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ABSTRACT 

Locating sign language (SL) videos on video sharing sites (e.g., YouTube) is challenging because 

search engines generally do not use the visual content of videos for indexing. Instead, indexing is 

done solely based on textual content (e.g., title, description, metadata etc.). As a result, untagged 

SL videos do not appear in the search results. In this thesis, we present and evaluate an approach 

to detect SL content in videos based on their visual content. Our work focuses on detection of SL 

content and not on transcription. Our approach relies on face detection and background modeling 

techniques, combined with a head-centric polar representation of hand movements. The approach 

uses an ensemble of Haar-based face detectors to define regions of interest (ROI) and a 

probabilistic background model to segment movements in the ROI. The resulting two-dimensional 

(2D) distribution of foreground pixels in the ROI is then reduced to two 1D polar motion profiles 

(PMPs) by means of a polar-coordinate transformation. These profiles are then used for 

classification of SL videos from others. 

We evaluate three distinct approaches to process information from the PMPs for 

classification/detection of SL videos. In the first method, we average out the PMPs across all the 

ROIs to obtain a single PMP vector for each video. These vectors are then used as input features 

for an SVM classifier. In the second method, we follow the bag-of-words approach of information 

retrieval to compute a distribution of PMPs (bag-of-PMPs) for each video. In the third method, we 

perform linear discriminant analysis (LDA) of PMPs and use the distribution of PMPs projected 

in the LDA space for classification. When evaluated on a dataset comprising of 205 videos 

(obtained from YouTube), the average PMP approach achieves a precision of 81% and recall of 

94%, whereas the bag-of-PMPs approach leads to a precision of 72% and recall of 70%. In contrast 

to the first two methods, supervised feature extraction by the third method achieves a higher 
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precision (84%) and recall (94%). 

Though this thesis presents a successful means by which to detect sign language in videos, our 

approaches do not consider temporal information, only the distribution of profiles for a given 

video. Future work should consider extracting temporal information from the sequence of PMPs 

to utilize the dynamic signatures of sign languages and potentially improve retrieval results. The 

SL detection techniques presented in this thesis may be used as an automatic tagging tool to 

annotate user-contributed videos in sharing sites such as YouTube, in this way making sign-

language content more accessible to members of the deaf community. 
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NOMENCLATURE 

The following table describes the significance of various abbreviations and acronyms used 

throughout the thesis. 

Abbreviation Meaning 

PMP Polar motion profile 

PPMP Polar motion profile projected onto PCA subspace 

LPMP Polar motion profile projected onto LDA subspace 

ROI Region of interest around signer’s face 
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1. INTRODUCTION* 

Sign Languages (SL) rely on hand gestures combined with facial expressions and body postures 

to convey their message. They are the primary medium of communication for many who are deaf 

and hard-of-hearing [1], and serve as a substitute for spoken communication. Because sign 

language is a visual form of communication, video sharing websites can be very beneficial to the 

deaf community as a means to exchange information.  

The number of videos on the web containing sign language is increasing rapidly, but only a small 

subset of these videos are easily available to the deaf community. The main reason for this 

mismatch is that search engines index videos based only on their associated metadata (e.g., text 

descriptions, tags). However, for many SL videos the metadata is associated with the topic (e.g., 

sports, politics) rather than the language being used (i.e., American Sign Language). Therefore, 

such videos do not show up in the search results when performing standard text queries with 

keywords such as American Sign Language, British Sign Language, etc. Given the size of user-

contributed video sites, manual tagging is prohibitive. Instead, meaningful improvement of search 

results requires automated tagging. This in turn requires algorithms to detect sign language content 

based on visual information alone. 

In this thesis we propose techniques to detect SL content in user contributed videos. Our approach 

relies on face detection and background modeling techniques, combined with a head-centric polar 

representation of hand movements. In a first step, we detect faces in the videos using an ensemble 

of face detectors based on Haar-like features [2, 3]. We then extract foreground hand gestures by 

                                                      

* © 2014 IEEE, Part of this chapter is reprinted with permission from the Karappa, V., Monteiro, C. D., Shipman, F. 
M., & Gutierrez-Osuna, R. (2014, May). Detection of sign-language content in video through polar motion profiles. 
In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on (pp. 1290-1294). IEEE. 
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subtracting a background model based on adaptive Gaussian mixtures [4]. For each frame, we then 

calculate the proportion of foreground pixels along the two polar coordinates (radial, angular) on 

a reference frame centered on the signer’s face and scaled to the face’s proportions to provide 

translation and scale invariance. These polar motion profiles (PMPs) capture the amount of signing 

activity in each frame of the video. 

We explore three different approaches to extract motion information from the PMPs of the videos 

and evaluate their SL classification performance using an SVM classifier: 

(1) Average PMP: In the first approach, we compute the average polar motion profile across 

all ROIs in the video. As a result, each video is represented by a single feature vector that 

captures the average amount of motion around faces in the video. 

(2) Bags of PMPs: The second approach extracts additional information by representing each 

video by the distribution of PMPs across frames through k-means clustering. As a result, 

each video is represented by a histogram containing the number of times each k-means 

cluster occurs in the video. Given its similarity with the bag-of-words in text retrieval, we 

denote this method as bag-of-PMPs. As will be described later, we compare two forms of 

clustering, one that operates in the original PMP space, and a second that performs 

principal components to de-correlate the PMP axis and reduce dimensionality to a 

manageable size. 

(3) Supervised projection of PMPs: The third approach leverages class label information to 

maximize separation between SL and non-SL videos. Namely, we apply linear 

discriminant analysis (LDA) to project information from PMPs into a one-dimensional 

subspace. As a result, each video is represented by a one-dimensional (1D) sequence, i.e., 

the LDA projection of each ROI in the video. As before, we compare two strategies for 

this purpose. The first strategy performs k-means clustering to the resulting 1D sequence 
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to obtain a bag-of-LPMPs for each video. In contrast, the second strategy compresses the 

resulting 1D sequence into a vector of first-order and higher order statistics. 

The main contributions of this thesis can be summarized as follows: 

 We developed polar motion profiles (PMPs), a polar representation to capture motion 

information in a head-centric reference frame 

 We evaluated techniques to extract information from PMPs for discrimination of SL and 

non-SL videos  

 We evaluated the proposed techniques on a large corpus containing 400 videos retrieved 

from the web. 

The rest of the document is organized as follows. Chapter 2 provides a summary of past work on 

SL recognition and its applicability to our study. Chapter 3 illustrates the limitations of current 

text-based mechanisms when used to locate SL videos. Chapter 4 describes the SL detection 

methods proposed in this thesis. Chapter 5 provides the details of dataset creation and results for 

the proposed SL detection methods. Chapter 6 draws conclusions from the work that led to this 

thesis and provides direction for future work. 
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2. BACKGROUND / RELATED WORK* 

A sign language is a language which uses hand signs, gestures and body language to convey 

messages. This can involve simultaneously combining of hand shapes, orientation and movement 

of the hands, arms or body and facial expressions to fluidly express speaker’s thoughts. The 

majority of the work concerning sign language videos focuses on the modelling these gestures for 

transcription (i.e., recognizing the specific signs being made). In this chapter, we provide an 

overview of such methods, which largely focus on modeling hand gestures and facial expressions. 

The majority of the methods discussed here use hand gestures for modelling signs for transcription, 

whereas only a few methods have used facial expressions. 

