
DETECTION AND DIAGNOSIS OF OUT-OF-SPECIFICATION FAILURES IN

MIXED-SIGNAL CIRCUITS

A Dissertation

by

PARIJAT MUKHERJEE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Peng Li
Committee Members, Gwan S. Choi

Jose Silva-Martinez
Vivek Sarin

Head of Department, Chanan Singh

December 2014

Major Subject: Computer Engineering

Copyright 2014 Parijat Mukherjee

ABSTRACT

Verifying whether a circuit meets its intended specifications, as well as diagnosing

the circuits that do not, is indispensable at every stage of integrated circuit design.

Otherwise, a significant portion of fabricated circuits could fail or behave correctly

only under certain conditions. Shrinking process technologies and increased integra-

tion has further complicated this task. This is especially true of mixed-signal circuits,

where a slight parametric shift in an analog component can change the output signif-

icantly. We are thus rapidly approaching a proverbial wall, where migrating existing

circuits to advanced technology nodes and/or designing the next generation circuits

may not be possible without suitable verification and debug strategies. Traditional

approaches target accuracy and not scalability, limiting their use to high-dimensional

systems.

Relaxing the accuracy requirement mitigates the computational cost. Simulta-

neously, quantifying the level of inaccuracy retains the effectiveness of these met-

rics. We exercise this accuracy vs. turn-around-time trade-off to deal with multiple

mixed-signal problems across both the pre- and post-silicon domains. We first ob-

tain approximate failure probability estimates along with their confidence bands

using limited simulation budgets. We then generate “failure regions” that naturally

explain the parametric interactions resulting in predicted failures. These two pre-

silicon contributions together enable us to estimate and reduce the failure probability,

which we demonstrate on a high-dimensional phase-locked loop test-case.

We leverage this pre-silicon knowledge towards test-set selection and post-silicon

debug to alleviate the limited controllability and observability in the post-silicon

domain. We select a set of test-points that maximizes the probability of observing

ii

failures. We then use post-silicon measurements at these test-points to identify

systematic deviations from pre-silicon belief. This is demonstrated using the phase-

locked loop test-case, where we boost the number of failures to observable levels and

use the obtained measurements to root-cause underlying parametric shifts.

The pre-silicon contributions can also be extended to perform equivalence check-

ing and to help diagnose detected model-mismatches. The resultant calibrated model

allows us to apply our work to the system level as well. The equivalence checking and

model-mismatch diagnosis is successfully demonstrated using a high-level abstraction

model for the phase-locked loop test-case.

iii

DEDICATION

To all my teachers over the years,

my parents being the first and foremost among them.

I dedicate this dissertation to every individual who has made it possible for me

to be here today. While naming every person who has touched my life in some way

is impossible, a few notable individuals deserve special mention.

First and foremost are my family, especially my parents and sister. They have

backed me up and given me their complete support with every decision I have made

in life. I would particularly like to thank my parents for instilling in me the thirst

for knowledge and the drive to continually challenge myself.

Next of course are all my teachers for being a source of inspiration, motivation,

and knowledge. I would especially like to mention Dr. B. Venkataramani for encour-

aging me to pursue my interests and in the process, motivating me towards my PhD.

And of course, Dr. Peng Li for all the support and guidance he has provided ever

since, be it within or outside the domain of academics and research.

Also deserving a special mention are all my friends over the years for their support,

encouragement, and for making every facet of my life much more pleasant. Of these,

I would especially like to thank Sapna for always standing by me through thick and

thin.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Peng Li for being a strong guiding

force throughout the course of my graduate studies. He has not just been a constant

source of support, guidance and motivation; he has encouraged me to grow into a

researcher in my own right by exhorting and enabling me to follow my own ideas.

For this and more, he has my everlasting gratitude.

I would like to take this opportunity to thank all the industry liaisons who have

helped shape the course of my research over the years. Notably, I would like to thank

Dr. Chirayu Amin, Dr. Chenjie Gu, Dr. Eli Chiprout and Dr. Noel Menezes from

Intel Corp. for not just keeping me aligned with the current needs of the industry

through numerous inspiring discussions, but also personally guiding me during my

summers at Intel.

Special thanks are also due to my committee members - Dr. Jose-Silva Martinez,

Dr. Gwan Choi and Dr. Vivek Sarin - for their constant support and guidance.

Besides their academic input, the constructive comments I have received at every

stage of my dissertation have been invaluable.

No acknowledgement would be complete without recognizing the numerous fac-

ulty members from both the Electrical and Computer Engineering Department and

the Computer Science Department who have equipped me with the knowledge and

tools I needed to work on diverse research problems. Nor would it be complete with-

out thanking all the technical and administrative staff for providing an environment

so conducive to learning and research.

Last but not the least of course, I would like to thank my friends and colleagues

both at Texas A&M University and outside for all their encouragement and feedback.

v

NOMENCLATURE

A/MS Analog / Mixed-Signal

BART Bayesian Additive Regression Trees

CAD Computer Aided Design

DC Direct Current

DfT Design-for-Test

DUT Device Under Test

IC Integrated Circuit

LHS Latin Hypercube Sampling

KDE Kernel Density Estimation

PVT Process, Voltage, Temperature

RIPPER Repeated Incremental Pruning to Produce Error Reduction

SAT Simulation After Test

SBT Simulation Before Test

SoC System on Chip

SPICE Simulation Program with Integrated Circuit Emphasis

SRAM Static Random-Access Memory

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xv

1. INTRODUCTION . 1

1.1 Failure probability estimation . 5
1.2 Failure region based diagnosis . 8
1.3 Equivalence checking and diagnosing model mismatch 10
1.4 Test set selection to maximize observed failures 11
1.5 Identifying systematic shifts in pre-silicon belief 13
1.6 Organization of the dissertation . 13

2. BACKGROUND AND RELATED WORK 16

2.1 Analog/mixed-signal circuits . 16
2.1.1 Design . 19
2.1.2 Modelling and simulation . 21
2.1.3 Yield estimation and optimization 22
2.1.4 Analog and mixed-signal testing 23

2.2 Mixed signal circuit as a statistical model 26
2.2.1 Parameters, properties and models 28
2.2.2 Probability of failure . 29
2.2.3 Controllability and observability 31

2.3 Objective of this dissertation . 32

3. FAILURE PROBABILITY ESTIMATION * 33

vii

3.1 Interval learner . 36
3.1.1 Implementation details . 39
3.1.2 Tuning the failure model . 40
3.1.3 Enhancing accuracy around sampled points 42
3.1.4 Exercising the failure model 42

3.2 Bias compensation . 43
3.3 Adaptive sampling . 45

3.3.1 Implementation details . 48
3.4 Results . 50

3.4.1 The test case . 50
3.4.2 Failure probability interval . 52
3.4.3 Adaptive sampling . 55

3.5 Summary . 56

4. FAILURE REGION BASED DIAGNOSIS * 57

4.1 Region primitives . 58
4.1.1 Decision trees . 58
4.1.2 Ensemble learning . 62
4.1.3 Implementation details . 63

4.2 Post processing . 66
4.2.1 Ranking regions . 67
4.2.2 Pruning regions . 68
4.2.3 Aggregating regions . 68

4.3 Parameter ranking . 70
4.4 Results . 72

4.4.1 Failure regions . 72
4.4.2 Parameter ranking . 72
4.4.3 Failure region based pre-silicon diagnosis 73

4.5 Summary . 78

5. EQUIVALENCE CHECKING AND DIAGNOSING MODEL MISMATCH 79

5.1 Equivalence checking as a property checking problem 79
5.1.1 Practical considerations . 81

5.2 Results . 82
5.2.1 Equivalence checking . 84
5.2.2 Diagnosing model mismatch 85

5.3 Summary . 87

6. TEST SET SELECTION TO MAXIMIZE OBSERVED FAILURES . . . 88

6.1 The test plan . 89
6.2 Leveraging failure regions for test set selection 91

viii

6.2.1 Implementation details . 93
6.2.2 Failure region based test coverage 95

6.3 Results . 96
6.4 Summary . 98

7. IDENTIFYING SYSTEMATIC SHIFTS IN PRE-SILICON BELIEF . . . 99

7.1 Identifying shifts in importance of “failure regions” 100
7.1.1 Kernel density estimation . 101
7.1.2 Implementation details . 103

7.2 Results . 104
7.3 Summary . 106

8. CONCLUSIONS AND FUTURE WORK 108

8.1 Future work . 109

REFERENCES . 113

ix

LIST OF FIGURES

FIGURE Page

1.1 Integrated circuit design flow. Dotted lines signify that debug & fix
might require additional upstream effort. Verification after the last
step (fabrication) is usually referred to as test and suffers from limited
controllability and observability into the actual integrated circuit. . . 2

1.2 Multiple distributions in the parameter space interact with each other
in the circuit in a complex non-linear fashion to give rise to other distri-
butions in the property space. Failures marked in red in the property
space can be mapped back to multiple combinations of parameters
(also marked in red) as shown. 3

1.3 High level landscape of failure probability estimation via statistical
techniques. The line between system and circuit level techniques is
somewhat arbitrary and determined by the cost of transistor level
simulation and the dimensionality that can be handled by existing
failure probability estimation techniques. 6

1.4 High level overview of “failure region” based diagnosis. Only the pre-
silicon part of the picture has been highlighted here. Their possible
applications towards post-silicon debug will be listed in Fig. 1.6 . . . 9

1.5 System level techniques depend on circuit level techniques by means of
abstraction (models). The accuracy of these system level techniques
is thus directly tied to the accuracy of these models, making model
validation very important. 11

1.6 Proposed framework that leverages pre-silicon information for post-
silicon debug. Boxes marked in green correspond to previously dis-
cussed pre-silicon information, while boxes in red correspond the post-
silicon aspects of this work. 12

1.7 High level overview of the organization of this dissertation. The pre-
silicon data and the failure regions generated in Sections 3 and 4 are
used to assist with post-silicon debug in Sections 6 and 7. Simulta-
neously, the contributions made towards property checking are also
extended to equivalence checking in Section 5. 15

x

2.1 Block diagram of a communication system. Certain amount of effort
is always required in the analog domain anytime when dealing with
real-world signals. Moreover, generating stable voltage, current and
clock references also requires analog functionality. 17

2.2 A single step in the high-level design flow detailed in Fig. 1.1. Verifying
functionality and debugging observed failures are integral components
at every stage of the design flow. Ensuring correct functionality in the
current stage reduces amount of rework that may be required if a
problem is discovered in downstream stages. 20

2.3 A black box view of a mixed-signal circuit. The circuit can be thought
of as a parametric model where the parameters in question refer to
only process parameters at this point. This picture will be further
enhanced in Fig. 2.4. 26

2.4 A completely parameterized view of a mixed-signal circuit. Both the
inputs to the circuit and the model itself have now been parametrized.
The combined parameter space can now be thought to contain input
signal parameters, process parameters, sources of noise etc. 27

3.1 Failure regions in property distribution. The area under the probabil-
ity distribution curve marked in red gives us the probability of failure
that we wish to estimate. 34

3.2 High level overview of proposed approach. The interval learner is
described in Section 3.1, the bias compensation in Section 3.2 and the
adaptive sampling built around it in Section 3.3. 35

3.3 Point wise prediction and error. For every point x ∈ X, we obtain a
distribution over y|x instead of a single y. Both a pass-fail prediction
and probability of misprediction can thus be obtained. 37

3.4 Distribution of y from Fig. 3.1 overlaid with probability of misclassi-
fication. This probability of misclassification is highest at the failure
boundary and tapers off as we move away from it. 39

3.5 Adaptive sampling demonstration. Fig. 3.5(a) shows the concept we
wish to capture and Fig. 3.5(d) how well we managed to do so. As
evident from the final set of sampled points in Fig. 3.5(c), sampling
concentration is dependent on both proximity to boundary and how
important the boundary is. 46

xi

3.6 Adaptive sampling framework: The failure model and how it may
be exercised has already been discussed in Section 3.1. The role of
K-fold sub-sampling and bias compensation have also been discussed
previously in Section 3.2. 47

3.7 Failure probability interval convergence during adaptive sampling.
Fig. 3.7(a) shows the original bias compensated interval. Fig. 3.7(b)
shows how the interval converges during the course of adaptive sam-
pling. Fig. 3.7(c) shows the final interval. 49

3.8 High level block diagram of the PLL test case. Two variants of this
circuit, PLL1 and PLL2 will be used in Sections 3, 4, 6 & 7. PLL1
will in turn be compared to a behavioral model with the same block
diagram but a smaller set of parameters in Section 5. 51

3.9 PLL1 adaptive sampling demonstration. Since the cost of SPICE
simulation is dominant, compute time is reported in terms of number
of SPICE simulations required. We are able to get to a stable failure
probability estimate within a few hundred simulations. 55

4.1 Region primitives : two dimensional example. X1 and X2 are two
independent Gaussian parameters. Regions that do not satisfy spec-
ifications are marked in red. Each rectangle corresponds to a failure
region primitive we wish to generate. 59

4.2 Rule learning from decision trees. Each node in the tree refers to a
split along a given parameter. A path traced from the root node to
a leaf rich in failure cases gives us a failure rule. There may be more
than one such leaf as shown above. 60

4.3 Decision tree learning : two dimensional example demonstrating the
over-fitting vs. generalization trade-off when performing rule-induction
using a single decision tree. All naming conventions are the same as
in Fig. 4.1. 61

4.4 Sum of trees model. Solid lines: interaction effects; Dotted lines: ad-
ditive effects. Paths leading to a failure are marked in red. The green
circle represents how complex non-linear failure mechanisms may be
explained by combining simpler rules. 62

xii

4.5 Ensemble learning : two dimensional example demonstrating how mul-
tiple overlapping rules can guarantee sufficient coverage of the non-
linear concept we try to explain. Picking a subset of these rules while
ensuring sufficient coverage is the purpose of the post-processing step
discussed in Section 4.2. 63

4.6 Failure region discovery on adaptively sampled data. The above figure
assumes that we are able to query a failure model as in Section 3.
Fig. 4.6(a) is thus used to construct the ensemble and Fig. 4.6(b) to
determine the probabilities associated with each region. The final set
of processed rules are shown in Fig. 4.6(c). 69

4.7 Sample Rule : P (R) represents the probability that the region is ex-
cited based on pre-silicon knowledge. P (F |R) is the probability of
failure within that region. The boundaries listed correspond to only
the critical parameters. The non-critical parameters default to their
entire legal range of values. 73

4.8 Failure regions : PLL1. The naming of all parameters and properties
are self-explanatory but for the following exceptions : (1) Filter R1,
Cx as shown in Fig. 4.10, (2) Transistor channel lengths in the charge
pump block (LCPxx) and VCO block (LVxx). All other naming con-
ventions are the same as Fig. 4.7. 74

4.9 Failure regions : PLL2. Naming conventions are the same as in Fig. 4.7
and Fig. 4.8. 75

4.10 Charge pump and filter blocks within the PLL described in Fig. 3.8.
PLL1 and PLL2 end up differing mainly in the values of LCPxx and
R1, Cx due to the nature of the diagnosis information obtained for
PLL2. 77

5.1 Redefining the equivalence checking problem as a property checking
problem. Instead of dealing with each model individually, we operate
across a joint parameter space defined by the union of both parameter
spaces and over a joint property defined by the difference between
shared properties. 80

5.2 Difficulty when adaptively sampling the equivalence checking problem
as compared to the property checking problem. Though Fig. 5.2(a)
and Fig. 5.2(b) are very similar to each other, on comparing Model 1
with Model 2, we get a doubly complex failure manifold in Fig. 5.2(c). 82

xiii

5.3 Failure regions : PLL1 vs Verilog-AMS model mismatch. Naming
conventions are the same as in Fig. 4.7 and Fig. 4.8. 86

6.1 Failure region based test selection methodology. The uncertainty in-
formation p (c̄|c) can be fed back from the fabrication process. The
test-engineer’s input is used in determining the test plan (and thus
p (c)) as discussed in Section 6.1. The failure regions serve as a source
of pre-silicon knowledge for P (F |c, c̄). 89

6.2 Selecting values for controllable test parameters. X1 is the control-
lable parameter. For every sampled point on X1, the expected uncer-
tainty along X2 is demonstrated. The expected uncertainty is based
on pre-silicon assumptions. The actual post-silicon distribution may
be different as shown in Fig. 7.1. 92

6.3 PLL1 Test selection. Probabilities of regions demarcated by one or
more controllable parameters are effectively boosted. If the region is
bounded by uncontrollable elements alone, no test set can perform
better than randomly sampling the test plan. 97

6.4 PLL2 Test selection. Regions with failure probability above 0.5%
when excited with chosen test parameters will be considered statis-
tically significant and used for post-silicon debug. 97

7.1 Post silicon debug. X1 is controllable and can be selected during test.
Change in distribution of the unobservable parameter X2 causes P (Ri)
to change for both clusters. 100

7.2 Complete post-silicon debug flow. The estimated failure region prob-
abilities over both pre and post-silicon data are compared to identify
systematic shifts from the pre-silicon belief in the post-silicon domain. 102

7.3 PLL1 debug results. The importance of all regions except region R2

seems to go up in the post-silicon domain. Studying region R2 in
more detail actually allows us to identify that the mean value of C1
increased in the post-silicon domain. 105

7.4 PLL2 debug results. Regions R1.1 and R1.14 show substantial devia-
tions and will be examined further. 106

xiv

LIST OF TABLES

TABLE Page

3.1 Failure rate and interval estimates for PLL1. All probabilities ex-
pressed in %. MC+LHS refers to data sampled according to the pa-
rameter distribution though using Latin Hypercube Sampling. Adap-
tive refers to the data sampled adaptively as per our proposed approach. 53

3.2 Failure rate and interval estimates for PLL2. All probabilities ex-
pressed in %. MC+LHS refers to data sampled according to the pa-
rameter distribution though using Latin Hypercube Sampling. Adap-
tive refers to the data sampled adaptively as per our proposed approach. 54

4.1 Top 5 parameters in PLL1 ranked based on the importance metric
described in Section 4.3. 74

4.2 Top 5 parameters in PLL2 ranked based on the importance metric
described in Section 4.3. 76

5.1 Model mismatch probability and interval estimates for PLL1 when
compared against high level Verilog-AMS model. All probabilities
expressed in %. 84

5.2 Top 5 parameters in explaining mismatch between PLL1 and Verilog-
AMS model based on the importance metric described in Section 4.3. 85

xv

1. INTRODUCTION

Real world signals are analog in nature. So it shouldn’t be surprising that analog

circuits are all around us. Even when dealing with purely digital systems, analog

circuits are responsible for providing stable and reproducible voltage and clock ref-

erences so that the digital core can do its job. Moreover, in today’s brave new world

of increased integration and System-on-Chips (SoCs), analog and digital systems

reside side by side on the same chip making modern day Integrated Circuits (ICs)

truly mixed-signal in nature. In fact, such mixed-signal systems are here to stay as

discussed further in Section 2.1.

Unfortunately, the design of such analog/mixed-signal components is inherently

complex in nature. Since we are forced to deal with transistor level dynamics when

designing analog circuits, an enormous number of design considerations must be ac-

counted for simultaneously to allow the circuit to perform its intended function even

under nominal operating conditions. And the nominal operating condition is just

the starting point. As CMOS technologies continue to scale, we are not just dealing

with bigger and more complex circuits, but also a lot of design uncertainties such

as startup conditions; signal & power noise; process variation etc. The parameter

space that we need to deal with when designing mixed-signal systems has thus grown

dramatically, even over the last few years.

Given the number of conditions the circuit has to operate correctly across, it is

impossible to think of every possible scenario when designing the circuit. Automated

verification tools to ensure correct operation of such mixed-signal systems is thus of

prime importance in both the pre-silicon and post-silicon domains. In fact, irre-

spective of which stage of the design flow (detailed further in Section 2.1.1) we may

1

be at, verifying whether the circuit performs as intended, and debugging observed

functional failures, is essential as shown in Fig. 1.1.

System
Design

Debug &
Fix

Verification &
Validation

Architectural
Design

Debug &
Fix

Verification &
Validation

Cell
Design

Debug &
Fix

Verification &
Validation

Layout
Design

Debug &
Fix

Verification &
Validation

System
Assembly

Debug &
Fix

Verification &
Validation

Fabrication

PassFail

PassFail

PassFail

PassFail

PassFail

Debug &
Fix

Verification &
Validation

Fail

Done !

Pass

Concept

Figure 1.1: Integrated circuit design flow (modified with permission from
[1] c© 2000 IEEE). Dotted lines signify that debug & fix might require additional
upstream effort. Verification after the last step (fabrication) is usually referred to
as test and suffers from limited controllability and observability into the actual inte-
grated circuit.

Unfortunately, even verifying that the circuit operates as expected is only slightly

easier than designing it. The dimensionality of the parameter space makes it impos-

sible for us to simulate and/or measure every possible scenario. Additionally, both

the parameter distributions and the mapping between input parameters and output

properties may be arbitrarily complex, forcing us to deal with multiple (and possibly

2

Parameter Space

X1p
(X

1
)

X
2

p
(X

2
)

X
3

p
(X

3
)

X
1

p
(X

1
)

X
2

p
(X

2
)

X
3

p
(X

3
)

X
1

p
(X

1
)

X
2

p
(X

2
)

X
3

p
(X

3
)

Circuit

Property Space

Y
1

p
(Y

1
)

Y
2

p
(Y

2
)

Figure 1.2: Multiple distributions in the parameter space interact with each other in
the circuit in a complex non-linear fashion to give rise to other distributions in the
property space. Failures marked in red in the property space can be mapped back
to multiple combinations of parameters (also marked in red) as shown.

correlated) failure regions across multiple properties. In fact, the scenario can get

extremely complex even for a low dimensional system as depicted in Fig. 1.2.

Predicting whether a circuit meets target property specifications has thus grown

increasingly difficult over time. Furthermore, simply predicting whether a circuit

will meet specifications under all operating conditions is no longer enough. Diag-

nosing discovered out-of-specification failures has become increasingly challenging,

3

both due to the multitude of parameters and the fact that failures may be caused by

interactions between these parameters.

We are thus rapidly rushing towards a proverbial wall in terms of size and com-

plexity of the mixed-signal circuits that can be designed, unless we devise innovative

means to verify and debug such circuits. Estimating how often a circuit will probably

fail and diagnosing discovered failures thus form a core constituent of this work.

While the above contributions may address the circuit level problem, state-of-the-

art integrated circuits are large mixed-signal systems. It is impossible to simulate

these systems at the circuit level. High level models are thus used for system level

verification. Verifying whether or not these high level models match the underlying

circuit and providing debug information to the designer / model developer if required,

indirectly enables system level estimation and diagnosis as well. We thus address the

same in this work as well.

Solving these problems in the pre-silicon domain (prior to fabrication) empower

the designers with the tools they need for yield optimisation of large mixed-signal

systems. Given today’s aggressive design margins and turn-around-time require-

ments, the struggle however does not stop there. A circuit may have “acceptable”

yield margins in the pre-silicon domain but may demonstrate unacceptable yields

once fabricated.

