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ABSTRACT

In this dissertation, we develop models and methodologies for effective design and

efficient operation of product recovery logistics networks. Recovery networks, em-

ployed for recycle-reuse-refurbish-remanufacture purposes, constitute an ever-expanding

portion of supply chain networks. For such activities to make business-sense, it is

important that the logistical decisions associated with designing and operating un-

derlying networks are made carefully. With this main motivation, we focus on two

fundamental problems.

First, we consider a generic Closed-Loop Supply Chain (CLSC) network setting

under demand and return uncertainty and provide a new model and an efficient

solution approach for the associated network design problem. Consideration of un-

certainties and their impact on the CLSC network design is a largely ignored area in

the literature, thus, this work contributes to closing this gap, in both modeling and

solution methodology contexts, as well as in analysis.

Second, we consider the specific case of commercial returns, which is quite com-

mon in today’s business climate, given the generous return policies provided by

electronics and department stores as well as retail superstores. In this setting, for

operational efficiency and financial effectiveness, it is important for providers to best

determine appropriate return channels, i.e., the return channel selection, for com-

mercial products whose values decrease over time. Return channel selection for com-

mercial products is also a largely ignored area in the literature. We first address this

problem from an operational efficiency perspective given an underlying network of

facilities. In the related models and analysis, we introduce and capture the concepts

of channel selection dependence on product and logistics network characteristics.
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Later, recognizing that the design of an underlying network may be under the con-

trol of the provider, we take an integrated design and operation perspective and

incorporate the logistics network design into the model to further study dependence

of channel selection on network characteristics. In addition to new models and anal-

ysis for commercial return logistics, our contributions also include the development

of efficient solution algorithms with measurable solution quality.

We introduce the problems of interest and their context in today’s business envi-

ronment in the first chapter. In the second chapter of the dissertation, we develop a

two-stage stochastic programming model for the generic CLSC network design prob-

lem under demand and return uncertainty, represented by a set of scenarios. For

the model’s solution, we develop a Benders Decomposition (BD) approach that sig-

nificantly improves computational efficiency via surrogate constraints, strengthened

Benders cuts, multiple Benders cuts, and mean value scenario based lower bounding

inequalities. In the third chapter, we develop models for the channel selection prob-

lem for commercial products under time-value consideration. Based on this model,

we analyze the optimal return channel selection strategies under varying underly-

ing logistics network and product characteristics. For this purpose, we utilize real

geographical data from the U.S. and product data for Hewlett Packard and Bosch.

In the fourth chapter of this dissertation, we develop a Mixed Integer Linear Pro-

gramming (MILP) model for integrated design and channel selection for commercial

product returns under product time-value consideration. For the model’s solution,

we develop an efficient algorithm based on the Simulated Annealing (SA) approach,

benchmarking the quality of solutions against the upper bound obtained by a Benders

Decomposition approach. Using this model and the solution approach, we provide

an extensive analysis of the relationship between recovery logistics network structure

and product characteristics.

iii



DEDICATION

I dedicate this dissertation to my parents.

iv



ACKNOWLEDGMENTS

I would never have been able to finish my dissertation without the guidance of

my committee members and support from my family and friends.

I would like to thank to my advisor, Dr. Üster, for his dedicated guidance during
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1. INTRODUCTION

Although recovery of used products has been implemented by companies over

decades, only recently product recovery has received attention from practitioners

and scholars. Of numerous reasons for growing attention on recovery activities,

environmental and economical reasons are most essential. First, there is a growing

concern about the environmental problems caused by industrial waste. According

to Akçali et al. [1], more than 12 billion tons of industrial wastes are produced in

the United States every year. Therefore, the disposal of industrial waste is becoming

an important issue. Second, there is a significant economic potential in the product

recovery business. On average, manufacturing companies generally spend 9% to 15%

of total revenue on product return, which in turn may increase total sales by 5%,

through implementing more effective recovery logistics [20]. Growing concern about

the environmental problems and economic potential in the product recovery business

have caused product recovery logistics to be an emerging issue in the logistics area

and is, therefore, widely studied. Product recovery logistics can be classified into two

categories: RSC and CLSC [1]. In the first part of the dissertation, we use a generic

CLSC network structure under uncertainty to identify the performance of stochastic

programming model.

Consumers generally return products for three main reasons, for which compa-

nies tend to have three different product recovery plans [22]. First is the commercial

return which occurs right after purchase, mostly within 90 days of the purchase.

Commercial return is the return of the product by product dissatisfaction or mal-

function. Second, EOU return occurs if functional products can be replaced with

newly upgraded products. Third, EOL return occurs when products are no longer
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used due to technical deterioration. Since product recovery activities are different

based on the reasons for the return, product recovery strategies and recovery logistics

networks may also vary depending on the reasons for product return. This variation

in recovery strategies and recovery logistics networks are explored in the second and

the third research problems.

In the first part of the dissertation, we study a CLSC network design under un-

known demand and return as a manufacturer-supplier’s problem. In the second and

third part of the dissertation, we analyze channel selection strategy in the commercial

product return logistics network under time-value consideration.

1.1 Motivations and Scope of the Dissertation

Characteristics of used products in RSC are far less predictable than supply re-

sources in a traditional supply chain. Thus, RSC has more uncertainty, in terms of

timing, quantity, and quality, than traditional supply chain. Although uncertainty

in the RSC and CLSC are severe problems, only limited studies consider uncertainty.

The studies on uncertainty in RSC and CLSC networks mostly use two stage stochas-

tic programming. However, a stochastic programming model is difficult to compute,

especially if stochastic parameters follow continuous distributions. Even if stochastic

parameters follow discrete distributions, the stochastic problem is still complicated

when large number of realizations of stochastic parameters are required. However,

most literature that examines stochastic issues in the CLSC network design problem

consider fewer scenarios in the model and use a commercial optimization solver.

The first research problem is based on two main purposes. First, on the modeling

side, the research purpose is to develop a generic CLSC network design problem

under demand and return uncertainty. The configuration of a CLSC network will

vary with demand and return quantities. For example, if a company expects minimal
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returns, then only a limited number of remanufacturing facilities are needed in the

CLSC network. Therefore, we consider uncertainty in the CLSC network design

problem with respect to product demand/return quantities. To do so, we build on

the deterministic CLSC network design setting studied by Easwaran and Üster [13]

where manufacturing and remanufacturing locations are assumed to be co-located for

operational efficiency. Similarly, the centers are assumed to be capable of handling

both forward and reverse flows in the CLSC network.

In order to model uncertainty, we adopt a two-stage stochastic programming

approach [7] in which the first stage corresponds to making optimal design decisions

including the supply (manufacturing and remanufacturing) locations, the locations

of distribution/collection centers, and their capacity levels. The second stage finds

the best forward and reverse flow networks based on each scenario. Building on the

developed two-stage stochastic programming model, we study whether the stochastic

model performs better than the deterministic model. However, as the number of

scenarios increases, the problem becomes more challenging to solve which opens

room for the second research purpose.

The second research purpose, on the methodological side, is to develop an effi-

cient solution approach based on the BD [5], which is also known as the L-shaped

method in stochastic programming literature [48]. The BD approach typically re-

quires enhancement in order to perform as an efficient convergent method, so we

propose several techniques that improve the performance of the standard BD al-

gorithm. The first approach is achieved by aggregating over scenario subgroups,

rather than by generating a Benders cut for each scenario [7] or employing a tra-

ditional single Benders cut. The second approach is obtained as an extension of a

cut strengthening technique previously developed for solving discrete deterministic

models using BD [45, 46, 47]. The third approach initially utilizes the modification
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of the master problem based on mean value scenario as suggested by Batun et al. [3].

We suggest an alternative approach to generate lower bounding inequalities based on

a dual subproblem under mean value scenarios. Lastly, the lower bound inequalities

are also disaggregated in terms of scenario subgroups. For the BD algorithm, We

experiment with different performance enhancement techniques and analyze how far

performance of the BD algorithm improves.

Product recovery logistics network design varies not only by the quantities of

demand/return, but also by the reasons for product return. In commercial product

return, time value of the product is one of the factors that determines logistics net-

work structure, since products are resold to consumers after repair and repackaging.

A product with high decay value should be collected as quickly as possible so that

total profit loss from product return is minimized.

In addition to time value of the product, the method for collecting the prod-

uct is also important in commercial product return. A generous return policy is a

strategy to increase the company’s future profits via strengthening customer loyalty.

Offering a multi-return channel is one of the generous policies that a company offers

to consumers. It contributes to the company’s need for operational flexibility, since

various types of reverse flows network can be built based on characteristics of prod-

ucts. Based on the literature review, however, no studies have considered commercial

product return and multi-channel issues in product recovery logistics network design,

especially on a quantitative model.

In the second research problem, we study channel selection strategy in recov-

ery logistics networks motivated by the commercial return process in industries that

commonly handle both manufacturing and sales (e.g., electronics industry). In the

commercial return process, customers generally return products to the manufacturer

for product dissatisfaction or a functional failure. Product dissatisfaction is inde-
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pendent from product quality therefore, products are assumed to be non-defective.

These non-defective products can be resold at the retailer after a minor inspection

such as repackaging. On the other hand, functional failure returns relate to quality

issues (i.e., defective products). Based on the degree of defectiveness, the product

may be either repaired or disposed.

The developed CLSC network model consists of four entities: Repairing Facil-

ities (RFs), centers, retailers, and customers. To collect returned products from

customers, four different options of collection, called multi-channel, are used by the

company: 1) RF via retailer, 2) RF via retailers and collection centers, 3) RF via

collection centers, or 4) RF directly. We formulate the model as LP and introduce a

time parameter to measure product residual value. The developed LP model deter-

mines return and redistribution channels to maximize the total profit from recovered

products. We specifically analyze the best return channel selection strategy using

real geographic and product data.

Next, we extend the developed commercial product return logistics network model

by introducing location decisions: RF and center locations. The model is formulated

as MILP and determines the best RF/center locations and return/redistribution

channel to maximize the total profit. The developed MILP model, naturally, be-

comes more difficult as the problem size increases. The objective of the third research

is to develop an efficient solution approach based on the SA heuristic algorithm.

SA algorithm evaluates the goodness of a feasible solution multiple times. When

optimization solver is used for the evaluation process, the SA algorithm takes an

excessively long solution time. Therefore, we develop a greedy algorithm to evaluate

a feasible solution. We test how the developed SA algorithm performs compared to

an exact solution method, BD algorithm, based on randomly generated instances.

After computational experiments of the SA algorithm, we solve the developed com-
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mercial product return logistics network design problem using real geographic and

product data. In the computational results, we test the efficiency of the algorithms

and illustrate how to determine recovery logistics network configuration along with

return/redistribution channel selection strategy. We especially analyze characteris-

tics of recovery logistics network configuration in terms of product characteristics,

such as the non-defective and disposal rates.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 develops a generic

CLSC network design problem under uncertainty and proposes an exact solution

method based on the BD algorithm. Chapter 3 considers channel selection in com-

mercial product return logistics networks and analyzes the optimal channel selection

strategy that maximizes total profit from recovered products using real product and

geographic data. Chapter 4 extends the developed commercial product return lo-

gistics network model by considering location decisions and identifying the optimal

logistics network configuration using the developed SA heuristic algorithm. Finally,

chapter 5 presents conclusions, contributions and future research directions for the

product recovery network design problems considered in the dissertation.
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2. CLOSED-LOOP SUPPLY CHAIN NETWORK DESIGN UNDER DEMAND

AND RETURN UNCERTAINTY

Design and operation of CLSC have attracted attention both in academia and

in industry over the last couple of decades mainly because of two reasons. First,

the interest can be attributed to the ever increasing environmental concerns and

responsibility held by companies whose products are amenable to reuse via reman-

ufacturing or refurbishing. It can easily be argued that recovering any remaining

value in used products leads to less use of energy and resources in manufacturing

new products while eliminating waste caused by the disposal of non-reused prod-

ucts. Hence, an overall less impact on the environment is made. In other situations,

simply the legislation in a country/region necessitates planning and operation of

reuse activities for the companies [6]. Second, reuse via remanufacturing/refurbishing

presents significant economic potential [21, 22]. Whenever possible, satisfying new

product demands by remanufactured/refurbished products is now a common prac-

tice. In fact, it is the business-sense that makes companies adopting voluntary reuse

activities in the first place. The value that can be recovered after remanufactur-

ing/refurbishing in otherwise-disposed products and, in many cases, value after sim-

ple inspection/repackaging of unused returned products can be staggeringly high.

For example, the predictions at HP indicate that the total costs of returned product

can amount up to 2% of total sales [23] and in large retailers, such as Home Depot,

return rates of at least 10% is not uncommon (due to generous take-back policies)

with a potential total value of return in the hundreds of millions of dollars [22]. The

most typical examples of remanufacturing/refurbishing practices are found in the

electronics and automotive industries represented by such companies as HP, Dell,
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Xerox, and GM who extensively adopt remanufacturing practices [46].

While the traditional supply chain design refers to decisions for effective and ef-

ficient production and transportation of products from supply locations to demand

locations through one or more intermediate facilities, the reverse flow for remanu-

facturing/refurbishing traces a similar path in reverse direction. Thus, it has been

recognized that the design of CLSCs should incorporate decisions pertaining to both

flow directions [e.g. 40]. Thus, our specific focus in this research is on the design

of a general integrated CLSC network which is composed of two physical flow chan-

nels (as depicted in Figure 2.1). Forward flow channel refers to product flow from

supply (manufacturing and remanufacturing/refurbishing) locations to demand (e.g.,

retailer) locations through distribution centers and the reverse flow channel refers

to return flow from demand locations to supply (for remanufacturing/refurbishing)

locations through collection centers. Observing that uncertainties are inevitable,

especially for high technology electronics and automotive products, we explicitly

consider demand and return uncertainty in CLSC network design.

The setting of our problem of interest builds on the deterministic CLSC design

setting studied by Easwaran and Üster [13] where manufacturing and remanufac-

turing locations are assumed to be co-located for operational efficiencies and the

centers are assumed to be capable of handling both forward and reverse flows in the

CLSC network, i.e., centers act as both distribution and collection facilities. For

modeling our problem of interest with uncertainty considerations, we adopt a two-

stage stochastic programming approach [7] in which the first stage corresponds to

making optimal design decisions including the supply (manufacturing and remanufac-

turing/refurbishing) locations and their capacity levels, the locations of distribution

and collection centers and their capacity levels while the second stage addresses the

optimization of expected flow costs over a set of scenarios that capture uncertainty
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in demand and return quantities at retailer locations.

On the modeling side, our primary contributions include consideration of three

non-trivial characteristics explicitly: 1) a scenario based representation of uncertain-

ties in demand and return quantities; 2) capacity installment decisions at the sourc-

ing facilities and the centers; and, 3) for operational flexibility and better capacity

utilization, multi-sourcing of retailers, i.e., each demand location is not required to

be assigned to a unique collection and/or distribution center. To this end, we also

discuss how to modify our model to consider alternative return inspection locations.

On the methodological side, to solve our model with a given set of scenarios

efficiently, we develop a solution approach based on BD [5] which is also known as L-

shaped method in the stochastic programming literature [48]. The BD approach is a

popular solution method due to its convenience as an algorithmic framework for solv-

ing two-stage stochastic programming models and relative ease of implementation.

However, BD approach typically needs enhancements to perform as an efficiently

convergent method. To this end, we provide enhancements facilitated via generation

of multiple Benders cuts, strengthened Benders cuts, and lower bounding inequalities

for the master problem. The first approach is achieved via aggregation over scenarios

subgroups, rather than generating a Benders cut for each scenario [7] or employing

a traditional single Benders cut; the second is obtained as an extension of a cut

strengthening technique previously developed for solving discrete deterministic mod-

els using BD [45, 46, 47]; and the third approach initially utilizes the modification

of the master problem based on mean value scenario as suggested by Batun et al.

[3]. We also suggest an alternative approach to generate lower bounding inequalities

based on dual subproblem under mean value scenarios as well as disaggregation of

these lower bounding inequalities. We observe in our experimentations that these

techniques help to tighten lower bounds and improve overall algorithmic performance
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for solving our stochastic programming model. Later, in an extensive computational

study, we utilize our algorithm to solve the stochastic programs with fixed sets of sce-

narios and determine high performing values for the number of samples and sample

sizes to be employed in a SAA framework [26].

The rest of the chapter is organized as follows. In the following section, we provide

a review of the related literature. In section 2.2, we introduce notation, a detailed

problem definition and its mathematical formulation. In section 2.3, we propose

efficient solution method based on Benders decomposition approach. In section 2.4,

we present computational experiments on the performance of the proposed solution

method. Finally, we provide our concluding remarks in section 2.5.

2.1 Literature Review

Literature on product recovery network is relatively new in the network design

context. General reviews of product recovery logistics are given by [1, 16, 17, 18].

In the dissertation, our problem belongs to CLSC structure, so we focus on CLSC

network design. Fleischmann et al. [19] consider a general quantitative model for

the CLSC network design composed of hybrid manufacturing/remanufacturing facil-

ities, distribution/collection centers, and customer locations. In the paper, authors

propose an integrated design of forward and return flow network. Integrated for-

ward and reverse flow network design has a cost advantage to sequential network

design by sharing locations and resources for both manufacturing and remanufactur-

ing operations. Although not every operation in manufacturing and repairing may be

identical, both manufacturing and remanufacturing operations mostly require simi-

lar parts, machine, and work skills. Therefore, recent CLSC network design research

adopt integrated forward and reverse network design [40]. Beamon and Fernandes

[4] consider similar CLSC network structure given by Fleischmann et al. [19]. In the

10



model, authors assume limited capacities at hybrid manufacturing/remanufacturing

facility and collection center. Sim et al. [44] extend Fleischmann et al. [19] model by

considering multi-product and limited capacity at all nodes in the CLSC network.

Akçali et al. [1] point out that CLSC network design studies are limited and, more

strikingly, only a few studies address the uncertainty involved in these logistical en-

vironments. In fact, the studies that incorporate uncertainty in demand and return

are very limited in the CLSC and RSC network design area. In the reverse logistics

context, Listes and Dekker [31] employ a three-stage stochastic programming ap-

proach for a sand recycling network. Salema et al. [41], building on the deterministic

model given by [19], develop a model for a capacitated multi-product reverse logis-

tics network with demand and return uncertainty. In above studies, as is commonly

the case in recovery network design literature, the proposed models are solved using

commercial optimization solver without algorithmic developments for efficient solu-

tion of large network instances. Lee and Dong [28] develop dynamic reverse supply

chain network problem under demand and return uncertainty in which only the lo-

cations choices for intermediate facilities (centers in our case) are considered. The

authors suggest a simulated annealing approach which utilizes SAA to handle the

uncertainty.

In the context of CLSCs, Listes [30] present a stochastic model for network design

in a setting where the new products are shipped directly to customer sites from manu-

facturing facilities, used products are shipped to collection centers for inspection and

reusable return are then shipped to manufacturing facilities. A two-stage stochastic

model and a solution algorithm based on branch-and-bound and L-shaped method

are provided. Analysis includes only very small size problems based on 12 scenarios.

Pishvaee and Jolai [37] also study a stochastic CLSC network design problem for

which the solutions are obtained using a commercial software for small size problems
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with 4 scenarios. Finally, we note that in the multi-commodity flow type stochastic

service network design context (i.e., routing specific origin-destination pairs rather

than in a production-distribution system setting), recent studies include Crainic et al.

[10], which uses progressive hedging heuristic approach, and Lium et al. [32], which

solves deterministic equivalent problems on very small network for analysis.

2.2 Problem Definition and the Model

The underlying strategic and operational setting of our problem includes three

types of facilities in a CLSC network, namely the Sourcing Facilities (SFs), Centers

(CTRs), and demand (customers/retailer - RT) locations1, as depicted in Figure 2.1.

We assume that, since the designed system needs to satisfy the expected demand,

the overall operations generate a certain revenue. Thus, we focus on logistical cost

minimization in the design of the system. Product supply, both as new products

and/or as recovered products, is provided by the SFs and flows through distribution

centers to final demand locations, which face product return and are responsible

for routing the flow through collection centers to recovery locations. Note that

recovered products are assumed to be perfect substitutes for new products. Opening

and operating sourcing facilities and centers imply associated fixed costs as well as

variable processing costs for new and returned products. In addition, product flow

between facilities implies variable transportation costs. In practice, mainly due to

quality issues or the extent of problems in return, it is typically not possible to recover

the whole returned flow through remanufacturing/refurbishing activities. Thus, we

assume a certain recovery fraction to represent a percentage of returned products

that are remanufactured. We further assume that, without loss of generality, for

1Henceforth, we generically use the term Sourcing Facilities (SF) to refer to manufacturing and
remanufacturing/refurbishing locations and Center (CTR) to refer to distribution and collection
centers.
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operational efficiencies and improved response times, a remanufacturing/refurbishing

facility is located at a location only if a manufacturing facility is also available at the

same location and that distribution and collection centers can be opened (but not

required) at the same location but serve to flow in opposing channels. In our initial

model and methodology development, we assume that the product inspection to

identify recoverable return is conducted at the SF locations. Later, in Section 2.4.4,

we show how this model should be modified to consider alternative network stages

for inspection.

In this study, we consider three non-trivial extensions to the basic integrated

model in [13] which span strategic and operational characteristics relevant in realistic

settings as follows:

• The first one pertains to the description of the demand and return quantities

which are assumed to be estimated and available a priori in [13]. We consider

uncertainty in demand and return, and utilize a scenario approach to represent

the uncertainties in these quantities. Specifically, a scenario is generated by

randomly generating a demand and a return quantity for each retailer location.

To generate return quantities randomly, we assume that a random fraction of

the demand value of that location in that scenario will be faced as the return

quantity. Furthermore, we explicitly consider scenarios that can differ in terms

of the demand values they represent as high, medium, or low. In each such

category of demand, we assume that multiple scenarios are utilized to capture

the uncertainty in a more detailed manner. In turn, the uncertainties in return

levels are also captured accordingly based on their relationship to the demand

realizations.

• Secondly, as opposed to fixed capacity limitations at the CTRs in [13], we

consider capacity installation decisions at both SFs and CTRs. We assume
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that once a decision to open a facility is made, a base capacity (for sup-

ply/manufacturing at an SF or for processing at a CTR) is installed at a

certain cost at that location. Any additional capacity can be installed at a cost

proportional to the additional quantity handled. However, the addition can be

done in a way that a maximum capacity limit, specified for each location, is

not violated. Capacity expansion availability provides a good proxy about how

big each facility should be planned to be and an opportunity to reduce over-

all supply chain costs by introducing flexibility to address trade-offs between

fixed and variable costs in the system. Also recognizing the extensive focus on

lean manufacturing practices and elimination of waste in today’s manufactur-

ing environment as well as the use of capacity as a buffer against variability,

consideration of capacity limitation in design is even more important than ever.

• Thirdly, as opposed to forcing each demand location interact with only one

CTR as in [13], we consider multi-sourcing for retailer locations for potentially

improved operational efficiency and capacity utilization, i.e., a retailer is al-

lowed to interact more than one distribution and/or collection center, as to be

determined by the model. Consideration of multi-sourcing is also an important

part of the model since 1) it generalizes single-sourcing, i.e., if a solution with

single-sourcing is better, then our model would capture that but not vise-versa,

2) there are capacity limitations at the facilities that serve flows with uncertain

amounts, and 3) in an application, large geographical regions are represented

as retailer/customer nodes, e.g., in our case study presented in the last section

using US data, RT locations are assumed to be large geographical areas such

as a zip-code or a city as a whole, and, thus, they represent a large demand

that may need to be satisfied from multiple locations.

Furthermore, Easwaran and Üster [13] consider multiple products and a single
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manufacturing/remanufacturing facility for each product, thus, forcing each

CTR to interact with only one SF per product. In this study, we consider

single product or, rather, a product family, and we allow each CTR to inter-

act with multiple SF locations where the products are remanufactured and/or

manufactured. We note that while the extension of our base model to multiple

products case with above considerations can be achieved in a straightforward

fashion, this clearly results in larger problem sizes.

To develop a mathematical model, we first introduce the notation and the de-

cision variables in the CLSC network to be designed and operated under above

characteristics.

Supplier /
Manufacturer

Remanufacturer

Distributers

Collectors

Retailers /
Customers

Sourcing
Facilities (SF)

Centers (CTR) Demand
Locations (RT)

i ∈ I j ∈ J k ∈ K

Dωk

Sωk

σωij

τωji

µωjk

νωkj

xj

zi, α
F
i

yi, α
R
i

βF
j

βR
j

1

Figure 2.1: CLSC Network Structure

Sets and indices:

I set of candidate SF locations, i ∈ I.

J set of candidate CTR locations, j ∈ J .

K set of customers (RT locations), k ∈ K.

