
 

 

 

 

HEALTHCARE FACILITY LOCATION AND CAPACITY CONFIGURATION UNDER 

STOCHASTIC DEMAND 

 

 

A Dissertation 

by 

XUE HAN  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

Chair of Committee,  Wilbert E. Wilhelm 

Committee Members, Sergiy Butenko 
 Lewis Ntaimo 
 Donald K. Friesen 
Head of Department, César O. Malavé 
 

December 2014 

 

Major Subject: Industrial Engineering 

 

 

Copyright 2014 Xue Han



 

ii 

 

ABSTRACT 

 

This dissertation addresses two topics. The first topic is strategic dynamic supply chain 

reconfiguration (DSCR) problem, in which the proposed capacity configuration network is 

employed in the second topic: healthcare facility location and capacity configuration under 

stochastic demand. The second topic investigates two problems: the stochastic, single healthcare 

facility location and capacity configuration problem (SSHFCP) in a competitive environment and 

the stochastic, multiple healthcare facility location and capacity configuration problem (SMHFCP) 

based on a location-allocation model. 

The DSCR problem is to prescribe the location and capacity of each facility, select links 

used for transportation, and plan material flows through the supply chain, including production, 

inventory, backorder, and outsourcing levels.  The objective is to minimize total cost.  The network 

must be dynamically reconfigured (i.e., by opening facilities, expanding and/or contracting their 

capacities, and closing facilities) over time to accommodate changing trends in demand and/or 

costs. This research proposes a network-based model of DSCR and compares it with a traditional 

mixed integer programming (MIP) formulation via extensive, large-scale computational tests and 

sensitivity analyses, showing that the network-based model offers superior solvability. 

The SSHFCP is to prescribe the location and multi-service, multi-period capacity 

configuration of facility facing competition from existing facilities under uncertain patient 

demand, so that the expected excess revenue (i.e., the amount by which revenue exceeds cost) of 

the new facility is maximized. This dissertation describes a solution methodology that relates 

practical features relative to healthcare, including a multiplicative competitive interaction (MCI) 

model to reflect competition among providers and a method to model the stochastic problem as a 

deterministic resource constrained shortest path problem (RCSPP) on a specially constructed 
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network, which can be solved in pseudo-polynomial time. This dissertation proposes two solution 

methods to SMHFCP. The dissertation shows that first method, a column-generation heuristic, 

solves test instances to near optimality; and the second one, an approximation method, provides a 

fast runtime with a bounding procedure to assess the quality of a solution. The application of 

SSHFCP and SMHFCP in locating and configuring new primary care centers in mid-Texas rural 

area validates the real business decision of industrial collaborators. 
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CHAPTER I  

INTRODUCTION* 

 

This dissertation addresses two topics. The first topic is strategic dynamic supply chain 

reconfiguration (DSCR) problem, in which the proposed capacity configuration network is 

employed in the second topic: healthcare facility location and capacity configuration under 

stochastic demand. The second topic comprises two cases: the stochastic, single healthcare facility 

location and capacity configuration problem (SSHFCP) in a competitive environment and the 

stochastic and multiple healthcare facility location and capacity configuration problem (SMHFCP) 

based on a location-allocation model. 

Section 1.1 introduces the DSCR problem. Section 1.2 introduces two cases of the 

healthcare facility location and capacity configuration problems, SSHFCP and SMHFCP. 

This dissertation is organized in six chapters. Chapter II reviews literature relevant to 

DSCR and healthcare facility location and capacity configuration problems. Chapters III 

investigates the DSCR problem. Chapters IV and V investigate SSHFCP and SMHFCP, 

respectively. The last chapter presents conclusions of this dissertation research and outlines 

opportunities for future work. 

 

1.1 Introduction to DSCR problem 

A supply chain must be dynamically reconfigured (i.e., by opening facilities, expanding and/or 

contracting their capacities, and closing facilities) over time to cope with changes in demand 

                                                 

* Reprinted with permission from “Computational comparison of two formulations for dynamic 
supply chain reconfiguration with capacity expansion and contraction.” by Wilhelm, W. E., Han, 
X. and Lee, C., 2013, Computers & Operations Research, 40, 2340-2356, Copyright 2013 by 
Elsevier. 
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and/or cost structures as the business environment evolves.  Demand for products in each market 

and costs to produce them at each plant vary as economic factors change over time. For example, 

an economic downturn or a period of rapid growth may give rise to such changes and force an 

enterprise to reconfigure its supply chain to meet customer demands at the lowest possible cost 

(M. T. Melo, Nickel, & Saldanha da Gama, 2006). Another example of a phenomenon that gives 

rise to such changes is the product life cycle: demand increases after introduction, grows rapidly, 

plateaus, and then decreases as the end of the life cycle approaches.  

 The dynamic supply chain reconfiguration (DSCR) problem is to prescribe facility 

opening, capacity expansion and contraction, and facility closing at each potential location in a 

multi-period, multi-product, multi-echelon supply chain. This strategic problem involves a 

planning horizon of some 6-10 years.  DSCR models are needed to provide decision support for 

management in dealing with changing business conditions in the competitive modern business 

environment.  The objectives of this research are   

 a traditional formulation and a network-based model of the DSCR problem,  

 tests under different demand scenarios to promote an intuitive interpretation of our 

models,  

 tests that identify the computational characteristics of our models to assess solvability, and 

 tests to identify sensitivity of run time relative to primary parameters. 

To achieve the first objective, this dissertation presents a traditional mixed integer program (MIP) 

and then proposes an alternative model that relates binary decision variables according to a 

network structure.  

 Even though the dynamic facility location problem with facility openings and closings 

has been studied for some time, there has not been adequate attention to cases that involve capacity 

expansion and contraction over the planning horizon. Furthermore, little research has been directed 
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to dynamic facility location within a multi-period, multi-product, multi-echelon supply chain 

network. No prior work has studied the solvability of different model forms. 

 Our DSCR models prescribe material flow through a four-echelon supply chain: 

suppliers, plants, distribution centers (DCs), and customer zones (CZs).  Each echelon performs a 

unique function so that each product must be “processed” in each. Each viable transportation link 

allows shipment from a facility in one echelon to another in the next echelon; no links connect 

facilities within the same echelon. A viable transportation link is established between a pair of 

operating facilities and any product can be transported on it. Thus, the problem deals with a 

dynamic, multi-period, multi-product, multi-echelon supply chain network through which 

products are delivered to satisfy demands, which occur only in CZs. 

 We model inventory, backorders, and outsourcing in each time period over the planning 

horizon because they allow peak demands to be satisfied and are thus essential to customer service. 