2.1 Temporal modeling of signs using HMMs 

In one of the earliest studies, Starner et al [5] developed an HMM classifier capable of recognizing 

40 American Sign Language (ASL) words for a single signer. They presented two real-time 

Hidden Markov Model-based systems for recognizing sentence-level continuous American Sign 

Language (ASL) using a single camera to track the user's hands. The first system observed the 

user from a desk mounted camera and achieved 92% word accuracy. The second system mounted 

a camera in a hat worn by the user and achieved 98% accuracy. In a related work by Vogler and 

Metaxas [6] parallel HMMs were used to scale the vocabulary size. They demonstrated that 

parallel HMMs could outperform regular HMMs while preserving scalability. Using a vocabulary 

of 22 signs and a set of 400-sentences, the authors report a recognition accuracy of 94%. In a more 

recent study, Bowden et al. [7] proposed a sign language recognition system, which modeled 

                                                      

* © 2014 IEEE, Part of this chapter are reprinted with permission from the Karappa, V., Monteiro, C. D., Shipman, F. 
M., & Gutierrez-Osuna, R. (2014, May). Detection of sign-language content in video through polar motion profiles. 
In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on (pp. 1290-1294). IEEE. 
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temporal sign transitions using a classifier bank of Markov chains combined with Independent 

Component Analysis. This approach achieved 98% classification rate on a lexicon of 43 words. In 

another method, Holden et. al [8] used geometrical features such as the direction of hand 

movements, angles between the movements, and roundedness of hand blobs as basic units of signs 

for training HMMs. On a test set of 163 signs, this approach achieved 97% recognition rate at the 

sentence level and 99% success at the word level. 

2.2 Modeling of motion trajectories 

Some other approaches involve modelling of motion trajectories of the signs. Yang et al. [9] 

presented an algorithm to extract and classify two-dimensional motion in an image sequence using 

motion trajectories. In the first step, a multi-scale segmentation was performed to generate 

homogenous regions in each frame of a video. In the second step, regions between consecutive 

frames were then matched to obtain pixel-level matches. These matches were concatenated to 

obtain motion trajectories across the image sequence. Finally, a time-delay network was used to 

learn motion patterns from the extracted trajectories. This network achieved 93% recognition on 

unseen test trajectories. 

One of the difficult problems while modelling motion trajectories is segmenting out the gestures 

in-between any two signs, which generally convey no meaning. Such gesture movements that 

bridge two consecutive signs are known as movement epenthesis (ME). Yang et al. [10] tackled 

this problem of modelling movement epenthesis by using a dynamic-programming framework 

called Level building. In this approach, each level corresponds to the possible order of signs or 

ME in the test sentence. The first level is concerned with the first possible label in the sentence, 

and so on. At each level a best possible match for each combination of end point is stored 

(memorized) from the previous level. The optimal sequence of signs and ME labels is constructed 
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by backtracking. This approach achieved 83% word level recognition on a single view video 

dataset of continuous sign languages. 

2.3 Content-based image retrieval 

Another approach for sign language recognition uses a content-based image retrieval paradigm, 

where each sign language gesture is considered to be a series of images from the SL video. The 

set of images for each of the gesture samples are stored in an image database. Recognition of sign 

involves searching finding the closest match to the input images in the database. In one such 

approach, Dimov et al. [11] treated sign language recognition as a content-based image retrieval 

problem by searching the input sign image in a database of signs in the form of static images. This 

method achieved a word-level error rate of less than 4%. 

In a similar approach, Potamias et al. [12] proposed a content based retrieval approach by storing 

tens of thousands of hand-shape images in a large database. They compared brute force retrieval 

with two other image indexing and retrieving strategies, viz. BoostMap embedding and Distance-

Based Hashing. Their goal was to achieve faster search and lookup of the images in the database. 

Compared to brute-force search, their approach improved retrieval time by three orders of 

magnitude. However, they used a nearest neighbor approach to match hand-shape images, which 

limited classification rate to 33%. 

2.4 Modeling of sub-units of signs 

A few approaches have used parts of signs (sub-units) instead of whole signs for training sign 

language recognition models. In one such approach, Bauer et al. [13] trained HMMs using subunits 

of signs instead of whole signs. In a first experiment, the authors achieved a recognition rate of 

93% on a vocabulary of 100 signs. For the second experiment, HMMs trained on the subunits of 
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the 100 signs were used to spot sign language for 50 new signs, resulting in an accuracy of 81%. 

In a related approach, Nayak et.al [14] used unsupervised techniques to learn basic units of signs 

from continuous sentences. Given a set of sentences, a common sign model was learned using a 

dynamic-programming framework. The model was represented in a space of relational 

distributions capturing spatial relationships between low-level image features (e.g. edge points). 

This approach was used to build models of 18 signs from the Boston SignStream Dataset [15]. An 

experiment was conducted with 15 sentences with lengths varying from 3 to 15 signs. Since the 

number of signs involved was small, a decision rate wasn’t reported on the experiments. 

2.5 Data gloves 

Most of the methods discussed so far are only suited for relatively small vocabularies. Recognition 

of larger vocabularies generally requires data gloves to provide precise information of hand 

movements. As an example, Liang et al. [16] used data gloves to recognize Taiwanese sign 

language gestures from a vocabulary of between 71 and 250 words. Their system required that 

gestures were performed slowly in order to detect word boundaries. Using this system, sentences 

of gestures based on these vocabularies could be continuously recognized in real-time with an 

average recognition rate of 80%. 

Along similar lines, Braffort et al. [17] developed a system to recognize French Sign Language 

using data gloves. Features of hand position and appearance were extracted from the data gloves. 

A vocabulary of seven signs was used for experiments. One classifier each for conventional and 

non-conventional signs was trained to achieve 96% accuracy. Fang et al. [18] used 18-sensor data-

gloves and three position trackers to extract hand motion information. The data-gloves collected 

the variation information of hand shapes with the 18-dimensional data at each hand, and the 

position trackers collected the variation information of orientation, position, movement trajectory. 
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Using this information, a simple recurrent network (SRN) was trained to segment signs and feed 

to the hidden Markov models (HMM). Outputs from the SRN were treated as states in an HMM, 

and the Lattice Viterbi algorithm employed to search the best word sequence. On a test set of 367 

signs, this method achieved a recognition accuracy of 93%. 

In one of the later works, Gao et al. [19, 20] proposed a Chinese Language Recognition system 

with a data glove as an input device. Using a state-tying HMM as the recognition model, the 

authors report a 95% recognition rate on a vocabulary of 5177 Chinese signs. 

2.6 Hand posture and orientation 

Even with data gloves, recognizing the signer’s hand gestures may be difficult because they can 

adopt a variety of postures and orientations while signing. Somers and Whyte [21] dealt with this 

problem by using 3D models and silhouettes to identify accurate postures. The 3D-models were 

oriented at run-time to match the orientation of the signer’s hand. A two-camera setup was used 

to match two silhouettes created from images taken at two diverse angles. This method was used 

to identify 4 postures of hands, out of which 3 were identified correctly by matching silhouette of 

image from at least one of the cameras. 

2.7 Modelling of non-manual (facial) gestures 

Most of the methods for sign language recognition use hand gestures and trajectories. Very few 

approaches involve recognition of non-manual (facial) gestures in sign language. Head movements 

and facial expressions are a critical part of sign language expressions. In one such approach, Erden 

et al. [22] developed a system to detect non-manual gestures that occur in parallel with manual 

gestures (hand signs and gestures). This system uses a head tracker [23] to extract rotation and 

translation parameters from a monocular video. These parameters were then analyzed to detect 
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“Head nods” and “Head shakes,” and results were compared with the labels assigned by ASL 

linguists. They tested this system on ten ASL sequences labelled by ASL linguists. On this test, 

this approach missed only one head gesture for the first five sentences, zero for the next two and 

four for the last two sentences. 

In sign language, negation is expressed through facial expressions. For example a sentence ‘I don’t 

know’ is signed exactly same as ‘I know’, except that there is a distinct ‘head shake’ indicating 

‘Negation’. Thus, detecting negation is one of the harder problems in SL recognition. Parashar et 

al. [24] used motion trajectories of the face to detect ‘Negation’ in an ASL sentence. Motion 

trajectories of face were obtained by tracking the centers of the eyes in the consequent images in 

a stream. Using facial trajectory information, performance was improved from 88% to 92% on a 

vocabulary with 6 signs. 