Ω set of scenarios, ω ∈ Ω.
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Parameters:

Dωk demand at RT k under scenario ω

Sωk return at RT k under scenario ω

Gmn unit transportation cost from a location m to a location n

F F
i fixed cost of opening a SF at location i

FR
i fixed cost of selecting SF i as remanufacturing site

FC
j fixed cost of opening a CTR at location j

κFi unit manufacturing cost at SF i

κRi unit remanufacturing cost at SF i

ηFj unit distribution processing cost at CTR j

ηRj unit collection processing cost at CTR j

ψFi unit manufacturing capacity expansion cost at SF i

ψRi unit remanufacturing capacity expansion cost at SF i

ρFj unit distribution capacity expansion cost at CTR j

ρRj unit collection capacity expansion cost at CTR j

bFi base manufacturing capacity at SF i

bRi base remanufacturing capacity at SF i

lFj base distribution capacity at CTR j

lRj base collection capacity at CTR j

pFi allowed forward capacity expansion at SF i

pRi allowed reverse capacity expansion at SF i

qFj allowed distribution capacity expansion at CTR j

qRj allowed collection capacity expansion at CTR j

λi recovery fraction at SF i

Hω probability of scenario ω
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Decision Variables:

zi =


1 if SF i is open

0 otherwise

yi =


1 if SF i is selected for remanufacturing site

0 otherwise

xj =


1 if CTR j is open

0 otherwise

αFi amount of manufacturing capacity expansion at SF i.

αRi amount of remanufacturing capacity expansion at SF i.

βFj amount of distribution capacity expansion at CTR j.

βRj amount of collection capacity expansion at CTR j.

µωjk fraction of customer k’s demand satisfied by CTR j under scenario ω.

νωkj fraction of customer k’s return sent to CTR j under scenario ω.

σωij amount of product flow from SF i to CTR j under scenario ω.

τωji amount of returned product flow from CTR j to SF i under scenario ω.

In our two-stage stochastic programming modeling, the first stage is concerned

with design decisions to be made now while the second stage is concerned with

decisions after uncertainties are resolved via realization of certain scenario. Thus, in

the model, location and capacity decisions associated with SFs and CTRs belong to

the first stage. Forward and reverse network flow decisions are belong to the second

stage and they are to be determined after a demand and return scenario is realized.

The purpose of two-stage stochastic programming model is to find a solution that

performs well on average under all scenarios and this is achieved via minimization of

a total cost given by first stage design costs and expected cost of transportation and
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processing over demand/return scenarios. The overall model is given as follows:

Min
∑
i∈I

(
F F
i zi + FR

i yi
)

+
∑
j∈J

FC
j xj +

∑
i∈I

(
ψFi α

F
i + ψRi α

R
i

)
+
∑
j∈J

(
ρFj β

F
j + ρRj β

R
j

)
+
∑
ω∈Ω

∑
i∈I

∑
j∈J

Hω

[(
Gij + κFi

)
σωij +

(
Gji + λi κ

R
i − λi κFi

)
τωji
]

+
∑
ω∈Ω

∑
j∈J

∑
k∈K

Hω

[(
Gjk + ηFj

)
Dωk µωjk +

(
Gkj + ηRj

)
Sωk νωkj

]
(2.1a)

subject to

yi ≤ zi ∀ i ∈ I, (2.1b)

αFi ≤ pFi zi ∀ i ∈ I, (2.1c)

αRi ≤ pRi yi ∀ i ∈ I, (2.1d)

βFj ≤ qFj xj ∀ j ∈ J , (2.1e)

βRj ≤ qRj xj ∀ j ∈ J , (2.1f)∑
j∈J

µωjk = 1 ∀ k ∈ K, ω ∈ Ω, (2.1g)

∑
j∈J

νωkj = 1 ∀ k ∈ K, ω ∈ Ω, (2.1h)

∑
i∈I

σωij =
∑
k∈K

Dωk µωjk ∀ j ∈ J , ω ∈ Ω, (2.1i)

∑
i∈I

τωji =
∑
k∈K

Sωk νωkj ∀ j ∈ J , ω ∈ Ω, (2.1j)

∑
k∈K

Dωk µωjk ≤ lFj xj + βFj ∀ j ∈ J , ω ∈ Ω, (2.1k)

∑
k∈K

Sωk νωkj ≤ lRj xj + βRj ∀ j ∈ J , ω ∈ Ω, (2.1l)

∑
j∈J

σωij ≤ bFi zi + αFi ∀ i ∈ I, ω ∈ Ω, (2.1m)
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∑
j∈J

τωji ≤ bRi yi + αRi ∀ i ∈ I, ω ∈ Ω, (2.1n)

µωjk, νωkj, σωij, τωji ≥ 0, ∀ i ∈ I, j ∈ J , k ∈ K, ω ∈ Ω (2.1o)

xj, yi, zi ∈ {0, 1} , αFi , α
R
i , β

F
j , β

R
j ≥ 0 ∀ i ∈ I, j ∈ J . (2.1p)

In the objective function, first two terms represent the fixed costs associated with

locating the SFs and CTRs at their base capacity levels. The third term is associ-

ated with the forward and reverse capacity expansion costs at SFs and the fourth

term is associated with the distribution (forward) and collection (reverse) capacity

expansion costs at the CTRs. The fifth term is the total expected manufactur-

ing/remanufacturing and transportation cost between SFs and CTRs in both for-

ward and reverse directions. We note that, since new and remanufactured prod-

ucts are not distinguished, flow from SFs to CTRs, σωij include both new and

remanufactured products. Thus, manufacturing cost at an SF i ∈ I is given by∑
j∈J

{
κFi σωij − λi κFi τωji

}
and the remanufacturing cost is

∑
j∈J λi κ

R
i τωji. For a

given scenario ω ∈ Ω, the cost expression given in brackets in the fifth term is ob-

tained by combining these manufacturing and remanufacturing costs, and the related

transportation costs. Finally, the sixth term represents total expected processing and

transportation costs associated with CTRs and retailers.

Constraint set (2.1b) guarantees that only open SF can be selected as a remanu-

facturing site. Constraint set (2.1c) and (2.1d) make sure that SF capacities cannot

be increased beyond the maximum capacity limit for manufacturing and remanufac-

turing, respectively. Similarly, constraint set (2.1e) and (2.1f) make sure that CTR

capacities is not increased above the maximum limit for distribution and collection,

respectively. Constraints (2.1g) and (2.1h) ensure that each demand location is as-

signed one CTR for receiving products and sending returned products. Constraints
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(2.1i) and (2.1j) represent the conservation of flow in forward and reverse directions

at the CTRs, respectively. Constraints (2.1k) and (2.1l) guarantee that forward flow

from a CTR and reverse flow to a CTR do not exceed CTR’s respective assigned

capacity and, similarly, constraints (2.1m) and (2.1n) guarantee that forward flow

from an SF and reverse flow to an SF do not exceed SF’s respective assigned man-

ufacturing and remanufacturing capacities, respectively. Finally, constraints (2.1o)

and (2.1p) are the restrictions on the decision variables.

2.3 Solution Approach

BD can provide an efficient framework to solve an MIP that is amenable to

separation into two related problems (master problem and subproblem) with their

associated objective function and constraints extracted from an overall formulation.

The master problem typically contains only discrete variables, the subproblem con-

tains only continuous variables, and the two problems relate via the use of a set of

constraints and an auxiliary variable in the former. Our model is clearly a two-stage

stochastic (binary) integer program in which the first-stage decisions are discrete

design variables and the second-stage corresponds to a linear program to optimize

expected variable costs. A commonly employed efficient framework to handle such

programs is based on BD that is also known as L-shaped method in stochastic pro-

gramming literature [7]. In the basic form of BD, we first obtain a reformulation of

the overall minimization problem by explicitly stating its subproblem (a linear pro-

gram with continuous variables) and then deriving the reformulation by using the

dual subproblem solution and an auxiliary variable to define a set of cuts (known as

Benders optimality cuts) that captures the optimum subproblem solution. Master

problem is then obtained via consideration of only a subset of these cuts in the re-

formulation and, thus, its optimal solution provides a set of design decisions and its
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objective is a lower bound for the overall problem. Using the obtained discrete design

variable values, the subproblem dual is well-defined and its optimal solution provides

the necessary information to generate an upper bound for the overall problem as well

as a Benders cut for the master problem. Master problem and the subproblem are

solved in this delayed constraint generation fashion iteratively until a satisfactorily

small gap between the bounds is achieved. Although the BD framework provides a

very compelling approach to solve MIPs, it is not without issues which are mainly

related to the strength of bounds it produces and, thus, the algorithmic convergence

rate.

One of the issues faced in this process is that the solution of a master problem may

provide a set of design variable values for which the subproblem is not feasible (or

its dual is unbounded). In this case, a Benders feasibility cut based on extreme rays,

rather than an optimality cut based on dual variable values, is generated and added

to the master problem. If the feasibility of subproblem is always guaranteed for any

solution provided by the master problem (first-stage decisions), then the stochastic

program of interest is called to be one with relatively complete recourse and only an

optimality cut is generated in each iteration. To ensure relatively complete recourse,

induced constraints (or surrogate constraints) can be utilized in the master problem

(§2.3.3.1). For our problem, we suggest induced constraints to ensure enough capacity

availability at the SFs and CTRs while solving the second-stage problem, and, thus,

resolve the convergence issues.

Another issue that can be faced is the goodness of the bounds, especially lower

bounds, obtained throughout the iterations. Observing that the master problem

solution provides lower bounds (since many of the Benders optimality cuts implied

by the reformulation are relaxed), it becomes clear that, at each iteration, one needs

to add strong optimality cuts that force the lower bounds to have higher values
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quickly. To this end, we suggest a strengthening technique for Benders optimality

cuts (§2.3.3.3) along with the use of multiple cuts which are obtained by separating

traditional single Benders cut for scenario groups categorized based on demand and

return levels as well as forward and return channels (§2.3.3.2). Furthermore, we also

develop disaggregated dual subproblem based mean value lower bounding cuts and

add them into the master problem for improved lower bound values (§2.3.3.4).

2.3.1 Benders Subproblem and Its Dual

The primal subproblem, denoted by SP (σ, τ, µ, ν|x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R), is ob-

tained as follows for given values of design decisions involving locations and capacities

of SFs and CTRs.

Min ZSP =
∑
ω∈Ω

∑
i∈I

∑
j∈J

Hω

[(
Gij + κFi

)
σωij +

(
Gji + λi κ

R
i − λi κFi

)
τωji
]

+
∑
ω∈Ω

∑
j∈J

∑
k∈K

Hω

[(
Gjk + ηFj

)
Dωk µωjk +

(
Gkj + ηRj

)
Sωk νωkj

]
(2.2)

subject to (2.1g)− (2.1o)

The optimal solution of SP (·) provides the forward (σωij, τωji) and reverse flows

(µωjk, νωkj) with minimum total expected processing and transportation cost for

the scenario set Ω. As it is well-known within the L-Shaped approach context, the

subproblem is separable for each scenario ω, thus, we represent a subproblem as

SPω(σ, τ, µ, ν|x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R) for a scenario ω ∈ Ω. Then, the overall formu-

lation (2.1) can be expressed as
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Min
∑
i∈I

(
F F
i zi + FR

i yi
)

+
∑
j∈J

FC
j xj +

∑
i∈I

(
ψFi α

F
i + ψRi α

R
i

)
+
∑
j∈J

(
ρFj β

F
j + ρRj β

R
j

)
+
∑
ω∈Ω

Hω SPω

(
σ, τ, µ, ν|x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R

)
(2.3)

subject to (2.1b)− (2.1f), and (2.1p).

Observe that the subproblem SPω(·) is also separable in terms of forward and

reverse flow directions which are given, along with their duals, as follows.

Forward Subproblem for each scenario ω ∈ Ω, is obtained as

Min
∑
i∈I

∑
j∈J

(
Gij + κFi

)
σωij +

∑
j∈J

∑
k∈K

(
Gjk + ηFj

)
Dωk µωjk (2.4a)

subject to (2.1g), (2.1i), (2.1k), (2.1m)

µωjk, σωij ≥ 0, ∀ i ∈ I, j ∈ J , k ∈ K. (2.4b)

Defining the dual variables π1
ωk, π

2
ωj, π

3
ωj, and π4

ωi for constraints (2.1g), (2.1i), (2.1k),

and (2.1m), respectively, the Forward Dual Subproblem for ω ∈ Ω (DSP-Fω) is

obtained as

Max ZDSP-Fω =
∑
k∈K

π1
ωk +

∑
j∈J

(
lFj x̂j + β̂Fj

)
π3
ωj +

∑
i∈I

(
bFi ẑi + α̂Fi

)
π4
ωi (2.5a)

23



subject to

π1
ωk −Dωk π

2
ωj +Dωk π

3
ωj ≤ Hω

(
Gjk + ηFj

)
Dωk ∀ j ∈ J , k ∈ K, (2.5b)

π2
ωj + π4

ωi ≤ Hω

(
Gij + κFi

)
∀ i ∈ I, j ∈ J , (2.5c)

π1
ωk, π

2
ωj unrestricted, π3

ωj, π
4
ωi ≤ 0 ∀ i ∈ I, j ∈ J , k ∈ K. (2.5d)

Reverse subproblem for each scenario ω ∈ Ω, is stated as

Min
∑
i∈I

∑
j∈J

(
Gji + λi κ

R
i − λi κFi

)
τωji +

∑
j∈J

∑
k∈K

(
Gkj + ηRj

)
Sωk νωkj

(2.6a)

subject to (2.1h), (2.1j), (2.1l), (2.1n)

νωkj, τωji ≥ 0, ∀ i ∈ I, j ∈ J , k ∈ K. (2.6b)

Defining the dual variables π5
ωk, π

6
ωj, π

7
ωj, and π8

ωi for constraints (2.1h), (2.1j), (2.1l)

and (2.1n), respectively, Reverse Dual Subproblem for ω ∈ Ω (DSP-Rω) is de-

rived as

Max ZDSP-Rω =
∑
k∈K

π5
ωk +

∑
j∈J

(
lRj x̂j + β̂Rj

)
π7
ωj +

∑
i∈I

(
bRi ŷi + α̂Ri

)
π8
ωi (2.7a)

subject to

π5
ωk − Sωk π6

ωj + Sωk π
7
ωj ≤ Hω

(
Gkj + ηRj

)
Sωk ∀ j ∈ J , k ∈ K, (2.7b)

π6
ωj + π8

ωi ≤ Hω

(
Gji + λi κ

R
i − λi κFi

)
∀ i ∈ I, j ∈ J , (2.7c)

π5
ωk, π

6
ωj unrestricted, π7

ωj, π
8
ωi ≤ 0 ∀ i ∈ I, j ∈ J , k ∈ K. (2.7d)
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2.3.2 Benders Master Problem

The master problem, denoted by MP (x, y, z, αF , αR, βF , βR|σ̂, τ̂ , µ̂, ν̂), can be ob-

tained from the overall formulation given with objective (2.3). For this, we replace

the last term representing second-stage objective with a function of the auxiliary

variable(s) to be employed in constructing the Benders cut(s) in an iteration. In

the following master problem formulation, we use the generic terms Θ(cutset) and

benders cutset in place of this objective function term and the Benders cut(s)

added in the course of iterations, respectively.

Min ZMP =
∑
i∈I

(
F F
i zi + FR

i yi
)

+
∑
j∈J

FC
j xj +

∑
i∈I

(
ψFi α

F
i + ψRi α

R
i

)
+
∑
j∈J

(
ρFj β

F
j + ρRj β

R
j

)
+ Θ(cutset) (2.8)

subject to (2.1b)− (2.1f), and (2.1p)

benders cutset

Next, we provide alternative approaches to replace Θ(cutset) and benders cut-

set and other enhancement approaches we employ to obtain improved bounds and

convergence.

2.3.3 Enhancing the Benders Algorithm

In order to accelerate overall BD convergence and reduce runtime with quality

bounds for our problem, we employ three approaches including the introduction of

so-called induced constraints, a multi-cut approach while populating the benders

cutset in each iteration, and strengthening of the Benders (optimality) cuts.
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2.3.3.1 Induced Constraints

As noted before, in the case that the master problem does not provide an un-

derlying network for the (primal) subproblem to have a feasible solution (or its dual

is unbounded), then a feasibility cut based on extreme rays of the dual subproblem

polyhedron is added to the master problem in the next iteration. The process, in

general, has a hampering effect on the convergence properties of the algorithm. In

the stochastic programming context, this leads to the case where the problem is

called not to have complete recourse and a use of induced constraints is suggested

to ensure complete recourse and, thus, generation of optimality cuts only. Induced

constraints serve a similar purpose as the surrogate constraints employed in solving

mixed integer programs using BD and since they are redundant they do not impact

the original feasible domain of the problem.

In our context, the master problem determines the locations and capacity levels

of the SFs and CTRs while the subproblems are solved for each scenario ω ∈ Ω (and

for forward and reverse flow channels separately) with their own demand and return

realizations, respectively. Then, the master problem solution may not provide facility

locations (SF and/or CTR) with enough available capacity to handle the overall flow

for each scenario ω ∈ Ω and flow channel. Observe that if total forward and reverse

capacities at selected SFs and CTRs are larger than total quantities of demand and

return, respectively, then their associated subproblems are always feasible. Therefore,

as induced constraints, we introduce the following four constraints:

∑
i∈I

(
bFi zi + αFi

)
≥ maxω∈Ω

{
Tω : Tω =

∑
k∈K

Dωk

}
(2.9a)
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∑
j∈J

(
lFj xj + βFj

)
≥ maxω∈Ω

{
Tω : Tω =

∑
k∈K

Dωk

}
(2.9b)

∑
i∈I

(
bRi yi + αRi

)
≥ maxω∈Ω

{
Tω : Tω =

∑
k∈K

Sωk

}
(2.9c)

∑
j∈J

(
lRj xj + βRj

)
≥ maxω∈Ω

{
Tω : Tω =

∑
k∈K

Sωk

}
(2.9d)

Constraint (2.9a) and (2.9b) relate to the forward channel and state that the total

capacities installed at the manufacturing at SFs and CTRs, respectively, are at least

as large to handle the scenario that has the maximum total demand at retail locations

so that all subproblems are ensured to be feasible. Constraints (2.9c) and (2.9d)

ensure capacity feasibility of all of the subproblems for the reverse channel in the

similar way for remanufacturing at SFs and CTRs.

2.3.3.2 Multi-Cut Separation Schemes for Benders Cuts

The separation of the Benders subproblem for each scenario readily implies a

potential to employ multiple Benders cuts, one for each scenario, to be added to the

master problem in each iteration. This is known as the multi-cut approach [8]. As

shown above, in our case, the subproblem is also separable for each flow channel,

thus, there is potential to generate and add one Benders cut for each scenario and

each channel at each iteration of the algorithm. Adding multiple cuts may strengthen

the lower bounds so that total number of iterations and solution time are reduced.

However, this amounts to adding 2 ∗ |Ω| cuts to master problem in each iteration.

Accumulation of a large number of cuts in the master problem hinders its efficient

solution and increases runtimes as noted in [7]. On the other hand, in the typical

Benders framework, addition of one cut is suggested, and this one cut for our case

can be obtained by simply combining the same 2 ∗ |Ω| cuts by addition. That way,

27



however, much valuable information about the solution space can be overlooked due

to aggregation and the performance of the algorithm can be affected negatively due

to weaker lower bounds provided by the master problem. Thus, it is reasonable

to strive for a balance between these two extremes and consider forms of partial

aggregation of Benders cuts. This is experimented before in the context of solving

mixed integer programs with promising results [45, 46]. In addition to the above two

types of cuts, we consider two additional types of disaggregated Benders cuts and

outline four types of possible Benders cuts as follows:

Type 1 Benders Cut is the standard single Benders cut which is generated by

employing all dual SP solutions, i.e., the solution to the dual of

SP (σ, τ, µ, ν|x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R), within one inequality given as Θ(cutset)

is replaced by Θ in (2.8) and the constraints benders cutset include

Θ ≥
∑
ω∈Ω

[∑
k∈K

π1
ωk +

∑
j∈J

π3
ωj

(
lFj xj + βFj

)
+
∑
i∈I

π4
ωi

(
bFi zi + αFi

)]

+
∑
ω∈Ω

[∑
k∈K

π5
ωk +

∑
j∈J

π7
ωj

(
lRj xj + βRj

)
+
∑
i∈I

π8
ωi

(
bRi yi + αRi

)]

where Θ ≥ 0 is the auxiliary variable in Benders master problem.

Type 2 Benders Cut is the other end of the spectrum where, in each iteration,

we add a total 2×|Ω| cuts to benders cutset, one for each flow channel and

scenario, to the master problem given as

ΘF
ω ≥

∑
k∈K

π1
ωk +

∑
j∈J

π3
ωj

(
lFj xj + βFj

)
+
∑
i∈I

π4
ωi

(
bFi zi + αFi

)
ΘR
ω ≥

∑
k∈K

π5
ωk +

∑
j∈J

π7
ωj

(
lRj xj + βRj

)
+
∑
i∈I

π8
ωi

(
bRi yi + αRi

)
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where ΘF
ω ≥ 0, ΘR

ω unrestricted (due to the formation of the objective) are the

auxiliary variables. Also, in (2.8), we replace the term Θ(cutset) by
∑

ω∈Ω(ΘF
ω+

ΘR
ω ).

Type 3 Benders Cut are obtained after aggregation over scenarios in the previous

type, thus, in each iteration, we add only two cuts to benders cutset, one

for each flow channel, given as

ΘF ≥
∑
ω∈Ω

[∑
k∈K

π1
ωk +

∑
j∈J

π3
ωj

(
lFj xj + βFj

)
+
∑
i∈I

π4
ωi

(
bFi zi + αFi

)]

ΘR ≥
∑
ω∈Ω

[∑
k∈K

π5
ωk +

∑
j∈J

π7
ωj

(
lRj xj + βRj

)
+
∑
i∈I

π8
ωi

(
bRi yi + αRi

)]

with auxiliary variables ΘF ≥ 0, ΘR urs and replacement of Θ(cutset) by

(ΘF + ΘR) in (2.8).

Type 4 Benders Cut is obtained via a slightly intermediate form of aggregation

by taking advantage of the way the scenarios present themselves at varying

levels of demand and return quantities. More specifically, we assume that the

scenario for demand and return quantity can be categorized as a low level (l),

a medium level (m) or a high level (h) scenario, for example, depending on

the life-cycle of a product. We create the corresponding three sets of scenarios

as Ωl, Ωm, and, Ωh, respectively, so that collectively exhaustive and mutually

exclusive. Then, for each channel and scenario group a Benders cut can be

generated. This leads to a total of 6 cuts to be generated and added to the
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benders cutset in each iteration given as follows

ΘF
s ≥

∑
ω∈Ωs

[∑
k∈K

π1
ωk +

∑
j∈J

π3
ωj

(
lFj xj + βFj

)
+
∑
i∈I

π4
ωi

(
bFi zi + αFi

)]
, s ∈ {l,m, h}

ΘR
s ≥

∑
ω∈Ωs

[∑
k∈K

π5
ωk +

∑
j∈J

π7
ωj

(
lRj xj + βRj

)
+
∑
i∈I

π8
ωi

(
bRi yi + αRi

)]
, s ∈ {l,m, h}.

We define a total of six auxiliary variables as ΘF
s ≥ 0 and ΘR

s urs for s ∈

{l,m, h} and the Θ(cutset) is then obtained as
∑

s∈{l,m,h}(Θ
F
s +ΘR

s ) to include

in (2.8).

2.3.3.3 Strengthened Benders Cuts

Observe that, given master problem solution for location and capacity values

for the SFs and CTRs, the subproblem is a network flow problem for which having

multiple optimum solutions is not uncommon. Thus, the subproblem (and its dual)

solution is one of many solutions with the same optimum objective value. Since

each one of these solutions implies a different Benders cut(s), it is important that we

generate and employ a stronger set of cuts. Generating strengthened Benders cuts

is previously performed while solving deterministic mixed integer programs with

good results [e.g. 12, 47]. Magnanti and Wong [34] define the strongness of a cut

in an optimization problem miny∈Y, z∈R {z : z ≥ f(u) + y g(u), ∀u ∈ U} as follows: If

f(u1) + y g(u1) ≥ f(u) + y g(u), ∀y ∈ Y , then the cut z ≥ f(u1) + y g(u1) dominates

or stronger than the cut z ≥ f(u) + y g(u). Then, following a two-phase approach

similarly to the ones in [46, 47], we identify strengthened Benders cuts for each

scenario and both forward and reverse channel subproblems.

