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ABSTRACT 

 

 Biodegradable polymers have been in use for biomedical applications such as 

sutures and various implants for many years. In the recent decade, research into the 

development of biodegradable cardiac stents has expanded. This is due to a need for a 

stent to perform its job and then be removed from the site of implantation, as up to 20% 

of all cases require re-intervention after 6 – 12 months due to in-stent restenosis, as 

reported in 2010.  

 In this study, the effect of viscoelastic and mechanical degradation behaviors on 

the performance of cylindrical annuli that mimic stents under cyclic loadings is 

examined. Two polymers are considered: poly-L-lactic acid (PLLA) and 

polyoxymethylene (POM). A numerical algorithm for an isotropic, linear, viscoelastic 

material with inclusion of degradation is developed and incorporated into the finite 

element software ABAQUS/CAE via a user-defined material subroutine (UMAT). A 

constant pressure meant to mimic the arterial wall’s resistance to expansion is coupled 

with a cyclic pressure equivalent to an ideal resting blood pressure. The degradation 

considered is defined as strain-induced. Loading is applied under two cases. A linearly 

ramped loading is first studied, followed by a creep-cyclic study. 

 Circumferential stresses and strains, along with the degradation, are presented for 

both a simplified cylindrical annulus, as well as two typical real-world stent geometries. 

It is seen that not only do material properties affect deformation, but geometrical 

properties have a large effect as well. The uniform stresses and strains developed in the 
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cylindrical annulus are far less than the non-uniform stresses and strains observed in the 

realistic stent geometries. This is due to localized stress and strains at the junctions in the 

mesh of the realistic geometries, where stress concentrations are a maximum. As 

predicted by the time-dependent material properties given for each material from 

previous experimental studies, the stresses, strains, and degradation observed are 

strongly dependent on the time-dependent material behaviors. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Cardiovascular Disease 

Over the past century, cardiovascular diseases (CVD) have remained at the top of 

the list as the primary causes of death of Americans. As of today, the Center for Disease 

Control and Prevention estimates that CVD account for over one-third (33.6%) of all US 

deaths [6]. According to the American Heart Association, total costs associated with 

CVD amounted to $368.4 billion USD in 2004, with an increase to $403.1 billion USD 

as of 2006 [2, 9]. In 2010, the trend continued as the total cost of CVD showed an 

increase, as the estimated cost in the US was approximately $444 billion USD [6]. This 

amounted to the treatment of these diseases costing approximately one dollar of every 

six dollars spent on health care in the country [6].  

Of the forms of cardiovascular disease, atherosclerosis is one of the most critical. 

Rather than being distributed uniformly throughout the cardiovascular system, 

atherosclerosis is a progressive CVD that develops in the arteries around the heart and 

the arteries leading to the brain and legs, known as the coronary, carotid and femoral, 

respectively [2, 3]. Defined as the hardening of the arteries, atherosclerosis occurs when 

plaque builds up and attaches to the lumen inside the vessels. As this occurs, blood flow 

is restricted resulting in the loss of the supply of oxygen and glucose to the distal tissues 

which are needed for cellular metabolism, a condition known as ischemia. As a result, 

the individual cells in the tissues cannot survive and the tissues become compromised 
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and vulnerable. To prevent this sort of damage, cardiovascular intervention is needed in 

order to restore blood flow to maintain a healthy cardiovascular system. 

 

1.2 Early Cardiovascular Intervention 

Early cardiovascular interventions were open surgeries such as coronary artery 

bypass graft surgery (CABG). Introduced in the 1960s, CABG is performed by 

connecting a healthy artery or vein from elsewhere in the body to the stenotic vessel in a 

manner that bypasses the blocked section. As a result, this provides a new obstruction 

free path for blood flow. An obvious drawback for this type of intervention is the 

extended recovery time due to the invasive nature of the procedure.  

As well in the 1960s, Dotter [1, 3, 7, 14] pioneered catheter-based cardiovascular 

intervention as a means for less invasive procedures that could be performed with local 

anesthesia, resulting in much greater recovery times relative to open surgery. 

Advancement in catheter-based intervention came with the development of balloon 

angioplasty by Gruntzig et al. [5] in 1977. Balloon angioplasty involves inserting a 

balloon catheter into the damaged vessel and inflating the balloon to a fixed diameter by 

applying pressures that are on an order of magnitude of two times that of normal blood 

pressure [15]. After expansion of the stenotic vessel, the balloon is removed. Largely as 

a result of acute closure of the vessel, failure rates were as high as 50%. This was due to 

the mechanical properties of the arteries and the atherosclerotic plaques being relatively 

elastic, therefore returning to their original diameter after removal of the balloon [3]. As 

a result of the larger magnitude of the applied pressure compared to the normal pressure 
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exerted on the arterial wall, problems with tissue rupture occurred, which resulted in 

tissue flaps blocking the blood flow [3]. To prevent abrupt closure of the vessel and to 

tackle the problem with tissue flaps obstructing blood flow, stent technology was 

developed for use in tandem with angioplasty. 

 

1.3 Cardiovascular Stents 

Stents are tubular mechanical scaffolds that are implanted into stenotic vessels in 

order to re-open the vessel to restore blood flow. Although stents were actually under 

development in the 1960s, the first self-expanding bare metal stent (BMS) was 

implanted in a human by Sigwart et al. [5, 7, 14] in 1986. This was followed by the first 

implantation of a balloon-expandable stent in 1987 by Palmaz et al. [3, 5]. Self-

expandable BMS are typically fabricated as wire meshes and are manufactured using 

nitinol (nickel-titanium alloy), due to the shape memory characteristics of nitinol. By 

designing the stent to have a relaxed diameter just greater than that of the vessel, they 

can be compressed into a catheter and once deployed at the treatment site, expand the 

stenotic vessel to restore blood flow. Palmaz et al. [3] fabricated balloon-expandable 

stents as thin-walled slotted tubes to be utilized as a scaffold incorporated with balloon 

angioplasty. These stents are typically manufactured with stainless steel or cobalt-

chromium alloys. 

Though the first stents were implanted in the 1980s, it wasn’t until the early 

1990s that stents entered the US market as the primary therapy to treat cardiovascular 

diseases. By the early 1990s, well over a million balloon dilations were performed with 
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over 600,000 per year being performed as of today in the coronary arteries alone [7]. As 

of 2008, there have been 21 balloon expandable stents and 28 self-expanding stents 

approved by the FDA for human use [3, 14]. 

The major design concept for the development of cardiovascular stents was to 

prevent post-traumatic vasospasm [7, 14]. Spasming of the vessels due to injury upon 

implantation leads to vasoconstriction, resulting in ischemia of the tissues downstream. 

In addition to the major design concept, stents also tackle injured flaps of the lumen 

preventing downstream embolic complications [7, 14]. Though the design seemed to be 

flawless with early results showing a decrease in cases of restenosis, two modes of 

chronic failure still exist with the implantation of stents [7, 14]. Acute thrombosis occurs 

immediately after deployment due to the natural foreign body response, though this is 

treatable with anticoagulant drug therapy [7, 14]. In addition, the most critical failure 

mode is in-stent restenosis. In-stent restenosis is caused due to the injury to the vessel 

lumen upon deployment, which leads to neointimal hyperplasia caused by the 

proliferation of smooth muscle cells. In 2010, it was reported that about 15% – 20% of 

all cases required patients to have re-intervention within 6 – 12 months after 

implantation of BMS [5]. Though restenosis occurs in both the coronary and peripheral 

arteries, there is a higher rate of occurrence in the peripheral arteries.  This is due to the 

much harsher biomechanical environment in the peripheral arteries, which includes 

vessel deformations due to limb movement and slow and reversing flow, among other 

features [8]. 
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Though design modifications to bare metal stents have been attempted to reduce 

the incidence of in-stent restenosis, marked reduction of in-stent restenosis was only 

achieved by the advent of stents carrying active pharmaceutical agents, called drug 

eluting stents (DES) [5]. DES are polymer coated metallic stents that contain active 

pharmaceutical agents that are released as the polymer degrades at the site of the foreign 

body implantation. Introduced in the European market in 2002, first generation DES 

revolutionized the management of coronary artery disease [5]. After approval for clinical 

use in the US in 2003, 35% of all stent implantations were DES, with this percentage 

increasing to 90% by 2006 [5]. Through the controlled release of high local 

concentrations of either antiproliferative or immunosuppressant drugs directly to the site 

of injury from implantation, DES greatly inhibited in-stent restenosis over BMS.  

In the mid 1990s, heparin and dexamethasone were reported as pharmaceutical 

agents that showed success as local drug delivery in the cardiovascular system. The 

objective of pharmaceutical agents used in DES is to address a particular stage of the 

restenotic cascade: (i) heparin is loaded in the stent and delivered to the injured site to 

reduce thrombis formation, and (ii) dexamethalsone is delivered as a pharmaceutical 

agent to reduce inflammation [7]. Though these DES showed improvement in reducing 

in-stent restenosis, the most effective agents have proven to be antiproliferative agents, 

such as Paclitaxel and Sirolimus [7, 19]. Paclitaxel functions by inhibiting microtubule 

depolymerization, thus effecting cell division and migration. Sirolimus prevents the 

initiation of DNA synthesis by having an antiproliferative effect on vascular smooth 

muscle cells [7]. Good restenosis results have been presented by the randomized 
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RAVEL trials and follow-up SIRIUS studies with Sirolimus eluting stents, where zero 

restenosis in six months was observed in 238 patients, while the TAXUS series of 

randomized trials showed good restenosis results with Paclitaxel eluting stents [7]. Still 

problems are reported with the use of drug eluting stents. Incomplete endothelialization 

of the stent struts causes delayed stent thrombosis. In addition, limited data exist on the 

application of drug eluting stents in the peripheral arteries. Sirolimus eluting stents 

deployed in long lesions in the peripheral arteries in the SCIROCCO trials showed 

promising short-term results with 6% restenosis at six months, but no difference than 

bare metal stents beyond 18 months [7]. 

 

1.4 Biodegradable Stents 

The next revolution in minimally invasive surgery to advance cardiovascular 

interventions is thought to be the development of fully biodegradable polymeric stents. 

Due to the aforementioned complications that arise as a result of the implantation of 

metallic stents, the development of fully biodegradable polymeric stents has gained 

popularity in the recent decade. In addition, theoretical concerns that exist with metallic 

stents include: (i) high thrombogenicity as a result of most metals being positively 

charged, (ii) a permanent metallic stent remaining in the vessel may interfere with future 

clinical procedures, as well as provide more surface area for thrombus formation, and 

(iii) metals are not a feasible material to act as loadable drug carriers due to their 

microstructural properties [14]. Each of these problems has led to significant efforts to 

develop new materials for stents. 
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Though no long-term conclusive data exists yet, it is generally thought that after 

cardiovascular intervention, mechanical support for stenotic vessels is only needed for 

six months until re-endothelialization and healing are obtained [12]. Beyond this time 

period, there has been no demonstration to show any advantageous purpose for the 

presence of a permanent stent [8, 12]. Potential advantages of biodegradable polymeric 

stents have been documented by various researchers. Rajagopal et al. [7, 8, 12, 14] stated 

there are at least three advantages to the development of a temporary stent: (i) by having 

a stent that degrades and is absorbed into the body, there will no longer be an obstacle 

for future treatments and there will not be a permanent potential nidus for infection, (ii) 

the gradual softening of the material would provide both a smooth transfer of the loading 

from the stent to the arterial wall and would contravene the difference in compliance 

between the stent and the arterial wall, and (iii) the size required of a polymeric stent 

would provide an appreciable reservoir for anti-proliferative drug incorporation, while 

its degradation would serve a function in optimal drug release kinetics. Zidar et al. [18] 

proposed the following characteristics for the ideal stent to have proper mechanical 

characteristics, as well as drug dispersion ability: (i) the stent should be biodegradable 

and after serving its purpose, the breakdown products must be biocompatible, (ii) the 

stent should possess physical properties, such as collapse pressure, in order to 

sufficiently perform it mechanical function, (iii) the stent should have sufficient 

longitudinal flexibility to facilitate insertion, and (iv) the stent should be able to deliver 

drugs locally to prevent in-stent restenosis. 
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Though there are benefits that encourage the development of biodegradable 

polymeric stents, drawbacks exist due the mechanical properties of polymers versus 

metallic materials. Typically, polymers are weaker than metals, so difficulty arises in 

ensuring that sufficient strength is there to re-open the vessels and alleviate symptoms 

acutely [8, 19]. As well and due to the degradation that is to occur, designing a stent that 

can maintain structural integrity for a predictable, appropriate time to facilitate artery 

healing is even more challenging [8]. In addition to maintaining proper structural 

properties, the design of a polymer that can expand and maintain its shape proves to be a 

problem. With both self-expanding and balloon-expanding metallic stents, this has not 

been an issue due to metals being elastic-plastic materials. Rather than the metallic stent 

undergoing elastic deformation, metallic stents typically undergo plastic deformation, so 

once the final shape is obtained, recoil is not quite as likely. Due to the viscoelastic 

nature of polymers, this is not necessarily feasible [4, 17].  