The mismatch between the pre-silicon expectations and post-silicon (after fabri-

cation) reality may arise from multiple causes but they are all very hard to debug

given the lack of observability into the system. By leveraging the large amount of

pre-silicon data we collect during the estimation stage and the critical parameters we

identify during the diagnosis stage, we further attempt to select test points to boost

the probability of observing failures and then identify systematic deviations in the

fabrication process using the obtained test measurements.

4

It is to be noted that the tools and methodologies listed herein are designed to

assist the designer / verification engineer and not replace them. A significant amount

of domain knowledge is still required to fix observed failures or even determine what

experiments may be practical in the post-silicon stage. This holds true whether

we are discussing failure probability estimation, diagnosis, test-set selection or root-

causing observed post-silicon failures.

We break down each of these problems further in the rest of this section.

1.1 Failure probability estimation

Estimating the probability that a circuit will not meet its intended specifications

has received a lot of attention over the years but researchers have been successful in

solving only subsets of the overall problem. Formal techniques [2, 3, 4] have difficulty

in scaling without grossly approximating the circuit behaviour. On the other hand,

the computational complexity of SPICE simulations forces us to compromise when

using statistical techniques.

One such compromise requires decomposing a circuit into multiple lower dimen-

sional components. While extremely accurate estimates can be obtained on a per

component basis (such as in the yield estimation domain [5, 6, 7, 8]), this divide-and-

conquer approach fails to account for correlation between components. As a result,

the predicted performance at the system level may be optimistic or pessimistic de-

pending upon whether the components interact with each other to suppress block

level failures (such as in compensatory feed-back loops) or further enhance block

level failures. Additionally, we still run into scalability issues in the absence of large

numbers of repeated components.

An alternate compromise involves relaxing the accuracy requirement. If accuracy

isn’t a very strong concern and the error rate is high, standard Monte Carlo analysis

5

[9, 10] can be used directly. However, we additionally need to ensure that the error

in this prediction falls within a certain bound. Moreover, it is crucial that these

bounds be tight enough to make a design decision. For instance, while knowing that

the failure probability lies in the interval [0.01, 0.02] may be sufficient, the same can’t

be said about [0.0, 0.5]. In fact, confidence intervals drawn via bootstrap [11] is a

big reason why standard Monte Carlo analysis has remained a strong contender in

this area. However, the accuracy of standard Monte Carlo is inversely related to the

number of samples and thus the prediction may be extremely biased when trying to

estimate low failure probabilities using a limited simulation budget.

Figure 1.3: High level landscape of failure probability estimation via statistical tech-
niques. The line between system and circuit level techniques is somewhat arbitrary
and determined by the cost of transistor level simulation and the dimensionality that
can be handled by existing failure probability estimation techniques.

Thus there exists a significant void in the estimation landscape without resorting

to divide-and-conquer based system level techniques as shown in Fig. 1.3. We ad-

dress this void by developing a scheme via which an approximate failure probability

6

P̄ (F) and the corresponding interval P (F) ∈ [minP,maxP] can be obtained using

at most a few hundred SPICE simulations. Since we wish for P̄ (F) → P (F) as

more simulation resources become available, we first need a knowledge representa-

tion scheme that returns both P (F) and a pessimistic interval [minP,maxP] when

fed with adaptively sampled SPICE data. The designer can then add simulation

resources as required until the desired interval accuracy has been achieved.

We describe three main contributions towards these goals as follows:

1. A failure model based knowledge representation scheme that returns both P (F)

and a conservative interval P (F) ∈ [minP,maxP] when fed with arbitrarily

sampled SPICE data.

2. Compensation for the bias in the model based estimate from step (1) via an

ensemble of learners.

3. An adaptive sampling scheme built around the above bias-compensated learner

that not only samples around the failure boundaries, but also takes into account

the probability that a boundary is exercised in the first place.

The above contributions allow the designer to start with arbitrarily distributed

data and to keep adding simulation resources as required until the desired interval

accuracy has been achieved. While the objective is similar to the existing adaptive

sampling techniques in the yield estimation domain, the dimensionality of the systems

we deal with here means that both the failure probability and the techniques we use

to approximate the said failure probability are wildly different.

This work in conjunction with the existing yield analysis and Monte Carlo tech-

niques lays the foundation for a unified approach towards failure probability estima-

tion at the circuit level.

7

1.2 Failure region based diagnosis

The diagnosis problem can be broken down into two parts:

1. Determining critical parameters whose deviation could cause the circuit to fail.

2. Determining the values (or range of values) for these parameters that result in

failure.

Answering the above problems helps in design space exploration and yield op-

timization in the pre-silicon domain [12, 13, 14]. Existing tools [15, 16] to do so

however, mostly assume that a single parameter is capable of causing the circuit to

enter a failure region. In reality, interaction effects over a high-dimensional space,

defined by input signal parameters and sources of design uncertainty, are more likely

to do so. For example, the circuit may not have been designed to meet all specifica-

tions in the first place (failures due to interactions between input signal parameters)

or multiple design uncertainties interact with each other to give rise to failures (e.g.,

transistor mismatch). In fact, most design uncertainties manifest a failure only in

the presence of specific input conditions.

While techniques exist to deal with all of the above separately, they inherently

refer to interaction effects over a high-dimensional space consisting of both the input

signal parameters and sources of design uncertainty. As the dimensionality of the

parameter space continues to increase, these interaction effects have only become

more prominent. Since these interactions refer to a multi-dimensional interval in the

parameter space, we can leverage standard rule-induction algorithms that perform

both feature selection and clustering of failure information simultaneously. By util-

ising domain knowledge to rank, prune and cluster these rules, we generate a list of

failure regions that can easily be visualised by a designer. This is summarized in

Fig. 1.4.

8

Simulated Data

Extract region primitives

Postprocess
(Aggregate, Prune & Rank)

primitives into regions

Pre-silicon debug

Focus on interpretability

Reduce number of regions
while maintaining failure
coverage.

Can follow any distribution

Fix with human intervention

Rank parameters
by relative contribution

to each primitive

Figure 1.4: High level overview of “failure region” based diagnosis. Only the pre-
silicon part of the picture has been highlighted here. Their possible applications
towards post-silicon debug will be listed in Fig. 1.6

For the failure regions to be useful, they must first be easy to interpret for the

end-user. Since non-linear manifolds are hard to visualise, especially in a high-

dimensional space, we propose the use of simple if-then rules to serve as region

primitives. These simple primitives may then be aggregated to explain complex

non-linear manifolds.

However, examining every dimension in a high-dimensional space may not be pos-

sible even for simple primitives. Additionally, the limited representational flexibility

of interpretable primitives may cause them to overlap with each other or explain very

few failures individually. Thus, our complete approach involves the following:

1. Construct failure region primitives using standard rule-induction algorithms.

2. Identify critical parameters and their associated values for each primitive.

3. Prune these primitives to minimise overlaps and maximize predictive accuracy.

4. Aggregate the reduced set of primitives into complex non-linear regions.

9

5. Rank the above regions based on their probabilities.

6. Rank parameters within each rule to assist with debug.

The real applications of the failure regions of course go further than just pre-

silicon diagnosis as discussed here. We shall also outline how they may assist with

test-set selection and post-silicon debug in Section 1.4 and Section 1.5 respectively.

1.3 Equivalence checking and diagnosing model mismatch

The failure probability estimation problem we have laid out in Section 1.1 is

sometimes referred to as “property checking” wherein we wish to compare a circuit

against its specifications. However, there are times when we wish to compare two

circuits against each other or two views of the same circuit against each other to see

if they are equivalent or not.

The motivation for doing so is more clearly understood by discussing the circuit

vs. system-level verification scenario in Fig. 1.5. While we would like to deal with

transistor level information as far as possible to avoid abstracting away critical in-

teraction information, it may not be possible to simulate large systems in SPICE

within a reasonable turn-around-time.

In such a scenario, we have no choice but to rely on system level techniques which

inherently abstract away circuit level information by means of high-level models.

Verifying whether these high-level models are equivalent to the underlying circuit

under various design uncertainties thus becomes a very important problem.

To deal with this problem, we frame the equivalence checking problem as a prop-

erty checking problem, which can then be dealt with by using the previously intro-

duced contributions towards failure probability estimation and diagnosis. Forcing

two models to be perfectly identical would cause the dimensionality of both models

to be similar as well. The higher level abstraction model does not provide any simu-

10

Figure 1.5: System level techniques depend on circuit level techniques by means of
abstraction (models). The accuracy of these system level techniques is thus directly
tied to the accuracy of these models, making model validation very important.

lation speed-up for system level analysis in this case. Thus, we instead simply ensure

that the response of both models are simply within a certain threshold of each other

over both sets of model parameters.

1.4 Test set selection to maximize observed failures

Since we have gone through the effort of predicting and optimizing the yield in

the pre-silicon domain, we expect failures to be relatively rare in the post-silicon

domain. As a result, observing failures when validating the fabricated circuit can

be difficult with a very limited measurement budget. At the same time, the same

underlying failure mechanisms may lead to failures across hundreds of chips after

production, simply because we are dealing with a much larger number of chips.

As a result, some mechanism to boost the number of observed failures in the

post-silicon domain is required. Depending upon the device-under-test (DUT), we

may be able to directly pick operating conditions or control knobs that affect circuit

11

functionality. We may also be able to pick a subset of chips by means of process

related information obtained during high volume manufacturing. The more the de-

grees of freedom of course, the larger the set of candidate test-points. The goal of

test-set selection is to pick only a few of these test-points, but boost the probabil-

ity of observing failure to significant enough levels that it can be observed in the

post-silicon domain.

To do so, we observe that the failure regions we introduced in Section 1.2 serve

as a reasonably confident knowledge representation scheme by demarcating parts of

the parameter space where we expect failure to occur. A complete framework that

shows all the downstream applications of these failure regions (including test-set

selection) is given in Fig. 1.6. For test-set selection in particular, we integrate over

the uncontrollable dimensions within each failure region to pick controllable points

that have the highest probability of exciting these regions.

Pre-silicon data

Yield Estimation

Parameter Ranking

Debug Aid

Debug & Fix

Post-silicon debug

Failure Regions

Pre-silicon debug

Important Regions

Post-silicon debug

Test Conditions

Test Selection

Post-silicon data

Test

Figure 1.6: Proposed framework that leverages pre-silicon information for post-silicon
debug. Boxes marked in green correspond to previously discussed pre-silicon infor-
mation, while boxes in red correspond the post-silicon aspects of this work.

12

1.5 Identifying systematic shifts in pre-silicon belief

We have so far discussed failure diagnosis in the pre-silicon domain in Section 1.2.

However, the complexity of everything we have discussed so far pales in comparison

to the problem of debugging actual silicon, given the limited amount of observability

into a real chip. As a result, we try and leverage pre-silicon knowledge captured by

the failure regions in Fig. 1.6 to assist with this process.

If the fabrication process replicates the pre-silicon knowledge, then the real yield

will be the same as the expected yield and the probability of exercising a given

failure region will remain the same over both the pre-silicon and post-silicon domains.

However, if this is not the case, the relative importance of specific failure regions

might go up or down depending upon deviations in the fabrication process. It is

these deviations from the pre-silicon belief in the post-silicon domain that we wish

to discover. Since the critical parameters for each failure region is already known

from the pre-silicon data, this eventually helps with debug as well.

It is to be noted that this is a significant shift from established post-silicon de-

bug techniques since we are not adding any additional observability into the sys-

tem. While additional test probes and measurements are naturally supported by

our framework, this dissertation treats the design under test as a black box. We

do not attempt to add expensive test probes or measurement circuitry but only use

existing inputs and outputs. Drawing inferences from limited post-silicon data is still

possible because we are not interested in exact parametric shifts anymore, but only

the importance of specific failure mechanisms.

1.6 Organization of the dissertation

The organisation of this dissertation is summarised in Fig. 1.7. We first describe

the relevant background material in Section 2. We then proceed to address the

13

property checking problem by estimating the failure probability in Section 3. This

technique in conjunction with existing Monte Carlo and yield estimation techniques

serve as the basis for our pre-silicon knowledge which we then use to diagnose these

violations by identifying failure trends in Section 4.

From this point onwards, the dissertation takes two paths. We first describe

how the concepts we used to detect and diagnose property violations in Section 3

and Section 4 can be extended towards equivalence checking and diagnosing model

mismatch in Section 5. This proves to be a key enabler for system level detection,

diagnosis and debug techniques.

The other path detailed over Section 6 and Section 7 deals with using the pre-

silicon knowledge we discover in Section 3 and Section 4 as an aid to deal with test-set

selection (Section 6) and identifying systematic shifts in the probability of critical

failure mechanisms (Section 7) which help in observing and debugging post-silicon

failures.

As mentioned earlier, the key enabler in all of these methods is exercising the

accuracy vs. turn-around-time trade-off by means of failure probability intervals,

parameter space coverage and probabilities of excitation depending upon the exact

nature of the problem - a fact that we summarize in our concluding remarks in

Section 8.

14

Failure probability
estimation

Failure region
based diagnosis

Test selection
Identify

systematic shifts

Parameter
ranking

Identify
systematic shifts

Failure probability
estimation

Failure region
based diagnosis

Parameter
ranking

Section 3 Section 4 Section 6 Section 7

Pre-silicon Post-silicon

Property
Checking

Equivalence
checking

Section 5

Section 1 :

Section 2 :

Introduction

Background

Setting the stage

Figure 1.7: High level overview of the organization of this dissertation. The pre-
silicon data and the failure regions generated in Sections 3 and 4 are used to assist
with post-silicon debug in Sections 6 and 7. Simultaneously, the contributions made
towards property checking are also extended to equivalence checking in Section 5.

15

2. BACKGROUND AND RELATED WORK

2.1 Analog/mixed-signal circuits

Analog/mixed signal circuits are ubiquitous, whether we realise it or not. In fact,

as technology continues to shrink and it becomes feasible to integrate more and more

onto a single chip, the line between digital integrated circuits and analog integrated

circuits continues to grow fuzzier. Instead, we are now dealing with the brave new

world of System-on-Chips (SoCs) where both digital and analog functionality reside

side by side. The rise of such SoCs has come with its own set of challenges, namely

how to design and validate such large mixed-signal systems.

Specifically, this difficulty arises because of the analog components. While we

can assume a binary 0/1 response in digital circuits (along with certain setup, hold,

fall time restrictions etc.), no such assumptions can be made about analog circuits

- making them very difficult to design, simulate and debug. This problem has been

further exacerbated by the fact that it is nearly impossible to ensure 100% error-free

functionality, given the increase in manufacturing variability [17, 18, 19, 20] in the

rush to keep up with Moore’s law. While these manufacturing tolerances have hurt

digital circuits as well, it has hit analog circuits far worse.

Simultaneously, the tolerances associated with our designs have shrunk with time

as well. As our communication needs keep growing, the frequency of operation of

related subsystems rises to keep pace with increased bandwidth requirements as well.

Additionally, this needs to be achieved while minimizing power consumption as well

- both to save energy in mobile form factors such as cellphones and to make sure that

the chip doesn’t burn itself up from thermal dissipation. As a result, both the time

and voltage margins have been shrinking over time for a lot of analog subsystems.

16

In this world of increased variability, tighter tolerances and ever rising design

complexity, it shouldn’t be surprising that efforts have been made to replace a lot of

analog components with digital ones. Yet, it is nearly impossible to get rid of analog

circuits from the modern day Integrated Circuits (ICs). For example, consider the

communication subsystem in Fig. 2.1. The core computation may happen in the

digital domain but the surrounding circuitry is all mixed-signal or analog in nature.

Computation
Core

Analog to
Digital

Digital to
Analog

Stable Reference

Receiver
Front End

Transmitter
Front End

DigitalMixed-Signal Mixed-SignalAnalog

Mixed-Signal

Analog

Figure 2.1: Block diagram of a communication system. Certain amount of effort is
always required in the analog domain anytime when dealing with real-world signals.
Moreover, generating stable voltage, current and clock references also requires analog
functionality.

In fact, certain functions will probably always remain in the analog domain [1]:

• Any circuit that directly deals with real world inputs: Real world signals are

by nature analog. Even if we wish to process them in the digital domain, we

first need to sense, receive, amplify and filter them before digitization. Sensors,

amplifiers, filters, oscillators and mixers are thus found in a wide range of SoCs

over a wide range of applications.

• On the output side : Even if we are transmitting a sequence of ones and zeros,

maintaining the integrity of the sequence over a long lossy channel involves sig-

17

nificant analog components in order to strengthen, synchronize and buffer the

signal so that it can be recovered on the receiver side. The analog components

become even more significant when driving signals that are essentially analog

in nature. Such signals are commonplace in many applications such as when

transmitting audio over a speaker or radio waves over an antenna.

• Connecting the digital and analog worlds : These blocks are the true mixed-

signal circuits that interface the above analog circuits with the digital part

of the system. Typical circuits used here are the sample-and-hold circuits

for signal sampling; analog-to-digital converters for amplitude discretization;

digital-to-analog converters for signal reconstruction; and phase-locked loops

and frequency synthesizers to generate a timing reference or perform timing

synchronization [1].

• Ensuring correct operating conditions : Whether dealing with analog compo-

nents or digital, all circuits eventually need stable, reproducible and reliable

references and bias conditions be it in terms of voltages, currents or clocks.

While efforts have been made to move at least part of these circuits to the dig-

ital domain, the circuits themselves remain mixed-signal in nature as certain

functions must be dealt with in the analog domain.

• Digital circuits : Yes, digital circuits ! The line between analog and digital

is simply a matter of abstraction. Voltages close to the ground and VDD in

the analog domain are the 0s and 1s in digital. We simply assume that digital

circuits operate at either voltage levels 0 or 1 almost all the time. While this

is a valid assumption for the most part, as we try and optimize both power

and performance in state-of-the-art processors, even the digital circuits are

becoming increasingly analog-ish in nature.

18

As we can see, while the core computation may still happen in the digital domain,

analog circuits are indispensable in communicating the necessary data and ensuring

correct operating conditions. More importantly, analog dynamics are starting to

become important in what were previously purely digital circuits. While the latter

is mitigated somewhat by careful design of the underlying standard cell library,

increased integration forces us to deal with mixed-signal behavior at some stage of

the design cycle. The larger the system we are dealing with of course, the more

difficult it is to design, verify and validate.

Dealing with this increased design complexity is nearly impossible without the

use of Computer Aided Design (CAD) and verification tools. However, most such

tools have traditionally dealt with only parts of the whole and assumed that the

system as a whole will work if the individual components are well designed - an

assumption that may not be true in practice. More importantly, even if we make

this optimal assumption, it is still difficult to design and verify large subsystems under

all possible operating / input conditions. Analog components are thus increasingly

becoming the bottleneck in terms of design turn-around-time for large mixed-signal

integrated circuits.

We now take a more detailed look at this high level picture.

2.1.1 Design

We previously introduced the high level overview of the design flow that goes

into manufacturing a modern day integrated circuit [1] in Fig. 1.1. Ensuring correct-

by-construction design is difficult even in the digital domain at any of the depicted

stages, in spite of the large amount of work that has been put into logic synthesis

and automated place & route tools.

The problem is only further exacerbated in the analog domain when dealing with

19

highly non-linear transistor-level dynamics instead of simple boolean logic as in the

case of digital circuits. While there has been work on automated synthesis [21, 22, 23]

and transistor sizing [24, 25, 26] in the analog domain as well, the majority of design

tasks continue to require a high level of human intervention. Whether human driven,

or tool driven, analog design remains extremely prone to error - making verification

and validation at every stage even more indispensable.

Current
Design Stage

Debug &
Fix

Verification &
Validation

Pass

Fail

Downstream
Design Stages

Upstream
Design Stages

Figure 2.2: A single step in the high-level design flow detailed in Fig. 1.1. Verifying
functionality and debugging observed failures are integral components at every stage
of the design flow. Ensuring correct functionality in the current stage reduces amount
of rework that may be required if a problem is discovered in downstream stages.

Thus every stage in the design flow in Fig. 1.1 is essentially a feedback loop as

shown in Fig. 2.2. Irrespective of the level of abstraction we may be working at,

verifying that the circuit performs its intended function before we exit this loop is

critical. Failure to do so causes the failure mechanism to be cascaded to downstream

stages – something that can be very expensive in practice since debug and fix efforts

may then incur a significant amount of rework. For example, if the cell level specifi-

cations are too aggressive, it may be practically impossible to make a reliable circuit

for the same. This may require changing the specifications itself which will in turn

require a change in the architecture design. Since process technologies are mostly

20

not mature when the design cycle is started, an even more commonplace example is

where a cell is designed assuming certain process conditions but the actual fabrica-

tion process does not meet pre-silicon expectations. Simply tuning the layout may

not be sufficient to obtain the required performance in this case.

The more number of steps we have to redo of course, the more expensive the

design process becomes. Thus efforts are always made to verify a given level of

abstraction by means of high level models before going down to a more detailed view

of the same circuit. Modelling, simulation, yield estimation and optimization are

thus integral parts of the design cycle.

Of course, once we get to the fabrication stage, we are no longer dealing with

models but actual silicon which brings with it a whole new set of problems, as we

shall outline shortly.

2.1.2 Modelling and simulation

A key part of the above design flow is the ability to model and simulate the circuit

at different levels of abstraction. At the lowest level, we have a transistor level netlist

which can be simulated via SPICE [27]. With the rise of available computational

power and the development of efficient numerical algorithms, the size of circuits we

can deal with using SPICE simulators has grown as well. However, it still may not

be possible to simulate transistor level dynamics for large subsystems.

Having a higher level abstraction model thus becomes indispensable for functional

verification. Optimally, such an abstraction model should lend itself to co-simulated

with digital components as well. With the development of VHDL-AMS [28] and

Verilog-A/MS [29], it is indeed possible to build such models [30]. However, ensuring

that these models match the circuit response remains a difficult problem, motivating

the equivalence checking problem we described in Section 1.3 and that we shall

21

attempt to address in Section 5. Once again, we assume that both the circuit design

and the model generation process are designer driven and develop tools to assist with

the same.

Abstraction however, comes at a cost as well. Critical interaction effects between

adjoining blocks may be skipped unless the correct parameters are excited during

system-level simulation. While this can be done by ensuring that the abstraction

model captures lower level parameters as well, doing so for all parameters causes the

dimensionality of the abstraction model to grow as well.

2.1.3 Yield estimation and optimization

Assuming we have suitably accurate models at every step of the design cycle,

we can solve the real verification problem viz. determine whether the circuit meets

specifications under all operating conditions.

As process variability continues to affect circuit performance [17, 18, 19, 20], it

is nearly impossible to make sure that the circuit will meet specifications under all

conditions. Instead, we are satisfied as long as a certain proportion of circuits meet

specifications. This proportion is called the yield and we wish to optimize circuits

so that the yield is as close to 100% as possible. Thus the verification problem once

it reaches circuit level dynamics is no longer deterministic but stochastic and must

be addressed using stochastic techniques [9, 10].