In the first phase of solving DSP-Fω, we consider all π1
ωk variables and only

the π2
ωj, π

3
ωj, and π4

ωi variables whose respective x̂j and ẑi coefficients in (2.5a) are
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equal to one. Notice that, if an x̂j or a ẑi value is zero, then the corresponding

β̂Fj and α̂Fi values are also zero, respectively, and those terms are immaterial in the

objective function of DSP-Fω. Accordingly, letting IO denote the set of open SFs for

which ẑi = 1 and J O denote the set of open CTRs for which x̂j = 1, the first-phase

forward dual subproblem is given as

Max
∑
k∈K

π1
ωk +

∑
j∈JO

(
lFj x̂j + β̂Fj

)
π3
ωj +

∑
i∈IO

(
bFi ẑi + α̂Fi

)
π4
ωi (2.10a)

subject to

π1
ωk −Dωk π

2
ωj +Dωk π

3
ωj ≤ Hω

(
Gjk + ηFj

)
Dωk ∀ j ∈ J O, k ∈ K (2.10b)

π2
ωj + π4

ωi ≤ Hω

(
Gij + κFi

)
∀ i ∈ IO, j ∈ J O (2.10c)

π1
ωk, π

2
ωj unrestricted, π3

ωj, π
4
ωi ≤ 0 ∀ i ∈ IO, j ∈ J O, k ∈ K

(2.10d)

In the second phase of solving DSP-Fω, we determine the values of remaining

variables to obtain strengthened cuts. Specifically, after fixing the values of all the

variables determined in the first phase, namely π1
ωk, ∀ k ∈ K, π2

ωj, π
3
ωj, ∀ j ∈ J O and

π4
ωi, ∀ i ∈ IO, we solve a maximization problem given as

Max
∑

j∈J\JO

lFj π
3
ωj +

∑
i∈I\IO

bFi π
4
ωi (2.11a)

subject to

−Dωk π
2
ωj +Dωk π

3
ωj ≤ Hω

(
Gjk + ηFj

)
Dωk − π1

ωk ∀ j ∈ J \J O, k ∈ K (2.11b)

π2
ωj + π4

ωi ≤ Hω

(
Gij + κFi

)
∀ i ∈ I, j ∈ J (2.11c)

π2
ωj unrestricted, π3

ωj, π
4
ωi ≤ 0 ∀ i ∈ I, j ∈ J . (2.11d)
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In the first phase of Solving DSP-Rω, we proceed similarly to solving DSP-

Fω and first define the sets IU = {i : ŷi = 1} and J O = {j : x̂j = 1} based on

master problem solution for x and y variables. Then, the first phase problem is

Max
∑
k∈K

π5
ωk +

∑
j∈JO

(
lRj x̂j + β̂Rj

)
π7
ωj +

∑
i∈IU

(
bRi ŷi + α̂Ri

)
π8
ωi (2.12a)

subject to

π5
ωk − Sωk π6

ωj + Sωk π
7
ωj ≤ Hω

(
Gkj + ηRj

)
Sωk ∀ j ∈ J O, k ∈ K (2.12b)

π6
ωj + π8

ωi ≤ Hω

(
Gji + λi κ

R
i − λi κFi

)
∀ i ∈ IU , j ∈ J O (2.12c)

π5
ωk, π

6
ωj unrestricted, π7

ωj, π
8
ωi ≤ 0 ∀ i ∈ IU , j ∈ J O, k ∈ K. (2.12d)

In the second phase of solving DSP-Rω, fixing the values of π5
ωk, k ∈ K,

π6
ωj, π

7
ωj, j ∈ J O, and π8

ωi, i ∈ IU as obtained in the first phase, we solve the

following maximization problem.

Max
∑

j∈J\JO

lRj π
7
ωj +

∑
i∈I\IC

bRi π
8
ωi (2.13a)

subject to

− Sωk π6
ωj + Sωk π

7
ωj ≤ Hω

(
Gkj + ηRj

)
Sωk − π5

ωk ∀ j ∈ J \J O, k ∈ K (2.13b)

π6
ωj + π8

ωi ≤ Hω

(
Gji + λi κ

R
i − λi κFi

)
∀ i ∈ I, j ∈ J (2.13c)

π6
ωj unrestricted, π7

ωj, π
8
ωi ≤ 0 ∀ i ∈ I, j ∈ J . (2.13d)
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2.3.3.4 Mean Value Cuts

In order to improve the performance of the BD approach via generation of good

lower bounds early in the iterations, Batun et al. [3] suggest a lower bounding in-

equality for the auxiliary variable Θ that are applicable in also solving a general

two-stage stochastic programming model. The inequality they provide in Proposi-

tion 2 [3] relates Θ to the second stage cost obtained based on a feasible first-stage

solution. Specifically, for our problem, we can state the following lower bounding

inequality for Θ:

Θ ≥ ZSPω̄(x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R, ω̄) (2.14)

where (x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R) and ZSPω̄ = (x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R, ω̄) represent a fea-

sible solution to the master problem and the optimum objective value of the sub-

problem solved for only the mean value scenario, respectively.

Batun et al. [3] suggest a generation of above cuts by utilizing primal subproblem

under mean value scenario within the master problem. Below, we first show how

this can be done for our problem. Later, we suggest an alternative approach that is

based on the dual subproblem solution as in the generation of regular Benders cuts

and that improves the solution performance even further than the one by [3].

Mean Value Cuts based on Primal Subproblem

In this approach, master problem defined in section 2.3.2 is appended with the set

of primal subproblem constraints under mean value scenario ω̄ (a scenario with mean

values of stochastic parameters) as well as the constraint that represents the relation

between the auxiliary variable, Θ, and primal subproblem objective function. Since

we use the mean value of stochastic parameters, additional parameters and auxiliary

decision variables are needed to be defined as follows:
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Parameters

D̄k mean value of demand at customer k ∈ K

S̄k mean value of return at customer k ∈ K

Auxiliary Decision Variables

µjk fraction of customer k’s demand satisfied by CTR j under ω̄

νkj fraction of customer k’s return sent to CTR j under ω̄

σij amount of product flow from SF i to CTR j under ω̄

τji amount of returned product flow from CTR j to SF i under ω̄

Therefore, master problem has following additional constraints (2.15a) - (2.15i) with

one-to-one correspondence to (2.1g) - (2.1o):

∑
j∈J

µjk = 1 ∀ k ∈ K (2.15a)

∑
j∈J

νkj = 1 ∀ k ∈ K (2.15b)

∑
i∈I

σij =
∑
k∈K

D̄k µjk ∀ j ∈ J (2.15c)

∑
i∈I

τji =
∑
k∈K

S̄k νkj ∀ j ∈ J (2.15d)

∑
k∈K

D̄k µjk ≤ lFj xj + βFj ∀ j ∈ J (2.15e)

∑
k∈K

S̄k νkj ≤ lRj xj + βRj ∀ j ∈ J (2.15f)

∑
j∈J

σij ≤ bFi zi + αFi ∀ i ∈ I (2.15g)

∑
j∈J

τji ≤ bRi yi + αRi ∀ i ∈ I (2.15h)

µjk, νkj, σij, τji ≥ 0, ∀ i ∈ I, j ∈ J , k ∈ K (2.15i)
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Noting that we employ multi-cut separation schema for regular Benders cuts as

described in Section 2.3.3.2 and that the Type 4 cuts provide the best performing

separation (as shown computationally later in Section 2.4.1.1), instead of a single

auxiliary variable Θ, we consider auxiliary variables for demand and return categories

and flow channels, i.e., ΘF
s , ΘR

s , s ∈ {l,m, h}. Thus, based on (2.14), we have the

following lower bounding cut to also be added to the master problem:

∑
s∈{l,m,h}

(
ΘF
s + ΘR

s

)
≥

∑
i∈I

∑
j∈J

[(
Gij + κFi

)
σij +

(
Gji + λi κ

R
i − λi κFi

)
τji
]

+
∑
j∈J

∑
k∈K

[(
Gjk + ηFj

)
D̄k µjk +

(
Gkj + ηRj

)
S̄k νkj

]
(2.16)

Then, similarly to the Benders cuts, (2.16) can be separated by flow directions and

demand-return categories. Thus, we define Type A for a single, Type B for two

(one reverse and one forward)), and Type C for six (forward/reverse channels and

low/medium/high demand-return category) lower bounding valid inequalities as fol-

lows:

Type A incorporates a single inequality (2.16) along with (2.15) in the master prob-

lem.

Type B incorporates the following two inequalities below along with (2.15) in the

master problem.

∑
s∈{l,m,h}

ΘF
s ≥

∑
i∈I

∑
j∈J

(
Gij + κFi

)
σij +

∑
j∈J

∑
k∈K

(
Gjk + ηFj

)
D̄k µjk

∑
s∈{l,m,h}

ΘR
s ≥

∑
i∈I

∑
j∈J

(
Gji + λi κ

R
i − λi κFi

)
τji +

∑
j∈J

∑
k∈K

(
Gkj + ηRj

)
S̄k νkj

Type C incorporates the six inequalities along with (2.15) in the master problem.
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To develop these inequalities we define the following notation in which mean

value scenarios, denoted as ω̄s, s ∈ {l,m, h}, are generated separately for each

demand-return category.

Parameters

D̄sk mean value of demand for category s ∈ {l,m, h} at customer k.

S̄sk mean value of return for category s ∈ {l,m, h} at customer k.

Auxiliary Decision Variables

µsjk fraction of customer k’s demand satisfied by CTR j under ω̄s, s ∈ {l,m, h}

νskj fraction of customer k’s return sent to CTR j under ω̄s, s ∈ {l,m, h}

σsij amount of product flow from SF i to CTR j under ω̄s, s ∈ {l,m, h}

τsji amount of returned product flow from CTR j to SF i under ω̄s, s ∈ {l,m, h}

For this case, using the above notation, constraints (2.15) are extended to

have three copies of each constraint for s ∈ {l,m, h} and the lower bounding

inequalities are separated as

ΘF
s ≥

∑
i∈I

∑
j∈J

(
Gij + κFi

)
σsij +

∑
j∈J

∑
k∈K

(
Gjk + ηFj

)
D̄sk µsjk, s ∈ {l,m, h}

ΘR
s ≥

∑
i∈I

∑
j∈J

(
Gji + λi κ

R
i − λi κFi

)
τsji +

∑
j∈J

∑
k∈K

(
Gkj + ηRj

)
S̄sk νskj, s ∈ {l,m, h} .

2.3.3.5 Mean Value Cuts based on Dual Subproblem and Separation Schemes

In order to generate alternative lower bounding cuts based on dual subproblem

solution, we first identify a subproblem which can be seen as one of the subproblem

for a scenario, defined as SPω earlier in Section 2.3.1 following (2.2). Specifically, for

this subproblem SPω̄ in which we utilize the mean values of stochastic parameters

as above, we have the constraint set given in (2.15) and the objective function as
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the right-hand-side of (2.16). The dual of this subproblem for a given set of feasible

master problem solution (x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R) is well defined as before and can be

particularly specified by employing the dual variables χ1
k, χ

5
j , χ

2
j , χ

6
i , χ

3
k, χ

7
j , χ

4
j , χ

8
i

for constraints in (2.15), respectively. Based on the dual formulation solution for this

specific subproblem for which a known value of χ.. is denoted by χ̂.., we generate the

following three types of lower bounding cuts with varying degrees of disaggregation.

Type A* generates and adds to the master problem the following single inequality

after solving the dual of SPω̄

∑
s∈{l,m,h}

(
ΘF
s + ΘR

s

)
≥

∑
k∈K

χ̂1
k +

∑
j∈J

χ̂3
j

(
lFj xj + βFj

)
+
∑
i∈I

χ̂4
i

(
bFi zi + αFi

)
+

∑
k∈K

χ̂5
k +

∑
j∈J

χ̂7
j

(
lRj xj + βRj

)
+
∑
i∈I

χ̂8
i

(
bRi yi + αRi

)

Type B* generates and adds to the master problem the following two inequalities,

one for each flow channel, after solving the dual of SPω̄

∑
s∈{l,m,h}

ΘF
s ≥

∑
k∈K

χ̂1
k +

∑
j∈J

χ̂3
j

(
lFj xj + βFj

)
+
∑
i∈I

χ̂4
i

(
bFi zi + αFi

)
∑

s∈{l,m,h}

ΘR
s ≥

∑
k∈K

χ̂5
k +

∑
j∈J

χ̂7
j

(
lRj xj + βRj

)
+
∑
i∈I

χ̂8
i

(
bRi yi + αRi

)

Type C* generates and adds the following six inequalities to the master problem

after solving the dual of three subproblems SPω̄s which adopt mean value sce-

narios ω̄s, s ∈ {l,m, h} accordingly.

ΘF
s ≥

∑
k∈K

χ̂1
sk +

∑
j∈J

χ̂3
sj

(
lFj xj + βFj

)
+
∑
i∈I

χ̂4
si

(
bFi zi + αFi

)
, s ∈ {l,m, h}

ΘR
s ≥

∑
k∈K

χ̂5
sk +

∑
j∈J

χ̂7
sj

(
lRj xj + βRj

)
+
∑
i∈I

χ̂8
si

(
bRi yi + αRi

)
, s ∈ {l,m, h}.
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2.3.4 Overall Approach

Having the master MP (x, y, z, αF , αR, βF , βR|·) the subproblem SP (σ, τ, µ, ν|·)

as well as its dual DSP (π1, π2, π3, π4, π5, π6, π7, π8|x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R) defined, we

summarize the overall solution method in Algorithm 1. We first note that the overall

subproblem solution to DSP is always obtained, regardless of the cut type employed,

via the solutions to subproblems for each channel and scenario, i.e., DSP-Fω and

DSP-Rω, and second, that if lower bounding inequalities are employed depending on

their type, corresponding additional lines (3, 8, and 16) should be included.

Algorithm 1 BD Algorithm

1: Initialize Z∗, UB, Itr, MaxItr, gap values, and set benders cutset empty

2: Solve MP (x, y, z, αF , αR, βF , βR|·)
3: Embed corresponding (2.15) and (2.16) into MP (·) if lower bound inequalities

are used

4: Set LB = ZMP

5: while (UB− LB)/LB ≥ gap and (Itr<MaxItr) do

6: Itr=Itr + 1

7: Solve DSP-Fω and DSP-Rω to obtain σ̂, τ̂ , µ̂, ν̂

8: Solve the dual of SPω̄ or SPω̄s if lower bounding inequality is used.

9: Calculate ZSP as
∑

ω∈Ω(ZDSP-Fω + ZDSP-Rω)

10: Calculate UB= (ZMP− Θ(cutset)) + ZSP

11: if (Z∗ > UB) then

12: Z∗ = UB

13: end if

14: Generate new cuts using σ̂, τ̂ , µ̂, ν̂ values and add to benders cutset

15: Solve MP (x, y, z, αF , αR, βF , βR|·)
16: Embed cuts Types A*, B*, or C* if our suggested mean value cuts approach

is used

17: Set LB = ZMP

18: end while

19: Solve SP (σ, τ, µ, ν|x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R)

20: Report x̂, ŷ, ẑ, α̂F , α̂R, β̂F , β̂R, σ̂, τ̂ , µ̂, ν̂ and the corresponding value for (2.1a).
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2.4 Computational Study

In this section, we present computational test and analysis results on two areas

of interest for our study objectives including the following.

1. Testing of computational efficiency and effectiveness of the proposed solution

approach: Specifically, we first examine the effects of algorithmic enhancements

on the overall approach to solve a stochastic program with a given scenario set

(§ 2.4.1). Then, we provide a computational comparison between the suggested

BD approach and an alternative relying on the solution of DEP in § 2.4.2.

Finally, using or suggested solution approach for each scenario set, we conduct

a numerical study by implementing the SAA method of Kleywegt et al. [26] so

as to obtain high quality solutions to our stochastic program (§ 2.4.3).

2. The effect of recovery rate parameter and recovery locations (Retailer, CTR

or SF) on the network structure and the overall cost: In this context, we first

present extended formulations of our problem to obtain network designs for

alternative recovery locations and, then, using the SAA approach with our

optimization algorithm embedded, we provide an analysis on design impacts

of alternative recovery rates and locations. Using our results, we also provide

an analysis on the value of the stochastic solution in the context of this case

study (§ 2.4.4.3).

For the algorithmic performance tests, we randomly generate data following ap-

proach outlined in Üster et al. [46] and, for the analysis of recovery rate and locations,

we use the data provided in Sahyouni et al. [40] for the continental US. The BD so-

lution algorithm is run until an optimality gap of 2% (or better) is reached and it is

implemented using C++ programming language and CPLEX Concert Technology.

All implicit MIPs (master problems and dual subproblems) are solved using CPLEX
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12.4 (64-bit) and runs are completed on multiple machines with a 3GHz Intel Core2

Quad processor and 8 GB RAM.

2.4.1 Performance of Algorithmic Enhancements

For computational testing of algorithmic enhancements, we generate 12 different

problem classes by changing number of scenarios, SFs, CTRs and customers. Each

class includes 10 different test instances. Table 2.1 shows detailed information of

problem classes. The first and the second number in the bracket represent total

number of binary and continuous variables in the first stage, respectively.

First-stage Second-stage

Class Scenario SF CTR Customer Decision Vars (B/C) Constraints Decision Vars Constraints

C1 250 10 30 60 130 (50/80) 90 1,050,000 65,000

C2 250 10 30 90 130 (50/80) 90 1,500,000 80,000

C3 250 10 30 120 130 (50/80) 90 1,950,000 95,000

C4 500 10 30 60 130 (50/80) 90 2,100,000 130,000

C5 500 10 30 90 130 (50/80) 90 3,000,000 160,000

C6 500 10 30 120 130 (50/80) 90 3,900,000 190,000

C7 250 20 60 60 260 (100/160) 180 2,400,000 100,000

C8 250 20 60 90 260 (100/160) 180 3,300,000 115,000

C9 250 20 60 120 260 (100/160) 180 4,200,000 130,000

C10 500 20 60 60 260 (100/160) 180 4,800,000 200,000

C11 500 20 60 90 260 (100/160) 180 6,600,000 230,000

C12 500 20 60 120 260 (100/160) 180 8,400,000 260,000

Table 2.1: Input Parameters for Test Classes

Generally, two-stage stochastic programming model is hard to solve when num-

ber of scenario is relatively large. Thus, Monte Carlo Sampling method is a common

approach to reduce the problem size. In this section, we focus on improving the per-
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formance of BD algorithm for two-stage stochastic programming for a fixed number

of scenarios, thus, we assume that generated scenarios cover all uncertainties. Since

all test instances are solved within reasonable time using proposed solution method

we do not consider any technique to reduce the problem size.

We use uniform distributions to generate problem parameters for low, medium,

and high demand values (Dωlk, Dωmk, Dωhk), return fractions (δk), and recovery

fractions (λi). TD represents maximum of total demand among |Ω| scenarios (i.e.

TD = maxω∈Ω

{∑
k∈K Dωk

}
) and TR represents maximum of total return among |Ω|

scenarios (i.e. TR = maxω∈Ω

{∑
k∈K Sωk

}
). Based on TD and TR, we generate ini-

tial capacity at SF (bFi , b
R
i ) and at CTR (lFj , l

R
j ), and capacity expansion limitation

at SF (pFi , p
R
i ) and CTR (qFj , q

R
j ). We note that, in general, our test instances gen-

erate optimum solution whose objective value is split between the first and second

stage components roughly as 40% and 60% since we expect higher transportation

costs with the inclusion of reverse flows under the presence of hybrid facilities which

are utilized for both forward and reverse flows. Ranges for input parameters are

provided in Table 2.2 and complete data sets for each instance can be found at

http://ise.tamu.edu/LNS/clsc-data.html.

Parameter Value Parameter Value Parameter Value

Dωlk U[500, 1500] Dωmk U[1500, 2500] Dωhk U[2500, 3500]

δk U[0.5, 0.8] λi U[0.6, 0.8] bFi U[0.1, 0.2] × TD

bRi U[0.1, 0.2] × TR lFj U[0.1, 0.2] × TD lRj U[0.1, 0.2] × TR

pFi U[0.1, 0.2] × bFi pRi U[0.1, 0.2] × bRi qFj U[0.1, 0.2] × lFj

qRj U[0.1, 0.2] × lRj

Table 2.2: Distribution for Input Parameters
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2.4.1.1 Results of Multi-Cut Approach

In this section, we compare the performance of four types of Benders cuts defined

in section 2.3.3.2. Our preliminary experiments showed that Type 4 Benders cut

performs the best in terms of solution time to obtain a 2.0% optimality gap. Table 2.3

presents the average and maximum solution times and the number of iterations for

BD algorithm with Type 4 Benders cut.

Time (seconds) Iteration

Ave Max Ave Max

C1 157 306 31.9 57

C2 386 752 54.2 101

C3 412 760 42.6 73

C4 336 616 34.2 62

C5 583 970 40.1 68

C6 1185 2930 56.4 134

C7 268 520 19.8 32

C8 1051 4610 35.8 85

C9 812 2365 46.4 119

C10 593 961 22.2 35

C11 1402 2936 33.7 61

C12 1423 2188 40.2 60

Table 2.3: Computational Results for the Type 4 Benders Cut

Since the BD algorithm using the Type 1 , 2, or 3 cuts fail to solve problem

within a reasonable amount of time we employ an additional stopping criterion; We

stop the iterations for an instance if the solution time exceeds the maximum solution

time in its class when Type 4 cut was used or if a 2% gap is reached, whichever

comes earlier. Table 2.4 presents the optimality gaps, solution time (in seconds),
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and number of iterations for the BD algorithm with Type 1, 2, and 3 Benders cuts.

Type 1 Type 2 Type 3

Opt gap(%) Time Iter Opt gap(%) Time Iter Opt gap(%) Time Iter

Ave Max Ave Ave Ave Max Ave Ave Ave Max Ave Ave

C1 4.02 7.89 302 33.8 2.62 4.39 255 19.3 2.02 2.39 189 40.3

C2 4.86 6.82 755 46.7 3.54 5.74 743 26.8 2.05 2.78 530 75.1

C3 6.46 8.64 768 32.8 3.08 4.91 736 25.4 2.06 3.29 612 64.7

C4 6.89 8.89 628 18 3.25 4.49 589 17 2.15 3.03 462 48.1

C5 8.01 11.65 999 18.9 3.57 5.5 992 19.7 2.05 2.37 765 52.5

C6 6.9 9.7 3030 40.7 4.05 6.38 3319 25.4 2.06 2.87 1638 78.2

C7 4.12 5.94 528 26.3 2.66 4 556 11.5 2.15 2.68 436 33.8

C8 2.77 4.38 4256 105.8 2.52 4.4 3755 18.6 2.10 3.20 1946 68.6

C9 4.63 9.09 2412 71.8 2.92 4.83 2018 25 2.08 3.23 1484 84

C10 4.86 5.94 983 17.1 3.1 4.42 1081 9.8 2.27 3.02 853 33.2

C11 4.28 5.48 3019 34 3.11 4.55 3432 13.9 2.24 3.25 2094 51.5

C12 19.6 26.8 2289 6.3 4.34 7.25 2361 17.8 2.61 3.69 2036 56

Table 2.4: Computational Results for the Type 1 - Type 3 Benders Cuts

Since Type 1 approach aggregates over all scenarios, it allows the cut to carry

only limited stochastic information. Therefore, lower bound increases slowly and this

results in the large optimality gap compared to other approaches under same runtime

limits. Type 2 approach generates total 2 × |Ω| number of Benders cuts which are

the most disaggregated cuts since one cut is generated per scenario and flow channel.

Consequently, the total number of auxiliary decision variables introduced to master

problem are 2× |Ω| and, in each iteration, 2× |Ω| number of constraints are added

to the master problem. As a result, the overall approach is comparatively slower,

although not always, when compared to the use of Type 1 cuts, especially for large

size instances. Type 3 cuts, on the other hand, aggregate the cuts over scenarios
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and, thus, consider only two cuts disaggregated based on flow channel allowing a

very controlled increase in the size of master problem through the iteration but

failing to capture the opportunity for disaggregation over scenario. This approach

provides the best performance in terms solution quality when compared to using cut

types 1 and 2. Finally, Type 4 cuts consider disaggregating scenarios into only three

groups (high-medium-low demand/return categories) and, thus, generate a total of

six Benders cuts in each iteration by also considering disaggregation for flow channels.

This brings together the desirable properties of cut types 2 and 3 efficiently in which

some level of disaggregation is achieved both in the scenario context as well as flow

channels. With this approach, scenarios that belong to the same category present

some level of uniformity so that their aggregation still captures probabilistic nature of

the corresponding parameters, disaggregation over flow channels is still incorporated,

and the number of additional auxiliary decision variables and the constraints do not

burden the master problem to hamper its solution efficiency significantly.

2.4.1.2 Results of Two-phase Method for Strengthening Cuts

In the previous section, we employed strengthened Benders cuts while comparing

the four types of cut disaggregation and concluded that Type 4 cuts provide the

most desirable results. In order to actually measure the impact of strengthening

cuts via the two-phase approach suggested in Section 2.3.3.3, we employ its effect on

solution times when used in conjunction with Type 4 cuts. Specifically, we solve our

test instances with and without cut-strengthening by adopting Type 4 Benders cuts.