To sum up major challenges that are encountered in design concepts of 

polymeric stents, the following are considered: (i) the selection of appropriate structural 

polymeric materials that must be both biodegradable and biocompatible, (ii) the 

development of a stent design that is adapted to the material properties of the polymer, 

and (iii) the identification of a stent expansion protocol adapted to the intended 

implantation site [4]. 
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1.5 Research Objectives 

There have been several analyses and designs of biodegradable polymeric stents, 

focusing mainly on elastic behaviors of the polymers. Polymers, including some 

available tests on biodegradable polymers, are shown to experience pronounced 

viscoelastic response. This study presents analyses of biodegradable viscoelastic 

polymeric stents under mechanical loadings. The first part considers a cylindrical 

annulus as an idealized and simplified model for stents, which is done in order to gain 

deep understanding on the performance of degrading viscoelastic materials with 

prescribed boundary conditions that mimic mechanical loading in stents. The second part 

includes two realistic tubular meshes of currently available stents, allowing examination 

of the effects of materials and geometries on the performance of degrading stents. For 

the current study, the deformations in the polymeric stents due to internal cyclic loading 

that is to represent an idealized blood pressure, coupled with a constant external pressure 

that is to mimic the arterial pressure exerted on the stent due to the artery resisting 

expansion, will be observed. In addition, strain-induced degradation will be incorporated 

once the observed critical strain has been reached in order to model mechanical 

degradation in the polymeric stents. A comparison of various degradation rates, 

representing slow and fast degradation processes, will be presented and how they vary at 

the outer and inner surfaces of the stents. To achieve this goal, the following tasks are 

performed. 

i. Using mechanical properties obtained from previous experimental studies, 

develop a simplified stent model that consists of a cylindrical annulus. This 
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simplified model is utilized to focus on the linear viscoelastic solid-like response 

of a degrading polymer without inclusion of failure modes such as strut fracture.  

ii. Develop a numerical algorithm assuming a homogeneous, linear, isotropic 

material. Using the state variable method suggested by Simo et al. [11, 21] to 

determine the stress response calculation of the convolution integral, incorporate 

the algorithm in a user-defined material (UMAT) subroutine to be implemented 

with the finite element software ABAQUS, available through Texas A&M 

University’s supercomputing facility.  

iii. Modify the stress response obtained in the numerical algorithm by modifying the 

time-dependent material properties so that the degradation will occur until the 

mechanical properties associated with the modulus of the polymers are 20% of 

their original value. 

iv. Apply idealized loading conditions to the model, as well as appropriate boundary 

conditions to allow the model to compress under the loading. The internal 

pressure to mimic an idealized blood pressure is taken as 
120mmHg
80mmHg

 and at a 

frequency of 1 Hz, simulating resting conditions. A constant pressure exerted to 

the outer surface of the model taken as 2 atm, simulating how the arterial wall 

will have a crushing effect on the stent. 

 

 The model presented for the majority of this study is simplified to focus strictly 

on the numerical algorithm and degradation function presented in Chapter II, in order to 
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examine the effect of viscoelastic material response in polymeric stents under the 

prescribed loading conditions. Further studies to examine the problem at hand should 

include non-linear and long-term responses to mimic the true nature of polymers. As 

well, temperature and concentration should be included in further models due to stents 

being deployed in aqueous environments inside the human body. 
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1 Viscoelasticity 

 Polymers belong to a class of materials known as viscoelastic materials that 

exhibit both elastic and viscous characteristics when undergoing deformations. Because 

of the additional viscous characteristic that differs viscoelastic materials from elastic 

materials, viscoelastic materials exhibit a time or rate dependent response. Some 

phenomena that are observed in viscoelastic materials are: (i) under an input of constant 

strain, they exhibit stress relaxation, where the material will show a decrease in stress 

with time, (ii) upon an input of constant stress, they exhibit creep deformation, where the 

material will show an increase in strain with time, and (iii) the material will show 

hysteretic response when a cyclic loading is applied.  In addition, stress-strain curves of 

viscoelastic materials differ from elastic materials in their response to loading and 

unloading cycles. Viscoelastic materials dissipate energy, which is converted into heat, 

whereas elastic materials do not. Hysteresis is observed in the stress-strain curves of 

viscoelastic materials, as seen in Figure 2.1, where the area inside the loop depicts the 

energy dissipation upon removal of the load.  
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Figure 2.1: Stress-strain curves for (a) a purely elastic material and (b) a viscoelastic material. The red area is 
the hysteresis loop that depicts the amount of energy dissipated during a loading and unloading cycle. 
http://en.wikipedia.org/wiki/Viscoelasticity 

  

 For polymers and other viscoelastic materials, the time-dependent material 

properties can be experimentally obtained through a few ways. Creep tests, stress 

relaxation tests, and dynamic mechanical analyses, where cyclic loads are applied over 

time, can be performed to determine the properties of viscoelastic materials. To express 

the viscoelastic nature of various materials, mechanical analogs can be constructed, in 

which springs and dashpots are arranged in ways that depict the deformation behavior 

due specific inputs. Springs and dashpots represent the elastic properties and the viscous 

properties of the material, respectively. 

A mechanical analog known as the generalized Maxwell model, or Wiechert 

model, is depicted in Figure 2.2, which is used for modeling response of viscoelastic 

solid-like materials. In this mechanical analog, E!  represents the magnitude of the 

relaxation modulus when the material is fully relaxed. For each additional model, Em  

and !m  represent the relaxation modulus and the viscosity coefficient for the mth term. 

As will be mentioned in the development of a numerical algorithm, in order to calculate 
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the stress tensors at the current time, these additional models can be mathematically 

described using Prony series. Another model, which also describes the deformation of 

solid-like viscoelastic materials, is the generalized Kelvin-Voigt model, in which the 

springs and dashpots of the mth models are connected in parallel, and then connected in 

series with a spring. 

 

 
Figure 2.2: Generalized Maxwell model. Depicts the additional models that are mathematically expressed using 
Prony series [11]. 

 

2.2 Constitutive Model 

Mathematically, the stress response of viscoelastic materials can be expressed 

using a convolution integral. For a one-dimensional model, the relaxation modulus for a 

viscoelastic material is used to define the stress response as a result of the input in strain 

history in terms of their respective tensor components [11, 21], which is: 

 

! (t) = E(t " s) d#
ds0"

t

$ ds   (2.1) 
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 Because of the computational simplicity associated with exponential based 

functions, the time-dependent relaxation modulus within the integrand can be expressed 

by the use of Prony series. The relaxation modulus is then expressed as: 

 

  (2.2) 

  

In Eq. (2.2),  represents the long-term relaxation modulus when the material 

is fully relaxed and  and  represent the relaxation modulus and relaxation time for 

each Prony term, respectively. The larger the value for the relaxation time, the slower the 

material will exhibit stress relaxation.  

The one-dimensional model of the stress response due to a strain input can be 

expanded to three-dimensional for isotropic materials as seen in Eq. (2.3), which is 

associated to Lamé constants for linear elastic materials. In three dimensions, the 

constitutive relationship is often separated into two components: deviatoric and 

volumetric components. The shear components of the strain tensors are included in the 

calculation of the deviatoric component of the stress tensor. The volume change is 

determined by the normal components of the strain tensor. By rearranging components 

that correspond to the total strain and volumetric strain, the stress output is given in Eq. 

(2.3). Repeating indices, as seen in the second component of the stress tensor in Eq. 

E(t) = E! + Ene
" t
# n

n=1

N

$

E!

En ! n
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(2.3), depicts summations of the strain tensors. The Kronecker delta, δij, is equal to 1 

when the indices i and j are equal, and 0 when the indices are not equal.  

 
 

 
 
 
 

 

 

 

Figure 2.3: Decomposition of a general stress state (i) into a hydrostatic stress state (ii) and a deviatoric state 
[20]. 

 

   (2.3) 

  

 In addition, as seen in Eq. (2.3), the convolution integral is modified when 

expanding into three dimensions by the introduction of the Lamé constants. The first 

Lamé constant, λ, is a function of the shear and bulk moduli. The second Lamé constant, 

μ, is represented as the shear modulus. These material properties are expressed 

mathematically by Eqs. (2.4) – (2.6). The shear modulus represents a materials 

resistance to distortion, or shape change, while the bulk modulus represents the materials 

resistance to volume change. If the corresponding Poisson’s ratio, ν0, is assumed to be 

! ij (t) = 2 µ(t " s)
d# ij
ds0"

t

$ ds +% ij &(t " s) d# kk
ds

ds
0"

t

$

(i) (ii) (iii) 
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constant, the shear and bulk moduli have the same time-dependent behavior as the 

extensional relaxation modulus: 

 

     (2.4)  

       (2.5)  

K(t) = E(t)
3 1! 2"0( )   (2.6) 

  

 By modifying the convolution integral for a three-dimensional solid with Prony 

series, as was the case in the one-dimensional model, the time-dependent Lamé 

constants are expressed as seen in Eqs. (2.7) – (2.8). 

 

   (2.7) 

    (2.8) 

 

2.3 Numerical Algorithm 

 A numerical algorithm is presented to calculate the stress response due to a given 

strain input at the current time, which can be directly integrated to finite element model. 

Simo et al. suggested a state variable method for calculating the stress response of the 

!(t) = K(t)" 2
3
µ(t)

µ(t) = E(t)
2 1+!0( )

µ(t) = µ! + µne
" t
# n

n=1

N

$

!(t) = !" + !ne
# t
$ n

n=1

N

%
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convolution integral [11, 21]. This numerical method uses the state variable, or history 

variable, from the stress calculation at increment n to obtain the stress calculation at 

increment n+1. The computational time is significantly reduced using this method as 

compared to other computational inefficient methods such as the piecewise method. In 

the piecewise method, every time step that precedes the time step of interest must be 

calculated, which proves to be inefficient for large amounts of data [11]. Using the state 

variable method, Muliana and Rajagopal [10] and Tscharnuter and Muliana [16] 

developed a numerical algorithm based on the quasi-linear viscoelastic model (QLV) 

presented by Fung in 1981 that has been found reasonably good in modeling moderate 

deformations in viscoelastic materials. 

 To develop the numerical algorithm for the time-dependent stress response at 

time t, the Prony series depicted in Eqs. (2.7) – (2.8) are substituted into the convolution 

integral for a three-dimensional solid in Eq. (2.3), which is: 

 

! ij (t) = 2 µ" + µne
#(t#s )
$ n

n=1

N

%
&

'
(
(

)

*
+
+0#

t

,
d- ij
ds

ds +. ij /" + /ne
#(t#s )
$ n

n=1

N

%
&

'
(
(

)

*
+
+
d- kk
ds

ds
0#

t

,     (2.9) 

 

The long-term component as time goes to infinity and the summation 

components of the Prony series in each integral are separated, and keeping in mind that 

the strain input is zero at time t=0, the stress response is simplified as seen in Eq. (2.10). 