Previous studies have addressed these features in strategic planning (M. S. Daskin, Coullard, & 

Shen, 2002; M. S. Daskin, Snyder, & Berger, 2005; Yolanda Hinojosa, Kalcsics, Nickel, Puerto, 

& Velten, 2008; M. T. Melo et al., 2006; Shen, Coullard, & Daskin, 2003; W. Wilhelm et al., 

2005). Of 60 papers reviewed by (M. T. Melo, Nickel, & Saldanha-da-Gama, 2009), 33 include 

inventory planning in facility location and supply chain management models. 

Following (M. T. Melo et al., 2006), which studied dynamic facility location with 

inventory planning, we consider two cases for contraction and closure costs.  In Case 1, it can be 

profitable for a contractor to close a facility to eliminate unused capacity because the associated 

cost is negative, indicating that a return can be obtained by selling infrastructure and equipment 

that is no longer needed. In Case 2, the costs to contract or close are positive, so that unused 

capacity can be economically eliminated only when doing so is less costly than maintaining it 

(e.g., heating, cooling, insurance, security and taxes). 
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Supply chains that are reconfigured abound in industry.  After the North American Free 

Trade Agreement (NAFTA) was signed in 1993, many operations were moved from the U.S. to 

Mexico.  Subsequently, China attracted many of these operations; and, now, because wages have 

risen in China, some are being moved to lower-cost countries in Asia and some are being on-

shored to the U.S. (JR.  Hagerty, 2012).  For over a hundred years, the textile industry has moved 

from one country to another around the world, seeking low cost labor (Rivoli, 2009).  The current 

paper deals with structures that underlie both domestic and international supply chains and need 

only be augmented with international financial issues (e.g., border crossing fees, tariffs, local 

content rules, and transfer prices) for application to global supply chains (W. Wilhelm et al., 2005).  

Domestically, General Motors has recently closed plants in the Midwest and open new ones in the 

south, while other manufacturers streamline their supply chains (JR  Hagerty, 2012). 

 

1.2 Introduction to SSHFCP and SMHFCP 

This dissertation investigates two cases of healthcare facility location and capacity configuration, the 

single-facility case in a competitive environment and the multi-facility case based on a location-

allocation model. 

The first case, SSHFCP, is to prescribe the location and the multi-service, multi-period 

capacity configuration of a facility facing competition from existing facilities under uncertain patient 

needs. SSHFCP prescribes the location of a new facility from a set of potential sites as well as the 

capacity assigned to each specified service in each time period, allowing openings, expansions, 

contractions, and closures over the planning horizon, so that the expected excess revenue (i.e., the 

amount by which revenue exceeds cost) of the new facility is maximized.   

The research objectives of SSHFCP are to synthesize a solution methodology that includes a 

model of SSHFCP; a model that reflects competition among healthcare providers; a model that 
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represents uncertain demand, allowing closed-form expressions for recourse (i.e., expected excess 

demand and capacity) to compensate for random outcomes that are realized over the planning horizon; 

as well as to demonstrate application of the methodology in a case study that configures a new primary 

care center and to reveal insights into the relative impacts of key competition factors and parameters 

through sensitivity analyses. In particular, we model the stochastic SSHFCP as a deterministic 

resource constrained shortest path problem (RCSPP) on a specially constructed network, which 

can be solved in pseudo-polynomial time. 

We consider our models to be prototypical in the sense that they structure, for the first time, 

fundamental features that are relevant to a broad range of healthcare applications. These models can 

be adapted, as we exemplify, to particular applications and enhanced to incorporate additional features 

as they are identified in the future. 

The second case, SMHFCP, is to prescribe the locations of new facilities, given a set of 

potential sites, as well as the capacity assigned to each specified service at each facility in each time 

period, allowing openings, expansions, contractions, and closures over the planning horizon, so that 

the total expected excess revenue of the system is maximized.  We employ a location-allocation model 

which assigns demand from each population center to a particular facility.  

This dissertation proposes two methods to solve SMHFCP, a column-generation heuristic 

and an approximation method. We also perform computational experiments on realistic case 

studies that locates primary care centers in mid-Texas rural area. 

This work is motivated by the fact that the U.S. is seeking to expand access to healthcare 

services for individuals in underserved (e.g., rural) areas and for others through the Patient Protection 

and the Affordable Care Act (ACA).  Healthcare is provided at primary, secondary, tertiary and 

quaternary levels.  Primary care is the initial point of consultation with an internist, a family physician 

or a pediatrician.  This level deals with all types of issues (e.g., high blood pressure, diabetes, arthritis) 
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but refers patients with more serious issues to specialists (e.g., cardiologists, urologists) for secondary 

or tertiary care.  For example, a secondary-care specialist may perform a “routine” heart bypass 

surgery, but tertiary care may be required for a patient who has complications due to age or multiple 

morbidities.  The quaternary level specializes in advanced procedures (e.g., transplants) that have 

relatively low demand.   

Primary care is the entry into the healthcare system and leads to referrals that require hospital 

treatment; for this reason, it may be advantageous for a hospital to employ primary care physicians 

(PCPs). A patient may consider distance important in selecting a PCP because s\he may make repeated 

visits each year. In addition, factors like the skill, reputation, and treatment success of a physician may 

also be important in this selection process. Distance may be a lesser consideration at the tertiary and 

quaternary levels. For example, people are drawn from around the world to the Houston Medical 

Complex because of reputation, physician skills and success rate. Providers may compete on the basis 

of physician ratings as well as offering services that would otherwise be under-supplied in a particular 

locale. Furthermore, demographics change dynamically as the population ages and emigration (e.g., 

Detroit) and immigration (e.g., Texas) occur, affecting healthcare needs and selection decisions.  

Our models can be expected to improve healthcare effectiveness, enhancing access to avoid 

underutilization of costly professionals and equipment or, worse, rationing of overloaded resources.  

Healthcare administrators can use our models to serve patient needs effectively in a variety of 

applications, including locating and prescribing the capacity configuration of a new hospital or 

primary care, urgent care, or treatment (e.g., dialysis or trauma) center; or emergency room. Some 36 

states require a provider to obtain a Certificate of Need (CON) before constructing a new facility, 

expanding an existing facility, or enhancing capacity.  We note that a provider can use our model to 

justify a CON application and that a regulatory body can use it to configure the need.  
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CHAPTER II  

LITERATURE REVIEW* 

 

This chapter reviews literature relevant to DSCR and healthcare facility location and capacity 

configuration problems in sections 2.1 and 2.2, respectively. 

 

2.1 Literature review: DSCR 

The DSCR problem is related to four classical OR problems: facility location, dynamic facility 

location, supply chain design, and production-distribution network design. The facility location 

problem involves siting a set of facilities to serve a set of customer demands with the objective of 

minimizing total distance (or cost) incurred by all transports (Daskin et al., 2005; Melo et al., 

2009). An extension, the dynamic (multi-period) location problem, has been proposed to meet 

demands and costs as they change over time (Melo et al., 2009) and as a basis for building 

comprehensive supply chain network models (Melo et al., 2009). 