We initially observed in our testing that the runtimes without strengthening of the

Benders cuts can be excessively long. Thus, for this group of runs, we again employ

a termination rule with dual criteria (which ever comes first) that involves a 2.0%

optimality gap or a time limit given by the maximum runtime with cut strengthening
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within a class. Table 2.5 shows comparison of both approaches. As we expected,

algorithm with two-phase method performs well in terms of both solution quality

and solution times on all problem classes. Two-phase method strengthens BD cuts

so that the master problem can be solved easier and provide better lower bounds and

it results in faster solution time although the average number of iterations is higher.

With two-phase method Without two-phase method

Iteration Time (gap< 2%) Iteration Time Opt gap(%)

Ave Ave Max Ave Ave Ave Max

C1 31.9 157 306 26.9 225 2.4 4.2

C2 54.2 386 752 50.2 620 2.2 3.6

C3 42.6 412 760 39.4 641 2.3 3.9

C4 34.2 336 616 28.2 555 2.5 4.1

C5 40.1 583 970 29.6 952 3.0 4.4

C6 56.4 1185 2930 53.3 2304 2.2 3.9

C7 19.8 268 520 23.9 469 2.1 2.8

C8 35.8 1051 4610 44 1734 1.9 2.3

C9 46.4 812 2365 53.1 1526 1.9 3.0

C10 22.2 593 961 20.2 887 2.5 3.6

C11 33.7 1402 2936 33.6 2289 2.1 3.1

C12 40.2 1423 2188 29 2038 2.9 4.6

Table 2.5: Comparisons on Cut Strengthening with Type 4 Cuts

2.4.1.3 Results of Mean Value Cut Approach

In this section, we test the performance of BD algorithm with (mean value sce-

nario based) lower bounding inequalities presented in section 2.3.3.4. Again, we

employ strengthened Type 4 BD cuts in the BD algorithm with 2% optimality gap

as termination condition. For each combination use of lower bounding inequalities
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with the Type 4 cuts in the BD algorithm, we report the average and maximum

runtime for our test classes in Table 2.6.

In Table 2.6, we first observe that the disaggregation of lower bounding inequal-

ities is generally helpful in improving the solution times as indicated by higher run-

times with Type A or A* cuts when compared to Types B or B* or Type C or C*

cuts, respectively. Use of Type C* cuts provide the best performance overall as indi-

cated by the bold entries in Table 2.6 and the use of Type C cuts performs especially

better than the Type B or B* cuts for larger instances. Secondly, we observe that

the dual subproblem base lower bounding inequalities provide better performance

than inequalities generated by employing a modified master problem. Specifically,

Types A*, B*, and C* inequalities provide better performance than their counter-

parts Types, A, B, and C, respectively. This is largely due to the fact that the master

problem size is not extended in terms of both variables and constraints, but, rather,

only additional (lower bounding) cuts are added without hindering its solution time

significantly. Lastly, we also observe that adding valid inequalities improves the run-

time efficiency of the BD algorithm more for the larger instances. For the Type 4 +

Type C* case, the average runtime improvements over the Type 4 case are 8.92%,

6.99%, 12.14%, 20.54%, 23.50%, 10.30% for classes C1-C6, respectively, while for

larger instance classes, C7-C12, they are 25.00%, 62.04%, 24.51%, 29.68%, 49.64%,

26.26%, respectively.
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Type 4 Type 4 + A* Type 4 + A Type 4 + B* Type 4 + B Type 4 + C* Type 4 + C

Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max

C1 157 306 158 304 171 337 170 407 150 343 143 350 161 423

C2 386 752 403 795 425 845 405 821 430 883 359 628 419 797

C3 412 760 409 779 471 961 389 726 446 970 362 947 482 1248

C4 336 616 344 663 354 665 364 626 279 533 267 460 287 595

C5 583 970 600 1005 619 951 591 971 487 1019 446 882 502 1035

C6 1185 2930 1180 3,005 1290 3355 1212 3138 1359 3563 1063 2907 1224 3873

C7 268 520 264 491 353 950 261 516 265 475 201 559 234 583

C8 1051 4610 1064 5065 1131 5065 1069 5084 995 4719 399 1881 842 5653

C9 812 2365 762 1,887 959 3138 820 1977 976 3383 613 1318 847 2035

C10 593 961 578 916 611 1082 586 920 691 1729 417 893 537 1,437

C11 1402 2936 1411 3690 1040 2273 1192 2307 1610 5084 706 1707 990 3029

C12 1424 2188 1490 2433 1639 2378 1496 2380 1374 2722 1050 1937 1248 2248

Table 2.6: Runtimes for BD Algorithm with Type 4 Cuts and Varying Lower Bound-
ing Inequalities

2.4.2 Comparison with Deterministic Equivalent Problem

As mentioned before, BD approach, more commonly known as L-Shaped Al-

gorithm used to solve integer stochastic programs with a continuous second stage

problem, is a widely used approach due to its efficiency since it allows decomposition

of the overall MIP problem into a MIP (but with only one continuous variable) and

a linear program, which is separable for each scenario. Perhaps, more importantly,

BD approach provides an optimality gap on the solution it provides as opposed to

a heuristic approach which produces a feasible solution. Clearly, an alternative to

solving our stochastic program with a given scenario set is to use a branch-and-cut

approach on the DEP. Thus, we examine the performance of solving our problem

using branch-and-cut as implemented in CPLEX. For this, we attempt to solve the

47



C1 which is the smallest size class of instances with varying number of scenarios.

The results are summarized in Table 2.7.

50 scenarios 100 scenarios 150 scenarios

DEP BD DEP BD DEP BD

Ave 61.71 5.53 247.28 11.29 1239.22 24.82

Max 75.50 9.31 326.06 18.03 1479.35 30.47

Table 2.7: Comparison of Runtimes (seconds) for DEP (B&C) and BD

As reported, in the alternative approach based on DEP, while we can obtain

optimal solutions to instances with 50, 100, and 150 scenarios, the solution time

increases drastically starting with 100 scenarios and, with 250 scenarios, no feasible

solution is generated in the B&C tree within 2 hours of runtime. Thus, we are

convinced strongly that an alternative efficient approach, as we develop employing a

BD framework, is needed to obtain solution to our problem of interest.

2.4.3 SAA Implementation

An approach to solve our stochastic program is to generate enough number of

scenarios in a scenario set and solve the corresponding stochastic program with this

set. To ensure that the scenario set utilized in such an approach is a good representa-

tion of the underlying uncertainty in corresponding parameters, one needs to ensure

that stability (both in-sample and out-of-sample) and (lack of) bias requirements are

met as discussed by Kaut and Wallace [24]. However, for our problem, especially

the out-of sample stability and bias requirements are difficult (if not impossible) to

check due to the size and complexity of the formulation and, more importantly, the

lack of overall population information. Thus, we solve our problem using the SAA
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approach [26, 29].

SAA method selects samples from discrete distributions and approximates ex-

pected value function using selected samples. Based on approximated expected value

function, the problem is solved until stopping criterion based on optimality gap es-

timates is satisfied. The optimal value of approximated problem converges to the

optimal value of the original problem as sample size increases. Kleywegt et al. [26]

suggest the required number of samples to satisfy the defined solution quality. How-

ever, authors comment that the calculation of the required number of samples is not

easy. Besides, obtained number may be large for practical problems. Therefore, a

sample size is determined after performing preliminary computations as performed

for our problem below.

For computational experiments on SAA, we generate 3 different size of CLSC

network configuration (based on C1, C2, and C3) and seek required sample size that

guarantees good quality solutions with high confidence level. Sampling approach

obtains the optimal value of stochastic programming problem based on estimates of

Upper Bounds (UB) and Lower Bounds (LB) on the optimal value. For LB estimates,

we generate 50 independent samples with varying number of scenarios including 50,

100, 150, 200, and 250 scenarios. For UB estimates, we first choose the location and

capacity level solutions with the lowest objective value in calculation of LB estimates.

Based on selected location decisions, we estimate UB by generating 100 independent

samples each with 2000 scenarios. Based on the results summarized in Table 2.8 that

shows UB and LB estimates with their 95% CI, we conclude that 250 scenarios are

enough to obtain the optimal value for our problem.
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SF CTR Customer Scenario LB UB

50 21869.3 ± 293.4 22140.3 ± 59.2

100 21980.9 ± 216.3 22045.7 ± 56.5

10 30 60 150 21532.2 ± 163.7 22057.1 ± 49.3

200 21947.7 ± 130.9 22032.6 ± 44.3

(C1) 250 22050.0 ± 112.1 22002.6 ± 41.8

50 31171.0 ± 388.1 31115.7 ± 54.4

100 31116.8 ± 271.0 31039.3 ± 54.5

10 30 90 150 31044.4 ± 206.9 31096.3 ± 53.4

200 31130.2 ± 181.9 31118.8 ± 53.3

(C2) 250 31165.1 ± 167.9 31099.3 ± 52.8

50 33521.2 ± 298.3 33325.6 ± 50.7

100 33234.4 ± 283.0 33305.1 ± 49.9

10 30 120 150 33457.4 ± 229.2 33325.7 ± 49.7

200 33312.0 ± 220.1 33277.2 ± 49.7

(C3) 250 33393.1 ± 197.7 33265.2 ± 48.5

Table 2.8: UB and LB Estimates (in 1000s) with 95% C.I.

Since the focus of our study in the methodological context is the development of

an efficient solution algorithm that can be applicable to general two-stage stochastic

programming, we do not discuss detailed statistical analysis any further and refer

the reader to the study by Linderoth et al. [29] for details on SAA implementation

for large practical problems. Rather, we employ our sample size decisions and SAA

implementation presented in this section in our case study that follows.
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2.4.4 Analysis on Recovery Location and Rate

In our formulation (2.1), we assume that once the return products arrive at a SF,

they are first inspected and, after the disposal of some of the returns (a constant per

unit disposal cost is assumed regardless of the inspection stage), remanufacturing is

performed on the λi fraction (recovery fraction) of the total returned products to

the SF i. However, it is not uncommon that, depending on the product, reasons for

return, or resource availabilities, inspections can be handled prior to the shipments

of return to a remanufacturing center at either the retailer/customer (RT) locations

or the collection centers (CTR).

In this section, we consider the adoption of alternative stages (SF, CTR, and

RT) in the return channel for inspection operations to take place and examine their

impact in terms of network design and total system costs. In doing so, we assume

different inspection costs for each stage in such a way that per unit inspection cost

is least costly at the SF stage, and most costly at RT stage. We demonstrate that

our modeling approach captures the need to conduct return inspections earlier in the

reverse chain, but not necessarily always at the RT level. In doing so, our approach

explicitly takes into account trade-offs among input cost components to determine

how early the inspections should be performed on return.

To this end, we first present the modifications to model (2.1) to indicate inspection

stage considered as follows:

Inspection at SF is the case where all return are to be inspected before disposal

or remanufacturing at the SF location and this case is already handled by

the base model (2.1). Recall that a fraction λi of all returned products are

remanufactured and the rest is disposed. We introduce a per unit inspection

cost parameter, ζSi for each SF i ∈ I. The parameter ζSi is then introduced
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into the objective function as follows:

Min
∑
i∈I

(
F F
i zi + FR

i yi
)

+
∑
j∈J

FC
j xj +

∑
i∈I

(
ψFi α

F
i + ψRi α

R
i

)
+
∑
j∈J

(
ρFj β

F
j + ρRj β

R
j

)
+
∑
ω∈Ω

∑
i∈I

∑
j∈J

Hω

[(
Gij + κFi

)
σωij +

(
Gji + λi κ

R
i − λi κFi + ζSi

)
τωji
]

+
∑
ω∈Ω

∑
j∈J

∑
k∈K

Hω

[(
Gjk + ηFj

)
Dωk µωjk +

(
Gkj + ηRj

)
Sωk νωkj

]

Inspection at CTR is the case where the inspection takes place at CTR and only

the recoverable returned items are shipped to SF locations for remanufacturing.

We denote the fraction of recoverable return as λHj for each CTR j ∈ J with

High and Low values as given above, and set the recovery rate λi in (2.1) to one

in the modified model. An inspection cost, ζHj , at CTR j ∈ J is introduced for

this case. Then, the following modifications are made in the objective function

(2.1a)

Min
∑
i∈I

(
F F
i zi + FR

i yi
)

+
∑
j∈J

FC
j xj +

∑
i∈I

(
ψFi α

F
i + ψRi α

R
i

)
+
∑
j∈J

(
ρFj β

F
j + ρRj β

R
j

)
+
∑
ω∈Ω

∑
i∈I

∑
j∈J

Hω

[(
Gij + κFi

)
σωij +

(
Gji + κRi − κFi

)
τωji
]

+
∑
ω∈Ω

∑
j∈J

∑
k∈K

Hω

[(
Gjk + ηFj

)
Dωk µωjk +

(
Gkj + ηRj + ζHj

)
Sωk νωkj

]

and the flow balance constraint (2.1j)

∑
i∈I

τωji = λHj
∑
k∈K

Sωk νωkj ∀ω ∈ Ω, j ∈ J

Inspection at RT is the case where inspection takes place at the first stage before
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the return are shipped at the retailer/customer level. Therefore, fraction of

returned products, λCk , are shipped to SF locations for remanufacturing via

CTRs and as in the previous case, the original recovery rate λi is set to one. A

per unit inspection cost ζCk at RT k ∈ K is introduced. To obtain a modified

model for this case, we make changes in the objective function, (2.1a) to

become

Min
∑
i∈I

(
F F
i zi + FR

i yi
)

+
∑
j∈J

FC
j xj +

∑
i∈I

(
ψFi α

F
i + ψRi α

R
i

)
+
∑
j∈J

(
ρFj β

F
j + ρRj β

R
j

)
+
∑
ω∈Ω

∑
i∈I

∑
j∈J

Hω

[(
Gij + κFi

)
σωij +

(
Gji + κRi − κFi

)
τωji
]

+
∑
ω∈Ω

∑
j∈J

∑
k∈K

Hω

[(
Gjk + ηFj

)
Dωk µωjk +

(
Gkj + ηRj

)
Sωk νωkj

]
+
∑
ω∈Ω

∑
k∈K

Hω ζ
C
k Sωk

and reverse flow constraints (2.1j) and (2.1l) to become

∑
i∈I

τωji =
∑
k∈K

λCk Sωk νωkj ∀ω ∈ Ω, j ∈ J

∑
k∈K

λCk Sωk νωkj ≤ lRj xj + βRj ∀ω ∈ Ω, j ∈ J

In addition to three possible inspection stages representing SF, CTR or RT, we

consider two levels of recovery rates as High (H) with 80% and Low (L) with 30%.

Thus, we obtain a total of 6 different problem settings where each of the 6 settings

is represented using a notation with entries given as “Recovery Rate (H or L) -

Inspection Stage (one of SF, CTR, and RT).”

The instance for each setting is based on the real geographical data on 263 largest

cities in the US given originally by Sahyouni et al. [40] (shown as RT locations in
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Figure 2.2). Based on this data, as also shown in Figure 2.2, we select 40 largest cities

in the US and list them in their descending order of population. Next, we select the

city with the largest population in this list and delete the cities from list within 250

miles of the selected city. As a result, we obtain total 16 potential SF locations shown

in Figure 2.2. For the potential CTR locations, we first select the 100 largest cities

in the US. Next, we randomly pick two cities per SF city in a way that each potential

SF has at least two CTRs within 500 miles. Therefore, we have total 32 potential

CTR locations as shown in Figure 2.2. Lastly, all of the 263 cities are selected as

RT (demand and return) locations. Other problem parameters are set as defined in

Table 2.2 except for the demand data which, as in [40], we assume that the demand

at an RT location is proportional to its population and they are determined randomly

within intervals with high, medium or low mean values. Specific input data for this

case study is also reported online at http://ise.tamu.edu/LNS/clsc-data.html.

Figure 2.2: Geographical Distribution of 263 Largest Cities in the U.S.

In order to obtain the results in the following sections, similar to above compu-

tational experiments using SAA (§ 2.4.3), we solve each of our case settings with

250 scenarios for LB estimates and 2000 scenarios for UB estimates. We set the

termination criterion to a 1.5% optimality gap when solving the stochastic programs

for each scenario set with our algorithm.
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2.4.4.1 Cost Comparisons

In order to examine the variation of inspection costs at the SF, CTR, and RT

locations, we further generate three different inspection cost configurations as 2-8-14,

4-8-12, and 6-8-10 for SF-CTR-RT locations (i.e., ζSi -ζHj -ζCk ), respectively. Upper and

lower bounds on total costs with varying inspection cost configurations and recovery

rates associated with a total of 18 settings (6 for each cost configuration) are given

in Figure 2.3.

First, for the 4-8-12 cost configuration, we observe that when the recovery rate is

high, where most of the return need to reach to SF locations, regardless of where the

inspection is performed, we expect similar transportation and operation costs. This

is because there is a high amount of reverse flow that needs to reach to SF for recovery

operations and the trade-offs are mostly on the differences between transportation

costs, inspection costs, and capacity installation (at SF and CTR locations) costs. We

observe that inspection at CTRs appears to have cost advantages over the other two

inspection location options. For this configuration, cost improvement by inspections

at CTRs is about 1.7% and 2.4% over inspection at SFs and RTs, respectively.

On the other hand, if the recovery rate is low and the inspection is undertaken at

RT locations, a relatively large number of returned products will be disposed at that

level rather than being transported further back in the chain only to be inspected and

disposed at these upper echelons. Therefore, inspection at RTs prevents unnecessary

location, capacity installation, processing and transportation costs associated with

reverse flows. This leads to much larger savings, 12% when compared inspection at

SFs, but less savings at 1.4% when compared to inspection at CTRs.
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Figure 2.3: Bounds on Total CLSC Costs for 6 Case Settings for Varying Inspection
Costs

To further analyze with different sets of inspection costs, we examine the settings

with 2-8-14 and 6-8-10 inspection cost configurations for which, as summarized in

Figure 2.3, we observe relatively same outcomes in terms of overall costs. Specifically,

as the difference between the inspection costs decreases (6-8-10), in the high recovery

case, the overall cost associated with inspection at CTR is closer to the one with RT

inspection (1.7% difference) as opposed to inspection at SF (2.4% difference). For

the low recovery, inspection at RT is still better with even larger percentages from

the CTR (by 2.2%) and SF (by 13.7%) locations.

On the other hand, when the inspection costs are highly dissimilar at different

stages (i.e., as in the 2-8-14 configuration), inspection at CTRs is still more cost

effective under high recovery rate with the improvements over inspections at RT and

SF locations being 3.1% and 0.9%, respectively. The saving over RT inspection is

largely due to high costs at the RTs and, over SF, it is due to elimination of some

of transportation costs. For low recovery rates, we again observe lowest costs with

inspection at RTs, however the savings over CTR and SF inspections are less at 0.7%

and 10.4%, respectively. Reduced savings between the inspections at RTs and CTRs

can be attributed to the trade-off between increased inspection cost at RTs and the

transportation to CTRs for less expensive inspection and disposal.
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In summary, we can state that inspection at either the RT or the CTR locations

are more preferable. In particular, under high recovery rates, it is beneficial to utilize

CTRs for inspection especially if inspection costs vary significantly based on location

(as in 2-8-14 and 4-8-12 cost configurations). For the low recovery rates, inspection at

RTs is more beneficial to eliminate unnecessary transportation, processing, capacity

installation costs by disposing non-recoverable return earlier although inspection at

CTRs can still be attractive especially when significant difference in inspection costs

exists (as in 2-8-14 and 4-8-12 configurations).

2.4.4.2 Comparison of Locations

We also compare the locations of active SF and CTR locations for 6 different

settings under inspection cost setting of 4-8-12 for the SF, CTR, and RT locations,

respectively. Although 263 cities are distributed all over the US, cities whose popu-

lation is more than 500,000 are concentrated in 5 regions, West Coast (California),

South (Texas), Southeast (Florida), Midwest (Illinois-Michigan), and East Coast

(New York-Pennsylvania-Massachusetts) of the US. For our case study, as expected,

we obtained active SF and CTR locations distributed to the five regions as shown

in Figure 2.4. Although locations of active SF and CTR are similar in all 6 set-

tings, character of CLSC network is different to recovery rate and inspection stage.

For example, in the high recovery case, if the inspection takes place at the SFs,

then all of the SF locations serve as hybrid locations (for both manufacturing and

remanufacturing) which is not the case for cases with inspection CTRs and RTs.

The difference is more striking in the low recovery case in which, with inspections

at CTRs or RTs, only two SF locations are utilized for remanufacturing while the

SF inspection produced all 6 SF locations as hybrid. Inspection at an earlier stage

requires less number of hybrid SF locations, as a result relatively high location costs
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can be reduced. In the L-SF case, all active SFs operate but mainly for inspection

purposes while the real remanufacturing may take place either at lower capacities at

all six locations or with higher capacities in a subset of these six locations.
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Figure 2.4: Active SF and CTR Locations for 6 Case Settings

2.4.4.3 Value of Stochastic Solution

VSS is a measure to represent the importance of two-stage stochastic model [7].

VSS can be computed by the difference between EEV, the expected results of using

the EV solution, and RP, the solution from two-stage stochastic problem. For our

problem, we compute relative VSS ( (EEV−RP )
RP

) under different cost structures to

check the effectiveness of stochastic solutions. For VSS test, we first generate 10 new

instances from Class 1 to Class 6. Half of the instances represent the case that the

first stage costs are higher than the second stage costs, whereas the others represent

vice versa. The average relative VSS values are 5.40%, 8.44%, 5.61%, 4.82%, 4.26%,

and 8.37% for Class 1 to Class 6, respectively. To test the sensitivity of the VSS to

cost parameters, we also obtained solutions for instances with cost split roughly at

60%-40% for the first and second stages, respectively. For those instances, the VSS
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was calculated as 2.5% on average, i.e., the stochastic model is more useful when

costs associated with second stage are relatively higher than cost associated with

first stage.

Finally, we also note that, according to Maggioni and Wallace [33], even the VSS

value is large, the EV may include useful information about the RP. Although we

do not provide the details here, we also examined the upgradability of EV to an RP

solution via resolving our stochastic program after adding constraint to ensure that

the locations opened in the EV solution are forced to be active in the RP solution

which can open additional locations. The comparison is then made between the first

stage solutions of stochastic program solution with input from EV solution (RPwEV)

and the stochastic solution (RP). Based on stochastic program solutions using the

approach presented in this study and the SAA approach, we observed similarities in

solution at varying levels. For example, under H-SF setting, five of the six active

SFs and four of the seven active CTRs in RPwEV solutions also appear as active

in the RP solution. On the other hand, in H-CTR setting, only three active SFs in

RPwEV solutions appear in the RP solutions which indicate total six locations. In

terms of CTR, we again observe only about half of the locations are the same for

RpwEV and RP solutions. Therefore, we conclude that the EV solution provides

some information about location selection although the resulting benefit may vary

depending in an uncertain way on the problem parameters.

2.5 Conclusion

In this paper, we consider a single-product capacitated integrated CLSC network

design problem under unknown demand and return. Model determines location of

SFs and CTRs, capacity expansion level, forward&reverse flow network to satisfy

customers’ demand and return such that the total closed-loop supply chain is mini-
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mized.

Since we assume random demand and return, we build develop a two-stage

stochastic integer program that captures the uncertainties via a set of scenarios.

For the model solution, we develop an exact solution method based on an enhanced

BD algorithm. In particular, we modify standard BD algorithm to accelerate algo-

rithm convergence by introducing surrogate constraints, strengthened Benders cuts,

the use of scenario-category based multiple Benders cuts, and mean value scenario

based lower bounding inequalities obtained via disaggregated dual subproblem. In

our computational tests, we verify the benefits of each enhancement approach and

observe that the proposed solution method performs better than standard BD algo-

rithm in terms of runtimes under 2% optimality gap criterion.

We utilize our model and the solution approach within an SAA framework to

obtain solutions to the CLSC design problem using realistic geographical data and

randomly generated other input parameters to examine the effects of varying return

inspection locations and recovery rates on the overall design. Although early product

inspection (but not necessarily always at the RT stage) has positive effects by saving

unnecessary resources and costs, our analysis also indicate that parameters such

as product type and reasons for return, expected recovery rates, inspection costs,

and transportation costs can be instrumental in deciding where the return product

inspection should take place and, in turn, dictating the overall cost as well as the

structure of the CLSC network. In these experiments, we also observe that the value

of the stochastic solution can be as high as 8.44%.