Note that the Lamé constants for each nth model are left inside the integral. This will be 

shown to come into play in the incremental form of the time-dependent stress response 
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at time t, and differs from the state variable method presented by Simo et al. [11, 21], in 

which the constants are pulled out of the integral.  

  

! ij (t) = 2 µ"# ij (t)+ µne
$(t$s )
% n

d# ij
ds

ds
0$

t

&
n=1

N

'
(

)
*
*

+

,
-
-
+. ij /"# kk (t)+ /ne

$(t$s )
% n d# kk

ds
ds

0$

t

&
n=1

N

'
(

)
*
*

+

,
-
-

    (2.10) 

 

 Now, the integrals inside of the summations can be expressed using the 

introduction of state variables. This is shown in Eq. (2.11), followed by the calculation 

of the state variables at the current time in Eqs. (2.12) – (2.15). 

 

! ij (t) = 2 µ"# ij (t)+ qij
n,t

n=1

N

$%
&'

(
)*
++ ij ,"# kk (t)+ qkk

n,t

n=1

N

$%
&'

(
)*

    (2.11) 

 

 The description for the state variables is given in Eqs. (2.12) – (2.13). This 

allows for the state variable from the previous increment to be used in the calculation for 

the state variable at the current increment. The first integral is modified by the addition 

of !"t + "t into the exponential. By doing so, the exponential e
!"t
# n  can be pulled out of 

the integral, yielding the same integral form of the state variables represented in Eqs. 

(2.10) – (2.11). This new integral is defined as the state variable from the previous 

increment.  
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 qij
n,t = µne

!(t!s!"t+"t )
# n

d$ ij
ds

ds + µne
!(t!s )
# n

d$ ij
dst!"t

t

% ds
0!

t!"t

%          (2.12) 

qkk
n,t = !ne

"(t"s"#t+#t )
$ n d% kk

ds
ds + !ne

"(t"s )
$ n d% kk

dst"#t

t

& ds
0"

t"#t

&         (2.13) 

 

 The second integral is evaluated using the trapezoidal rule. The final form for the 

calculation of the state variables at the current increment is depicted in Eqs. (2.14) – 

(2.15). By substituting the state variables in Eqs. (2.14) – (2.15) into the equation for the 

stress tensors at the current time in Eq. (2.11), the final form for the stress response is 

seen in Eq. (2.16).  

 

qij
n,t = e

!"t
# n qij

n,t!"t + µn
"t
2

"$ ij
"t t

+ e
!"t
# n

"$ ij
"t t!"t

%

&
'
'

(

)
*
*

        (2.14) 

qkk
n,t = e

!"t
# n qkk

n,t!"t + $n
"t
2

"% kk
"t t

+ e
!"t
# n "% kk

"t t!"t

&

'
(
(

)

*
+
+

        (2.15) 

! ij (t) = 2 µ"# ij (t)+ e
$%t
& n qij

n,t$%t + µn
%t
2

%# ij
%t t

+ e
$%t
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'

(
)
)

*

+
,
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;7
      (2.16) 

  

To implement the constitutive equation derived above in ABAQUS through the 

use of a UMAT subroutine, the incremental form of the stress tensors is derived. The 
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description of the incremental stresses is seen in Eq. (2.17), whereas the final 

incremental form of the stress tensors is shown in Eq. (2.18). 

 

!" ij
t =" ij

t #" ij
t#!t           (2.17)
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In addition to the incremental stress tensors, it is necessary to determine the 

consistent tangent modulus, at each material point at each instant of time. This is 

accomplished by performing the partial derivatives seen in Eq. (2.19). Eqs. (2.20) – 

(2.22) depict the definition for the components of the consistent tangent modulus. For an 

isotropic material, the components of the consistent tangent modulus not depicted are 

zero. 

 

CT =
!"# ij

t

!"$ ij
t                          (2.19) 

!"# 11
t

!"$11
t = !"# 22

t

!"$22
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!"# 12
t

!"$ 12
t = !"# 13

t

!"$ 13
t = !"# 23

t

!"$ 23
t = µ% +

1
2

µn
n=1

N

&           (2.22) 

 

2.4 Model of Degradation 

 Environmental factors have an effect over long-term performance of polymers. 

Temperature, humidity, and concentration (if the material is submerged in an aqueous 

environment) affect the deformation of polymers, among other factors. In biodegradable 

polymers, the degradation occurs via hydrolysis process and the existence of mechanical 

stress/strain accelerates the degradation in the polymers, as experimentally shown by 

Soares [14]. To simplify the model for the current study, the degradation function is 

modeled as strain-induced only. The material will respond in the manner defined by the 

constitutive relationship derived in the previous section until a threshold strain is 

reached. Beyond this point, the material will degrade in the fashion described below. As 

the material degrades, it is expected that the material properties such as the modulus will 

decrease. The rate of degradation, as seen in Eq. (2.23), is determined by the degradation 

at the current time and a function of the current magnitude of the strain vector, as 

previously studied by Soares et al. [12, 13] and Muliana and Rajagopal [10]. 

 

 
!d = (1! d) f (

"
" )               (2.23) 

   

The function that determines how fast or slow the degradation will occur,  f (!
! ) , 

is defined in Eq. (2.24). The constant in the function, A, is the parameter that is adjusted 
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in order to affect the rate of degradation, as seen in Eq. (2.24). The larger the value for A, 

the faster degradation occurs. To determine when degradation is to onset, the threshold is 

compared with the norm of the strain tensor. This is depicted in  Eqs. (2.25) – (2.27), 

where Eq. (2.27) gives the parameters at which degradation will occur. 

 

 f (!
! ) = A!                  (2.24) 

 ! =
!
!               (2.25) 

 !
! = !11

2 + !22
2 + !33

2 + 2!12
2 + 2!13

2 + 2!23
2             (2.26) 

 

f (
!
! ) =

0
!
! " !cr

A
!
!

!
! > !cr

#
$
%

&%
                              (2.27)

  

Though the above magnitude of the strain tensor is used in this study to define 

when degradation will onset, for future studies, it would be beneficial to define this 

value utilizing the square root of the second invariant (J2), ensuring that the values 

remain the same regardless of coordinate transformation. Therefore, degradation would 

onset when J2 > !cr . The second strain invariant is defined in Eq. (2.28) and in tensor 

notation in Eq. (2.29). 

 

J2 = !11!22 + !22!33 + !33!11 " !12
2 " !13

2 " !23
2         (2.28) 

J2 =
1
2

! kk!mm " ! ij! ij#$ %&           (2.29) 
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To solve for the degradation at the current time, a relationship for the rate of 

degradation is introduced in Eq. (2.28). By replacing this relationship for the rate of 

degradation in Eq. (2.23), the degradation at the current time can be defined as seen in 

Eq. (2.29). 

 

 
!d = dd

dt
! d

t+"t # dt

"t
! d

t # dt#"t

"t
                              (2.30) 

 
dt = !t " f (

!
# t )+ dt$!t

(1+ !t " f (
!
# t ))

            (2.31) 

  

Now that the degradation at the current time is defined, Eqs. (2.30) – (2.31) show 

how the relaxation modulus is now modified to enable degradation once the critical 

strain is surpassed. The constant alpha, ! , in Eqs. (2.30) – (2.31) is taken to be 0.8. This 

is to prescribe a condition that the material will degrade to a point at which the material 

properties are 20% of their original values. 

 

E! = E!(1"#d
t )              (2.32) 

En = En (1!"d
t )               (2.33) 

 

2.5 Material Parameters  

Rather than using typical stent geometry for this study, a simplified model 

consisting of a cylindrical annulus was first used. The parameters for this model were 
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determined using the average dimensions of a human coronary artery. With an average 

diameter of 5 mm for a human coronary artery, the outer dimension of the cylindrical 

annulus was taken to be 5 mm. Assuming that the typical strut thickness for a stent is 

100 μm, this yields an inner radius for the model to be 2.4 mm. The length of the model 

was taken to be 20 mm, a typical length for stents in use today. Because of symmetry 

about each axis, only half of the length and one-fourth of the circumference are needed. 

This is depicted in Figure 2.4. 

 

                              

         

           

         

         

         

 

  

Roller boundary conditions were applied to the symmetry planes to allow the 

material model to compress or expand in the radial direction. The positive y-axis is into 

the page, as seen in Figure 2.5. To simulate a stent deployed in a human coronary artery, 

two pressures are applied. To simulate the loading on the stent due to the pulsatile blood 

10 mm 

2.4 mm 

100 μm 

Figure 2.4: Dimensioned cylindrical annulus utilized to simulate a cardiovascular stent. 
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flow within the artery, and ideal blood pressure for a healthy adult of 
120mmHg
80mmHg

 was 

applied. This was accomplished my applying two separate loads to the inner surface. A 

constant component of 100 mmHg was superimposed with a sinusoidal pressure of 20 

mmHg. The sinusoidal pressure was applied at a frequency of 1 Hz, to mimic a resting 

heart rate of 60 beats per minute. To model the pressure exerted on the stent by the 

arterial wall’s resistance to expansion as a result of the inflation of the deployed stent, a 

constant pressure of 2 atm was applied to the external surface. All pressure units were 

converted to MPa to ensure consistency, thus are as follows: constant arterial pressure 

(0.20265 MPa), constant component of blood pressure (0.01333 MPa), and oscillatory 

component of blood pressure (0.00267 MPa). 

 

 

 

 

 

 

 

  

x 

z 
Figure 2.5: Roller boundary conditions applied to stent model. 
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 Material properties for the stent were taken from literature regarding various 

polymers. Poly-L-lactic acid (PLLA) is a polymer commonly used in biomedical 

applications due to its biocompatibility. Soares [14] determined the time-dependent 

properties for PLLA for relatively short duration (10 minutes), as listed in Table 2.1. In 

addition to PLLA, material properties for polyoxymethylene (POM) were also 

considered. Time-dependent mechanical properties for POM under relatively long 

duration (40,000 minutes) are listed in Table 2.2. POM is a polymer commonly used in 

applications such as gears, springs, and hinges, but is used in a comparative study in this 

case to see how different polymers degrade and deform under the same loading 

conditions. In the tables, Kn  refers to the normalized time-dependent function for each 

Prony series, and is defined as K(t) =
E(t)
E(0)

. For the assignment of mechanical properties 

in each ABAQUS input file, the instantaneous elastic modulus for each polymer is 

multiplied by each nth normalized time-dependent function. The instantaneous modulus 

is multiplied by the top row in each table to determine the modulus in the fully relaxed 

states. Taken from a number of literature sources, the elastic modulus for PLLA is 

assumed to be 2.0 GPa. The relaxation time for each Prony series is represented by ! n .  

In addition, the material is assumed to be nearly incompressible, thus having an assigned 

Poisson’s ratio of 0.45. 
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Table 2.1: Time-dependent data for PLLA. 

n Kn τn (sec) 
~ 0.68259 ~ 
1 0.17659 11.852 
2 0.13882 198.56 

 
A.Muliana, K.R. Rajagopal / International Journal of Solids and Structures 49 (2012) 989-1000 

	  

	  

	  

Table 2.2: Time-dependent data for POM. 

n Kn τn (sec) 
~ 0.47271 ~ 
1 0.04513 19.11205 

2 0.0679 140.8967 

3 0.06122 965.5306 

4 0.06205 8385.041 

5 0.07 20000 

6 0.071 70000 

7 0.06 120000 

8 0.05 500000 

9 0.04 1500000 
 

D. Tscharnuter, A. Muliana / Polymer 54 (2013) 1208-1217 
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CHAPTER III 

PRELIMINARY TESTING 

 

3.1 UMAT Implementation 

 To simulate the loading that a typical stent is subjected to upon deployment, the 

commercial finite element software ABAQUS/CAE available through Texas A&M 

University’s supercomputing facility was utilized. In addition, the material models were 

defined and implemented through a user-defined material subroutine (UMAT). The 

UMAT subroutine is a tool that allows the user to define the mechanical constitutive 

relations of a given material. FORTRAN syntax is used to develop the UMAT code.  