A supply chain network comprises a number of facility types that perform operations 

ranging from acquiring raw materials, transforming materials into intermediate and finished 

products, and distributing finished products to customers (Yolanda Hinojosa et al., 2008; Melo et 

al., 2009). A specialization of the supply chain design problem is called the production-distribution 

network design problem (Andreas Klose & Drexl, 2005), which is also a special case of the 

network design problem in which the network is acyclic.  

Due to the wide range of applications and its challenges to solution methods, the dynamic 

                                                 

* Reprinted with permission from “Computational comparison of two formulations for dynamic 
supply chain reconfiguration with capacity expansion and contraction.” by Wilhelm,W. E., Han, 
X. and Lee, C., 2013, Computers & Operations Research, 40, 2340-2356, Copyright 2013 by 
Elsevier. 
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facility location problem with opening and closing has been studied widely since the first work of 

(Ballou, 1968), including both uncapacitated (Canel & Khumawala, 1997; Chardaire, Sutter, & 

Costa, 1996; Van Roy & Erlenkotter, 1982) and capacitated (Fong & Srinivasan, 1981a, 1981b; 

S.-B. Lee & H. Luss, 1987; Alexander Shulman, 1991) cases. The dynamic supply chain network 

problem, which includes locating facilities, has been studied by (Canel & Khumawala, 1997; Gue, 

2003; Yolanda Hinojosa et al., 2008; Melachrinoudis & Min, 2000; Melo et al., 2006).  

The possibility of expanding capacity was considered by (Aghezzaf, 2005). (Lowe & 

Preckel, 2004) modeled the capacity-contraction case. A few studies (Behmardi & Lee, 2008; 

Melachrinoudis & Min, 2000; Melo et al., 2006; Wang, Batta, Bhadury, & Rump, 2003) 

considered both capacity expansion and contraction. (Daskin et al., 2005; Andreas Klose & Drexl, 

2005; Melo et al., 2009) provided surveys of the dynamic facility location problem. 

 In particular, a few papers are closely related to this research. (Yolanda Hinojosa, Puerto, 

& Fernández, 2000) dealt with the multi-period, multi-product, two-echelon, capacitated location 

problem in which new facilities can be opened and existing facilities closed but didn’t consider 

practical features like inventory, capacity expansion and contraction, or a budget limitation. (Melo 

et al., 2006) considered the step-wise reallocation of capacities under the assumptions that all 

existing facilities are operating at the start of the planning horizon; if an existing facility is closed, 

it cannot be reopened; and when a new facility is opened, it will remain in operation.  

 (Behmardi & Lee, 1914) studied a dynamic, multi-product, capacitated facility location 

problem in which each facility can be opened and subsequently closed with no reopening allowed. 

Extending (Yolanda Hinojosa et al., 2000), (Yolanda Hinojosa et al., 2008) formulated a model 

for a dynamic, two-echelon, multi-product, capacitated facility location problem with inventory 

and outsourcing. (Thanh, Bostel, & Péton, 2008) proposed a MIP to design of a multi-product, 

multi-echelon, production–distribution network, considering the opening, expanding, and closing 
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of facilities as well as supplier selection. Inventories were held only in warehouses, not in plants. 

(Torres Soto, 2009) studied the dynamic, capacitated facility location problem, which determines 

the optimal locations and times for opening facilities when demand and cost parameters are time-

varying. This model minimizes costs of transporting and the opening, operating, closing, and 

reopening of facilities. As in (Wesolowsky & Truscott, 1975), (Torres Soto, 2009)employed 

binary variables for (re)opening, closing, and operating a facility, but neither allowed for capacity 

expansion or contraction. 

 In most models that allow only facility opening and closing (Behmardi & Lee, 2008; 

Yolanda Hinojosa et al., 2008; Yolanda Hinojosa et al., 2000; Melo et al., 2006; Thanh et al., 2008; 

Van Roy & Erlenkotter, 1982), the capacity of a facility cannot be increased or decreased over 

time. Facilities that are open at the start of the planning horizon can only be contracted or closed 

and, after closing, must remain closed until the end of planning horizon. Facilities that are not 

operating at the start of the planning horizon can only be opened and subsequently expanded; but 

an open facility must remain opened until the end of the planning horizon - it cannot be closed and 

its capacity cannot be contracted. In particular, this approach does not allow for a facility with 

excessive capacity to be closed or contracted. Our model fills this gap, allowing capacity expansion 

and contraction as well as closures. 

A number of solution approaches have been proposed: commercial mathematical 

programming software (Gue, 2003; Melachrinoudis & Min, 2000; Melo et al., 2006), branch and 

bound (B&B) (Canel & Khumawala, 1997; Cem Canel, Basheer M Khumawala, Japhett Law, & 

Anthony Loh, 2001; Van Roy & Erlenkotter, 1982), Benders decomposition (Geoffrion & Graves, 

1974; Torres Soto, 2009), dynamic programming (Balakrishnan, 2004; S.-B. Lee & H. Luss, 1987; 

Alexander Shulman, 1991), Lagrangian relaxation (Yolanda Hinojosa et al., 2000; Torres Soto, 

2009) and heuristics (Chardaire et al., 1996; Fong & Srinivasan, 1981a, 1981b; Wang et al., 2003). 
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As (Andreas, Klose & Drexl, 2005) indicated, the computational challenge presented by the 

dynamic facility location problem increases drastically with the size of the model, reducing the 

chances to solve large-scale, real-world instances. 

 

2.2 Literature review: healthcare facility location and capacity configuration 

The healthcare facility location and capacity configuration involves four topics. The first topic we 

address is healthcare, dynamic and stochastic facility location. Second, we review models of 

demand attraction and facility location in a competitive environment, including queueing models 

used to maximize the capture of demand. Third, we review clinic scheduling models, which assess 

cost penalties for patient waiting time and overtime, providing justification for maximizing 

expected excess revenue, as we do. Fourth, we review the location-allocation models in healthcare 

applications. 

This section comprises four subsections; each involves a topic; 2.2.1, Healthcare, 

dynamic and stochastic facility location; 2.2.2, Demand attraction models under 

competition; 2.2.3, Optimizing expected excess revenue; and 2.2.4, Location-allocation model 

in healthcare applications. 