2.8 Sign language detection 

Approaches developed for sign language transcription are of limited value in our context in that 

most of them work only modestly with relatively small vocabularies, or are signer-dependent and 

require large amounts of training data. In contrast, our work focuses on detecting sign language 

content in videos and not transcription. As an example, Cherniavsky et al. [25] developed an 

activity detection technique for cell-phone cameras that could determine whether a user was 

signing or not with 91% accuracy, even in the presence of noisy (i.e., moving) backgrounds. The 

algorithm was used to determine when the video phone user was signing and when they were 

watching the video of their conversational partner in order to effectively use network bandwidth 

during a sign language conversation on mobile devices. Thus, it is unlikely this algorithm would 

be as successful in distinguishing between sign language videos and other videos involving people 

gesturing. 
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The work proposed in this thesis grows out of a pilot study published at the ASSETS conference 

in 2012 by Monteiro et al. [26]. The objective of the study was to establish proof-of-concept for 

the feasibility of detecting SL in videos. For that reason, that study was performed on a constrained 

video dataset with videos containing a single signer and a static background, with movements 

being mainly those of the signer. This allowed the investigators to use a low-pass filter as a 

background detection model and a simple feature-extraction technique that computed the amount 

and symmetry of movements around the face. In later work, Shipman et al. [27] estimated an 

improvement in SL video classification from 42% for text-based queries up to 75% for queries 

that included video content. 

The work proposed here relaxes assumptions of the study by Monteiro et al. [26] by considering 

videos that contain multiple signers and complex non-stationary backgrounds. This required more 

robust techniques for face detection and background modeling, as well as a richer feature 

representation of hand movements. 
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3. ASSESSING PROBLEMS WITH TEXT BASED SEARCH OF SL VIDEOS 

The sign-language community relies on text based search mechanisms to locate sign language 

video content on the web. Current video search engines find videos by matching the query terms 

with the metadata of the video (e.g. title, tags, and comments). We studied the performance of 

these search mechanisms for locating SL videos using common query terms on a wide range of 

topics. Following Shipman et al. [27] we referred to Google Trends 2013, Yahoo top 10 news 

stories of 2013 and Time top 10 news of 2013 to obtain a set of internet trending topics. We 

compiled a list of relevant informational topics from these sources and generated 78 query terms, 

see Table 1. Each of these queries was appended with the term “Sign Language ASL” to locate 

sign language videos about those popular query topics. The queries were executed on the YouTube 

search engine, and each video was examined to determine whether it was on the designated topic 

and in sign language. A maximum of 25 videos were presented by YouTube on the first page. For 

example, for the “Basketball Sign Language ASL” query in Table 1. YouTube returned 24 video 

links, but only 15 of them were about Basketball and in Sign Language. 

 

Table 1 Number of on-topic and in-SL videos on the first page of results (Continued) 
 

Queries On Topic In SL On Topic 
& In SL Retrieved 

income tax  22 24 22 24 
Flu 22 24 21 25 
Basketball  16 22 15 24 
Iphone 6  15 14 11 24 
Bowling  11 23 10 24 
Football  10 22 9 24 
Iphone 5s  12 15 9 23 
French Toast  7 23 6 24 
Apple Pie  6 23 6 24 
Iphone 5c  8 9 6 19 
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Table 1 Number of on-topic and in-SL videos on the first page of results (Continued) 
 

Queries On Topic In SL On Topic 
& In SL Retrieved 

SQL  6 14 6 23 
Pizza Dough  6 11 5 14 
Playstation 4  9 10 5 24 
tax returns  5 10 5 10 
JAVA  5 15 5 24 
Diarrhea  4 9 4 13 
Golf 4 24 4 24 
Ipad Mini  4 16 4 22 
Hunting  3 21 3 24 
Lasagna  4 13 3 24 
obamacare  4 22 3 24 
knit  3 20 3 24 
Mortgage  3 21 3 24 
Credit card  3 22 3 24 
Diet  5 18 2 24 
Hockey  2 22 2 24 
Tennis  2 24 2 24 
CrossFit  2 22 2 24 
Chili  2 24 2 24 
Meatball  3 5 2 9 
Ipad Air  4 9 2 17 
tie a tie  3 6 2 10 
blog  2 22 2 24 
Diabetes Symptoms  2 5 2 7 
student loan  3 17 2 24 
Allergies  2 23 1 24 
Running  1 21 1 24 
Guacamole  1 22 1 24 
Hummus  1 23 1 24 
Gluten  1 16 1 24 
Bitcoin  1 10 1 22 
Samsung Galaxy S4  1 17 1 23 
car loan  1 2 1 4 
stock exchange  1 3 1 5 
Javascript  1 12 1 24 
Cold  0 24 0 24 
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Table 1 Number of on-topic and in-SL videos on the first page of results (Continued) 
 

Queries On Topic In SL On Topic 
& In SL Retrieved 

Labor  0 23 0 24 
Balance  0 24 0 24 
Back Pain  4 16 0 24 
Rash  0 13 0 24 
Lupus  0 23 0 24 
Shooting 0 21 0 24 
Sangria 0 7 0 9 
ricin  0 0 0 2 
DOMA  0 5 0 16 
Molly  0 24 0 24 
sequestration  0 1 0 3 
Lupus  0 23 0 24 
Snapchat  0 9 0 24 
HTC one  0 8 0 11 
Chromecast  0 7 0 13 
Nexus 5  0 6 0 12 
The Boston Marathon Bombing  0 2 0 2 
file  0 23 0 24 
passport  0 22 0 24 
Pregnancy Symptoms  0 1 0 10 
Anxiety Symptoms  0 0 0 1 
Thyroid Symptoms  0 1 0 2 
Hiv Symptoms  0 4 0 5 
Herpes Symptoms  0 0 0 0 
home loan  4 6 0 11 
stock market 0 14 0 24 
HTML  0 23 0 24 
CSS  0 22 0 24 
python  0 21 0 24 
.net  0 13 0 24 
C  0 23 0 24 
PHP  0 20 0 24 
R  0 22 0 23 
Total 241 1201 203 1518 
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Overall, 1,518 videos were returned by YouTube on the first page for 78 queries, with an average 

of 19.5 videos for each query and an average of 15.4 videos being in sign language. Results are 

summarized in Table 2 in terms of true positives (on topic & sign language videos) and false 

positives (off-topic, not in sign language or both). Only 15.8% (241) of the videos were on topic 

and, of these, 203 (13.4%) were in sign language. In total, 1,201 videos (79.1%) were in sign 

language. Thus, queries were far more precise for in-SL (79%) than for on-topic (15%). One 

possible explanation for this result is that we had more terms dealing with the language (ASL and 

“sign language”) than for the topic. In fact, the in-SL precision drops from 79% for topics with 

one term (e.g., ricin) to 63% for topics with two terms (e.g., car loan). 

 

 
Table 2 True positives (on topic & sign language videos) and false positives (off-topic, not in 

sign language or both) 
 

 In Sign Language Not in Sign 

Language 

Total 

On Topic 203 (13.4%) 38 (2.5%) 241 (15.8%) 
Not on Topic 998 (65.7%) 279 (18.4%) 1277 (84.1%) 

Total 1201 (79.1%) 317 (20.9%) 1518 (100%) 
 

 

An analysis of on-topic precision as a function of query length shows an increase from 10% for 1-

term topics to 25% for 2-term topics; see Table 3. These results suggest that queries have to be 

well-balanced between topic and sign language keywords; a higher number of topic terms would 

result in lesser number of SL videos and more non-SL videos. Such balancing of queries would 

often be difficult and require trial and error. In addition, the user would have to filter out non-SL 

videos manually. Thus, there is a need for automatic SL video filtering techniques to eliminate 

non-SL videos from search results. Towards this goal, this thesis proposes techniques to detect SL 
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content in videos.  

 

Table 3 Variation in precision with the number of topic terms 
 

 

 

Number of topic terms Precision (SL) Precision (topic) 

1 0.793 0.107 
2 0.638 0.251 
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4. PROPOSED WORK* 

In this chapter we describe techniques to detect SL content in user contributed videos. Our 

techniques rely on polar representation of signer’s hand movements with respect to the signer’s 

face. To compute robust face location, we use an ensemble of face detectors based on Haar-like 

features [2, 3]. We then use the face location information to extract a region of interest, such that 

it encompasses signer’s hand movements. Alongside, we extract foreground hand gestures by 

subtracting a background model based on adaptive Gaussian mixtures [4]. We combine the region 

of interest information with the foreground frames and compute the proportion of foreground 

pixels along the two polar co-ordinates’ (angle, distance). We refer to these representations as 

Polar Motion Profiles (PMPs).  

