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ABSTRACT

With the ever-growing volume and speed of Internet traffic, network applications

place higher demand on packet I/O rates. Although 1-Gbps and even 10-Gbps

Ethernet are widely adopted, achieving wire rate with small packets remains hindered

by bottlenecks inside the TCP/IP stack. Improvements have been made for Linux,

but there is still limited work in Windows. To bridge this gap, we build a new

generation of our network driver IRLstack and show that it can achieve 10 Gbps

wire rate (i.e. 14.88 Mpps), for both send and receive, with zero CPU utilization.

This compares favorably to the fastest Linux versions, which typically saturate one

or more CPU cores and often fail to achieve this rate in both directions.
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1. INTRODUCTION

Many Internet studies require high-performance networking. Examples include

active probing during Internet-wide scanning [1, 8, 16], wire-rate capture at secu-

rity devices (e.g., firewalls [13], IDS [14]), large-scale web crawling [7], and software

routers [2]. However, the default TCP/IP stack in commodity operating systems is

not well-designed for fast I/O, especially when packet size is small. Using Windows as

our main target, Table 1.1 shows how poorly Winsock performs with a 1-Gbps NIC.

These numbers are similar to those in [17], but with a more-modern and faster CPU.

Observe in the table that sending to the same destination maxes out at 51% of the

wire rate and saturates all six cores. Producing packets towards unique destinations

is much worse and at best achieves 3.5%. The latter case also shows major scalability

issues when the application runs on multiple cores – higher CPU utilization produces

lower speed!

1.1 Building TCP/IP stack

The issue of partially (or entirely) bypassing the TCP/IP stack is well-researched

in Linux. In Windows, the issue of building a custom stack is more challenging

since one has access to the source code of neither the NIC device driver nor the

kernel. Network drivers must be written using a set of APIs called Network Driver

Interface Specification (NDIS), which acts as a wrapper for accessing the hardware.

NDIS employs a strict layering architecture where drivers can exchange packets only

if they are in adjacent layers. This is illustrated in Figure 1.1. Application data is

transmitted through Winsock APIs to the Ancillary Function Driver (AFD), which

is responsible for buffer management and communication with the requested protocol

driver. Under normal conditions, AFD forwards data to the TCP/IP driver tcpip.

1



Socket type Destination 1 core 2 cores 3 cores 6 cores

Regular UDP single 337,484 443,674 575,325 758,179
all unique 53,023 23,517 17,468 18,744

Raw UDP single 226,768 290,626 393,359 620,192
all unique 50,292 25,052 20,489 18,517

Raw IP single 141,546 199,350 262,647 408,350
all unique 44,704 23,019 17,325 16,082

Table 1.1: Rate in pps while sending 64-byte UDP packets in Winsock at 100% CPU
utilization of each core (AMD Phenom II @ 2.8 GHz, Intel PRO/1000 PT adapter,
1.488 Mpps wire speed).

sys, which consists of the transport, network, and link layers. Packets created by

the protocol driver pass through the underlying filter drivers, which can monitor

and modify both incoming and outgoing packets. At the bottom of NDIS are the

miniport drivers, which interact with the hardware to configure DMA requests and

respond to interrupts.

2
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Figure 1.1: Windows network architecture.
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2. RELATED WORK

2.1 Packet I/O Engine

Packet I/O Engine [2] is a set of custom device drivers for two 10-Gbps Intel

chipsets (i.e., 82598 and 82599), utilizing such optimizations as batch processing, soft-

ware prefetch, multiple rx/tx queues, and Receive Side Scaling (RSS) for multi-core

systems. User applications communicate with these drivers using ioctl primitives

of the OS.

2.2 PF RING

PF RING is a highly optimized Linux network stack developed by the ntop

project. Their early work, called Vanilla [10], pulls packets from the NIC into a

circular buffer via Linux’s NAPI. User applications subsequently retrieve data from

this ring into their memory space. Follow-up work, known as Direct NIC Access

(DNA) [11], is a faster driver that maps NIC registers to user space and operates

through DMA. On top of this driver, a library is provided for packet distribution

across threads and processes. Due to its commercial nature, the user-space library

of PF RING DNA is not open-source [12].

