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ABSTRACT

Bose-Einstein condensation (BEC) is one of the most intriguing macroscopic

quantum phenomena. It has been observed in a variety of different systems, includ-

ing ultracold atoms and ensembles of quasiparticles. In this work we concentrate

on the magnon Bose-Einstein condensation observed in ferromagnetic yttrium iron

garnet (YIG) film. In contrast to the cold atomic system, the magnon BEC proceeds

at room temperature. We first review the basic theory of magnons in ferromagnet-

ic film and discuss the recent experimental results on magnon BEC. The magnon

spectrum in YIG film has two minima of energy at nonzero wavevectors Q and −Q.

Therefore, in principle two condensates can appear. It is very important for observ-

able condensation phenomena how the condensed magnons are distributed between

the two minima and whether two condensates are coherent. Previous theoretical and

experimental studies ignored both these problems. In this dissertation we address

these important questions. Starting from the microscopic model describing the fer-

romagnetic film, we analytically calculate the interaction of condensates. It depends

on thickness of the film d and external magnetic field H0. In comparatively thick

films (1-5 µm)the magnons of the same condensate attract each other, whereas the

magnons of different condensate repulse. It leads to spontaneous violation of the

mirror symmetry predicted by our theory. As a consequence, the numbers of con-

densed magnons in the two minima are not equal. This result explains the rather

low contrast in the interference pattern observed in experiments by the real space

Brillouin light scattering methods. We also find that the dipolar interaction that

does not conserve the magnon number generates a special type of interaction that

leads to the coherence between two condensates and to the existence of two types

ii



of condensates with sum of their phase equal to either 0 or π. The existence of the

interference pattern violates also the translational symmetry of the condensate. The

corresponding excitations are Goldstone modes that we call ”zero sound’. We calcu-

lated its spectrum. We also calculated how the condensate depends on the thickness

of film and external magnetic field and discovered that , in the range of thickness

0.1 − 03 µm the phase transition to the phase with equal condensate densities pro-

ceeds. This transition as well as transition between 0− and π− phases can be driven

by external magnetic field.

Next we study the relaxation rate of condensed magnons. There are two impor-

tant time scales in the formation of magnon BEC, that is, the thermalization time

τth and the life time τl. In order to generate and observe BEC, the condition τth � τl

must be fulfilled. Experimentally the thermalization time is of the order of 100 n-

s. The relaxation is due to the magnon-magnon interaction conserving the magnon

numbers. The lifetime is found to be of the order of 1 µs, and was thought to be

due to the magnon-phonon interaction which doesn’t conserve the magnon numbers.

However the calculation of lifetime due to magnon-phonon interaction disagrees with

the experimental values. Here we calculate the lifetime due to three magnon process-

es in a ferromagnetic film with finite thickness. Our calculation gives a lifetime of the

order of 10 µs, which is almost of the same order of magnitude with the one provided

by magnon-phonon interaction. This means that the three magnon processes provide

an important channel for the relaxation of condensed magnons.
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NOMENCLATURE

BEC Bose-Einstein condensation

YIG Yttrium-iron garnet

BLS Brillioun light scattering

2D 2 dimension

3D 3 dimension

DM Dzyaloshinsky-Moriya
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1. INTRODUCTION

Bose-Einstein condensation (BEC), one of the most intriguing macroscopic quan-

tum phenomena, has been observed in equilibrium systems of Bose atoms, like 4He

[42, 1], 87Rb [4] and 23Na [17]. Recent experiments have extended the concept of

BEC to non-equilibrium systems consisting of photons [46] and of quasiparticles,

such as excitons [10], polaritons [43, 5, 2] and magnons [87, 8, 21]. Among these,

BEC of magnons in films of Yttrium Iron Garnet (YIG), discovered by the group of

Demokritov [21, 27, 19, 20, 18, 26, 25, 28, 66], is distinguished from other quasiparti-

cle BEC systems by its room temperature transition and two-dimensional anisotropic

properties. In this thesis, we will theoretically study the phenomena of magnon Bose-

Einstein condensation observed in YIG film [53]. The peculiarity of the spin-wave

energy spectrum of the YIG film is that it has two energetically degenerate minima.

Therefore it is possible that the system may have two condensates in momentum

space [52]. An experiment by Nowik-Boltyk et al. [66] indeed shows a low-contrast

spatial modulation pattern, indicating that there is interference between the two con-

densates. Current theories [85, 71, 70, 72, 58, 84] do not describe the appearance of

coherence or the distribution of the two condensates. Our theory explains the reason

of low-contrast interference pattern and agrees well with the experiment. We predict

a new kind of collective oscillation, called zero sound. We also study the relaxation

of condensed magnons due to three magnon processes in the ferromagnetic film with

finite thickness.

1.1 Bose-Einstein condensation of cold atoms

The concept of Bose-Einstein Condensation (BEC) was first introduced by Ein-

stein in 1925 by applying the statistical approach developed by Bose for Bosons with
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conserved number of particles. It describes a macroscopic quantum phenomena in

which under some conditions, a sufficiently large number of Bosonic particles col-

lapse to a single quantum state with the lowest possible energy. The formation of a

collective quantum state is purely due to the quantum statistical properties of the

Bosonic particles that tend to stay together. For system with a fixed number of non-

interacting particles, BEC occurs when the quantum fluctuation is of the same order

of magnitude with thermal fluctuation, that is: h̄2

2ml2
= kBTc, with h̄, kB the Plank

constant and Boltzman constant, respectively. Also, Tc is the transition temperature

of BEC, l is the length of spacing between particles, and m is the mass of particle.

By using l = 1/n1/3 with n the density of particles, we obtain the expression for

transition temperature:

kBTc =
h̄2n3/2

2m
(1.1)

This simple argument gives the same result, up to a numerical factor, as that obtained

by exact calculation which can be found in any textbook of Statistical Physics (for

example, in [51]).

Shortly after the prediction of Einstein, the discovery of superfluidity of liquid

4He [42, 1] indirectly confirms the idea of BEC. Although this system is strongly

interacting and apparently differs from that considered by Einstein, the BEC is

assumed to underlie the effect of superfluidity of 4He [54, 7]. The pure BEC system

was not realized, until 70 years later when the BEC of dilute cooled atomic gases was

observed [4, 17]. The reason why the experimental discovery happened so late can be

partly explained by Eq. 1.1. The particle density n must not be two high otherwise

either the interacting effect becomes important or the atoms form molecules. As

a result, the transition temperature is rather low, of the order of 10−6 K. Such a
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temperature was reached only after the great improvement of cooling techniques in

experiment [59, 55, 52].

1.2 Bose-Einstein condensation of quasiparticles

Besides real atomic gases, it was also predicted that gases of different types of

quasiparticles, like excitons in semiconductors, would be good candidates for BEC.

Dated back to the 1960s, there were already several theoretical discussions of the

possibility of condensation in systems of longitudinal electric modes [29] and exci-

tons [6]. Compared to real atoms, the BEC of quasiparticles have two advantages:

First, the effective mass of quasiparticles are usually much smaller than that of real

atoms. This makes the transition temperature relatively larger because it is inversely

proportional to the mass. Second, the density of quasiparticle system can be easily

increased by increasing the external pumping without worrying about the forma-

tion of molecules. However, quasiparticle has a finite lifetime due to the inevitable

interactions between themselves or with phonons in the solids. This finite lifetime

requires that the BEC must be realized in a time scale much smaller than it. This

means that BEC of quasiparticles happens in a non-equilibrium state, or strictly

speaking, quasi-equilibrium. This is not a big problem, because it just brings the

BEC into another time scale while the effect is not cancelled. Actually, any BEC,

including BEC of atoms, is always in quasi-equlibrium. To date, BEC of quasiparti-

cles has been reported in systems of excitons [63, 10], polaritons [43, 5, 3], photons in

optical microcavity [46] and magnons in 3He[8] and Yttrium-Iron-Gargnet film[21].

Note that in a quite different context, magnon BEC in antiferromagnetic material

TlCuCl3 has also been discussed [64, 30, 90]
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1.3 Magnon Bose-Einstein condensation in YIG film

The theoretical prediction of magnon BEC in ferromagnetic materials can be

dated back to 1980s [36, 37, 38, 35], . However, no fundamental constrains were

suggested in all works, which would prevent the observation of BEC of magnons.

It was also proposed that the magnon BEC could be one of the explanations of

microwave radiation from the bottom of spin wave spectrum in YIG samples [61].

However, no sufficient experimental data were provided to prove this suggestion in

early days.

YIG material is very suitable for the realization of magnon BEC. The effective

mass of magnons near the minimum point (or points) is the order of electron mass,

which is at least 3 orders smaller than that of atoms. Moreover, in YIG, magnons

can be easily excited by parametric pumping with small loss. At the same time,

the lifetime of magnons near the minimum points is very long due to weak coupling

with phonon system, compared to the thermalization time due to sufficiently strong

magnon-magnon interaction conserving magnon numbers.

1.4 Outline of the work

Section 2 presents a basic introduction to spin wave theory. Both classical and

quantum theory are described after the introduction of all kinds of magnetic in-

troductions including exchange interactions, dipolar-dipolar interactions, anisotropy

and so on. Then we introduce the experimental discovery of magnon Bose-Einstein

condensation in Yttrium Iron Garnet by discussing the experimental setup and it-

s detection method, Brillouin light scattering. How the spontaneous appearance

of coherence of magnon BEC was confirmed in the experiment and the kinetics of

magnons in phase space are mainly stressed.

In Section 3, we give a detailed account of our work on magnon BEC. By taking
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into account the fourth order interaction of magnons, we analytically show that

the numbers of condensed magnons in the two condensates are not equal to each

other. This is a spontaneous breaking of a mirror symmetry induced by the magnon

interactions even though the mirror symmetry of the system is reserved. Our theory

points out that by changing thickness of YIG film or external magnetic field, it is

possible to vary the ratio of numbers of magnons in condensates. There are two

different phases with equal or not equal numbers of magnons in the two condensates.

We call these two cases as symmetric phase and asymmetric phase, and a phase

diagram is given. We also predict a new collective mode of excitation, called zero

sound.

In Section 4, we present the calculation of the relaxation of condensed magnons

due to three magnon processes when the film has finite thickness. It is found to

be of the same order of magnitude with that due to magnon-phonon interaction.

This study is important not only in the understanding of magnon BEC, but also in

the understanding of inverse spin Seebeck effect recently discovered in the YIG/Pt

heterostructure.

Section 5 is the conclusion.
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2. SPIN WAVE PHYSICS IN FERROMAGNETIC FILM

Spin wave is a kind of collective motion of spins in magnetic materials, not re-

stricted to ferromagnetic materials. From the point view of quantum mechanics, spin

wave can be treated in a convenient way by introducing the concept of an elemen-

tary excitation: magnon. Physically, the spin wave forms when the spins are made

to tilt from their equilibrium configuration, and due to the increase of local magnet-

ic interaction energy, local disturbance propagates through the magnetic media in

order to restore to the original equilibrium configuration, as shown is Fig. 2.1. Spin

waves carry energy and momentum. In ferromagnets they also carry spin or magne-

tization. Therefore, they determine the dynamics and thermodynamics of magnets.

The measurement of spin wave dispersion are traditionally used to determine funda-

mental parameters, such as exchange constant, anisotropy constant, dissipation and

so on. Spin wave quanta, or magnon, carries spin angular moment with magnitude

1. Therefore, it is considered to be a promising carrier of spin current. Thanks to

the rapid development of nanomagnetism and spintronics, a new field, magnonics,

emerges towards future application based on the utilizing and manipulation of spin

waves [89, 23].

In this section, we mainly introduce the basic classical and quantum theory of spin

waves, especially in ferromagnetic film. We also discuss the important experimental

discovery of Bose-Einstein condensation of magnon in Yttrium Iron Garnet film.

2.1 Different magnetic interactions

Before we start to investigate the energy spectrum and spin wave properties, let’s

review the different interactions in magnetic materials, including exchange inter-

action, anisotropy, dipolar-dipolar interaction and Dzyaloshinsky-Moria interaction

6



and so on.

2.1.1 Exchange interaction

The most important interaction in ferromagnetic substances is the exchange in-

teraction of atoms. This interaction is responsible for the spontaneous magnetization

of ferromagnets. The exchange interaction results from the electrostatic interaction,

i.e. the Coulomb interaction of electrons and the symmetry of the wave function of

the system related with the Pauli principle. It is usually described as Heisenberg

model, defined in terms of spin operators Si on a lattice model:

Hex =
∑
ij

JijSi · Sj (2.1)

in which Jij describes the exchange integral of spins between lattice i and j. A

characteristic property of this interaction is that it is independent of the orientation

of the magnetization relative to the lattice and does not depend on the direction of

the total spin. According to Goldstone theorem, a system of this kind of interaction

possesses a kind of Goldstone mode which is gapless. In this case, it is just the spin

wave. However, this mode will become gapped if we include other weaker, relativistic

interactions, such as dipolar interaction which breaks the continuous symmetry of

exchange interaction.

For Eq. 2.1, if J < 0, we call the exchange interaction being “ferromagnetic”, i.e.

such that the parallel position of the moments, or spins, is energetically favourable.

Other more complex cases may appear. For ferrimagnets, the structures can be

formed of two oppositely magnetized sub-lattices whose magnetizations are different

and which therefore are not completely compensated. For the case of complete

compensation, it corresponds to antiferromagnets.