 

2.2.1 Healthcare, dynamic and stochastic facility location 

A variety of literature is related to this work, including research on healthcare and dynamic facility 

location. Several recent papers provided reviews of healthcare-facility location (Daskin & Dean, 

2004; Rais & Viana, 2010), including emergency services (Adenso-Diaz & Rodriguez, 1997), 

hospitals (Sinuany-Stern, Mehrez, Tal, & Shemuel, 1995), preventive services (Verter & LaPierre, 

2002; Zhang, Berman, Marcotte, & Verter, 2010), rural services (Griffin, Scherrer, & Swann, 

2008), and hierarchical networks (Galvão, Espejo, Boffey, & Yates, 2006).  In addition, studies 
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have addressed location (Mehrez, Sinuany-Stern, T., & Binyamin, 1996; Ndiaye & Alfares, 2008) 

and number (Schweikhart & Smith-Daniels, 1993) of facilities, assignment (Griffin et al., 2008) 

and reassignment (Gunes & Yaman, 2010) of services, capacity (Berman, Ganz, & Wagner, 1994; 

Jayaraman & Srivastava, 1995; Smith-Daniels, Schweikhart, & Smith-Daniels, 1988), and 

location-allocation involving travel and waiting times (Syam & Côté, 2010). A recent study 

located new traumatic brain-injury units to treat military personnel, who were injured by 

improvised explosive devices in Iraq and Afghanistan, within facilities operated by the Veterans 

Health Administration (Côté, S. Syam, Vogel, & Cowper, 2007).  Even this problem of limited 

scope required a heuristic to address the deterministic case.  Various objectives have been 

addressed, including minimizing travel (Wang et al., 2003), maximizing demand served 

(Gendreau, Laporte, & and Semet, 2006; Verter & LaPierre, 2002), and optimizing multiple 

criteria (Schweikhart & Smith-Daniels, 1993).  Results of some studies have been used 

successfully in industry (Jacobs, Silan, & Clemson, 1996; Price & Turcotte, 1986). Solution 

methods include Lagrangian relaxation (Berman et al., 1994; Haghani, 1996) and heuristics 

(Adenso-Diaz & Rodriguez, 1997; M. Daskin & Dean, 2004).  Several studies have addressed 

uncertainty, in particular for emergency services, using stochastic programming (Beraldi, Bruni, 

& Conforti, 2004; Berman et al., 1994), robust optimization (Baron & Milner, 2010), or simulation 

(De Angelis, Felici, & Impelluoso, 2003; Harper, Shahani, Gallagher, & Bowie, 2005). 

 Research on generic, dynamic facility location problems (Owen & Daskin, 1998) has 

invoked various rules for opening, expanding, contracting and closing, addressing both 

uncapacitated (Tcha & Lee, 1984) and capacitated (Fong & Srinivasan, 1981a, 1981b; Lee & Luss, 

1987; A Shulman, 1991) cases as well as broader supply chain design (Canel, Khumawala, Law, 

& Loh, 2001; Klose & Drexel, 2005;  Melo, Nickel, & Saldanha da Gama, 2009; Thanh, Bostel, 

& Peton, 2008), for which W. E. Wilhelm, Han, and Lee (2013) recently showed that the network 
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models of the type we propose outperform traditional integer programs in resolving dynamic 

configuration problems.  The most-used solution approaches include Branch-and-Bound (B&B) 

(Canel et al., 2001; Tcha & Lee, 1984), dynamic programming (Lee & Luss, 1987; A Shulman, 

1991), Lagrangian relaxation (Y Hinojosa, Kalcsics, Nickel, Puerto, & Velton, 2008), and 

heuristics (Fong & Srinivasan, 1981a, 1981b).  The dynamic facility location problem presents 

computational challenges, giving rise to the need for a more effective, exact solution approach (A 

Klose & Drexel, 2005).  Reviews are provided by (Klose & Drexel, 2005; Melo et al., 2009). 

In contrast to the earlier work on facility location, the novel, key component we use to 

locating a facility and configuring its capacity involves formulating a RCSPP, which is known to 

be NP-hard, even if only one resource is limited (Handler & Zang, 1980), but can be solved in 

pseudo-polynomial time. Solution methods for RCSPP include dynamic programming 

(Dumitrescu & Boland, 2003; Joksch, 1966) and Lagrangian relaxation (Carlyle, Royset, & Wood, 

2008; Handler & Zang, 1980; Santos, Coutinho-Rodrigues, & Current, 2007). A recent paper 

(Lozano & Medaglia, 2013) provided an exact solution method that solves certain large networks 

in less than 0.3 seconds. Our network formulation enables us to prescribe a globally optimal 

location and capacity configuration for multiple services over a multi-period planning horizon. We 

use a three-stage labeling method proposed by Zhu and Wilhelm (2012) to solve the RCSPP. 

 A few facility-location studies have addressed uncertainty explicitly (Louveaux, 1993; 

Snyder, 2007).  Models that deal with broader issues in supply chains have been proposed 

(Santoso, Ahmed, Goetschalckx, & Shapiro, 2004), making some progress in dealing with 

uncertainty.  However, stochastic programming capabilities are still evolving, especially in 

application to large-scale instances.  By formulating a deterministic equivalent, (Albareda-

Sambola, Fernández, & Saldanha-da-Gama, 2011) solved a facility location problem involving 

binomial demands. We show how to transform the more general, stochastic SSHFCP so that it can 
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be solved as a deterministic RCSPP, reflecting decisions that individuals make in selecting 

providers, dealing with all possible outcomes instead of representative scenarios as done by two-

stage stochastic programming. 

 

2.2.2  Demand attraction models under competition 

We model competition among facilities to attract demand. The Huff model (Huff, 1963), originally 

used to reflect competition in locating a new shopping center, defines the attraction of a facility to 

an individual customer as the size of the facility divided by the distance to the facility. The MCI 

model of (Nakanishi & Cooper, 1974) is a general form of the Huff model. MCI uses the product 

of all attributes that affect a customer’s choice to quantify the attraction of customers to a retail 

facility.  

McFadden (1974) proposed a multinomial logit (MNL) model. The odds of visiting one 

location from a given set of locations defines the conditional probability of choosing it, given the 

measures associated with a set of attributes. MNL sets one location as a baseline and calculates 

the logarithm of the odds for each other location relative to the baseline (i.e., log-odds). An 

exponential function of the log-odds represents the attraction of an individual customer to a 

facility. In all such competition models, the probability a customer will seek service at a particular 

facility is expressed as the “gravity” of the attraction of this facility relative to the other facilities 

in the market. Our prototypical MCI model incorporates competition factors that are especially 

relevant to healthcare. 

 Research on competitive facility location has dealt with deterministic demand (Aboolian 

et al., 2007; Küçükaydin et al., 2012) and stochastic demand (e.g., Uno et al., 2010). Several types 

of models have been proposed to quantify cost penalties that result as uncertain demand is realized 

in a competitive environment. Marianov, Rios, and Icaza (2008) maximized the capture of demand 
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by a firm that enters new facilities in a market involving competition from existing facilities. They 

employed an MNL model that uses travel distance and waiting time associated with an 

/ / /M M m K  queue as competition factors. Y Zhang, Berman, and Verter (2012) maximized the 

capture of demand for preventive care centers. They developed two attraction models, an MNL 

model and another one that attracts demand according to a decreasing function of travel time. Their 

constraints limit the maximum number of facilities, minimum workload and maximum waiting 

time calculated using an / /M M m queuing model to represent each facility.  