In the following subsections, first we describe our approach to extract polar motion profiles 

(PMPs) from the foreground movements in a video. Next, we describe three different approaches 

to generate features from PMPs: computing the average PMP across all frames in a video, 

modeling the distributions of PMPs using bag-of-words techniques, and supervised dimensionality 

reduction of PMPs. In all three cases, the resulting information is evaluated on the basis of 

classification rate with a support vector machine (SVM) classifier. 

4.1 Polar Motion Profile (PMP)  

The overall signal processing pipeline for computation of PMP is illustrated in Figure 1. In a first 

step, we process the video with a face-detection algorithm to locate regions of interest (ROI) at 

                                                      

* © 2014 IEEE, Part of this chapter is reprinted with permission from the Karappa, V., Monteiro, C. D., Shipman, F. 
M., & Gutierrez-Osuna, R. (2014, May). Detection of sign-language content in video through polar motion profiles. 
In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on (pp. 1290-1294). IEEE. 
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each frame. In parallel, we generate a background model for each video, from which we identify 

foreground objects at each frame. At each ROI, we then extract a polar motion profile (PMP) that 

represents the probability of foreground objects at each polar coordinate. In the last step, we use 

the PMPs for SL classification. Details on each of these steps are provided on the following 

subsections. 

 

   

Figure 1    Signal processing pipeline. ROI: region of interest; BG/FG: background/ 
foreground; PMP: polar motion profile 
 
 
 

4.1.1 Face detection 

The first step in our pipeline is to use an ensemble face detection technique to find robust locations 

of faces in the videos. In the pilot study that motivated this work, Monteiro et al. [26] used a single 

Haar-cascade classifier for face detection [3]. This method worked well with static backgrounds, 

but does not generalize with videos that contain dynamic backgrounds. Further, the classifier was 

constrained to searching for a single face and therefore failed when multiple signers were present 

in a frame. To address these issues, we propose a new algorithm that uses 5 Haar-cascade [28] 

recognizers in parallel each cascade returning a list of bounding rectangles (one rectangle for each 

Face 
detection

ROI 1 PMP

Video

BG model

SL?ROI 2 PMP

ROI n PMP

FG pixels

Classification
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candidate location for a face). 

Figure 2 illustrates the algorithm used to merge information from the multiple Haar-cascade 

recognizers and remove false positives; each color rectangle represents a distinct classifier. Given 

a list of 𝑛 bounding rectangles, we generate 𝐶3
𝑛 (n choose 3) sets containing three rectangles each. 

From these 𝐶3
𝑛 sets, we select only those sets that contain rectangles from three distinct classifiers, 

and refer to them as potential sets. Next, we compute the overlap between the rectangles in these 

potential sets, measured by computing the distance between top-left and bottom-right corners of 

the rectangles. We consider two rectangles to be overlapping if and only if these distances are 

below a threshold of 40 pixels. This threshold was determined empirically. Potential sets 

containing overlapping rectangles denote a true face location. In a final step, we obtain the true 

face location by computing the average of the left corner pixel locations of the three rectangles 

from the potential set; the face size is computed as the average of lengths and breadths of the three 

rectangles; see Figure 2. 

 

 

Figure 2  Robust face detection algorithm; 𝑅1, 𝑅2, 𝑅3 are the bounding rectangles returned by 
three distinct Haar cascades (potential set); ℎ1, ℎ2, ℎ3 are the heights and 𝑤1, 𝑤2, 𝑤3 are widths 
of these rectangles; (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) are the pixel locations of the top-left corners of 
these rectangles; 𝑑1, 𝑑4 are the distances between the 𝑅1 and 𝑅2 at their top-left and bottom-
right corners; 𝑑2, 𝑑3 are the distances between the 𝑅1 and 𝑅2 at their top-left and bottom-right 
corners 

, ,
True face 
location
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Figure 3 Figure 4 illustrate face-detection results on a video containing multiple faces; the 

individual cascades return multiple potential faces, many of which are false positives; using the 

algorithm as described above eliminates all false positives and returns the location of the three 

faces in the frame. 

 

 

 

Figure 3 Faces detected by multiple Haar cascades, each denoted by a colored box 
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Figure 4 Post-processing of Figure 3 

 

4.1.2 Background modeling 

Once (and if) a face has been detected, we perform background subtraction to extract foreground 

objects in the scene. Following [4], we model the color distribution at each pixel in the video using 

a separate probability density function per pixel; this is necessary since individual pixels can have 

vastly different statistics across the video, particularly with non-stationary backgrounds. We build 

a background model for each pixel with an adaptive Gaussian mixture model (GMM) as proposed 

by [4]. In this approach, the background model is trained on a set of pixel values 𝑋𝑇 =

{𝑥(𝑡), … , 𝑥(𝑡−𝑇)} obtained for a time period T. The background model is denoted by 𝑝̂(𝑥⃗ 𝑋𝑇 , 𝐵𝐺⁄ ), 

a GMM of maximum M components, see equation (1) 

𝑝̂(𝑥⃗ 𝑋𝑇 , 𝐵𝐺⁄ ) = ∑ 𝜋̂𝑚𝑁(𝑥⃗;
𝑀

𝑚=1
𝜇̂𝑚,  𝜎̂𝑚

2 𝐼) (1) 

where 𝜋̂𝑚, 𝜇̂𝑚, and 𝜎̂𝑚 are the mixing weights, estimated means, and estimated variances of the 

𝑚𝑡ℎ Gaussian component. For every new data sample 𝑥(𝑡) at time 𝑡, these parameters are updated 
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as shown in the equations (2), (3) and (4). 

𝜋̂𝑚  ←  𝜋̂𝑚  +  𝛼 (𝑜𝑚 
(𝑡)

− 𝜋̂𝑚) − 𝛼𝑐𝑇 (2) 

𝜇̂𝑚 ← 𝜇̂𝑚 + 𝑜𝑚 
(𝑡)

(𝛼/𝜋̂𝑚) 𝛿𝑚 (3) 

𝜎̂𝑚
2 ←  𝜎̂𝑚

2 +  𝑜𝑚 
(𝑡)

(𝛼/𝜋̂𝑚) (𝛿𝑚
𝑇 𝛿𝑚 − 𝜎̂𝑚

2 ) (4) 

where 𝛼 = 1/𝑇 describes an exponentially decaying envelope to limit the influence of old data; 

𝛼𝑐𝑇 is a negative bias that adjusts the number of components automatically (components with 

negative weights are dropped); 𝛿𝑚 is the Mahalanobis distance between the data sample and the 

𝑚𝑡ℎ component; and 𝑜𝑚 
(𝑡) represents the ownership of the 𝑡𝑡ℎ data sample 𝑥⃗(𝑡) (𝑜𝑚 

(𝑡)is set to 1 if it 

lies within three standard deviations, and otherwise is set to 0). 

If the data sample 𝑥⃗(𝑡) is outside three standard deviations for all the components, a new 

component is generated with 𝜋̂𝑀+1 = 𝛼, 𝜇̂𝑀+1 = 𝑥⃗(𝑡), 𝜎̂𝑀+1 = 𝜎0, where 𝜎0 is the initial variance 

(determined empirically). The component with smallest π̂m is dropped when the maximum 

number of components M is reached. 

Foreground objects appearing in the scene introduce data samples 𝒙⃗⃗⃗(𝒕) which are not close to any 

of Gaussian components. New components are generated for these with smaller weights. Thus, the 

background model can be approximated with the first B components with largest weights as: 

𝑝̂(𝑥⃗ 𝑋𝑇 , 𝐵𝐺⁄ )~ ∑ 𝜋̂𝑚𝑁(𝑥⃗;
𝐵

𝑚=1
𝜇̂𝑚,  𝜎̂𝑚

2 𝐼) (5) 

The components can be included in the background only when the sum of their weights is greater 

than a certain tunable threshold. If the weights are sorted by descending order, the number of 

largest components to be included in the background is given by: 
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𝐵 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑏

(∑ 𝜋̂𝑚 > (1 − 𝑐𝑓))
𝑏

𝑚=1
 (6) 

where 𝑐𝑓 is a measure of the amount of data that should be included in the foreground. In our case, 

𝑐𝑓 was tuned empirically to optimize the detection of hand movements. 