Helical magnetic structures may appear if we have special conditions for Jij.
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Consider only the nearest neighbor integral J1 and next nearest neighbor integral J2

are important, and we have: J1 < 0 and J2 > 0, and |J1| > |J2|. Then one can expect

that due to negative J1, the ground state intends to align all the spins, however, the

positive J2 will make a small deviation of neighboring spins.

Schematics of ferromagnet, ferrimagnet, antiferromagnet and helical magnet are

shown in Fig. 2.2

On the macroscopic level, the energy is expressed in terms of a macroscopic

parameter, the magnetization moment M, which is a continuous function of coordi-

nates. That is to say, in the limit that the spin wavelength is large compared with

the lattice constant a, i.e. the wave number k � 1/a, the spin wave may be treated

macroscopically.

The exchange interaction in Eq. 2.1 can be rewritten in terms of M. The result

is a combination of a constant plus a non-uniform term, as shown in the following:

Uex =
1

2
αik

∂M

∂xi

∂M

∂xk
(2.2)

The expression is constructed so that it is independent of the absolute direction

of M. In uniaxial crystals, the symmetric tensor αik of rank two has components

αxx = αyy ≡ α1, αzz ≡ α2 where the z=axis is the axis of symmetry of the crystal;

in cubic crystals, αik = αδik. Specifically:

Uex =
1

2
α
[
(∂xM)2 + (∂yM)2 + (∂zM)2

]
(2.3)

2.1.2 Anisotropy energy

Anisotropy of ferromagnets is due to the relativistic interaction between their

atoms, and these interactions are comparatively weak.
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The calculation of the anisotropy energy from the microscopic theory would re-

quire the use of quantum perturbation theory, the energy of the perturbation being

represented by the terms in the Hamiltonian of the crystal which pertain to the rel-

ativistic interactions. The general form of the desired expressions, however, can be

deduced without such calculations, only from simple arguments concerning symme-

try. The relativistic interactions contains two terms in powers in electron spin vector

operators: the spin-orbit and spin-spin interactions, respectively. Both are very s-

mall because they are proportional to v2/c2, where v is of the order of magnitude

of the velocities of atomic electrons, and c is the velocity of light. The anisotropy

energy Uanis should be invariant under time reversal. Because the magnetization M

changes sign under time reversal, therefore the anisotropy energy must be an even

function of the components of m, the unit vector of M.

For uniaxial and biaxial crystals, the expansion of anisotropy energy begins with

squares of these components, and may be written:

Uaniso = Kikmimk (2.4)

where Kik is a symmetrical tensor of rank two, whose components, like Uaniso itself,

have the dimensions of energy density.

For ferromagnetic crystals of the cubic system, the properties differ considerably

from those of uniaxial crystals. This is because the only quadratic combination which

is invariant under the cubic symmetry transformations and which can be formed

from the components of the vector m is m2 = 1. The first nonvanishing term in the

expansion of the anisotropy energy for a cubic crystal is therefore of the fourth, not

the second, order. For this reason, the magnetic anisotropy effects in cubic crystals

are in general weaker than in uniaxial and biaxial crystals. Cubic symmetry allows
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only one independent fourth-order invariant which depends on the direction of m.

The anisotropy energy of a cubic ferromagnet can therefore be expressed as :

Uaniso = −1

2
K(m4

x +m4
y +m4

z) (2.5)

In the formation of domain walls, anisotropy is very important in determining

the width of domain wall structures.

On the microscopic level, the anisotropy can be introduced by generalizing the

above mentioned Heisenberg model in which the SU(2) symmetry is conserved. In

real crystals, the elementary cell and the environment of the magnetic ions have no

rotational symmetry, the Heisenberg Hamiltonian has to be generalized as:

H =
∑
α,β

∑
ij

Jαβij S
α
i S

β
j (2.6)

where Sαi is the α component of spin operator on lattice i, and Jαβij is a tensor.

Not all the components of Jαβij are nonzero due to the specific symmetry of the

lattice structure. For example, in the case of uniaxial structure, in which only one

direction is favored or disfavored, we have:

Haniso = J
∑
ij

[
Sxi S

x
j + Syi S

y
j + (1 + λ)Szi S

z
j

]
(2.7)

where we assume thhat the z-axis is the uniaxial axis, λ describes the anisotropy. If

λ > 0 (λ < 0) then z-axis is energetically unfavorable (favorable).

2.1.2.1 Dzyaloshinsky-Moriya interaction

A special anisotropy, which emerges due to inversion symmetry breaking of the

lattice, is the Dzyaloshinsky-Moriya (DM) anisotropy. It leads to the following ad-

10



Figure 2.1: Schematic of spin wave. Spins, or magnetic moment M, rotate around
static external magnetic field H.

ditional term in the Hamiltonian [24, 62],

HDM =
∑
ij

Dij · (Si × Sj) (2.8)

Since the components of the anisotropy vector Dij are related to the value of the

corresponding exchange couplings, one usually considers the anisotropy along the

bonds with the largest exchange coupling.

On the macroscopic level, the Dzyaloshinsky-Moriya interaction can be expressed

in terms of M:

UDM = γM · ∇ ×M (2.9)

This interaction will makes the uniform ferromagnetic solution unstable. As can

be seen by combing Eq. 2.9 and Eq. 2.3, even α > 0 doesn’t guarantee that the

uniform state is stable. In stead a helical structure becomes stable. Let’s write:

M(r) = M(m1 cosk · r−m2 sink · r) (2.10)
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Figure 2.2: Schematics of ferromagnet, ferrimagnet, antiferromagnet and helical mag-
net.
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where m1 and m2 are two mutually perpendicular real unit vectors. Substitution of

the above solution into the energy expression combined from Eq. 2.9 and Eq. 2.3, we

have:

U = M2γk ·m1 ×m2 +
1

2
αM2k2 (2.11)

This experssion has a minimum as a function of k if the vectors k and m1 ×m2 are

colinear(parallel if γ < 0 and antiparallel if γ > 0. Furthermore:

k = γ/α (2.12)

Actually the DM interaction is proportional to v2/c2, which renders it much smaller

than the exchange interaction. This means that γ � α/a, where a is the lattice

constant. Therefore, k � 1/a. Thus the presence of DM interaction term causes the

occurence of a helcial magnetic structure. The magnetic moments of the atoms lie in

planes perpendicular to the direction of k and the directions of the moments rotate

slowly in successive layers of atoms. The pitch of helix is 2π/k which is much large

than a, is the period of the superlattice. The helix is in general incommensurate

with the crystallographic periods.

2.1.3 Dipolar interaction

As mentioned above, the dipole-dipole interactions are rather weak and typically

do not dominate the behavior of magnetic ordering and related physical observables .

As in the classical energy between magnetic moments, the dipolar-dipolar interaction

can be written as

HD =
1

2

∑
ij,i6=j

µ2 3(Si · R̂ij)(Sj · R̂ij)− Si · Sj
R3
ij

(2.13)
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where the sums are over the sites Ri of the lattice and R̂ij are unit vectors in the

direction of R̂ij = Rij/|Rij| = Ri − Rj . Here, µ = gµB is the magnetic moment

associated with the spins, where g is the effective g-factor and µB = e2

2mc
is the Bohr

magneton.

This contribution to the energy becomes important if the isotropic exchange

Hamiltonian does not allow ordering at finite temperature. A famous example is the

two-dimensional Heisenberg magnets, in which the Mermin-Wagner theorem guar-

antees that in the presence of SU(2) symmetry there is no magnetic long-range order

at any finite temperature. The dipole-dipole interaction term, instead, has a lower

symmetry and therefore suppresses the fluctuation and supports the existence of two-

dimensional magnet. Also, the dipolar interaction opens the possibility of a nonzero

gap in the excitation spectrum, because in that case the Goldstone theorem does

not apply. Because dipolar interaction describes interactions between spins at long

distances, i.e., dipolar interaction is a long-range interactions, it will mainly modify

the spectrum structure at low wave vectors k → 0.

2.2 Classical theory of spin wave: Landau-Lifthiz equation

The classical theory is valid when the spin wavelength is large compared with

the lattice constant a . In this case, spin wave spectrum, or the magnon specturm

ω(k) depends only on macroscopic parameters of the magnetic materials. It is exactly

analogous to the definition of the long-wave phonon spectrum in terms of macroscopic

parameters (elastic moduli).

The motion of magnetic moment is described by Landau-Liftshiz equation [16,

39, 40, 41, 78, 79]:

∂M

∂t
=
g|e|
2mc

Heff ×M (2.14)
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where e = −|e| and m are the electron charge and mass, and g the gyromagnetic

ratio of the ferromagnet. Heff is the effective magnetic field, which can be given by

the variation of free energy with respect to M:

Heff = − δF
δM

(2.15)

Including only the exchange interaction and Zeeman interaction

F =
∫
dV

[
f0(M) + Unon−u −M ·H−H2/8π

]
(2.16)

Here f0(M) is the free energy density of a uniformly magnetized body at H = 0.

It takes account only of exchange interaction and is independent of the direction

of M; Unon−u is the additional part of exchange interaction due to the slow change

of direction of M with rescpet to the uniformly magnetized body, which is already

given by Eq. 2.2.

Varying the integral in Eq. 2.16, we can get the expression for effective field:

Heff = −αik
∂2M

∂xi∂xk
+ H (2.17)

from which we have neglected a term proportional to M derived from the f0(M)

term, because it will disappear once substituted into the equation of motion of M,

Eq. 2.14

Let’s consider the spin wave solution to Eq. 2.14. We assume only one-domain

sample with uniform magnetization M0 in z direction. We consider only spin wave

with wavelength much longer than the lattice constant, but much smaller than the

size of the sample. That is, we can think of the sample to be infinite. The spin wave
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is a small deviation from M0. If we write

M = M0 + m (2.18)

we need to add the constraint to m that m ⊥M0.

Substituting M into the equation of motion, Eq. 2.14 and linearize the equation

by omitting the terms of the second order in m, we have:

ṁ = γαik
∂2m2

∂xi∂xk
×M0 (2.19)

here γ = g|e|
mc

.

We look for a wavelike solution of m with wave vector k and frequency ω, ei(k·r−ωt),

we find:

iωm = γαk2m×M0 (2.20)

where α = αiknink. Writing explicitly the x and y components of m (z component

is zero), we have:

iωmx = γαMk2my

iωmy = −γαMk2mx

we can get the dispersion relation for the spin wave:

ω = γαk2 (2.21)

As expected, it is symmetric with respect to k. And in the case with only exchange
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Figure 2.3: Geometry of the ferromagnetic film. The film has a thickness of d, and
is supposed to be infinitely large in the plane. External magnetic field is applied in
the plane, in the same direction as the magnetization M.

interaction considered, the frequency ω → 0 as k → 0, that is, it is a gapless

Goldstone mode.

The effect of anisotropy and Zeeman interaction can be easily taken into account

by adding the corresponding terms into the free energy. Their effects will be reflected

through the effective magnetic field.

2.3 Quantum theory of magnons in ferromagnetic film

As in any macroscopic system, weakly excited states of ferromagnet may be

regarded as an assembly of elementary excitations, a quasi-particle gas. The elemen-

tary excitations in an ordered distribution of atomic magnetic moments are called

magnons [14, 49, 88]. Since we are dealing with quasi-particles in a crystal lattice

with translational symmetry, the magnons have definite quasi-momenta, not actual

momenta. The magnons obey Bose statistics, and large occupation numbers of the

magnon states correspond to the classical limiting case of spin waves.

In this section, we will consider the quantum theory of magnons in a ferromagnetic

film, whose geometry is shown in Fig. 2.3.
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2.3.1 Holstein-Primakoff transformation

If we are interested in the lowest excitation band of magnons, then we can simulate

the system by the following spin Hamiltonian containing three terms: the Zeeman

interaction, exchange interaction and the dipolar interaction:

H = HZ +Hex +HD (2.22)

HZ = −gµBH0

∑
i

Szi (2.23)

Hex = −J
∑
〈ij〉

Si · Sj (2.24)

The in-plane external magnetic field H0 is along z direction. We assume y axis

is normal to the plane. For the exchange interaction, we consider only the nearest

neighbor interaction.

Let’s make the Fourier transformation for Si:

Si =
1√
N

∑
k

eik·riS(k); (2.25)

and inversely,

S(k) =
1√
N

∑
i

e−ik·riSi (2.26)

where N is the number of elementary cells in the film.

The Zeeman and exchange terms can be rewritten as:

Hex +HZ = −J
∑
〈ij〉

(
1

2
S+
i S
−
j +

1

2
S−i S

+
j + Szi S

z
j )− gµBH0

∑
i

Szi (2.27)
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where we have introduced :

S± = Sx ± iSy. (2.28)

Then we have:

Hex +HZ = −J
2

∑
k

∑
δ

eik·δ
[
S+(k)S−(−k) + S−(k)S+(−k)

+ Sz(k)Sz(−k)
]
− gµBH0

√
NSz(k = 0) (2.29)

in which δ is the vector between two nearest neighbor lattice sites.

Notice that, up to now, k is defined in 3D, that is, k = (kx, ky, kz). Due to

the finite thickness, ky is quantized, for some boundary condition, eg., ky = πn
d

,

with n integer. In the following, when we treat the dipolar interaction, we make an

approximation that only the lowest band is considered. Therefore, in the following

discussion,we set ky = 0. It means that k is always in 2 dimension, k = (kx, 0, kz).