This work can be extended in various ways. For example, a multiple product

view, rather than a product family or a uniform return channel, can be adopted

to analyze trade-offs on shared resources and operational issues. In this context,

inventory decisions and inspection decisions at varying locations in the network can
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be considered in conjunction with network design decisions addressed in our study.
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3. CHANNEL SELECTION IN COMMERCIAL PRODUCT RECOVERY

LOGISTICS NETWORK UNDER TIME-VALUE CONSIDERATIONS

Many retailers such as Best Buy and Walmart have online stores in addition

to their traditional (offline) stores to increase sales. This business model is called

as “bricks-and-clicks”. Bricks-and-clicks model offers multiple sale channels to con-

sumers who order products from online or offline stores. Also, this model allows

consumers to decide delivery method either pick-up at a local store or direct delivery

to their home. Because of the convenience of shopping, the combination of online and

offline stores is a common business model and this has resulted in the fast growth of

online business in recent years. According to Dinlersoz and Hernandez-Murillo [11],

the quarterly growth rate of Internet sales is 8.6%, whereas that of retail sale is 1.3%

in 2004, i.e., the growth rate of online sales overwhelms that of retail sales. The total

amount of online sales in the U.S. is $227 billion in 2008 [36]. Therefore, the online

market becomes important as much as the traditional markets. Although establish-

ing multiple sale channels requires more investments, multiple sale strategies provide

benefits to retailers. Wallace et al. [49] point out that multiple channel strategies

provide various purchase opportunities to customers and this improves customer loy-

alty by enhancing customer services. Customer loyalty is closely related to retailer’s

profits, because loyal customers purchase more and are less sensitive to price [39].

Thus, it is important to manage good relationships with customers.

Multiple sale channel strategy promotes not only product sales but also product

returns since customers cannot experience products’ characteristics from an online

purchase. In particular, many returns occur in categories in which customers need to

touch and feel the products [36]. Even though product returns give additional cost
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burdens to retailers, they provide an opportunity to improve customer relationships.

Mollenkopf et al. [35] survey 464 customers from five internet retailers and find

that generous return policies improve customer loyalty by minimizing dissatisfaction.

Providing multiple return channels to customers is one way to enable easy returns.

For example, Best Buy guarantees a 60 day return or exchange period and suggests

two return methods: return to a retailer store or return to the return center via mail.

Customers choose the method that they prefer. Therefore, multiple return channels

provide various options to customers, and this improves customer loyalty similar to

multiple sale channels.

In the literature on multiple channels strategies and return policies, most papers

focus on customer service and no guidelines exist for designing product recovery

networks in the presence of multiple return channels. In general, design of a product

recovery network problem has been studied over the last couple of decades because

of several reasons. Economic effect is one of the main drivers establishing a recovery

network. Kodak and Xerox achieve financial success through remanufacturing single-

use cameras and refillable toner cartridges, respectively [46]. Also, HP saves half of

total return costs by recycling operations [23]. Therefore, managing product returns

is important due to economic potential as well as customer loyalty. Fleischmann

et al. [19] provide comprehensive reviews of the RSC and CLSC research on return

process. Blackburn et al. [9] discuss different perspective for designing a product

recovery network and suggest that MVT should be considered to maximize profits

from recovered products.

As we observe, most studies focus on cost-efficient recovery networks and only

a few studies discuss return process in a business perspective such as maximizing

profits from recovered products. Besides, product recovery networks problem with

multiple channels are relatively new in the network design literature. Therefore, we
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consider multiple return and redistribution channels in a product recovery logistics

network. We specifically analyze how to collect products to maximize profits using

multiple return channels. The model is formulated as linear program and identi-

fies appropriate return and redistribution channels to achieve maximization of total

profit.

The rest of the chapter is organized as follows. In section 3.1, we provide a review

of the related literature. In section 3.2, we describe the characteristics of commercial

return network and model assumptions. Next, we introduce the notation and a

mathematical formulation of the problem. In section 3.3, we provide computation

analysis of channel selection strategy based on the characteristics of product and

logistics network. We end the chapter with summary and conclusions.

3.1 Literature Review

Most studies on product recovery network design problems are focused on EOU

or EOL return. In EOU and EOL return, cost efficiency is one of the most important

issues and under the purpose of cost efficiency, a centralized reverse supply chain may

be a desirable solution. Fisher [15] points out that the U.S food industry bears a cost

of about $30 billion every year because of inappropriate supply chain network. The

author suggests that the ideal supply chain strategies should be based on the product

characteristics which can be cast as functional product or innovative product. The

efficient supply chains should be used for functional products (with low uncertainty)

whereas responsive supply chains are more appropriate for innovative products (with

high uncertainty). Blackburn et al. [9] study an appropriate RSC design strategy

for commercial product return. Unlike the previous works, they emphasize the time

value of product return in reverse supply chains network design. Therefore, they

conclude that responsive reverse supply chains are appropriate for products with
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high MVT, whereas efficient reverse supply chains are appropriate for products with

low MVT. Guide et al. [23] apply Blackburn’s hypothesis to a CLSC network model

by considering the residual value in commercial product return. They present a CLSC

network model with time delay to identify major factors that have an impact on the

design strategies. Based on analysis, a product decay parameter and a proportion of

non-defective product return are the major drivers in reverse supply chain design. As

a result, Guide et al. [23] lead to similar conclusions that centralized (i.e., efficient)

reverse network are appropriate under low product decay rate and high proportion of

non-defective product return while a decentralized (i.e., responsive) reverse network

may be more important at high product decay rate. This is because time delays

in handling returned products can lead to a significant loss of the products’ value

before they can be available for resale. In conclusion, it can be stated that the

characteristics of returned products must be explicitly taken into account while the

configuration of a recovery network is determined.

To this end, we observe that studies on quantitative models on multi-channels are

quite limited in the product recovery logistics literature. Multi-sale channels strat-

egy in the traditional supply chain is widely studied recently, since online business

has been grown up over the past years. Wallace et al. [49] point out that multi-

ple channels strategies provide various purchase opportunities to customers and this

improves customer loyalty by enhancing customer services. Multiple sale channel

strategy promotes not only product sales but also product return since customers

cannot experience products’ characteristics from an online purchase. In particular,

many returns occur in categories in which customers need to touch and feel the

products [36]. Even though product return gives additional cost burdens to retailers,

they provide an opportunity to improve customer relationships. Mollenkopf et al.

[35] survey 464 customers from five internet retailers and find that generous return
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policies improve customer loyalty by minimizing dissatisfaction. Customer loyalty is

closely related to retailer’s profits, because loyal customers purchase more and are

less sensitive to price [39]. Thus, it is important to manage good relationships with

customers. In the literature on multi-channels strategies and return policies, most

papers focus on customer service and no guidelines exist for designing product re-

covery network in the presence of multiple return channels. Alptekinoglu and Tang

[2] develop a two-stage multiple channel distribution model that includes multiple

depots and sales locations with stochastic demand. They propose a near-optimal dis-

tribution policies (ordering and allocation decisions) using a decomposition approach.

Savaskan et al. [42] study the appropriate reverse channel structure for the collection

of used products. In the paper, three different collection channels are introduced:

(1) manufacturer directly collects from customers, (2) retailer collects products from

customers and delivers to manufacturer, and (3) contracted third party provider col-

lects products. Characteristics of return channels are different based on the agent of

collection activity and price structure. They show how the selection of the reverse

channel affects the total profits.

3.2 Problem Definition and Assumptions

The product recovery network in this chapter is motivated by the commercial

return process in industries that commonly handle both manufacturing and sale, e.g.,

electronics industry. Once the product return occurs, the company needs to decide

how to collect products (i.e., what kind of return channel to be used in collection).

Generally, customers return products for two reasons: product dissatisfaction or

function failure. Product dissatisfaction return has nothing to do with quality issues,

thus, products are assumed to be non-defective. These returned products can be

resold at the retailer after a minor operation such as inspection and repackaging.
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On the other hand, function failure return relates to quality issues (i.e., defective

products). Therefore, defective products will be remanufactured or disposed based

on degree of defect.

The model consists of four entities: customer, retailer, center, and remanufac-

turing facility (RF) as depicted in Figure 3.1. The location of customer, retailer are

assumed to be known a priori and the model determines the return/redistribution

channels to maximize the total profit from the recovery of product returns. We con-

sider the following potential return and redistribution channels between customers

and RFs:

• Return channel from the customers to the RFs via the retailers and the centers.

• Return channel from the customers to the RFs via the retailers.

• Return channel from the customers to the RFs via the centers.

• Return channel from the customers to the RFs.

• Redistribution channel from the centers to the customers.

• Redistribution channel from the RFs to the customers.

• Redistribution channel from the Rfs to the customers via the centers.

We assume that a non-defective product collected by a retailer is put back on

shelf at the corresponding retailer after minor processing. On the other hand, if

non-defective products are collected by centers or RFs, then they are sent back to

the retailers using one of the redistribution channels. Travel time and transportation

costs are assumed to be different for each type of channel. For example, a return

channel from the customers to RFs via the retailers and the centers has a low trans-

portation cost, but it takes longer transportation time and increased operation costs

in general. On the other hand, a return channel from the customers to the RFs

directly has high transportation costs, but it takes less transportation time and op-

eration costs. Similarly, we introduce multiple redistribution channels from RFs to
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the retailers.

In the model, we introduce two types of inspections: minor and major inspection.

A minor inspection occurs when products are collected by retailers. This inspection

checks whether a returned product is non-defective (by also utilizing cause-of-return).

If a returned product is in good condition (i.e., it can be classified as non-defective

product), then it is stored at the corresponding retailer for sale. Otherwise, prod-

ucts are sent back to a center or RF for a detailed major inspection, which dictates

decisions on remanufacturing or disposal. This inspection is assumed to occur only

at a center or an RF location while remanufacturing occurs only at an RF location.

Therefore, defective products requiring remanufacturing operation are sent to RF

locations. In the end, the remanufactured products are sent to the secondary market

for sale. We assume that enough demand exist at the retailer and the second mar-

ket, thus all non-defective products are sold at the retailers and all remanufactured

products are sold at the second markets. Lastly, all activities have capacity limits.

The capacities at the retailer, center, and RF can be shared by all products.

Recognizing that a product’s price can change over time due to factors including

depreciation, technological advancements, etc., in the model, we introduce a time

parameter to express product’s residual value over time. That is, we assume that

products lose value over time period and we define a decay parameter to express

product’s residual value. In particular, the longer travel time spent in the network,

the less profits we expect to have from the resale.

To develop a mathematical model, we first introduce the notation and the deci-

sion variables in the network.

Sets and indices:
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P set of products, p ∈ P .

T set of periods in the planning horizon, t ∈ T = {1, . . . , Tmax}.

I set of customer locations, i ∈ I.

R set of retailer locations, r ∈ R.

C set of center locations, c ∈ C.

M set of RF, m ∈M.

Parameters:

RG
p non-defective rate for a returned product p ∈ P .

RD
p disposal rate for a defective product p ∈ P .

Dpti return of product p ∈ P at customer i ∈ I in time t ∈ T .

S1
pt selling price of a new product p ∈ P in time t ∈ T .

S2
pt selling price of a remanufactured product p ∈ P in time t ∈ T .

Tij travel time between nodes i and j, i, j ∈ {I,R, C,M}.

P 1
pr processing time of product p ∈ P at retailer r ∈ R.

P 2
pc processing time of product p ∈ P at center c ∈ C.

P 3
pm processing time of product p ∈ P at RF m ∈M.

Gij transportation cost per unit between node i and j, i, j ∈ {I, R, C,M}.

Q2
r redistribution capacity at retailer r ∈ R.

Q1
r return capacity at retailer r ∈ R.

Q2
c redistribution capacity at center c ∈ C.

Q1
c return capacity at center c ∈ C.

Qm return capacity at RF m ∈M.

C1
pr return cost of product p ∈ P at retailer r ∈ R.

C2
pr redistribution cost of product p ∈ P at retailer r ∈ R.
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C1
pc return cost of product p ∈ P at center c ∈ C.

C2
pc redistribution cost of product p ∈ P at center c ∈ C.

C1
pm return cost of product p ∈ P at RF m ∈M.

REp remanufacturing cost of product p ∈ P

CDp disposal cost of product p ∈ P

Decision Variables:

f 1
ptir return quantity of product p from the customer i to the retailer r at time t

f 2
ptic return quantity of product p from the customer i to the center c at time t

f 3
ptim return quantity of product p from the customer i to the RF m at time t

f 4
ptrc return quantity of product p from the retailer r to the center c at time t

f 5
ptrm return quantity of product p from the retailer r to the RF m at time t

f 6
ptcm return quantity of product p from the center c to the RF m at time t

f 7
ptmc quantity of non-defective product p sent from the RF m to the center c at time t

f 8
ptmr quantity of non-defective product p sent from the RF m to the retailer r at time t

f 9
ptcr quantity of non-defective product p sent from the center c to the retailer r at time t

We next develop a LP model to determine return and redistribution flows to

maximize the total profit over time periods. Since flow decisions include a time

parameter, flow conservation constraints at the network stage are expressed using

travel and processing times.

70



Customer Retailer RFCenter

Disposal

Second
Market

f1
ptir

f2
ptic

f3
ptim

f4
ptrc

f5
ptrm

f6
ptcm

f7
ptm

f8
ptm

f9
ptmc

Customer Retailer RFCenter

Disposal

Second
Market

f1
ptir

f2
ptic

f3
ptim

f4
ptrc

f5
ptrm

f6
ptcm

f7
ptm

f8
ptm

f9
ptmc

xc ym

Figure 1: CLSC supply chain network with multiple channels

Parameters:

4

Figure 3.1: Multi-channel Product Recovery Logistics Network Structure
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8
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Objective function (4.1a) represents the total profit as the difference between total

revenue and the total costs including transportation, material handling, and reman-

ufacturing/disposal costs over time periods. The first three terms represents the

revenue from non-defective products and repaired products. The fourth, fifth, and

sixth terms represent the transportation costs. The fourth and fifth terms are trans-

portation costs associated with return flows, whereas the sixth term is transportation

costs associated with redistribution flows. The seventh, eighth, and ninth terms are

the product handling costs associated with return and redistribution. The tenth,

eleventh, and twelfth terms represent repairing and disposal costs. Constraint set

(3.1b) ensures that the returned products are collected by one of the retailers, the

centers, or the RFs. Constraint sets (3.1c) and (3.1d) represent the conservation of

return flows at the retailers and the centers, respectively, by also taking into account

the time component (considering travel and processing times) in the model Specif-

ically, suppose that travel time from the retailer r to center c is Trc and processing

time at center is P 2
pc. If the product p leaves from the retailer r to center c at time

(t− Trc − P 2
pc), in the amount f 4

p(t−Trc−P 2
pc)rc, then product p will arrive at the center

c at time (t − P 2
pc). After operation at center c, for P 2

pc time units, the product p
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leaves for RF m at time t, f 6
ptcm. Therefore, the relation between f 4

ptrc and f 6
ptcm

can be expressed as
∑

r∈R f
4
p(t−Trc−P 2

pc)rc =
∑

m∈M f 6
ptcm. Constraint sets (3.1e) and

(3.1f) show that non-defective products are sent back to retailers after major inspec-

tion. Constraint sets (3.1g) - (3.1k) ensure that return and redistribution flows to

a retailer, center, and RF do not exceed their respective assigned capacity. Lastly,

Constraint set (3.1l) represents the restrictions on the decision variables.

In our model, there are essentially four return channels for selection and each

channel possesses different characteristics. Return channel from customers to RFs

via retailer and center denoted by I-R-C-M provides the lowest transportation costs,

but this channel takes long travel time because of slow travel time and operations

at retailer and center locations. Return channel from customer to RFs denoted by

I-M provides the fastest travel time, but transportation cost of this channel is the

most expensive due to fast travel time. Return channel channel from customer to

RFs via retailer, I-R-M, and channel from customer to RFs via center, I-C-M, have

the intermediate characteristics between I-R-C-M and I-C-M. Both I-R-M and I-C-

M have less expensive transportation costs compared to I-M, but they have longer

travel time. Similarly, both I-R-M and I-C-M have more expensive transportation

costs than I-R-C-M, but they have faster travel time.

If products are initially collected by retailers and RFs, then the sale of non-

defective and remanufactured products occurs at those retailer and second market

locations. Therefore, collecting products by retailers and RFs can minimize loss

of non-defective and remanufactured product value, respectively. For this reason,

we regard both I-R-M and customer-RF (I-M) channels as the responsive return

channels. Although the return channel customer-retailer-center-RF (I-R-C-M) can

also re-shelve non-defective products at corresponding retailers, for the defective

products, the delivery time is long from customers to RFs. Thus, the return channel
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I-R-C-M focuses more on minimizing transportation and product handling costs. For

this reason, we regard the return channel I-R-C-M as the cost efficient channel.

3.3 Computational Analysis

In this section, we present computational analysis on channel selections described

above for a product recovery network. We conduct our analysis on channel selection

based on two main parameters that we assume to affect a channel selection strategy.

These include

• product related characteristics including decay rate (rate of value loss), ex-

pected non-defective and disposal (non-recoverable) rates and

• logistics network characteristics including the number, spread, and proximity

of center and RF facilities to customers and retailers.

For the purpose of accurate analysis, we use real geographical data of cities in the

U.S. and product data from Guide et al. [23]. According to 2007 U.S. population

data, there are 263 cities with the population larger than one million and those

cities are located in 41 states. Thus, we first pick 41 cities from 41 states, one city

per state. After selecting 41 cities, there are 72 cities with the population more

than two million. Lastly, we add 7 more cities based on the population, so that

we have total 120 customer locations. For the retailer locations, we again select

41 cities from 41 states and add 9 more cities from the populated area, such as

California, Texas, New York, and Florida. For center locations, we select 10 cities

from 7 regions, North-West (Washington-Oregon), West Coast (California), South

(Texas), Midwest (Illinois-Michigan-Ohio), East Coast (New York-Pennsylvania),

South-East (Georgia-Florida) and Central region (Colorado-Missouri). Lastly, for

facility locations, we select 4 cities in West Coast (San Jose), Midwest (Chicago),
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South (Dallas), and East Coast (New York). The sets of location in consideration

are depicted in Figure 3.2.

(a) RF Locations (b) Center Locations

(c) Retailer Locations (d) Customer Locations

Figure 3.2: Geographical Distribution of RFs, Centers, Retailers, and Customers in
the U.S.

3.3.1 Preliminary Results

First, we study how channel selections are changed in terms of product charac-

teristics, such as decay value, non-defective and disposal rate. Guide et al. [23] apply

their theoretical results to actual data from HP inkjet printer and Bosch power tool.

Similar to that study, we employ the same HP and Bosch data, summarized below, to

our quantitative model for channel selection. We use the CPLEX 12.4 optimization

solver to solve our model.
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3.3.1.1 HP Printer Case

Guide et al. [23] expect that HP collects 1,668 units of printer per day in North

America. Thus, we compute daily return quantities at customer locations multiplying

1,668 by corresponding population percentages. For example, population of New

York City (NYC) is 8,323,732 in 2007, which is 14.29% of total population (120

customers). Therefore, daily printer return quantities at NYC is obtained by 1,668

times 0.1429. The price of HP printer is $200 and 15% price discount is applied to

the remanufactured printer, (i.e., $170 is the price of remanufactured printer). The

remanufacturing cost is defined as 7.5% of the price of a new printer and product

handling costs at each stage lie in the range 1% - 3% of the product price. The decay

parameter for both new and remanufactured printers are the same and we assume

that a printer loses 1.0% of its value every week. Lastly, the percentages of non-

defective and disposal rate are assumed to be 33% and 10%, respectively. Figure 3.3

shows the percentage of selected return channels in HP printer case over time period

daily basis. In the graph, the x-axis represents the product’s life length (365 days)

and the y-axis represents the percentages of return channel selected for collecting

products on each day.
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Figure 3.3: Channel Selection in HP Printer
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According to Figure 3.3, the I-R-M channel is the major return channel since

percentage is almost 50% over all time period. We consider decay rate of HP printer

relatively high, i.e., time is an important factor in their collection. As expected, the

responsive return channels (I-R-M and I-M) are mainly used to collect HP printer;

total percentages of selection of both channels are more than 70% over product’s life.

3.3.1.2 Bosch Power Tool Case

Similar to HP printer, we calculate return quantities of Bosch power tool multi-

plying daily return, 750, by corresponding city’s population percentages. The price

of Bosch power tool is $50 and 15% price discount is applied to the remanufactured

power tool ($42.5). The rest parameter values are the same as those in HP printer

case. In Bosch case, we assume that both new and remanufactured power tool lose

1.0% of its value every month. The percentages of non-defective and disposal rates

are assumed to be 0% and 10%, respectively.
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Figure 3.4: Channel Selection in Bosch Power Tool

Figure 3.4 shows the percentage of return channel selected by customers in Bosch

power tool case. Unlike HP case, all return channels are similarly selected to collect

power tools, i.e. there is no dominant return channel. In Bosch power tool case, all

returned products are assumed to be defective, so RF looks a favorable location to
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collect products initially. However, according to Figure 3.4, the percentages of the

return channel I-R-C-M is more than 30%, the highest selection percentages among

the four channels. On the other hand, the return channel I-M, which regards as the

responsive return channel, has the lowest selection percentages. Decay rate of Bosch

power tool is relatively low, so we expect that time has less impact on the channel

selection. For this reason, the cost efficient channels (I-R-C-M) are expected to be

more appropriate to Bosch power tool case. Besides the channel selections are mostly

consistent with time period in this result compared to HP printer case because of

low decay value. In other words, products residual value is consistent with time, so

once return channel is determined, decisions is rarely changed.

3.3.1.3 Consideration of Multiple Products

One of our objectives is to analyze the channel selection strategy in the presence of

multiple products with different characteristics. Therefore, using the same input data

as above, in our model, we consider the collection of both HP printers and Bosch

power tools which are high and low decay rate products, respectively. Figure 3.5

shows the channel selections for HP and Bosch individually, after solving the model

for both simultaneously. Since capacities at the retailers, centers, and RFs are shared

by both products, we expect that a responsive return channel with faster travel time

may be appropriate for a product with high decay rate, while a cost efficient return

channel may be better for a product with low decay rate.

Comparing to the results in Figure 3.5a and Figure 3.3 for the HP case, the

average percentage of channel I-M and I-R-M increases, from 46% to 47% and 24% to

26%, respectively, whereas the percentages of channels I-R-C-M, and I-C-M decrease,

from 13% to 11% and from 17% to 16%. For the Bosch power tool case, i.e., Figure 3.4

vs Figure 3.5b, we observe completely the opposite results; the use of channel I-
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R-C-M and I-C-M increases, whereas the use of channel I-M and I-R-M decreases.

Therefore, as we expected, we conclude that if multiple products need to be collected

simultaneously, then the more responsive return channels are assigned to the product

with high decay rate.
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Figure 3.5: Channel Selections in Multi-products

3.3.2 Channel Selection Strategies based on Product Characteristics

To obtain general insights on the sensitivity to input parameters in determining

a channel selection strategy, we solve our model individually for each product with

varying non-defective rates, disposal rates, and travel time.

3.3.2.1 Analysis on Disposal Rate

In the model, we assume that disposal decisions are made only after major in-

spection at centers or RFs. Thus, if remanufacturing or disposal decisions are made

earlier, then unnecessary transportation and product handling costs can be saved.

For this reason, we expect that the centers or RFs are the favorable locations to

collect products for which the disposal rate is typically high. For HP printer case,

we fix the non-defective rate (prGp ) as 33% and examine the disposal rates (prDp ) of

10%, 30%, and 50%. Figure 3.6a shows the channel selections of HP printer case
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under different disposal rate. The use of return channel I-R-C-M increases and the

use of return channel I-R-M decreases with disposal rate. The return channel I-R-C-

M and I-C-M can save unnecessary costs through determining disposal at the center

locations. Especially, the return channel I-R-C-M pursues both maximizing profits

by non-defective products and minimizing transportation costs. Although selection

of I-R-M is still the highest percentages, return channel I-R-C-M becomes popular

option as disposal rate increases. Similarly, we fix the non-defective rate as 0% and

change the disposal rates to 10%, 30%, and 50% in Bosch case. By the same reason in

HP case, the percentage of return channel I-R-C-M and I-C-M increases as disposal

rate increases. Both I-R-C-M and I-C-M channels save transportation and handling

costs by shipping products from customers to RFs via intermediate locations, i.e.

both channels pursue cost-efficient. According to Figure 3.6b, more than half of

customers select both channels for product returns and their selection percentages

increase with disposal rate. Therefore, we again conclude that cost-efficient return

channel is appropriate to Bosch power tool case.

3.3.2.2 Analysis on Non-defective Rate

A returned product is resold at the retailer, after minor processing, if it is iden-

tified as non-defective. Therefore, if non-defective rate is high, it is expected that

retailers will initially collect returns to avoid unnecessary costs. To analyze impact

of non-defective rate in channel selections, we fix the disposal rate (RD
p ) as 10% and

consider non-defective rates (RG
p ) of 10%, 33%, and 50% in HP printer case.

Figure 3.7a shows the channel selection in HP printer under different non-defective

rates. Low non-defective rate means that most products are defective and the major

inspection is required. Thus, if we set the non-defective rate to 10%, the return chan-

nel I-M is a major channel in collection. On the other hand, high non-defective rate
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(b) Bosch Power Tool

Figure 3.6: Channel Selections under Different Disposal Rate

means that most returned products are non-defective products and these products

are resold at the retailers. Thus the return channel I-R-M dominates other channels,

especially if non-defective rate is relatively high. For Bosch power tool case, we fix

the disposal rate as 10% and consider the non-defective rates as 0%, 30%, and 50%.