Variables that are known at the current time for each increment are ! ij
t"#t , !" ij

t , 

! ij
t"#t , and qij ,kk

t!"t . These variables refer to the strain tensor components at the previous 

time increment, the strain increment between the current and previous time steps, the 

stress tensor components at the previous time increment, and the history/state variables 

from the previous increment. The subscripts refer to the indices of the six components of 

the respective tensors, whereas the superscripts refer to the previous or current time step.  

To define the material’s mechanical constitutive relationship, the stress tensor at 

the current time step, along with the consistent tangent modulus and history/state 

variables must be calculated. These are ! ij
t , CT

t , and qij ,kk
t , respectively. Because the 

loading prescribed is applied incrementally, the incremental stresses are calculated first 

from Eq. (2.18) and then the total stresses can be determined. Once ! ij
t  is calculated, CT

t  
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is determined by taking the partial derivatives of the stress tensors over the strain tensors 

at the current time, which was discussed in Chapter II. The state variables are then 

updated at the current time and passed back into the code for the new values at the next 

increment. The algorithm for the UMAT code is presented in Figure 3.1, with the step-

by-step procedure outlined below. An example of the UMAT code and an example input 

file are presented in Appendices A and B, respectively. 

i. ABAQUS inputs the strain tensors at the previous time, the strain increment and 

the current time, the stress tensors at the previous time, and the time step. 

ii. For the first increment, the state variables are initialized with a zero value. The 

subsequent state variables take on the value calculated at the end of the code. 

iii. Calculate the norm of the current strain tensor. If the value is less than the critical 

strain, the scalar degradation variable has a zero value and the moduli remain the 

same. If it is greater, the degradation variable is calculated as presented in 

Chapter II, yielding new values for the moduli. 

iv. Update the stresses and calculate the consistent tangent modulus as presented in 

Chapter II. The stresses calculated are in incremental form and summed with the 

stresses from the previous increment. 

v. Calculate the new state variables to be passed back into the code at the 

beginning. 
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ABAQUS inputs: 
εij(t-Δt), Δεij(t), σij(t-Δt), Δt 

Initialize state variables: 
qij(t-Δt), qkk(t-Δt), Δεij(t-Δt)/Δt, Δεkk(t-Δt)/Δt 

Calculate magnitude of strain tensor: ||εt|| 

Is ||εt|| > εcrit ?? 

En and E∞ remain the same 

Update stress: calculate Δσij(t) and sum σij(t-Δt) 
Calculate tangent modulus: CT(t) 

 

Calculate new state variables: 
qij(t), qkk(t), Δεij(t)/Δt, Δεkk(t)/Δt 

dt = d(history) = 0 

Figure 3.1: UMAT loop. 

Calculate new moduli: 
En = En(1 - αdt) 
E∞ = E∞(1 -αdt) 

 

No	   Yes	  
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3.2 Single Element Test 

Validation and verification of the UMAT code is needed to confirm that the 

results obtained from the simulations are indeed good approximations. To accomplish 

this task, a preliminary single element test was performed in order to simulate responses 

under uniform loading conditions, and compare the results with those of the analytical 

solutions. In addition to verifying the validity of the UMAT code, the single element test 

was utilized to determine the critical strain for each material model. Proper boundary 

conditions were applied to the surfaces of the element in order to simulate a uniaxial 

extensional loading. A uniform ramped extensional loading to yield an applied pressure 

of 20 MPa was applied to the four nodes on the positive yz-plane. The analysis was 

conducted for both viscoelastic materials (PLLA and POM), as well as a comparison 

with a linear elastic solid.  

To verify that the viscoelastic effects provided by the longer time duration (with 

additional time-dependent Prony series) do indeed modify how the material deforms, the 

viscoelastic effect in the UMAT code was negated and compared with a response for an 

elastic solid, which is depicted in Figure 3.2. In this study, the instantaneous modulus for 

each material is the same, 2 GPa. The viscoelastic UMAT was compared with results 

obtained from both an elastic UMAT and a material assigned elastic properties within 

ABAQUS/CAE. As can be seen, the curves are exactly the same, thus verifying that the 

additional time-dependent Prony series in the viscoelastic UMAT do have an effect 

when not negated. 
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Figure 3.2: UMAT verification for the linear viscoelastic model. Compared with an elastic UMAT as well as 
elastic material model defined within ABAQUS/CAE. 

  

From various literature sources, the tensile strength of PLLA is presented to be 

45 MPa. The same tensile strength was assumed for POM for comparative studies, thus 

the only difference in the two material models is the time-dependent properties. Material 

properties applied to each single element model are presented in Tables 2.1 and 2.2. The 

extensional loading was applied linearly over 30 seconds. Results from the single 

element test yield the critical strains for PLLA and POM to be 2.47% and 2.30%, 

respectively. These results can be observed by the uniaxial stress-strain comparison of 

PLLA and POM presented in Figure 3.3. It is noted that for design purposes, it might be 

necessary to consider a lower value of critical stress/strain in order not to utilize the 

maximum capacity of the material. Alternatively, one can include a ‘safety factor’ in 

order to utilize only fractions of the maximum load carrying capacity of the material. 



	  

	   34 

 
Figure 3.3: Stress-strain comparison for single element test of PLLA and POM at loading duration of 30 
seconds. Also included is the stress-strain response for an elastic material with the same instantaneous modulus. 

 

To verify that the UMAT code produces reasonably good results, a linearly 

increasing uniaxial strain was applied to the element. A 3% strain was applied over 10 

seconds at a time increment of 0.1 seconds, yielding 100 increments. To test the 

degradation function in the UMAT code, the critical strain was modified so that 

degradation onsets during the 99th increment. This was done so that the degradation 

function at time t ! "t  in the stress calculation in last increment has a non-zero value, in 

order to check if the degradation is updating with each increment. To check the update 

of stresses, the first two increments are presented. The constant, A, in the degradation 

function in Eq. (2.24) was taken as 0.5. The corresponding stress at the final increment 

and the degradation functions for the final two increments were determined as are shown 

in Figure 3.4.  
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Figure 3.4: Degradation due to applied ramped uniaxial 3% strain. Top row left to right: single element model 
with applied strain in x-direction, degradation (SDV) at increment 99, degradation at increment 100. Bottom 
row left to right: stress (S11) at increment 1, stress at increment 2 (units in Pa). 

 

The numerical results were compared with analytical results. Because the state 

variable method is used to obtain the stresses at the current time t, the task of 

determining the degradation simply involved substituting the known strains and material 

properties due to degradation from the last two increments into the degradation function 

derived in Chapter II. Eqs. (3.1) – (3.8) show the analytical results for the degradation at 

the final two increments, which are very close to the values determined from the 

numerical method (see Fig. 3.3). Eqs. (3.9) – (3.20) show the analytical results for the 

stress at the first two increments. As seen in Eqs. (3.9) – (3.12), the state variables have 

an initial value of zero at the first increment, making the stress calculation very simple. 
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Taking the calculated values of qij
n,t and qkk

n,t  from the first increment and substituting 

into qij
n,t!"t and qkk

n,t!"t at the second increment, the stress at the second increment can be 

determined. The results can be compared with the numerical results in Figure 3.4. 

 

Degradation at increment 99: 

!1 = 0.0297                                                           (3.1) 

!2 = !3 ="0!1 = 0.013365                                       (3.2) 

 !
! t = !1

2 + !2
2 + !3

2 = 0.001239              (3.3) 

 

d 9.9 =
!t "A

!
# 9.9 + d 9.8

1+ !t "A
!
# 9.9

=
0.1" 0.5 0.001239$% &' + 0

1+ 0.1" 0.5 0.001239$% &'
= 1.76E ( 3                     (3.4) 

 

Degradation at increment 100: 

!1 = 0.03                 (3.5) 

!2 = !3 = "0!1 = 0.0135               (3.6) 

 !
! t = !1

2 + !2
2 + !3

2 = 0.0012645            (3.7) 

 

d10.0 =
!t "A

!
#10.0 + d 9.9

1+ !t "A
!
#10.0

=
0.1" 0.5 0.0012645$% &' +1.76E ( 3

1+ 0.1" 0.5 0.0012645$% &'
= 3.53E ( 3         (3.8)          
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Stress at increment 1:  

qij
n,t!"t = q11

1,0 = q11
2,0 = 0               (3.9) 

qkk
n,t!"t = q11+22+33

1,0 = q11+22+33
2,0 = 0            (3.10) 

!" ij
!t t#!t

= !"11
!t 0

= 0             (3.11) 

!" kk
!t t#!t

= !"11+22+33
!t 0

= 0            (3.12) 

! ij (0.1) = 694623Pa             (3.13) 

 

Stress at increment 2: 

qij
n,t!"t = q11

1,0.1 = 18268             (3.14) 

qij
n,t!"t = q11

2,0.1 = 14361            (3.15) 

qkk
n,t!"t = q11+22+33

1,0.1 = 16441             (3.16) 

qkk
n,t!"t = q11+22+33

2,0.1 = 12925             (3.17) 

!" ij
!t t#!t

= !"11
!t 0.1

= 0.0003             (3.18) 

!" kk
!t t#!t

= !"11+22+33
!t 0.1

= 0.00003                      (3.19) 

! ij (0.2) = 1431251Pa             (3.20) 

 

 



	  

	   38 

3.3 Convergence Test 

 A mesh convergence test was performed to determine the proper element size 

needed to ensure reasonably accurate results of the tubular stents, as well as to maintain 

computational efficiency. The mesh in each separate study was generated using eight-

node linear brick elements (C3D8) with each study refining from very coarse elements to 

very fine elements. The convergence study was performed using the material properties 

of PLLA presented in Table 2.1. A constant pressure of 3 MPa, which corresponds to 1 

atm pressure, was applied to the external surface for a period of 25 seconds at a time 

increment of 0.05 seconds. The magnitude of the applied pressure was ramped from the 

value utilized to mimic the crushing pressure from the arterial wall for the purpose of 

ensuring that strain-induced degradation would occur in such a small time frame. The 

maximum hoop strain that occurs at the inner surface was then plotted as the number of 

elements in the model was increased. Figure 3.5 depicts the hoop strain over the number 

of elements for a slow degrading material model. As seen in Figure 3.5, the difference in 

strain from 4000 elements to 8000 elements is less than one-hundredth of a percent. 
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Figure 3.5: Mesh convergence plot for slow degrading PLLA. 

  

 

 

Table 3.1: Number of elements and aspect ratio related to mesh size. 

Mesh Size Aspect Ratio # Elements 
1.00 10.00 40 
0.90 9.75 44 
0.80 7.82 65 
0.70 7.82 70 
0.60 6.53 102 
0.50 5.00 160 
0.40 4.36 225 
0.30 3.03 429 
0.20 2.07 950 
0.10 1.04 3800 
0.09 1.14 4773 
0.08 1.27 6000 
0.07 1.46 7865 
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Figure 3.6 depicts the meshed cylindrical annulus used for the studies presented 

in Chapter IV. As a result of the mesh convergence study, it was determined that the 

element size that corresponds to around 4000 total elements in the uniformly meshed 

model produces converged solutions. Because the results for the hoop strain are uniform 

throughout the length of the model at each radial position, a mesh gradient was applied 

so that the results are to be obtained and presented at the distal end of the model from the 

applied boundary condition on the rear face. By using the converging mesh, the 

computational time was greatly reduced as the total number of elements in the model 

was reduced to 558. For a comparison of the number of elements in each study, Table 

3.1 depicts each mesh size with corresponding aspect ratio and total number of elements 

in the model.  