The following procedures are to transform the non-commuting spin operators into

Bosonic creation and annihilation operators. This transformation is accomplished

through the Holstein-Primakoff transformation (See, e.g. [57, 65]). This method has

found numerous applications and has been extended in many different directions.

There is a close link to other methods of boson mapping of operator algebras; in

particular to the Dyson-Maleev technique, and to a less extent to the Schwinger

mapping.

The basic idea of Holstein-Primakoff transformation can be illustrated as follows.

Consider a quantum spin described by operators Ŝx,y,z. We can specify its state by
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a ket |S,m〉 the eigenstate of Ŝ2 and Ŝz:

Ŝ2|S,m〉 = S(S + 1)|S,m〉 (2.30)

Ŝz|S,m〉 = m|S,m〉 (2.31)

Now take the state with maximal projection |S,m = +S〉, the extremal weight

state as a vacuum for a set of boson operators, and each subsequent state with lower

projection quantum number as a boson excitation of the previous one,

|S, S − n〉 → 1√
n!
|(a†)n|0〉 (2.32)

Each added boson then corresponds to a decrease of h̄ in the spin projection. The

spin raising and lowering operators Ŝ± therefore correspond (in some sense) to the

bosonic annihilation and creation operators, respectively.

The Holstein-Primakoff transformation can be written as:

S+
j =

√
2S

1−
a†jaj

2S

1/2

aj (2.33)

S−j =
√

2Sa†j

1−
a†jaj

2S

1/2

(2.34)

Szj = S − a†jaj (2.35)

In the real material we are interested in, Yttrium Iron Garnet, we can approxi-

mately assume that the effective spin S = 14.5, which is proved to give quite good

result for the calculation of magnon spectrum. Since S � 1, we can expand the

above expressions for spin operators in orders of 1/S.

S+
j =

√
2S
(
aj − a†jajaj/4S

)
(2.36)
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S−j =
√

2S
(
a†j − a

†
ja
†
jaj/4S

)
(2.37)

The Fourier transformation of the above expressions are is

S+(k) =
√

2S(ak −
1

4SN

∑
q,q′

a†q+q′−kaqqq′) (2.38)

S−(−k) =
√

2S(a†k −
1

4SN

∑
q,q′

a†qa
†
q′aq+q′−k) (2.39)

Sz(k) =
√
NSδk,0 −

1√
N

∑
q

a†qaq+k (2.40)

Substitute these into the expression of Hz + Hex and keep only up to second

orders of ak and a†k. We have, with a constant term neglected,

Hz +Hex = h̄
∑
k

(
γH0 +Dk2

)
a†kak (2.41)

in which, D = 2JSa2, with a the lattice constant and γ = gµB
h̄

2.3.2 Treatment of dipolar interaction

As mentioned before, we are only interested in the lowest excitation band of the

magnon spectrum, therefore the transverse mode corresponding to ky 6= 0 is neglect-

ed. Correspondingly, the contribution of the dipolar energy to the Hamiltonian can

be approximated by the uniform transverse mode. Following Refs. [71], we neglect

the variation of the magnetization in the direction transverse to the film and substi-

tute the local magnetization by its average over the transverse coordinate y. Under

this approximation, the variation of magnetization m with respect to the original

uniform magnetization M0 can be written as:

m(x, z) =
∫ dy

d
m(x, y, z) (2.42)
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Equation of its dynamics should be considered together with Maxwell equations:

∇× hdip = 0 (2.43)

∇ · hdip + 4π∇ ·m = 0 (2.44)

For the first equation, one can introduce magnetic potential ψ, satisfying

hdip = −∇ψ (2.45)

Correspondingly, the second equation becomes:

∇2ψ = 4π∇ ·m (2.46)

Together with the boundary condition on the surface at x = ±d/2 (m = 0 outside

of the film), we can solve this 1-Dimensional static magnetic problem. First we make

a Fourier transformation of ψ and m in the x and z direction:

ψ(x, y, z) =
1√
V

∑
k

eik·rψk(y) (2.47)

ψk(y) =
d√
V

∫
dxdze−ik·rψ(x, y, z) (2.48)

and

m(x, z) =
1√
V

∑
k

eik·rm(k) (2.49)

m(k) =
d√
V

∫
dxdze−ik·rm(x, z) (2.50)

In the above equations, both k and r should be understood as two dimensional
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vectors.

Then Eq. 2.46 becomes:

(
d2

dy2
− k2

)
ψk(y) = 4πi (kxmx(k) + kzmz)) + 4π∂ymy(k) (2.51)

in which the last term vanishes anywhere except on the surface, which provides the

surface charge. The solution of ψ, therefore, includes two terms, one is due to the

bulk magnetic charge, the other one surface magnetic charge. The solution for ψk(y)

reads as follows: :

ψk(y) = 4πi
[
e−kd/2 cosh(ky)− 1

] (kx
k2
mx(k) +

kz
k2
mz(k)

)
(2.52)

+ 4πe−kd/2
sinh(ky)

k
my(k) (2.53)

Now we can calculate the dipolar interaction which is expressed in terms of hdip

and m:

HD = −1

2

∫
dxdydzm · hdip (2.54)

Explicitly,

HD = −1

2

∫ dy

d

∑
k

[mx(−k)hhipx (k, y) +my(−k)hhipy (k, y) +mz(−k)hhipz (k, y)](2.55)

Substitute the expression of ψ in terms of m, we have:

HD = −1

2
g2µ2

B

N

V

∫ dy

d

[∑
k

4π
e−kd/2 cosh(ky)− 1

k2(
k2
xS

x(−k)Sx(k) + kxkzS
x(−k)Sz(k) + kxkzS

z(−k)Sx(k) + k2
zS

z(−k)Sz(k)
)
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−
∑
k

4πe−kd/2 cosh(ky)Sy(−k)Sy(k)
]

where we transform the integral from real space to k space and we used the fact that

due the definition of Fourier transformation for m and Sj, we have m(r) = gµB
N
V
Sj in

real space, but m(k) = gµB(N
V

)1/2S(k) in k space. There are two terms Sx(−k)Sz(k)

and Sz(−k)Sx(k) which contribute terms of linear a and three as.

Performing the integral over y, we have:

HD = −1

2
g2µ2

B

N

V
4π
∑
k

[
(Fk − 1)[k2

xS
x(−k)Sx(k) + k2

zS
z(−k)Sz(k) + kxkzS

x(−k)Sz(k)

+ kxkzS
z(−k)Sx(k)]/k2 − FkSy(−k)Sy(k)

]
=
∑
k

f1

[
S+(−k)S−(k) + S−(−k)S+(k)

]
+ f2[S+(−k)S+(k) + S−(−k)S−(k)]

+ f3S
z(−k)Sz(k) +H(3)

with

f1 =
h̄γ2πM

S

1

4
[(1− Fk) sin2 θ + Fk] (2.56)

f2 =
h̄γ2πM

S

1

4
[(1− Fk) sin2 θ − Fk] (2.57)

f3 =
h̄γ2πM

S
(1− Fk) cos2 θ (2.58)

and H(3) the 3 magnon terms:

H(3) =
h̄γ4πM

4S
(1−Fk)

kxkz
k2

[S+(−k)Sz(k)+Sz(−k)S+(k)+Sz(−k)S−(k)+S−(−k)Sz(k)]

(2.59)

where we have defined Fk = (1− e−kd)/kd. h̄γ = gµB and M = gµBNS/V .
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We can also calculate the dipole interaction by starting from the expression:

ED = −µ0

4π

3(m1 · e12)(m2 · e12)−m1 ·m2

r3
12

(2.60)

Or, written in Gaussian units:

ED = −3(m1 · e12)(m2 · e12)−m1 ·m2

r3
12

(2.61)

m1,2 are the two magnetic moments. For a ferromagnet, we should define another

quantity M which has a dimension of [m]/[V ] with V the volume.

HD = −1

2

∫
dr1dr2

3(M1 · e12)(M2 · e12)−M1 ·M2

r3
12

(2.62)

=
1

2

∫
dr1dr2(M1 · ∇1)(M2 · ∇2)

1

r12

(2.63)

where we have used ∇i∇j
1
r

= δij
r
− 3rirj

r5
.

Note that:

1

r
=
∫ dk

(2π)3
eikr

4π

k2
(2.64)

=
d

V

∑
kx,kz

∫ dky
2π

eikr+ikyy
4π

k2 + k2
y

(2.65)

where we have separated ky from kx and kz, the latter two will be just denoted as k.

Then substitute the above Fourier transformation into the HD, and use the Fourier

transformation for M .

HD =
4π

2

∑
k

∫ dy1dy2

d

∫ dky
2π

Mi(−k)Mj(k)
kikj

k2 + k2
y

eiky(y1−y2) (2.66)
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For the terms of My(−k)My(k), we have:

4π

2

∫ dy1dy2

d

∫ dky
2π

k2
y

k2 + k2
y

eiky(y1−y2)

=
4π

2

∫ dy1dy2

d
[δ(y1 − y2) +

kek(y1−y2)

2
θ(y1− y2) +

kek(y2−y1)

2
θ(y2− y1)]

=
4π

2
(1−

∫ dy1dy2

d
[ke−k(y1−y2)θ(y1− y2)])

=
4π

2
(1− (1− Fk))

=
4π

2
Fk (2.67)

Other terms can be calculated similarly, for example, the coefficient for MxMx is

4π
2

(1− Fk).

2.3.3 Spectrum and Bogoliubov transformation

Together with expression for HZ +Hex, we can expand the total Hamiltonian in

terms of ak and a†k. To the quadratic terms,

H0 = h̄
∑
k

Aka
†
kak +

1

2
Bkaka−k +

1

2
B∗ka

†
ka
†
−k, (2.68)

with

Ak = [γH0 +Dk2 + γ2πM(1− Fk) sin2 θ + γ2πMFk] (2.69)

Bk = [γ2πM(1− Fk) sin2 θ − γ2πMFk] (2.70)

in which, D = 2JSa2, with a the lattice constant. D = 0.24eVÅ
2
. Note: γ =

gµB/h̄ = 2.8GHz/kOe, 1eV= 2.4 ∗ 105Ghz.
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We need to make the Bogoliubov transformation to obtain the dispersion relation.

ak = ukck + vkc
†
−k (2.71)

a†k = ukc
†
k + v∗kc−k (2.72)

Here, uk = u−k is chosen to be real, while vk = v−k = |vk|e−iφ, whose phase should

be determined by the phase of Bk = |Bk|eiφ.

|u2
k| − |v2

k| = 1 (2.73)

uk = (
Ak + ωk

2ωk
)1/2 (2.74)

vk = e−iφ(
Ak − ωk

2ωk
)1/2 (2.75)

The magnon spectrum is:

ωk = (A2
k − |Bk|2)1/2 (2.76)

In Fig. 2.4, we show the magnon spectrum as a function of wave vectors with

different angles θ for two different thicknesses of the film.

For the value of nonzero wavevector Q at the minimum energy point, we can

calculate it by taking the derivative of ω(k) with respective to k and then set it to

be zero. Specifically, Q satisfies:

(γH0 +DQ2)

(
2DQ+m

∂Fk
∂k

∣∣∣
Q

)
+ (γH0 +DQ2 +mFQ)2DQ = 0 (2.77)

in which we define m = γ4πM .
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Figure 2.4: Dispersion relation of spin wave, ωk, propagating with different directions.
Respectively, θ = 0, π/6, π/3, π/2 correspond to red, blue, black and green curves.
The upper pabel corresponds to d = 5.1 µm, while the lower panel for d = 0.1 µm.
In both cases, H = 1.0kOe.
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In the case H0 � DQ2, if Qd� 1, we have FQ ∼ 1
Qd

, Q can be approximated as:

DQ2 =
m

4Qd
(2.78)

which gives:

Q ∼
(
m

4Dd

)1/3

(2.79)

Roughly it can be physically understood that Q corresponds to the point when the

dipolar interaction equals to exchange interaction.

In the other limit, Qd� 1, we have FQ ∼ 1− Qd
2

,

DQ2 =
mQd

4c
(2.80)

with c = 2 + m
γH0

a constant. This gives:

Q =
md

4Dc
(2.81)

For the dependence of Q on H0, we first notice that if H0 = 0, Q = 0. For a large

H0, that is, H0 � DQ2, Q is independent of H0 for the case of Eq. 2.79, while for

the case of Eq. 2.81, the dependence is also very weak.

In Fig. 2.5, we plot Q as a function of d and H, respectively. In (a), we plot Q as

a function of d for H0 = 1 kOe. We show the exact result by numerical calculation

(red curve), and the approximation from Eq. 2.79 (Blue curve) and Eq. 2.81 (Green

curve). In (b) and (c), we plot Q as a function of H0 for d = 5.1µm and d = 0.1µm,

respectively.
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Figure 2.5: Nonzero wave vector Q at the minimum energy point as a function of
thickness of film d (a), and as a function of external magnetic field H (b and c). In
(a), H = 1.0kOe. We show the exact result by numerical calculation (red curve),
and the approximation from Eq. 2.79 (Blue curve) and Eq. 2.81 (Green curve). In
(b), d = 5.1µm. In (c) d = 0.1 µ m.
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2.4 Experimental discovery of magnon condensation

2.4.1 YIG materials

Yttrium iron garnet (YIG) [11] is a ferrimagnetic material. As a kind of synthetic

garnet, its chemical composition is written as Y3Fe2(FeO4)3, or Y3Fe5O12. It has a

complex cubic crystal structure with a lattice constant a = 12.4Å. In each unit

cell, there are 80 atoms containing 20 magnetic Fe+3 ions. 8 of the ions occupy

the centers of octahedral, the other 12 are centered in tetrahedral sub-lattices. The

octahedral and tetrahedral are antiferromagnetically coupled with each other. The

Y3+ ions occupy all the dodecahedral sites. The iron ions in the two coordination

sites exhibit different spins, giving rise to interesting magnetic behaviours. The Curie

temperature of YIG is of 550 K. The saturated magnetization of YIG is 1.7 kOe.