A particularly interesting subproblem that has received a lot of attention is SRAM

yield estimation. Given the large number of times an SRAM bit cell is going to be

repeated on a die and the fact that they are typically designed using minimum size

devices, it is critical to evaluate the failure rate of SRAM cells both efficiently and

accurately. In fact, the very design of an SRAM array can be statistical in nature to

maximize the yield [31]. This has spurned a lot of work in the area of SRAM yield

22

estimation [5, 6, 7, 8].

As described in Section 1.1 however, verifying larger circuits remains difficult due

to the large number of parameters interacting in a complex non-linear manner. This

is what we attempt to address by relaxing the required accuracy in Section 3.

Of course, simply predicting how often a circuit will fail is not sufficient. There

must be some mechanism to assist the designer with optimizing the yield as well.

Knowing what parameters to optimize and what are the critical interactions between

different transistors may not be immediately obvious, especially for large circuits.

While this area has been extensively researched as well, traditionally used di-

agnosis aids such as [15, 16] are inherently based on sensitivity analysis and work

best for linear circuits while most practical circuits are highly non-linear. Other

techniques such as [12, 13, 14] may be able to deal with complex non-linear inter-

actions by means of classifying circuit performance or generating Pareto fronts but

such information is hard to visually interpret in a high-dimensional space.

Identifying interactions between operating conditions, input signals, process pa-

rameters etc. that may result in out-of-specification failures and returning it in a

fashion that intuitively makes sense to the designer thus remains a complex problem

as described in Section 1.2. This is what we address via the failure region based

approach in Section 4.

2.1.4 Analog and mixed-signal testing

Once an IC is fabricated, it must be tested to determine whether it fulfills its

intended purpose or not. Although analog circuits may constitute a small portion

of the total chip area, they constitute a significant portion of the overall test cost

[1]. This is mainly because of two factors : (a) the pin count is limited, meaning

that only a limited number of nodes can be accessed from the outside; and (b) the

23

presence of statistical process parameter fluctuations means that there is a spread of

responses around the expected output.

The first factor has been largely offset by the development of Design for Testability

(DfT) measures [32, 33, 34, 35], although knowing what to control and observe is

starting to become an issue due to the ever increasing design complexity. To deal with

the second factor, failures in mixed-signal circuits have been classified into two major

types with most techniques targeted towards one factor or the other. The two types

are : (a) catastrophic faults or hard faults arising from change in topology (short-

circuit and open-circuit failures), and (b) parametric faults or soft faults caused by

variations in circuit parameters.

The work we detail in Section 6 and Section 7 notably deals with only the second

type of faults i.e. parametric faults. We assume that catastrophic faults can be

caught and filtered out using other techniques such as [36, 37, 38, 39, 40].

Even after the DfT structures have been designed and implemented, and the

catastrophic faults have been filtered out, selecting the right test points to excite

parametric faults remains a challenging problem. Existing approaches [41, 42, 43, 44]

are again mostly based on a linear circuit assumption, whereas most practical circuits

are highly non-linear.

More importantly, just like in the pre-silicon domain, we don’t just want to

detect a fault but also diagnose what the root cause(s) of the failures may be. There

has already been a large volume of work in fault isolation and diagnosis. Existing

approaches towards the same can be divided into two major classes : (a) Simulation

before test (SBT), and (b) Simulation after test (SAT). In SBT techniques, the fault-

free and faulty circuits are first simulated to build a fault-dictionary. The response of

the circuit under test is then compared to this dictionary to find the closest match.

In SAT techniques, the circuit response is measured first. The circuit parameters are

24

then reconstructed from the measurement results.

While SBT techniques prove very useful for catastrophic faults [36, 37, 38, 39, 40],

ensuring fault coverage for parametric faults proves to be difficult. Parametric faults

are thus usually dealt with using SAT techniques or a mixture of SAT and SBT

techniques [45, 46, 47, 48, 49].

It is to be noted that building an exhaustive “fault dictionary” for SBT techniques

can be difficult for either type of fault if the circuit size is large. This problem

is usually mitigated by using a divide-and-conquer approach. However, having to

control and observe many small blocks adds to the DfT cost as well.

SAT techniques on the other hand, are not without their own drawbacks. De-

pending upon the controllability and observability, it may not always be possible to

uniquely solve the value of each element from a given measurement set. Typically,

this means that we are forced to introduce additional DfT structures and/or esti-

mate the most likely element values from using optimization techniques on obtained

measurements.

With rising design complexity however, these DfT structures are getting more

and more expensive and it may not always be straightforward to guarantee that

we do have the required controllability or observability. Simultaneously, hardware

level security is beginning to become an important concern in many state-of-the-art

designs. The more DfT structures we create, the more loopholes we leave into the

internal state of the hardware itself.

Thus, the need of the hour is to be able to both excite and diagnose parametric

faults while keeping the DfT cost low. While we may not be able to get to exact

parameter values, based on the pre-silicon expectations and post-silicon data, we

should be able to at least draw statistically significant inferences as to what failure

mechanisms may have become important in real silicon. This is the problem that

25

we introduced in Section 1.4 and Section 1.5 and that we at least partly solve over

Section 6 and Section 7. While similar to SBT techniques, the fault dictionary in

this case does not have to include every point in the parameter space but simply

broad regions of the parameter space that we extract during pre-silicon diagnosis.

2.2 Mixed signal circuit as a statistical model

The rest of this dissertation, we shall be revisiting the concept of “probability”

(be it of failure / excitation / coverage etc.) again and again. However, the term

“probability” implies that there is an inherent distribution of some sort. If we are

to look at a mixed signal circuit as a black box such as in Fig. 2.3, it immediately

becomes obvious how the process parameters could form a distribution. The mixed

signal circuit is effectively a parameterized model which perturbs the input signals to

give rise to output signals depending upon the value of various process parameters.

Mixed Signal Circuit

Circuit parameters

Input Signals Output Signals

Figure 2.3: A black box view of a mixed-signal circuit. The circuit can be thought
of as a parametric model where the parameters in question refer to only process
parameters at this point. This picture will be further enhanced in Fig. 2.4.

However, as described in Section 1, we are not just interested in ensuring correct

behavior for a fixed set of input signals, voltage etc., but over all such combinations.

Thus the real picture looks more like Fig. 2.4 where we don’t deal with process

26

parameters alone. The inputs to the circuit (both supply and signal voltages) are

parameterized as well. Depending upon the complexity of the signal in question, the

parameters may simply be a voltage (as in the case of a supply voltage), or may be

a lot more complex and include parameters such as frequency, duty cycle, rise time

and fall time to describe a single signal (such as for a clock).

Mixed Signal
Circuit

Signal
Generator

Signal
Analyzer

Parameter space

P

input param

 process param

P

Property space

P

output param

Specifications

Figure 2.4: A completely parameterized view of a mixed-signal circuit. Both the
inputs to the circuit and the model itself have now been parametrized. The combined
parameter space can now be thought to contain input signal parameters, process
parameters, sources of noise etc.

Note that parameterization does not preclude us from dealing with deterministic

behavior either. A fixed value for a given parameter can simply be captured by means

of a Dirac delta function at the point where the fixed value lies. The same concept

can be generalized to deal with other fixed inputs as well. For example, if we do not

wish to parameterize a given signal but instead obtain the signal (via simulation or

measurement) from an upstream block, we can simply simulate this upstream block.

The parameter in this case becomes a pointer to this signal and will again be a Dirac

delta function if we are interested in only one signal. To generalize this concept one

step further to deal with a non-deterministic upstream block, we could generate a

27

list of signals by simulating the upstream block across multiple conditions and use

the probability of these signals being generated to form a multinomial distribution

across all such pointers.

Parameterizing the output signals when going from Fig. 2.3 to Fig. 2.4, is even

easier to understand. While waveforms can be easily visualized once they are simu-

lated, it is very hard to do a waveform-to-waveform comparison. More importantly,

the waveform needs to be specified in a language that humans will be able to read,

write and comprehend. This is typically achieved by parameterization of the output

waveform, which we refer to as “properties”. These properties may include voltage

levels, overshoot, jitter, frequency, setup and hold times etc.

We will take a deeper look at parameters, properties and the probability of failure

for both the pre-silicon and post-silicon domains over the rest of this section. The

intent of course is to lay a mathematical foundation for future sections.

2.2.1 Parameters, properties and models

Since the rest of this dissertation revisits the concepts of parameters, properties,

probabilities and models repeatedly, we define the same in this section. For every

point x in the multi-dimensional parameter space X, there is a point y in the property

space Y . The circuit is responsible for the mapping from X → Y . Assuming that X

is completely specified (there are no other dimensions that will affect Y = f (X)),

we can assume a one-to-one mapping between X and Y.

This mapping Y = f(X) can be an arbitrarily complex non-linear function de-

fined by the interaction between multiple transistors and the input signals. This

non-linearity can hold true even when dealing with very simple parameter and prop-

erty spaces (for example where both the parameters and the properties refer to DC

voltages at some node).

28

The dimensions of X include any parameter that affects the circuit response -

be it input signal parameters or design uncertainties such as process variations or

noise. The distribution of X, p(X) may be a function of both measurement data

(e.g., characterized process variations) and a designer’s belief about a system (e.g.,

what inputs to expect and how often).

It is to be noted that the term “circuit” is in essence a model f(X). Depending

upon what level of abstraction we are looking at, f(X) may actually correspond to

many different models. In fact, the fabricated circuit can be considered a model as

well. However, it is important to note that both the distribution of the parameter

space p(X) and the mapping from X → Y may have been altered by the actual

fabrication process. This is unlike the pre-silicon domain where we can assume just

f(X) is changing since p(X) is an assumption anyway.

Also, given the complexity of f(X), simulating the model in the pre-silicon do-

main or making measurements in the post-silicon domain will always have some

amount of noise associated with it such that the observed Y = f(X) + ǫ. While

we briefly allude to this in Section 3, for most of the dissertation, we assume ǫ is

negligible since the methods we describe are inexact anyway.

2.2.2 Probability of failure

Now, the circuit itself is designed to approximate some ideal function Y = f̄(X)

described by a set of specifications. Thus the circuit response f(x) may not always

be the same as f̄(x). Failure of the circuit to meet one or more specifications over

the entire anticipated range of X gives rise to out-of-specification failures.

Sampling X using the parameter distribution p(X) and mapping X → Y via sim-

ulation, means empirically observing the desired property distribution p(Y). Com-

puting the proportion of observations failing to meet specifications then gives us an

29

empirical estimate of the failure probability. This forms the foundation for standard

Monte Carlo analysis [9, 10] and is one of the most common sources of pre-silicon

data.

However, standard Monte Carlo forces us to sample extensively around the likely

case especially in the presence of tailed distributions. Thus, “adaptive sampling”

schemes [5, 6, 7, 8] where the sampling distribution focuses on the failure regions, are

often used in practice. Obtaining the final failure estimate P (F) from observations
{

x(1) . . . x(N)
}

though, requires knowledge of both the parameter space and sampling

distribution. Irrespective of the exact technique used,

P (F) =
1

N

N
∑

i∈1

P
(

F |x(i)
)

p
(

x(i)
)

q (x(i))
(2.1)

where for a given point x ∈ X, p(x) is its probability in the parameter space, q(x) its

probability in the sampling distribution and P (F |x) is the probability of observing

a failure at that point (0 or 1 if x ∈ simulated data).

For most adaptive sampling schemes, q(x) is either highest in the failure region

[5] or at the failure boundaries [8]. Thus, data sampled using q(x) can be directly

used to identify failure regions. p(x) is still required to compute the importance of a

given region.

Similar observations can be made regarding techniques aimed at generating Pareto

fronts [12, 13] or classifying circuit performance [14]. In fact, equation (2.1) holds

irrespective of how the circuit was sampled as long as sufficient coverage of the failure

regions can be guaranteed. We use either (a) standard Monte Carlo data [9] or (b)

data sampled adaptively (as described in Section 3) for the rest of this dissertation.

30

2.2.3 Controllability and observability

Everything we have discussed so far holds true in both the pre-silicon and post-

silicon domains. However, as we alluded to in Section 2.1.4, limited pin counts and

the cost of adding DfT structures means that we may not have access to X or Y in

its entirety. We thus additionally need to take the dual concepts of controllability

and observability into account.

Every point x ∈ X is a multi-dimensional vector of the form x1 . . . xm. Of these,

k < m parameters are going to be controllable in the post-silicon domain. As a result,

we can partition x ∈ X into two components: c = {x1 . . . xk} and c̄ = {xk+1 . . . xm}.

The dimensions of c correspond to the controllable parameters such as input signal

parameters, supply voltage, operating temperature etc. The dimensions of c̄ refer to

design uncertainties such as process variations, sources of noise or even input signal

parameters such as input jitter that we may not be able to fully control on actual

silicon. The set of all legal values of c ∈ C can be considered as the controllable

space. We thus use it for test selection in Section 6.

Seen from another point of view, every point x ∈ X maps to another point

y ∈ Y . If y is another multi-dimensional vector of the form y1 . . . yq, the combination

of the two x ∪ y ∈ X ⋊⋉ Y encompasses all information about a particular test

instance of the circuit. Since not all dimensions of x are observable, we can once

again partition the joint vector x ∪ y into two components: o = {x1 . . . xl, y1 . . . yp}

and ō = {xl+1 . . . xm, yp+1 . . . yq}. Since the output properties are always observable

(unless we decide not to measure them), we assume p = q for this work. Thus the

only parameters which are unobservable are design uncertainties which have not been

characterized using any specialized techniques. Like in the controllable space, the

set of all legal values of o ∈ O can be considered as the observable space which will

31

be used for post-silicon debug in Section 7.

It is of interest to note that values that are controllable are by definition observ-

able. Thus c ⊆ o. This means that we can extract relevant points in C from samples

in O, irrespective of how the test points were selected. This implies that the post-

silicon debug contributions listed in Section 7 can be used independently of the test

selection methodology in Section 6 as long as the probability of observing failures is

sufficiently high. Thus the shifts can be identified even from data generated using

alternate post-silicon flows.

2.3 Objective of this dissertation

The objective of this dissertation is not to address every problem that we have

detailed above. Instead, it is simply to address gaps we described in Section 1 where

exercising the accuracy vs. turn-around-time trade-off can benefit scalability. This

will hold true, be it in the area of failure probability estimation, diagnosis, test or

debug. The key observation in relaxing the accuracy constraint is that we also wish

to know the level of confidence. This could be by means of a failure probability

interval when estimating the failure probability, or by some coverage metric when

doing diagnosis or test. Since we have outlined the high level goals in Section 1

anyway, we do not reiterate the same here.

32

3. FAILURE PROBABILITY ESTIMATION *

Given a mapping from a parameter space X to a property space Y , our goal is to

obtain the probability that the observed properties violate the circuit specifications

(henceforth referred to as failure probability). Since it is entirely possible that these

failures manifest only when the circuit is biased in a certain manner, the dimensions

of X must include operating conditions such as input signal parameters in addition

to sources of design uncertainty. The circuit is responsible for the non-linear mapping

from X → Y where Y is a function of output signal properties.

Since violations can be directly identified in the property space, we define an

identification function I that classifies a point y ∈ Y as pass or fail

I(y) =

0, if spec is met

1, if spec is not met

(3.1)

The probability of failure can then be obtained as

P (F) =

∫

y∈Y

I(y)p(y)dy (3.2)

The above equation corresponds to the area under the property distribution that

results in a failure in Fig. 3.1.

Unfortunately, the property distribution p(Y) is unknown, forcing us to sample

* Parts of this section have been reprinted with permission from ”Approximate Property Check-
ing of Mixed-Signal Circuits,” by P. Mukherjee, C. Amin & P. Li, in Proceedings of the The 51st

Annual Design Automation Conference, 2014, c© 2014 ACM Inc.

http://doi.acm.org/10.1145/2593069.2593091

33

0 2 4 6 8 10
0

0.1

0.2

Y1

P
(Y

1
)

I(y) = 0 (Pass)

I(y) = 1 (Fail)

Figure 3.1: Failure regions in property distribution. The area under the probability
distribution curve marked in red gives us the probability of failure that we wish to
estimate.

in X via p(X) and map X → Y via simulations. P (F) can then be empirically

ascertained by computing the proportion of samples which cause a property to be

violated (standard Monte Carlo [9]).

Sampling based on p(X) however, can cause redundant effort around the most

likely case, especially in the presence of tailed distributions. Since our objective

is simply determining the failure probability, concentrating on the failure regions

proves to be more useful. This is the motivation behind adaptive sampling techniques

[5, 6, 7, 8].

Our objective is to similarly leverage knowledge from arbitrary distributions to

obtain an approximate estimate. Decoupling the sampling distribution from the

parameter distribution however, requires some kind of knowledge representation

scheme. In our case, we first train a regression model using SPICE data. The regres-

sion model’s response to the parameter distribution can then be compared against

specifications to predict whether the circuit will meet specifications at a given point

x ∈ X or not. It thus essentially forms a failure model. The remaining elements in

Fig. 3.2 either estimate or compensate for the error in this process. The predictions

34

of course give us the estimated failure probability as per equation (3.2). The error

estimates are incorporated into the failure interval giving us a measure of confidence

about the predicted failure probability as well. We now take a detailed look at the

nature of this error.

Failure
Model

Interval Learner

Bias Compensation

Initial
Samples

Final
Estimate

Adaptive SamplingSPICE data Model data

Distribution
Parameter

Distribution
Arbitrary

Figure 3.2: High level overview of proposed approach. The interval learner is de-
scribed in Section 3.1, the bias compensation in Section 3.2 and the adaptive sampling
built around it in Section 3.3.

If y = f(x)+ ǫ , describes the mapping X → Y that we wish to capture, the goal

of any surrogate model is to find an approximation Ŷ = f̂(X). Here ǫ ∼ N(0, σǫ)

corresponds to measurement error or random noise in the system and hence, cannot

be reduced further. The expected squared prediction error in f̂(x) can now be

expressed as

ε(x) = E

[

(

y − f̂(x)
)2

]

(3.3)

=
(

E
[

f̂(x)
]

− f(x)
)2

+ E
[

f̂(x)− E
[

f̂(x)
]]2

+ σ2
ǫ

= Bias2 + Variance + Irreducible error

35

There is always a trade-off between the above bias and variance. To create estimates

that account for both, we leverage the fact that the variance depends on f̂ alone and

not the actual mapping of X → Y . We thus propose

1. A (biased) “interval learner” (Section 3.1) that returns P̂ (F) and an interval

[minP,maxP] enclosing the maximum deviation in P̂ (F) due to the model

variance.

2. A bias compensation step using an ensemble of such learners to deal with the

model bias (Section 3.2).

The final result is an approximation P̄ (F) of P (F) and an interval
[

¯minP , ¯maxP
]

that captures the expected deviation in P̄ (F). This knowledge representation scheme

can now be directly used to perform adaptive sampling as described in Section 3.3.

3.1 Interval learner

To begin, let us assume that we obtain p (y|x) instead of a single prediction

y = f̂(x). For demonstrative purposes, p (y|x) ∼ N
(

E
[

f̂(x)
]

, σf̂(x)

)

in Fig. 3.3.

Specific implementation issues such as choice of surrogate model (Bayesian Additive

Regression Trees [50]) are dealt with in Section 3.1.1.

Since y = f̂(x) can take on multiple values at a single x ∈ X via p(y|x), the

probability of failure P (F |x) at x need not be just 0 or 1 but must instead be

obtained as

P (F |x) =

∫

y=f̂(x)

I(y)p(y|x)dy (3.4)

From the above, we can obtain two metrics

36

0

0.1

0.2

← E(y | x)

y

p
(y

|x
)

← E(y | x)← E(y | x)← E(y | x)← E(y | x)Prediction

Error

Figure 3.3: Point wise prediction and error. For every point x ∈ X, we obtain a
distribution over y|x instead of a single y. Both a pass-fail prediction and probability
of misprediction can thus be obtained.

• The prediction

î(x) = I (E [y|x]) (3.5)

• Probability of misprediction

P (ǫ|x) =

P (F |x) if î(x) = 0

1− P (F |x) if î(x) = 1

(3.6)

The first metric is the predicted class at the expected value. The second, corre-

sponds to the area under p(y|x) that does not belong to the same class as î(x).

Given a one-to-one mapping from X → Y , P (F) can be approximated as follows

from equations (3.2) and (3.5)

P̂ (F) =

∫

x∈X

î(x)p(x)dx (3.7)

37

We additionally wish to estimate a conservative interval [minP,maxP] that accounts

for the model uncertainty. To do so, we first observe that the total probability

of misclassifying points in the parameter space that we have classified as failures

(XF ⊂ X |̂i(x) = 1) is given by

P (ǫ|XF) =

∫

x∈X |̂i(x)=1

P (ǫ|x)P (x|XF)dx (3.8)

where P (x|XF) = P (XF |x)p(x) /P (XF) using Bayes rule.

Since P (XF |x) = 1 ∀x ∈ XF , we finally obtain

P (ǫ|XF) =

∫

x∈X |̂i(x)=1

P (ǫ|x)p(x)

P (XF)
dx (3.9)

If points in XF are misclassified with probability P (ǫ|XF), the minimum bound

minP for P̂ (F) can be obtained as

minP = P̂ (F)− P (XF)P (ǫ|XF) (3.10)

By similarly deriving P (ǫ|XP) where XP ∈ X |̂i(x) = 0, we can summarize [minP,maxP]

as

minP = P̂ (F)−

∫

x∈X |̂i(x)=1

P (ǫ|x)p(x)dx (3.11)

maxP = P̂ (F) +

∫

x∈X |̂i(x)=0

P (ǫ|x)p(x)dx

This deviation is demonstrated in the property space in Fig. 3.4. Since we can-

not analytically evaluate equations (3.7) and (3.11), P̂ (F), minP and maxP are

38

0 2 4 6 8 10
0

0.1

0.2

Y1

P
(Y

1
)

P(ε|y)p(y) | y ∈ Y1
Pass

P(ε|y)p(y) | y ∈ Y1
Fail

Figure 3.4: Distribution of y from Fig. 3.1 overlaid with probability of misclassifi-
cation. This probability of misclassification is highest at the failure boundary and
tapers off as we move away from it.

estimated via standard Monte Carlo over the failure model. Doing so accurately

requires a large number of samples (σ2 ∝ 1/N). Hence, the cost of evaluating the

surrogate model must be low. The bias due to this process can be further reduced

by techniques such as Latin Hypercube Sampling [51].

3.1.1 Implementation details

[minP,maxP] is conservative if P (ǫ|x) is pessimistic on average. This occurs

when the model overestimates the error by widening p(y|x) (Fig. 3.3) only in areas

where no training samples exist. Ideally, P (ǫ|x) = 0 ∀x ∈ training dataset. However,

this may not be true in practice.

Furthermore, we have glossed over the fact that additional bias may be introduced

by the choice of model or the choice of parameters for a given model. Moreover, the

representational flexibility of the model may be limited or we may be extremely

sensitive to the presence of outliers.