Figure 5 shows segmentation results obtained by applying the adaptive GMM background 

subtraction method. As a final step, we apply morphological erosion and dilation to remove small 

foreground objects; results are shown in Figure 6. This distribution of foreground pixels (on a 

frame by frame basis) is then used to generate polar motion profiles, as described in the following 

section. 

 

 

Figure 5 Raw frame showing face detected locations 
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Figure 6 Foreground (FG) pixels returned by the background model. 

 

The tunable parameters in this method were optimized empirically by visually inspecting the 

foreground separation quality. The final values used for the remainder of this work were: 

 Background ratio 𝑇𝑏 =  (1 − 𝑐𝑓), defines whether the component is significant enough 

to be included in the background model. Its value was set to 0.9. 

 Threshold for the squared Mahalanobis distance, determines when a sample is close to 

the existing components: if the sample is not close to any component, a new component 

is generated. A smaller threshold value generates more components, whereas a higher 

threshold value may result in a small number of components that can grow too large. The 

value of this parameter was set to three times the standard deviation for the component in 

consideration. 

 Initial variance for the newly generated components affects the speed of adaptation. A 

value of 15 was experimentally found to be reasonable after observing the foreground 

quality by varying the parameter from 10 to 100. 
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4.1.3 Extraction of Polar Motion Profiles 

As a final step, we combine results from the face-detection and background-segmentation 

algorithms to extract a representation of foreground (moving) objects around each face. For every 

face detected on a frame, we define a region of interest (ROI) large enough* to span the range of 

hand motions in SLs; see Figure 7. 

Once ROIs have been defined for each frame, we generate a polar motion profile (PMP) for each. 

The PMP is a translation-and-scale-invariant measure of the amount of signing activity computed 

on a polar coordinate system centered on each face and scaled to the dimensions of each face; see 

Figure 8. For each ROI, it is computed as the ratio of foreground to total number of pixels at each 

polar co-ordinate (ρ, θ): 

𝑃𝑀𝑃𝑖(𝜃, 𝑡) =  𝐹𝐺𝑖(𝜃, 𝑡)/(𝐹𝐺𝑖(𝜃, 𝑡) + 𝐵𝐺𝑖(𝜃, 𝑡)) (7) 

where 𝐹𝐺𝑖(𝜃, 𝑡) denotes the number of foreground pixels at angular position θ for the i-th ROI of 

frame t, and 𝐵𝐺𝑖(𝜃, 𝑡) is the corresponding number of background pixels. Figure 8 illustrates this 

process visually. 

 

                                                      

* The face-detection module returns a bounding box of size 𝐻 × 𝑊.  From this, we define an ROI to cover 1𝐻 above the face center, 
3𝐻 below the face center, 2𝑊 to the right of the face center, and 2𝑊 to the left. 
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Figure 7 ROIs defined for each face detected in the frame 

 

Figure 8 Computation of PMPs for a video frame.  

 

4.2 Classifications 

Once PMPs have been extracted from each video, they are passed to a classification module to 

determine whether or not they have sign language content. We evaluate three approaches to 

leverage information in the PMPs to discriminate SL videos, as described in the following 

subsections. 
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4.2.1 Classification based on average PMPs 

Illustrated in Figure 9, the first classification method extracts the average of PMPs extracted from 

the ROIs of the video. In the case of the angular cordinate 𝜃, the corresponding average PMP is 

computed as: 

𝑃𝑀𝑃(𝜃) =
1

𝑇
∑

1

𝑅(𝑡)
∑ 𝑃𝑀𝑃𝑟(𝜃, 𝑡)

𝑅(𝑡)

𝑟=1

𝑇

𝑡=1
 (8) 

where 𝑅(𝑡) is the number of ROIs at frame t and T is the number of frames in the video. The same 

process is used to derive a PMP for the radial coordinate ρ). Next, we reduce the dimensionality 

of the average PMPs down to 5 dimensions using PCA; the resulting features then used for training 

an SVM classifier. 

 

 

 

Figure 9 The overall signal processing pipeline for the average PMP classifier 

 

4.2.2 Classification based on Bag-of-PMPs 

The bag-of-words model is broadly used in information retrieval tasks. In this model, a text 

document is represented as a vector containing the frequency of words occurring in that document. 
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This representation is commonly used for text document classification; methods such as 

probabilistic latent semantic analysis [29] and latent dirichlet allocation [30] use this 

representation to extract coherent topics within a document collection. This representation has also 

been used in computer vision for problems as varied as learning natural scene categories [31], 

discovering object categories in image collections [32] and scene classification [33]. In these cases, 

the model is generally referred to as bag-of-visual-words. 

In our approach, PMPs can be used as visual words for the discrimination of SL videos. The 

approach is illustrated in Figure 10. First, we generate a vocabulary of PMPs (codewords) by 

applying k-means clustering to a collection of SL and non-SL videos. For a new test video, we 

then assign each of its PMPs into the closest cluster and count the number of occurrences of each 

cluster. This results in a histogram of visual-word counts for each video (a bag-of-PMPs), which 

can then be used for classification purposes. 

 

 

Figure 10 Improving SL detection by analyzing the distribution of PMPs. 

 

We consider two approaches to derive a bag-of-PMPs for each video. Illustrated in Figure 11, the 

first approach applies k-means clustering directly on the original PMP space; we refer to this 

approach as bag-of-PMPs. In contrast, the second approach applies PCA to the distribution of 
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PMPs before applying k-means clustering; see Figure 12. Performing PCA prior to k-means 

clustering serves two purposes; first, it reduces the dimensionality of the PMP vector (down to 5 

dimensions in our implementation), reducing computational costs at test time; second, it de-

correlates the PMP dimensions, which otherwise may cause problems since k-means clustering 

assumes that the features are orthogonal (i.e., k-means uses the Euclidean distance). We refer to 

this second approach as bag-of-PPMPs. 

 

 

 

Figure 11 Overall signal processing pipeline for the Bag-of-PMPs method. 

 

  

Figure 12 Overall signal processing pipeline for the Bag-of-PPMPs method 
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4.2.3 Supervised projection of PMPs 

The third approach consists of using supervised techniques to find a projection of PMP information 

that maximizes the discrimination between the two classes. As before, we consider two variants 

of this strategy. Illustrated in Figure 13, the first variant consists of computing the Linear 

Discriminants Analysis on a collection of PMPs from SL and non-SL videos; this compresses the 

PMP information to a single dimension, which we denote by LPMP. In a second step, we perform 

k-means clustering to the LPMP distribution; hence we refer to this method as bag-of LPMPs. 

 

  

Figure 13 Overall signal processing pipeline for the Bag-of-LPMPs method 

 

The second approach also applies LDA to the distribution of PMPs but instead extracts a number 

of robust statistics from the resulting 1D distribution. Computing the statistics serves two 

purposes; first, it handles the issues of outliers which affect the distributions obtained by k-means 

(centroids are affected by the outliers); second it avoids the binning problem (i.e. deciding the 

number of bins (k)). We refer to this method as LPMP-STATS. This approach is illustrated in 

Figure 14. 
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Figure 14 Overall signal processing pipeline for the LPMP-STATS classifier. 

 

We compute the following statistical measures of the LPMPs 

 Trimmed mean. The trimmed mean is a robust measure of the central tendency, in contrast 

with the sample mean, which may be affected by a small fraction of anomalous 

measurements with abnormally large deviation from the center. A trimmed mean is stated 

as a mean trimmed by X%, where X is the sum of the percentage of observations removed 

from both the upper and the lower bounds. We compute the 25% trimmed mean (TM) of 

the LPMPs and use it as one of the features for training our SL classifier. This mean is 

computed by excluding the 25% largest and 25% smallest values. 