2.3 Netmap

Netmap [15] is a framework similar to the Packet I/O Engine that is built into

the kernel. It communicates with clients through custom system calls and supports

several Intel, Realtek, and Nvidia adapters. Recent FreeBSD (FreeBSD HEAD and

stable/9) already includes netmap in the source tree.

4



2.4 IRLstack

IRLstack 1.0 [17] is a set of two Windows drivers as shown in Figure 2.1 where

packets are first transmitted from user space to a special protocol driver, which then

forwards them to a custom filter driver. Data transfers are handled entirely through

NDIS, which makes it suitable for any NIC that has an installed miniport driver.

While IRLstack 1.0 can saturate a 1 Gbps link in certain cases and achieve 3.5 Gbps

with quad-port NICs, its frequent calls to NDIS limit performance and its dual-

driver kernel architecture is difficult to maintain/extend. IRLstack 2.0 [18] reduces

the number of interrupts generated in the previous version and streamlines the user

interface, but does not offer significant performance improvements. Needless to say,

neither the 1.0 nor 2.0 driver can handle 10-Gbps rates.

2.5 WinPcap

WinPcap [19] is a popular tool for network capture and transmission in Win-

dows. It includes a filter driver, a low-level interface library, and a high-level system-

independent library. In theory, it should be faster than the standard Winsock, but

results show [17] that it often performs no better and sometimes even worse.

5



NDIS 

layers 

 

Kernel 

User  
 afd.sys 

IRLsocket 

Transport 

Network 

Link 

 

NIC driver 

NIC 

 

Filter 

drivers 

Miniport 

drivers 

Protocol 

drivers tcpip.sys 

IRLprot 

IRLndis 

IRL filter 

Figure 2.1: IRLstack 2.0 architecture.

6



3. IRLSTACK 3.0

In the design of network stacks, there is an inherent tradeoff between speed and

generality. Compatibility with all types of adapters supported by the OS requires

usage of the manufacturer’s miniport (device) driver and kernel NDIS primitives. In

many cases, these two contain enough bottlenecks to prevent wire rate operation even

at 1 Gbps. To achieve the highest performance, user applications must communicate

directly with the NIC, which limits the generality of the provided solution. Therefore,

it is customary to provide two drivers – one that relies on the OS to move packets

to/from the device driver and the other that completely bypasses the kernel. This

architecture is implemented in PF RING under the names of Vanilla and DNA,

respectively. We keep notation the same for simplicity and now build these two

architectures in Windows.

In both methods, some portions of RAM must be shared between kernel and

user space. This not only improves performance by eliminating per-packet system

calls, avoiding interrupts, and reducing the number of memory copies, but also al-

lows building of network protocols entirely in user space. This simplifies the de-

velopment process by avoiding extensive kernel debugging. There are two basic

methods to share memory. One is to create a buffer in a user application and pass

it to the driver as the output buffer parameter via an ioctl with overlapped (i.e.

asynchronous) structure. The user buffer is then checked for correct access and

locked in the memory. The driver keeps the IRP (I/O Request Packets) generated

by the ioctl command pending in order to share the output buffer between ker-

nel and user space. Only when the driver no longer needs to share the buffer, it

sets the IRP complete. The other is to allocate pages in the driver and map them

7



into the application address space. This scheme is easy to use as it only needs

to call several Windows APIs. The driver allocates non-paged memory using the

MmAllocatePagesForMdl API (MmAllocatePagesForMdlEx for Windows Server 2003

Service Pack 1 and later), which returns an memory descriptor list (MDL) describes

the allocated memory. Then the driver maps the allocated pages to kernel space via

the MmGetSystemAddressForMdlSafe API. To share the memory, the driver calls the

MmMapLockedPagesSpecifyCache API with UserMode as its AccessMode parameter

within the context of the user process and return the user virtual address when the

application issues an ioctl. If implemented correctly, both methods are safe when

user processes exit accidently. However, for easy sharing of memory regions across

multiple user processes, we chose the latter approach.

3.1 IRLstack 3.0 Vanilla

Our first contribution is to redesign IRLstack 1.0 to move data from kernel to

user space without using IRPs, which is a framework of system calls for applications

to retrieve pending packets from kernel space in Windows. This in turn allows elim-

ination of the protocol driver and leads to simplification of the entire architecture.