The approaches that these two papers presented to incorporate waiting time are apparently 

limited to a one-period decision. For a multi-service, multi-period model, however, the best new 

location may not be the same from one time period to the next (or from one service to another). 

Patients may request appointments according to a Poisson process but arrivals for actual healthcare 

service are typically scheduled to be equally-spaced over time so that / /M M m  models overstate 

the actual waiting time and, therefore, find limited application in healthcare. 

 

2.2.3 Optimizing expected excess revenue 

A growing body of literature (e.g., (Muthuraman & Lawley, 2008) and (Liu, Ziya, & Kulkarni, 

2010) ) has dealt with scheduling patients (e.g., at clinics) so as to compensate for no shows.  These 

papers assume that physicians will serve all patients scheduled each day, resulting in overtime if 

service for one or more patients is not completed by the end of the work day. The typical objective 

function is to maximize the expectation of excess revenue, the revenue minus the (penalty) cost of 

patient waiting times and physician overtime.  Simulation models were used in numerical tests to 

evaluate scheduling policies using various distributions (e.g., uniform, exponential, gamma and 

lognormal) for physician service time and to allow no-shows.   

These scheduling models better reflect the healthcare environment than existing queuing 
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models but are limited in our application, because daily scheduling is an operational-level issue 

and we deal with the strategic SSHFCP.  In addition, data to describe uncertain physician service 

time is not available.  We do note, however, that the objective function used in this healthcare 

setting highlights the relevancy of our objective function because it is the operational-level analog 

of the strategic-level one we use, which maximizes expected excess revenue, penalizing expected 

excess demand and capacity. 

 

2.2.4 Location-allocation model in healthcare applications 

Two review papers (Afshari & Peng, 2014; Daskin & Dean, 2004) comprehensively investigates 

the healthcare facility location problem. The location-allocation model is widely used in healthcare 

applications, including locating specialized services like MRI (Mahar, Bretthauer, & Salzarulo, 

2011), emergency and ambulance vehicles (Cheu, Huang, & Huang, 2008; V. Knight, Harper, & 

Smith, 2012), organ transplantation hospitals (Bruni, Conforti, Sicilia, & Trotta, 2006), blood 

service (Şahin, Süral, & Meral, 2007), preventive care (Zhang, Berman, & Verter, 2009), specialty 

care for veterans (Benneyan, Musdal, Ceyhan, Shiner, & Watts, 2012; M. Côté et al., 2007) and 

pediatric hospitals (Malczewski & Ogryczak, 1990). Location-allocation model applied on general 

healthcare facility locations takes particular concerns on different aspects, such as effect of moving 

population on patient demand (Ndiaye & Alfares, 2008), the equity and efficiency of healthcare 

benefit allocation (Cho, 1998; Smith, Harper, Potts, & Thyle, 2009), multiple types of health 

insurance (Benneyan et al., 2012; Griffin, Scherrer, & Swann, 2008) and patient choice (Knight, 

Williams, & Reynolds, 2012). 

 Methodologies proposed to solve healthcare facility location-allocation models include 

Lagrangian relaxation (Syam & Côté, 2010), a quasi-Newton method (Cho, 1998), simulated 

annealing (Côté, Syam, Vogel, & Cowper, 2007), a hierarchical p-median heuristic (Smith et al., 
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2009) and a meta-heuristic (Zhang et al., 2009). Methodologies that deal with patient-demand 

uncertainty include forecasting and estimating parameters (Côté et al., 2007; Griffin et al., 2008), 

a queueing model (Knight et al., 2012) and a reliability model (Cheu et al., 2008). 

The column-generation heuristic we propose in this dissertation is a novel methodology 

to solve location-allocation problems, dealing with multi-period stochastic demands in 

subproblems. The approximation method we propose differs from existing heuristics in that it 

involves estimating the stochastic location-allocation cost in component of the objective function 

and providing a bounding procedure to assess solution quality. 
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CHAPTER III 

DSCR* 

 

This chapter presents our DSCR research. This chapter is organized in three sections. 

Section 3.1 presents our alternative DSCR formulations, addressing the first research 

objective. Section 3.2 describes results for two test scenarios that promote intuitive 

interpretation of model results, accomplishing the second research objective. Finally, 

Section 3.3 reports our computational evaluation, achieving the third and fourth research 

objectives. 

 

3.1 DSCR model formulation 

This section presents our two formulations of DSCR: a traditional MIP, DSCR-T; and a network-

based model, DSCR-N. DSCR-T results from traditional logic to relate binary decision variables 

that prescribe reconfiguration; and DSCR-N utilizes a specialized network to relate binary decision 

variables to prescribe the same decisions. 

 

3.1.1 Initial MIP formulation of DSCR 

This section presents DSCR-T. We first describe our notation, including indices, index sets, 

parameters, and decision variables and relate assumptions. We use the terms facility and location 

interchangeably for convenience to indicate a supplier, plant, DC, or CZ.  

                                                 

* Reprinted with permission from “Computational comparison of two formulations for dynamic 
supply chain reconfiguration with capacity expansion and contraction.” by Wilhelm, W. E., Han, 
X., and Lee, C., 2013, Computers & Operations Research, 40, 2340-2356, Copyright 2013 by 
Elsevier. 
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To focus discussion and streamline presentation, we fix suppliers, production plants and 

CZs in the “open” state. Following prior supply chain research, we assume that only DCs can be 

reconfigured.  Our models can be adapted easily, however, to allow plants to be reconfigured and 

to allow suppliers to be selected and de-selected.  Each CZ may experience demand for each 

product p P . 

The index set L  contains four index subsets of locations: suppliers, 
SL L ; plants, 

PL L ; DCs, 
DCL L ; and CZs,

CZL L . Note that 
S P DC CZL L L L L and 'e eL L  , 

where , , ' 'e e E e e  , and  1, 2, 3, 4 E  , representing echelons, { , , , }S P DC CZ .  T  is the index 

set of time periods in the planning horizon. 

A DSCR model must reconfigure the supply chain at locations represented by index set 

DCL  over the index set of time periods T .  We comment that a facility is reconfigured in a period 

but assume that such actions take place instantaneously at the beginning of the time period. Once 

opened, a facility remains operating until closed.  A facility can be opened at a location only once 

over the planning horizon and cannot be reopened once closed but that a facility can be expanded 

or contracted once each period after it has been opened and operating for at least one period. 

Closing in a period indicates that the facility is not operating (i.e., open) in that period or 

subsequent ones.  We assume that the initial (i.e., at time instant 0) and final (i.e., at time instant 

|T| ) inventories (backorders) are zero and each supplier has unlimited capacity.  Because single 

sourcing provides significant advantages (e.g., cost, diminished opportunity for error, 

consistency), we require that each CZ be supplied with all relevant products by just one DC. 