 

 
Figure 3.6: Mesh for stent model, converging to element size with aspect ratio 1.27. 
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For the model presented, there is only one element through the thickness of the 

material. A comparative study for the number of elements through the thickness that is 

required for converged solutions is shown in Figures 3.7 – 3.8, supporting that the results 

obtained at the inner and outer surfaces with 1 element thickness is roughly the same as 

3 elements through the thickness of the material. For this study, PLLA material 

properties were utilized and a slow-degrading model was implemented. As seen in 

Figure 3.7, the degradation at the inner and outer surfaces for each meshed thickness is 

approximately the same. Figure 3.8 depicts the stress-strain curve at the inner and outer 

surfaces for each meshed thickness, further illustrating how various numbers of elements 

through the thickness result in the same values for the variables at hand. 

 

 
Figure 3.7: Degradation at the inner and outer surfaces for the meshed model seen in Figure 3.4, compared 
with three elements through the thickness. 
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Figure 3.8: Stress-strain curves for slow-degrading PLLA at the inner and outer surfaces for models with 3 
element thickness compared with model with 1 element thickness. 
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CHAPTER IV 

SIMULATION RESULTS 

 

4.1 Ramped Loading Study 

 Initial simulation was done under ramp loadings. Under this loading condition, 

each pressure exerted on the cylindrical annulus is ramped linearly over the assigned 

time of study until the magnitude of the applied pressure is reached. This analysis was 

conducted over a total time of 10 minutes (600 seconds) with a time increment of 0.1 

seconds. Four models are studied, as each material model is subjected to slow and fast 

degradation. Models 1 and 2 have the material properties of PLLA that are listed in 

Table 2.1. For Model 1, the constant A in the degradation function in Eq. (2.24) has a 

value of 0.5. This model represents slow degradation of a stent comprised of PLLA. For 

Model 2, the constant in the degradation function has a value of 5.0. This model 

represents fast degradation. Models 3 and 4 have the same degradation functions as 

Models 1 and 2, respectively, however each model has the material properties of POM 

that are listed in Table 2.2. The hoop stresses and strains are calculated at the inner and 

outer surfaces of the stent model to determine where the maximum and minimum values 

occur. In addition, the degradation function is calculated at each increment at both 

surfaces to determine the difference in the rate of degradation and how the rates affect 

the stresses and strains at each location. It is noted, as mentioned in the determination of 

the thresholds in Chapter III, the values for the critical strains were reduced by an order 

of magnitude, so not to model the cylindrical annuli using the maximum capacity of the 
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materials. This results in the critical strains for PLLA and POM to be 0.247% and 

0.230%, respectively. 

 Figures 4.1 – 4.3 depict the degradation for each material model under ramped 

loading conditions. Figure 4.1 shows the rate of degradation at the inner and outer 

surfaces for a model with PLLA material properties with both slow and fast degradation 

functions. For PLLA, degradation begins to occur after approximately 6.5 minutes of 

loading. For slow degrading PLLA, the degradation is linear and after 10 minutes of 

analysis, the degradation function at the current time and inner surface has a value of 

0.288. This represents the stiffness of the material reducing to 76.96% of its original 

value. At the outer surface, the stiffness is reduced to 79.52% of its original value, as the 

degradation function at the current time has a value of 0.256. Fast degrading PLLA 

shows a much greater increase in degradation, which is expected due to the fast 

degradation considered. At 10 minutes of analysis, the degradation function has a value 

of 0.983 and 0.972 at the inner and outer surfaces, respectively. This relates to the 

stiffness reducing to 21.36% and 22.24% at the inner and outer surfaces. It is noted that 

as degradation occurs, the material becomes softer, thus enhancing the magnitude of the 

strain, which further accelerates the degradation. Figure 4.2 depicts the degradation for 

slow and fast degrading POM at the inner and outer surfaces. Like the previous material 

model, there is a linear increase in degradation at the inner and outer surfaces for a slow 

degrading POM, with a much faster increase in degradation in the fast degradation case. 

For POM, the onset of degradation does not occur until roughly 7 minutes of analysis. 

For slow degradation, the stiffness at the inner and outer surfaces reduce to 83.28% and 
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85.92%, respectively, as the degradation function has values of 0.209 and 0.176. For fast 

degradation, the stiffness at the inner and outer surfaces reduces to 26.08% and 29.36%, 

as the values of the degradation function are 0.924 and 0.883. Figure 4.3 depicts the 

comparison of the maximum degradation of each material model at the inner surface of 

each model. This shows the lag in onset of degradation between the two material 

models, where a stent with PLLA material properties shows to degrade at a faster rate 

than a stent with POM material properties over the current time of study. Though the 

threshold corresponding to the tensile strength of the materials is less for POM than 

PLLA, this was expected as PLLA experiences faster stress relaxation compared to the 

relaxation of POM, as indicated by the time-dependent material parameters in Tables 2.1 

and 2.2. 

 

 
Figure 4.1: Degradation at inner and outer surfaces for PLLA material properties at slow and fast degradation. 
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Figure 4.2: Degradation at inner and outer surfaces for POM material properties at slow and fast degradation.  

 

 

 

 
Figure 4.3: Comparison of degradation rates at the maximum value (inner surface) for both material models. 
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Figure 4.4 depicts the maximum hoop stresses and how they vary over time. 

Evidence shows that the hoop stresses that accrue in the cylindrical annulus for each 

model over time vary slightly, as the curves are shown nearly on top of each other. This 

was expected as the prescribed loading condition was stress. Figure 4.5 depicts the hoop 

strains for each model as a result of the prescribed ramped stresses. It is observed that 

the rate of strain for PLLA is faster than POM, as predicted due to the time-dependent 

material properties and the degradation observed previously. As well, Figure 4.5 

supports the statement that as the material degrades more, the strains in turn increase, 

resulting in a much greater strain rate for the fast degrading models, as observed. 

 

 
Figure 4.4: Hoop stress at maximum value (inner surface) for each material model. 
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Figure 4.5: Hoop strains at the inner surface for each material model. 

 

Figure 4.6 depicts a comparative study for the stress-strain curves for each 

model. Each slow degrading model has a relatively linear stress-strain curve, with POM 

having a higher slope than PLLA. This was expected as the time-dependent material 

properties in Tables 2.1 and 2.2 indicate that POM is a much more stiff material than 

PLLA. It is easier to see where the onset of degradation occurs in the fast degrading 

models, with PLLA beginning to degrade earlier on than POM. Due to the cyclic 

analysis being conducted over 10 minutes and the applied loads resulting in small 

amplitudes of stress and strain, Figure 4.6 appears to depict the stress-strain curve for a 

constant load. To verify the loading is indeed cyclic and to show the mechanical energy 

lost due to such loading, a close-up view of the stress-strain curves for cyclically loaded 

fast-degrading PLLA and POM is presented in Figure 4.7, in which the hysteresis 

observed in a loading and unloading cycle for viscoelastic materials can be seen over a 
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time period of 5 cycles. It is noted that POM dissipates more mechanical energy during a 

loading and unloading cycle than PLLA for a fast degrading material. This was predicted 

by comparing the time-dependent data presented in Tables 2.1 and 2.2. Figure 4.8 is 

presented to verify that the frequency of the loading of 1 Hz, or 1 beat per second, is 

maintained through the study. Here, a close-up view of the hoop stress over a period of 

20 seconds is shown, in which 20 periods can be observed. 

 
	  

 
Figure 4.6: Hoop stress-strain curve for each material model. 
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Figure 4.7: Close-up view of stress-strain curves for fast degrading PLLA and POM, showing the hysteresis 
that is observed for loading and unloading of viscoelastic materials. 

 

 

 

 
Figure 4.8: Hoop stress for fast degrading PLLA over a period of 20 seconds. 
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4.2 Creep-cyclic Loading Study 

 A next study was conducted to determine the creep deformation of each model 

over time. In this analysis, each load is maintained at its assigned value throughout the 

study. This analysis allows for a better understanding of how the different time-

dependent properties for each material affect the deformation under the same loading 

conditions. The crushing pressure of the arterial wall is maintained constant at 2 atm, 

while the simulated blood pressure oscillates between 120 mmHg and 80 mmHg at a 

frequency of 1 Hz throughout the study. Once again, the thresholds corresponding to 

when degradation will onset were assigned to be 0.247% and 0.230% strain for PLLA 

and POM, respectively. 

Figures 4.9 and 4.10 depict the degradation over time for each material model 

and each rate of degradation at the inner and outer surfaces. As was expected, the larger 

values of degradation occur at the inner surface for each model. Figure 4.9 shows the 

difference in degradation at the inner and outer surfaces for slow and fast degrading 

PLLA. For slow degrading PLLA, the inner surface degrades to a value of 0.700 while 

the outer surface yields a value of 0.679. This corresponds to a reduction in material 

properties at the inner and outer surfaces of a slow degrading PLLA stent to 44.00% and 

45.68% of their initial value, respectively. For the fast degradation model, degradation to 

20% of the original value of the material properties is observed after roughly 4.0 minutes 

of analysis at the inner and outer surfaces. Figure 4.10 depicts the degradation of slow 

and fast degrading POM. At the inner and outer surfaces of the slow degrading model, 

the degradation function has a value of 0.626 and 0.605, respectively, reducing the 
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material properties to 49.92% and 51.60%. As was the case for fast degrading PLLA, 

fast degrading POM degrades to 20%, but after roughly 4.5 minutes of analysis, as 

opposed to 4.0 minutes for PLLA. Figure 4.11 presents a comparative study of the rate 

of degradation at the inner surface for each model. As is observed, PLLA degrades faster 

than POM. In addition, it is noticed that the difference in the rate of degradation between 

the two material models is greater in the slow degrading studies. This verifies that the 

rate of loading affects how the material deforms, as well as the magnitude of the load. 

By increasing the value of the constant A in the degradation function, simulating an 

increase in the rate of loading, the materials begin to move towards the same rate of 

degradation. As a result, the deformation exhibited by each material model is more 

similar. 

 

 
Figure 4.9: Degradation rates for PLLA material properties at the inner and outer surfaces due to cyclic 
loading. 
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Figure 4.10: Degradation rates for POM material properties at the inner and outer surfaces due to cyclic 
loading. 

	  

	  

	  

	  
 

Figure 4.11: Comparison of the degradation rates of each material property at the maximum value. 
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Figure 4.12 depicts the creep strain over time for each model at the inner surface. 

As expected, for faster degradation the strains begin to oscillate with a greater amplitude 

compared to that of the slow degrading models. As was the case with the strain response 

observed in the ramped loading cases, Figure 4.12 provides support that as the materials 

are strained more, more degradation occurs leading to yet more of an increase in strain 

as the cycle repeats itself. As well, the strains for the faster degradation study are still 

increasing over time at the end of the analysis, whereas for the slower degradation 

models the strains appear to be approaching a constant amplitude. This is most certainly 

due to the material properties for the fast degrading models reducing to 20% of their 

original value early on, thus continuing to strain much more over time versus the slow 

degrading models. 