YIG has a high Verdet constant. This results in unprecedented properties of YIG

compared with other materials. For example, it has the narrowest ferromagnetic

resonance line, generally smaller that 0.5 Oe. This means that the magnon lifetime

in YIG is very long, of the order of few hundred nanoseconds, to the order of µs.

Together with the slow magnon speeds (approximately four orders of magnitude

slower than the speed of light), the spin-wave mean free paths is typically less than

10µm. In that sense, the low damping in YIG provides a spin-wave propagation to

be observed on macroscopic scale. Moreover, YIG has high Q factor in microwave

frequencies, low absorption of infrared wavelengths down to 600 nm, and very small

linewidth in electron spin resonance. These properties find their wide applications

microwave, optical, and magneto-optical applications, e.g. microwave YIG filters.

Recently, YIG has been widely used in spin Seebeck effect.
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2.4.2 Excitation and detection of magnons

2.4.2.1 Parallel pumping of magnons

Among different mechanisms to excite magnons, the parallel pumping is one of

the most efficient and widely used [47]. By “ parallel pumping”, it means that the

applied microwave magnetic field is oriented in the direction parallel to the inplane

external static magnetic field H0.The spatially uniform pumping field excites two

magnons with the same frequency ωp but with opposite wave vector ±kp. It can

be understood as the creation of two magnons by one photon in the pumping field.

Assuming the microwave pumping field

h(t) = h cos(2ωpt)ẑ (2.82)

due to Zeeman interaction, it gives an additional term in the Hamiltonian:

H ′ = −γh cos(2ωpt)
∑
k

a†kak (2.83)

where ak and a†k are the Bosonic operators derived from the Holstein Primakoff

transformation.

As shown in the above section, the existence of dipolar interaction produces non-

diagonal terms in the quadratic Hamiltonian of ak and a†k. One must perform the

Bogoliubov transformation to diagonalize Hamiltonian. Therefore, in terms of ck

and c†k, we have terms like

γh cos(2ωpt)
∑
k

|Bk|
ωk

[
c†kc
†
−k + h.c.

]
(2.84)

This correspond to the creation and annihilation of (k,−k) magnon pairs. The
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essential feature of this relaxation process is that it is nonlinear. That it, the rate

at which energy flows from microwave pumping field into the excited magnon pairs

depends on the occupation number 〈nk〉, which, in turn, depends upon the amplitude

of the driving field, as well as on the relaxation rate ηk. Only if the driving rate

exceeds the relaxation rate, the excited magnons can increase. The threshold for

this process is given by

hcrit = min

(
4ωpηk

γωM sin2 θk

)
(2.85)

where min means that we use that value of k giving the minimum.

2.4.2.2 Detection of magnon kinetics: Briouloin light scattering

Detecting spin waves with sufficient resolution can provide us the information

of dynamics of spin waves and henceforth, the information of interactions of spin

waves and the relaxation rate and macroscopic parameters of the magnetic media.

Several different techniques have been developed for this purpose, e.g. the neutron

scattering. The most recently developed Brillouin Light scattering method based on

the inelastic scattering of light from magnons, has many advantages and find its wide

application in the GHz regime [75, 74].

In BLS, the photon with frequency ωi and wave vector ki interacts with a magnon

with frequency ωm and wave vector km. The magnon can be absorbed or emitted by

the photon whose energy is correspondingly increased or decreased:

h̄ωm = h̄ωi ± h̄ωs (2.86)

h̄km = h̄ki ± h̄ks (2.87)

are the conservations of energy and momentum, respectively. ± denotes the absorb-
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tion (emission ) of a magnon.

The scattered light with increased (decreased) frequency are called Stokes (Anti-

Stokes). Its intensity is proportional to the number density of magnons at state km

with frequency ωk. Therefore, by analyzing the scattered light, the information of

frequency, wave vector and density of magnons can be determined at the same time.

Since the BLS is an optical method, it can reach very high resolution. Nowadays,

the temporal resolution can be as high as the order of ∼ 1 ns. Its spatial resolution,

restricted by the laser beam focus, is of the order of 50µm.

2.4.3 Discovery of magnon BEC and confirmation of coherence

The magnon BEC was first discovered in 2006 by the group of Demokritov [21].

A series of subsequent work confirmed this discovery and proposed more questions

[27, 22, 26, 28, 76].

2.4.3.1 Experimental discovery

The experimental set-up for magnon excitation in YIG films and their detection

using Brillouin light scattering (BLS) spectroscopy is shown schematically in Fig. 2.6

. The thickness of YIG film is 5 µm. The film is placed in a uniform static magnetic

field, H, up to 1 kOe. The low frequency part of the spectrum of the magnons

with wave vectors parallel to the static magnetization is shown by the solid line in

the log-log plot. As can be seen, two minima exist in this spectrum. A microwave

photon with a frequency of 2νp creates two primary excited magnons of frequency

νp and opposite wavevectors. These primary magnons relax very fast and create a

quasi-equilibrium distribution of thermalized magnons, forming the quasiequilibrium

magnon gas described by

n(ν) =
1

exp(hν−µ
kBT0

)− 1
(2.88)
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with µ the effective chemical potential and T0 the effective temperature. In the

experiment, one found that T0 is almost unchanged while µ has a significant change

as delay after the pumping increases, and finally µ reaches the minimum energy of

the spectrum which leads to Bose-Einstein condensation.

To examine the distribution of the magnons over the spectrum, Brillouin light

scattering spectroscopy was used. As shown in Fig. 2.6, the incident laser beam is

focused onto the resonator. The beam passes through the YIG film, is reflected by the

resonator, and passes through the film again. Then the light is collected by a wide-

aperture objective lens and sent to the interferometer for frequency analysis of light

photons inelastically scattered by the magnons. This approach allows a simultaneous

detection of the magnons in a wide interval of the in-plane wavevectors, estimated as

±2× 105 cm−1, which exceeds km. as indicated by the red hatching in Fig. 2.6. The

time evolution of n(ν) after the start of pumping is determined using time frames of

100 µm width.

The BLS results can be fitted based on Eq. 2.88 with the chemical potential

being a fitting parameter (The temperature T0 is almost a constant). At different

delay times and different pumping power, BLS spectra show different behaviors, see

Fig. 2.7. For P = 4.0 W, the data cannot be described using the Bose-Einsterin s-

tatistics, illustrating that the thermalization process at those magnon densities lasts

more than 200 ns. By contrast, the data for the pumping power P = 5.9 W are de-

scribed very well by the Bose-Einsterin statistics at room temperature and a non-zero

chemical potential µ, µ/kB = 98 mK. It is seen that the chemical potential increases

with time, reflecting the growth of the magnon density caused by the pumping. Af-

ter about 400ns, the chemical potential increases to the minimum energy and can no

longer increase. The BLS spectra can be fitted with Eq. 2.88 plus a delta function

at νm. The amplitude of this delta function increases with time until the switch-off
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Figure 2.6: The set-up for magnon excitation and detection. The pumping microwave
pulse is sent through the resonator. The laser beam is focused onto the resonator,
and the scattered light is directed to the interferometer. The inset shows the parallel
pumping due to the microwave pulse. One photon of frequency 2νp excites two
magnons with same frequency νp. The low-frequency part of the magnon spectrum
is shown by the solid line. The wavevector interval indicated by the red hatching
corresponds to the interval of the wavevectors accessible for Brillouin light scattering
(BLS). Figure is taken from Ref.[21]

36



of pumping pulse. This is the first experimental verification of magnon BEC.

Figure 2.7: The fitting of BLS intensity using Eq. 2.88 for different pumping power
at different delay times after the start of pumping. Figure is taken from Ref.[21]

Further experiments in the same group are done to explore this new phenomena.

In 2007, Demidov et al [18, 19] showed a more clear picture of the thermalization of

the Boson gases, see Fig. 2.8. It was shown that the relaxation of primary magnons in-

to the magnons with smaller energies happens through the multiple magnon-magnon

scattering events, and therefore, the magnons reaching the bottom of the spectrum

lose the initial phase coherence, which might be introduced by the external pump-

ing source. It was also shown that the speed of the thermalization depends on the

density of the injected magnons, i.e. on the pumping power.
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Figure 2.8: The BLS intensity in the phase space for different delay times after the
start of pumping. The relaxation of primary magnons into the magnons with smaller
energies is clearly shown. Figure is taken from Ref.[18]
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2.4.3.2 Spontaneous coherence and magnon kinetics

After the discovery of magnon BEC, Snoke [80] asked the question whether the

observed phenomena is really a realization of BEC. He proposed three questions:

Firstly, it was long time ago proved that in exactly 2D system, there would be no

real Bose-Einstein Condensation. Secondly, since the particles are quasiparticles with

finite life time, the system is not in equilibrium. Thirdly, the driving field is itself

coherent, which would drive the system to be in coherent state. Rather using the term

BEC, Snoke adopts another term: spontaneous coherence to describe a generalized

system. This spontaneous coherence can occur in two-dimensional systems just as

well as in three dimensions. Experiments with liquid helium on surfaces, for example,

have shown that two-dimensional helium can be superfluid, just like bulk helium.

The only difference in 2D and 3D is that in 2D, the fluctuation is so strong that

the coherence length is reduced to be finite. Therefore for a finite 2D system, the

first problem becomes no longer a problem. For the second problem, as long as

the life time of quasiparticle is much longer than the thermalization time between

quasiparticles, the system can reach a quasiequilibrium state, and the condensation

can occur. The most important problem here is the coherence. Condensation into

the lowest quantum level is enough. One needs to show direct evidence of coherence

and also that the coherence is spontaneous, not due to external coherent driving

field.

Since the spontaneous emergence of coherence is an obligatory manifestation of

BEC, the existence of room temperature BEC was then further illustrated by the

experiment done by Demidov el al [20] in 2008 by using a short microwave pumping

pulse instead of continuous driving. The duration of short pulse is 30 ns, much smaller

than the characteristic thermalization time in the magnon gas. Consequently, the
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processes of magnon redistribution over the spectrum and the formation of BEC

were studied in a magnon gas, which was free from any influence of the external

driving force. Moreover, by exploring the decay time of magnons located at the

minimum frequency at different pumping power, the experiments show two different

decaying rate before and after the appearance of BEC (Fig. 2.9). The BLS intensity

is proportional to the temporal average of the square of the electric field of the

scattered light, E. In the case of many scatters, the total scattering intensity is

proportional to 〈(∑Ei)
2〉, where Ei is the scattered field of the ith scatter. If the

scatters are incoherent, the total scattering intensity would be ∝ 〈∑E2
i 〉. Therefore,

the temporal dependence of the BLS intensity would be the same as that of the

decay of each magnon density ∝ exp(−αt). However, for the coherent scatters, the

scattering intensity is proportional to ∝ N2〈E2
i 〉, correspondingly, the decay of BLS

intensity would follow [exp(−αt)]2 = exp(−2αt). In summary, the BLS intensity

decays twice as fast for coherent magnons than that for incoherent magnons.

Bose-Einstein condensation of magnons under incoherent pumping was also stud-

ied [13]. In the experiments, the magnon excitation is pumped by a noise pumping

covering the frequency interval fp ± ∆f/2. It turns out that the pumping pow-

er threshold increases from the original (δfp)
2 to δfp(δfp + ∆f), where δfp is the

magnon relaxation frequency. The BEC is verified by detecting the electromagnetic

radiation from the excited system.

2.4.3.3 Current theoretical studies.

There appear a lot of theoretical work trying to explore magnon BEC observed

in the experiments [32, 31]. In 2008, Tupitsyn et al [85] studied the stability of

the magnon BEC system and found that due to the strong dependence of magnon-

magnon interaction on the external magnetic field orientation, the magnon BEC in
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Figure 2.9: The BLS intensity of the magnons located at the minimum energies as a
function of time. It reveals the decay of magnons with lowest energy. For condensed
and non-condensed magnons, the decays show different rate. Figure is taken from
Ref.[20]
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current experiments is unstable. They further propose that by applying a strong

external magnetic field in the perpendicular direction to obtain a repulsive magnon-

magnon interaction, a high-density magnon BEC would be achieved.

A Ginzburg-Landau model was proposed to study the magnon Bose-Einstein

condensation [58] presumably assuming equal number of condensed magnons in the

two minima. They incorporate the effect of pumping field by introducing a δ function

into the equation and introduce phenomenologically the interactions between the two

magnon condensates. They found that there are symmetric and asymmetric solutions

and both of which are stable.