According to Figure 3.7b, all four different return channels are used at relatively

significantly throughout product life-cycle for collection in 0% non-defective rate.

Unlike HP printer case, if non-defective rate is high, more than 30%, then the re-

turn channel I-R-C-M is the major return channel in Bosch power tool case. Decay

rate of Bosch power tool is low, so time parameter is not a critical factor in channel

selection. According to results, the percentage of I-R-C-M is much higher than that

of I-R-C-M in HP case as expected.
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Figure 3.7: Channel Selections under Different Non-defective Rate

3.3.2.3 Analysis on Time

In our modelling, we assume that product loses value over time. Therefore, if

product’s decay rate is relatively high, then the return channel with less travel time

is an appropriate channel to minimize product’s residual value loss. In this section,

we analyze the impact of time in channel selection of both HP printer and Bosch

power tool by changing processing time at retailers, centers, and RFs. Previously,

processing time at retailer (P 1
pr), center (P 2

pc), and RF (P 3
pm) are defined as 7, 10,

and 21 days, respectively and we change processing time to 5, 7, and 15 days (i.e.,

decrease by 30%).

Figure 3.8 shows the channel selections of HP and Bosch with less travel time

which is obtained via decreasing the sojourn time of returned products in return
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process. For the HP case, in this new setting, the return channel I-C-M can handle

both non-defective and defective products more quickly. Besides, the unnecessary

transportation costs can be saved by disposing returned products earlier. By the

same reason, the return channel I-R-C-M handles products more quickly. Thus, the

average percentage of return channels I-R-C-M and I-C-M increases, from 13% to

17% and from 17% to 19%, respectively, whereas the percentage of return channel

I-R-M and I-M decreases. On the other hand, channel selections are not changed for

Bosch power tool case when compared to Figure 3.4. Therefore, we conclude that

time parameter is one of the important factors in HP case as a determinant of return

channel selection, while it has little impact in the Bosch power tool case, mainly due

to its low decay value.
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Figure 3.8: Channel Selection of HP and Bosch with less Travel Time

3.3.3 Channel Selection Strategies based on Logistics Network Characteristics

We analyze the return channel selection strategy based on the product charac-

teristics in the previous section. We conclude that channel selection decisions are

changed with product characteristics. However, channel selection decisions are also

affected by product recovery networks. For example, customers in New York, gen-

erally return products to RF directly, since RF is located in their close vicinity, i.e.,

84



the return channel I-M is selected. On the contrary, customers in Phoenix, return

products to their closest retailers, since neither RFs nor centers do not exist in close

proximity. Thus, they send products to RF via intermediate locations, either using

retailers (I-R-M) or using retailers and centers (I-R-C-M). In this section we exam-

ine how a product recovery network affects return channel selections. For problem

data, we use the same value from HP printer case, except for RF, center, and retailer

locations. For comparing channel selection strategies with different product recovery

networks, we define three different network configurations by changing number RFs,

centers, and retailers.

+ 

: Network-S 

: Network-M 

: Network-L + + 

Figure 3.9: Location of RFs, Centers, and Retailers under Different Geographic
Scheme

Previously, we use geographical data with 4 RFs, 10 centers, 50 retailers, and

120 customers. We regard this network configuration as Network-M (N-M). Next,

we decrease number of RFs, centers, and retailers to 3, 8, and 20, respectively, and
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obtain a smaller test network called as N-S. Lastly, we increase number of RFs, and

centers to 5 and 12, respectively, to generate a larger test network called as N-L. The

sets of locations in these three networks are depicted in Figure 3.9. The grey small

dots represent the locations of RFs, centers, and retailers in N-S. The blue larger

dots are added to N-S to obtain the set of RF, center, and retailer locations in N-M.

Lastly, the largest red dots are included in N-M to obtain the locations in N-L.

First, we analyze HP printer case (30% Non-defective / 10% Disposal rate) with

three different networks, N-S, N-M and N-L and obtain the results summarized in

Figure 3.10a. Based on results, we observe that channel selections are different to

network configurations. As the network becomes larger, the percentage of channel

I-R-C-M decreases while the percentages of I-R-M and I-M increase. For example,

more than 20% of customers return products use the return channel I-R-C-M under

N-S. Customers in Dallas do not have RF and retailer under N-S, so they return

their products to a close retailer located in Oklahoma City. However, they return

products directly to RFs under N-M and N-L since both retailers and RFs are located

in Dallas. In other words, return channel can be affected by the logistical network

configuration, specifically by the locations of retailers, centers or RFs. Generally, if

customers are close to RFs, then the return channel I-M is likely to be selected due to

savings in transportation and handling costs. On the other hand, if retailers are close

to customers but RFs are less scattered and far from the customer locations, then

products are first returned to retailers. Also, return channel choice between I-R-C-M

and I-R-M for a retailer largely depends on whether the retailer has a close by RF or

not. In summary, we observe that the return channel can be affected by the network

structure which dictate the proximity of RFs, centers, and retailers to customer

locations. As customers have more retailers and RFs in their vicinity, the channels I-

R-M and I-M become cost efficient channels and are selected more frequently. On the
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other hand, we also recognize that, since HP printer is assumed to have a high decay

rate, choice of channels I-R-M and I-M are also responsive channels (as mentioned

in the previous section) and , thus also desired due to product characteristics.

Similar to the HP printer case, we analyze Bosch power tool case (at 0% Non-

defective and 10% Disposal rates) under three different networks with results sum-

marized in Figure 3.10b. As we have observed earlier, all four channels are selected

similarly in all three networks. The percentage of channel I-R-C-M decreases as the

percentages of I-R-M increase with increasing network size. Under network N-S,

almost 40% of customers use return channel I-R-C-M, but, in the network N-L, only

20% of customers select return channel I-R-C-M. As more RFs and retailers are in-

cluded in the network, more customers select return channel I-R-M instead of return

channel I-R-C-M. For example, customers in Houston return power tools via channel

I-R-C-M under network N-S, since they do not have RFs or centers in their vicinity.

However, once RFs and retailers are located in Dallas, they change channel from

I-R-C-M to I-R-M for return. That is, return channel I-R-M becomes more cost-

efficient channel for customers in Houston under network N-L. Unlike return channel

I-R-M, selection percentage of return channel I-M is similar in all three networks.

The responsive return channel (I-M) is utilized less frequently for Bosch power tool

case because a highly responsive channel is not needed due to low decay rate for the

product value, only for customers who reside near RFs I-M is chosen as the return

channel. Observing that the selection of return channel is affected by both product

characteristics and recovery networks configuration, next we analyze channel selec-

tion by incorporating the interaction of these main return channel determinants by

considering them simultaneously.
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Figure 3.10: Channel Selection of HP and Bosch under Different Networks

3.3.4 Channel Selection under Different Networks and Product Characteristics

To analyze channel selections under general product characteristics (including

decay, non-defective, and disposal rates) in conjunction with recovery network char-

acteristics (including the locations of retailers, centers, and RFs), we use the same

three recovery network settings as shown in Figure 3.9. Furthermore, we define two

levels for decay, non-defective and disposal rates as being high and low. For decay

rate, we consider a product value loss of 1.0% in a day (high) or in a week (low).

Similarly, we consider 10% (low) or 50% (high) for both non-defective and disposal

rates.

Table 3.1 shows the average percentages of selected return channels and per-
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centage increases in objective values (total profit) as the network becomes larger

(Small-to-Medium and Medium-to-Large) under different product and network char-

acteristics.

Decay (H/L) Low Non-defective - Low Disposal Low Non-defective - High Disposal

Network (L/M/S) I-R-C-M I-R-M I-C-M I-M ObjInc % I-R-C-M I-R-M I-C-M I-M ObjInc %

L-L 0.0% 22.2% 28.7% 49.1% 0.67 0.0% 15.6% 43.5% 40.9% 1.15

L-M 4.1% 27.0% 23.2% 45.7% 1.24 8.8% 23.3% 32.0% 35.9% 1.48

L-S 3.3% 30.3% 32.0% 34.5% - 14.0% 19.3% 37.6% 29.2% -

H-L 0.0% 16.6% 23.4% 60.0% 14.88 0.5% 14.7% 38.9% 45.9% 105.93

H-M 3.4% 24.4% 18.4% 53.7% 5.44 7.8% 20.8% 31.2% 40.1% 31.15

H-S 7.1% 21.5% 27.2% 44.2% - 11.5% 15.1% 40.5% 32.9% -

Decay (H/L) High Non-defective - Low Disposal High Non-defective - High Disposal

Network (L/M/S) I-R-C-M I-R-M I-C-M I-M ObjInc % I-R-C-M I-R-M I-C-M I-M ObjInc %

L-L 16.9% 70.4% 0.9% 11.8% 0.19 46.9% 44.8% 1.8% 6.4% 0.21

L-M 26.3% 58.7% 2.1% 12.9% 0.51 52.2% 35.4% 3.6% 8.7% 0.36

L-S 42.5% 48.3% 2.8% 6.4% - 61.7% 29.3% 5.8% 3.1% -

H-L 17.5% 71.4% 4.0% 7.2% 1.16 38.2% 52.5% 3.1% 6.1% 1.19

H-M 24.5% 62.4% 4.1% 9.0% 4.84 44.8% 43.7% 4.0% 7.5% 5.11

H-S 30.3% 52.7% 7.2% 9.9% - 46.2% 37.9% 7.3% 8.5% -

Table 3.1: Average Percentage of Selected Channel and Objective Value under Dif-
ferent Product and Network Characteristics

3.3.4.1 Observations under High Non-defective Rates

1. We first notice that, when the non-defective rate is high, the channels I-R-M

and I-R-C-M are heavily utilized. That is, the returned product mostly reach to

a retailer location first and the non-defective ones (which are large in number)

are put back on the shelf after minor processing. Further, if disposal rate of

defective products is low, I-R-C-M is utilized significantly less than I-M since

it unnecessarily introduces one extra stop (at a center) before processing at an

RF location. On the other hand, in addition to non-defective rate, if disposal

rate is high as well, then channel I-R-C-M and I-R-M are both significantly
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utilized.

2. In both of the high non-defective cases, regardless of the product value decay

rate, as the network size increases, the channel I-R-M use increases while the

I-R-C-M use decreases. This is because the increase network size improves

proximity of RFs to retailer and renders I-R-M as a more cost-efficient channel

when compared to I-R-C-M. A similar trend is observed when I-C-M and I-M

are compared as well.

3. We further observe that, within low decay rate groups, regardless of the disposal

rate level, the objective function values improve only slightly as the network

becomes larger. For example, the total profit increases by 0.19% and 0.51% as

the network size changes small-to-medium and medium-to-large, respectively.

We observe larger improvements under high decay rate, that is, larger spread

of RF and center locations induces responsiveness and help to improve profits

more significantly than the low decay rate products.

3.3.4.2 Observations under Low Non-defective Rates

1. In this case where there is a high number of returned products requiring signif-

icant rework at RF locations (more so when disposal rate is low), the channel

I-R-C-M is least utilized and the channels I-M and I-C-M are the most signif-

icantly employed ones. If the disposal rate is low, I-M is use is significantly

more than I-C-M and I-R-M, especially in larger networks, due to benefits of

direct shipment to RFs for remanufacturing. This is more pronounced in the

high decay rate case where a responsive channel such as I-M is more beneficial.

On the other hand, when the disposal rate is high, use of I-C-M increases sig-

nificantly due to the opportunities to dispose early without bearing additional

transportation and handling costs. We also observe that, for small and medium
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networks, use of I-R-C-M also increases due to its cost efficiency in the lack of

proximity to RF locations.

2. In both of the low non-defective cases, as the network size increases, the use

of channel I-M increases while the use of I-R-C-M and I-C-M decreases. This

is because the increased network size improves proximity to RFs thus making

I-M a cost-efficient channel when compared to I-C-M and I-R-C-M. This holds

regardless of the product value decay rate, perhaps an exception is in low decay

rate with high disposal case in which the use of I-C-M increase with larger

networks due to small amounts of time-insensitive returned products needing

rework.

3. Furthermore, in terms of the objective value (profit) changes, we observe that,

in the low decay rate case, slight improvements are obtained as the network size

increases. This is because while most of the returned products are defective and

need to be worked on, they do not lose much value in time and, thus, do not

require extensive networks for realizing their value in logistically cost efficient

manner. On the other hand, if the decay rate is high, profit improvements can

be quite substantial when the network size is increased due to the fact that

a large network (with many center and RF locations) provides the ability to

process returns both faster and cheaper.

3.3.5 Analysis of Presetting Channel Selections

From the perspective of company’s own operations, it may appear desirable to

fix the return channel to one of the channels that we formulate above in our model.

As observed in the above analysis, this may lead to very high profit losses depending

on the product and network characteristics. Thus, in this section, we specifically

examine cases where a company decides the return method versus a company allows
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customers to decide the return method. For this analysis, we employ the medium

sized network N-M introduced above.

Our original model represents the first case when a company determines the

return channel based on model selection as in previous sections. For the second case,

we modify original model by restricting channel selection i.e., we force the model to

collect products using only a single return channel, I-R-C-M, I-R-M, I-C-M, or I-M.

For the purposes of comparison under varying product characteristics, we define four

decay rates including product value loss of 1% per day (1D), per week (1W), per two

weeks (2W), and per three weeks (3W). We consider three different non-defective and

disposal rates as 10%, 30%, and 50%, with other data (demand, cost, price, etc.)

based on HP printer case. For each combination of these decay, non-defective, and

disposal rates, we first find the optimal solution and return channel selections based

on our original model. Next, we obtain the optimal objective values by restricting the

return channel to one of four channels and examine their closeness to the objective

value of the original model. In Figure 3.11, OptGap (%) shows the percentage

decrease in the optimal solution (profit decrease) if the corresponding specific channel

is employed over optimum solution of our original model. Our observation can be

summarized as follows:

1. In Figure 3.11, notice that the profit decrease values are significantly larger for

the high decay rate (1D) case (note the the differences in scale in y-axis). It is

clear that the average profit decrease due to return channel fixing is the largest

for high decay rate case in which it is particularly large for low non-defective

rates.

2. As an overall trend, we observe that profit decrease values with I-R-M and I-R-

C-M decrease with increased non-defective and disposal rates, i.e., the forcing

of the returns to retailer locations for immediate re-shelving and quick access
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to disposal at a center or RF (if not re-shelved) provide the least profit loss

(over the optimum solution. I-M and I-C-M appear to be behaving in a similar

fashion, however, their profit decrease values are typically much higher than

the ones with I-R-C-M and I-C-M and an improvement is observed only when

the non-defective rates increase from 10% to 30%.

3. For each fixed non-defective rate group, we observe that profit decrease in-

creases as the disposal rate increases. The reason for this is also related to the

impact of disposal on the revenue, i.e., high disposal rate of returned products

leads to lost revenues, and thus to lower profits.

In summary, ad hoc choice of a channel for returns always introduces high profit

loss which is very significant especially for the products with high value decay rate.

Next, in Figure 3.12, we present profit decrease (over the optimum channel selection)
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Figure 3.11: Optimal Solution Gap Percentage under Different Decay Value
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due to channel presetting with respect to varying value decay rates including 1%

decay rate per 3 days (3D) and per 5 days (5D). Again noting the scale differences

in y-axis, we observe that the profit decrease is generally lower with channel fixing

when the non-defective rate is high with presetting to e channels I-R-M and I-M

providing smaller profit losses. As mentioned above, these channels provide quick

re-shelving of non-defective products if not disposed and, otherwise, cost efficient

disposal at centers and RFs. On the other hand, when the non-defective rates are

low, most of the products need to be re-worked, if not disposed, channel presetting

causes large losses in profit, especially for high decay rate products.

Overall, we clearly observe that optimal channel selection, rather than an ad

hoc presetting, is critical for high value decay rate products, e.g., 1D case, but not

insignificant, in terms of profit losses even for low decay rate products, although the

rate of profit decrease diminishes quickly with increasingly low value decay rates.
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3.4 Conclusions

When products are collected, product and recovery network characteristics should

be considered in order to maximize their residual value which has direct impact on

overall profit.

In the previous sections, we analyze the return channel selection strategy based on

product and network characteristics. First, we analyze how product characteristics

affect the channel selection. We find that the product decay parameter is one of

the important factors in channel selection. The product with high decay rate (HP

printer) requires return channel with faster travel time so that the product can be

sold with relatively high price. On the other hand, the product with low decay

rate (Bosch power tool) prefers less costly return channels. Also, the non-defective

and disposal rates have impact on the return channel selections. Generally the final

destination of the returned products is determined based on product’s condition and

we can expect the condition of product based on information on non-defective and

disposal rates. For example, if product’s non-defective rate is relatively high, then

retailer should initially collect product so that products can can be resold at the

retailer right away thereby avoiding unnecessary costs. We observe that our model

captures this trade-off between time and cost involved in effective value recovery

from returned products.

Next, we study return channel selection strategy with different product recov-

ery networks and observe relation between customer locations and return channel

selection. Although percentage of selected return channel varies with product char-

acteristics, the products are generally collected at locations (retailer, center or RF)

in close proximity to customers. Product with high non-defective rate should be

returned to retailers, so considering extra retailers is more effective, whereas RF

95



locations are more importance in the collection of product with low non-defective

rate.

Lastly, we observe certain situations that a company should determine the return

channel decision. First, if returned products have high decay value, then a company

should manage return channel for minimizing profit loss. Also, if product’s non-

defective rate is low, then a company should take care of products for minimizing

profit loss from defective products.

96



4. NETWORK DESIGN FOR COMMERCIAL PRODUCT RETURNS UNDER

TIME-VALUE CONSIDERATIONS

In the previous chapter, we considered commercial product returns in recovery

logistics networks to determine the best channel selection strategy for maximizing

profit from recovered products. As expected, both the product characteristics and

recovery logistics network configurations affect channel selection decisions. We ob-

serveed that total profit and channel selections vary depending on the recovery net-

work configuration. The next natural question, then, is to ask “what is the best

recovery logistics configuration for profit maximization?” To answer this question,

we extend the model for return channel selection in commercial product recovery

logistics networks by introducing location decisions associated with RFs and centers.

As reviewed in section 3.1, most product recovery network design problems do not

consider the commercial product return case. In other words, product residual value

is largely ignored in models and analysis in the previous studies.

The objective of this chapter is to study the return channel selection and network

design problems in an integrated fashion for the commercial product return case. We

formulate the model as MILP and in order to solve large size instances efficiently, we

develop a solution approach based on the SA heuristic algorithm. The SA heuristic

algorithm is a well-known approach for solving optimization problems. In the SA

algorithm, a feasible solution is evaluated many times to check the goodness of solu-

tion. However, if an optimization solver, such as CPLEX, is used for evaluation, it

takes an excessively long solution time. Therefore, we propose an alternative evalua-

tion method, called the greedy algorithm. We compare performance of the developed

SA algorithm against an exact solution method, BD, using randomly generated in-
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stances. In our experiments, we observe that the developed SA algorithm solves the

problem efficiently in terms of solution time and solution quality as benchmarked

against the upper bound information from the BD solution.

The rest of this chapter is organized as follows. In section 4.1, we introduce the

notation and mathematical formulation of the problem. In section 4.2, we propose

heuristic solution methodology along with the solution representation, the greedy

algorithm for evaluating the objective function value, a construction heuristic, and

an improvement heuristic. We end the section with an outline of the BD reformula-

tion. In section 4.3, we provide computational results of the heuristic solution and

in section 4.4, we analyze recovery logistics network design and channel selection

strategy based on the real product data from HP and Bosch. We end this chapter

with summary and conclusions.

4.1 Problem Definition and Assumptions

The problem definition and assumptions are covered in section 3.2, except for

location decisions. The model consists of four entities: customer, retailer, center, and

remanufacturing/repairing facility (RF) as depicted in Figure 4.1. The locations of

customers and retailers are assumed to be known a priori and the model determines

RF/center locations and the return/redistribution channels to maximize the total

profit from the recovery of product returns.

98



Customer Retailer RFCenter

Disposal

Second
Market

f1
ptir

f2
ptic

f3
ptim

f4
ptrc

f5
ptrm

f6
ptcm

f7
ptm

f8
ptm

f9
ptmc

Customer Retailer RFCenter

Disposal

Second
Market

f1
ptir

f2
ptic

f3
ptim

f4
ptrc

f5
ptrm

f6
ptcm

f7
ptm

f8
ptm

f9
ptmc

xc ym

Figure 1: CLSC supply chain network with multiple channels

Parameters:

4

Figure 4.1: Multi-channel Product Recovery Logistics Network Structure with Lo-
cation Decisions

To develop a mathematical model, we first explain newly introduced problem

parameters and decision variables in the model.

Additional Parameters:

Fc fixed cost of opening a center at location c ∈ C.

Fm fixed cost of opening a RF at location m ∈M

Additional Decision Variables:

xc 1 if center c is open, 0 otherwise.

ym 1 if RF m is open, 0 otherwise.

We develop a MILP model for the problem. The model determines locations

of RFs/centers and redistribution/return flows to maximize the total profits over a

product’s life cycle.
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Objective function, (4.1a), consists of total profit, total location, transportation,

material handling, and repair/disposal costs over time periods. The first three terms

represent the profit from the sale of non-defective and recovered products. The

fourth, fifth, and sixth terms represent transportation costs. The fourth and fifth

terms are transportation costs associated with return flows, whereas the sixth term

is transportation costs associated with redistribution flows. The seventh, eighth, and

ninth terms are the product handling costs associated with return and redistribution.

The tenth and eleventh terms represent repair and disposal costs. Finally, the last

two terms represent the fixed costs associated with opening the centers and the RFs.

Constraint set (4.1b) ensure that products will be collected by one of the retailers,

the centers, or the RFs. Constraint set (4.1c) and (4.1d) represent the conservation

of return flows at the retailers and the centers, respectively. Flow conservation

constraints are expressed using travel and processing time. Constraint set (4.1e) and

(4.1f) show that non-defective products are sent back to retailers. Constraint sets

(4.1g) - (4.1k) ensure that return and redistribution flows to a retailer and center do

not exceed their respective assigned capacity. Lastly, constraint set (4.1l) represents

restrictions on the decision variables.

In our model, there are essentially four return channels for selection and each

channel possesses different characteristics, I-R-C-M, I-R-M, I-C-M, and I-M. If we,

however, consider return channel together with redistribution channel, we have a

total of five channels. Based on model assumptions, there are three redistribution

channels, from centers to retailers, C-R, from RFs to retailers via centers, M-C-R,

and from RFs to retailers, M-R. Redistribution channels M-C-R and M-R send non-

defective products from return channel I-M and redistribution channel C-R sends

non-defective products from return channel I-C-M. For non-defective products from

return channels, I-R-C-M and I-R-M, we do not consider additional redistribution
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flows, since those products are re-shelved at the corresponding retailer locations.

Therefore, by considering both return and redistribution channels simultaneously,

we have a total of five channels: I-R-C-M, I-R-M, I-C-M/C-R, I-M/M-C-R, and

I-M/M-R.

4.2 Solution Methods

In this section, we propose two methods to solve the developed problem: a heuris-

tic solution method and an exact solution method. First, we describe the heuristic

method including the initial solution construction, the method for evaluating the

goodness of a solution, and the neighborhood solution search. The proposed heuris-

tic method is based on the SA algorithm, which is a well-known heuristic method

for solving optimization problems. The SA was originally proposed by Kirkpatrick

et al. [25] and has been widely used to solve optimization problems since the 1980s.

The idea of SA originates from the annealing process in the production of metal.

Kirkpatrick et al. [25] show the similarities between annealing process and the com-

binatorial optimization problem that searches for a global optimum. In the annealing

process, a substance is heated first and then is slowly cooled down, so that it be-

comes a stronger structure. Similarly, the SA seeks for better solutions through

an annealing process algorithm. In the annealing process, the SA uses a stochastic

approach to allow for the degradation of a solution. For example, the SA accepts

moves that improve solutions during the solution search. The SA also accepts moves

that degrade solutions with a probability calculated with current temperature and

the amount of degradation of solutions. This solution degradation helps solutions

to escape from local optimum. The annealing process continues until the number of

iterations reaches predefined iteration termination number and the algorithm termi-

nates, if current temperature is less than predefined final temperature. SA solution
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quality generally depends on the algorithm’s cooling rate and the number of itera-

tions in the algorithm.

RSC/CLSC network design problems are well-known NP-hard problems, thus

some research has proposed a heuristic approach as their solution method [12, 27,

43, 44]. The SA has advantages against other heuristic methods, since the SA al-

gorithm is relatively easy to implement and obtains a good quality solution quickly

[14]. Pishvaee et al. [38] consider multi-stage reverse logistics network with limited

capacities. They propos using a SA heuristic algorithm with priority-based encoding

method and special neighborhood search mechanisms. Lee and Dong [28] develop a

two-stage stochastic programming model for dynamic reverse logistics network de-

sign. To enhance solution performance of a SAA method, the authors use the SA

algorithm.