As shown in Figure 3.1, IRLstack 3.0 only runs a filter driver that shares its circular

buffer with a user library we call IRLthread, whose purpose is to demultiplex pack-

ets to individual IRLsockets. Since this configuration relies on the miniport driver

for both send/receive, it is compatible with all hardware that Windows normally

supports.

3.1.1 Receiving packets

In NDIS 6.x, network packets data are represented in NetBuffer (NB) and

NetBufferList (NBL). Every packet is wrapped in NB structure. A NBL may

contain a group of NBs with each NB representing one packet, and multiple NBLs

8
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Figure 3.1: IRLstack Generic kernel architecture

can be chained together. In the receive path, each NBL contains exactly one NB.

If an incoming packet is not IP (e.g., ARP, IPX, AppleTalk) or is destined to the

primary IP address of the host, it is passed through to tcpip.sys. Otherwise, it

is redirected to IRLthread by removing the corresponding NBL from the chain and

copying the data from the NB to the shared circular buffer with a frame header

specifying its length. This logic allows IRLstack 3.0 to transparently co-exist with

the networking ecosystem of the operating system (e.g., remote desktop, domain

authentication, web browsing). All experiments that require IRLstack must utilize

secondary IP addresses. For example, our Internet scanning [8] usually runs with

61-123 IPs aliased to the same NIC, in addition to the primary IP.

9



3.1.2 Sending packets

For departing packets, user applications write data into the shared circular buffer

with a special frame header in the front indicating the length of the packet. The

filter operates on a timer that allows it to poll the tail of the queue and wrap

the available packets into a corresponding NB structure for consumption by NDIS.

We utilize NDIS’ ability to transmit multiple packets by placing them into a single

NBL, where the optimal batch size is close to 150 packets. This number provides

a good balance between the frequency of interrupts generated by the miniport and

artificially introduced delays in the send path. To avoid CPU-intensive allocation

and deallocation of NBs for every packet, we maintain a free list of NBs, which is

consulted every time the filter reads a packet from the user. If the free list is empty,

a new NB is created. To ensure cached NBs contain enough space for outgoing

packets, they are spawned with a pre-allocated data buffer of size larger than the

maximum transmission unit (MTU). Since the NBs and NBLs we send are allocated

from our own SendNetBufferPool and SendNetBufferListPool, when the miniport

indicates completion of a chain of NBLs, we are able to check their NdisPoolHandle

to know which NBLs are originated from our filter driver. If a NBL is owned by

us, it is removed from the chain and its individual NBs are returned to the free list.

Results show that the best performance is achieved with approximately 120 pending

NBLs.

IRLstack 3.0 Vanilla depends on the miniport driver’s overhead and the various

bottlenecks in the NDIS layer. As we show later, these are quite expensive. An extra

limitation of this approach is the single-threaded operation of the miniport for each

NIC device, which prevents performance increase from utilizing multiple cores.
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3.2 IRLstack 3.0 DNA

To bypass the miniport, our second contribution is to use the filter to allow

the application to modify NIC registers and control DMA transfers. The current

version works for popular 10-Gbps adapters based on the Intel 82598, 82599, and

x540 chipsets. In Linux, all of the existing work [2, 11, 15] incorporates additional

functionality directly into the source code of the Intel IXGBE driver. In Windows,

however, this is impossible. Our solution is to leave the Intel miniport responsible

for configuring NIC parameters during boot. Our filter driver retrieves the base

physical address of NIC registers (by sending the IoGetDeviceProperty request

to the miniport) and maps it to kernel space. Once this is done, the filter can

access any register of the NIC, obtain the necessary pointers from it, referring to

the Intel datasheet of each chipset [3, 4, 5], and make the registers available to the

application. After the filter maps the register information to the applications, data

in both direction is directly exchanged between the users and the NIC, ultimately

bypassing the entire NDIS stack.

3.2.1 NIC operation

NICs manage packets through descriptors queues (also called rings) shown in

Figure 3.2. The physical address of the queue (i.e., base) and its head/tail offsets

are stored in NIC registers that are readable/writable by the host. Each entry in

the ring has a pointer to the physical address of the packet buffer. In the send

path, the NIC monitors the tail register and uses DMA to fetch outgoing packets

(first their descriptors, then the corresponding payload). Completion information

is written back to the descriptors using DMA and the head register is advanced to

indicate availability of the slot to the host. In the receive path, operation is similar,

except the role of the head/tail offsets is reversed. Transmit descriptor has legacy

11
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Figure 3.2: NIC operation

and advanced format. We choose to use legacy format since it is more efficient,

achieving 10% speedup according to our test.