	  

 
Figure 4.12: Hoop strain response due to cyclic loading at the inner surface. 
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4.3 Realistic Stent Geometries Study 

 After different loading conditions were studied for each material with a 

cylindrical annulus, final analyses were conducted using realistic geometries that are 

used for cardiovascular stents in the current market. This study was conducted to gain a 

better understanding of how a stent might deform given the constitutive relations and 

material properties defined in Chapter II. As well, the location of stress concentrations 

that accrue due to the geometry is accounted for which can accelerate the degradation at 

these locations. Figure 4.13 depicts the geometry for a standard wire-meshed stent that 

was developed in SolidWorks, CAD software that is available in computing laboratories 

at Texas A&M University’s Department of Mechanical Engineering. The inner diameter 

of the stent is 2.4 mm, with a thickness of 100 μm. The width of the cross-hatched 

pattern links are equal to the thickness and the overall length of the stent is 

approximately 20 mm. Moore et al. [9] stated that because of the repeating nature of the 

rings in stent designs and the fact that any effects from the edges of the stent dissipate 

within the first segment, the mechanical environment in the middle section of a given 

stent model is equivalent to the mechanical environment of any two inner rings of a full 

length stent. Because of this, only a portion of the stent along its length is needed for 

analysis, which is depicted in Figure 4.13 as well. In addition, two models with this 

geometry were analyzed. First, the model was analyzed without inclusion of fillets 

resulting in points of singularities at the sharp angles. Next, fillets with radii of 75 µm 

were applied to each angle within the mesh, thus removing singularity points and 

reducing stress concentrations. 
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Figure 4.13: Top: Side-view of a cross-hatched pattern stent developed in SolidWorks, depicting the repeating 
nature of the meshed rings. Bottom-left: Three-dimensional view of the stent. Bottom-right: Close-up view of 
the stent portion analyzed in ABAQUS (two repeating rings). 

 

 A mesh convergence test was conducted over 20 seconds utilizing a time 

increment of 0.1 seconds. PLLA material properties were chosen along with a slow 

degrading constitutive model. The same pressures applied to the cylindrical annulus 

during the creep-cyclic study were applied to the outer and inner surfaces of the cross-

hatched geometry (i.e. simulated constant arterial pressure and cyclic blood pressure, 

respectively). The radial displacement at the distal end of the applied boundary 

conditions and centered in the mesh junction was plotted with an increase in number of 

total elements. As can be seen in Figure 4.14, the radial displacement in the model 

without inclusion of fillets begins to depict convergence from approximately 15,000 
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total elements to 20,000 total elements. Because of the computational cost of analyzing 

models with large numbers of elements, the lesser total was chosen, corresponding to 

14,996 total elements. It was determined that for the purpose of presenting a qualitative 

study with non-uniform distributions of stresses and strains, this mesh would suffice. 

Figure 4.15 depicts the mesh convergence for the same design, with inclusion of fillets at 

the angles as previously mentioned. Here, the convergence is shown to be much more 

smooth, though the total number of elements at convergence is slightly higher. For this 

model, the mesh size corresponding to 17,764 total elements was chosen.  

	  

	  
Figure 4.14: Mesh convergence study for a cross-hatched stent geometry without inclusion of fillets. 
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Figure 4.15: Mesh convergence study for a cross-hatched stent geometry with inclusion of fillets with radius of 
75 micrometers at each sharp angle. 

 

 A creep-cyclic study was conducted over a period of 1 minute on each model 

using slow degrading PLLA material properties. The pressures applied to the external 

and internal surfaces were the same as applied in the creep-cyclic study of a cylindrical 

annulus (same as for the mesh convergence study). Figure 4.16 depicts a close-up view 

of the hoop stresses that accrue at the junctions in each model. It is noted that the 

stresses are distributed more evenly across the junction in the second model, resulting in 

a reduced magnitude in stress concentrations. This was expected due to the inclusion of 

fillets in the second model and the fact that stress concentrations are at a maximum 

where the radius of curvature is at a minimum. 
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Figure 4.16: Top-left: Close-up view of the site of maximum stress concentrations without inclusion of fillets. 
Top-right: Magnitude of hoop stresses distributed throughout the stent model (units in MPa). Bottom-left: 
Close-up view of the site of maximum stress concentrations with inclusion of fillets. Bottom-right: Magnitude of 
hoop stresses distributed throughout the stent model (units in MPa). 

  

 

Before going further, it is worth noting that in the previous sections, solutions 

obtained and presented were taken at the nodal values. Due to the fine mesh size utilized 

for the simplified geometry in the cylindrical annulus, the results observed at the 

integration points and the corresponding nodal values varied only slightly, as seen in 

Figure 4.17, where the maximum hoop stresses are compared. For the geometries 

presented in this section, this is not the case. Figure 4.18 presents a comparison of the 

maximum stress concentrations taken at the nodal value and the value obtained at the 
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integration point for the model without inclusion of fillets. As depicted, there is a 

difference in hoop stress at the location of maximum stress concentration of 

approximately 40 MPa. This difference in value is due to the mesh size utilized for the 

cross-hatched mesh model. The mesh size utilized to conserve computational cost for 

this analysis resulted in large differences in the nodal values and values obtained at the 

integration points. Thus, further results shown are depicted at the integration points. 

Improvement in quantitative results can be achieved by considering finer meshes and 

incorporation of a proper nonlinear constitutive model for the polymers. 

	  

	  
Figure 4.17: Maximum hoop stress comparison of nodal value and value taken at the integration point in the 
cylindrical annulus model. 
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Figure 4.18: Stress concentration comparison taken at the maximum nodal value and the integration point in 
the cross-hatched mesh stent geometry. 

 

Figures 4.19 and 4.20 depict the maximum hoop stresses at the mesh junctions 

for the model without fillets and the model with fillets, respectively. It is first noted that 

the stresses that develop in the material are much higher than those observed using a 

simplified cylindrical annulus model. This was also predicted as the geometrical 

properties of the material decreased by introducing the voids associated with the cross-

hatched pattern, thus causing the stresses to increase. The cyclic hoop stress response 

shown in Figures 4.19 and 4.20 depict a material where the stresses relax over time, 

though the magnitude of the relaxation observed in the model without inclusion of fillets 

is greater. Figure 4.21 and 4.22 depict that cyclic creep strain response at the same 

location for each model. In each figure, creep deformation is observed along with stress 

relaxation, with the magnitude being greater for the model without fillets, once again. 
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The cause for the increase of magnitude in the hoop stresses and strains for the model 

without fillets is due to the sharp angle resulting in a singularity point. The combination 

of stress relaxation and creep that is observed at this junction could be a result of how 

the material degrades and deforms at the site of stress concentrations. At the start of 

loading the angles are smaller in the pattern, but as the material degrades, the radius of 

curvature might increase, causing the stresses to relax. The strains continue to increase 

as the thickness of the material decreases over time with degradation.  

	  

	  
Figure 4.19: Hoop stresses over 1 minute at the site of maximum stress concentration in the cross-hatched stent 
geometry without fillets. 
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Figure 4.20: Hoop stresses over 1 minute at the site of maximum stress concentration in the cross-hatched stent 
geometry with inclusion of fillets with radii of 75 micrometers. 

	  

	  

	  

	  
Figure 4.21: Hoop strains over 1 minute at the site of maximum stress concentration for a cross-hatched stent 
model without inclusion of fillets. 
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Figure 4.22: Hoop strains over 1 minute at the site of maximum stress concentration for a cross-hatched stent 
model with inclusion of fillets with radii of 75 micrometers. 

 

In addition to presenting the location and magnitude of stress concentrations, 

how the stresses vary at points away from the stress concentrations are observed. Figures 

4.23 and 4.24 present the hoop stresses at approximately 55 µm and 110 µm away from 

the site of maximum stress concentration in each model. Slight stress relaxation is 

observed at 55 µm from the maximum stresses in each case, whereas the stresses 

oscillate between relatively constant values at 100 µm away. Additionally, it is noted 

that the reduction in stresses at points away from the site of stress concentration is 

greater in the model without fillets. This was shown in Figure 4.16, where the stresses 

were distributed better at the junction in the model with fillets, resulting in a lesser 

magnitude in stress concentrations and a gradual decrease in magnitude as points move 

away from this location. This difference in stress response can be predicted by observing 
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the hoop strains at the same locations. As seen in Figure 4.25, the cyclic hoop strain at 

55 µm for the model without fillets shows a greater creep response from 0.8% strain to 

just under 1.2% strain with increasing amplitudes, whereas the strains observed at 110 

µm show an increase in strain from approximately 0.2% to 0.3%. In comparison, strains 

observed in the model with inclusion of fillets in Figure 4.26 show an increase from 

1.4% to 2.1% at 55 µm away from the location of stress concentrations, whereas at 110 

µm the strain remains constant at 0.1% strain. As was the case with the stresses, the 

strains reduce more away from the site of stress concentration in the model without 

fillets.  

 

 
Figure 4.23: Hoop stresses at 55 micrometers and 100 micrometers away from the site of maximum stress 
concentration in the model without fillets. 
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Figure 4.24: Hoop stresses at 55 micrometers and 100 micrometers away from the site of maximum stress 
concentration in the model with fillets. 

	  
	  

	  

	  
Figure 4.25: Hoop strains at 55 micrometers and 100 micrometers away from the site of maximum stress 
concentration in the model without fillets. 
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Figure 4.26: Hoop strains at 55 micrometers and 100 micrometers away from the site of maximum stress 
concentration in the model with fillets. 

	  

By plotting the degradation over time, as well as the maximum degradation value 

at points along the length of the mesh bar, an understanding of the difference in stresses 

and strains presented in each model can be developed. Figure 4.27 depicts the 

degradation at the same locations presented for the stresses and strains along the length 

of the bar. The scalar degradation values are plotted at the final time increment (t = 60 

seconds). In the case for the model without fillets, an immediate decrease at points away 

from the stress concentration is depicted. For the model with fillets, there is a slight 

increase before a sharp decrease away from the same location. This can be explained by 

observing the difference in the distribution of stresses in Figure 4.16 due to the change in 

geometry with the introduction of fillets. The change in geometry results in the material 

being thinner away from the center of the fillet, where the circumferential stresses will 
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act to deform the model more at these locations. Thus, the strain-induced degradation 

will be slightly greater at this point. Figure 4.28 depicts the degradation over time for 

each model at the location of stress concentration and away from this location. Though 

the UMAT subroutine used in this analysis was that of a slow degrading material, the 

degradation response observed in Figures 4.28a and 4.28b resembles that of a fast 

degrading material as depicted in the studies with the cylindrical annulus. This is due to 

the change in geometry and the introduction of the voids in the model, thus causing 

localized stresses and strains at the junctions in the mesh at a greater magnitude than the 

uniform stresses and strain in the previous models, in turn ramping the rate of 

degradation.  

 

	  
Figure 4.27: Degradation at the site of stress concentrations and how degradation varies as points move away 
and towards the location of positive stress concentrations at the greater angle (plotted at t = 60 seconds). 
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(a)  

(b) 	  
Figure 4.28: (a) Degradation over time at the site of maximum stress concentration and at points away from 
this location for without fillets. (b) Degradation over time at the same locations with fillets. 

  

  Figure 4.29 depicts the maximum hoop stresses at each position analyzed as the 

integration points move away from the location of maximum stress concentration and 

towards the location of positive stress concentrations (the angles at which opening mode 
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failure would occur) for each model. As depicted in previous plots of the stresses for 

each model, a sharper decrease in stress from the site of maximum stress concentration 

to 55 µm away is observed for the model without fillets. The hoop stress continues to 

decrease in relatively linear fashion until the stresses change from compression to 

tension (negative to positive) at roughly halfway along the length of the mesh links. Due 

to the geometry of the mesh, the stresses at the opposite end are in tension. This was 

predicted as the angles facing around the circumference of the stent will be forced to 

open due to the hoop stresses. The more gradual decrease in stress away from the stress 

concentrations is observed for the model with fillets, as mentioned previously. 

	  

	  
Figure 4.29: Maximum hoop stresses for each model (fillet vs no fillet) at the site of maximum stress 
concentration and at points away from. 
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 In addition to the cross-hatched pattern design, another typical geometry for 

stents in today’s market was modeled and analyzed. This design consists of curvy 

repeating rings connected by straight bars known as struts. Again, the inner radius is 2.4 

mm with a thickness of 100 µm. The strut length is approximately 1.9 mm. The rings in 

the model consist of a wavy design with a radius of curvature of 0.3 mm. In addition, the 

struts connect at every other amplitude and are offset by one between rings. At the point 

of connection, fillets with a radius of 75 µm are added to reduce the stress concentrations 

at the junctions. Figure 4.30 depicts the design for this model. 