 Interquartile range. The interquartile range (IQR) is a measure of the statistical dispersion, 

being equal to the upper and lower quartiles. It represents the central portion of the 

distribution, from the 25th percentile to the 75th percentile, 

𝐼𝑄𝑅(𝐿𝑃𝑀𝑃𝑠) = 𝑄3 − 𝑄1 (9) 

where Qi is the ith quartile of the LPMPs; see Figure 15. 
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Figure 15 Interquartile range for a normal distribution curve 

 

 Skewness. The skewness is a measure of the asymmetry of the data around the sample 

mean. If skewness is negative, the data are spread out more to the left of the mean than to 

the right. If skewness is positive, the data are spread out more towards the right. Any 

perfectly symmetrical distribution has a skewness of zero; see Figure 16. The skewness of 

a distribution is given by: 

𝑆𝐾1 =  
𝐸(𝑥 − 𝜇)3

𝜎3
 (10) 

where 𝜇 is the mean of 𝑥, 𝜎 is the standard deviation of 𝑥, and 𝐸 is the expected value. 

However, the skewness measure in equation (10) is very sensitive to outliers due to the 

fact that it uses the third power relative to the sample mean. To avoid this issue, we use a 

robust measure of skewness [34] based on quartiles: 

𝑆𝐾2(𝐿𝑃𝑀𝑃𝑠) = 𝑄3 + 𝑄1 − 2𝑄2 𝑄3⁄ − 𝑄1 (11) 

where 𝑆𝐾2 is the skewnness and 𝑄𝑖 is the 𝑖𝑡ℎ quartile of the LPMPs vector. 
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Figure 16 Positive and negative skewness 

 

 Kurtosis. Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the 

normal distribution is 3, which is the standard kurtosis coefficient. Distributions that are 

more outlier-prone than the normal distribution have kurtosis greater than 3 (positive 

kurtosis). Distributions that are less outlier-prone have kurtosis less than 3 (negative 

kurtosis), see Figure 17. The kurtosis of a distribution is: 

𝐾𝑅1 =  
𝐸(𝑥 − 𝜇)4

𝜎4
 (12) 

However, this expression uses the sample mean, which is prone to outliers. To avoid 

outlier effects, we use a robust measure of kurtosis [35]: 

𝐾𝑅2(𝐿𝑃𝑀𝑃𝑠) =
(𝐸7 − 𝐸5) + (𝐸3 − 𝐸1)

𝐸6 − 𝐸2
 (13) 

where 𝐾𝑅2 is the robust kurtosis measure, and 𝐸𝑖 is the 𝑖𝑡ℎ octile, 𝑖/8𝑡ℎ percentile of the 

data. The Moors coefficient of kurtosis for the normal distribution can be calculated to be 

1.23 [36]. Thus, distributions that are more outlier-prone have kurtosis greater than 1.23, 

whereas distributions less outlier-prone have kurtosis less than 1.23. 

SL videos tend to exhibit consistent pattern of hand movements as opposed to erratic 

movements in the non-SL videos. Thus, we expect most SL videos to have kurtosis values 

at around 1.23 and values of most non-SL videos to be greater than 1.23. 
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Figure 17 Positive kurtosis (kurtosis greater than 1.23) and negative kurtosis (kurtosis less 
than 1.23) 
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5. RESULTS* 

We validated the SL classification methods on two sign-language video datasets specifically 

collected for this purpose. The first dataset, which we will refer to as Dataset A [26] was designed 

to match to the assumptions of static backgrounds and single signers of the pilot study [26]. The 

dataset contained 192 videos, including 98 SL videos and 94 non-SL videos. The majority of the 

non-SL videos had been selected by browsing for likely false-positives based on visual analysis 

(e.g. the whole video consisted of a gesturing presenter, weather forecaster, or other person moving 

their hands and arms.) This dataset was used to compare our SL classification against the previous 

method [26] under ideal conditions for the latter. 

The second dataset, which we refer to as Dataset B, relaxed the assumptions of the pilot study. 

These videos were selected by performing the text query “American Sign Language” using 

YouTube’s search function. We manually labeled as SL/non-SL the top 105 results returned by 

the search; the majority of these videos did actually contain SL, with only a few false positives 

(5%). To obtain a set of non-SL videos, we considered related video recommendations for the top 

105 results from the search. Again, we manually labeled these related videos and selected 100 

videos which did not contain SL. A majority of the videos in dataset B consisted of complex 

backgrounds, titles and captions appearing intermittently, and multiple signers.  

The remaining sections of this chapter are organized as follows. First, we describe the original 

method proposed by Monteiro et al. [26], which serves as a reference for the work presented in 

this thesis. Next, we visualize the average polar motion profiles of SL and non-SL videos from 

                                                      

* © 2014 IEEE, Part of this chapter is reprinted with permission from the Karappa, V., Monteiro, C. D., Shipman, F. 
M., & Gutierrez-Osuna, R. (2014, May). Detection of sign-language content in video through polar motion profiles. 
In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on (pp. 1290-1294). IEEE. 
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both the datasets and discuss their differences. Similarly, we visualize bag-of-PMPs and statistical 

measures of LPMPs in the following subsections 

5.1 Five feature classifier (5FC) of Monteiro et al. [26] 

Our work grows out of the pilot study Monteiro et al. [26], which presented a video classifier to 

detect SL content in videos. The authors used a single Haar-cascade for face detection, and a low-

pass filter for background modeling: 

𝐵𝐺(𝑡)  = (1 − 𝛼) 𝐵𝐺(𝑡 − 1) + 𝛼𝑥(𝑡) (14) 

where 𝑥(𝑡) is the grayscale value of the pixel at time 𝑡, and 𝛼 = 0.04. The method then extracted 

five video features (VF1-VF5) for each video. To measure the quantity of movement, two features 

were computed: (VF1) the total number of pixels computed as foreground for the given video 

averaged across frames and (VF2) the percentage of pixels that are included in the foreground 

model for at least one frame. Next, to measure the continuity of motion, (VF3) was computed as 

the average difference between the final foreground in one frame and the previous frame. Further, 

two more features were computed to measure the location of the hand motions: (VF4) the 

symmetry of motion as the average number of foreground pixels that are in symmetric position 

relative to the center of the signer’s face, and (VF5) was computed as the percentage of frames 

with non-facial movement. When tested on Dataset A (see above), the authors showed that the 

symmetry of motion with respect to the face (VF4) was more accurate in classification than the 

other four features combined. 

5.2 Average polar motion profiles 

Figure 18 and Figure 19 illustrate the average polar motion profiles for SL and non-SL videos on 

both datasets.  The angular profile 𝑃𝑀𝑃(𝜃) for SL videos shows a high proportion of foreground 
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pixels (i.e., moving objects) at angles near 𝜃 = 270°, which correspond to hand positions directly 

below the signer’s face. In contrast, non-SL videos show activity not only at 𝜃 = 270° but also at 

angles near 𝜃 = 90°, which correspond to hand positions directly above the face. These results are 

consistent for both datasets (A, and B) which points to the generality of the angular profiles as a 

measure of discrimination between SL and non-SL videos. 

 

 

Figure 18 Angular polar motion profiles of both the datasets 

 

The radial profile 𝑃𝑀𝑃(𝜌) for SL videos on Database A show a high proportion of foreground 

pixels at a broad range of distances ranging from 20% to 80% of the maximum distance, relative 

to the size of the ROI*. In contrast, the distribution of foreground pixels for non-SL on database A 

peaks at around 30% of the maximum distance, and remains rather constant at larger distances. On 

dataset B, however, the radial profiles for SL and non-SL videos are very similar, which suggest 

that radial profiles may not be a reliable measure of discrimination between SL and non-SL videos. 
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Figure 19 Radial polar motion profiles for both datasets 

 

One may be tempted to question the relevance of symmetry in hand movements as a discriminating 

feature for SL – a main finding of the study [26]. However, close inspection of Figure 18 reveal a 

strong vertical symmetry in the angular profiles, with higher probability of foreground motions 

around 𝜃 = 270° (directly below the signer’s face). In contrast, the radial profiles 𝑃𝑀𝑃(𝜌) appear 

to be less reproducible across datasets, see Figure 19. 