In essence, there is no free lunch and the above framework will always be some-

what heuristic in practice. We minimize this by choosing and tuning the failure

39

model carefully.

3.1.1.1 Choice of failure model

Having to update p(y|x) over time naturally leads us towards Bayesian inference

techniques. Since the mapping between X → Y is non-linear, we must further use

kernels (which may introduce bias of its own) or a knowledge representation scheme

capable of capturing interaction effects naturally. Bayesian trees tend to be suitable

in this regard, but perform poorly at capturing additive effects. While efforts to

balance the two have been made by using different models at each leaf, a better

approach is to simply use a sum-of-trees.

A sum-of-trees model is fundamentally an additive model with multivariate com-

ponents, each of which can naturally incorporate interaction effects. Specifically, we

propose the use of Bayesian Additive Regression Trees (BART) [50] which elaborates

the sum-of-trees model by imposing a weak prior that keeps the individual tree ef-

fects small. Thus, each regression tree explains a small portion of the outcome that

we wish to learn with a certain probability. p(y|x) can be empirically ascertained via

Markov Chain Monte Carlo [52], allowing us to estimate î(x) and P (ǫ|x) directly.

3.1.2 Tuning the failure model

While BART is effectively a non-parametric approach, the effect of priors becomes

significant when dealing with small datasets (this is true of any Bayesian learning

technique). Controlling the number of trees and prior probabilities associated with

each tree helps minimize this bias.

While any such technique will be heuristic in nature, we can at least take an

informed approach towards developing these heuristics. Specifically, we do the fol-

lowing :

1. Choosing a very restrictive error prior may cause over-fitting and exploration

40

of irrelevant portions of the parameter space. At the same time, we wish for

the training error to be relatively low for the final estimate. As a result, we

scale the width of the error prior with respect to the number of samples.

2. Interaction effects are better captured within a tree while additive techniques

are better captured by interaction between multiple trees. Given our domain

knowledge, we know that failures are usually caused by interaction effects be-

tween transistors or by a single transistor in the presence of specific input

conditions. The probability that a single parameter will cause failures by itself

and/or a large number of parameters (relative to the total number of parame-

ters) will interact to give rise to failures are both equally low. We thus choose

the tree priors such that the probability of occurrence of both these extreme

events are reduced.

3. Since we have adjusted the priors associated with each tree to prefer longer

(than depth 1) trees, we also run into a risk of over-fitting when dealing with

limited number of samples. We thus ensure that the number of trees we at-

tempt to fit also grows with the total number of samples such that each tree is

explaining at least a few points.

While all the above tuning mechanisms are heuristic in nature, they on average

allow our methodology to perform better than what it would have done using the

default BART priors. However, a different knowledge representation mechanism tar-

geted towards the specific application of capturing and predicting nonlinear behavior

that resembles transistor level response might perhaps be an area of further research.

41

3.1.3 Enhancing accuracy around sampled points

As mentioned earlier, we wish the failure model to over-approximate the error

only in places where no training samples exist. However, optimally P (ǫ|x) = 0 ∀x ∈

training samples. In other words, the cost of mis-predicting a training sample must

be high.

While adjusting the cost function is possible using the BART error prior, it is not

the most effective method given that the final spacing between training samples is

not previously known. Instead, we increase the cost of misprediction at the sampled

points by simply feeding the same data into the model multiple times. This also helps

ensure that all sampling points get equal weight and that sampling points arriving

later do not overwrite trees built by earlier ones. Since the cost of model construction

increases with the number of training points, doing so multiple times can prove to be

expensive as well. In addition to this, we run the chance of over-fitting. As a result,

the training data is fed back to the model at most one additional time.

3.1.4 Exercising the failure model

The final objective of constructing the failure model is to predict P̂ (F), minP

and maxP using the actual parameter distribution. Since there is no closed-form

expression for the same, they are estimated via standard Monte Carlo over the failure

model. As discussed, doing so accurately requires a large number of random samples

(σ2 ∝ 1/N).

In addition, the sampled distribution may not follow the desired sampling dis-

tribution (the parameter distribution in this case) leading to additional bias in the

estimation process. Fortunately, this is a problem which has been widely researched.

Techniques such as Latin Hypercube Sampling (LHS) [51] attempt to ensure that an

ensemble of random numbers is representative of the real desired variability.

42

A square grid containing sample positions is a Latin square if (and only if) there

is only one sample in each row and each column of the grid [51]. Generalizing this

concept to an arbitrary number of dimensions gives us a Latin hypercube. Each

sample in a Latin hypercube is the only one in the axis-aligned hyperplane that

contains it. In essence, LHS divides the cumulative probability curve into equal

intervals on the cumulative probability scale, and then takes a random value from

each interval of the input distribution. As a result, each sample (the data of each

simulation) is constrained to match the desired distribution very closely, even when

dealing with a modest number of samples.

We thus use LHS to reduce the error arising due to Monte Carlo estimation of

P̂ (F), minP and maxP from the failure model. The error is further reduced by

generating a different sampled distribution for each of the learners we build for bias

compensation in Section 3.2.

3.2 Bias compensation

Both P (F) and [minP,maxP] in the previous section are a function of X →

f̂(X). As a result, they may not accurately reflect the mapping from X → Y . To

draw conclusions about the circuit, we must compensate for this bias.

An ensemble is effectively a collection of a (finite) number of predictors that are

trained for the same task. Assuming that we have k predictors fk(x) attempting to

approximate f(x), the weighted ensemble average can be obtained as

f̄(x) =
k

∑

j=1

wkfk(x) (3.12)

where wk ≥ 0 and
∑

wk = 1.

Given the optimal values of wk, it has been demonstrated that the quadratic

43

error of the ensemble estimator is guaranteed to be less than or equal to the average

quadratic error of the component estimators [53].

To extend this concept to our failure metrics, we assume we can similarly ob-

tain îk(x) and Pk(ǫ|x) from k different learners. We can then express the ensemble

averaged failure probability P̄ (F) as,

P̄ (F) =

∫

x∈X

∑

k

wk îk(x)p(x)dx (3.13)

=
∑

k

wk

∫

x∈X

îk(x)p(x)dx =
∑

k

wkPk(F)

Similarly, the ensemble averaged interval
[

¯minP , ¯maxP
]

=

[

∑

k

wkminPk,
∑

k

wkmaxPk

]

(3.14)

To ensure
[

¯minP , ¯maxP
]

remains pessimistic, we can minimize ¯minP and max-

imize ¯maxP separately. Since both minP ≥ 0 and maxP ≥ 0, this occurs when

wi = 1, wj = 0 | minPi < minPj ∀i 6= j (3.15)

wu = 1, wv = 0 | maxPu > maxPv ∀u 6= v

⇒ ¯minP = min(minPk) & ¯maxP = max(maxPk)

The above framework can compensate for the model bias if certain error “di-

versity” conditions are met while creating the ensemble learner [54]. To do so, we

observe that the bias arises from 3 distinct sources : (1) the sampling distribution

used to generate the training data, (2) the sampling method, and (3) the model it-

self due to model choice, parameter choice etc. We already minimized (3) in Section

44

3.1.1 and do not address it here. The effect of (1) is discussed further in Section 3.3

leaving us to deal with (2).

K-fold sub-sampling has been previously proposed to deal with the sampling

method bias in [53]. To start, assume that the population is divided into k mutually

exclusive groups of size m = n/k where n is the total number of SPICE simulated

samples. Of these k subsamples, at each step we use k − 1 subsamples to build a

distinct learner fk(x).

By choosing a specific diversity condition, smarter choices for wk are also possible.

If XT represents the set of points simulated via SPICE (training set), PT (F |x) =

I(y|x) indicates whether x ∈ XT is a failure or not. The generalization error εG
k for

each learner fk(x) can then be approximated as

εG
k = ‖PT (F |x)− Pk(F |x)‖ ∀x ∈ XT (3.16)

where Pk(F |x) has been defined in equation (3.4). As per [53], we can then pick wk

such that

wiε
G
i = wjε

G
j ∀i, j ∈ {1..k} (3.17)

⇒ wk =
α

‖PT (F |x)− Pk(F |x)‖
∀x ∈ XT (3.18)

where α > 0 is a normalization factor such that
∑

wk = 1.

Thus equations (3.13), (3.14) and (3.18) together give us our final estimates of

P̄ (F) and
[

¯minP , ¯maxP
]

.

3.3 Adaptive sampling

The bias compensated interval learner we develop is just a tool. Our final objec-

tive is to allow the designer to control the accuracy vs. turn-around-time trade-off

45

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(a) Monte Carlo sam-
ples

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(b) Original training
samples

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(c) Final training
samples

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(d) Model response

Figure 3.5: Adaptive sampling demonstration. Fig. 3.5(a) shows the concept we wish
to capture and Fig. 3.5(d) how well we managed to do so. As evident from the final
set of sampled points in Fig. 3.5(c), sampling concentration is dependent on both
proximity to boundary and how important the boundary is.

by adaptively sampling the state space.

The sampled distribution in adaptive sampling is never the same as the parameter

distribution. If the sampling distribution is modified to quickly cover the failure

regions, both P̄ (F) and
[

¯minP , ¯maxP
]

may be biased. To minimize this bias, the

number of such seed samples is kept to the minimum via the heuristic discussed in

Section 3.3.1.1. Points are then adaptively added such that the total uncertainty of

the ensemble learner (including the bias) is reduced.

To do so, we first observe the source of the deviation in [minP,maxP] for a given

learner by examining equation (3.11) again. Regions in the parameter space where

P (ǫ|x)p(x) is highest contribute more heavily towards the width of this interval. If

p(y|x) narrows near the training samples and widens out everywhere else as discussed

in Section 3.1.1, the uncertainty for a given learner can be reduced by running further

SPICE simulations wherever P (ǫ|x)p(x) is maximum. By using k-fold sub-sampling

similar to Section 3.2 to create these learners additionally addresses the bias since

Pk(ǫ|x) is being reduced for at least one of the k models.

46

From an implementation standpoint, since we sample the failure model using

p(X), the probability of sampling x is already p(x). By simulating the point with

the highest P (ǫ|x) in this dataset, we minimize
∑

P (ǫ|x)p(x). This implies that we

do not just sample around the failure boundaries, but the probability of sampling a

boundary is proportional to how likely it is. This is shown in Fig. 3.5(c).

The complete framework is detailed in Fig. 3.6. The sub-sampling step differs

from Section 3.2 in that we only sub-sample among the N initial samples. The data

added adaptively is naturally biased to decrease the model uncertainty and is hence

not sub-sampled.

N Initial
Samples

Simulate
(SPICE)

K-fold
Subsampling

Tournament
Selection

Build
Failure Model

Bias
Compensation

Simulation
budget

exceeded?

Sample
Failure Model

No

Yes

Figure 3.6: Adaptive sampling framework: The failure model and how it may be
exercised has already been discussed in Section 3.1. The role of K-fold sub-sampling
and bias compensation have also been discussed previously in Section 3.2.

47

3.3.1 Implementation details

3.3.1.1 Initial samples

In case prior knowledge of likely failure regions exists, this information can be

encoded into the sampling distribution. Furthermore, while our algorithm is able to

determine information from simulation traces close to the failure boundary, making

sure all the failure regions have been sampled provides us with an empirical guarantee

of accuracy. However, the number of seed samples must be kept low.

To do so, we use the heuristic detailed in [5] except that we augment it to leverage

Latin Hypercube Sampling (LHS) [51]. Since creating or augmenting an LHS set

requires a relatively large population size, instead of randomly sampling 1 point at

a time until q points in the failure region are found, we iteratively pick p points β

times until at least q points in the failure region are found. Thus N = βp. β = 100

works quite well for our purposes.

3.3.1.2 Minimum spacing between sampled SPICE data

The irreducible error in equation (3.3) arises from the data generation process viz.

SPICE simulation. While this error can be minimized by picking suitable simulation

control parameters, no solution is going to be 100% accurate. As such, two points in

the parameter space sufficiently close to each other can be assumed to converge to

the same solution. Pruning out points which are within a certain threshold ε of each

other viz. ||xi − xj|| < ε ensures that we do not infinitely refine a given boundary

during adaptive sampling. The value of ε is dependent on the nature of the parameter

space and optimally requires knowledge of the simulation environment.

48

1 2 3 4 5

0.
30

0.
40

0.
50

Iteration

P
(F

)

(a) Interval - 100
samples

100 200 300 400 500

0.
30

0.
40

0.
50

Datapoints

P
(F

)

(b) Bias variance reduction during adaptive sam-
pling

1 2 3 4 5

0.
30

0.
40

0.
50

Iteration

P
(F

)

(c) Interval - 600
samples

Figure 3.7: Failure probability interval convergence during adaptive sampling.
Fig. 3.7(a) shows the original bias compensated interval. Fig. 3.7(b) shows how
the interval converges during the course of adaptive sampling. Fig. 3.7(c) shows the
final interval.

3.3.1.3 Tournament selection

In practice, SPICE simulations for large circuits must be batched over a cluster to

ensure reasonable turn-around-times. q points with high P (ǫ|x) picked from a single

failure model may be in the same vicinity, resulting in a lot of redundant effort. This

is similar to getting stuck at a local minima in reward-based selection in genetic

algorithms. We thus use deterministic tournament selection [55] to enhance the

population diversity. Each tournament is formed by randomly picking w individuals

from the Monte Carlo dataset. The individual with the highest P (ǫ|x) within a given

tournament is then chosen unless it has been covered previously. We find w = 10

applies the right selection intensity for our purposes.

3.3.1.4 Convergence

Convergence in our framework can be obtained in two ways : (1) We have ex-

hausted our simulation budget (2) We meet some predefined accuracy metric. To

define accuracy in in terms of the size of our intervals, we first observe that as long as

our model behaves sensibly, for iterations i and j = i − k, (minPj,maxPj) is going

49

to be more pessimistic than (minPi,maxPi) due to increased amount of available

data by iteration i. Thus even if we only build one model per iteration, the following

convergence check is going to be conservative.

‖max(maxPj..i)−min(minPj..i)‖ ≤ tol (3.19)

Where j = i − k + 1 and tol > α. An example of how this convergence takes place

is demonstrated in Fig. 3.7(b).

Note that unless we set tol to an extremely high value, we will run out of simula-

tion budget before achieving this convergence criterion. In fact, this is what happens

in the results we present in Section 3.4.

3.4 Results

To present any results, we must first have a test case. Since we use the same

test-case through following sections as well, we spend some time describing the same

in Section 3.4.1. We then move onto discussing the failure probability interval and

how our adaptive sampling performs in Section 3.4.2 and Section 3.4.3 respectively

3.4.1 The test case

While we use a few different circuits to test our proposed methodology, the phase

locked loop described in Fig. 3.8 is particularly suited for demonstrative purposes

as it is a closed loop feedback system. Failures may be caused (or mitigated due to

feedback) by interactions between individual components, which could not have been

discovered using a divide-and-conquer approach. This of course has implications on

future sections as well which will be discussed in the relevant sections. The versatility

of our approach is further demonstrated as the test case has:

• Large system size (spice simulation ∼ 30 minutes).

50

Block diagram of test-case

Phase
Frequency
Detector

Frequency Divider

Fout

Fin

Charge
Pump

Filter
Voltage

Controlled
Oscillator

Integer-N Phase Locked Loop (PLL)

Parameter Space Property Space

Input frequency Settling time

Input jitter Output frequency

Divider Ratio Peak-to-peak voltage

Supply voltage Max overshoot

Channel lengths (31) Duty cycle

Filter R,C (3) Jitter

Temperature Rise time

Output load Fall time

Total: 40 parameters Total: 8 properties

Figure 3.8: High level block diagram of the PLL test case. Two variants of this
circuit, PLL1 and PLL2 will be used in Sections 3, 4, 6 & 7. PLL1 will in turn be
compared to a behavioral model with the same block diagram but a smaller set of
parameters in Section 5.

• High dimensional parameter and property space (40 parameters & 8 proper-

ties).

• Multiple parameter distributions (circuit parameters such as channel lengths

and filter R and Cs are Gaussian, everything else is uniform).

• Discrete and continuous parameters (DividerRatio is discrete, everything else:

continuous).

51

• Correlations between parameters (systematic variation in channel lengths. Both

inter-die and intra-die variations have been modeled).

• Complex specifications (for example, output frequency = input frequency *

divider ratio).

In fact, we shall deal with two variants of the above circuit, PLL1 and PLL2,

to be able to demonstrate conditions under which the failure probability estimation,

diagnosis, test and debug methodologies work, or do not work so well as the case

may be.

More specifically, PLL1 is obtained from PLL2 after we use failure probability

estimation and diagnosis (Section 4) to perform pre-silicon yield optimization. PLL1

thus has a much lower failure probability than PLL2 and is more indicative of what

we would like the post-silicon yield to be. As a result, the test (Section 6) and

debug (Section 7) sections shall focus more heavily on PLL1 though we shall provide

results for both circuits. How PLL1 is constructed from PLL2 is something we

discuss further in Section 4. Similarly, observations regarding controllability and

observability are also deferred until the relevant sections.

3.4.2 Failure probability interval

If P (F) > 10%, Monte Carlo itself converges to a reasonably accurate metric

within a few hundred simulations. Thus we are more interested in how our method-

ology deals with PLL1 in Table 3.1 than PLL2 in Table 3.2, though of course we

provide results for both. The two datasets in the table correspond to:

• MC+LHS: Latin Hypercube sampling [51] over the parameter distribution.

P (F) is the Monte Carlo estimate [9, 10] and minP,maxP is the 99% bootstrap

[11] confidence interval.

52

• Adaptive: P (F) and minP,maxP are obtained using the bias compensated

interval learner on data sampled adaptively as detailed in Section 3.3.

PLL1

99% Bootstrap CI Bias compensated interval learner

(MC + LHS) MC + LHS Adaptive

P (F) minP, maxP P (F) minP, maxP P (F) minP, maxP

200 4.50 1.00, 8.50 0.52 0.34, 2.79 1.99 1.49, 4.21

400 4.75 2.25, 7.75 2.96 2.18, 4.79 3.02 2.36, 4.58

600 4.16 2.16, 6.33 2.84 2.17, 4.33 3.32 2.65, 4.93

800 4.63 2.88, 6.75 3.24 2.50, 4.73 3.52 2.80, 5.07

1000 4.20 2.60, 6.00 3.51 2.76, 4.96 3.56 2.88, 4.95

10000 3.42 2.96, 3.88 ← Reference to compare against.

Table 3.1: Failure rate and interval estimates for PLL1. All probabilities expressed in
%. MC+LHS refers to data sampled according to the parameter distribution though
using Latin Hypercube Sampling. Adaptive refers to the data sampled adaptively as
per our proposed approach.

We first observe from Table 3.1 and Table 3.2 that the intervals returned by our

bias compensated interval learner are essentially different from bootstrap [11] con-

fidence intervals. While a detailed discussion of frequentist and Bayesian concepts

is outside the scope of this work, our intervals are more similar to credible inter-

vals where: (1) prior information is accounted for, and (2) nuisance parameters are

handled differently.

Prior information is already indispensable when using arbitrary sampling distri-

butions. In fact, it is the additional information that allows for quicker convergence

to an accurate metric as compared to random sampling. In the absence of adaptive

53

PLL2

99% Bootstrap CI Bias compensated interval learner

(MC + LHS) MC + LHS Adaptive

P (F) minP, maxP P (F) minP, maxP P (F) minP, maxP

200 9.50 4.50, 15.00 12.07 9.39, 17.09 9.79 6.71, 27.71

400 7.00 4.00, 10.00 10.90 8.46, 17.43 7.70 5.41, 23.23

600 6.33 3.83, 9.00 9.54 7.43, 15.39 8.31 6.00, 21.41

800 8.13 5.75, 10.63 9.88 7.80, 15.34 7.81 5.95, 18.26

1000 8.70 6.50, 11.10 9.64 7.45, 15.43 8.00 6.38, 18.65

10000 8.79 8.08, 9.52 ← Reference to compare against.

Table 3.2: Failure rate and interval estimates for PLL2. All probabilities expressed in
%. MC+LHS refers to data sampled according to the parameter distribution though
using Latin Hypercube Sampling. Adaptive refers to the data sampled adaptively as
per our proposed approach.

sampling, the data redundantly captures the prior information and our estimates are

no better (or no worse) that standard Monte Carlo estimation.

Prior information also means that the deviation of minP , maxP around P̄ (F)

better captures the true uncertainty about our estimate. If maxP is further from

P̄ (F) than minP , P (ǫ|XP)P (XP) > P (ǫ|XF)P (XF). This means that the uncer-

tainty associated with the pass region is higher than the failure region. No such

information can be gleaned from the equi-tailed bootstrap confidence intervals as

they rely exclusively on the sampled data.

However, the above benefits come at a cost. While the nuisance parameters in

Monte Carlo estimation are relatively simple (bias and variance of sampled distribu-

tion), a model based approach can be heavily influenced by a lot more factors. While

we minimized these effects in Section 3.1.1, no model is perfect and
[

¯minP , ¯maxP
]

could be pessimistic to account for these effects (PLL2 in Table 3.2). In our case,

the spread of p(y|x) returned by BART is overly pessimistic resulting in pessimistic

54

intervals. Exploring alternate models that better capture P (ǫ|x) around î(x) could

cause the size of [minP,maxP] to reduce more rapidly.

3.4.3 Adaptive sampling

While no model is ever perfect, the goal of our proposed methodology was to

reduce either the bias or the variance (or both) in equation (3.3) over time. The

initial samples for adaptive sampling are intentionally biased to provide for greater

coverage of the failure regions. As a result, both P (F) and [minP,maxP] obtained

for this minimum set of samples is heavily biased (200 samples in Table 3.1 and Table

3.2).

200 250 300 350 400 450 500 550 600
1

2

3

4

5

6

SPICE Simulations

P
(F

)

 Adaptive Sampling [minP, maxP] 10000 Monte Carlo

Figure 3.9: PLL1 adaptive sampling demonstration. Since the cost of SPICE simula-
tion is dominant, compute time is reported in terms of number of SPICE simulations
required. We are able to get to a stable failure probability estimate within a few
hundred simulations.

This bias however, is quickly minimized as demonstrated in Fig. 3.9 to give us an

empirical estimate. While either the bias or the variance keeps reducing over time,

running further simulations after this initial burn in period (around 600 SPICE sim-

ulations) does not provide significant benefits. By using different model parameters,

we could have aimed for tighter intervals after the burn-in period. However, our goal

55

is simply to obtain an approximate failure probability using as few SPICE simula-

tions as possible. 600 SPICE simulations already refers to 300 hours of compute time

for this particular test case. As a result, we do not try to improve this estimate any

further. As mentioned earlier, exploring alternate failure models might help mitigate

this pessimism.