 

 

	  
Figure 4.30: Top: Side-view of a curvy repeating ring pattern stent developed in SolidWorks, depicting the 
repeating nature of the meshed rings. Bottom-left: Three-dimensional view of the stent. Bottom-right: Close-up 
view of the stent portion analyzed in ABAQUS (two repeating rings). 
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 A mesh convergence study was once again conducted as a new geometry was 

introduced for analyses. As was the case for the previous model, the study was 

conducted over 20 seconds at a time increment of 0.1 seconds. The same arterial 

pressure was applied to the outer surface and the oscillating pressure simulating blood 

pressure was applied to the inner surface. Figure 4.31 depicts the radial displacement at 

the maximum value (the amplitude without a strut connection) as the total number of 

elements is increased. As shown, convergence is reached with a mesh size associated 

with 10,797 total elements.  

 

	  
Figure 4.31: Mesh convergence study of a stent geometry consisting of repeating rings connected via straight 
bar struts. 



	  

	   73 

	  
Figure 4.32: Left: Location of stress concentrations in the model at strut connections at each end. The 
maximum value of stress concentration as depicted on the right is on the reverse side of the amplitude depicting 
maximum tensile stress. Right: Magnitude of the stresses distributed throughout the model (units in MPa). 

 

 The hoop stresses and strains due to compression and tension, along with the 

degradation over time, are plotted at three different locations. These locations include 

each end at which the struts connect to the repeating rings and the maximum values of 

stresses and strains where there are no strut connections. The three locations at which the 

results are plotted are depicted in Figure 4.32, along with the maximum value of the 

stress concentration. Figures 4.33 and 4.34 depict the hoop stresses at each location in 

compression and in tension, respectively. It is noted that the magnitude of stresses that 

accrue in this model are higher than that in the previous model. This is due to the 

geometry of the model having greater curvatures than shown previously. In addition, it is 

seen how the various radii in the model affect the stresses that accrue at the respective 

locations. As expected, Figure 4.33 shows the strut connection corresponding to the 

smaller radius of curvature having an increase in stress concentration due to compression 

over the opposite end, whereas the location without a strut junction has the greater of all 

three. Figure 4.34 depicts the stresses due to tension at each location. The greatest value 
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in tension is located where the strut connects to the convex curve where the minimum is 

located at the concave curve. The value of hoop stress at the location without a strut 

connection is between the two.  

 

	  
Figure 4.33: Hoop stresses due to compression at each of the three locations (i.e. each strut connection at the 
junctions and the maximum values).	  	  



	  

	   75 

	  
Figure 4.34: Hoop stresses due to tension at each of the three locations (i.e. each strut connection at the 
junctions and the maximum values). 

  

 The cyclic hoop strains at each location due to compression and tension are 

presented in Figures 4.35 and 4.36, respectively. As shown in Figure 4.35, the strains as 

a result of compression in the model are approximately the same at each strut 

connection, increasing from approximately 6% to 9% strain. Away from the strut 

connections, the strains increase from approximately 9% to 14%. Without a bar 

connecting the rings at the latter location, this reduces stability, thus an increase in strain 

along with stress as depicted previously, is observed. In tension, as shown in Figure 

3.36, the strains that are observed at the strut connections do vary, however. On the 

opposite side the strut connection with the smaller radius, the strain increases from 

approximately 3.5% to 5% strain. At the opposite strut connection; the tensile strain 

increases from 5% to 7.5%. Away from the strut junction, the strain increases from 6.5% 
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to 9.5%. Also observed in Figure 4.36, it is apparent that degradation increases at each 

location, as the amplitude in each curve increases. This is supported by plotting the 

degradation over time in Figures 4.37 and 4.38, where Figure 4.37 represents 

degradation due to compressive strains at each location and the Figure 4.38 represents 

degradation due to tensile strains. As can be seen, the difference in degradation at each 

point (i.e. the order of least to greatest) corresponds to that observed in the strain 

response. Again, though a slow degrading model was utilized in this analysis, the greater 

curvature in the model causes the material to strain more rapidly and degrade in a 

fashion more similar to the fast degrading model observed in the cylindrical annulus. 

 

	  
Figure 4.35 Hoop strains due to compression at each of the three locations (i.e. each strut connection at the 
junctions and the maximum values). 
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Figure 4.36 Hoop strains due to tension at each of the three locations (i.e. each strut connection at the junctions 
and the maximum values). 

 

 

 

 
Figure 4.37: Degradation over time at each of the three locations due to compressive strains. 
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Figure 4.38: Degradation over time at each of the three locations due to tensile strains. 

 

 A comparison of each model analyzed in this study is presented in order to depict 

how the geometry affects the degradation. The degradation contours of each model are 

presented, illustrating the maximum and minimum values (1 and 0, respectively) of the 

scalar degradation variable and their respective locations. For each contour, the values of 

the degradation variable are presented at the time increment associated with a total time 

of 30 seconds. Figure 4.39 presents the contours of each model, depicting how the 

degradation occurs throughout the geometries of each. Figures 4.39a and 4.39b depict 

the contour for the cylindrical annulus. Two contours are plotted to for this model due to 

the vast difference in the degradation that occurs from the realistic models. Figure 4.39a 

depicts the contour where the range of the scalar degradation value is from 0 to 1. 

Because this model is subjected to far less strains than the realistic models, and thus far 

less degradation, very little degradation occurs at 30 seconds. Figure 4.39b depicts the 



	  

	   79 

contour with a more refined range in the degradation. Here, the range is set from 0.045 

to 0.0475 in order to show where the maximum degradation occurs and degradation is 

distributed throughout the model. The degradation away from the edges remains 

constant throughout the length of the model, with a maximum value much lower than 

that observed in the realistic stent models. Figures 4.39c and 4.39d depict the contours 

for the cross-hatched mesh model without inclusion of fillets and with fillets, 

respectively. As was previously shown, stress concentrations are at a maximum at the 

sharp edges in the model without fillets, with greater strains at this location. Hence, the 

strain-induced degradation values at the junctions in the cross-hatched mesh are greater 

in the model without fillets. It is also noted that due to the repeating patterns in the 

realistic stent geometries, only one section of the stent is needed to present the how the 

degradation varies throughout the model. Figure 4.39e presents the contour for the curvy 

geometry with repeating rings connected via struts. Due to the increased curvature in this 

model, this geometry exhibits the greatest amount of deformation at the curvatures 

without strut connections, thus the strain-induced degradation at these points are at a 

maximum. 
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(a)	     

(b)  	  
Figure 4.39: Degradation contours for the cylindrical annulus: (a) Contour with range of values from zero (no 
degradation) to 1 (maximum degradation) and (b) Contour with refined range of values (0.045 - 0.0475). Values 
taken at time t=30 seconds. 
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(a) 	    

(b)  	  
Figure 4.40: Degradation contours of the cross-hatched pattern stent geometry: (a) Model without inclusion of 
fillets and (b) Model with inclusion of fillets. Values taken at time t=30 seconds. 

	  
	  
	  

	    	  
Figure 4.41: Degradation contour for the repeating curvy-ringed model. Values taken at time t=30 seconds. 
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CHAPTER V 

SUMMARY OF RESULTS 

 

5.1 Discussion of Studies 

 In the present studies, a cylindrical annulus with typical cardiac stent dimensions 

was analyzed under cyclic internal loading meant to mimic a healthy blood pressure, 

coupled with a constant external pressure to simulate the crushing effect of the arterial 

wall on a deployed stent. A comparison of two polymers with different time-dependent 

material properties was conducted, each at slow degradation and fast degradation. The 

degradation model utilized for the studies presented was a simplified model that is 

strain-induced, thus removing variables that are known to affect material properties of 

polymers over time, such as temperature and solution concentration. This simplification 

was done to focus on the development of a numerical algorithm to define the stress 

response of a homogeneous, isotropic, linear viscoelastic material and how the material 

deforms under cyclic loading conditions. 

 After conducting two different studies, ramped loading and creep-cyclic loading 

conditions, detailed results of how polymeric materials respond while undergoing 

degradation was able to be obtained. It was observed that the time-dependent properties 

of polyoxymethylene (POM) yield the material to have a higher stiffness than poly-L-

lactic acid (PLLA) as it undergoes slower stress relaxation compared to PLLA, thus 

higher strains are observed in PLLA as predicted. As well, the repeated loading and 

unloading during cyclic analysis showed that POM dissipated more mechanical energy 
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that PLLA. In addition, the rate at which degradation occurs had a large effect on how 

the material deforms. While undergoing slow degradation, the strains oscillate over time 

with an amplitude that remained relatively constant. With fast degrading models, the 

amplitude in hoop strain showed to increase sharply, as expected. This was a result of 

the mechanical properties reducing toward 20% of their original value as defined in the 

degradation function. 

 Lastly, a study to examine how stress concentrations will develop in typical stent 

geometries was conducted. This analysis was conducted using two different geometries 

with dimensions consistent with metallic stents in use today, along with a slow 

degrading constitutive model and with PLLA material properties. The magnitude of 

stresses that occurred was much higher using typical stent geometries than with the 

simplified model. This was due to the curvatures that are introduced in the different 

models. For PLLA, this resulted in the hoop stresses after 1 minute of analysis exceeding 

the yield strength at the junctions in the model. The present study aims at understanding 

the viscoelastic and geometrical effects of the polymeric stents undergoing cyclic 

loading while the mechanical properties of the polymers degrade with time. It is clearly 

seen that the geometrical shapes of the tubular meshed stents induced non-uniform and 

localized stress/strains near the junctions, which could accelerate degradation at these 

locations. Ideally, the polymeric stents should degrade by surface erosion to maintain the 

integrity of stents during degradation and guarantee proper load transfer from the stents 

to the healing arterial walls. However, faster degradation at the junctions within the 
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tubular meshed stents could lead to early failure and breaking of the stents into pieces of 

polymers that flow through the bloodstream. 

 

5.2 Further Research 

 As mentioned previously, the analyses of the degrading polymeric stents that 

were presented here were oversimplified. The idea of a biodegradable stent is to degrade 

until the healing artery can withstand the loading. This process is understood in literature 

of the subject matter to need to occur over a time period of roughly 6 months. Long-term 

material properties and degradation behaviors of the materials under various mechanical 

and non-mechanical stimuli are needed. 

 For further studies concerning the topic of biodegradable stents, inclusion of 

environmental factors that will affect degradation are recommended. These include 

temperature and effects due to moisture, since the material is deployed within the 

bloodstream of the human body. In addition, polymers deform in a nonlinear fashion 

under loading, thus the constitutive model for further studies should include 

nonlinearities that will certainly affect how the material degrades and deforms. 

 The geometrical model used for the majority of the study was simply a 

cylindrical annulus with typical diameter, length and thickness of stents currently on the 

market. This excluded failure modes in the analysis related to strut failure. To gain a 

better understanding of how the present constitutive model would affect real stent 

geometries, additional geometries that would reduce stress concentrations as observed in 

the last study should be analyzed. In addition, the two realistic geometries models were 
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designed using dimensions consistent with metallic stents. Because polymers are weaker 

materials, the thickness should be increased in the polymeric stent models. Furthermore, 

the effect of arterial wall pressure, which is time-dependent, should be incorporated to 

better understand the response and properly design the polymeric stents. 
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APPENDIX A 

UMAT FOR A DEGRADING LINEAR VISCOELASTIC MATERIAL 

 

*********************************************************************** 

UMAT for an isotropic linear viscoelastic material undergoing degradation with N 

number of Prony series. Mechanical properties are taken from literature. The Poisson’s 

ratio was determined assuming that the material is near incompressible.  