3.2.2 Setup

Since the miniport does not expect other programs to manipulate descriptor

queues, there may be race conditions between IRLstack and the miniport, which often

lead to an OS crash. Fortunately, the miniport uses only the first two queues, leaving

the other ones available for contention-free modification. Considering that modern

NICs support between 32 to 128 TX/RX queues (depending on the chipset), loss of

two of these is insignificant in practice. To avoid expensive allocation/deallocation

of packet buffer for every user application, we also create a data ring for each de-

scriptor queue. For each descriptor and data ring, the filter driver of IRLstack in

Figure 3.3 first allocates buffers using contiguous non-pageable kernel memory via

12



the MmAllocateContiguousMemorySpecifyCache API, then creates MDL via the

NdisAllocateMdl API for the memory and finally maps it to user processes that

control the actual I/O. Each data queue has the same number of entries as the cor-

responding descriptor ring, where each packet is pre-allocated enough space to fit

the largest frame. Due to the 1-KB alignment required by Intel NICs, 1500-byte

MTUs occupy 2-KB buffers. Finally, these TX/RX queues are enabled when our

filter driver writes their information (e.g., physical address, range, etc.) to the cor-

responding registers. To map each pair of descriptor and data ring to different user

processes, the filter stores all of the mapping information with thread handle as iden-

tifier in a double linked list. Once a user process exits, the filter gets the notification

and unmaps the buffer within its context according to the record in the list. Since

the Windows miniport takes a conservative route with various performance features

of Intel cards, our filter driver must configure several per-queue features to achieve

better performance. We discuss these next.

3.2.3 Performance features

3.2.3.1 Descriptor prefetch and written-back

All 10-Gbps Intel chipsets maintain an internal buffer for TX descriptors of size

64 for the 82598 chipset and 40 for 82599 and x540 chipsets. While the Intel 82598

chipset also has an buffer for RX, the Intel 82599 and x540 chipsets eliminate the

on-chip buffer for reception. When this buffer is empty, a fetch occurs as soon as

any descriptor is available. A prefetch occurs when the on-chip buffer has fewer

than TXDCTL.PTHRESH unprocessed entries and there are at least TXDCTL.HTHRESH

descriptors available in host memory. To make the best use of the PCIe bandwidth,

we set the former to a large number (i.e., half of the internal buffer size) to make

prefetch more aggressive and the latter to a small number (i.e., 1) to reduce latency.

13
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This improves TX speed by 75%. In addition, the CPU cache line is typically larger

than the descriptor size (i.e., 16 bytes). Thus, writing back descriptors for each

packet causes expensive partial cache-line updates. This can be avoided by enabling

the NIC’s receive descriptor packing mechanism, which writes them in batches whose

size is controlled by register TXDCTL.WTHRESH. To maximize memory efficiency and

keep the latency reasonable, we set this value to exactly one cache line (i.e., 4).

3.2.3.2 Relaxed ordering

Another crucial feature that the Windows miniport driver fails to enable is re-

laxed ordering, which allows completion of DMA transactions to have no ordering

relationship with the reads/writes from the host CPU. More specific, the NIC may

write a large number of data blocks, followed by a descriptor write-back indicating

the availability of the data. When the user (we bypass the driver) sees the descriptor

14



updated, it begins to process the data. It doesn’t matter in what order the data

blocks get committed to RAM, but the descriptor must be written after all of the

data is in RAM, otherwise, the user may read the partially-updated data buffer after

seeing the descriptor get updated. Therefore, the data writes can employ relaxed

ordering, but the descriptor must be strictly ordered so that it will not pass the data

writes. That is why Intel requires us to not to enable relaxed ordering for RX de-

scriptor write-back. Since the number and size of data transactions are much larger

than descriptor updates, the system sees high write-to-memory performance when

relaxed ordering is enabled on the data transactions. For the Intel 82599 and x540

chipsets, this feature improves performance by 50% in the receive path. While similar

functionality exists for the send path, it does not have much impact in practice.