3.5 Summary

As can be seen, the proposed technique fills an important void left by existing

work. For one, it allows us to get usable failure metrics for circuits where decompo-

sition into lower dimensional components may not be an option. More importantly,

it allows us to obtain reasonable approximations using extremely limited simulation

resources when the failure rate is low. Predicting
[

¯minP , ¯maxP
]

additionally gives

us an empirical estimate of confidence in our prediction. Lastly, the bias compen-

sated interval learner could be extended to other tasks such as classifying circuit

performance or system level analysis.

For the results to be meaningful however, significant domain knowledge needs to

be leveraged to ensure that our initial random seed has sufficient coverage. Moreover,

further work is required to address the model pessimism described earlier if we are

to address arbitrary failure rates.

56

4. FAILURE REGION BASED DIAGNOSIS *

As discussed earlier, the diagnosis problem can be broken down into two:

1. Identify combinations of input signals/design uncertainties that are most likely

to violate specifications (Henceforth referred to as failure regions).

2. Identify specific input signal parameters and/or design uncertainties that cause

the circuit to enter these failure regions (Henceforth referred to as critical

parameters).

A high level overview of the proposed methodology has already been presented

in Fig. 1.4. In this section we delve down into the details and discuss the following :

1. How the failure region primitives may be constructed using an ensemble of

rule-learning algorithms (Section 4.1).

2. How the primitives may be pruned and aggregated to guarantee maximum

coverage in the probabilistic sense (Section 4.2).

3. An information gain based methodology to rank parameters using failure region

information (Section 4.3).

Once we have the failure regions and parameter ranking, we show how the failure

region information can be used in pre-silicon debug in Section 4.4. Extensions to

test-set selection and post-silicon debug will be explored in the following sections.

* Parts of this section have been reprinted with permission from ”Leveraging Pre-Silicon Data
to Diagnose Out-of-Specification Failures in Mixed-Signal Circuits,” by P. Mukherjee & P. Li, in
Proceedings of the The 51st Annual Design Automation Conference, 2014, c© 2014 ACM Inc.

http://doi.acm.org/10.1145/2593069.2593154

57

4.1 Region primitives

Given data that maps the parameter space X to the property space Y , our first

goal is to induce simple if − then rules which map region primitives Pi ⊂ X to

out-of-specification failures in Y (Pi ⇒ failure). The simplest such rule simply

bounds each parameter within constant values viz. Pi =
⋂

j aj < xj < bj. From a

domain perspective, such rules are not just easy to visualize, they naturally explain

interaction effects such as transistor mismatch or input conditions.

Visually, each primitive represents a hypercube in the parameter space as in

Fig. 4.1.

While these hypercubes directly solve our problem in a 2-dimensional space, the

circuits we wish to diagnose have a lot more parameters. We thus also need to

identify the minimum set of features {x1, . . . , xm} that is sufficient to explain each

failure primitive. The rest of the N − m parameters default to being bounded by

their entire legal domain and hence can be considered non-critical for that primitive.

Thus, we are solving two problems simultaneously (1) Clustering the failure points

(2) Feature selection within each cluster. Standard rule-induction algorithms such as

decision trees [56] and Repeated Incremental Pruning to Produce Error Correction

(RIPPER) [57] already do so and hence can be leveraged directly.

4.1.1 Decision trees

A decision tree is essentially a disjunction of conjunctive rules (Fig. 4.2) where

each rule is a path traced from the root node to a leaf that identifies a failure

case. The majority of tree building algorithms are special cases of (a) Partition your

observations recursively using univariate splits (b) Fit a constant model in each cell

of the resulting partition. They differ in how exactly the variables are chosen, how

the splits are generated and the constant model used in each cell. For example, one

58

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

Figure 4.1: Region primitives : two dimensional example. X1 and X2 are two
independent Gaussian parameters. Regions that do not satisfy specifications are
marked in red. Each rectangle corresponds to a failure region primitive we wish to
generate.

of the most popular decision tree algorithms C5.0 [56], uses entropy as a measure of

node impurity that it tries to minimize when generating splits.

H (c) = −
∑

ci∈(c,c̄)

p (ci) log2 p (ci) (4.1)

where c (fail) and c̄ (pass) are the two classes of observations in the training dataset

indicating whether specifications are met or not. p (ci) is the proportion of observa-

tions belonging to class ci. This value is highest when p(ci) = 0.5 and lowest when

59

(A & B & C) | (D & E)

A

B

C

D

E

Figure 4.2: Rule learning from decision trees. Each node in the tree refers to a split
along a given parameter. A path traced from the root node to a leaf rich in failure
cases gives us a failure rule. There may be more than one such leaf as shown above.

p(ci) = 1 or 0. Choosing splits that best decrease entropy thus leads to an increase

in homogeneity. Intuitively, at each node of the tree, the parameter that most effec-

tively splits a set of samples into subsets that have more samples belonging to one

class than the other is chosen. This is done recursively until no further splits can be

identified.

Since we are picking the feature that best separates pass from fail cases at each

node, we are implicitly performing feature selection within each primitive as well.

In fact, the entropy measure described in equation (4.8) is a popular measure for

classifier-independent feature selection as well [58].

Without proper pruning or control over the tree growth however, decision trees

tend to over-fit the data making them somewhat poor predictors. In terms of the

extracted failure rules, this means that each individual rule may be overly complex,

60

predicting a very small portion of the data. Both pruning strategies and statistical

stopping criterion have been used to solve the over-fitting problem [56].

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

Figure 4.3: Decision tree learning : two dimensional example demonstrating the
over-fitting vs. generalization trade-off when performing rule-induction using a single
decision tree. All naming conventions are the same as in Fig. 4.1.

However, there is always a trade-off between generalization and over-fitting for

any machine learning algorithm and we may end up overcompensating as evidenced

by the rules depicted in Fig. 4.3. The rule that covers most of the larger failure

region also covers a lot of pass points.

61

4.1.2 Ensemble learning

One way to get around this is to use multiple trees, each explaining only a subset

of the data. Averaging the predictions over all the trees leads to the “sum-of-trees”

model demonstrated in Fig. 4.4.

(a) Single Tree Model (b) Sum-of-trees model

Figure 4.4: Sum of trees model. Solid lines: interaction effects; Dotted lines: additive
effects. Paths leading to a failure are marked in red. The green circle represents how
complex non-linear failure mechanisms may be explained by combining simpler rules.

From a rule generation perspective, each tree generates rules which may be better

at explaining a certain region of the parameter space than others. While this causes

an explosion in the number of primitives as evidenced by Fig. 4.5, we assume that

this complexity can be handled by the post-processing step (Section 4.2).

The above approach is a specific instance of what is more generally referred to

as “ensemble learning”. If the post-processing step is classifier independent, we need

not limit ourselves to decision trees alone.

62

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

Figure 4.5: Ensemble learning : two dimensional example demonstrating how multi-
ple overlapping rules can guarantee sufficient coverage of the non-linear concept we
try to explain. Picking a subset of these rules while ensuring sufficient coverage is
the purpose of the post-processing step discussed in Section 4.2.

4.1.3 Implementation details

While intuitively simple, the above methodology is dependent on the quality of

the generated rules. If the initial candidate set of rules is bad, no amount of post-

processing is going to make the final failure manifold good. As a result, implemen-

tation details surrounding choice of algorithms, the data fed into these algorithms

and how to deal with failures across multiple properties become important both for

interpretability and for the percentage of failures covered by the rules.

63

4.1.3.1 Algorithmic diversity

Using an ensemble of learners to generate rules means that we have to ensure

certain diversity conditions much like we did in Section 3.2. Notably, there are three

kinds of diversity we are concerned about : (a) Algorithms used, (b) parameters

within these algorithms, and (c) the data fed to each of these algorithms.

We have already discussed how decision trees may be used to generate decision

rules in Section 4.1.1. The rules in decision trees are constructed by iteratively

separating the data into subsets and then picking all the splits that led to a given

leaf node. An alternate approach involves slowly growing regions to cover more

points belonging to a given class. A particularly good example of such an algorithm

is RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [57].

Depending upon the nature of the sampled data, either of these may produce

rules which are better than the other. Both these algorithms however, build rules

with constant bounds (in other words, rules of the form x == a ∧ y == b ⇒ fail).

However, models to capture specific interactions (e.g., oblique decision trees [59] to

capture linear relationships) may be included at any time. The reason we do not is

ease of interpretability as we shall see in Section 4.4.

The second diversity condition has to do with the parameters set within the

individual algorithms. However, diversity at this level proves to be less useful for

certain restrictions such as the minimum number of points required within a given

failure region are already imposed on us given the low number of sampled points.

The parameter that shows the largest effect on the quality of rules is the target error

rate which we shall discuss in the following section when dealing with rare failures.

The last condition has to do with the data used to actually build the model. While

the dataset available for training purposes may be fixed, we can always choose subsets

64

of this dataset to build rules that better explain a specific portion of the parameter

space than others. In practice, boosted decision trees [60] where additional trees are

built to better explain data that previous trees misclassified is a good default choice.

However, other methods to enforce diversity such as bootstrap aggregation (bagging)

[61] and random forests [62] can also be used.

4.1.3.2 Rule induction for rare events

A point that has been skipped over so far but is very critical to consider is

sensitivity of various rule-induction algorithms to the relative abundance or rarity of

failures. Imagine a case where we have a thousand data points and only one of them

is a failure. Even if we generate one rule encapsulating the entire parameter space,

the probability of failure within the rule will be 1/1000. In other words the accuracy

the rule is 99.9% accurate since the cost associated with mispredicting a pass and a

fail are both considered to be the same.

A logical conclusion that can be drawn from the above is that rule-induction

algorithms work best when both pass and fail cases are comparable in number. This

is usually the case when the data is adaptively sampled. Even if the failure cases

happen to be rare for the sampled dataset though, this can be dealt with by assigning

a higher cost to mispredicting failure cases. In other words, if the cost associated

with mispredicting a pass case is 1, the cost associated with mispredicting a failure

case C should be chosen such that,

C =
Number of pass cases

Number of fail cases
(4.2)

If we use the same example as before, the cost associated with mispredicting the

failure point would be now 999 times the cost of mispredicting a pass case. However,

this also means that we may include a lot of pass cases in the bounding box we draw

65

as well for the cost of the one failure point will outweigh the negligible cost of one

or more pass points.

If we assume the post-processing step is capable of pruning out the bad rules to

keep the good ones, adjusting the cost function can become just another algorithmic

diversity criterion. In other words, we run the same algorithm twice : once with the

cost function adjustment and once without. We thus generate two sets of rules and

let the post-processing step sort it out later.

4.1.3.3 Dealing with multiple properties

None of the arguments presented so far change when dealing with multiple prop-

erties if we assume that a violation of any of the properties results in a “failure”.

For ease of interpretability and to avoid an explosion in the number of regions, this

actually ends up being the best approach. Treating each property separately would

cause an even larger number of overlapping rules.

4.2 Post processing

In the previous section, we built a lot more Pj than we required without account-

ing for the predictive accuracy or the difficulty in interpreting a large set of rules.

In this section, we keep those Pj which best explain the failures and aggregate them

into regions Ri. Each Ri is thus a disjunction of conjunctive rules (Ri =
⋃

j Pj)

that explains a distinct (non-overlapping) failure region in the parameter space. The

complete set of such regions R = R1 . . . Rm, should explain all the failures discovered

via simulation.

Since the distribution of the sampled data does not necessarily follow the param-

eter distribution (as long as the failure regions have been adequately sampled), we

use equation (2.1) as a starting point to develop the post-processing step. If the data

does follow the parameter distribution (standard Monte Carlo estimation), P (F |x)

66

is either 0 (pass) or 1(fail), and p(x)/q(x) = 1.

To lay the foundation, we first define metrics that give us a notion of importance

P (Ri|F) and confidence P (F |Ri) for a given region. Both these values can be easily

inferred using Bayesian statistics [63]. Of these, using Bayes rule we get

P (Ri|F) = P (F |Ri)P (Ri) /P (F) (4.3)

P (F) can be obtained via equation (2.1). That leaves P (Ri) and P (F |Ri) which

we can similarly obtain as

P (Ri) =
1

N

∑

x(i)∈Ri

p
(

x(i)
)

q (x(i))
(4.4)

P (F |Ri) =
1

N

∑

x(i)∈Ri

P
(

F |x(i)
)

p
(

x(i)
)

q (x(i))
(4.5)

To start, assume that we have m regions each of which is composed of a single

unique Pi. As a result, the terms Pi and Ri are used interchangeably from this point.

4.2.1 Ranking regions

To rank the regions, we observe that the probability that region Ri was exercised if

a failure is observed is given by P (Ri|F). However, if we are to directly use P (Ri|F),

it is entirely possible that we end up choosing highly probable regions (large P (Ri))

which have very low confidence P (F |Ri). So we propose a custom figure-of-merit,

M(Ri) = P (Ri|F) (H(α)−H(F |Ri)) (4.6)

where H is the entropy function defined in equation (4.8) and α is the minimum

allowable P (F |Ri) defined in Section 4.2.2. Thus (H(α)−H(F |Ri)) refers to the

67

information gain of the region Ri as compared to the highest entropy region (least

predictive accuracy) that is possible after post-processing. Thus the most important

rules with the highest predictive accuracy (richest in failures) will be ranked first.

Since we initialized Ri = Pi, we are effectively ranking primitives at this stage.

This is in order to speed up the following steps by specifying the order in which

primitives must be explored while pruning or aggregating. Lower ranked primitives

get pruned / assimilated into higher rank ones.

4.2.2 Pruning regions

The purpose of pruning is two-fold : (a) Enhance the predictive accuracy. (b)

Ensure that the final regions generalize effectively. Thus pruning occurs under three

conditions:

1. P (F |Ri) < 0.5 implies that Ri is richer in pass cases than fail cases. We thus

prune whenever P (F |Ri) < α where α ≥ 0.5.

2. P (Ri|F) ≈ 0 implies that Ri is not important in the first place. We thus prune

whenever P (Ri|F) < β. β = 10−2 works pretty well.

3. Ri is also unimportant if its failures have already been captured by the remain-

ing regions (R−Ri). We thus prune whenever P (Ri ∧ ¬{R−Ri} |F) < β.

4.2.3 Aggregating regions

Instead of dealing with expensive geometrical computations, we estimate overlaps

empirically using the sampled data. We combine two regions Ri and Rj if

P (Ri ∧Rj|F) > γ P (Ri|F) | i 6= j (4.7)

68

SPICE data Model data SPICE data

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(a) Ensemble rules

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(b) Ensemble rules

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(c) Processed rules

Figure 4.6: Failure region discovery on adaptively sampled data. The above figure
assumes that we are able to query a failure model as in Section 3. Fig. 4.6(a) is
thus used to construct the ensemble and Fig. 4.6(b) to determine the probabilities
associated with each region. The final set of processed rules are shown in Fig. 4.6(c).

In other words, a significant number γ = 0.01 of failures explained by Ri has already

been explained by Rj.

The ranking step must be rerun once we are done aggregating. The proposed ap-

proach has been demonstrated on data sampled adaptively as in Section 3 in Fig. 4.6

as well. The failure primitives in Fig. 4.6(a) were built using adaptively sampled

data. The bias compensated interval learner was then used to obtain pass/fail pre-

dictions for the true parameter distribution as visually depicted in Fig. 4.6(b). The

importance of using the real parameter distribution of course is that the relative

importance of various primitives has now become more clear. The final set of re-

gions obtained via the post-processing steps detailed above is overlaid on the original

adaptively sampled data in Fig. 4.6(c).

69

4.3 Parameter ranking

Each failure region we have described already contains some amount of infor-

mation regarding a given parameter xj. If the parameter xj is critical for region

Ri, [aij, bij] does not default to [−∞,∞] where aij ≤ xj ≤ bij defines bounds for

xj in Ri. Removing these bounds from region Ri might cause the resulting region

Ri−xj
to additionally encompass a lot of non-failure points. As a result, the failure

information contained in Ri−xj
is not as pure.

This concept can be more formally captured by the expected information gain

used to generate splits in decision trees [56]. To understand this concept, we must

first describe entropy which serves as a measure of impurity within a given region.

In our case, this measure reduces to

H (Ri) = −
∑

fk∈(f,f̄)

p (fk|Ri) log2 p (fk|Ri) (4.8)

where f (fail) and f̄ (pass) are the two classes of observations in the training dataset

indicating whether specifications are violated or not. p (fk) is the proportion of

observations belonging to class fk. This value of H is highest when p(fk|Ri) = 0.5

and lowest when p(fk|Ri) = 1 or 0. Since we constructed the failure regions using

decision trees as well, we already know that if xj is critical in Ri, the chosen split

aij ≤ xj ≤ bij helped reduce the entropy of Ri−xj
.

Thus we expect information gain from the introduction of parameter xj to region

Ri−xj
. This expected information gain

IG(Ri−xj
, xj) = H(Ri−xj

)−H(Ri−xj
|xj) (4.9)

70

where H(Ri−xj
|xj), the entropy of Ri−xj

when split using aij ≤ xj ≤ bij is given by

H(Ri−xj
|xj) =

∑

v∈vals(xj)

p(v|Ri−xj
)H(Ri−xj

|v) (4.10)

where vals(xj) can be take one of two values: [aij, bij] (bounds for xj in Ri) or

[−∞,∞] − [aij, bij] (Entire legal range of values excluding the obtained bounds for

xj).

IG(Ri−xj
|xj) also refers to the amount of information lost if parameter xj is

removed from Ri which is what we were after the first place. If we were to obtain

IG(Ri−xj
|xj)∀i, we can then obtain IG(R|xj) over the entire set of regions as

IG(R|xj) =
∑

Ri∈{R1...Rm}

p(Ri−xj
)IG(Ri−xj

|xj) (4.11)

Ranking parameters in decreasing order of IG(R|xj) thus allows us to identify

which parameters were most important in describing the set of failure regions. It is

to be noted that this manner of ranking is an artifact of the failure rules and not

the circuit itself. While information gain is a good measure to decide the relevance

of a parameter, it is not perfect. Notably, the information gain may be biased when

applied to parameters that can take on a large number of distinct values. In our case,

this occurs when the piecewise constant bounds Ri =
⋂

j aij < xj < bij needs too

many regions to capture more complex interactions. Since we are dealing with low

failure probabilities, this does not prove to be a problem in our case. Also, should

parameter ranking alone be the target, the expected information gain is a generic

information-theoretic concept and can be applied to more complex regions discovered

via other machine learning algorithms.

71

4.4 Results

Both the test case (Fig 3.8) and the (adaptively sampled) data we use in this

section have been described when discussing failure probability estimation in Section

3. However, the methodology detailed herein is independent of the exact sampling

scheme used as long as P (F |R) and P (R) can be estimated with a reasonable degree

of accuracy. Thus we could have used Monte Carlo sampled data or data obtained

from yield estimation methods here as well.

4.4.1 Failure regions

A sample primitive generated by the proposed methodology is listed in Fig. 4.7.

Each primitive lists P (R) and P (F |R) as defined in Section 4.2; the critical parame-

ters and bounding conditions as described in Section 4.1; and the per property failure

probabilities P (Fproperty|R). The last metric tells us which of the 8 properties were

specifically violated in creating the failure region. Since multiple specifications may

be violated simultaneously,
∑

p P (Fp|R) ≥ P (F |R).

The failure regions for PLL1 and PLLL2 are listed in Fig. 4.8 and Fig. 4.9

respectively. These failure regions are used for pre-silicon debug in Section 4.4.3.

The naming of both the parameters and properties is obvious from Fig. 3.8 but for

the following exceptions : (1) Channel lengths of Charge Pump (LCPxx) & VCO

(LVxx) transistors, (2) Filter resistance (R1) and capacitances (Cx). Some of these

are shown in Fig. 4.10.

4.4.2 Parameter ranking

The parameter rankings for PLL1 and PLL2 are listed in Tables 4.1 and 4.2

respectively. The rankings for PLL2 are particularly significant since the generated

failure regions in Fig. 4.9 are numerous and complex to debug. This diagnosis aid is

72

P(R) : 0.32%

P(F|R) : 100.00%

Boundaries :

1.009e+07 < InputFrequency

8.400e+01 < DividerRatio <= 9.400e+01

1.141e+00 < VDD

P (Fproperty|R) :

SettlingTime : 87.50%

OutputFrequency : 12.50%

OutputJitter : 12.50%

Figure 4.7: Sample Rule : P (R) represents the probability that the region is excited
based on pre-silicon knowledge. P (F |R) is the probability of failure within that
region. The boundaries listed correspond to only the critical parameters. The non-
critical parameters default to their entire legal range of values.

just not just desirable but indispensable.

4.4.3 Failure region based pre-silicon diagnosis

Since PLL1 is actually obtained from PLL2 following the diagnosis stage we

describe here, let us first deal with PLL2.

Our diagnosis tool detected 15 primitives over 2 regions for the circuit PLL2.

Instead of going through all the regions, we highlight only the most important trends

here:

Input conditions : On extracting only the input conditions listed as important as

per the parameter ranking from Table 4.2, we see the following trends in decreasing

order of frequency :

1. DividerRatio ≤ X

2. Y < InputFrequency ≤ Z

73

Region : 1 [P (R1) : 0.60% P (F |R1) : 100%]

Rule : 1.1 [P (R1.1) : 0.28% P (F |R1.1) : 100%]
2.739e-12 < C1

1.005e+07 < InputFrequency

Rule : 1.2 [P (R1.2) : 0.28% P (F |R1.2) : 100%]
2.806e-12 < C1

1.811e+01 < Temperature

9.977e+06 < InputFrequency

Rule : 1.3 [P (R1.3) : 0.12% P (F |R1.3) : 100%]
2.561e-12 < C1

1.590e+05 < R1

1.209e-07 < LV24

1.246e-07 < LV44

Region : 2 [P (R2) : 0.48% P (F |R2) : 91.67%]
DividerRatio <= 8.300e+01

1.610e+05 < R1

7.203e-11 < InputJitter

2.416e-12 < C1 <= 2.620e-12

Region : 3 [P (R3) : 0.44% P (F |R3) : 100%]
2.620e-12 < C1

DividerRatio <= 1.090e+02

1.621e+05 < R1

7.971e-11 < InputJitter

Region : 4 [P (R4) : 0.12% P (F |R4) : 100%]
2.628e-12 < C1

LV11 <= 1.141e-07

1.160e-07 < LV23

1.188e-07 < LV33

Figure 4.8: Failure regions : PLL1. The naming of all parameters and properties
are self-explanatory but for the following exceptions : (1) Filter R1, Cx as shown
in Fig. 4.10, (2) Transistor channel lengths in the charge pump block (LCPxx) and
VCO block (LVxx). All other naming conventions are the same as Fig. 4.7.

Parameter IG(R|parameter)

C1 0.0307

DividerRatio 0.0157

R1 0.0129

InputJitter 0.0102

InputFrequency 0.0046

Table 4.1: Top 5 parameters in PLL1 ranked based on the importance metric de-
scribed in Section 4.3.

3. VDD > U

In other words, we expect a higher probability of failure for low Divider Ratios

and high Supply Voltage. The trend for Input Frequency is not as clear though most

failure regions seem to indicate a high Input Frequency as well.