In the papers of Rezende [70, 71, 72], he also provides some studies on the dy-

namics of the magnon system. He pointed out that the wave function of the magnon

condensate in configuration space satisfies a Gross-Pitaevskii equation similarly to

other BEC systems. He also studies the appearance of spontaneous coherence for

the magnon system under excitations by microwave pumping. He shows that if the

microwave driving power exceeds a threshold value the nonlinear magnetic interac-

tions create cooperative mechanisms for the onset of a phase transition leading to

the spontaneous generation of quantum coherence and magnetic dynamic order in

a macroscopic scale. However, Rezende’s study also assumes that the condensed

magnons distribute equally between the two minima.

By calculating the interactions of magnons in YIG film, Troncoso and Nunez [84]

also studied the spontaneous coherence of the system, and some related problems,

like internal Josephson effect and appearance of interference pattern and vortices.

However, the distribution of magnons in the two minima is not discussed.
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3. SPONTANEOUS BREAKING OF MIRROR SYMMETRY BREAKING IN

MAGNON BEC

3.1 Motivation and introduction

Bose-Einstein condensation (BEC), one of the most intriguing macroscopic quan-

tum phenomena, has been observed in equilibrium systems of Bose atoms, like 4He

[42, 1], 87Rb [4] and 23Na [17]. Recent experiments have extended the concept of

BEC to non-equilibrium systems consisting of photons [46] and of quasiparticles,

such as excitons [10], polaritons [43, 5, 2] and magnons [8, 21]. Among these, BEC of

magnons in films of Yttrium Iron Garnet (YIG), discovered by the group of Demokri-

tov [21, 27, 19, 20, 18, 26, 25, 28, 66], is distinguished from other quasiparticle BEC

systems by its room temperature transition and two-dimensional anisotropic prop-

erties.

The peculiarity of the spin-wave energy spectrum of a YIG film in an external

inplane magnetic field is that, it has two energetically degenerate minima. Therefore

it is possible that the system may have two condensates in momentum space [52].

An experiment by Nowik-Boltyk et al. [66] indeed shows a low-contrast spatial mod-

ulation pattern, indicating that there is interference between the two condensates.

The details of this experiment are shown in Fig. 3.1. In their paper, the low-contrast

is explained qualitatively by the idea that the strength of phase locking between

the two condensates are decreased because only a small part of the magnons are

condensed. However, this explanation is not satisfactory.

Current theories [85, 71, 70, 72, 58, 84] do not describe the appearance of co-

herence or the distribution of the two condensates. Our theory agrees well with the

experiment, and we predict a new kind of collective oscillation, called zero sound.
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Figure 3.1: Schematic of the experiment setup and results of two-dimensional imag-
ing of the interference pattern. (a) Experimental setup. (b) Schematic of magnon
spectrum along the direction of magnetic film. It shows two degenerate spectral min-
ima with non-zero wave vectors kBEC. (c) Measured BLS intensity in the real space.
Dashed circles show the positions of topological defects. (d) Fourier transform of
the measured spatial map. Dashed line marks the value of the wave vector equal to
2kBEC. Figure is taken from Ref.[66].
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In this section, we point out that a complete description of BEC in microwave-

pumped YIG films must account for the 4th order interactions, including previously

neglected magnon-non-conserving terms originating in the dipolar interactions. The

theory explains not only the appearance of coherence but also quantitatively explains

the low contrast of the experimentally observed interference pattern. Moreover, our

theory predicts that, on increasing the film thickness from a small value d, there is

a transition from a high-contrast symmetric phase for d < dc, with equal numbers of

condensed magnons filling the two minimum states, to the low-contrast coherent non-

symmetric phase for d > dc, with different numbers of condensed magnons filling the

two minimum states. In comparatively thin films (d < 0.2µm) the same transition

can be driven by an external magnetic field H. At another critical thickness d∗ > dc,

the sum of phases of the two condensates changes from π to 0; at this transition

point the system is in a completely non-symmetric phase with only one condensate,

for which there is no interference. In the experiment of Ref.[66] the thickness of

film was larger than d∗. We suggest that the phase transitions may be identified by

measuring the contrast of the spatial interference pattern for various d and H. We

also predict a new type of collective magnetic oscillation in this system and discuss

the possibility of domain walls in non-symmetric phases.

3.2 Number of condensed magnons Nc = NQ +N−Q

Experimentally, the spin lattice relaxation time is of order 1 µs, whereas the

magnon-magnon thermalization time is of order 100 ns; the magnons are long-lived

enough to equilibrate before decaying, thus making BEC possible [21]. After the

thermalization time the pumped magnons go to a quasi-equilibrium state with a non-

zero chemical potential µ. The number of pumped magnons Np = N(T, µ)−N(T, 0),

where N(T, µ) = V
∑

k
1

e(ωk−µ)/T−1
, is determined by the pumping power and the
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magnon lifetime. µ is a monotonically increasing function of Np but cannot exceed

the energy gap ∆0. Therefore, on further increase of pumping some of the pumped

magnons fall into the condensate. The equationNp = N(T,∆0)−N(T, 0) thus defines

the critical line of condensation. Since ∆0 � T and Np � N(T, 0) this equation can

be satisfied at a rather high temperature. The total number of condensed particles

is [21, 9]

Nc = Np −N(T,∆0) +N(T, 0) (3.1)

In exactly 2D systems BEC formally does not exist since in the continuum ap-

proximation the sum in N(T, µ) diverges. However, at strong enough pumping the

chemical potential approaches exponentially close to the energy gap: ∆0 − µ ≈

∆0 exp(−Np/N0), where N0 = V Tm/h̄2. At Np/N0 > ln(T/∆0) all pumped magnons

occupy only one or two states ±Q.

Eq.(3.1) determines only the total number of particles in the condensate. The dis-

tribution of the condensate particles between the two minima remains undetermined

in the quadratic approximation. To resolve this issue it is necessary to consider the

fourth order terms in the Holstein-Primakoff expansion of the exchange and dipolar

energy. Terms of third order in this expansion occur due to the dipolar interaction,

but they vanish for the condensate values of momentum (0,±Q) since in the third

order the total momentum cannot be zero.

3.3 Magnon interaction

Following the same procedure as in Section 2, we calculate the interactions be-

tween magnons.

The third order term, that is, the three magnon term, is given by H(3):

H(3) = f0

∑
k,q

[a†ka
†
qaq+k + a†q+kaqak] (3.2)
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with

f0 =
h̄γ4πM√

2SN
(Fk − 1) sin θ cos θ (3.3)

Fk is the form factor defined as: Fk = 1−e−kd
kd

.

Using the Bogoliubov transformation, operator a is transformed to normal mode

described by operator c. Considering the symmetry of uk = u−k, vk = v−k and

f0(k)f0(−k), we have:

H(3) = f0

[
a1[c†kc

†
qck+q + c†k+qckcq] + a2[c†kck+qc−q + c†k+qc

†
−qck]

+a3[c†kc
†
qc
†
−(k+q) + ckcqc−(k+q)]

]
(3.4)

with

a1 = ukuquk+q + vkuquk+q + ukvqvk+q + vkvqvk+q (3.5)

a2 = ukvquk+q + vkuqvk+q (3.6)

a3 = ukuqvk+q + ukvqvk+q (3.7)

We can further simplify by writing just:

H(3) = C[c†kc
†
qck+q + c†k+qckcq] + C ′[c†kc

†
qc
†
−(k+q) + ckcqc−(k+q)] (3.8)

with

C(k, q) = f0(k)[ukuquk+q + vkuquk+q + ukvqvk+q + vkvqvk+q]

+ f0(k + q)[uk+qvquk + vk+quqvk] (3.9)
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and C ′ = f0(k)a3 Third order interaction, or the three magnon process, doesn’t affect

the formation of BEC, but is important in the relaxation of magnons.

The fourth order interacting part, in terms of operators ak and a†(k), has the

form:

H
(4)
int = −

∑
k

f2(k)

N

∑
q,q′

(a†q+q′+kaqaq′ak + h.c.)

+
∑
k

(
Dk + f3(k)−Dq − 2f1(q)

2N

)∑
q,q′

[a†q+ka
†
q′−kaqaq′ + h.c.] (3.10)

in which

f1 =
h̄γ2πM

S
[(1− Fk) sin2 θ + Fk]/4 (3.11)

f2 =
h̄γ2πM

S
[(1− Fk) sin2 θ − Fk]/4 (3.12)

f3 =
h̄γ2πM

S
(1− Fk) cos2 θ (3.13)

Dk = −J
∑
δ

eik·δ =
D

2S
k2 − zJ (3.14)

3.3.1 In the vicinity of minimum energy

The above expressions for the interactions of magnons are too complicated. Since

we are only interested in the condensed magnons in the lowest energy level, we can

extract the interactions of the condensed magnons only. In the vicinity of minimum

energy with k = ±Q, we have:

Hint = −[a†Qa
†
QaQaQ + a†−Qa

†
−Qa−Qa−Q]

[DQ2

2S
+
h̄ωM
8S

2FQ
]
/N

−a†Qa
†
−Qa−QaQ

[
− 4

DQ2

2S
+
h̄ωM
8S

8FQ −
h̄ωM
2S

2(1− F2Q)
]
/N
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+[a†QaQaQa−Q + a†−Qa−Qa−QaQ + h.c.]
h̄ωM
8S

3FQ/N (3.15)

where we denote ωM = γ4πM .

The ak should be replaced by ck using the Bogoliubov transformation. The 4-th

order interaction of condensate amplitudes reads

V̂4 = A[c†Qc
†
QcQcQ + c†−Qc

†
−Qc−Qc−Q]

+2Bc†Qc
†
−Qc−QcQ

+C[c†QcQcQc−Q + c†−Qc−Qc−QcQ + h.c.]. (3.16)

where, c±Q and c†±Q are the annihilation and creation operators for magnons in the

two condensates located at the two energy minima (0,±Q) in the 2-D momentum

space The coefficients in Eq.(3.16) are:

A = − h̄ωM
4SN

[(α1 − α3)FQ − 2α2(1− F2Q)]

−DQ
2

2SN
[α1 − 4α2],

B =
h̄ωM
2SN

[(α1 − α2)(1− F2Q)− (α1 − α3)FQ]

+
DQ2

SN
[α1 − 2α2],

C =
h̄ωM
8SN

[(3α1 −
20

3
α3 + 3α2)FQ

+
16

3
α3(1− F2Q)] +

DQ2

SN
α3, (3.17)

with α1 = u4 + 4u2v2 + v4, α2 = 2u2v2 and α3 = 3uv(u2 + v2). Here, u and v are

the coefficients of Bogoliubov transformation Here, u and v are the coefficients of

Bogoliubov transformation (see the Methods section for details). S = 14.3 is the

effective spin, N the total number of spins in the film, M the magnetization and
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h̄ωM = γ4πM with gyromagnetic ratio γ = 1.2× 10−5eV/kOe. D is proportional to

exchange constant and Fk = (1− e−kd)/kd. Similar results for the coefficients A and

B were obtained in Ref.[85]. Coefficient C, which violates magnon number conser-

vation, was not considered previously. Below we show that C is the only source of

coherence between the two condensates. The three coefficients A, B and C, whose

values as functions of H are shown in Fig.3.2 for two typical values of d, determine

the distribution of condensed magnons in the two degenerate minima. Ref.[85] as-

sumed a symmetric phase with condensed magnons in both minima having equal

amplitudes and equal phases. Later, Ref.[71] assumed filling of only one minimum.

More recently Ref.[84] considered Josephson-like oscillations by starting from two

condensates with equal numbers of magnons but different phases. Our theory pre-

dicts coherent condensates and the ratio of their amplitudes without any additional

assumption.

Notice that the minimum point Q can be estimated by h̄ωM
Qd

= DQ2, which gives

Q ∼ ( h̄ωM
Dd

)1/3. For d = 5µm, we have Q ∼ 105cm−1. Qd ∼ 50� 1.

3.4 Symmetry breaking of mirror symmetry

Coefficient C, which violates magnon number conservation, was not considered

previously. Below we show that C is the only source of coherence between the

two condensates. The three coefficients A, B and C, whose values as functions of

H are shown in Fig.3.2 for two typical values of d, determine the distribution of

condensed magnons in the two degenerate minima. Ref.[85] assumed a symmetric

phase with condensed magnons in both minima having equal amplitudes and equal

phases. Later, Ref.[71] assumed filling of only one minimum. More recently Ref.[84]

considered Josephson-like oscillations by starting from two condensates with equal

numbers of magnons but different phases. Our theory predicts coherent condensates
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and the ratio of their amplitudes without any additional assumption. In terms of

condensate numbers N±Q and phases φ±, the condensate amplitudes are c±Q =√
N±Qe

iφ± . Substituting them into eq.(3.16) we find:

V4 = A(N2
Q +N2

−Q) + 2BNQN−Q

+2C cos Φ(N
3
2
QN

1
2
−Q +N

1
2
QN

3
2
−Q), (3.18)

where we introduce the total phase Φ = φ+ + φ−. To minimize this energy, Φ must

equal π for C > 0 and must equal 0 for C < 0. Fig.3.2 shows that the sign of C

changes for different d and H, which indicates a transition of Φ between 0 and π.

For both C > 0 and C < 0 a coherence between the two condensate amplitudes is

established. In contrast to the Josephson-like interaction, the sum rather than the

difference of the two condensate phases is fixed.