3.2.3.3 Receive side scaling

Another important mechanism for incoming packets is Receive Side Scaling (RSS)

whose purpose is to spread packets into multiple descriptor queues by applying a well-

known hash function (i.e., Microsoft RSS) to the packet’s connection 4-tuple. The

seven least-significant bits of the hash are used as an index into a 128-entry indirection

table, which specifies RX queues that handle each combination of the bits. The

standard use of RSS is to assign each queue to a different CPU in order to increase

processing speed. However, there is an additional purpose in IRLstack. To prevent

the miniport from handling incoming packets and ensure that IRLstack intercepts all

of them, we populate the entire RSS indirection table with our RX queues. If some

packets (e.g., those destined to the primary IP) must reach the default Windows

TCP/IP stack, IRLthread may return them to the filter for subsequent injection

into NDIS.

15



3.2.4 Reducing overhead

DMA transfers in user space need to check completion bits of descriptors, mem-

cpy data between socket and ring buffers, reset descriptors that have been consumed,

and move the head/tail registers. Our experiments show that memcpy does not cost

much CPU, but busy-spinning during polling does. To further reduce the overhead,

our strategy is to periodically wake up and consume as many descriptors as possible.

Writing the tail register for every descriptor is too much expensive. To reduce the

cost and still give the NIC enough time to move the head register, we write it every 64

descriptor. In Windows, the granularity of the sleep function is 1 millisecond. There-

fore, to achieve the wire rate of 14.88 Mpps, we need to consume 14,880 descriptors

per wake-up. Since the maximum NIC-supported queue size is 16,384 packets, wire

speed is feasible with just a single TX/RX queue. To reduce scheduling delay jitter,

we run user processes at real-time priority. In cases when this is undesirable or the

sleep resolution is much coarser, more queues may be needed.

3.3 IRLstack 3.0 in NDIS 6 framework

In this section, we give more details about how to build IRLstack 3.0 in NDIS filter

driver. When the filter is loaded, its entry point DriverEntry is called for registering

the driver and creating a device for users to communicate with. Function handlers

including the attach handler FilterAttach and the detach handler FilterDetach

are also assigned here. FilterAttach is called once for every adaptor to create filter’s

context, where we also add our initializations including allocating NetBufferPool and

NetBufferListPool for Vanilla, and mapping NIC registers for DNA. When the filter

stops, FilterDetach is called to free pools of Vanilla and TX/RX queues of DNA.

RegisterDevice is called in DriverEntry as well, inside which DispatchTable is

created to register handlers for different IRP requests (i.e. IRP CREATE, IRP CLEANUP,
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and IRP DEVICE CONTROL). We set DeviceIoControl function in this table to

reply IRP DEVICE CONTROL request which happens when users issue ioctl com-

mands with the open device handle. We define several custom commands, through

which users can get shared memories and mapped NIC registers. Another function

is registered to reply IRP CLEANUP request issued when a user close the device

handle. Upon the request, we unmap the shared memory within the user’s context.

While packets transmit and reception of DNA are built in user space, Vanilla

keeps them in the filter driver. In the send path, a timer is created when users

send ioctl to get the shared circular buffer via the NdisAllocateTimerObject API.

A send function is assigned in its TimerCharacteristics parameter to poll data

from the buffer. FilterSendNetBufferListsComplete is registered to reuse NBs

as the SendNetBufferListsCompleteHandler in DriverEntry which is described in

section 3.1.2. In the receive path, FilterReceiveNetBufferLists is registered to

process incoming packets as the ReceiveNetBufferListsHandler in DriverEntry,

which acts as described in section 3.1.1.

3.4 User interface

3.4.1 Receiving packets

As shown in Figure 3.3, IRLstack creates a number of TX/RX queues, typically

one pair for each CPU core. Along the receive path, RSS distributes arriving packets

into individual queues, which are then demultiplexed by IRLthread into multiple

IRLsocket connection buffers. We reuse the 4-tuple hash provided by the NIC in

descriptors to keep CPU utilization low in DNA mode. In Vanilla mode, we have

to compute the 4-tuple hash by our own. To share buffers between IRLsocket and

IRLthread, we use named shared memory. This allows any number of processes to

instantiate IRLsocket connections. The name of each buffer consists of the adapter
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string and the hash, which creates a unique label for each connection that does not