Design uncertainty : Analyzing design uncertainty variables provides even more

clear guidance. Once again, we only analyze the most critical parameters from

74

Region : 1 [P (R1) : 3.46% P (F |R1) : 95.66%]

Rule : 1.1 [P (R1.1) : 0.97% P (F |R1.1) : 97.94%]
DividerRatio <= 8.800e+01

InputFrequency <= 9.970e+06

5.946e-13 < C2

LCP5 <= 1.251e-07

1.195e+00 < VDD

1.159e-07 < LV12

1.145e-07 < LCP3

1.890e+05 < R1

Rule : 1.2 [P (R1.2) : 0.24% P (F |R1.2) : 91.67%]
DividerRatio <= 9.900e+01

InputFrequency <= 9.985e+06

LCP52 <= 1.205e-07

1.146e+00 < VDD

1.166e-07 < LV24 <= 1.174e-07

1.167e-07 < LCP11

LCP2 <= 1.248e-07

1.152e-07 < LV21

Rule : 1.3 [P (R1.3) : 0.24% P (F |R1.3) : 91.67%]
DividerRatio <= 1.120e+02

InputFrequency <= 9.977e+06

1.154e+00 < VDD

1.206e-07 < LCP3

LV24 <= 1.162e-07

5.428e-13 < C2

LCP51 <= 1.235e-07

LV13 <= 1.258e-07

InputJitter <= 8.930e-11

Rule : 1.4 [P (R1.4) : 0.41% P (F |R1.4) : 92.68%]
DividerRatio <= 8.400e+01

InputFrequency <= 9.972e+06

1.153e-07 < LCP3

1.157e-07 < LV2

Temperature <= 5.250e+01

LCP1 <= 1.242e-07

1.137e-07 < LV43

1.138e+00 < VDD <= 1.212e+00

1.161e-07 < LCP5

LV12 <= 1.232e-07

Rule : 1.5 [P (R1.5) : 0.15% P (F |R1.5) : 100%]
DividerRatio <= 8.200e+01

LCP52 <= 1.204e-07

1.939e+05 < R1

1.178e+00 < VDD

1.196e-07 < LCP5

1.195e-07 < LV22

Rule : 1.6 [P (R1.6) : 0.11% P (F |R1.6) : 100%]
DividerRatio <= 8.200e+01

1.178e+00 < VDD

LV5 <= 1.170e-07

InputJitter <= 8.710e-11

1.196e-07 < LCP5

9.971e+06 < InputFrequency

Rule : 1.7 [P (R1.7) : 0.20% P (F |R1.7) : 100%]
DividerRatio <= 1.060e+02

InputFrequency <= 9.975e+06

1.161e+00 < VDD

1.238e-07 < LV5

C1 <= 2.171e-12

1.185e-07 < LV22

InputJitter <= 7.606e-11

1.175e-07 < LCP3

LCP51 <= 1.233e-07

C2 <= 6.643e-13

LV12 <= 1.220e-07

1.169e-07 < LV31

Rule : 1.8 [P (R1.8) : 0.37% P (F |R1.8) : 97.30%]
DividerRatio <= 1.010e+02

9.895e+06 < InputFrequency <= 9.984e+06

LCP5 <= 1.161e-07

5.850e-13 < C2

1.135e+00 < VDD

LCP1 <= 1.242e-07

1.935e+05 < R1

Temperature <= 5.364e+01

Rule : 1.9 [P (R1.9) : 0.11% P (F |R1.9) : 100%]
InputFrequency <= 9.927e+06

LCP51 <= 1.186e-07

9.700e+01 < DividerRatio <= 1.090e+02

1.164e+00 < VDD

1.145e-07 < LCP3 <= 1.202e-07

Rule : 1.10 [P (R1.10) : 0.27% P (F |R1.10) : 100%]
DividerRatio <= 9.400e+01

InputFrequency <= 9.982e+06

Temperature <= 9.768e+00

5.848e-13 < C2

LCP1 <= 1.231e-07

1.160e-07 < LV14

LV5 <= 1.238e-07

Rule : 1.11 [P (R1.11) : 0.20% P (F |R1.11) : 100%]
8.500e+01 < DividerRatio <= 9.500e+01

Temperature <= 3.960e+01

LCP5 <= 1.157e-07

LCP51 <= 1.169e-07

C1 <= 2.157e-12

1.161e-07 < LV1

9.971e+06 < InputFrequency <= 1.008e+07

Rule : 1.12 [P (R1.12) : 0.17% P (F |R1.12) : 100%]
DividerRatio <= 8.900e+01

LCP52 <= 1.154e-07

1.178e-07 < LCP3

1.890e+05 < R1

9.970e+06 < InputFrequency

Rule : 1.13 [P (R1.13) : 0.11% P (F |R1.13) : 100%]
DividerRatio <= 8.900e+01

1.157e-07 < LV14 <= 1.161e-07

LCP5 <= 1.204e-07

Rule : 1.14 [P (R1.14) : 1.17% P (F |R1.14) : 94.02%]
DividerRatio <= 8.800e+01

InputFrequency <= 9.970e+06

5.946e-13 < C2

1.145e-07 < LCP3

LCP5 <= 1.251e-07

Temperature <= 6.164e+01

1.159e-07 < LV12

1.890e+05 < R1

1.162e-07 < LV23 <= 1.241e-07

1.171e-07 < LCP11

Rule : 1.15 [P (R1.15) : 0.37% P (F |R1.15) : 100%]
DividerRatio <= 8.400e+01

9.898e+06 < InputFrequency <= 9.966e+06

1.212e+00 < VDD

LV25 <= 1.266e-07

1.179e-07 < LV33

1.142e-07 < LCP4

Temperature <= 5.250e+01

Region : 2 [P (R2) : 0.19% P (F |R2) : 94.74%]

DividerRatio <= 9.700e+01

1.008e+07 < InputFrequency

1.191e+00 < VDD

1.211e-07 < LV22

Figure 4.9: Failure regions : PLL2. Naming conventions are the same as in Fig. 4.7
and Fig. 4.8.

75

Parameter IG(R|parameter)

DividerRatio 0.0765

InputFrequency 0.0359

VDD 0.0098

LCP5 0.0069

C2 0.0065

Table 4.2: Top 5 parameters in PLL2 ranked based on the importance metric de-
scribed in Section 4.3.

Table 4.2 for simplicity. For PLL2, each of the following observations appears to be

significant for a combination of the input conditions listed above (The exact values

of X,Y,Z and U may differ from rule to rule):

1. LCP5 ≥ C & LCPx < D where x ∈ {1, 3}.

2. C2 ≥ B where B is the nominal value.

Trend 1 can be identified as transistor mismatch effects from Fig. 4.10. This

is easily resolved by increasing the channel lengths of the biasing circuit. We thus

double LCP1x, LCP3, and LCP5x while adjusting transistor widths accordingly.

For C2 ≤ B, we take a closer look at the filter block in Fig. 4.10. The impedance

of the filter can be obtained as :

Z (s) =

1
C2

(

s + 1
R1C1

)

s2 + s(C1+C2)
R1C1C2

≈
R1

(

s + 1
R1C1

)

s
(4.12)

For the above approximation to hold, C2 << C1. However, C2 6= 0 as it helps

smooth out the VCO control voltage ripple. Practically, we wish for C2 > C1/k to

ensure low jitter. The fact that C2 ≤ B turns up as one of the failure conditions con-

tributing to OutputJitter means that we have insufficient margin for C1/C2. Instead

76

LCP11 LCP12

LCP2

LCP4

LCP52LCP51

UP

DOWN

Vdd

IOUT

LCP3

R1

C1

C2

Charge Pump

Filter

Figure 4.10: Charge pump and filter blocks within the PLL described in Fig. 3.8.
PLL1 and PLL2 end up differing mainly in the values of LCPxx and R1, Cx due
to the nature of the diagnosis information obtained for PLL2.

of lowering C2 which is already very small, we raise C1 instead.

As can be seen from Fig. 4.8, the resulting circuit PLL1 no longer has OutputJit-

ter violations caused by C2. However, new failure regions dominated by interactions

between R1 and C1 have been created. The importance of R1 and C1 is further

validated by the parameter ranking in Table 4.1.

It is important to note that the diagnosis information presented above is just an

aid. Interpreting the regions and actually fixing the circuit to optimize the yield may

require significant domain knowledge. The failure regions simply list the minimum

number of features required to explain a given failure region along with their associ-

ated intervals. They do not take into account topological information and hence may

skip out on important correlations with other parameters. For example, LCP5 ≥ C

may refer to a mismatch effect by itself if C is large enough as LCPx defaults to

77

its entire legal domain. Knowing that LCP5 cannot be considered independently of

LCPx is thus critical in fixing the circuit. The domain knowledge is indispensable

in fixing the circuit as well of course. Whether we wish to just resize the transis-

tors or change the circuit altogether, designer intervention is not just desirable but

necessary.

4.5 Summary

Our proposed approach does a very good job at discovering failure regions caused

by interaction effects in a high-dimensional space. More importantly, we present this

information in a manner that intuitively makes sense to the designer by reporting

critical parameters and their associated tolerances. While we use standard rule-

induction techniques, the framework is conceptually robust enough to leverage mul-

tiple such algorithms and still return a single set of failure regions and parameters

ranked in order of their importance.

While we specifically demonstrate the effectiveness of our approach in pre-silicon

debug, this work can be leveraged in any area that involves identifying the root

cause behind out-of-specification failures or exciting such failures; a fact that we

shall leverage in test-set selection in Section 6 and identifying systematic shifts in

pre-silicon belief in the post-silicon domain in Section 7.

78

5. EQUIVALENCE CHECKING AND DIAGNOSING MODEL MISMATCH

We matched a circuit against its specifications to detect property violations in

Section 3. Though we pushed the envelope of the size of systems we can deal with

using such approaches, simulating large systems in SPICE within a reasonable turn-

around-time may not be possible in the first place. System level detection and

diagnosis techniques involving high level models of component sub-blocks thus remain

indispensable.

Whether the model is machine generated or written by a designer, any modeling

technique is prone to error and over-generalization. In this section we discuss how

we may detect and diagnose mismatch between two models designed for the same

purpose. Most often, one of these models will correspond to the real circuit and

the other, a high level abstraction model meant to capture the functionality of said

circuit. This high level abstraction model could be machine generated or written

in System-C, Verilog-A, Simulink or any other high level modeling language. If the

circuit and the high level model prove to be equivalent, the high level model can then

be used to substitute for the circuit in system level simulation and analysis with a

high degree of confidence.

5.1 Equivalence checking as a property checking problem

For two models to be completely equivalent, the complexity of the high level

abstraction model will approach the complexity of original SPICE model making it

useless for system level simulations. As a result, there is always a certain amount

of tolerance involved in the equivalence checking process that captures the level of

generalization we can tolerate at the system level.

More formally, given two models f1 and f2 and their corresponding param-

79

eter spaces X1 and X2, we wish to ensure that their corresponding properties

Y 1 = f1 (X1) and Y 2 = f2 (X2) are always within a certain threshold of each

other (|Y 1− Y 2| < δ where δ is defined by the equivalence spec).

To do so, we first observe that X1 and X2 by definition must share some dimen-

sions if they are trying to capture the same functionality. These shared dimensions

will always include the input signal parameters. Depending on the model complexity,

they may also include some design uncertainties such as power supply noise, jitter

etc. As a result, instead of operating on X1 and X2 separately, it is simpler to re-

define the problem as attempting to detect model mismatch between f1 and f2 over

a joint parameter space X = X1 ∪X2.

Now, if we redefine the property space as Y = |f1(X)− f2(X)|, the equivalence

checking problem is pretty much the same as the property checking problem we

described in Section 3 with the probability of model mismatch given by equation

(3.2). As a result, we do not reiterate relevant technical contributions here and go

onto detail some results in Section 5.2.

Model 1
Parameter
Space 1

Property
Space 1

Joint
Parameter space

P

input param

 process param

P

Equivalence
Property space

P

property 1 - property 2

Threshold
Model 2

Parameter
Space 2

Property
Space 2

+

-

Compare
Circuit ?

High level model ?

Allows for
shared
parameters

Figure 5.1: Redefining the equivalence checking problem as a property checking
problem. Instead of dealing with each model individually, we operate across a joint
parameter space defined by the union of both parameter spaces and over a joint
property defined by the difference between shared properties.

80

A more graphical view of the discussion so far is given in Fig. 5.1. Effectively, we

can think of the equivalence checking problem as property checking over a system

composed of two models (one of which may be the circuit), connected by a com-

parator. What used to be specifications in property checking of course is now a list

of thresholds that indicate the amount of mismatch that we are willing to tolerate

between different properties.

5.1.1 Practical considerations

An important observation to be made here is that both models should share

the same set of properties in order to be effectively compared. More importantly,

they should share at least part of the parameter space if they are indeed trying to

capture the same functionality. These are not conditions imposed by the verification

methodology but rather design considerations should the two models be indeed trying

to capture the same concept. An example of this is the test-case we describe in the

following section.

Another observation to be made is that the failure regions for equivalence checking

can be expected to be different from the ones we have dealt with so far in property

checking. An important assumption we made in Section 3 is that failure regions

were more or less contiguous. As a result, the number of points in the interior of

the failure region could be expected to be larger than the points on the boundary.

While this is a valid assumption for the property checking case given how failures are

usually centered around the extreme values of some parameters, the same cannot be

said for equivalence checking.

An extreme example of this is visually demonstrated in Fig. 5.2. Even though

the failures regions for property checking (Fig. 5.2(a) and Fig. 5.2(b)) in both the

models look similar and the failure regions are highly contiguous, the length of the

81

boundary for the equivalence checking problem (Fig. 5.2(c)) is twice that of the prop-

erty checking problem even though the level of mismatch (and thus the probability

of mismatch) is tiny.

Property Checking Property Checking Equivalence Checking

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(a) Model 1

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(b) Model 2

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

(c) Model 1 - Model 2

Figure 5.2: Difficulty when adaptively sampling the equivalence checking problem
as compared to the property checking problem. Though Fig. 5.2(a) and Fig. 5.2(b)
are very similar to each other, on comparing Model 1 with Model 2, we get a doubly
complex failure manifold in Fig. 5.2(c).

Of course this has a direct impact on both the equivalence checking and the

model mismatch diagnosis. For the equivalence checking, it means we need a lot

more points to achieve the same accuracy. For diagnosis, it means that the failure

regions are either going to be very small or together explain only a portion of the

actual parameter space that leads to failure.

5.2 Results

We use the same circuit PLL1 (Fig. 3.8) we used in Sections 3 and 4 as the

SPICE netlist and compare it against a Verilog-A behavioral model which captures

the behavior of the circuit in response to the following parameters :

82

• Input frequency

• Input jitter

• Divider Ratio

• Supply voltage

• Filter R,C (3)

• Output load

In other words, the following parameters are exercised by the SPICE netlist alone:

• Temperature

• Channel lengths (31)

The Verilog-AMS model takes an order of magnitude less time to simulate as

compared to the SPICE model. In place of the 30 minutes it takes for the SPICE

level netlist, the Verilog-AMS model takes only 3 minutes to simulate. On the flip

side, it reacts to far fewer parameters meaning that it is an over-generalized version

of the actual netlist.

Naturally, this over-generalization ensures that the two views of the same circuit

do not always give the same response. This probability of model mismatch is simply

referred to as P (F) over the next few sections. It is to be noted that this model

mismatch can occur because (a) the behavioral model was not designed to capture

the nominal response to certain shared parameters, or (b) because the parametric

variations not captured by the behavioral model are significant enough to cause the

response to exceed the mismatch threshold. The diagnosis information we present

in Section 5.2.2 may thus include both kinds of parameters.

83

5.2.1 Equivalence checking

Since the equivalence checking problem is in essence similar to the property check-

ing problem, we would expect our observations regarding Table 5.1 to be much the

same as those detailed in Section 3. However, it turns out that the boundaries are

harder to characterize in the equivalence checking problem as failure regions may

not be very contiguous which was the assumption we made in Section 3. As a re-

sult, convergence to a useful probability metric takes longer. This is in line with our

expectations as detailed in Section 5.1.1.

PLL1

99% Bootstrap CI Bias compensated interval learner

(MC + LHS) MC + LHS Adaptive

P (F) minP, maxP P (F) minP, maxP P (F) minP, maxP

300 2.33 0.33, 5 0.22 0.17, 0.67 17.8 16.1, 19.8

400 3 1, 5.5 0.11 0.094, 0.24 11.3 10.0, 13.2

500 2.2 0.8, 4.2 0.13 0.11, 0.19 8.7 7.65, 10.2

600 3 1.33, 5 0.11 0.098, 0.16 5.7 4.26, 6.66

700 2.14 0.86, 3.71 0.18 0.16, 0.23 5.0 4.21, 6.55

800 3 1.63, 4.75 0.21 0.17, 0.24 4.3 3.57, 5.56

900 2.22 1, 3.55 0.18 0.15, 0.22 3.78 3.13, 5.08

1000 2.3 1.2, 3.6 0.25 0.22, 0.29 3.82 3.15, 5.11

1100 2.09 1.09, 3.27 0.32 0.28, 0.36 3.42 2.76, 4.83

1200 2.52 1.76, 3.36 0.30 0.26, 0.5 3.17 2.52, 4.55

10000 2.58 2.17, 2.98 ← Reference to compare against.

Table 5.1: Model mismatch probability and interval estimates for PLL1 when com-
pared against high level Verilog-AMS model. All probabilities expressed in %.

84

5.2.2 Diagnosing model mismatch

The failure regions and the parameter ranking to explain mismatch between PLL1

and the Verilog-AMS model are shown in Fig. 5.3 and Table 5.2 respectively.

We first observe from Table 5.2 that 3 of the top 5 parameters (Temperature,

LCP2, LV2) are not modeled in the Verilog-AMS model. This implies that there

might be a possibility that the Verilog-AMS model is not detailed enough to capture

the desired behavior to the desired level of accuracy.

Parameter IG(R|parameter)

Temperature 0.0130

DividerRatio 0.0127

InputFrequency 0.0126

LCP2 0.0609

LV2 0.0541

Table 5.2: Top 5 parameters in explaining mismatch between PLL1 and Verilog-AMS
model based on the importance metric described in Section 4.3.

Looking over the failure regions in Fig. 5.3 further corroborates this hypothesis.

All the failure regions are explaining some combination of parameters modeled by

the circuit alone in conjunction with certain conditions on the shared parameters

(DividerRatio, InputFrequency etc). Even more importantly, failure region 2 is made

up of LV2 and LV21 alone. In other words, it refers to a very specific transistor

mismatch which has certainly not been modelled in the Verilog-AMS model.

The easiest way to fix the mismatch is by increasing the error tolerance. However,

this may not be desirable for system level performance. Depending upon at which

stage of the design process we may be at two more fixes are possible: (a) Fix the

85

Region : 1 [P (R1) : 1.00% P (F |R1) : 92%]

Rule : 1.1 [P (R1.1) : 0.28% P (F |R1.1) : 100%]
DividerRatio <= 1.020e+02

1.239e-07 < LV44

2.468e-12 < C1

4.698e+01 < Temperature

InputFrequency <= 1.000e+07

Rule : 1.2 [P (R1.2) : 0.44% P (F |R1.2) : 90.91%]
LCP2 <= 1.181e-07

4.698e+01 < Temperature

InputFrequency <= 9.941e+06

DividerRatio <= 1.020e+02

Rule : 1.3 [P (R1.3) : 0.12% P (F |R1.3) : 100%]
DividerRatio <= 8.100e+01

1.658e+05 < R1

InputFrequency <= 1.002e+07

Rule : 1.4 [P (R1.4) : 0.12% P (F |R1.4) : 100%]
LV12 <= 1.151e-07

1.141e-07 < LV1

4.799e+01 < Temperature

2.362e-07 < LCP51

5.369e-13 < C2

Rule : 1.5 [P (R1.5) : 0.12% P (F |R1.5) : 100%]
2.460e-07 < LCP51

InputFrequency <= 1.000e+07

DividerRatio <= 1.070e+02

1.827e+01 < Temperature

Rule : 1.6 [P (R1.6) : 0.20% P (F |R1.6) : 80%]
1.183e-07 < LV21

4.701e+01 < Temperature

LV2 <= 1.176e-07

InputFrequency <= 9.994e+06

2.350e-12 < C1

Region : 2 [P (R2) : 0.08% P (F |R2) : 100%]

1.277e-07 < LV2

LV21 <= 1.257e-07

Figure 5.3: Failure regions : PLL1 vs Verilog-AMS model mismatch. Naming con-
ventions are the same as in Fig. 4.7 and Fig. 4.8.

circuit, and (b) Fix the model.

Fixing the circuit means we have to make sure that the circuit response is much

less susceptible to variation. If we think of the Verilog-AMS model as the golden

model, then this is indeed the correct approach for it means designing a more robust

circuit. This fix would be similar to the one we made to get from PLL2 to PLL1 in

Section 4.

On the other hand, if we are to change the model to match the circuit data

(such as when constructing a high level model to explain an existing circuit), the

only option may be to update the high-level model. Doing so however, may not

always be possible by changing the model parameters alone. The model may not

have been constructed to capture the effect of key parameters in the first place (Such

as Temperature, LV2 and LCP2 in this example). The only option in that case may

be to actually model the effect of these parameters in the high-level model or relax

86

the mismatch tolerance.

Relaxing mismatch tolerances of course affects the confidence of the system-level

simulation. Capturing the effect of key parameters leading to model mismatch in

the high level abstraction model proves more desirable. This is even more so when

one considers that these parameters may be interacting with other parameters from

adjoining blocks to give rise to system level failures. The more the number of low-level

parameters modelled by the abstraction model the higher the chances of capturing

these interactions. On the flip side, system-level simulation and verification cost may

go up as a result of the same.

5.3 Summary

In this section we framed the equivalence checking problem as a property check-

ing problem that we then addressed using the contributions in Section 3. Our ob-

servations regarding the estimates are much the same as in Section 3 except that

convergence takes longer. This is due to the length of the failure boundary defined

by the mismatch between two models.

The efficacy of the failure regions is also demonstrated when applied to diag-

nosing model mismatch. However, fixing such a mismatch is even more complex

than in the property checking case as the high level model may not have sufficient

representational flexibility to capture the circuit behaviour. Of course, relaxing the

thresholds further does give us 0% P (F) but the threshold is a measure of deviation

between the circuit and the model in itself. Relaxing it too far may make the model

useless from a system level perspective even if the reported P (F) is very low.

87

6. TEST SET SELECTION TO MAXIMIZE OBSERVED FAILURES

The high-dimensional “parameter space” we have dealt with so far, contains two

types of parameters in reality : controllable and uncontrollable. The goal of test set

selection is to pick controllable parameters such that the probability of observing

failures is maximized in the presence of uncertainty along the uncontrollable ones.