4.2.1 Simulated Annealing Heuristic

Before implementing the SA algorithm, we define a solution vector representing

the location choices in a solution. The solution has total of m potential RFs and

c potential centers in the model. Thus, a solution vector is represented by an ar-

ray of size (m + c). If certain locations of the RF and centers are open, then the

corresponding element in the solution vector has value 1; otherwise, it has value 0.

1 0 1 0

m RFs c centers

00.... ....

Figure 4.2: A Sample Representation of the Feasible Solution.

Once the RF/center locations are determined, the original MILP model becomes

a LP model. The resulting LP problem can be solved using an optimization solver,
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such as CPLEX. However SA evaluates the goodness of solutions many times, so

using an optimization solver may take an excessively long solution time. Therefore,

we propose a greedy algorithm to solve the LP model. The LP model determines

return and redistribution network flows that maximize total profit from the recovered

products. We expect that among the five channels (I-R-C-M, I-R-M, I-C-M/C-R,

I-M/M-C-R, and I-M/M-R), the most profitable channel is used for product return

and redistribution as long as capacity constraints are satisfied. In order to maxi-

mize profits, we need to increase total revenue or decrease total costs. However, it

is not easy to determine whether increasing total revenue or decreasing total cost

contributes more to the objective function. For example, decreasing total cost may

contribute more to the objective function if a product’s decay value is relatively

low. Therefore, we propose using a greedy algorithm to calculate the most profitable

channel. In this greedy algorithm, we first compute the minimum total cost flows

for all five channels based on available customers, retailers, centers and RFs in the

current network. Because, under the same channel type, less transportation cost

generally indicates less travel time. Thus, we can minimize a product’s value loss at

the retailer and the second market locations. For the each channel type, we compute

the minimum total cost flow using Dijkstra’s algorithm based on the current logistics

network. Once five candidate channels are obtained, one for each channel type, we

calculate the unit profit of products for five candidate channels and select the most

profitable channel. The flow amounts in the selected channel are set by the minimum

of return amounts at the retailer, or capacities in the channel.

The procedure for greedy algorithm is shown in Algorithm 2.
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Algorithm 2 Greedy Algorithm

1: Obtain a solution vector and initialize the parameters.

2: for each r ∈ R do

3: CAPF
r = QF

r , CAPR
r = QR

r and SR = {r} ∪ SR.

4: end for

5: if center c ∈ C (RF m ∈M) is open then

6: CAPF
c = QF

c , CAPR
c = QR

c (CAPm = Qm) and SC = {c} ∪ SC (SM = {m} ∪ SM ).

7: else

8: CAPF
c = 0 and CAPR

c = 0 (CAPm = 0).

9: end if

10: Create set P ′ = P, and label elements in the decreasing order of price.

11: while P ′ 6= ∅ do

12: Select p ∈ P ′ with the lowest label.

13: for each t ∈ T do

14: for each i ∈ I do

15: RTi = Dpti and SI = {i} ∪ SI .

16: end for

17: while SI 6= ∅ do

18: for each s ∈ SQ do

19: Calculate MTCFs

20: Based on MTCFs, PROFITs ← (Revenues −MTCFs).

21: end for

22: s∗ = arg maxs∈SQ {s|PROFITs}.
23: Denote i∗, r∗, c∗, and m∗ as the customer, retailer, center, and RF in the channel

s∗, respectively.

24: flows∗ = min
[
RTi∗ , CAPF

r∗ , CAPR
r∗ ,CAPF

c∗ , CAPR
c∗ ,CAPm∗

]
.

25: Update Z = Z + Pbest × flows∗ .

26: Update RTi∗ = RTi∗ − flows∗ , CAPF
k = CAPF

k − flows∗ , k ∈ {r∗, c∗}, CAPR
k =

CAPR
k − flows∗ , k ∈ {r∗, c∗}, and CAPm∗ = CAPm∗ − flows∗ .

27: if CAPF
r∗ = 0 OR CAPR

r∗ = 0 then

28: SR = SR \ {r∗}. Repeat the same process for c∗ and m∗.

29: end if

30: if updated RTi∗ = 0 then

31: SI = SI \ {i∗}.
32: end if

33: end while

34: end for

35: P ′ = P ′ \ {p}.
36: end while

37: Report results.

106



Before explaining the SA algorithm, we introduce the basic parameters of the SA

algorithm as follows.

SA Algorithm Parameters:

T0 : Initial temperature.

T : Current temperature.

Tf : Freezing temperature.

CS : Cooling rate of current temperature.

k : Number of iteration at each temperature.

Km : Iteration termination number at each temperature.

X0 : Initial solution.

X : Current solution.

Xnh : Neighborhood of current solution.

Xbest : Best solution obtained from algorithm.

C(X) : objective function value of solution X.

The proposed SA heuristic consists of two parts: constructive heuristic and im-

provement heuristic.

4.2.1.1 Constructive Heuristic

We construct the initial solution (X0) in this stage. First, we randomly select

RFs until total capacities of selected RFs are larger than total return quantities over

a product’s life cycle. Next, we randomly select two centers for open locations.

4.2.1.2 Improvement Heuristic

In this stage, we improve the current solution by modifying locations of RFs and

centers. For both RF and center locations, we use three different moves: Move1,

Move2, and Move3. We randomly select a candidate move among the three moves

to find the neighborhood of the current solution, Xnh.
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Move1: Two randomly selected open locations are closed and two randomly selected

closed locations are opened.

Move2: A randomly selected closed location is opened.

Move3: A randomly selected open location is closed.

If total capacities of RF in Xnh are less than the total number of returned products,

the algorithm opens additional RF until capacity conditions are satisfied. Similarly, if

the current solution does not include any active center, then Move3 is automatically

excluded from selection. Once a neighborhood solution, Xnh, is obtained, the good-

ness of solution is evaluated based on the greedy algorithm shown in Algorithm 2.

The overall SA algorithm outlines are given in Algorithm 3.

Algorithm 3 Procedure for SA Algorithm

1: Initialize algorithm parameters (T , Tf , CS, Km, k) and construct X0.

2: Compute C(X0) and set Xbest = X0, X = X0.

3: while T < Tf do

4: Generate Xnh using Move1, Move2, or Move3.

5: Evaluate C(Xnh) using Greedy algorithm.

6: Let ∆C = C(Xnh)− C(X)

7: if ∆C ≥ 0 then

8: X = Xnh. If C(Xnh) > C(Xbest), Xbest = Xnh.

9: else

10: y ← UNIF(0, 1), z = e−
∆C
T . If y < z, X = Xnh

11: end if

12: Update current iteration, k = k + 1.

13: if k ≤ Km then

14: Go to line 4 .

15: else

16: Go to line 18

17: end if

18: Initialize iteration k = 0.

19: T = CS× T
20: end while

21: Report results.
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4.2.2 Benders Decomposition Method

For benchmarking the proposed SA heuristic algorithm, we solve the problem

using BD algorithm. We first describe the BD subproblem, the associated dual

subproblem, and the master problem.

4.2.2.1 Benders Subproblem and Its Dual

The primal subproblem, denoted by SP (f 1, f 2, . . . , f 9|x̂, ŷ), is obtained based

on determined location decisions.

Max ZSP =
∑
p∈P

∑
t∈T

∑
r∈R

(∑
i∈I

S1
p(t+Tir+P 1

pr) ·RG
p · f 1

ptir +
∑
m∈M

S1
p(t+Tmr+P 1

pr) · f 8
ptmr

)

+
∑
p∈P

∑
t∈T

∑
c∈C

(∑
r∈R

S1
p(t+Tcr+P 1

pr) · f 9
ptcr +

∑
m∈M

S2
p(t+Tcm+P 3

pm) · f 6
ptcm

)

+
∑
p∈P

∑
t∈T

∑
m∈M

(1−RD
p )

(∑
i∈I

S2
p(t+Tim+P 3

pm) · (1−RG
p ) · f 3

ptim +
∑
r∈R

S2
p(t+Trm+P 3

pm) · f 5
ptrm

)

−
∑
p∈P

∑
t∈T

∑
i∈I

(∑
r∈R

Gir · f 1
ptir +

∑
c∈C

Gic · f 2
ptic +

∑
m∈M

Gim · f 3
ptim

)

−
∑
p∈P

∑
t∈T

(∑
r∈R

∑
c∈C

Grc · f 4
ptrc +

∑
r∈R

∑
m∈M

Grm · f 5
ptrm +

∑
c∈C

∑
m∈M

Gcm · f 6
ptcm

)

−
∑
p∈P

∑
t∈T

{∑
c∈C

∑
m∈M

Gmc · f 7
ptmc +

∑
m∈M

∑
r∈R

Gmr · f 8
ptmr +

∑
c∈C

∑
r∈R

Gcr · f 9
ptcr

}

−
∑
p∈P

∑
t∈T

{∑
i∈I

(∑
r∈R

C1
pr · f 1

ptir +
∑
c∈C

C1
pc · f 2

ptic +
∑
m∈M

C1
pm · f 3

ptim

)}

−
∑
p∈P

∑
t∈T

{∑
r∈R

∑
c∈C

C1
pc · f 4

ptrc +
∑
m∈M

C1
pm

(∑
r∈R

·f 5
ptrm +

∑
c∈C

·f 6
ptcm

)}

−
∑
p∈P

∑
t∈T

{∑
m∈M

∑
c∈C

C2
pc · f 7

ptmc +
∑
r∈R

C2
pr

(∑
m∈M

f 8
ptmr +

∑
c∈C

f 9
ptcr

)}

−
∑
p∈P

∑
t∈T

∑
m∈M

REp

{∑
i∈I

(1−RD
p ) · (1−RG

p ) · f 3
ptim +

∑
r∈R

(1−RD
p ) · f 5

ptrm +
∑
c∈C

f 6
ptcm

}
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−
∑
p∈P

∑
t∈T

CDp ·RD
p

{∑
i∈I

∑
c∈C

(1−RG
p ) · f 2

ptic +
∑
i∈I

∑
m∈M

(1−RG
p ) · f 3

ptim

}

−
∑
p∈P

∑
t∈T

∑
r∈R

CDp ·RD
p

(∑
c∈C

f 4
ptrc +

∑
m∈M

f 5
ptrm

)
(4.2)

subject to (4.1b)− (4.1k)

f 1
ptir, f

2
ptic, f

3
ptim, f

4
ptrc, f

5
ptrm, f

6
ptcm, f

7
ptmc, f

8
ptmr, f

9
ptcr ≥ 0

∀p ∈ P , t ∈ T , i ∈ I, r ∈ R, c ∈ C, m ∈M

The optimal solution of SP (·) provides return channels and redistribution channels

with maximum total profit. Therefore, the original problem can be expressed as

follows.

Max SP (f 1, f 2, . . . , f 9|x̂, ŷ)−
∑
c∈C

Fc · xc −
∑
m∈M

Fm · ym (4.3)

subject to xc, ym ∈ {0, 1} , ∀c ∈ C, m ∈M

We define dual variables π1
pti, π

2
ptr, π

3
ptc, π

4
ptm, π

5
ptc, π

6
r , π

7
c , π

8
c , π

9
r , and π10

m for constraints

(4.1b)-(4.1k), respectively. Then Dual subproblem is obtained as

Min
∑
p∈P

∑
t∈T

∑
i∈I

Dpti · π1
pti +

∑
r∈R

(
Q1
r · π6

r +Q2
r · π9

r

)
+
∑
c∈C

x̂c
(
Q1
c · π7

c +Q2
c · π8

c

)
+
∑
m∈M

Qm · ŷm · π10
m (4.4a)

subject to

π1
pti + (1−RG

p ) · π2
p(t+Tir+P 1

pr)r + π6
r ≥ RG

p · S1
p(t+Tir+P 1

pr) −Gir − C1
pr

∀p ∈ P , t ∈ T , i ∈ I, r ∈ R (4.4b)
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π1
pti + (1−RG

p ) · (1−RD
p ) · π3

p(t+Tic+P 2
pc)c +RG

p · π5
p(t+Tic+P 2

pc)c ≥ +π7
c

−Gic − C1
pc − (1−RG

p ) ·RD
p ∀p ∈ P , t ∈ T , i ∈ I, c ∈ C (4.4c)

π1
pti +RG

p · π4
p(t+Tim+P 3

pm)m + π10
m ≥ (1−RG

p ) · (1−RD
p ) ·

(
S2
p(t+Tim+P 3

pm) −REp
)

− (1−RG
p ) ·RD

p · CDp −Gim − C1
pm ∀p ∈ P , t ∈ T , i ∈ I,m ∈M (4.4d)

− π2
ptr + (1−RD

p ) · π3
p(t+Trc+P 2

pc)c + π7
c ≥ −Grc − C1

pc −RD
p · CDp

∀p ∈ P , t ∈ T , r ∈ R, c ∈ C (4.4e)

− π2
ptr + π10

m ≥ (1−RD
p ) · (S2

p(t+Trm+P 3
pm) −REp)−Grm − C1

pm −RD
p · CDp

∀p ∈ P , t ∈ T , r ∈ R,m ∈M (4.4f)

− π3
ptc + π10

m ≥ S2
p(t+Tcm+P 3

pm) −Gcm − C1
pm −REp

∀p ∈ P , t ∈ T , c ∈ C,m ∈M (4.4g)

− π4
ptm + π5

p(t+Tmc+P 2
pc)c + π8

c ≥ −Gmc − C2
pc ∀p ∈ P , t ∈ T ,m ∈M, c ∈ C (4.4h)

− π4
ptm + π9

r ≥ S1
p(t+Tmr+P 1

pr) −Gmr − C2
pr ∀p ∈ P , t ∈ T , r ∈ R,m ∈M (4.4i)

− π5
ptc + π9

r ≥ S1
p(t+Tcr+P 1

pr) −Gcr − C2
pr ∀p ∈ P , t ∈ T , r ∈ R, c ∈ C (4.4j)

π1
pti, π

2
ptr, π

3
ptc, π

4
ptm, π

5
ptc unrestricted, π6

r , π
7
c , π

8
c , π

9
r , π

10
m ≥ 0

∀p ∈ P , t ∈ T , i ∈ I, r ∈ R, c ∈ C,m ∈M (4.4k)

4.2.2.2 Benders Master Problem

The master problem, denoted by MP (x, y|π̂1, π̂2, . . . , π̂10), can be obtained from

the overall formulation given with objective (4.3). For this, we replace the first term

representing the subproblem objective with a function of the auxiliary variable (Θ)

to be employed in constructing the Benders cut in an iteration. The following master

problem includes auxiliary variable and BENDERS CUTSET.
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Max ZMP = Θ−
∑
c∈C

Fc · xc −
∑
m∈M

Fm · ym (4.5a)

subject to xc, ym ∈ {0, 1} , ∀c ∈ C, m ∈M∑
m∈M

Qm · ym ≥
∑
p∈P

∑
t∈T

∑
i∈I

Dpti (4.5b)

BENDERS CUTSET

Constraint set (4.5b) is a surrogate constraint to ensure that the recovery logis-

tics network design from the master problem has enough RF capacity to handle all

returned products. As a result, the feasibility of the SP (·) is always guaranteed. We

summarize the overall BD algorithm in Algorithm 4.

Algorithm 4 BD Algorithm

1: Initialize Z∗, UB, Itr, gap values, and set benders cutset empty

2: Solve MP (x, y|·)
3: Set UB = ZMP

4: while (UB− LB)/UB ≥ gap do

5: Itr=Itr + 1

6: Solve DSP to obtain π1
pti, π

2
ptr, π

3
ptc, π

4
ptm, π

5
ptc, π

6
r , π

7
c , π

8
c , π

9
r , π

10
m

7: Calculate LB = ZMP− Θ +ZSP

8: if (LB > Z∗) then

9: Z∗ = LB

10: end if

11: Update benders cutset in the master problem and Solve MP (x, y|·)
12: Set UB = ZMP

13: end while

14: Solve SP (f1, f2, . . . , f9|x̂, ŷ)

15: Report results

4.3 Computational Study

In this section, we present computational experiments of the SA algorithm. To

evaluate performance of the SA algorithm, we compare SA solutions to exact solu-
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tions (BD) in terms of solution time and quality. The BD algorithm is run until a

solution gap of 2% (or better) is reached. The BD algorithm is implemented using

C++ programming language and CPLEX Concert Technology. All implicit MIPs

(master problem and dual subproblem) are solved using CPLEX 12.4 (64-bit). Sim-

ilarly, the SA algorithm is implemented using C++ programming language. Both

algorithms are run on a computer with a 3.4GHz Intel i7-3770 CPU and 32 GB

RAM.

We first develop a testbed of random data instances to analyze the performance

of the proposed SA algorithm. Test instances are generated under two data settings

(Set H: High location costs, and Set L: Low location costs) by altering the number

of products |P|, the number of potential RFs |M|, the number of potential centers

|C|, the number of retailers |R|, and the number of customer locations |I|, as shown

in Table 4.1. Under Set H, location costs of RFs are assumed to be 5000 times more

expensive than the highest product’s price, while location costs of centers are 50% of

RF location costs. Under Set L, location costs of RFs are assumed to be 1000 times

more expensive than the highest product’s price, while location costs of centers are

50% of RF location costs. We create 10 random instances for each class.

Next, we use uniform distributions to randomly generate a product’s selling price

(SNpt ), return quantities (Dpti), non-defective rate (RG
p ), and disposal rate (RD

p ) out-

lined in Table 4.2. The rest of the problem parameters are generated based on the

HP printer case shown in section 4.4.

4.3.1 Sensitivity Analysis of SA Parameters

In order to implement the proposed SA algorithm efficiently, we first conduct a

sensitivity analysis of SA parameters. Based on the preliminary experiment, 110,000

(T ) and 10,000 (Tf ) are proper values of the initial and freezing temperatures, re-
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Class |T | |P| |I| |R| |C| |M| Location Costs

C1 180 2 5 10 40 80 H

C2 180 2 5 10 80 160 H

C3 180 4 5 10 40 80 H

C4 180 4 5 10 80 160 H

C5 180 2 10 20 40 80 H

C6 180 2 10 20 80 160 H

C7 180 2 5 10 40 80 L

C8 180 2 5 10 80 160 L

C9 180 4 5 10 40 80 L

C10 180 4 5 10 80 160 L

C11 180 2 10 20 40 80 L

C12 180 2 10 20 80 160 L

Table 4.1: Problem Classes Used in Computational Testing

Parameter Distribution

SN
pt Uniform[50, 200]

Dpti Uniform[500, 1,000]

RG
p Uniform[0.2, 0.6]

RD
p Uniform[0.2, 0.6]

Table 4.2: Distribution for Price, Demand, Non-defective and Disposal Rate Values.

spectively. We test the number of iterations (IT) and the cooling rate (CS) in the

following analysis by solving the sample problems: Classes 1 and 2 in Table 4.1. Test

values of the iteration number (IT) are set as 5, 10, and 15, while the test values of

the cooling rate (CS) are set at 0.95, 0.9, and 0.85. Table 4.3 shows the performance

of the SA algorithm under different IT and CS values. Before analyzing results, if

the solution gap, (BD upper bound - SA solution)/(BD upper bound)*100, is less

than or close to 2.5%, then the obtained SA solution is viewed as good. According

to the results, the SA algorithm provides good quality solutions under six settings.

We observe that among the six settings, SET-5, when CS and IT value are set as 0.9

and 10, results are the best in terms of run times. Therefore we set the values of IT
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and CS as 0.9 and 10, respectively, for further experiments.

CS IT
Ave Runtimes (Seconds) Ave Opt gap (%)

Class 1 Class 2 Class 1 Class 2

SET-1

0.95

5 697 4715 2.43 2.41

SET-2 10 1330 8812 2.31 2.35

SET-3 15 2542 17083 2.21 2.25

SET-4

0.9

5 407 2517 3.21 3.52

SET-5 10 654 4281 2.48 2.51

SET-6 15 1292 8431 2.41 2.42

SET-7

0.85

5 235 1513 4.12 4.31

SET-8 10 438 2925 3.11 3.32

SET-9 15 884 5829 2.50 2.47

Table 4.3: Solution Gaps and Algorithm Runtimes for Different SA Parameters

4.3.2 Performance of Heuristic Algorithm

We summarize the computational results of the proposed greedy algorithm in

terms of solution quality and SA algorithms in terms of solution time and quality.

The performance of the greedy algorithm is benchmarked against the solution from

CPLEX. We use total of 60 instances from C1 to C6 classes as seen in Table 4.1. For

each instance, we construct a flow networks problem based on randomly fixed RF

and center locations. Obtained flow networks problem is a LP problem and we solve

this problem using CPLEX and the greedy algorithm. Table 4.4 shows the solution

gap between greedy algorithm and CPLEX, calculated as (CPLEX solution - greedy

solution)/(CPLEX solution)*100. According to the results, the greedy algorithm

provides close solution to CPLEX solution. Under all six classes, on average, the

solution gap is less than 1%. Even in the worst case, the solution gap is close to 1%.

In short, Table 4.4 demonstrates the effectiveness of the greedy algorithm, so we use

the greedy algorithm for a solution evaluation.
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Class Ave Sol Gap (%) Max Sol Gap (%)

C1 0.80 1.01

C2 0.66 0.84

C3 0.87 1.22

C4 0.82 1.13

C5 0.74 1.10

C6 0.85 1.17

Table 4.4: Solution Gaps of CPLEX and Greedy Algorithm

Next, we conduct experiments the performance of the SA algorithm. Once

the SA algorithm terminates, we build a flow networks problem using locations of

RFs/centers from the best SA solution. Again, we solve constructed flow networks

problem using CPLEX to improve solution quality and update total profits consid-

ering location costs. Table 4.5 shows the solution gap and solution times (seconds)

of the SA and the BD algorithms. The solution gap of the SA algorithm is calcu-

lated as (BD upper bound - SA solution)/(BD upper bound)*100 and solution gap

of the BD algorithm is calculated as (BD upper bound - BD lower bound)/(BD lower

bound)*100.

We observe that the proposed SA algorithm is efficient, since it provides good

solutions within a reasonable time. On average, the solution gap of SA algorithm

is under 3% or close to 3%. For classes C5, C6, C11, and C12, the BD algorithm

fails to solve the problems within a reasonable amount of time. Thus, we employ an

additional stopping criterion; We terminate the BD algorithm, if the solution time

exceeds 8 hours (28800 seconds) or if a 2% solution gap is reached, whichever comes

first. In these four classes, the SA algorithm finds better solutions in a short period

of time, when compared to the BD algorithm. Although the solution time of the SA

algorithm does not improve much in comparison to the solution time of BD on the
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average, SA always has shorter solution times than the BD algorithm. Moreover, the

worst-case of SA performs much better than the worst-case of BD. For example, in

class C4, the BD algorithm takes 29278 seconds to obtain a solution in the worst-

case. On the other hand, the SA algorithm only takes 9764 seconds to solve the same

problem in the worst-case. In short, the computational results justify the use of the

proposed SA algorithm to solve the developed model.

Ave Run Times (seconds) Max Run Times (seconds) Ave Opt Gap (%) Max Opt Gap (%)

SA BD SA BD SA BD SA BD

C1 693.7 1032.2 772.9 1854.7 1.85 1.58 2.23 1.96

C2 5143.9 8191.8 6368.7 18323.0 1.94 1.52 2.26 1.96

C3 1877.0 3927.7 4262.2 18404.2 1.95 1.62 2.84 1.96

C4 9238.0 11952.2 9763.8 29278.9 1.84 1.63 2.10 1.98

C5 904.3 28800 Limit 935.4 - 2.81 3.73 3.77 5.82

C6 5192.6 28800 Limit 6099.6 - 2.98 4.29 3.69 6.43

C7 691.2 1780.6 755.7 9333.5 1.77 1.66 2.01 1.97

C8 5141.7 7073.5 5585.8 26181.7 1.82 1.63 2.40 1.97

C9 2011.7 4374.2 2361.6 11604.5 1.92 1.59 2.75 1.95

C10 8859.3 10991.8 9161.3 13513.7 1.95 1.67 2.67 1.96

C11 1134.6 28800 Limit 1904.1 - 3.02 4.43 4.82 7.53

C12 6190.4 28800 Limit 6502.8 - 3.01 5.21 4.18 7.57

Table 4.5: Runtimes and Solution Gaps of SA and BD Algorithm

4.4 Case Study: HP Printer and Bosch Power Tool

For the purpose of accurate analysis, we use the same geographical data of cities

in the U.S and the real data from HP and Bosch shown in section 3.3. The location

sets in consideration are depicted in Figure 4.3: 5 potential RFs, 12 potential centers,

50 retailers, and 120 customers.
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(a) Potential RF Locations (b) Potential Center Locations

(c) Retailer Locations (d) Customer Locations

Figure 4.3: Geographical Distribution of Potential RFs, Potential Centers, Retailers,
and Customers in the U.S.

