing these libraries is nearly optimized, and then we will be able to identify 

essential genes by this method as well. Genes essential for the innate immune response 

would not be expected to show a growth defect in vitro but should prove attenuated in 

the SCID mouse model. It would not be feasible to test every clonal mutant that 

replicates normally in cells, individually in a SCID mouse.  Therefore, comparing input 

and output pools by TraDIS is the most efficient means of identifying innate immune 

genes. 
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APPENDIX A 

LIST OF BACTERIAL STRAINS AND PLASMIDS USED IN THIS STUDY 

 

Strain / Isolate Description Source 

C. burnetii 

RSA439 

Phase II, Clone 4 Montana, tick, 

1935 

E. coli DH5α F ́(Φ80d(lacZ)M15), recA1, endA1, gyrA96, 

thi1, hsdR17 (rk-mk+), supE44, relA1, deoR, 

(lacZYA-argF),U169 

 

Stratagene 

pKM225 pMW1650, com1p-TnA7, groESp-mCherry, 

com1p-cat, CmR 

 

K. Mertens 

[95] 

pKM244 pJB908a, groESp-mCherry, com1p-cat, CmR, 

AmpR 

 

K. Mertens 

[95] 
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APPENDIX B 

LIST OF PRIMERS USED IN THIS STUDY 

 

Name Sequence Experiment 

catF 
5’-GTACTGCGATGAGTGGCAG-3’ Rescue 

Cloning 

ColE1R 
5’-CTTTCCTGCACTAGATCCCC-3’ Rescue 

Cloning 

HIB17 5’-CGGAATTCCGGATNGAYKSNGGNTC-3’ Touchdown 

Himar1-F1 
5’-ACGACGCTCTTCCGATCTGAATGCGGGGACTTATC 
AGCCAACC-3’ 

HITS 

Himar1-F2 

5’-ACGACGCTCTTCCGATCTCTTACCGGGGACTTATC 

AGCCAACC-3’ 
HITS 

Himar1-F3 
5’-ACGACGCTCTTCCGATCTTCGCTCGGGGACTTATC 
AGCCAACC-3’ 

HITS 

Himar1-F4 

5’-ACGACGCTCTTCCGATCTAGCGACGGGGACTTAT 

CAGCCAACC-3’ 
HITS 

INDX15 
5’-CAAGCAGAAGACGGCATACGAGATcaggtcgGTGAC 
TGGAGTTCAGACGTG*T-3’ 

HITS 

Adaptor 1 5’-GATCGGAAGAGCACACGTC*T-3’ TraDIS 

PCR 1 

adaptor 

5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T-

3’ 
TraDIS 

MPX1 
5’-CAAGCAGAAGACGGCATACGAGATATCACGGTGA 

CTGGAGTT*C-3’ 
TraDIS 

MPX2 
5’-CAAGCAGAAGACGGCATACGAGATCGATGTGTGA 

CTGGAGTT*C-3’ 
TraDIS 

MPX3 
5’-CAAGCAGAAGACGGCATACGAGATTTAGGCGTGA 

CTGGAGTT*C-3’ 
TraDIS 

MPX4 
5’-CAAGCAGAAGACGGCATACGAGATTCAGATCGTG 
ACTGGAGTT*C-3’ 

TraDIS 

MPX5 
5’-CAAGCAGAAGACGGCATACGAGATACAGTGGTGA 

CTGGAGTT*C-3’ 
TraDIS 

MPX6 
5’-CAAGCAGAAGACGGCATACGAGATACTTGAGTGA 
CTGGAGTT*C-3’ 

TraDIS 

MPX7 
5’-CAAGCAGAAGACGGCATACGAGATTAGCTTGTGA 

CTGGAGTtC-3’ 
TraDIS 

MPX8 
5’-CAAGCAGAAGACGGCATACGAGATGATCAGGTGA 
CTGGAGTtC-3’ 

TraDIS 

Himar-PCR-

3 

5’-AATGATACGGCGACCACCGAGATCTACACAGTCA 

GTTATTGGTACCCTTAAAC*G-3’ 
TraDIS 

Himar-seq2 5’-CAGACCGGGGACTTATCAGCCAACC-3’ TraDIS 

 