More formally, we wish to sample a set of t points Ĉ ⊂ C such that the probability

of exciting a failure, P (F |Ĉ) is maximized. To do so, we observe

P
(

F |Ĉ
)

=
∑

c∈Ĉ

∫

c̄∈C̄

P (F |c, c̄)p(c̄|c)dc̄ (6.1)

where P (F |c, c̄) is either 0 or 1 depending on whether x = {c, c̄} leads to a fail-

ure or not and p(c̄|c) represents the expected distribution along the uncontrollable

dimensions for a given controllable point c.

In the pre-silicon domain, both p(c) and p(c̄|c) are known (based on certain

assumptions). That leaves P (F |c, c̄) = P (F |x) which can be directly ascertained

from any failure model such as the one we build in Section 3. However, since we

cannot actually integrate over c̄ ∈ C̄, we will need to sample over both c and c̄|c.

Given the large number of samples required to characterize both p(c) and p(c̄|c), it

makes computationally more sense to use the failure regions we obtain in Section 4

as the knowledge representation scheme instead. A complete framework to do so is

shown in Fig. 6.1.

While these failure regions may overgeneralize or skip over a few failure points,

the critical tests we wish to pick are the ones that demonstrate the highest probability

of exciting a failure. More importantly, while we expect the pre-silicon model to be

88

Test Engineer

Failure Regions
Assumed
uncertainty

Test selection Fabrication

Test Plan

Observed Failures

Figure 6.1: Failure region based test selection methodology. The uncertainty infor-
mation p (c̄|c) can be fed back from the fabrication process. The test-engineer’s input
is used in determining the test plan (and thus p (c)) as discussed in Section 6.1. The
failure regions serve as a source of pre-silicon knowledge for P (F |c, c̄).

representative of real silicon, the amount of computational effort it will take to use

a perfect pre-silicon model far outweighs the benefits. This is more so because the

observed P (F |c) using our final measurements will show a high degree of variance

due to small sample size (If we assume Monte Carlo sampling over the uncontrollable

parameters, variance ∝ 1/m where m is the number of measurements taken at a

specific test point c).

We thus describe how we may leverage the failure regions from Section 4 for test-

set selection in Section 6.2. Since we are dealing with a test-set selection problem

and not a test-generation problem however, we first discuss the set of all possible

tests in Section 6.1.

6.1 The test plan

A test plan documents the strategy that will be used to verify and ensure that a

product or system meets its design specifications. A test plan is usually prepared by

89

test engineers with significant input from the designers.

It may include testing strategies for multiple scenarios depending upon the prod-

uct and at which point of the design cycle the product may be. Of these, two are

particularly important in the post-silicon domain :

• Design Verification - typically performed on a small sample of units during the

development or qualification stages of the product.

• Production test - typically performed in an ongoing manner during product

assembly for purposes of performance verification and quality control.

The testing we talk about in this dissertation is suitable only for design verifi-

cation. Functional tests are usually too expensive for production testing and the

pre-silicon data we collect in Section 3 and Section 4 verify the functionality of the

circuit against certain performance metrics.

Due to the involvement of the designers and test engineers, a significant amount

of domain knowledge may already be available in terms of the what to test, how to

test and what resources are available in terms of design for test. This does not mean

we cannot make their job easier.

The parameter rankings we obtained in Section 4 already tells us what parameters

are important in terms of separating pass from failure cases. The parameters which

do nothing to separate pass from fail cases in the pre-silicon domain are likely also

to remain unimportant in the post-silicon domain even if we can control them. On

the other hand, controlling the parameters which were determined important in the

pre-silicon domain, would have a better level of controllability in terms of exciting

pass vs. failure cases in post-silicon too.

Even this information however, is just meant to assist the test engineer. A signif-

icant amount of domain knowledge may still be required at this stage. For example,

90

two parameters which are very closely related to each other in pre-silicon may not

necessarily be as closely related in post-silicon. From a test-plan perspective, this

information becomes suddenly relevant as our pre-silicon failure regions (and thus

the parameter rankings) would be able to explain the failures in terms of any one of

these parameters.

An even more important consideration is whether or not it is possible to control

the chosen parameters in the first place, and if so to what level of granularity. Imple-

menting DfT structures where we can vary the value of a parameter in a continuous

fashion is usually very expensive. Practically, DfT structures [32, 33, 34, 35] are

implemented to be set to one of a few different modes which can be controlled with

a digital knob. Effectively, the continuous space C has now instead been discretized

into a finite set of controllable points S ⊂ C.

6.2 Leveraging failure regions for test set selection

Assuming that the pre-silicon failure regions are a pretty good indicator of post-

silicon reality, our goal is to effectively boost the probability of observing these failure

regions. This is empirically demonstrated in Fig. 6.2.

An added benefit of a failure region based approach is that it now becomes

possible to ensure that both Ri and Rj (where i 6= j) have a non-zero probability of

being covered by Ĉ instead of just maximizing P (F |Ĉ). This is possible even if the

effect of uncontrollable dimensions is higher for Ri than Rj.

For now however, let us assume that our goal is simply to observe as many points

lying within any of the failure regions as possible. More formally, we wish to sample

a set of points Ĉ ⊆ S such that the probability of exciting regions R = {R1 . . . Rm},

91

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

Figure 6.2: Selecting values for controllable test parameters. X1 is the controllable
parameter. For every sampled point on X1, the expected uncertainty along X2 is
demonstrated. The expected uncertainty is based on pre-silicon assumptions. The
actual post-silicon distribution may be different as shown in Fig. 7.1.

P (R|Ĉ) is maximized. To do so, we observe

P (R|c) =
∑

c̄∈C̄

P (R|c, c̄)p(c̄|c) (6.2)

P
(

R|Ĉ
)

=
∑

c∈Ĉ

P (R|c) (6.3)

where P (R|c, c̄) is either 0 or 1 depending on whether x = {c, c̄} ∈ R or not.

Thus, there are in fact, two computations happening here. The first one, is

estimating P (R|c) over all candidate test-points c ∈ S. The second computation is

92

actually picking t points c ∈ S to form Ĉ. The simplest way to maximize equation

(6.3) by doing so is simply ranking all c ∈ S by P (R|c) and picking the first t

controllable points. However, this may cause Ĉ to be concentrated in debugging a

single failure mechanism. This is discussed further in Section 6.2.1.

6.2.1 Implementation details

To develop an actual algorithm, let’s look at equation (6.2) to start with. We

first note that p(c) and p(c̄) need not be independent. For example, the threshold

voltage of a transistor Vt might be influenced by the supply voltage V DD which may

be controllable. As a result, p(c̄|c) is not necessarily the same as p(c̄). c however is

directly controllable by definition, allowing us to sample c ∈ C without taking c̄ into

account. The effect of c̄ will be captured when trying to pick Ĉ based on P (R|c).

This computation of P (R|c) for every c ∈ S forms the majority of pseudocode

given in Algorithm 1. The inner loop computes P (R|c, c̄) ∀ c̄|c. The outer loop

computes P (R|c) ∀ c ∈ S. Lines 1 and 13 simply generate S or pick Ĉ from S using

P (R|c) ∀ c ∈ S.

P (R|Ĉ) is thus maximized by a two-step sampling process. We first generate a

large set of candidate test points S. We then compute and use the probability of

exciting R at each point in S to sample within S. Algorithm 1 summarizes this

process.

Note that the last step does not just pick the top t points. Instead, we use a

weighted sampling scheme [64] where the probability of selecting c ∈ S is proportional

to P (R|c). Points with the highest P (R|c) of course have the highest probability of

being selected where as a P (R|c) = 0 will ensure that a point is never selected. The

goal here is to ensure that Ĉ is not completely clustered around the same point as

that only gives us information on one failure mechanism and is not very interesting

93

Algorithm 1 GenTestParams
(

p(C), p(C̄|C), R = {R1 . . . Rm}
)

1: S ← sample c ∈ C with probability p(c)
2: for c ∈ S do

3: S̄ ← sample c̄ ∈ C̄ using p(c̄|c)
4: for c̄ ∈ S̄ do

5: if {c, c̄} ∈ R then

6: P (R|c, c̄)← 1
7: else

8: P (R|c, c̄)← 0
9: end if

10: end for

11: P (R|c)←
∑

c̄∈S̄ P (R|c, c̄)p(c̄|c)
12: end for

13: Ĉ ← sample c ∈ S with probability P (R|c)
P

c∈S P (R|c)

from a debug perspective.

Also, all the sampling steps (lines 1, 3 and 13) herein refer to sampling without

replacement [65]. They are additionally all weighted [64] based on different probabil-

ity metrics. Since line 1 is just a surrogate for a good test plan, it is to be noted that

this may not always be the case. The test plan may allow for multiple tests with

the same controllable parameters. Typically, this is a good idea when the variance

in p(c̄|c) is very high. As discussed in Section 6.1, a good test plan will try to ensure

that it never happens in practice but we may not be able to add sufficient DfT to

guarantee guarantee the same. For the purpose of this work, we assume there is only

one of each controllable point in the test-set.

The final number of samples in Ĉ is determined by the number of test inputs t

the verification engineer wishes to generate. The number of candidate points S is

heuristically chosen as 25 times that number. The number of points in S̄ is chosen as

100 since we integrate it out on line 11 in Algorithm 1 anyway. It is to be noted that

no additional SPICE simulations are required as the failure regions have sufficient

94

knowledge to predict circuit failure.

6.2.2 Failure region based test coverage

Test coverage is a complicated subject when dealing with parametric faults [66,

67]. Since we are dealing with a continuous parameter space, the set of all possible

faults is infinite. This is unlike the case of catastrophic faults where failures can be

measured in terms of the number of shorts and opens that can be detected. Moreover,

there is no guarantee that we will actually hit a parametric fault on testing at c due

to the effect of c̄.

Since the set of all faults is infinite, it is impossible to come up with a % of

faults covered by the test-set. However, we still need some mechanism to be able

to quantify how good the generated test-set is. More specifically, we need a metric

that will allow us to compare how good the test-set is, as compared to just randomly

sampling the test plan.

Assuming that the failure regions from Section 4 form a fault dictionary we wish

to exercise, P (R|Ĉ) =
∑

c∈Ĉ P (R|c)p(c|Ĉ) gives us a good indicator of the number

of failures we should expect to see when exercising Ĉ. Comparing P (R|Ĉ) with

P (R|S) also gives us an indicator of how good we expect the test-set to be compared

to randomly sampling the test plan. Of course, should the parameter space be

entirely controllable, we should be aiming for P (R|Ĉ) = 1. However, this value will

be a lot lower in practice depending upon the effect of c̄|c.

Now, the above metrics correspond to the expected coverage in the pre-silicon

domain. Deviations in c̄ may cause the actual coverage in the post-silicon domain

to be different from the expected coverage as we shall see in Section 7. But for the

purpose of this section, P (R|Ĉ) serves as a good indicator of how well our proposed

test-set selection algorithm performs.

95

6.3 Results

Both the test case (Fig 3.8) and the failure regions we use to perform test set

selection have been described in Section 3 and Section 4 respectively. Since we

are dealing with actual silicon here, it is also relevant to discuss which of these

parameters are controllable and observable in the post-silicon domain. Only the input

frequency, divider ratio, supply voltage, temperature and output load are assumed

to be controllable. In addition to the above, we can also observe Input Jitter and

all eight properties listed in the specifications. However, 34 parameters (transistor

channel lengths and filter R,Cs) remain unobservable.

It should be noted here that the post-silicon data we use here is actually simulated

via SPICE after introducing shifts in various parameters to ensure it doesn’t follow

the pre-silicon distribution. The reason for using simulated instead of real post-

silicon data here is so that the probabilities are actually measurable in both the pre

and post-silicon domains.

The effect of applying our test parameter selection methodology on the circuit

we have previously described (PLL1) is shown in Fig. 6.3. Why some regions are

boosted more effectively than others becomes immediately obvious if we are to refer

to the parameter ranking in Table 4.1. The most important controllable parameter

happens to be the Divider Ratio. As a result, rules demarcated by DividerRatio

(R1.1 and R2) are boosted most effectively as well. On the other hand, some rules

(R1.3 and R4) are not affected at all since they are not demarcated by any controllable

parameter. Thus irrespective of the exact test-signals chosen, their probability is not

going to be affected.

A similar trend is seen if we run Algorithm 1 on the failure regions generated

for the alternate design PLL2. Given the large number of regions required to de-

96

00 . 511 . 5
1 . 1 1 . 2 1 . 3 2 3 4P(R i)i n%→

R e g i o n N u m b e r →
P r e ! s i l i c o n c o v e r a g e E x p e c t e d p o s t ! s i l i c o n c o v e r a g e

Figure 6.3: PLL1 Test selection. Probabilities of regions demarcated by one or
more controllable parameters are effectively boosted. If the region is bounded by
uncontrollable elements alone, no test set can perform better than randomly sampling
the test plan.

00 . 511 . 522 . 533 . 5
1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 1 . 1 0 1 . 1 1 1 . 1 2 1 . 1 3 1 . 1 4 1 . 1 5 2P(R i)i n%→ R e g i o n N u m b e r →

P r e Y s i l i c o n c o v e r a g e E x p e c t e d p o s t Y s i l i c o n c o v e r a g e R e g i o n s u s e d f o r d e b u g (E x p e c t e d P (R i) > 0 . 5 %)
Figure 6.4: PLL2 Test selection. Regions with failure probability above 0.5% when
excited with chosen test parameters will be considered statistically significant and
used for post-silicon debug.

scribe the failure mechanisms in this circuit, we additionally draw a line as to which

regions to consider statistically significant after test selection. Since we are dealing

with about 2000 post-silicon data samples in our setup, we draw this line at 0.5%

so as to ensure that we are likely to observe at least 10 failures for each significant

region. The results from test selection are shown in Fig. 6.4 with the statistically

significant regions marked in green. As expected, rules which feature the most im-

portant parameters from our parameter ranking in Table 4.2 feature prominently in

97

the extracted failure regions as well.

6.4 Summary

As circuit sizes continue to grow, our controllability in the post-silicon domain

continues to degrade as well. Observing failures during post-silicon debug thus be-

comes a very difficult problem in itself. Selecting controllable test parameters to

boost the probability of observing certain failure mechanisms helps reduce the mea-

surement effort involved in doing so. Additionally, it will help with debug as well as

we shall see in Section 7.

In this section we demonstrate a test set selection methodology that best uses

(possibly approximate) pre-silicon knowledge to choose a test set to excite real silicon

with. We also demonstrate how the parameter ranking we described in Section 4

helps us in determining which parameters we wish to control and observe to do so

as well.

98

7. IDENTIFYING SYSTEMATIC SHIFTS IN PRE-SILICON BELIEF

The dimensions in the high-dimensional “parameter space” we have dealt with

so far can also be split into two based on their observability in the post-silicon

domain. The goal of post-silicon debug is to identify which (and in which direction)

unobservable parameters may have shifted from what we assumed about them in

the pre-silicon domain. If we are interested in inferring exact parameter values, we

may have no choice but to probe additional measurements which are significantly

correlated to said parameter value. But if we are just interested in identifying shifts

in specific failure mechanisms, we can do a lot more using existing data.

Since we have already captured these failure mechanisms as part of the “failure

regions” in Section 4, identifying shifts in the importance of these failure regions

allows us to determine which failure mechanisms might have become more (or less)

important. While we are dealing with a coarser level of information (regions not

exact values), the inability to determine exact parameter values is offset by the fact

that we already know which parameters are important (or not important) for a given

failure region based on pre-silicon knowledge (See Section 4 for details).

The reason for looking at the holistic picture instead of looking at each individual

response is that the obervability into a real circuit is limited. The cost (design or

test time) of probing internal nodes of the circuit once it has been fabricated is

prohibitive. And without being able to observe significantly correlated responses or

parameters, it may be impossible to determine what parametric shifts may or may

not have occurred. However, while we may not be able to reconstruct the exact

mapping, it is possible to detect systematic shifts in the probability of a given region

of the parameter space even in this scenario.

99

7.1 Identifying shifts in importance of “failure regions”

If we can observe the probability of occurrence of specific failure mechanisms in

the pre and post-silicon domain, we can already narrow the post-silicon deviations

down to very few trends. An extreme case of this can be visualized by comparing

Fig. 7.1 with Fig. 6.2. The change in distribution manifests itself through the change

in probabilities of different failure regions.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

Figure 7.1: Post silicon debug. X1 is controllable and can be selected during test.
Change in distribution of the unobservable parameter X2 causes P (Ri) to change for
both clusters.

Since we have already identified the critical parameters and associated tolerances

100

for each failure region, we can then easily determine which parameter to target as

well. Additional guidance for this is provided by the parameter ranking which we

discussed in Section 4.3.

Thus our first goal is to obtain the probability that a given region Ri has been

exercised, given a set of observations and the failure region information that we are

privy to. If Ô ⊂ O refers to a set of post-silicon observations, P (Ri|Ô) can be

obtained as

P
(

Ri|Ô
)

=
∑

o∈Ô

P (Ri|o)p(o) (7.1)

Since c ⊂ o, we can similarly obtain the pre-silicon belief by generating Monte

Carlo samples for the uncontrollable parameters around each c ∈ Ĉ. In other words,

for each c ∈ Ĉ, we generate a set of samples c̄ ∈ C̄ with probability p(c̄|c) and

simulate x = {c, c̄} via SPICE. Ǒ ⊂ O, the set of pre-silicon observations can then

be drawn from this simulated SPICE data. Comparing P (Ri|Ô) against P (Ri|Ǒ)

allows us to detect systematic shifts in the importance of region Ri when moving

from the pre-silicon to post-silicon domain. The complete framework is summarized

in Fig. 7.2.

So the only problem we are left to deal with is estimating P (Ri|o) where o can

be an observation in either Ô or Ǒ. This is a standard density estimation problem

that we can solve using kernel density estimation (KDE) [68].

7.1.1 Kernel density estimation

Kernel density estimation (KDE) [68] is a non-parametric method to estimate the

probability density function of a random variable. Inferences about the population

can be made using a finite data sample by smoothing over the known points. If

101

Pre-silicon Region
Probabilities

Test-signal
Generation

Obtain Post-Silicon
Distribution (Test)

Failure Regions
Post-silicon Region

Probabilities

Important & Unimportant Failure Regions
(shift determined by comparing both probabilities)

Simulate Pre-silicon
Distribution

Figure 7.2: Complete post-silicon debug flow. The estimated failure region probabil-
ities over both pre and post-silicon data are compared to identify systematic shifts
from the pre-silicon belief in the post-silicon domain.

{

x(1) . . . x(n)
}

refers to an independent and identically distributed sample drawn from

some distribution with an unknown density f , we wish to estimate the value of f at

an unknown point x using
{

x(1) . . . x(n)
}

. Its kernel density estimator is

f̂h (x) =
1

n

n
∑

i=1

K

(

x− x(i)

h

)

(7.2)

where K(.) is the kernel - a symmetric but not necessarily positive function that

integrates to one - and h > 0 is a smoothing parameter called the bandwidth.

The main challenge with this technique is choosing a suitable h since the scale of

each axis may differ. This scaling problem is naturally addressed if we can choose

different bandwidths hj along each of the dimensions xj. By using a “generalized

product kernel function” [69], this concept can be extended further to deal with

multiple data types as well (continuous, ordered and factors).

Given the dimensionality of the systems we wish to debug, we haven’t used cross-

102

validation techniques to search for the optimal value of hj at this time. hj is instead

statistically computed as hj = 1.06σjn
−1/(2P+1) where n is the total number of ob-

servations and P is the order of the kernel (by default 2). σj is an adaptive measure

of spread of the jth continuous variable defined as

σj = min(standard deviation, interquantile range/1.349) (7.3)

While we may not be able to estimate the real post-silicon probability correctly

using the above choice of h, all we need is a comparison and not an exact metric. As

long as we make sure that we use the same h in estimating P (Ri|Ô) and P (Ri|Ǒ), this

h proves to be sufficient as shown by our results in Section 7.2. Any bias introduced

by the choice of h affects both the pre and post-silicon probability estimates allowing

us to still compare the two.

For further insight into the exact KDE method used and for non-parametric

extensions that are being considered, we refer the reader to [69].

7.1.2 Implementation details

The above technique works as long as there is sufficient correlation between the

observable quantities and the unobservable ones. In our case, the observable quan-

tities include the desired output properties. If a parameter is not significantly cor-

related to these properties, a deviation in said parameter will not affect the failure

region probabilities. While this means that our approach is unable to catch this

deviation, it also means that the deviation is not very important in the first place as

it is not capable of pushing the output properties into an out-of-specification failure

region.

It is also to be noted that there is always a certain amount of noise associated with

our estimate of P (R|Ô) and P (R|Ǒ). This can arise from the estimation technique

103

used (KDE), the choice of bandwidth h but most importantly, it arises due to the

limited number of data points we are forced to deal with in the post-silicon domain.

Since the sampled distributions is never going to replicate the true distributions, we

cannot directly compare the probability values without taking into account some

notion of statistical significance. In our case, we leverage a very simple heuristic to

do so. If the post-silicon probability is within ±10% of the pre-silicon probability, we

assume the deviation is simply noise and the importance hasn’t shifted. Anything

below or above that margin is considered to be statistically significant and is used

for debug purposes.

7.2 Results

Both the test case (Fig 3.8) and the failure regions we use to perform test set

selection have been described in Section 3 and Section 4 respectively. We further

assume that the test points have been selected using the test selection methodology

detailed in Section 6 and the post-silicon data is similarly simulated as in Section

6.3. The benefit of simulating instead of measuring post-silicon data is that the real

values for the region probabilities are known in the post-silicon domain as well thus

allowing us to validate how well we estimate pre-silicon vs post-silicon shifts.

As noted in Section 7.1.1, since we we are forced to estimate the probabilities using

kernel density estimation, the estimated pre-silicon failure probability described in

Fig. 7.3 and Fig. 7.4 may not reflect the real probabilities in Fig. 6.3 and Fig. 6.4.

However, as long as we used the same h for both pre and post-silicon estimation,

the estimated pre and post-silicon probabilities within Fig. 7.3 and Fig. 7.4 can be

compared.

As discussed in Section 4, R1 and C1 are critical in determining the failure

probability for PLL1. An increase in R1 or C1 causes an increase in the overall failure

104

00 . 51 1 . 1 1 . 2 1 . 3 2 3 4E sti mat ed P(R i)i n%→
R e g i o n N u m b e r →

P r e) s i l i c o n P o s t) s i l i c o n

Figure 7.3: PLL1 debug results. The importance of all regions except region R2 seems
to go up in the post-silicon domain. Studying region R2 in more detail actually allows
us to identify that the mean value of C1 increased in the post-silicon domain.

probability. This is reflected in Fig. 7.3 as well where the estimated importance of

most of the regions goes up in the post-silicon domain. The only exception to this

rule is region R2 which actually decreases in importance.