Since the total number of condensed magnons Nc = NQ + N−Q is uniquely de-

termined by the pumping (see Methods), the energy is minimized only by the so far

unspecified difference δ = NQ − N−Q. In terms of Nc and δ the condensate energy

eq.(3.18) is:

V4 =
1

2

[
(A+B)N2

c − (B − A)δ2 − 2|C|Nc

√
N2
c − δ2

]
. (3.19)

The ground state of the condensates depends on the criterion parameter:

∆ = A−B + |C|. (3.20)

When ∆ > 0, δ = 0 minimizes the energy, so the two minima are filled with

equal number of condensed magnons. This is the symmetric phase with NQ = N−Q.

When ∆ < 0, the minimum shifts to δ2

N2
c

= 1 − C2

(B−A)2
. This is the non-symmetric
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Figure 3.2: The interaction coefficients A, B and C (in units of mK/N, with N the
total number of spins in the film) as a function of magnetic field H for film thickness
(a) d = 1.0 µm and (b) d = 0.1 µm.
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Figure 3.3: The criterion of transition from non-symmetric to symmetric phase, ∆
(in units of mK/N), as a function of magnetic field H for different values of thickness
d.
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phase with NQ 6= N−Q. The transition from symmetric to non-symmetric phase at

∆ = 0 is of the second order. There is no metastable state of these phases. At C = 0

one finds δ = ±Nc, which corresponds to a completely non-symmetric phase with

only one condensate. The ground state of non-symmetric phase is double-degenerate

corresponding to the two possible signs of δ. Fig.3.3 shows that for a film thickness

of about 0.05 µm, the symmetric phase is energy favorable up to H = 1.2 T. For

d = 0.08 µm, on increasing H to about 0.6 kOe, there is a transition from symmetric

to non-symmetric phase. For a larger thickness d = 0.1 µm or d = 1 µm, the ground

state is non-symmetric for H > 0.3 kOe.

3.5 Phase diagram

Fig.3.4 shows that the phase diagram in (d,H) space has three different regions,

separated by two critical transition lines, dc(H) and d∗(H), corresponding to ∆ = 0

and C = 0, respectively. As shown below, measurement of the contrast, or mod-

ulation depth [66], of the spatial interference pattern permits identification of the

different condensate phases.

3.6 Comparison with experiment

The ground state wave function Ψ(z) generally is a superposition of two conden-

sate amplitudes

Ψ(z) = (cQe
iQz + c−Qe

−iQz)/
√
V (3.21)

where

c±Q =
√
N±Qe

iφ± (3.22)
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Figure 3.4: The phase diagram for different values of thickness d and magnetic field
H.
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and V is the volume of the film. The spatial structure of Ψ(z) can be measured by

Brillouin Light Scattering (BLS). The BLS intensity is proportional to the condensate

density

|Ψ|2 = nQ + n−Q + 2
√
nQn−Q cos(2Qz + φ+ − φ−). (3.23)

In their recent experiment, Nowik-Boltyk el al [66] observed the interference pat-

tern associated with the ground state. They found that the contrast of this periodic

spatial modulation is far below 100%, of the order 3%. The present theory can quan-

titatively explain this result. In the experiment of Ref.[66], d = 5.1 µm and H = 1

kOe, eq.(3.17) for A, B and C then gives A = −0.168 mK/N , B = 8.218 mK/N and

C = −0.203 mK/N , so ∆ < 0. This corresponds to the non-symmetric phase, where

the ratio of the numbers of magnons in the two condensates is

N−Q
NQ

≈ C2

4(B − A)2
(3.24)

(assume δ > 0). The contrast is defined as

β =
|Ψ|2max − |Ψ|2min
|Ψ|2max + |Ψ|2min

. (3.25)

Since C � B and N−Q � NQ,

β ≈ 2

√
N−Q
NQ

≈ |C|
|B − A|

(3.26)

For the above values of A, B and C, β is of order 2.4%, in good agreement with

experiment. The smallness of C (and A) in comparison to B is associated with a
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large parameter d/l where

l =

√
D

πγM
(3.27)

is an intrinsic length scale of the system and l ∼ 10−6 m. In terms of this parameter,

|C|
B
∼ (

l

d
)2/3. (3.28)

In the experiment [66] the contrast β reaches the saturation value at compara-

tively small pumping power corresponding to the appearance of BEC. This agrees

with our expression for β, which depends only on film thickness d and magnetic

field H. By varying d and H, the contrast can be changed. Specifically, in the

symmetric phase, β = 1; in the non-symmetric phase, β < 1 and in the completely

non-symmetric case with only one condensate, β = 0. Therefore, measurement of

the contrast for different values of d and H can give complete information on the

phase diagram of the system, for comparison with the present theory.

Fig.3.5 plots C, ∆ and β as functions of the film thickness d at fixed magnetic

field H = 1 kOe. For small d the system is in the high-contrast symmetric state. At

a larger thickness dc = 0.07 µm, the sign of ∆ changes, indicating a transition from

the symmetric to the low-contrast non-symmetric phase. As d further increases,

to d∗ = 0.17 µm, C changes sign, where the total phase Φ changes from π to 0.

Only at this point d∗ does the zero-contrast phase with only one condensate appear.

Correspondingly, a characteristic cusp in the contrast β appears near d∗.

To conclude, we have calculated the 4-th order magnon-magnon interactions in

the condensate, includ- ing magnon-non-conserving term responsible for the coher-

ence of two condensates. We predict a phase transition from symmetric to non-
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Figure 3.5: (a) Criterion for phase transition ∆ and interaction coefficient C as
a function of thickness d for fixed magnetic field H = 1 kOe. (b) The contrast

β =
|Ψ|2max−|Ψ|2min
|Ψ|2max+|Ψ|2min

as a function of thickness d for H = 1 kOe. S and NS denote

symmetric and non-symmetric phase, respectively.
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symmetric phase that happens at a reasonable magnetic field > 0.2 kOe in sufficient-

ly thin YIG films d < 0.1 µm. We also predict that within the non-symmetric phase

there is a thickness d∗(H) where the modulation in the observed interference pattern

should totally disappear.

3.7 Generalized Gross-Pitaevskii equation

Here we write down the generalized Gross-Pitaevskii equation, and use it to

calculate the zero sound spectrum. Let us consider small deviations from the static

symmetric solution nQ = n−Q = nc/2, φ+ = π − φ− = 0 so that n±Q = nc/2 + δn±

with δn+ = −δn− = δn/2 and δφ+ = −δφ− = δφ/2.

E =
∫
dr
( h̄2

2m
(|∇Ψ+|2 + |∇Ψ−|2) + AV (|Ψ+|4 + |Ψ−|4)

+2BV |Ψ+|2|Ψ−|2 + CV (Ψ+Ψ− + Ψ∗+Ψ∗−)(|Ψ+|2 + |Ψ−|2)
)
,

On linearizing, the energy reads:

E =
∫
dr
( h̄2

4mnc
|∇δn|2 +

h̄2nc
4m
|∇δφ|2 +

∆V

2
δn2

)
. (3.29)

Using the commutation relation [δφ, δn] = i, and the equation of motion ih̄ ˙δφ =

[δφ,H], we obtain:

h̄
∂δφ

∂t
= − h̄2

2mnc
∇2δn+ ∆V δn, (3.30)

h̄
∂δn

∂t
=

h̄2

2m
nc∇2δφ. (3.31)

Taking Fourier transforms of the above two equations in coordinate and time, one

arrives at dispersion relations Eq.(3.32).
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3.8 Zero sound

In two-condensate states the relative phase δφ = φ+ − φ− is a Goldstone mode.

Its oscillation, coupled with the oscillation of the number density δn = nQ − n−Q

represents a new branch of collective excitations, which we call zero sound (as in

Landau’s Fermi liquid, this mode is driven by the self-consistent field rather than

collisions). Solving a properly modified Gross-Pitaevskii equation (see Methods), we

can find its spectrum. In the symmetric phase it is:

ω =

√
h̄2k4

4m2
+Nc∆

k2

m
. (3.32)

The effective mass of magnon is of the order of the electron mass. The density of

condensed magnons nc = Nc/V is about 1018 cm−3 and ∆ ≈ 10 mK/N. The sound

speed for small k in this case is v0s =
√
Nc∆/m, which is about 100 m/s. Near

the transition point ∆ = 0, the velocity of this zero sound goes to zero. For the

non-symmetric case, the spectrum is:

ω =

√
h̄2k4

4m2
κ+Nc(B − A)(κ− 1)

k2

m
, (3.33)

where κ ≡ (B−A)2

C2 . In the experiment [66], κ ∼ 104 and B − A = 8.4 mK/N . An

estimate of the sound speed gives 3 × 103 m/s. The dispersions of zero sound for

symmetric and non-symmetric cases are shown in Fig.3.6. Note that the range of

applicability of linear approximation strongly shrinks at small C since the density of

one of condensates becomes small and the fluctuations of the phase grow.
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Figure 3.6: Dispersions of zero sound for symmetric and non-symmetric cases, re-
spectively. For the non-symmetric case, we choose H = 1 kOe and d = 5 µm.
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3.9 Domain wall

Since the ground state of the non-symmetric phase is doubly degenerate, it may

consist of domains with different signs of δ separated by domain walls. The width w

of a domain wall is of the order of
√

h̄2

2mNc|∆| . For the data of experiment [66], w ≈ 10

µm. The energy of domain wall per unit area is ≈ 10−9J/m2.
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4. RELAXATION OF CONDENSED MAGNONS DUE TO THREE MAGNON

PROCESSES IN FERROMAGNETIC FILM WITH FINITE THICKNESS

4.1 Introduction and motivation

The study of relaxation of magnons in ferromagnetic material, such as yttrium

iron garnet, is a long story and can be dated back to 1950s. In the early days,

two aspects of relaxation are discussed. First, people were interested in the energy

transfer between the whole magnon system and the phonon system [77]. Therefore,

in this context, the relaxation time means the time needed for the establishment of

equilibrium between the spin and lattice systems. Secondly, due to the experimental

development of ferromagnetic spin resonance absorption [83], the uniform mode, that

is, the magnons near k = 0 are paid much attention. The line width of ferromagnetic

spin resonance was found to be 50−500 oesterds, corresponding to over-all relaxation

time of the order of 10−8 to 10−9 sec for the uniform mode. The relaxation of this

uniform mode are explained through different mechnisms, e.g. the scattering of k = 0

modes into degenerate modes by polishing imperfections on the sample surfaces,

[82], the four magnon processes originated from exchange interaction [68], three

magnons processes due to dipolar interaction [81] and magnon phonon interaction

[34, 45, 44, 77, 73].

The discovery of magnon BEC in YIG film arouses the new interest in the study

of dynamics and relaxation of magnons due to different mechanisms. The whole

picture of magnon BEC can be described as follows: through parallel pumping,

additional magnons are pumped to a relatively high energy level. These primary

magnons interact with each through four-magnon processes which conserves both

the number and energy of magnons, and after a thermalization time of 10 to 100
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ns, the system reaches a quasi equilibrium. After that time, the condensed magnons

will relax through two different mechanism, magnon-phonon processes and three-

magnon processes. Through magnon-phonon processes, the energy of magnon system

are transferred to the lattice and disappear. Through three-magnon processes, one

condensed magnon with a magnon in the exchange regime merge into one magnon

with higher energy; then the latter interacts with the phonon and transfer the energy

into lattice.

In a recent work [73], Ruckriegel et al, starting from the microscopic Hamiltonian,

calculated the phonon contribution to the damping of magnons in the full range of

spectrum. Different effects on damping of magnons in different regimes of momentum

space are found: in the large wave vector regime, that is, the exchange regime, the

magnon damping is dominated by Cherenkov type scattering processes, while in the

long-wavelength dipolar regime, these processes are subdominant and the magnon

damping is two orders of magnitude smaller. This work shows that in the context of

magnon BEC, the mechanism of the relaxation time, or the life time of condensed

magnons (in the dipolar regime), is not, or more strictly speaking, is not only due

to magnon-phonon processes. In other words, three magnon processes may play a

more important role in the relaxation of condensed magnons. Note that four magnon

processes conserve the number of magnons, therefore it determines the thermalization

time of magnon system but plays a less important role in relaxation.

Our goal in this section is to study the relaxation of condensed magnons due to

three magnons processes in a film with finite thickness. The three magnon processes

have been studied extensively in experiments [67, 60, 50]. However, there are few

theoretical studies on this topic [12, 56]. Our work takes into account higher bands

due to the finite thickness of ferromagnetic film and gives the relaxation time of con-

densed magnons. Our study will deepen our understanding in three magnon process
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and would be helpful in developing spin-current based electronics [50].

4.2 Magnons in quasi-2D film.

We start from the following effective quantum spin Hamiltonian which is generally

used to describe the magnetic properties of YIG at room temperature:

H = −J
∑
〈ij〉

Si · Sj − gµBH0

∑
i

Szi +HD (4.1)

where the three terms are respectively exchange interaction, Zeeman interaction and

dipole interaction. Here we adopt the same geometry as shown in Fig. 2.3. H0 is

the magnitude of external magnetic field along z. Si ≡ S(Ri) is the spin operator

localized at the sites Ri of a cubic lattice with lattice constant a ≈ 12 Å. For the

exchange interaction, we consider only the nearest neighbor coupling with coupling

constant J .