need to be explicitly communicated to IRLthread. IRLsocket implements Microsoft

RSS hash function in order to compute the hash and creates the named shared

memory for its connection. The RSS hash random keys stored in the NIC registers

for the hash function are retrieved by IRLthread and shared across every IRLsocket

via a global buffer (i.e. shared memory named by the adapter string). The process

is similar in Vanilla mode except we share a set of different random keys generated

by IRLthread. Since each packet size in the data queue is fixed at 2 KB and access

is sequential, IRLthread tries to reduce the cache miss rate by using CPU prefetch

on the next packet while memcpying the current one. Finally, since each connection

buffer has one producer and one consumer, the receive path is lock-free.

3.4.2 Sending packets

In the send path, IRLsocket directly posts data to the corresponding TX queue

using a lock provided by IRLthread. This is accomplished by mapping each TX

queue to all IRLsocket processes that run on the same core. To reduce the work of

IRLsockets, IRLthread fills up descriptors with necessary information (e.g., insert

checksum or not), making each one point to the corresponding physical address in

the data ring for every TX queue. What IRLsockets need to do is only memcpy

data into the data ring and set the packet length in the descriptor. Since kernel-level

mutex/semaphore primitives in Windows are inefficient, we build a custom mutex on

top of basic interlocked CPU instructions. This mechanism first tries to acquire the

mutex in user mode by busy-spinning one a shared variable for a number of iterations.

If this is unsuccessful, it gives up and goes to sleep on a kernel-mode semaphore. To

further amortize the cost of competing for the lock, IRLsocket generates data in

64-packet bursts. This batch processing also enables easy adoption of CPU prefetch
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for TX descriptor and data queues.
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4. EXPERIMENTS

4.1 Setup

Our third contribution is to benchmark IRLstack under Windows 2008 R2 and

compare it to PF RING Vanilla/DNA and Packet I/O Engine in Linux 3.0.0, and

Netmap in FreeBSD 9.3-RELEASE on the same hardware. Our test machines are

both 6-core desktop processors – AMD Phenom II (2.8 GHz) and Intel i7-3930 (4.4

GHz). For 1 Gbps, we use a standalone quad-port Intel Pro/1000 PT and two moth-

erboard NICs from the hosts mentioned above (Realtek 8168C and Intel 82579LM,

respectively). For 10 Gbps, we examine a single-port AT2 (Intel 82598EB chipset),

dual port x520-T2 (Intel 82599), and dual-port x540-T2 (Intel x540), listed in the

order from the oldest to the newest. All the experiments except those for examining

performance of IRLsocket use one IRLsocekt for send and receive (i.e. promiscuous

mode). To measure pure speed, we run the experiments on directly connected cards

in two machines with TX/RX flow control disabled and CPUs running on maximum

frequency constantly.

4.2 Results

4.2.1 Vanilla performance

Table 4.1 shows performance of Vanilla versions of IRLstack and PF RING where

cells with wire rate number are highlighted. Note that the latter spawns two pro-

cesses and its total CPU usage sometimes exceeds one full core (which explains CPU

utilization above 100%). In all cases except the sending rate on 82579LM, IRLstack

outperforms PF RING while keeping CPU utilization equal or lower. PF RING even

crashes the OS in the receive path on the Realtek adaptor. More surprisingly, IRL-
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Link Speed NIC CPU IRLstack 3.0 PF RING
Mpps CPU Mpps CPU

1 Gbps PRO/1000 PT AMD TX 1.486 100% 1.013 100%
RX 1.250 42% 1.136 108%

Realtek 8168C AMD TX 0.685 54% 0.405 115%
RX 1.488 60% crashed

Intel 82579LM Intel TX 0.412 84% 0.905 100%
RX 1.483 36% 1.344 108%

10 Gbps AT2 Intel TX 1.350 100% 0.827 100%
RX 9.023 100% 0.936 106%

x520 Intel TX 2.739 100% 0.807 100%
RX 9.294 100% 1.140 108%

x540 Intel TX 3.724 100% 0.983 100%
RX 9.643 100% 1.124 102%

Table 4.1: Performance of Vanilla drivers (CPU utilization is percent of one core).

stack’s receive rate on 10-Gbps adapters is an order of magnitude higher than that

of PF RING.