To understand why this occurs, we observe the bounds for R1 and C1 in region

R2. R1 > 1.61e+05 refers to resistance values higher than the nominal design value

of 1.6e + 05. This implies one possible reason for the decrease in this probability

is a systematic reduction in R1 values over all our test-chips. On the other hand,

2.4e − 12 ≤ C1 ≤ 2.6e − 12 refers to a small band of interest around the nominal

C1 value of 2.5e− 12 indicating that the mean value could have either increased or

reduced. We can easily reject the first hypothesis as a reduction in R1 would have

caused the importance of all the other regions to decrease as well. An increase in C1

is the only hypothesis that satisfies the shift in probability over our failure regions

allowing us to identify the exact cause of the change in yield in the post-silicon

domain. Since our post-silicon data is actually simulated, we can verify that this is

indeed the correct cause for the observed shift.

However, it may not always be practically possible to identify the exact paramet-

105

0123
4

1 . 1 1 . 2 1 . 5 1 . 6 1 . 8 1 . 1 0 1 . 1 4 2E sti mat ed P(R i)i n%→
R e g i o n N u m b e r →

P r e + s i l i c o n P o s t + s i l i c o n

Figure 7.4: PLL2 debug results. Regions R1.1 and R1.14 show substantial deviations
and will be examined further.

ric shift as we did with PLL1. We may occasionally have to be content with simply

identifying important failure mechanisms and speculating what might be the most

“likely” deviation(s) based on the parameter ranking in the pre-silicon domain. The

most statistically significant shifts for PLL2 are demonstrated by regions R1.1 and

R1.14 in Fig. 7.4. These regions in conjunction with the parameter ranking in Table

4.2 lets us to speculate that the mean value of C2 might have gone up or that LCP5

may have gone down or both. Since our post-silicon data is actually simulated, we

know that an increase in the mean of C2 was responsible for this shift. However,

being able to shortlist the possible causes of failure down to even two parameters is

significant since the designer can just make the circuit more robust to both.

7.3 Summary

As circuit sizes continue to grow, our observability in the post-silicon domain con-

tinues to degrade as well. This is especially true with dealing with out-of-specification

(soft) faults caused by parametric variations. We thus propose and demonstrate a

post-silicon debug flow requiring only as much information as is readily available

without the need to add expensive probes / measurement circuitry. While we may

106

not be able to always identify the exact parametric shift, we are always able to

highlight specific failure mechanisms that may have grown in importance in the

post-silicon domain.

This information can then be used by the designer in making the circuit more

robust. We achieve this by generating failure regions as described in Section 4 and

identifying shifts in the importance of these failure mechanisms in the post-silicon

domain. Since both critical parameters and interactions with other parameters are

known as part of the pre-silicon failure regions, we can use this pre-silicon knowledge

to optimize the design around the important failure regions.

The entire process is assisted by the test set selection methodology we detailed

in Section 6. However, the process of identifying systematic shifts is independent of

the exact test-set selection methodology used, as long as the test-set demonstrates a

high probability of exciting failures.

107

8. CONCLUSIONS AND FUTURE WORK

We described an approximate property checking algorithm in Section 3. We then

used the data generated by the algorithm for failure region based diagnosis in Section

4. These failure regions in turn constituted the pre-silicon knowledge that we used for

test-set selection and identifying systematic shifts in the probability of these failure

regions in Section 6 and Section 7 respectively. In doing so, we effectively leveraged

pre-silicon data for post-silicon debug as well.

Last but not the least, we also showed how the pre-silicon aspects of this work

(Section 3 and Section 4) can be used for equivalence checking and diagnosing model

mismatches in Section 5. Of course if we do manage to build a good system level

model that shows good correlation to the component circuits, the contributions listed

in Sections 3, 4, 6 and 7 can be applied at a system level as well. Since we are

abstracting away a lot of information in building these high level models, such a

system will optimally be of similar dimensionality as the circuit level problem we

solved here . As a result, we do not specifically demonstrate how Sections 3, 4, 6

and 7 can be applied at a system level.

The key enabler in all of the above is exercising the accuracy vs. turn-around-time

trade-off. Instead of trying to aim for exact metrics in any of the methodologies we

have detailed during the course of this dissertation, we quantify the confidence in our

inexact metrics. In Section 3, we use the failure probability interval instead of the

actual failure estimate to make a design decision. In Section 4, we use the importance

and confidence of the different failure regions we generate to decide whether or not

to address those regions. In Section 6, we simply boost the probability of observing

failure mechanisms that depend highly on the controllable parameters. We make no

108

guarantee as to whether it is possible to do so for all failure regions or not. Similarly

in Section 7, we estimate the probabilities for regions that may have been excited in

an unexpected fashion by the post-silicon data. We do not attempt to say anything

for regions that do not demonstrate any significant deviation.

Of course, if used as an end-to-end solution, this uncertainty is mitigated a whole

lot. For example, the parameter selection in Section 4 can be used to assist with

designing DfT structures by determining what parameters to control or observe in

Section 6 and Section 7 respectively. However, each contribution listed in this dis-

sertation can be used independently of all other contributions as well, leaving a lot

of scope for future work that we discuss in the following section.

8.1 Future work

During the course of this dissertation, we have detailed and demonstrated an

inexact method for gathering pre-silicon data and using this data in both the pre-

silicon and post-silicon domains for the dual purposes of verification and debugging

observed failures. However, a lot of scope remains for further research within these

individual areas and in figuring out where exactly the contributions detailed herein

fit in with other relevant work in the area.

For example, the knowledge representation scheme (BART) that we use in Sec-

tion 3 and Section 5 for the purpose of failure probability estimation has not been

specifically designed to capture non-linear circuit information. It has simply been

adapted to the purpose, as a result of which we see a wide variation in quality of

results when dealing with different error rates and different circuits. Also, since we

deal exclusively with the simulation time in the results we present here, its unclear

at what circuit size should we stop approximating and use existing yield estimation

techniques to get a more exact solution.

109

Secondly, the rule-induction techniques we use to build failure regions in Section

4 focuses exclusively on interpretability of said rules. However, we use these same

rules for test-set selection and identifying systematic shifts in the importance of these

regions in Section 6 and Section 7 respectively. While doing so does not directly

hurt us given that overlapping rules still capture highly non-linear concepts, there

is a certain amount of generalization and over-fitting happening in the process that

might have been mitigated using alternate knowledge representation schemes. It

would be interesting to see if using more complex failure manifolds gives better

results in downstream activities in the post-silicon domain. However, it also raises

the question as to how these more complex regions may be used by the designer for

the purpose of fixing the circuit as well.

Additionally, a critical aspect we haven’t gone into so far is that the failure re-

gions in Section 4 have been built over the entire parameter space. However, the

test plan described in Section 6 may allow only part of this parameter space to be

reachable in the post-silicon domain. It may be worthwhile to examine whether gen-

erating failure regions that target only the parts of the parameter space that can be

reached by the test-plan assists with test set selection or identifying systematic shifts

in the importance of these new failure regions. While we do not expect significant

advantages in test selection since the failure regions are simply the knowledge repre-

sentation scheme used to pick the actual tests, given that the regions are being used

for actual debug in Section 7, doing so may be beneficial if it reduces the number

and complexity of rules that we have to examine.

Of course, all the research vectors we have described above deal with the tools

and techniques we have detailed specifically over the course of this dissertation. How

they can be used to best effect alongside the large body of work that already exists

in all the areas we explore, remains a subject of active research.

110

Another important observation is that the techniques we describe throughout the

course of this dissertation do not take into account any specific topological informa-

tion. As a result, the contributions we make are not restricted to any specific level

of abstraction in the design flow. As long as a quantity affecting the output response

can be parameterized, the effect of the same on the circuit can be analyzed for the

purposes of failure probability estimation, diagnosis, test or debug. This holds true

whether we are analyzing a high level model or a low level SPICE netlist. The only

restriction is that the number of parameters cannot grow without bound.

A practical way to deal with this limitation is to perform corner based analysis

instead of dealing with all possible transistor mismatch dynamics. We expect failures

to be more likely when operating far away from the nominal operating condition that

the circuit was designed for. Simulating the furthest such point is thus almost sure

to give rise to failures if the output response is sensitive to that parameter. Since

corners can be treated as yet another parameter, our contributions can once again

be leveraged for the same as well as long as the corner based assumption holds true.

Another way to deal with the number of parameters is to use a hierarchical

approach. High level models can be used to predict system-level response while

equivalence checking can be used to ensure that these high level models represent

circuit-level behavior. Failure probability estimation, diagnosis, test and debug can

then be performed at varying levels of abstraction.

This of course opens up a vista of possibilities. Transistor level dynamics can be

taken into account when verifying and optimizing smaller blocks. The same transistor

level dynamics can be abstracted away and potentially replaced with corners when

doing system level analysis. Additionally, what parameters need to be modelled for

a given block to enable high-confidence system-level simulation can be guided by the

equivalence checking process as well. If it becomes obvious that optimizing a model

111

to match the circuit response is not possible without adding additional parameters to

the high-level model itself, it tells us that the parameter is important for system-level

analysis as well. Test and debug can be performed at whatever level of abstraction

we may have sufficient controllability and observability at.

The hierarchical approach comes at a cost of course. Every time we abstract away

some information, we run the risk of missing out potentially important interaction

effects. Additionally, the mismatch tolerance can affect the confidence in the system

level error estimate. In essence, there is no free lunch and there is always a trade-off

between accuracy and turn-around-time.

Figuring out when to hierarchically decompose and when not to, and what pa-

rameters to model at each level, can thus be considered an active research area as

well - an area that will no doubt evolve with the scalability of verification techniques.

However, this is also an area which requires a significant understanding of the design

and functionality of the circuit as well.

To summarize, there are a lot of opportunities worth exploring to further improve

as well as apply the contributions listed in this dissertation at both the circuit and

system level.

112

REFERENCES

[1] G. G. Gielen and R. A. Rutenbar, “Computer-aided design of analog and mixed-

signal integrated circuits,” Proceedings of the IEEE, vol. 88, no. 12, pp. 1825–

1854, 2000.

[2] S. Gupta, B. H. Krogh, and R. A. Rutenbar, “Towards formal verification of

analog designs,” in Proceedings of the 2004 IEEE/ACM International Confer-

ence on Computer-aided design, pp. 210–217, IEEE Computer Society, 2004.

[3] S. Little, D. Walter, N. Seegmiller, C. Myers, and T. Yoneda, “Verification of

analog and mixed-signal circuits using timed hybrid petri nets,” in Automated

Technology for Verification and Analysis, pp. 426–440, Springer, 2004.

[4] W. Hartong, L. Hedrich, and E. Barke, “Model checking algorithms for analog

verification,” in Proceedings of the 39th ACM/IEEE Design Automation Con-

ference, pp. 542–547, ACM, 2002.

[5] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and its appli-

cation to the analysis of sram designs in the presence of rare failure events,” in

Proceedings of the 43rd ACM/IEEE Design Automation Conference, pp. 69–72,

2006.

[6] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking the simu-

lation barrier: Sram evaluation through norm minimization,” in Proceedings

of the 2008 IEEE/ACM International Conference on Computer-Aided Design,

pp. 322–329, 2008.

[7] S. Sun, Y. Feng, C. Dong, and X. Li, “Efficient sram failure rate prediction via

gibbs sampling,” IEEE Transactions on Computer-Aided Design of Integrated

113

Circuits and Systems, vol. 31, no. 12, pp. 1831–1844, 2012.

[8] C. Gu and J. Roychowdhury, “An efficient, fully nonlinear, variability-aware

non-monte-carlo yield estimation procedure with applications to sram cells and

ring oscillators,” in Proceedings of the 2008 Asia and South Pacific Design Au-

tomation Conference, pp. 754–761, 2008.

[9] M. H. Kalos and P. A. Whitlock, Monte carlo methods. Wiley-VCH, 2008.

[10] G. Fishman, Monte Carlo: concepts, algorithms, and applications. Springer,

1996.

[11] B. Efron and B. Efron, The jackknife, the bootstrap and other resampling plans,

vol. 38. SIAM, 1982.

[12] S. Tiwary, P. Tiwary, and R. Rutenbar, “Generation of yield-aware pareto sur-

faces for hierarchical circuit design space exploration,” in Proceedings of the 43rd

ACM/IEEE Design Automation Conference, pp. 31–36, 2006.

[13] G. Yu and P. Li, “Yield-aware analog integrated circuit optimization using

geostatistics motivated performance modeling,” in Proceedings of the 2007

IEEE/ACM International Conference on Computer-Aided Design, pp. 464–469,

IEEE, 2007.

[14] H. Lin and P. Li, “Classifying circuit performance using active-learning guided

support vector machines,” in Proceedings of the 2012 IEEE/ACM International

Conference on Computer-Aided Design, pp. 187–194, IEEE, 2012.

[15] J. Vlach and K. Singhal, Computer methods for circuit analysis and design.

Springer, 1983.

114

[16] M. Tian and C.-J. Shi, “Worst case tolerance analysis of linear analog circuits

using sensitivity bands,” IEEE Transactions on Circuits and Systems I: Funda-

mental Theory and Applications, vol. 47, no. 8, pp. 1138–1145, 2000.

[17] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nas-

sif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance cmos

variability in the 65-nm regime and beyond,” IBM Journal of Research and

Development, vol. 50, no. 4.5, pp. 433–449, 2006.

[18] R. Heald and P. Wang, “Variability in sub-100nm sram designs,” in Proceedings

of the 2004 IEEE/ACM International Conference on Computer-aided design,

pp. 347–352, IEEE Computer Society, 2004.

[19] D. Sylvester, K. Agarwal, and S. Shah, “Variability in nanometer cmos: Im-

pact, analysis, and minimization,” Integration, the VLSI Journal, vol. 41, no. 3,

pp. 319–339, 2008.

[20] S. Nassif, “Modeling and analysis of manufacturing variations,” in Proceedings

of the 2001 IEEE Conference on Custom Integrated Circuits, pp. 223–228, 2001.

[21] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Carley, “Maelstrom: efficient

simulation-based synthesis for custom analog cells,” in Proceedings of the 36th

ACM/IEEE Design Automation Conference, pp. 945–950, ACM, 1999.

[22] R. Phelps, M. Krasnicki, R. A. Rutenbar, L. R. Carley, and J. R. Hellums,

“Anaconda: simulation-based synthesis of analog circuits via stochastic pattern

search,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 19, no. 6, pp. 703–717, 2000.

[23] R. A. Rutenbar, G. G. Gielen, and J. Roychowdhury, “Hierarchical modeling,

optimization, and synthesis for system-level analog and rf designs,” Proceedings

115

of the IEEE, vol. 95, no. 3, pp. 640–669, 2007.

[24] W. Daems, G. Gielen, and W. Sansen, “Simulation-based generation of posyn-

omial performance models for the sizing of analog integrated circuits,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 22, no. 5, pp. 517–534, 2003.

[25] D. Binkley, C. Hopper, S. D. Tucker, B. C. Moss, J. M. Rochelle, and D. Foty,

“A cad methodology for optimizing transistor current and sizing in analog cmos

design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 22, no. 2, pp. 225–237, 2003.

[26] M. Eick and H. E. Graeb, “Mars: Matching-driven analog sizing,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31,

no. 8, pp. 1145–1158, 2012.

[27] L. W. Nagel and D. O. Pederson, SPICE: Simulation program with integrated

circuit emphasis. Electronics Research Laboratory, College of Engineering, Uni-

versity of California, 1973.

[28] E. Christen and K. Bakalar, “Vhdl-ams-a hardware description language for

analog and mixed-signal applications,” IEEE Transactions on Circuits and Sys-

tems II: Analog and Digital Signal Processing, vol. 46, no. 10, pp. 1263–1272,

1999.

[29] K. Kundert and O. Zinke, The designers guide to Verilog-AMS. Springer, 2004.

[30] D. Potop-Butucaru, C. Lallement, and A. Vachoux, “Vhdl-ams and verilog-ams

as alternative hardware description languages for efficient modeling of multidis-

cipline systems,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 24, no. 2, pp. 204–225, 2005.

116

[31] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure probability

and statistical design of sram array for yield enhancement in nanoscaled cmos,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 24, pp. 1859–1880, Dec 2005.

[32] M. Burns and G. W. Roberts, An introduction to mixed-signal IC test and

measurement, vol. 2001. IET, 2001.

[33] M. Soma, “A design-for-test methodology for active analog filters,” in Proceed-

ings of the 1990 International Test Conference, pp. 183–192, IEEE, 1990.

[34] K. Arabi and B. Kaminska, “Oscillation-test strategy for analog and mixed-

signal integrated circuits,” in Proceedings of 14th VLSI Test Symposium, 1996,

pp. 476–482, IEEE, 1996.

[35] K. Arabi and B. Kaminska, “Oscillation-test methodology for low-cost testing of

active analog filters,” IEEE Transactions on Instrumentation and Measurement,

vol. 48, no. 4, pp. 798–806, 1999.

[36] J. A. Starzyk, D. Liu, Z.-H. Liu, D. E. Nelson, and J. O. Rutkowski, “Entropy-

based optimum test points selection for analog fault dictionary techniques,”

IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 3,

pp. 754–761, 2004.

[37] M. Aminian and F. Aminian, “Neural-network based analog-circuit fault diag-

nosis using wavelet transform as preprocessor,” IEEE Transactions on Circuits

and Systems II: Analog and Digital Signal Processing, vol. 47, no. 2, pp. 151–156,

2000.

[38] F. Aminian, M. Aminian, and H. Collins Jr, “Analog fault diagnosis of actual

circuits using neural networks,” IEEE Transactions on Instrumentation and

117

Measurement, vol. 51, no. 3, pp. 544–550, 2002.

[39] V. Prasad and N. S. C. Babu, “Selection of test nodes for analog fault diagnosis

in dictionary approach,” IEEE Transactions on Instrumentation and Measure-

ment, vol. 49, no. 6, pp. 1289–1297, 2000.

[40] G. Devarayanadurg and M. Soma, “Analytical fault modeling and static test

generation for analog ics,” in Proceedings of the 1994 IEEE/ACM Interna-

tional Conference on Computer-aided design, pp. 44–47, IEEE Computer So-

ciety Press, 1994.

[41] C. Alippi, M. Catelani, A. Fort, and M. Mugnaini, “Automated selection of test

frequencies for fault diagnosis in analog electronic circuits,” IEEE Transactions

on Instrumentation and Measurement, vol. 54, no. 3, pp. 1033–1044, 2005.

[42] T. Golonek and J. Rutkowski, “Genetic-algorithm-based method for optimal

analog test point selection,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 54, no. 2, pp. 117–121, 2007.

[43] N. Nagi, A. Chatterjee, A. Balivada, and J. A. Abraham, “Fault-based au-

tomatic test generator for linear analog circuits,” in Proceedings of the 1993

IEEE/ACM International Conference on Computer-aided design, pp. 88–91,

IEEE Computer Society Press, 1993.

[44] S. Mir, M. Lubaszewski, and B. Courtois, “Fault-based atpg for linear ana-

log circuits with minimal size multifrequency test sets,” Journal of Electronic

Testing, vol. 9, no. 1-2, pp. 43–57, 1996.

[45] M. Slamani and B. Kaminska, “Analog circuit fault diagnosis based on sensi-

tivity computation and functional testing,” IEEE Design & Test of Computers,

vol. 9, no. 1, pp. 30–39, 1992.

118

[46] S. Cherubal and A. Chatterjee, “Parametric fault diagnosis for analog systems

using functional mapping,” in Proceedings of the 1999 Design, Automation and

Test in Europe Conference and Exhibition, pp. 195–200, 1999.

[47] C. Alippi, M. Catelani, A. Fort, and M. Mugnaini, “Sbt soft fault diagnosis

in analog electronic circuits: a sensitivity-based approach by randomized al-

gorithms,” IEEE Transactions on Instrumentation and Measurement, vol. 51,

no. 5, pp. 1116–1125, 2002.

[48] S. Chakrabarti, S. Cherubal, and A. Chatterjee, “Fault diagnosis for mixed-

signal electronic systems,” in Proceedings of the 1999 IEEE Aerospace Confer-

ence, vol. 3, pp. 169–179, IEEE, 1999.

[49] K. Huang, H.-G. Stratigopoulos, and S. Mir, “Fault diagnosis of analog circuits

based on machine learning,” in Proceedings of the 2010 Design, Automation &

Test in Europe Conference & Exhibition, pp. 1761–1766, IEEE, 2010.

[50] H. A. Chipman, E. I. George, and R. E. Mcculloch, “Bart: Bayesian additive

regression trees,” Annals of Applied Statistics, vol. 4, no. 1, pp. 266–298, 2010.

[51] M. Stein, “Large sample properties of simulations using latin hypercube sam-

pling,” Technometrics, vol. 29, no. 2, pp. 143–151, 1987.

[52] T. Hastie and R. Tibshirani, “Bayesian backfitting,” Statistical Science, vol. 15,

pp. 193–223, 1998.

[53] A. Krogh, J. Vedelsby, et al., “Neural network ensembles, cross validation, and

active learning,” Advances in Neural Information Processing Systems, vol. 7,

pp. 231–238, 1995.

[54] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation methods: a

survey and categorisation,” Information Fusion, vol. 6, no. 1, pp. 5–20, 2005.

119

[55] T. Blickle and L. Thiele, “A comparison of selection schemes used in genetic

algorithms,” tech. rep., Gloriastrasse 35, CH-8092 Zurich: Swiss Federal Insti-

tute of Technology (ETH) Zurich, Computer Engineering and Communications

Networks Lab (TIK, 1995.

[56] J. R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann Pub-

lishers Inc., 1993.

[57] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the 12th Inter-

national Conference on Machine Learning, 1994.

[58] M. A. Hall, Correlation-based feature selection for machine learning. PhD thesis,

The University of Waikato, 1999.

[59] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of oblique

decision trees,” Journal of Artificial Intelligence Research, vol. 2, pp. 1–32, 1994.

[60] J. H. Friedman, “Greedy function approximation: A gradient boosting ma-

chine,” Annals of Statistics, vol. 29, pp. 1189–1232, 2000.

[61] L. Breiman, “Bagging predictors,” in Machine Learning, pp. 123–140, 1996.

[62] L. Breiman, “Random forests,” in Machine Learning, pp. 5–32, 2001.

[63] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B.

Rubin, Bayesian data analysis. CRC press, 2013.

[64] C.-K. Wong and M. C. Easton, “An efficient method for weighted sampling

without replacement,” SIAM Journal on Computing, vol. 9, no. 1, pp. 111–113,

1980.

[65] B. D. Ripley, Stochastic simulation, vol. 316. John Wiley & Sons, 2009.

[66] S. Sunter and N. Nagi, “Test metrics for analog parametric faults,” in Proceed-

ings of the 17th IEEE VLSI Test Symposium, pp. 226–234, IEEE, 1999.

120

[67] K. Arabi and B. Kaminska, “Parametric and catastrophic fault coverage of

analog circuits in oscillation-test methodology,” in Proceedings of the 15th IEEE

VLSI Test Symposium, pp. 166–171, IEEE, 1997.

[68] B. W. Silverman, Density estimation for statistics and data analysis, vol. 26.

CRC press, 1986.

[69] Q. Li and J. S. Racine, Nonparametric econometrics: Theory and practice.

Princeton University Press, 2007.

121