We use K  to denote the index set of capacity alternatives, jn  to denote the number of 

capacity modules associated with alternative j , and   to denote the maximum permissible 

capacity.  We structure capacity alternatives by defining each as an integer multiple of the capacity 
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of a basic module and define   as the number of products that each module can produce in a 

period.   

The discounted fixed costs associated with each capacity decision are defined as 

      
C

ltG : cost to close one unit of capacity 

      
D

ltG : cost to contract one unit of capacity 

      
E

ltG : cost to expand one unit of capacity 

      
M

ltG : cost to operate one unit of capacity 

      
O

ltG : cost to open one module. 

Discounted variable costs associated with material flows are 

      '
p

ll t
U : cost / hundred-miles to ship a unit of product p  from location l  to location 'l  in period     

t  

      p

ltH ( p

ltQ ): cost to hold a unit product p  in inventory (backorder) at location l  at the end of 

period t  

      p

tR : cost to purchase a unit of product p  from outside supplier l  in period t  (i.e., 

outsourcing).  

The demand p

tb  for product p P  at facility (i.e., CZ) 
CZl L  during period t  must be 

satisfied by production in the current period, by drawing from inventory, by incurring backorders, 

and/or by outsourcing. p  denotes the workload required to process one unit of product p  at 

facility l L . The maximum material flow on transportation link 'll  in period t  is limited by the 

upper bound capacity 't
V

ll
, where el L  and '

1el L  . 'll
d  denotes the distance between el L  and 

'
1el L  . 

The available budget for all fixed costs over the entire planning horizon at location l L  
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is specified by .B  The maximum total number of all expansions and contractions for facility l  

over the planning horizon is limited to T

lN .  

DSCR-T involves five types of binary variables: 

jlta =1 if location l is expanded or contracted to capacity alternative j in time period t, 0 

otherwise 

ltc =1 if (open) facility l is closed at the start of period t, 0 otherwise 

jlto =1 if location l is opened at capacity alternative j in time period t, 0 otherwise 

jltm =1 if location l is operating at capacity alternative j in time period t, 0 otherwise 

'l lts =1 if the transportation link from l to l’ is available in period t  (i.e., both facilities are 

operating). 

DSCR-T involves five types of continuous variables that prescribe capacities, 

ltk = amount of capacity used at location l in time period t 

ltk = amount of capacity configured at location l in time period t 

ltk = amount of capacity expansion at location l in time period t 

ltk = amount of capacity contraction at location l in time period t 

C

ltk = amount of capacity upon closing location l in time period t, 

and four that prescribe material flow, inventories, backorders, and outsourcing, 

        
p

ltr = the amount of product p outsourced by facility l  for use in period t  

        p

ltv = the amount of  product p  backordered in period t  

        '
p

ll t
x = the amount of product p  shipped from l  to 'l  in period t  

        p

lty = the amount of product p  held in inventory at l from period t to 1t  . 
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Depending on the types of facilities at locations l  and 'l , the flow of product p , '
p

ll t
x , can be an 

amount that is purchased from a supplier, processed, shipped on a link, or distributed from a DC 

to a CZ.  

We now present our MIP model ( )DSCR T  

 

 ' ' '' , '

* min

             

PDC

O C C M E D

lt j jlt lt lt lt lt lt ltt T l L j K

p p p p p p p p

lt lt lt lt lt lt ll ll t ll tt T l L p P l L l l

Z G n o G k G k G k G k

H y Q v R r d U x

  

    

    

   

  

   
   (1) 

 
 
s.t.   1jlt lt jltj K j K

o c a
 

       ,DCl L t T     (2) 
 
        1jltt T j K

o
 

       
DCl L     (3) 

 
1

1

t

lt jlss j K
c o



 
      , \{1}DCl L t T    (4) 

 
         1

t

jlt jls lsj K s j K
m o c

  
       ,DCl L t T     (5) 

 
jlt jlt jltm o a       , ,DCj K l L t T     (6) 

 
, 1 1jl t jltm a        , , \{1}DCj K l L t T     (7) 

 

 O C C M E D

lt j jlt lt lt lt lt lt lt lt T j K
G n o G k G k G k G k B

 
         

DCl L   (8) 

 
T

jlt lt T j K
a N

 
      

DCl L     (9) 
 

1
' '' , 1 , 1''e e

p p p p p p p p

ll t l lt l t lt l t lt lt ltl L l L
x x y y v v r b


  

            , ,ep P l L t T     (10) 

 
'll t jltj K

s m


      1, ' ,e el L l L t T     (11) 
 

' 'll t jl tj K
s m


      1, ' ,e el L l L t T     (12) 

 
' 1

DC
ll tl L

s


      ,CZl L t T     (13) 
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' ' '
p

ll t ll t ll tp P
x V s


      1, ' ,e el L l L t T     (14) 

 

1
'' , 'e

p p
lt l ll tl L l l p P

k x
  

      ,DCl L t T     (15) 

 

 lt jltj K
k m


       ,DCl L t T     (16) 

 

lt j jltj K
k n m


      ,DCl L t T     (17) 

 

lt ltk k       ,DCl L t T     (18) 
 

, 1 (1 )C

lt l t ltk k c       , \{1}DCl L t T    (19) 
 

C

lt ltk c       , \{1}DCl L t T    (20) 
 

, 1lt j jlt l tj K
k n a k 

      , \{1}DCl L t T    (21) 
 

lt jltj K
k a


        , \{1}DCl L t T    (22) 

 

 , 1 1lt l t j jlt jltj K j K
k k n a a   

       , \{1}DCl L t T    (23) 

 

lt jltj K
k a


       , \{1}DCl L t T    (24) 

 

, 1
C

lt ltj jlt lt lt l tj K
n o k k k k k 

       , \{1}DCl L t T    (25) 
 

1 10, 0l jlj K
c a


      

DCl L    (26) 
 

Objective (1) minimizes total cost. Fixed costs associated with facility l  include charges 

for opening O

ltG , closing C

ltG  , operating M

ltG , expanding E

ltG  and contracting D

ltG .  Note that the 

model does not require that a facility be closed at the end of the planning horizon. Variable costs 

accrue for holding inventories p

ltH , incurring backorders p

ltQ , outsourcing p

ltR , and transporting 

products '
p

ll t
U .  

Inequalities (2) ensure that at most one decision is prescribed during time period t  to open 
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or close facility l , or expand or contract its capacity, preventing two or more such decisions in the 

same period. Inequalities (3) allow at most one opening at location l  over the planning horizon. 

Constraints (4) allow facility l  to be closed in period t  only if it were opened in a previous period. 