4.2.2 DNA performance

The rest of the experiments are run on 10-Gbps adapters using DNA. Table 4.2

shows the result on the AMD system. Only Netmap can achieve wire rate on x520

with one core maxed out for receive. It also reaches wire rate for send on AT2

and receive on x540. Except that, none of the other methods can reach wire rate

simultaneously in both RX/TX directions. What stands out is that IRLstack always

uses zero CPU, achieving wire rate for send on x520 with one or two ports and on

x540 with one port. PF RING can receive at wire rate on x520 and x540 with one

core maxed out, which is similar to Netmap, while the Packet I/O Engine never

reaches wire rate. Table 4.3 shows the result on the Intel processor, where IRLstack

outperforms the PF RING and Packet I/O Engine on all three adapters, achieves

full wire rate in both directions on x540, and keeps 0% CPU utilization. Although

21



NIC Ports Dir IRLstack 3.0 PF RING I/O Engine Netmap
/ cores Mpps CPU Mpps CPU Mpps CPU Mpps CPU

AT2 1 TX 14.80 0% 14.09 45% 14.01 100% 14.88 60%
RX 13.34 0% 13.94 100% 7.97 26% 13.95 100%

x520 1 TX 14.88 0% 14.59 47% 13.12 100% 14.88 55%
RX 14.34 0% 14.88 100% 14.64 100% 14.88 100%

2 TX 29.76 0% 28.86 94% 24.90 200% 29.76 120%
RX 27.40 0% 29.76 200% 29.14 196% 29.76 200%

x540 1 TX 14.88 0% 14.46 45%

not supported

13.38 45%
RX 14.45 0% 14.88 100% 14.88 100%

2 TX 29.04 0% 28.58 90% 27.06 100%
RX 27.78 0% 29.76 200% 29.76 200%

Table 4.2: AMD performance of DNA drivers (CPU utilization is percent of one
core).

Netmap has faster receive rate on x520 with one port, it is not as fast as IRLstack

in any other cases.

Our next experiment is to examine scalability of the drivers operating with a

single NIC port to multiple cores. As PF RING DNA does not provide multi-core

support and we fails to enable multiple TX/RX queues on Netmap, we only com-

pare our work with the Packet I/O Engine. Table 4.4 shows their performance on

the AMD processor. While IRLstack always keeps the CPU at zero utilization, its

performance slightly degrades with parallelization. This was expected due to higher

lock contention and non-sequential RAM access during memcpy. The Packet I/O

Engine in some cases exceeds the speed of IRLstack, but this is accompanied by a

significantly higher CPU overhead. Both methods can send at wire rate on x520, but

neither can achieve it on receive. Table 4.5 shows the result on the Intel processor.

Here, IRLstack scales much better and beats the Packet I/O Engine in almost all

cases. It achieves wire rate for send on AT2, and in both directions on x520 using

22



NIC Ports Dir IRLstack 3.0 PF RING I/O Engine Netmap
/ cores Mpps CPU Mpps CPU Mpps CPU Mpps CPU

AT2 1 TX 14.88 0% 14.20 35% 14.20 100% 14.88 30%
RX 14.12 0% 14.08 100% 5.49 13% 14.09 100%

x520 1 TX 14.88 0% 14.88 35% 14.21 42% 14.88 26%
RX 14.80 0% 14.40 100% 14.58 42% 14.71 100%

2 TX 29.76 0% 29.74 70% 26.64 100% 29.76 68%
RX 29.42 0% 28.92 200% 29.10 100% 29.76 100%

x540 1 TX 14.88 0% 14.34 33%

not supported

13.58 27%
RX 14.88 0% 14.88 100% 14.88 100%

2 TX 29.76 0% 28.80 67% 27.18 68%
RX 29.76 0% 29.76 200% 29.76 200%

Table 4.3: Intel performance of DNA drivers (CPU utilization is percent of one core).

four cores and x540 using any number of cores.

4.2.3 IRLsocket performance

The last experiment is to measure the performance of IRLsocket. We examine

it on x540 using the Intel processor. For send, we run multiple IRLsockets that

share per-core TX queue and lock. For receive, each IRLsocket representing one

connection binds to the RX queue calculated by user-level RSS. The generator in

another machine sends packets to different connections in round-robin way. Table

4.6 shows the send performance. We achieve wire rate using zero CPU with up to

400 processes on any number of cores. Table 4.7 shows the receive performance.