5.3 Bag-of-words model 

Figure 20 shows the distribution of PMPs (bag-of-words model) over all the videos in dataset A 

for cluster size k=8. The distributions computed in the original PMP space (bag-of-PMPs) are 

shown in the Figure 20(a). In these distributions, similar bin proportions for SL and non-SL videos 

can be attributed to high dimensional and correlated features in the original PMP space. This 

results in low degree of class separability when using the bag-of-PMPs representation. However, 
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when we compute the distributions of PMPs in the PCA subspace (bag-of-PPMPs), higher 

differences in the bin proportions for SL and non-SL videos can be obtained, see Figure 20(b). 

Projecting the PMPs on the PCA subspace helps de-correlate the features and a fewer set of 

dimensions can be used for computing the distributions. Similarly, higher differences in bin 

proportions are also obtained for distributions of PMPs in the LDA subspace, which leverages the 

class information to obtain high separability between SL and non-SL, see Figure 20(c). 

For the bag-of-LPMPs representation (Figure 20 (c)), LPMPs of the non-SL videos are 

concentrated at bin 6, whereas for the SL videos the LPMPs are spread across the last three bins 

(6, 7 and 8). This difference in the distributions can be attributed to the higher degree of hand 

movements due to signing in SL videos compared to non-SL videos.  A large number of 

foreground ROIs for non-SL videos contain minimal hand movements, which results in similar 

PMP vectors. Thus, most of the non-SL ROIs are assigned into a single bin. In contrast, SL 

foreground ROIs show relatively higher degree of hand movements, resulting in higher differences 

in PMP vectors.  
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Figure 20 Individual bin (cluster) proportions for (a) bag-of-PMPs, (b) bag-of-PPMPs and (c) 
bag-of-LPMPs , of  the videos in dataset A 
 

 

To illustrate this, we show some sample foreground ROIs assigned to the bin numbers 2, 6, 7 and 

8 for SL videos in Figure 21. We can see that different hand gestures and motions are spread out 

across these clusters. However, for non-SL videos, most of the foreground ROIs contain minimal 

activity and as a result higher percentage of non-SL ROIs are assigned to the 6th bin. Figure 22 

shows such sample foreground ROIs from non-SL videos assigned to bin 6 and ROIs containing 

rare hand movements are assigned to the bin 8. 
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Figure 21 Clustered SL frames of clusters 2, 6, 7 and 8 for the bag-of-LPMPs, see Figure 20(b) 
 
 
 

 

Figure 22 Shows non-SL frames assigned to the 6th and 8th clusters of the bag-of-LPMPs 
shown in Figure 20(b) 
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5.4 LPMP-Stats 

As described in the section 4.2.3, we compute statistical measures of the LPMPs for the SL and 

non-SL videos and use these measures for classification. Figure 23 shows the plots of trimmed 

mean vs IQR and skewness vs kurtosis of these measures for the videos in the dataset A. We can 

see that high separability can be obtained between SL and non-SL classes using these statistical 

measures.  

Most of the SL videos have IQR values higher than 0.1 whereas non-SL videos have IQR values 

below 0.1. Trimmed mean values also show a similar trend which can be attributed to the larger 

amount of activity in the ROIs of SL videos as compared to the non-SL ones. However, some non-

SL videos contain a lot of foreground activity due to abrupt camera movements. As a result, such 

non-SL videos have trimmed mean and IQR values similar to the SL videos.  

The distributions of LPMPs for SL videos are more symmetric (skewness ~ 0) as compared to 

non-SL videos. Further, the kurtosis values show that distributions of LPMPs for SL videos are 

less outlier prone as compared to non-SL videos.The trends captured by these measures are 

consistent across both the datasets. This shows that SL videos exhibit a certain pattern of activity 

which can be captured by these statistical measures and used for classification. 

 

 

Figure 23 Trimmed mean vs IQR and Skew-ness vs Kurtosis for videos in the dataset A. 
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5.5 Retrieval results  

5.5.1 Average PMP classifier (PMP) 

We compared the average PMP classifier against the one in the pilot study [26], which we will 

refer to as 5FC (five feature classifier). Classification results on dataset A are shown in Table 4. 

We compared both classifiers as a function of the training set size (15, 30, 45 and 60 videos per 

class) in terms of precision, recall and F1 score (harmonic mean of precision and recall). Both 

methods perform comparably, with a slight advantage for 5FC in terms of precision and a slight 

advantage for PMP in terms of recall. Comparison of the F1 scores also shows a small advantage 

towards PMP. 

We used the 5FC and average PMP classifiers trained on dataset A to generate class labels for the 

videos in dataset B, a more challenging test since both datasets had been constructed for different 

purposes. Table 5 summarizes the classification results on dataset B. 5FC and average PMP 

classifiers achieve similar precision rates as in dataset B. However, while average PMP is able to 

maintain the high recall rate obtained on dataset B, recall degrades dramatically for 5FC. 

5.5.2 Bag-of-PMPs classifier 

Next, we evaluate performance of an SVM classifier trained using the bag-of-PMPs as the features. 

The precision obtained by this classifier is 50% and recall rates in the range of (85-90%) for all 

the training video sizes; see Table 4. This classifier returns a large number of false positives. Thus, 

F1 scores are in the range of (63%-67%) relatively below the performance of all other methods. It 

shows similar performance on the dataset B. 
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Table 4 Classification results on dataset A 
 

#vids/c
lass 

Average 
PMP distributions 

(Unsupervised) 

PMP distributions 

(Supervised) 

Precision 

5FC PMP Bag-of-
PMPs 

Bag-of-
PPMPs  

Bag-of-
LPMPs 

LPMP-
STATS 

15 0.82 0.78 0.5 0.82 0.85 0.88 
30 0.84 0.81 0.5 0.83 0.84 0.88 
45 0.81 0.82 0.5 0.84 0.83 0.89 
60 0.82 0.82 0.52 0.86 0.83 0.88 

#vid 
/class 

Recall 

5FC PMP Bag-of-
PMPs 

Bag-of-
PPMPs 

Bag-of-
LPMPs 

LPMP-
STATS 

15 0.86 0.90 0.85 0.84 0.87 0.92 
30 0.88 0.92 0.88 0.87 0.96 0.92 
45 0.91 0.93 0.9 0.94 0.9 0.93 
60 0.91 0.93 0.94 0.92 0.94 0.93 

#vids/c
lass 

F1 Score 

5FC PMP Bag-of-
PMPs 

Bag-of-
PPMPs 

Bag-of-
LPMPs 

LPMP-
STATS 

15 0.84 0.83 0.63 0.83 0.86 0.9 
30 0.85 0.86 0.64 0.85 0.89 0.9 
45 0.85 0.87 0.64 0.89 0.86 0.91 
60 0.86 0.87 0.67 0.89 0.88 0.9 

 

 

Table 5 Classification results on dataset B 
 

Classifier Precision Recall F1 score 
5FC 0.82 0.60 0.69 
PMP 0.81 0.94 0.87 
Bag-of-PMPs 0.55 0.76 0.64 
Bag-of-PPMPs 0.72 0.70 0.71 
Bag-of-LPMPs 0.74 0.78 0.76 
LPMP-STATS 0.84 0.94 0.88 
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5.5.3 Bag-of-PPMPs classifier 

Further, we use distribution of PMPs in PCA subspace (bag-of-PPMPs) for training another SVM 

classifier and evaluate its performance, see Table 4. The bag-of-PPMPs classifier achieves higher 

precision (82%-86%) than 5FC, PMP and bag-of-PMPs classifiers and shows comparable recall 

rates. Further, we used the bag-of-PPMPs classifier trained on dataset A to generate labels for 

dataset B. The results are shown in the Table 5. bag-of-PPMPs achieved higher F1 score than 5FC 

but lesser than average PMP classifier. 

5.5.4 Bag-of-LPMPs classifier 

Classification results of Bag-of-LPMPs classifier on dataset A are shown in Table 4. Bag-of-

LPMPs classifier showed higher precision than the methods 5FC and average PMP for dataset A. 