By introducing S(r) = Si, we can change
∑
i →

∫
dr/a3. For finite thickness, we

introduce eigenfunctions:

ϕn =

√
2

d
sin kny (4.2)

with

kn =
nπ

d
(4.3)

when y ranges from 0 to d.
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We take the following Fourier transformations:

S(r) =

√
2

N

∑
k

∑
n

eikr‖ sin knyS(k, n) (4.4)

or

Si =

√
2

N

∑
k,n

eikr‖ sin knyS(k, n) (4.5)

The corresponding inverse Fourier transformation:

S(k, n) =

√
2

N

∫ dr

a3
e−ikr‖ sin knyS(r) (4.6)

where

∫
dreikr‖ sin kny =

V

2
δk,0δn,0 (4.7)

is used. Here, k is the in plane wave vector and is discritezed.
∫
dr‖e

i(k−k′)r‖ =

Aδk,k′ . (Compared with infinite area, which leads to continuous k,
∫
dr‖e

i(k−k′)r‖ =

(2π)2δ(k− k′).)

The Zeeman and exchange terms give:

Hex +HZ = −J
∑
<ij>

(
1

2
S+
i S
−
j +

1

2
S−i S

+
j + Szi S

z
j )− gµBH0

∑
i

Szi (4.8)

Up to quadratic orders of a†k,n and ak,n, after the Holstein-Primakoff transformation:

Hex + JZ =
∑
k,n

[D(k2 + k2
n) + h̄γH0]a†k,nak,n (4.9)
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with D = 2JSa2. The contribution to summation due to boundary is neglected.

For dipolar interaction

HD = −1

2
(gµB)2

∑
i,j

(Sirij)(Sjrij)

r5
ij

− 3SiSj
r3
ij

(4.10)

we first change the summation over lattice into continuous integral over space:

HD = −1

2
(gµB)2

∫ dr1dr2

a6

(S1r12)(S2r12)

r5
12

− 3S1S2

r3
12

(4.11)

Then we can rewrite it as:

HD =
1

2
(gµB)2

∫ dr1dr2

a6
(S1∇1)(S2∇2)

1

r12

(4.12)

or

HD =
1

2
(gµB)2

∫ dr1dr2

a6
(∇1S1)(∇2S2)

1

r12

(4.13)

For the boundary condition that we adopt, the surface charge is zero. The above

dipolar interaction contains different terms, such as Hxx
D , Hyy

D and Hzz
D . Take Hxx

D

for example:

Hxx
D =

1

2
(gµB)2

∫ dr1dr2

a6
Sx(r1)Sx(r2)∂1,x∂2,x

1

r12

(4.14)

Using the Holstein-Primakoff transformation and the following identity:

1√
r2
‖ + y2

=
2π

A

∑
k

eikr‖
e−k|y|

k
(4.15)
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we have:

Hxx
D =

1

2
(gµB)2 2S

4

∫ dr1dr2

a6
(a†1 + a1)(a†2 + a2)

2π

A

∑
k

k2
x

k
e−k|y1−y2|eik(r‖,1−r‖,2) (4.16)

and then make the Fourier transformation of a1 ≡ ar1 and a2, and perform the

integral over r1 and r2

Hxx
D = (gµB)2 4πS

4a3

∑
k

∑
n,n′

k2
x

k2
Fnn′(kd)[(a†k,n + a−k,n)(a†−k,n′ + ak,n′)] (4.17)

We introduce the magnetization in terms of the effective spin and lattice constant a:

M = gµB
S

a3
(4.18)

therefore,

Hxx
D = h̄γ4πM

∑
k

∑
n,n′

k2
x

k2

Fnn′

2
a†k,nak,n′

+h̄γ4πM
∑
k

∑
n,n′

k2
x

k2

Fnn′

4
(a†k,na

†
−k,n′ + a−k,nak,n′) (4.19)

The dimensionless form factor:

Fnn′ =
k

d

∫ d

0
dy1dy2e

−k|y1−y2| sin k1y1 sin k2y2

=
k

d

kd

k2 + k2
1

δn,n′ +
k

d

k1k2

(k2 + k2
1)(k2 + k2

2)

[
1 + (−1)n+n′

− e−kd(−1)n
′ − e−kd(−1)n

]
(4.20)
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Similarly

Hyy
D = h̄γ4πM

∑
k

∑
n,n′

Gnn′

2
a†k,nak,n′ (4.21)

−h̄γ4πM
∑
k

∑
n,n′

Gnn′

4
(a†k,na

†
−k,n′ + a−k,nak,n′) (4.22)

in which

Gnn′ =
k1k2

kd

∫ d

0
dy1dy2e

−k|y1−y2| cos k1y1 cos k2y2

=
k1k2

kd

kd

k2 + k2
1

δn,n′ −
k1k2

kd

k2

(k2 + k2
1)(k2 + k2

2)
[1 + (−1)n+n′

− e−kd(−1)n
′ − e−kd(−1)n] (4.23)

Here k1 and k2 should be understood as kn1 and kn2 , respectively.

Here we list some Useful expressions:

∫ y

0
sin k1ye

kydy =
keky sin k1y − k1e

ky cos k1y + k1

k2 + k2
1

(4.24)

∫ y

0
cos k1ye

kydy =
keky cos k1y + k1e

ky sin k1y − k
k2 + k2

1

(4.25)

∫ d

0
sin k1ye

kydy =
−k1e

kd(−1)n + k1

k2 + k2
1

(4.26)

∫ d

0
cos k1ye

kydy =
kekd(−1)n − k

k2 + k2
1

(4.27)

∫ d

0
sin k1y sin k2y =

d

2
δn,n′ (4.28)∫ d

0
sin k1y cos k2y = k1

1− (−1)n+n′

k2
1 − k2

2

(4.29)
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∫ d

0
cos k1y cos k2y =

d

2
δn,n′ (4.30)

4.3 Magnon spectrum in quasi-2D: diagonal approximation

Generally, the Hamiltonian, up to the quadratic order of a†n,k and an,k, can be

written as:

H =
∑

k,n,n′
Ann′a

†
n,kan′,k +

Bn,n′

2
[a†n,ka

†
n′,−k + an,kan′,−k] (4.31)

with

Ann′ = [h̄γH0 +D(k2 + k2
n)]δn,n′ + 2πh̄γM sin2 θkFnn′ + 2πh̄γMGnn′ (4.32)

Bnn′ = 2πh̄γM sin2 θkFnn′ − 2πh̄γMGnn′ (4.33)

where Fnn′ and Gnn′ have been given in Eq. 4.20 and Eq. 4.23.

If we consider only the diagonal matrix elements, and treat the n 6= n′ terms as

perturbation, then we can have a first order approximation

H0 =
∑
k,n

Ana
†
n,kan,k +

Bn

2
[a†n,ka

†
n,−k + an,kan,−k] (4.34)

with

An = [h̄γH0 +D(k2 + k2
n)] + 2πh̄γM sin2 θkFnn + 2πh̄γMGnn (4.35)

Bn = 2πh̄γM sin2 θkFnn − 2πh̄γMGnn (4.36)
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and

Fnn =
k2

k2 + k2
n

+ 2
k

d

k2
n

(k2 + k2
n)2

[1− e−kd] (4.37)

Gnn =
k2
n

k2 + k2
n

− 2
k

d

k2
n

(k2 + k2
n)2

[1− e−kd] (4.38)

and we notice that

Fnn = 1−Gnn (4.39)

The spectrum can be readily obtained:

ωn =
√

(εn +mGnn)(εn +m sin2 θ(1−Gnn)) (4.40)

where m ≡ 4πh̄γM and εn = h̄γH0 +D(k2 + k2
n).

Here,we used the Bogoliubov transformation:

an,k = un,kcn,k + vn,kc
†
n,−k (4.41)

with

un,k = un,−k = (
An,k + ωn,k

ωn,k
)1/2 (4.42)

vn,k = −sign(Bn,k)(
An,k − ωn,k

ωn,k
)1/2 (4.43)

Notice that in the vicinity of k = 0, the above expression is the exact answer,

because the non diagonal matrix elements vanish as k = 0. Therefore at least in this

limit k ∼ 0, this approximation is good. In Fig. 4.1 and Fig. 4.2 we plot the magnon

71



0.1 0.5 1. 5. 10. 50. 100.
2

3

4

5

6

7

kH104 cm-1L

Ω
HkL

HG
H

zL

Figure 4.1: Magnon spectrum in quasi-2D film with finite thickness. From below to
above, the curves correspond to n = 1, 2, 3, 4, 5, 6, 7, 8, 30, respectively. d = 5 µm,
H0 = 1.0 kOe
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Figure 4.2: Magnon spectrum in quasi-2D film with finite thickness. From below to
above, the curves correspond to n = 1, 2, 3, 4, 5, respectively. d = 0.1 µm, H0 = 1.0
kOe
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spectrum given by Eq. 4.40 with d = 5µm and d = 0.1 µm, respectively. Similar

results are also obtained in Ref. [48] and [32, 15],

4.3.1 Lowest level

For lowest level, we would have:

H0 = h̄
∑
k

Aka
†
kak +

1

2
Bkaka−k +

1

2
B∗ka

†
ka
†
−k, (4.44)

with

Ak = [γH0 +D(k2 + (π/d)2) + γ2πMF11 sin2 θ + γ2πMG11] (4.45)

Bk = [γ2πMF11 sin2 θ − γ2πMG11] (4.46)

in which

F11 = 1−G11 =
x2

x2 + π2
+

xπ2

(x2 + π2)2
2(1 + e−x) (4.47)

In this approximation, we find that the nonzero wavevector Q at the minimum

energy point is Q = 6.25 × 104 cm−1, when we take D/γ = 2 × 10−9 Oe cm 2 and

d = 5µm, H0 = 1 kOe. This Q is smaller than the value in the uniform approximation

Q = 7.55× 104 cm−1 obtained from Eq. 2.77.

4.4 3-magnon process

3-magnon interaction comes from two parts in the dipolar interaction: Hxz
D and

Hyz
D :

Hxz
D = 2

(gµB)2

2

∫ dr1dr2

a6
Sx1S

z
2∂1x∂2z

1

r12

(4.48)
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factor 2 is due to the Sz1S
x
2 term which gives the identical contribution with Sx1S

z
2

term.

Hxz
D = (gµB)2

∫ dr1dr2

a6

√
2S

2
(a†1 + a1)(−a†2a2)∂1x∂2z

1

r12

(4.49)

Making a Fourier transformation and integrating over space coordinates, we have:

Hxz
D = − h̄γ4πM√

SN

∑
k,q

∑
n1n2n3

A(3)(k,q, n1, n2, n3)(a†kn1
a†qn2

ak+q,n3 + a†k+q,n3
aqn2akn1)

(4.50)

The coefficient is:

A(3)(k,q, n1, n2, n3) =
1

2

[kxkz
2k2

[
Jn1,|n2−n3|(k)− Jn1,n2+n3(k)

]
(4.51)

+
qxqz
2q2

[
Jn2,|n1−n3|(q)− Jn2,n1+n3(q)

]
(4.52)

with

Jn1,n2(k) =
k

d
Isc(n1, n2; k) (4.53)

Another contribution from

Hyz
D = 2

(gµB)2

2

∫ dr1dr2

a6
Sy1S

z
2∂1y∂2z

1

r12

(4.54)

Hyz
D =

h̄γ4πM√
SN

∑
k,q

∑
n1n2n3

B(3)(k,q, n1, n2, n3)(a†kn1
a†qn2

ak+q,n3 + a†k+q,n3
aqn2akn1)

(4.55)
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The coefficient is:

B(3)(k,q, n1, n2, n3) =
1

2

kz
2k

[
J ′n1,|n2−n3|(k)− J ′n1,n2+n3

(k)
]

+
qz
2q

[
J ′n2,|n1−n3|(q)− J

′
n2,n1+n3

(q)]
]

(4.56)

with

J ′n1,n2
(k) =

kn1

d
Icc(n1, n2; k) (4.57)

Here we introduce three integrals:

Iss =
∫ d

0
dy1dy2e

−k|y1−y2| sin k1y1 sin k2y2

=
kd

k2 + k2
1

δn,n′ +
k1k2

(k2 + k2
1)(k2 + k2

2)
[1 + (−1)n+n′ − e−kd(−1)n

′ − e−kd(−1)n]

Isc =
∫ d

0
dy1dy2e

−k|y1−y2| sin k1y1 cos k2y2

=
2kk1

k2 + k2
1

1− (−1)n1+n2

k2
1 − k2

2

+
kk1

(k2 + k2
1)(k2 + k2

2)
[−1 + (−1)n1+n2 + e−kd[(−1)n1 − (−1)n2)]]

Icc =
∫ d

0
dy1dy2e

−k|y1−y2| cos k1y1 cos k2y2

=
kd

k2 + k2
1

δn,n′ −
k2

(k2 + k2
1)(k2 + k2

2)
[1 + (−1)n+n′ − e−kd(−1)n

′ − e−kd(−1)n]

Note: when n1 = n2, Isc = 0.

Therefore, totally

H(3) =
h̄γ2πM√

SN

∑
k1,k2,k3

∑
n1,n2,n3

(D1;,n1,n2,n3 +D2,n2,n1,n3)δ1+2,3(a†1,n1a
†
2,n2

a3,n3 + h.c.)

(4.58)
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with

Dk;n1,n2,n3 =
kz
2k

[
J ′n1,|n2−n3|(k)− J ′n1,n2+n3

(k)
]

− kxkz
2k2

[
Jn1,|n2−n3|(k)− Jn1,n2+n3(k)

]
(4.59)

The coefficient Dk;n1,n2,n3 is a function of only one wave vector, and the order of

n1, n2, n3 are important. The Hamiltonian is symmetric with respect to the exchange

of (1, n1) and (2, n2).