Here, only one core is no longer suitable for running more than 100 connections.

Fortunately, RSS mechanism enables us to make use of multi-core system, which

scales quite well. When using three cores, it can reach wire rate for 400 processes

with zero CPU.
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AT2 (82598EB chipset)
1 core 2 cores 4 cores 6 cores

Mpps CPU Mpps CPU Mpps CPU Mpps CPU
IRLstack 3.0 DNA TX 14.80 0% 14.68 0% 14.08 0% 13.89 0%

RX 13.34 0% 13.41 0% 13.46 0% 13.48 0%
I/O Engine TX 14.01 100% 13.68 200% 13.90 400% 13.76 595%

RX 7.97 26% 10.06 30% 12.96 45% 12.97 50%

x520-T2 (82599 chipset)
IRLstack 3.0 DNA TX 14.88 0% 14.88 0% 14.88 0% 14.88 0%

RX 14.34 0% 14.36 0% 14.29 0% 13.67 0%
I/O Engine TX 13.12 100% 14.47 200% 14.88 400% 14.88 599%

RX 14.64 100% 13.51 68% 14.13 76% 14.12 75%

x540-T2 (x540 chipset)
IRLstack 3.0 DNA TX 14.88 0% 13.49 0% 13.96 0% 13.99 0%

RX 14.45 0% 14.42 0% 14.33 0% 14.23 0%

Table 4.4: AMD performance with multiple cores (CPU utilization percent of one
core).

AT2 (82598EB chipset)
1 core 2 cores 4 cores 6 cores

Mpps CPU Mpps CPU Mpps CPU Mpps CPU
IRLstack 3.0 DNA TX 14.88 0% 14.88 0% 14.88 0% 14.88 0%

RX 14.12 0% 14.08 0% 14.06 0% 14.05 0%
I/O Engine TX 14.20 100% 14.18 200% 14.18 400% 14.15 600%

RX 5.49 13% 9.18 24% 13.70 40% 13.69 41%

x520-T2 (82599 chipset)
IRLstack 3.0 DNA TX 14.88 0% 14.88 0% 14.88 0% 14.88 0%

RX 14.80 0% 14.84 0% 14.88 0% 14.11 0%
I/O Engine TX 14.21 100% 14.88 200% 14.88 400% 14.88 600%

RX 14.58 42% 14.77 34% 14.84 45% 14.84 42%

x540-T2 (x540 chipset)
IRLstack 3.0 DNA TX 14.88 0% 14.88 0% 14.88 0% 14.88 0%

RX 14.88 0% 14.88 0% 14.88 0% 14.88 0%

Table 4.5: Intel performance with multiple cores (CPU utilization percent of one
core).

24



# processes
# cores 100 200 300 400

1 core 14.88 (0%) 14.88 (0%) 14.88 (0%) 14.88 (0%)
2 cores 14.88 (0%) 14.88 (0%) 14.88 (0%) 14.88 (0%)
3 cores 14.88 (0%) 14.88 (0%) 14.88 (0%) 14.88 (0%)

Table 4.6: IRLsocket send performance on the Intel processor (CPU utilization per-
cent of one core).

# processes
# cores 100 200 300 400

1 core 14.87 (100%) 8.19 (48%) 8.19 (48%) 8.19 (48%)
2 cores 14.88 (100%) 14.88 (100%) 14.85 (200%) 11.39 (120%)
3 cores 14.88 (0%) 14.88 (0%) 14.88 (0%) 14.88 (0%)

Table 4.7: IRLsocket receive performance on the Intel processor (CPU utilization
percent of one core).
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5. CONCLUSIONS

We proposed a set of new algorithms for improving Windows networking and

demonstrated that IRLstack 3.0 could achieve significantly lower CPU utilization

and higher pps throughput compared to the fastest Linux variants, especially while

utilizing the Intel i7 processor. We provided a socket-like library IRLsocket to users

which scales well in multi-core system. Future work involves implementing a complete

TCP stack to support a wider range of applications, and comparing its performance

with existing work [6, 9] built on top of Packet I/O Engine and Netmap respectively.
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