In this section, we study how active RF/center locations and return channel se-

lections change with different location costs. As previously observed, return channel

selection is affected by logistics networks as well as by product characteristics. In

this research, we consider location decisions for RF and center to identify the best

recovery logistics networks configuration and return channel selection strategies. Lo-

cation decisions vary depending on fixed location cost and product profit. Therefore

we introduce four different location cost settings based on HP printer prices, LC-A,

LC-B, LC-C, and LC-D. For example, fixed RF costs under the LC-A setting are

assumed to be 5000 times more than the price of a HP printer. Similarly, we define

fixed RF costs in LC-B, LC-C, and LC-D settings as being 2500, 1250, and 500 times
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more expensive than the HP printer price, respectively. We also assume that fixed

center costs are 50% of fixed RF costs in their location costs setting. The objective

function of this model is to maximize total profit from recovered products. In order to

achieve this objective, we must increase revenue or decrease costs. However, product

characteristics and logistics network largely determine whether increasing revenue or

decreasing costs is more beneficial to the objective function. Therefore, considering

the location cost settings, we expect to identify the importance of revenue and costs

in the optimal objective function value.

We first analyze the number of active RFs and centers in HP, Bosch, and multi-

product solutions. Table 4.6 shows the number of active RFs and centers in the HP

printer, Bosch power tool and multi-product (HP & Bosch) solutions, respectively.

Not surprisingly, we have more active RFs and centers in the network as location

costs decrease. If location costs are relatively high, a minimum number of RFs that

can handle total products are open. However as locations cost decrease, more RFs

are shown in the network.

Recovery logistics network design is different from product characteristics, such

as price and decay value. For example, in the Bosch power tool solutions, generally

fewer number of active RFs are located in the network when compared to HP printer

solutions. We expect the recovery logistics network design between the HP printer

and Bosch power tool to be different. The decay value of the Bosch power tool is

much lower than the decay value of the HP printer. Thus, more active RFs are

required in the HP printer case, so that the residual value of the recovered HP

printer is as high as possible. However the value of the Bosch power tool change

little over time, so minimizing total system costs is more important than maximizing

revenue. For this reason, if location costs are relatively high, then only a minimum

required number of RFs are shown in the solution of the Bosch power tool case.
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In this problem, we use the real data value with the HP printers and Bosch power

tools, to make an accurate analysis of the return channel selection strategy. The

characteristics of printers and power tools are totally different, so sharing the same

RF location and resources for repair may not be realistic. However, in real business

situations, many companies provide a wide range of product lines to increase sales.

For example, Apple produces various computers ranging from low-price laptops to

high-end desktops. Characteristics of these products, such as decay value and price,

are different, but the required resources for repairing these products may be the

same. Thus, we expect that our assumption about sharing the same center and RF

location for multi-products can be applied to a real business model. Unlike active RF

locations, the number of active centers in the Bosch power tool solutions is larger

than the number of active centers in the HP printer solutions. Return channels

that include center locations, provide lower total costs by disposing of defective

products at an early stage along with low transportation costs. Therefore, using

return channels with center locations are appropriate in order to collect products

with low decay value, such as the Bosch power tool.

LC-A LC-B LC-C LC-D

RF Center RF Center RF Center RF Center

HP 3 0 4 1 5 1 5 3

BOSCH 2 1 3 1 4 2 5 3

Multi-Product 3 0 4 1 4 2 5 3

Table 4.6: Number of Active RF and Center in the HP, Bosch, and Multi-product
Problems.

Figure 4.4 shows active RF and center locations in the HP printer solutions under

four different location settings, while Figure 4.5 shows active RF and center locations
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in the Bosch power tool solutions with different location costs. Among potential RF

locations, New York, Chicago, San Jose, Dallas, and Jacksonville, RFs are located in

the most populated area first. For example, under LC-A, the highest location cost

setting, RFs are located in New York and San Jose in the Bosch power tool case.

Similarly RFs are located in New York, Dallas, and San Jose in the HP printer case.

As location costs decrease, RFs are located in the following order: Dallas, Chicago,

then Jacksonville. None of the centers are active in certain situations, since return

channels I-R-M and I-M do not require an active center in their return process.

According to the results, centers are also located in the populated area similar to RF

locations. In the Bosch power tool case, centers are widely spread across the map,

while centers are located close to RFs in the HP printer case. Minimizing total costs

is a major concern in the Bosch power tool case due to low decay value, so widely

spread centers enable decreased transportation costs. On the other hand, minimizing

a product’s value loss, i.e. minimizing product’s sojourn time in the network, is the

most important objective in the HP printer case. Centers located close to RFs

decrease not only transportation costs, but also travel time from customer to RF.

Active RF Active Center

Active RF Active Center

LC-A

LC-C LC-D

LC-B

LC-A

LC-C LC-D

LC-BFigure 4.4: Active RF and Center Locations in the HP printer
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Active RF Active Center

Active RF Active Center

LC-A

LC-C LC-D

LC-B

LC-A

LC-C LC-D

LC-B

Figure 4.5: Active RF and Center Locations in the BOSCH Power Tool

Next, we analyze return channel selections of the HP printer and Bosch power

tool cases. Figure 4.6 and Figure 4.7 show the percentage of selected return chan-

nel in the HP and Bosch cases over a daily time period. In the graph, the X-axis

represents product life length (365 days) and the Y-axis represents the percentages

of return channels selected by customers. According to results, return channel se-

lections of HP printers are similar in four different location cost settings. Although

selection percentages of return channels I-R-C-M and I-C-M vary depending on the

existence of center locations in the networks, their selection percentages are always

under 10% in all four location cost settings. In other words, return channel selec-

tion strategies for the HP printer are rarely affected by location costs. For the HP

printer return process, maximizing revenue is more important than minimizing costs

due to high selling price and decay value. Thus, return channel I-R-M and I-M are

most commonly selected by customers to increase revenue. According to numerical

results of the HP printer case, total handling, transportation, and location costs are

relatively lower than revenue from the recovered printer. For example, transporta-

tion and location costs are 3.4% and 3.7% of total revenue under the LC-A setting,
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respectively. As location costs decrease, the portion of the transportation and loca-

tions costs become smaller: 2.3% and 1.7% of total revenue under the LC-D setting.

On the other hand, total revenue from the recovered printer is similar in all four

location cost settings, because of the similarity of the return channel selections. As

a result, more RFs and centers are located in the networks under the LC-D setting,

leading to an increase in total profit of 4.8% when compared to total profit under

the LC-A setting.

In the Bosch power tool case, although I-R-M is a major return channel in all

four settings, the selection percentage gap between return channels becomes closer

as location cost decreases. For example, under the LC-A location cost setting, the

selection percentage of return channel I-R-M is more than 60%, while the selection

percentages of the other three channels are under 20%. However, selection percent-

ages of all four channels are under 50% in the LC-C and LC-D location cost settings.

Thus, return channel selection strategy varies depending on the locations of RFs and

centers in the Bosch power tool case. Unlike the HP printer case, minimizing total

cost is the important issue in regard to total profit, because of low selling price and

decay value. According to numerical results of the Bosch power tool, total trans-

portation and location costs are about 17% and 35% of total revenue under the LC-A

Setting. As location cost decreases, more RFs and centers are dispersed in the recov-

ery logistics network, leading to a decrease in transportation cost. For example, total

transportation cost is only 7% of total revenue under the LC-D location cost setting.

Since total cost is relatively high in the optimal value of the Bosch power tool case,

we observe substantial profit improvement, as location cost decreases. Total profit

under the LC-D setting is 37% higher than total profits under the LC-A setting in

the Bosch power tool case.

Next, we consider both the HP printer and Bosch power tool cases simultaneously
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Figure 4.6: Channel Selection for HP Printer (33% ND & 10% Disposal) under
Different Location Costs

in the problem. It is hard to compare the channel selection strategies of multi-product

and single product problems, since location and number of active RFs and centers

are different. Under the LC-D setting, the total number of active RFs and centers in

both a single product and multi-product systems are the same. Thus, we compare

the return channel selection of the HP printer and Bosch power tool based on LC-D

setting. Generally selection percentages of the return channel for HP printer and

Bosch power tool in a multi-product problem are similar to the selection percentages

in a single product problem. A slightly more responsive return channel is assigned

to customers with HP printer, while a more cost-efficient return channel is selected

by customers with the Bosch power tool. For example, in the HP printer case, the

selection percentage of return channel I-M increases from 22% to 25%, while the

selection percentage of return channel I-R-C-M increases from 16.7% to 18% in the

Bosch power tool case. In the multi-product problem, both the HP printer and Bosch

power tool’s revenue are aggregated. Since revenue from recovered HP printers is
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Figure 4.7: Channel Selection for Bosch Power Tool (0% ND & 10% Disposal) under
Different Location Costs

much higher than revenue from Bosch power tool, we observe similar revenue and

cost improvements in a multi-product problem compared to the HP printer case.

4.4.1 Sensitivity Analysis

In the previous experiments, non-defective and disposal rates are assumed to

be 33% and 10% for the HP printer and 0% and 10% for Bosch power tool. We

expect the return channel selections and location decisions to differ with product

characteristics as well as location costs. Therefore, for the detailed analysis of channel

selection strategy with product characteristics and location decisions, we vary the

non-defective and disposal rates. Again, we conduct experiments under four different

location cost settings, LC-A, LC-B, LC-C, and LC-D. Table 4.7 shows the number of

active RFs and centers in the HP and Bosch cases under different problem settings

(location cost, non-defective rate, and disposal rate). First, the number of active RFs

and centers are different in non-defective and disposal rates. We observe that more
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RFs are shown in the high non-defective rate case, while more centers are shown in

the high disposal rate case. Low non-defective means that most returned products

are defective and these defective products require repair for resale in the second

market. Therefore, more RFs are required to handle defective products quickly. On

the other hand, high disposal means that most defective products are disposed of at

the center or RF location. Early inspection in the return process has advantages,

since unnecessary transportation and handling costs can be saved through early

disposal. For this reason, more centers are shown in the recovery logistics network

to decrease total costs under the high disposal rate case.

HP Inkjet Printer

Low ND - Low Disposal Low ND - High Disposal High ND - Low Disposal High ND - High Disposal

Location Costs RF Center RF Center RF Center RF Center

LC-A 3 0 3 1 3 0 2 1

LC-B 4 1 4 2 3 1 3 1

LC-C 5 1 4 4 4 1 4 2

LC-D 5 2 5 6 5 2 5 6

Bosch power tool

Low ND - Low Disposal Low ND - High Disposal High ND - Low Disposal High ND - High Disposal

Location Costs RF Center RF Center RF Center RF Center

LC-A 2 1 2 2 2 1 2 2

LC-B 3 2 3 3 2 2 2 3

LC-C 4 2 4 3 4 3 3 4

LC-D 5 3 5 8 4 6 3 6

Table 4.7: Number of Active RFs and Centers in HP and Bosch Solutions under
Different Problem Settings.

Table 4.8 shows the average percentages of selected return channels and percent-

age increases in objective values (total profit) in the HP printer case. Table 4.9

shows the average percentages of selected return channels and percentage increases

in objective values (total profit) in the Bosch power tool case.

Generally, the change in channel selection percentages with location cost is rela-

tively small in the HP printer case compared to the Bosch power tool case. Trans-
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HP Printer Low ND - Low Disposal Low ND - High Disposal

Location Costs I-R-C-M I-R-M I-C-M I-M ObjInc % I-R-C-M I-R-M I-C-M I-M ObjInc %

LC-A 0% 49.8% 0% 50.2% - 5% 48.3% 10.3% 36% -

LC-B 3% 37.6% 8.3% 51.1% 2.78 6.7% 38.9% 14% 40.5% 5.51

LC-C 3% 33.6% 8.3% 55.1% 1.95 5.2% 36.8% 19.4% 38.5% 3.61

LC-D 1.3% 32.7% 13.6% 52.4% 1.37 0% 31.8% 25.6% 42.6% 3.18

HP Printer High ND - Low Disposal High ND - High Disposal

Location Costs I-R-C-M I-R-M I-C-M I-M ObjInc % I-R-C-M I-R-M I-C-M I-M ObjInc %

LC-A 0% 93.1% 0% 6.9% - 38% 56% 0% 5.9% -

LC-B 21.2% 71.9% 0% 6.9% 1.91 26.3% 67.8% 0% 6% 2.08

LC-C 8.8% 79.6% 0% 11.6% 1.76 39.5% 51% 0% 9.5% 1.87

LC-D 8.1% 79.4% 0.6% 11.8% 0.98 37.8% 53.2% 2% 7% 1.27

Table 4.8: Average Percentage of Selected Channel and Objective Value under Dif-
ferent Location Costs (HP Printer)

Bosch power tool Low ND - Low Disposal Low ND - High Disposal

Location Costs I-R-C-M I-R-M I-C-M I-M ObjInc % I-R-C-M I-R-M I-C-M I-M ObjInc %

LC-A 19.1% 67.5% 0% 13.3% - 35.2% 47.8% 2.8% 14.2% -

LC-B 28.9% 46.9% 6.7% 17.5% 13.42 49.6% 26% 7.7% 16.7% 24.33

LC-C 32.1% 39.5% 7.5% 20.8% 6.81 39.6% 33.1% 8.3% 18.9% 14.32

LC-D 21.7% 45.3% 10.8% 22.2% 4.69 37.3% 24.3% 20.8% 17.5% 9.81

Bosch power tool High ND - Low Disposal High ND - High Disposal

Location Costs I-R-C-M I-R-M I-C-M I-M ObjInc % I-R-C-M I-R-M I-C-M I-M ObjInc %

LC-A 36.6% 57.7% 0% 5.7% - 71.3% 20.1% 2.7% 5.9% -

LC-B 71.5% 22.4% 2.7% 3.4% 7.25 77.1% 14.2% 2.7% 5.9% 8.2

LC-C 67.3% 23.3% 2.7% 6.7% 3.51 70.6% 20% 2.7% 6.7% 5.08

LC-D 67.3% 20.8% 5.2% 6.7% 3.41 74.8% 14.7% 4.4% 6.2% 4.27

Table 4.9: Average Percentage of Selected Channel and Objective Value under Dif-
ferent Location Costs (Bosch Power Tool)

portation costs decrease immensely when more RFs and centers are shown in the

recovery logistics network. As observed, decreasing transportation costs contribute

more to the objective function value in the Bosch power tool case. Therefore, we

observe that return channel selection is more sensitive to location costs in the Bosch

power tool case. For a similar reason, objective function (total profit) improvement

of the Bosch power tool is much higher than profit improvement of the HP printer
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in all cases based on results.

4.4.1.1 Observations on Non-defective Rates

We notice that, when the non-defective rate is high, the channels I-R-M and I-R-

C-M are heavily utilized in all location cost settings. That is, the returned products

reach a retailer first and the non-defective ones (which are large in number) are put

back on the shelf after minor processing. Since retailer locations are priori given,

thus only return channel R-M in I-R-M and return channel R-C-M in I-R-C-M vary

depending on the locations of active RFs and centers. Although more RFs and

centers are located in the network as location costs decrease, total profit improves

slightly in the high non-defective rate case when compared to low non-defective

rate. On the other hand, a low non-defective rate represents the fact that there is

a high number of returned products that require significant rework at RF locations.

Thus, locations of RF are important in the return process. If both non-defective and

disposal rates are low, among five potential RF locations, only three RFs are active

in HP printer and only two RFs are active in Bosch power tool case under LC-A

location cost setting, while all RFs are active in HP printer and Bosch power tool

case under LC-D location costs setting. Thus, we observe substantial revenue and

transportation cost improvement in the low non-defective rate when location costs

decrease.

4.4.1.2 Observations on Disposal Rates

The role of centers in the recovery logistics network is to decrease costs by pro-

viding early inspection and lowering unit transportation costs. Thus, the locations

of centers are more important when the disposal rate is high and product’s decay

value is low. Low disposal rate shows that most defective products can be resold
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on the second market after the repair process at the RFs. Therefore, an opening

center has less impact on total profit unless a product’s decay value is relatively

low. On the other hand, as disposal rate increases, more defective products will be

disposed. Therefore, in a high disposal rate case, centers play an important role by

handling defective products in the early stage, especially for products with a low

decay value. For example, under the LC-A cost setting, only two active centers are

shown in the Bosch case with a low non-defective and high disposal rate case. How-

ever, when the location cost is at its lowest, the number of active centers increases

by eight. Therefore, we observe handling and transportation cost improvement as

location cost decreases. Also, improvement in costs from opening centers can be

more beneficial when a product’s decay value is low.

4.5 Conclusions

In this chapter, we consider channel selection in commercial product recovery lo-

gistics network with location decisions. The model determines locations of RFs/centers

and return/redistribution channels to maximize profits from recovered products. For

the solution methodology, we develop a heuristic solution method based on the SA

algorithm. Moreover, to evaluate the objective function value of a feasible solution,

we use a greedy algorithm based on Dijkstra’s shortest path algorithm. Solution time

of the heuristic method can be reduced significantly via using the greedy algorithm.

We first test the proposed heuristic solution method on a testbed that we devel-

oped under two data settings, high and low location costs. Computational results

show that the proposed heuristic solution method performs well in terms of solution

quality and time. Next, we analyze return channel selection strategy and recovery

logistics network design using HP printer and Bosch power tool data. For a detailed

analysis of channel selection strategy and recovery logistics network design, we solve

129



the model under four different location cost settings. Generally, more active RFs

are required for the product with high decay value to minimize the product’s value

loss, whereas more active centers are needed for the product with low decay value to

minimize total costs. For return channel selection strategy, products with high decay

value require a return channel with faster travel time. On the other hand, products

with low decay value prefer less costly return channels. This study can be extended

in several directions. On the problem domain side, the current model could be ex-

tended by considering stochastic parameters, such as uncertainties regarding product

return quantities, non-defective and disposal rates. On the methodology side, we de-

velop a new solution method by integrating proposed SA heuristics within a Benders

framework.
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5. CONCLUSIONS AND FUTURE RESEARCH

This dissertation provides effective approaches to designing a product recovery

logistics network. It achieves research purposes in two related parts. First, we

consider stochastic issues in the generic CLSC network design problem and analyze

how the stochastic programming model performs against the deterministic model.

Then, we consider channel selection strategy in commercial product return logistics

networks and analyze the optimal network configuration along with channel selection

strategy based on product characteristics.

5.1 Conclusions and Future Research on a Generic CLSC Network Design under

Demand and Return Uncertainty

In the first research problem, we develop a generic CLSC network design prob-

lem under demand and return uncertainty. In the model, we determine the best

location of SFs, CTRs, capacity expansion level, and forward/reverse flow network

to minimize total system costs. The model is formulated as a two-stage stochastic

model, and uncertainty is handled through a scenario approach. For the solution of

the model for large scale instances, we propose an exact solution method based on

a multi-cut version of the BD algorithm. In the solution algorithm, we introduce

induced constraints, strengthened Benders cuts, scenario-category based multiple

Benders cuts, and lower bounding inequalities based on mean value scenarios. In the

end, we analyze appropriate inspection locations in the developed CLSC problem

using real geographical data of the U.S. cities. We modify the developed model by

varying inspection location, SFs, CTRs, and retailers and solve it using the proposed

solution method within a SAA framework.
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5.1.1 Research Contributions

We obtain the following research contributions from the first research problem.

First, our model accurately reflects demand/return uncertainty, and the developed

stochastic programming model performs well in terms of solution quality. According

to relative VSS results, the objective value of the stochastic model always provides

better solutions than that of the deterministic model based on mean value. When the

portion of the second stage costs are large, in the optimal solution, VSS is relatively

high, which allow us to observe that the stochastic programming model should be

studied in the CLSC network design problem.

Second, we use the stochastic approach to handle uncertainty and categorize sce-

narios based on low, medium, and high demand/return quantities. This type of

categorization reflects better product demand/return patterns, since typical product

life cycle belongs to periods with low, medium, and high designations. Moreover,

dual subproblems in the BD algorithm can be aggregated based on scenario cate-

gorizations, so corresponding Benders cuts are also aggregated. This aggregation

scheme improves solution performance.

Third, we obtain a general idea of an inspection strategy based on product char-

acteristics. Similar to the postponement strategy in the traditional forward flow

network, the early inspection strategy in the reverse flow network generally provides

better solutions via saving unnecessary transportation and operational costs. The

early inspection strategy performs best, especially if the disposal rate of the return

product is relatively high. Since we use randomly generated input data for the ex-

periments, obtained results do not provide accurate insight related to the inspection

strategy. However, we still observe preferable inspection locations based on product

characteristics.
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Lastly, we propose an efficient solution method that enhances the performance

of the BD algorithm. In the proposed BD algorithm, we develop several solution

techniques to enhance performance of the algorithm. Enhancement includes addi-

tions such as strengthened Benders cuts, multiple Benders cuts based on scenario

categorization, and valid inequalities for Benders cuts using mean value scenarios.

These solution techniques can be applied to a typical two-stage stochastic program-

ming model. Therefore, we expect that the proposed solution method provides good

insight to a reader who wants to use the BD algorithm in the stochastic programming

model.

5.1.2 Future Research

The first research problem can be extended in several ways. First, the value of

the integrated CLSC network design problem can be analyzed by considering multi-

products. As expected, sharing common resources and locations provides a better

solution under a single product problem. However, if multi-products with different

characteristics are considered in the CLSC network, then integrated network design

may not provide a better solution due to operational issues. Therefore, the trade-

off between saving location costs and increasing operational costs could be studied

in the multi-products CLSC network design problem. Second, the developed model

could be extended by considering both strategic and tactical decisions simultaneously.

Recently, studies have considered strategic and tactical level decisions together. The

developed CLSC network problem includes strategic level, location and capacity

expansion decisions, tactical level, flow decisions. Therefore, if we include operational

decisions, such as routing decisions or inventory decisions, the model may provide

better logistics solutions based on an integrated view. Last, more study is required

to enhance the performance of the solution algorithm. In the two-stage stochastic
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programming model, sub-problems can be decomposed into several problems in terms

of scenarios. The use of a parallel algorithm enables us to solve each separated

subproblem at the same time, so the performance of the proposed algorithm will

improve significantly.

5.2 Conclusions and Future Research on Channel Selection in Commercial Product

Returns Logistics Network under Time-Value Considerations

In the second research problem, we study channel selection strategy in a com-

mercial product return logistics network problem. The developed recovery logistics

network consists of RFs, centers, retailers, and customers. Additionally, multi-return

and multi-redistribution channels are introduced for operational flexibility. Since the

time value of a product is the most important factor when commercial product return

is considered, we measure product residual value with time in the model. We first an-

alyze the optimal channel selection strategy based on product and logistics network

characteristics. According to the analysis, the responsive channel is appropriate for

products with high decay value, while the cost-efficient channel is good for collection

of products with low decay value. On the logistics view, customer location also has

effects on channel selection decisions. For example, as customers are located close to

RFs, the return channel I-M, known as the responsive return channel, is mostly used

regardless of product type. Last, we extend the commercial product return logistics

network problem by introducing location decisions to identify the optimal logistics

network configuration. Generally, RF and center locations are different, based on

product characteristics. In products with a high decay value, more RFs are located

in the recovery network to facilitate repair operations. On the other hand, more

centers are located in the solution for products with a low decay value, in order to

minimize transportation costs. In short, we obtain managerial insights for designing
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logistics networks for commercial product return via this research.

5.2.1 Research Contributions

We obtain the following research contributions from the network design for the

commercial return problem. On the modeling side, we consider the commercial prod-

uct return case in the recovery logistics network design problem. As reviewed, there

is no study that considers commercial return in the context of network design. One

characteristic of commercial return is that returned products can be resold to cus-

tomers through re-packaging or repair operation. Therefore, in order to maximize

profit, the value of returned product should be maintained as high as possible. For

measuring product residual value, we introduce a time parameter and compute the

product’s residual value based on the product’s sojourn time in the network. We ex-

pect that the proposed modeling approach provides a good starting point to a person

interested product recovery logistics network design associated with commercial re-

turn. Next, a multi-channel issue is considered in the developed model. Multi-return

and multi-redistribution channels enable a company to establish various logistics

plans based on product characteristics. Therefore, a multi-channel model not only

strengthens customer loyalty, but also improves operational flexibility.

On the methodology side, we develop the SA heuristic algorithm. The proposed

heuristic algorithm is very effective in terms of finding good quality solutions and

is also efficient in terms of computational time. Moreover, to evaluate the objective

function value of a feasible solution, we develop a greedy algorithm. The use of the

developed greedy algorithm significantly reduces the computational time.
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5.2.2 Future Research

This study can be extended in several directions. Uncertainty, such as quantities

associated with return or quality of product, is one difficulty in recovery logistics

network problems. Therefore, considering uncertainty in the developed model may be

fruitful for future research. On the methodology side, use of the developed heuristic

algorithm with an exact solution method (BD), called a hybrid algorithm, may offer

interesting exploration. This hybrid algorithm enables the BD algorithm to start

with a good quality solution and this may significantly reduce the solution time for

the BD algorithm.
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