*********************************************************************** 

C 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

C 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
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     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 

      DIMENSION DSTRES(NTENS),D(3,3) 

C 

      DIMENSION En(10), taun(10), EG_n(10), ELAM_n(10) 

      DIMENSION qij_n_t(6,10), qij_n_t1(6,10) 

      DIMENSION qkk_n_t(10), qkk_n_t1(10) 

      DIMENSION deij(6), deij_dt(6), deij_dt1(6) 

      DIMENSION sum_qij(6) 

C 

      REAL A, alpha, eps_crit, mag_eps, d_t, d_t_his 

      REAL term1, term2, exp 

      REAL E_inf, EG_inf, ELAM_inf 

      REAL sum_EGn, sum_ELAMn 

C 

C  Assign mechanical properties taken from literature. 

C 

      E0 = PROPS(1) 

      ENU = PROPS(2) 

      N = PROPS(3) 

      DO K1 = 1,N 

        En(K1) = PROPS(2*K1+2) 

        taun(K1) = PROPS(2*K1+3) 



	  

	   91 

      END DO 

C 

C  Initialize variables with zero value. 

C 

      DO K1 = 1,N 

        EG_n(K1) = 0. 

        ELAM_n(K1) = 0. 

        qkk_n_t(K1) = 0. 

        qkk_n_t1(K1) = 0. 

        DO K2 = 1,NTENS 

          qij_n_t(K2,K1) = 0. 

          qij_n_t1(K2,K1) = 0. 

        END DO 

      END DO 

      d_t_his = 0. 

C 

C  Read state variables from history. 

C 

      DO K1 = 1,N 

        DO K2 = 1,NTENS 

          ihis = ihis + 1 

          qij_n_t(K2,K1) = STATEV(ihis) 
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        END DO 

      END DO 

C 

      DO K1 = 1,N 

        ihis = ihis + 1 

        qkk_n_t(K1) = STATEV(ihis) 

      END DO 

C 

      DO K1 = 1,NTENS 

        ihis = ihis + 1 

        deij_dt(K1) = STATEV(ihis) 

      END DO 

C 

      ihis = ihis + 1 

      dekk_dt = STATEV(ihis) 

C 

      ihis = ihis + 1 

      d_t_his = STATEV(ihis) 

C 

C  Define the degradation function variables at time t. 

C 

      A = 0.5 
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      mag_eps = (STRAN(1)**2. + STRAN(2)**2. + STRAN(3)**2. + 

     1  2.*STRAN(4)**2. + 2.*STRAN(5)**2. + 2.*STRAN(6)**2.)**.5 

      eps_crit = 0.00247 

C 

C  Define when degradation occurs. At or below critical strain, no degradation. Above         

C  critical strain, degradation occurs. 

C 

      IF (mag_eps.le.eps_crit) THEN 

        d_t = d_t_his 

      END IF 

C 

      IF (mag_eps.gt.eps_crit) THEN 

        d_t = (DTIME*A*mag_eps + d_t_his)/(1. + DTIME*A*mag_eps) 

      END IF 

C 

C  Define shear modulus and 2nd lame at n and as t goes to infinity.  

C 

      exp = 2.7182817459 

      alpha = 0.8 

      term1 = 1./(2*(1+ENU)) 

      term2 = 1./(3*(1-2*ENU)) - 1./(3*(1+ENU)) 

C 
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      sum_EGn = 0. 

      sum_ELAMn = 0. 

      DO K1 = 1,N 

        EG_n(K1) = (En(K1)*(1. - alpha*d_t))*term1 

        ELAM_n(K1) = (En(K1)*(1. - alpha*d_t))*term2 

        sum_EGn = sum_EGn + EG_n(K1) 

        sum_ELAMn = sum_ELAMn + ELAM_n(K1) 

      END DO 

C 

      E_inf = E0 

      EG_inf = (E_inf*(1. - alpha*d_t))*term1 

      ELAM_inf = (E_inf*(1. - alpha*d_t))*term2 

C 

C  Define the incremental strains. 

C 

      DO K1 = 1,NTENS 

        deij(K1) = DSTRAN(K1) 

      END DO 

      dekk = deij(1) + deij(2) + deij(3) 

C 

C  Sum the time-dependent portions (i.e. qij and qkk) of the constitutive model. 

C 
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      DO K1 = 1,NTENS 

        sum_qij(K1) = 0. 

        DO K2 = 1,N 

        sum_qij(K1) = sum_qij(K1) + qij_n_t(K1,K2)* 

     1    (exp**(-DTIME/taun(K2)) - 1.) + EG_n(K2)*(DTIME/2.)* 

     2    ((deij(K1)/DTIME)+ exp**(-DTIME/taun(K2))*deij_dt(K1)) 

        END DO 

      END DO 

C 

      sum_qkk = 0. 

      DO K2 = 1,N 

        sum_qkk = sum_qkk + qkk_n_t(K2)*(exp**(-DTIME/taun(K2)) 

     1    - 1.) + ELAM_n(K2)*(DTIME/2.)*((dekk/DTIME) +  

     2    exp**(-DTIME/taun(K2))*dekk_dt) 

      END DO 

C 

C  Define the incremental stresses. 

C 

      DO K1 = 1,NDI 

        DSTRES(K1) = 2.*EG_inf*deij(K1) + ELAM_inf*dekk +  

     1    2.*sum_qij(K1) + sum_qkk 

        STRESS(K1) = STRESS(K1) + DSTRES(K1) 
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      END DO 

C 

      DO K1 = NDI+1,NTENS 

        DSTRES(K1) = 2.*EG_inf*deij(K1) + 2.*sum_qij(K1)  

        STRESS(K1) = STRESS(K1) + DSTRES(K1) 

      END DO 

C 

C  Calculate the consistent tangent modulus at time t. 

C 

      DO K1 = 1,NTENS 

        DO K2 = 1,NTENS 

          DDSDDE(K2,K1) = 0. 

        END DO 

      END DO 

C 

      DO K1 = 1,NDI 

        DDSDDE(K1,K1) =2.*EG_inf + ELAM_inf + sum_EGn +  

     1    0.5*sum_ELAMn 

      END DO 

C 

      DO K1 = NDI+1,NTENS 

        DDSDDE(K1,K1) = EG_inf + 0.5*sum_EGn 
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      END DO 

C 

      DO K1 = 1,NDI 

        DO K2 = 1,NDI 

          IF (K1.ne.K2) THEN 

            DDSDDE(K1,K2) = ELAM_inf + 0.5*sum_ELAMn 

          END IF 

        END DO 

      END DO 

C 

C  Calculate history variables at time t. 

C 

      DO K1 = 1,NTENS 

        DO K2 = 1,N 

          qij_n_t1(K1,K2)= qij_n_t(K1,K2)*exp**(-DTIME/taun(K2)) 

     1      + EG_n(K2)*(DTIME/2.)*((deij(K1)/DTIME) +  

     2      exp**(-DTIME/taun(K2))*deij_dt(K1)) 

        END DO 

      END DO 

C 

      DO K2 = 1,N 

        qkk_n_t1(K2) = qkk_n_t(K2)*exp**(-DTIME/taun(K2)) +  
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     1    ELAM_n(K2)*(DTIME/2.)*((dekk/DTIME) +  

     2    exp**(-DTIME/taun(K2))*dekk_dt) 

      END DO 

C 

      DO K1 = 1,NTENS 

        deij_dt1(K1) = deij(K1)/DTIME 

      END DO 

C 

      dekk_dt1 = (deij(1) + deij(2) + deij(3))/DTIME 

C 

C  Store the updated state variables in statev arrays. 

C 

      ihis = 0 

      DO K1 = 1,N 

        DO K2 = 1,NTENS 

          ihis = ihis + 1 

          STATEV(ihis) = qij_n_t1(K2,K1) 

        END DO 

      END DO 

C 

      DO K1 = 1,N 

        ihis = ihis + 1 



	  

	   99 

        STATEV(ihis) = qkk_n_t1(K1) 

      END DO 

C 

      DO K1 = 1,NTENS 

        ihis = ihis + 1 

        STATEV(ihis) = deij_dt1(K1) 

      END DO 

C 

      ihis = ihis + 1 

      STATEV(ihis) = dekk_dt1 

C 

      ihis = ihis + 1 

      STATEV(ihis) = d_t 

C 

RETURN 

      END 
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APPENDIX B 

INPUT FILE FOR A CYCLICALLY LOADED CYLINDRICAL ANNULUS 

 

*Heading 

  Simulated loading of a linear viscoelastic stent model with degradation 

** Job name: LVE_1_degr Model name: LVE_1_degr 

*Part, name=Cylindrical_annulus 

*End Part 

*Instance, name=Cylindrical_annulus-1, part=Cylindrical_annulus 

*Node 

1,         -2.5,           0.,          10. 

………. 

1312,           0.,    2.4000001,           0. 

*Element, type=C3D8 

1,  657,  658,  674,  673,    1,    2,   18,   17 

………. 

600, 1295, 1296, 1312, 1311,  639,  640,  656,  655 

*Nset, nset=Tube, generate 

    1,  1312,     1 

*Elset, elset=Tube, generate 

   1,  600,    1 

** Section: Solid_section 
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*Solid Section, elset=Tube, material=PLLA 

, 

*End Instance 

*Nset, nset=yz_plane, instance=Cylindrical_annulus-1, generate 

   16,  1312,    16 

*Elset, elset=yz_plane, instance=Cylindrical_annulus-1, generate 

  15,  600,   15 

*Nset, nset=xz_plane, instance=Cylindrical_annulus-1, generate 

    1,  1297,    16 

*Elset, elset=xz_plane, instance=Cylindrical_annulus-1, generate 

   1,  586,   15 

*Nset, nset=xy_plane, instance=Cylindrical_annulus-1 

  641,  642,  643,  644,  645,  646,  647,  648,  649,  650,  651,  652,  653,  654,  655,  

656 

 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 

1311, 1312 

*Elset, elset=xy_plane, instance=Cylindrical_annulus-1, generate 

 586,  600,    1 

*Elset, elset=_Outer_surf_S2, internal, instance=Cylindrical_annulus-1, generate 

   1,  600,    1 

*Surface, type=ELEMENT, name=Outer_surf 

_Outer_surf_S2, S2 
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*Elset, elset=_Inner_surf1_S1, internal, instance=Cylindrical_annulus-1, generate 

   1,  600,    1 

*Surface, type=ELEMENT, name=Inner_surf1 

_Inner_surf1_S1, S1 

*Elset, elset=_Inner_surf2_S1, internal, instance=Cylindrical_annulus-1, generate 

   1,  600,    1 

*Surface, type=ELEMENT, name=Inner_surf2 

_Inner_surf2_S1, S1 

*Elset, elset=_Outer_S2, internal, instance=Cylindrical_annulus-1, generate 

   1,  600,    1 

*Surface, type=ELEMENT, name=Outer 

_Outer_S2, S2 

*End Assembly 

*Amplitude, name=Amp_1, definition=PERIODIC 

1,           6.283,              0.,              1. 

             0.,              1. 

**  

** MATERIALS 

*Material, name=PLLA 

*Depvar 

22, 

*User Material, constants=7 
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 1369.18,   0.45,     2.,   353.18,  11.852,   277.64, 198.56 

** BOUNDARY CONDITIONS 

** Name: XY_symmetry Type: Displacement/Rotation 

*Boundary 

xy_plane, 3, 3 

** Name: XZ_symmetry Type: Displacement/Rotation 

*Boundary 

xz_plane, 2, 2 

** Name: YZ_symmetry Type: Displacement/Rotation 

*Boundary 

yz_plane, 1, 1 

** ---------------------------------------------------------------- 

** STEP: Apply Pressure 

*Step, name="Apply Pressure", inc=100000 

Application of external and internal pressures to the stent model 

*Visco 

0.1, 10000.,  

*Solution Technique, type=QUASI-NEWTON 

** LOADS 

** Name: Arterial Pressure   Type: Pressure 

*Dsload 

Outer, P, 0.20265 
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*Dsload 

Inner1, P, 0.0133322 

*Dsload, amplitude=BPS 

Inner2, P, 0.00266644 

** OUTPUT REQUESTS 

**  

**Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Element Output, directions=YES 

E, S, SDV 

** 

*End Step 

 