The recall for Bag-of-LPMPs is comparable to the average PMP method. It rises to 96% and then 

falls to 90% with increase in the training set size. However, the recall for the average PMP 

consistently rises with increase in the training set size. Similarly, the F1 score of the Bag-of-

LPMPs drops by 3% to 86% from 89% for a training set size of 45 videos. However, other methods 

show consistent improvement in the F1 scores with the increase in the size of the training set size. 

When tested on dataset B, Bag-of-LPMPs classifier showed higher precision and recall than the 

Bag-of-PPMPs classifier but lower than average PMP and 5FC, see Table 5. 

5.5.5 LPMP-STATS classifier 

To address the issue of outliers, we used robust statistical measures (section 4.2.3) of LPMPs as 

features for classification. The performance of the SVM classifier trained using these features is 

shown in Table 4. This classifier outperforms other methods consistently over different training 

sizes. We can observe a similar trend when tested on dataset B. It achieved higher precision and 
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recall than all other methods on dataset B, see Table 5. 
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6. CONCLUSION 

6.1 Discussion 

This thesis studies the feasibility of developing detection mechanisms for sign language videos. 

Issues in current text-based video retrieval systems motivated us to develop image and video 

processing techniques to locate sign language videos on the web. [26] presented a technique of 

detecting sign language videos on a dataset of videos containing single signers, and simpler 

backgrounds. This thesis extends beyond that work by considering videos containing multiple 

signers and complex backgrounds. 

Our approach uses an ensemble face detection mechanism and an adaptive background model to 

compute a distribution of foreground movements in polar coordinates –the polar motion profiles 

(PMP) for each ROI in a video. We presented three different representations of videos by 

processing PMPs- as average across ROIs, bag-of-PMPs and statistical measures of LDA scores 

of PMPs. We trained classifiers using these representations and evaluated their performance on 

the original dataset in [26] (dataset A), and a new dataset collected from YouTube (dataset B).  

The performance of the average PMP method on dataset A is comparable to Monteiro’s 5FC 

classifier, as shown in Figure 24(a). However, it performs significantly better on dataset B. This 

can be attributed to the fact that the video pre-processing in 5FC was not designed to handle videos 

containing multiple signers and complex backgrounds. In contrast, in the average PMP method we 

make provisions to handle such cases by using an ensemble face detection technique and an 

adaptive background model. 

Further, Bag-of-PMPs computed in the original space show relatively lower performance when 

compared to the Bag-of-PPMPs (PCA subspace); see Figure 24(b). The Bag-of-PMPs perform 

poorly across both the datasets, with precision in the range of 50%. This can be attributed to the 
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sensitivity of k-means towards high dimensional and correlated PMP feature space. This results in 

similar bin proportions of PMPs in SL and non-SL distributions and, as a result, lower separability 

between classes. In contrast, we achieve higher separability if bin proportions are computed in the 

lower dimensional de-correlated PCA subspace of PMPs. As a result, the Bag-of-PPMPs 

(distributions in PCA space) showed significant improvement in performance for both the datasets.  

Figure 24(c) shows the performance of distributions of PMPs in LDA space (Bag-of-LPMPs) vs 

LPMP-Stats methods across both datasets. On dataset A, the Bag-of-LPMPs show comparable 

performance to the LPMP-Stats method. However, the performance of Bag-of-LPMPs degrades 

on the more complex dataset B. This can be attributed to the sensitivity of k-means towards 

outliers. In contrast, the LPMP-Stats method uses outlier-robust statistical measures and, as a 

result, it shows higher performance compared to Bag-of-LPMPs on dataset B. 

 

 

Figure 24 Precision, recall and F1 Scores of (a) 5FC vs Average PMP (b) Bag-of-PMPs vs Bag-
of-PPMPs (c) Bag-of-LPMPs vs LPMP-Stats 
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Precision and recall is high across all the methods on dataset A except for the Bag-of-PMPs, which 

suffers from curse of dimensionality; see Figure 25. For dataset B, 5FC’s recall falls to 60%, while 

the precision still remains high (80%). The SL videos in the dataset B contained multiple signers 

and complex backgrounds. 5FC’s video processing was not designed to handle such videos. 

Hence, the number of true positives for 5FC decreases (low recall). Further, the non-SL videos in 

the dataset B were collected from the related recommendations for SL videos on YouTube with 

no restriction to contain SL-like movements unlike in dataset A. Thus, 5FC filters out high number 

of non-SL videos on the dataset B resulting in high precision (due to the 5FC’s strength to filter 

out even the SL-like non-SL videos on dataset A). 

 

When we compare F1 scores across methods, as shown in Figure 26, LPMP-stats stands out as the 

winner for both datasets. This can be explained by the fact that it uses (1) class information to 

achieve higher separation between SL and non-SL, and (2) outlier-robust statistical measures. 

Further, we also believe that the performance of Bag-of-LPMPs and Bag-of-PPMPs can be 

improved by using clustering techniques that are robust to outliers. For example, k-medoids can 

 

Figure 25 Precision and recall across all the methods on datasets A and B. 
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be used instead of k-means to perform vector quantization. This would in turn lead to improved 

retrieval performance. However, in the case of Bag-of-PMPs (original space), the performance 

cannot be improved due to the fact that dimensions in the original PMP space are highly correlated.  

 

 

Figure 26 Overall comparison of F1 scores across all the methods 

 

6.2 Future work 

Several areas for improvement could be pursued as an extension to this thesis work. Our current 

methods either generate average motion profiles for each video or distributions of motion profiles. 

We do not consider the temporal information in the sequence of PMPs. Further improvement in 

retrieval results could be achieved by modelling the cues present in the sequence of these motion 

profiles; as an example, an HMM trained on the sequence of principal components or LDA 

projections may be used to extract dynamic signatures of sign languages and improve SL detection 

performance. 
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Further, the background subtraction technique can be coupled with a skin detection module to 

handle complex videos containing abrupt camera movements. Such movements introduce noise in 

the foreground data. A skin detection module can be used to remove the noisy foreground. To 

illustrate this, a signal processing pipeline is shown in the Figure 27. The skin detection module 

would act as a filter for the noisy foreground pixels, which can then be processed in a manner 

similar to one of our methods for classification. 

 

 

Figure 27 De-noising foreground pixels using skin detection 

 

Additional work is also needed to improve recognition of profile faces – our methods use a single 

Haar cascade for profile faces. This would be needed for videos where the signers are facing each 

other and not the camera, while signing, as shown Figure 28(a). 

Further, the methods presented in this thesis would not be suitable for videos containing a mix of 

signers and non-signers, as shown in the Figure 28(b). For example, the overall polar motion 

profile for average PMP method would be affected by the PMPs of non-signers in the video. Such 

videos would be tagged non-SL if they contain many non-signers. In such cases, it would become 

necessary to evaluate PMPs for each person independently to detect SL content. As shown in 
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Figure 29, a face tracking module would be needed to collect and differentiate ROIs for each 

person. PMPs for each person would then be evaluated independently by one of the classification 

approaches presented in this thesis. Next, a video would be tagged as SL, if SL content is detected 

in at-least one set of PMPs. 

 

 

Figure 28 (a) Video containing singers and non-signers (b) video containing SL conversations 
(signers facing each other) 

 

 

 

 

Figure 29 Signal processing pipeline to detect content separately for each person in the video. 

 

 

 

(a)
(b)

Face 
detection

Video

BG model

Classification

SL?

ROIs PMPs

FG pixels

Track 
Face 1

Track 
Face 2

Track 
Face n

ClassificationROIs PMPs

ClassificationROIs PMPs



52 

Further work would also be required to handle videos where SL content exists only in a subset of 

the frames. Such videos should be divided up into smaller segments and evaluated separately; see 

Figure 30. For each segment of the video, face detection and background modelling are executed 

independently. A classification label is then obtained for each set of PMPs separately. The video 

is tagged as SL, if at-least one-set of PMPs is classified as SL. 

  

 

Figure 30 Evaluation of videos containing SL in segments. 

 

Finally, using the techniques presented in this thesis, a sign language video retrieval filter could 

be implemented. This filter could act as a wrapper over existing search systems, thus, improving 

the chances of fulfilling information needs for the SL community and enabling the possibility of 

automatic tagging and annotations. 
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