4.4.1 Explicit expressions for 3 magnon interaction.

In the three magnon process, a magnon with wave vector k and another one with

q scatter into one with k + q. If k is neat the minimum, then kx = 0, kz = Q, the

wavevector of other magnon will be very large compared to 1/d: q � kn for not too

large n. Let’s consider the process (k, n1) + (q, n2) → ((k + q), n3), with k located

near the minimum point Q, and n1 = 1. There are two different cases for n2 and n3

that can simplify Dq;n2,n1,n3

(1) n2 − n3 is even. In this case, J ′ will be zero.

Dq;n2,n1,n3 = −qxqz
2q2

[Jn2,n1−n3(q)− Jn2,n1+n3(q)] (4.60)

For the condition q � 1/d,

Dq;n2,n1,n3 = − qxqz
q2 + k2

n2

2kn2

d
[

1

k2
n2
− k2

n1−n3

− 1

k2
n2
− k2

n1+n3

] (4.61)

= − 8qxqz
π(q2 + k2

n2
)

n1n2n3

[(n2 + n3)2 − n2
1][(n2 − n3)2 − n2

1]
(4.62)
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Take the special case for an example: n1 = n2 = n3 = 1, we have:

Dq;n2,n1,n3 = − qxqz
q2 + k2

n2

2

d
[

1

kn2

+
1

kn2+n1+n3

] (4.63)

∼ − qxqz
q2 + k2

n2

8π

3
(4.64)

For another limit n1 = 1, n2 = n3 � 1,

Dq;n2,n1,n3 = − qxqz
q2 + k2

n2

π (4.65)

(2) n2 − n3 is odd. Terms including J will be zero. Because the delta function

in J ′, the main contribution will be the case: |n1 − n3| = n2. For example, here we

consider n1 = 1, and n2 = n3 ± 1. For the case n2 = n3 − n1,

Dq;n2,n1,n3 =
qzkn2

2(q2 + k2
n2

)
(4.66)

for n2 = n3 + n1,

Dq;n2,n1,n3 = − qzkn2

2(q2 + k2
n2

)
(4.67)

After the Bogoliubov transformation, the interaction becomes more complicated.

In terms of Dk;n1,n2,n3 , we define

α(1, 2;n1, n2, n3) = D1;n1,n2,n3u1u2u3 +D1;,n1,n3,n2u1v2v3

+D−1;n1,n3,n2v1u2u3 +D−1;n1,n2,n3v1v2v3

+D−(1+2);n3,n2,n1v1u2v3 +D1+2;n3,n2,n1u1v2u3 (4.68)

And then by symmetrizing the above coefficient by exchange (1, n1) and 2, n2, we
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get the interaction coefficient

H(3) =
h̄γ2πM√

SN

∑
k1,k2,k3

∑
n1,n2,n3

(α(1, 2;n1, n2, n3) + α(2, 1, n2, n1, n3))

× δ1+2,3

(
c†1,n1c

†
2,n2

c3,n3 + h.c.
)

(4.69)

with some other terms containing, e.g., ccc, which are neglected.

4.5 Decay time due to three magnon processes

The kinetic equation under the 3-magnon processes can be written as follows:

dnk,n1

dt
=

∑
n2,n3

∑
q

W (k, q, n1, n2, n3)[n(k + q, n3)(n(k, n1) + 1)(n(q, n2) + 1)

− (n(k + q, n3) + 1)n(k, n1)n(q, n2)] (4.70)

with

W (k, q, n1, n2, n3) =
2π

h̄
|I(3)(k, q, n1, n2, n3)|2δ(ωk+q(n3)− ωk(n1)− ωq(n2)) (4.71)

It includes the confluent process in which two magnons combine together to one

magnon, and the splitting process in which a high energy magnon spits into two

magnons with lower energy.

If only nk,n1 has a small deviation, we can use the relaxation approximation:

1

τk,n1

=
∑

q,n2,n3

2π

h̄

(h̄γ4πM)2

SN
|I(3)(k, q, n1, n2, n3)|2

δ(ωk+q(n3)− ωk(n1)− ωq(n2))[n(q, n2)− n(k + q, n3)] (4.72)

Here, I(3) is the interaction strength.

We consider the case of d = 5 µm, and H ∼ 1kOe. In this case, the minimum
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point Q follows Qd ∼ 37. The energy conservation law requires:

ωn1(k) + ωn2(q) = ωn3(k + q) (4.73)

If we require both k � 1/d and q � 1/d, then we can approximately write the

magnon spectrum as:

ωn(k) = h̄γH0 +D(k2 + k2
n) (4.74)

The above energy condition becomes:

(ωn1,k −Dk2)−D(k2
n3
− k2

n2
) = 2Dkqz (4.75)

In the previous section, we give the explicit expressions for three magnon inter-

action, I(3)(k, q, n1, n2, n3).

For n2 − n3 even, we have:

1

τk,n1

=
∑
n2,n3

2π

h̄

(h̄γ4πM)2

S

a3

d

∫ dqxdqy
(2π)2

64q2
xq

2
z

π2(q2 + k2
n2

)2

n2
1n

2
2n

2
3

[(n2 + n3)2 − n2
1]2[(n2n3)2 − n2

1]2

Tωn1(k)

ω(n2, q)2
δ(ωk+q(n3)− ωk(n1)− ωq(n2)) (4.76)

Integrating over qz, we can eliminate the delta function, the result is to replace qz by

q0z ≡ ((ωn1,k −Dk2)−D(k2
n3
− k2

n2
))/2Dk (4.77)

we get:

1

τk,n1

=
∑
n2,n3

2π

h̄

(h̄γ4πM)2

S

a3

d

∫ dqx
(2π)2

64q2
xq0

2
z

2Dkπ2(q2 + k2
n2

)2
(4.78)
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n2
1n

2
2n

2
3

[(n2 + n3)2 − n2
1]2[(n2n3)2 − n2

1]2
Tωn1(k)

ω(n2, q)2
(4.79)

Then we can make a change of variable from qx to x = qxd, we define:

z = q0zd = ((ωn1,k −Dk2)−D(k2
n3
− k2

n2
))d/2Dk (4.80)

a2 = z2 + n2
2π

2 (4.81)

b2 = z2 + n2
2π

2 + h̄γH0/(D/d
2)) (4.82)

and we used

∫
dx

x2

(x2 + a2)2(x2 + b2)2
=

π

2ab(a+ b)3
(4.83)

then we get:

1

τk,n1

=
2π

h̄

(h̄γ4πM)2

4π4S

Tω(n1, k)(kd)5

D3k6

a3

d3
f(D/d2, h̄γH0) (4.84)

with

f(D/d2, h̄γH0) =
∑

n2−n3even

32πz2

ab(a+ b)3

n2
1n

2
2n

2
3

[(n2 + n3)2 − n2
1]2[(n2 − n3)2 − n2

1]2

(4.85)

Due to the [(n2− n3)2− n2
1]2 in the denominator, function f decreases rapidly as

one increase n2 − n3. If we consider Numerical calculation gives:

n2 = n3, f = 7.3 ∗ 10−7, (4.86)

n2 − n3 = 2, f = 8.6 ∗ 10−8. (4.87)
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n2 − n3 = −2, f = 7.1 ∗ 10−8 (4.88)

n2 − n3 = 4, f = 3.8 ∗ 10−9 (4.89)

n2 − n3 = −4, f = 2.4 ∗ 10−9 (4.90)

n2 − n3 = 6, f = 7.2 ∗ 10−10 (4.91)

n2 − n3 = 6, f = 7.2 ∗ 10−10 (4.92)

For comparison with experiments, d = 6.7 µm, H0 = 1.76 kOe. For the T = 300K =

6000GHz, kd = 33, Dk2 = h̄γ4πM
kd

,

(h̄γ4πM)2

S

Tω(n1, k)(kd)5

D3k6

a3

d3
=

(kd)8T

S

a3

d3
= 5.4 ∗ 103GHz (4.93)

,

1

τ
=

2π5.4 ∗ 103

4π4
∗ (7.3 + 0.86 + 0.71) ∗ 10−7GHz = 7.7 ∗ 104Hz (4.94)

For n2 − n3 odd, we have:

1

τk,n1

=
2π

h̄

(h̄γ4πM)2

128π2S

Tω(n1, k)(kd)5

D3k6

a3

d3
g(D/d2, h̄γH0) (4.95)

with

g(D/d2, h̄γH0) =
∑
n2

∫
dx

z2(πn2)2

(x2 + z2 + n2
2π

2)2(x2 + z2 + n2
2π

2 + h̄γH0/(D/d2))2

(4.96)

with n3 = n2 − n1 or n3 = n2 + n1.

The fist case gives g = 1.6 ∗ 10−7 and the latter gives: g = 1.4 ∗ 10−7.
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To conclude, totally, we have a decay rate

1

τ
= 1.07 ∗ 105Hz (4.97)

4.6 Comparison with the uniform method

In the uniform approximation as was done in Section 3, the third order term,

that is, the three magnon term, is given by H(3):

H(3) =
∑
k,q

(f0(k) + f0(q))[a†ka
†
qaq+k + a†q+kaqak] (4.98)

with

f0(k) =
h̄γ4πM

2
√

2SN
(Fk − 1)

kxkz
k2

(4.99)

Using similar procedure and approximations, we have:

1

τk,n1

=
2π

h̄

(h̄γ4πM)2

128πS

Tωk,n1

(h̄γH0)3

a

d
(ka)2 (4.100)

Substituting the values of parameters in the case for d = 5.1µm and H0 = 1.0

kOe, we have:

1

τQ
∼ 100Hz (4.101)

which is much smaller than the result for a film with finite thickness.

4.7 Comparison with decay due to magnon phonon interaction and conclusion

The treatment of magnon-phonon interaction are either phenomenologically using

the magnetoelastic coupling of magnons and phonons[34, 82, 77], or microscopically
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starting from the Heisenberg model for the exchange interaction with the exchange

coefficient as a function of displacement [69, 33, 73]. For example, in the work of

Kittel, he used the phenomenological magnetoelastic energy density

fme = b1

(
α2
xSxx + α2

ySyy + α2
zSzz

)
+ 2b2(αxαySxy + αyαzSyz + αzαxSxz) (4.102)

in which bi (i=1,2) are two parameters, Sij is the shear components and αx,y,z are

the components of unit magnetization. However, Kittel was interested only in the

relaxation of the uniform mode. He found that the magnon-phonon process gives

rise to a relaxation time of the order of 10−1 to 10−2 sec for the k = 0 magnon.

In the recent work done by Ruckriegel et al [73], the phenomenological description

of magnetoelastic Hamiltonian is used:

Hme = Hms +Hex (4.103)

with

Hms = γ′
∫
MiMkuikdV (4.104)

and

Hex =
β1

2

Tca
2

µM0

∫ ∂Ml

∂xi

∂Ml

∂xk
uikdV +

β2

2

Tca
2

µM0

∫ ∂Ml

∂xi

∂Ml

∂xi
uiidV (4.105)

Hms is the usual form of magnetoelastic energy, whose origin is complicated and

mostly due to the spin orbit interaction. Hex arises from the expansion of the ex-

change energy in the strain. [34] [86]

The authors provide a comprehensive study of magnon relaxation due to magnon
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phonon. They found a much smaller relaxation time in the dipolar range than that in

the exchange range. This is reasonable, because in the dipolar regime, the Cherenkov

radiation of magnons to phonons is forbidden due to the fact the velocity of phonon

is much large than that of magnon. The calculation gives that in the dipolar regime,

the relaxation rate is about 0.13 MHz (See Fig. 7 in Ref. [73]), almost equal to the

relaxation rate we obtained in our calculation due to three magnon processes! This

means that in the relaxation of condensed magnons, the three magnons processes

and the magnon-phonon processes are both very important.

85



5. CONCLUSIONS

In this work, we first review the basic quantum and classical theory of spin waves.

Especially we give the quantum theory of magnons in a ferromagnetic film. Then

we provide a review of the recent experimental developments in magnon BEC and

of the theoretical achievements. In Section 3, we have calculated the 4-th order

magnon-magnon interactions in the condensate of a film of YIG, including magnon

non-conserving term responsible for the coherence of two condensates. We predict a

phase transition from symmetric to nonsymmetric state that happens at a reasonable

magnetic field H = 0.2 kOe in sufficiently thin YIG films d = 0.1 mm. We also

predict that within the non-symmetric state there is a thickness d ∗ (H) where the

modulation in the observed interference pattern should totally disappear.

In Section 4, we calculated the relaxation rate of condensed magnons in the

ferromagnetic YIG film with a finite thickness. Our result shows that the three

magnon processes are important in determining the relaxation rate. It is of the same

order of that provided by magnon-phonon interaction.
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ti, Iacopo Carusotto, Romuald Houdré, Elisabeth Giacobino, and Alberto Bra-

mati. Superfluidity of polaritons in semiconductor microcavities. Nature Physic-

s, 5(11):805–810, 2009.

[4] Mike H. Anderson, Jason R. Ensher, Michael R. Matthews, Carl E. Wieman,

and Eric A. Cornell. Observation of bose-einstein condensation in a dilute atomic

vapor. Science, 269(5221):198–201, 1995.

[5] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West. Bose-einstein con-

densation of microcavity polaritons in a trap. Science, 316(5827):1007–1010,

2007.
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