Equalities (5) specify that facility l  is operating in period t  ( 1)ltM   if it has been opened, but 

not closed, by that time. Facility l  is operating from the time period it is opened until the period 

it is closed. Inequalities (6) assure that, if facility l  is opened at capacity level j or adjusted to 

capacity level j in period t , then jltm  should be 1 and inequalities (7) assure that, if facility l  is 

operating at capacity alternative j in time period t-1, it cannot be both expanded and contracted to 

the same alternative j in time period t.  Inequalities (8) impose a limit on fixed cost expenditures 

for reconfiguration.  This is plausible in that each potential location might have a limited budget 

allocation according to the overall long-term plan of the enterprise. Inequalities (9) limit the total 

number of capacity expansions and contractions allowed over the planning horizon at location l

to ,T

lN  representing practical management considerations. 

Flow conservation constraints (10) ensure that demands in all CZs are met each period. 

Demands for end-products occur only in CZs. Nodes representing suppliers are sources of flow 

and thus have positive p

ltb  values, nodes representing CZs are flow sinks and have negative p

ltb  

values, and nodes in intermediate echelons represent plants (or DCs) that process (or store) a 

product and can be viewed as transshipment nodes, each with 0p

ltb  . It is realistic to assume that 

manufacturing plants and DCs can hold stock from a previous period, receive flow from an outside 

supplier, and receive backorders from a subsequent period. For each product p , the summation of 

flow out to downstream nodes, inventory from period t -1, outsourcing in period t , and input of 

backorders from t +1 minus the summation of flow in from each intermediate node from upstream 

facilities, inventory at the end of period t , and backorders at the end of period t  sum to p

ltb .  
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Inequalities (11) ((12)) assure that the transportation link from l  to 'l  can be used only if 

facilities at locations l  and 'l are both operating. Single sourcing constraints (13) require that only 

one DC supplies customer zone '
czl L with all types of products, representing a common practice 

in industry. Constraints (14) allow product p to be transported from location l  to 'l  only in time 

periods during which the transportation link from l  to 'l is established.  

Equalities (15) defines ltk , the amount of capacity used at location l in time period t, 

relative to '
p

ll tx , the amount shipped out, and inequalities (16) assure that, if facility l  is not 

operating, there is no flow through the facility. Equalities (17) define ltk , the amount of capacity 

configured at location l in time period t, assuring that ltk is zero if facility l is not operating in time 

period t.  Inequalities (18) relate ltk and ltk . Inequalities (19) define the capacity at closing: if 
ltc

=1, then , 1
C

lt l tk k  ; otherwise, , 1 0l tk     because   is the maximum capacity a facility can 

attain, so 0C

ltk  .  Inequalities (20) force 
ltc =1 if the facility at location l  is closed in time period 

t , and force 0C

ltk   if facility at location l  is not closed in time period t . Inequality (21) define 

ltk , the amount of capacity expansion in time period t. If there is a capacity adjustment at location 

l in time period t, 1jltj K
a


 ; and, if  the adjustment is an expansion, , 1 0j jlt l tj K

n a k 
  , so

, 1lt j jlt l tj K
k n a k 

  ; otherwise, 0ltk  if the adjustment is a contraction. When there is no 

adjustment, , 1 0l tk   , so 0ltk  .  To assure that  0 1lt jltj K
k a


   , constraints (22) are 

required in addition to (20), which only provide a lower bound on each ltk . Without (22), ltk can 

still take a positive value with 0jltj K
a


 .   Inequalities (23) and (24) work together to define

ltk , the amount of capacity contraction in time period t , in a manner analogous to the way (21) 
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and (22) define ltk . Inequalities (25) balance the actions of reconfiguration with the change of 

capacity from t-1 to t. They disallow the case in which , 1 0lt l tk k   , but both 0jltj K
o


  and 

0jltj K
a


 . They also disallow the case in which , 1 0lt l tk k   , but both 0ltc   and 

0jltj K
a


 . If (25) were not included, the cost of reconfiguration may be computed incorrectly. 

 Equalities (26) establish certain initial conditions for 
DCl L .  For clarity, we do not 

include constraints that zero initial 0
p

ly  0
p

lv  and final ,| | 1
p

l Ty   ,| | 1
p

l Tv  inventories (backorders); 

impose binary restrictions on ,  ,  ,  jlt lt jlt jlta c m o  and 'll ts ; or impose non-negativity on material flow 

variables ', ,p p p

lt lt ll tr v x  and p

lty or on capacity defining variables ,  ,  ,  C
lt ltlt ltk k k k  and ltk . 

We note that earlier papers have used different types of constraints and different rules to 

manage facility configuration. Instead of (4) and (5), (Wesolowsky & Truscott, 1975) formulated 

a dynamic facility location model that defines a relationship between opening, operating, and 

closing variables: 

  , 1
l

lt klt l t ltk K
C O M M

       ,l L t T  .  

Although (Wesolowsky & Truscott, 1975) did not mention it explicitly, , 0l tM 
  must be fixed to 

zero for each location at which a facility is not operating in time period 0 before opening it at the 

beginning of time period 1. Without this boundary condition , 0( . ., 0)l ti e M   , the model allows a 

facility to operate, even though it has not been opened. Our DSCR-T model assumes that no 

potential facility is open at the beginning of the planning horizon. If a facility is to operate (i.e., 

1),ltM   it must first be opened (i.e., 1
l

kltk K
O


 ); thus, if we employ the constraint of 

(Wesolowsky & Truscott, 1975) instead of (4) and (5), we would need to include constraints 

, 0 0l tM   . If a facility were operating before the beginning of the planning horizon, the boundary 
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condition of , 0 1l tM    would be required. Our preliminary tests showed that our DSCR-T model 

solves faster using constraints (4) and (5) than with the constraint of (Wesolowsky & Truscott, 

1975). 

Another approach for prescribing facility opening and closing is to define two location 

index sets: one set for facilities that can be opened and expanded, and the other set existing 

facilities that can be contracted and closed (e.g.,(Yolanda Hinojosa et al., 2008; Yolanda Hinojosa 

et al., 2000; M. T. Melo et al., 2006; P. N. Thanh et al., 2008; Van Roy & Erlenkotter, 1982)). In 

contrast to our model, this approach does not allow the same facility to expanded and contracted 

over the planning horizon once opened (and before closure).  

 

3.1.2 Network-based formulation of DSCR 

We now present DSCR-N, using notation defined earlier and some additional symbols. We use

 1, ,K n  to denote the index set of alternative capacities that might be provided at location 

DCl L  and let n K . The amount of capacity provided by alternative k K  is given by kU . 

k kU n  for k K , 0kU   for 0 k   and 1k n  . Let nU   denote the maximum capacity 

of any alternative at location l . 

In DSCR-N, the net capacity after expansion or contraction is defined by the capacity 

alternative prescribed in time period 1t  . We define binary decision variable 1 jkltz  if the 

facility at location 
DCl L  utilizes capacity alternative j  in period t  and expands or contracts to 

use capacity alternative k  in period  1t  . Instead of using four binary variables (i.e., jlto , jltm , 

jlta , and 
tc ) for location l  in period t , depending on the combination of j  and t , we use variable 

jkltz  to represent reconfiguration over time at location l . Note that variable jkltz  is defined in our 
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model only for 
DCl L .  

Let jkltG , the cost of changing capacity alternative j  in time period t to capacity alternative 

k  in time period t+1 at location l, be associated with decision variable jkltz . Then 

  

 

for 0, , , {0}
for , 1, , \{1}

for , , , ,

for , , , ,

for , 1, , .

O

k lt

C M

j lt j lt

E M

k j lt j ltjklt

D M

j k lt j lt

M

j lt

n G j k K l L t T

n G n G j K k n l L t T

n n G n G j k K k j l L t TG

n n G n G j k K k j l L t T

n G j K k n l L t

 

 

 

 

    


     
       


     
     

 

Other constraints and variables are the same as in DSCR-T. 

Before presenting DSCR-N, we give an example of the capacity alternative network for 

location ,l  which employs binary variable jkltz .  Figure 1 depicts the directed, acyclic network 

 ,l lG N A  associated with location l  in which 
lN   is the index set of nodes representing capacity 

alternatives and 
lA  is the index set of (directed) arcs that connect capacity alternatives that are 

feasible relative to constraints (1)-(6). Each arc  , , li j t A  denotes a feasible reconfiguration 

decision at location l .  As a result, the structure of network  ,  l lG N A  imposes these constraints 

by introducing a “flow conservation” constraint for variable jkltz  to prescribe an optimal capacity-

alternative path for location l  over all t T . 

Level (i.e., row of nodes)  t  represents time period t . 
lN  includes a (dummy) start node 

in level 0t   and a (dummy) end node in level 1T   . Nodes in the first (last) column represent 

the decision to not open (close) facility l  in time period t  and nodes in each other column 

represents an alternative capacity that can be prescribed for facility l . 

Each arc  , , li j t A  points from capacity alternative node i  in level t  to capacity 
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alternative node j   in level 1t  . The network incorporates five types of arcs, each with a 

corresponding type of cost for opening, operating, expanding, contracting, and closing, 

respectively. The relevant cost is applied to each of the corresponding arcs. An optimal path from 

the start node defines a capacity alternative for each time period, equivalently, a series of 

reconfiguration decisions (e.g., see the two possible paths composed of arcs represented by solid 

and dash lines in Figure 1). 

 

 

 

Figure 1. An example DSCR-N capacity network with l=3, |T|=5 
 

 

We now present network-based model DSCR-N: 

Z* =min   ' ' '
' '

1( , , )  ,

[ ]
PDC l e e

p p p p p p p p

jklt jklt lt lt lt lt lt lt ll t ll ll t
L j k t A t T l L p P l L l l

G z H y Q v R r U d x


      

        (27) 
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s.t.  Constraints (10), (13), and (14) 

, 1( , , ) ( , , )l l
kjlt jkl t kltj k t A j k t A

z z  
     

DCl L , k K , {0, }t T   (28) 

( , , )
 

l
jklt jkltj k lt A

G z B


     
DCl L     (29) 

 , , , , ,
 

l

T

jkltj k K j k j k t A lz N
  

    
DCl L     (30) 

 ' , , , l
jkltll t j K j k t A

s z
 

     '
1, ,e el L l L t T     (31) 

 ' '
', , ,

l
ll t jkl tj K j k t A

s z
 

     '
1, ,e el L l L t T     (32) 

   '' 0, 1 , , ,CZ l

p p

l j jkltll tl L p P j K n j k t A
x U z

    
     ,DCl L t T      (33) 

        Objective (27) minimizes total costs as (1) does in DSCR-T. Flow conservation constraint 

(28) ensures that reconfiguration decisions are consistent over the planning horizon, paralleling 

(2)-(7). These constraints formulate the shortest-cost capacity alternative path as a network flow 

problem in which one unit of flow originates at the start node, travels through the network, and 

terminates at the end node. This requires a flow balance at each node, so that the flow out of node 

k  minus the flow into it equals
klt , where 0, , 0 1k l t     , 1, , 1k n l t       , and 0i   for 

\{   }l start node end ni eN od . 

Inequalities (29) limit the amount of capital that can be invested at location l  over the 

entire planning horizon for all reconfiguration decisions and (30) limit the number of expansions 

and contractions that can be made at a location over the planning horizon.  The RHSs of (31) and 

(32) are either zero or one, contributing to forming a tight linear relaxation of DSCR-N.  

Inequalities (33) ensure that the workload at facility l  does not exceed this facility’s capacity in 

each time period. 

To streamline presentation, we omit restrictions that require variables jkltz  to be binary.  
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Constraints (10), (13) and (14) are the same as in DSCR-T. Section 4 compares the sizes of these 

two models (i.e., numbers of constraints and continuous and binary variables) and the run time 

each requires.  

 

3.2 Demonstration of DSCR model use 

We now describe model application to two demand scenarios that promote an intuitive 

interpretation of our models by demonstrating how time varying demand can lead to 

reconfiguration over a 8T  -period planning horizon.  We deal with the four-echelon supply 

chain (i.e., | |EC  =4), a commonly studied structure.  The first subsection describes the data we 

synthesize to describe this case study, and the second (third) gives results for the first (second) 

scenario. 

 

 3.2.1 Data 

The data we use allows for a ready, intuitive interpretation of results.  As depicted in Table 1, 

Scenario 1 represents a product life cycle for which demand increases in early periods and then 

decreases as obsolescence approaches, and Scenario 2 represents an economic downturn then 

recovery with demand decreasing and then increasing.  

 

Table 1. Demand scenario over 8 years 

Year Scenario 1 
Product life cycle 

Scenario 2 
Economic cycle 

1 850,000 3,400,000 
2 1,700,000 2,550,000 
3 2,550,000 1,700,000 
4 3,400,000 850,000 
5 3,400,000 850,000 
6 2,550,000 1,700,000 
7 1,700,000 2,550,000 
8 850,000 3,400,000 
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We assume that each module provides the capacity to produce 1,000,000   products 

each time period and deal with four capacity alternatives,  1,...,4K  , so that alternative j  

entails a capacity of  jn j   and the maximum capacity is | |K  .  We assume that the 

costs for each module are based on its opening (or expansion) cost of $2,000,000: 15% of 

construction cost to operate each year, 10% to contract, and 5% to close.  This gives the following 

costs per unit of capacity: 

O

ltG : cost to open one module,   $2,000,000O

ltG   

C

ltG : cost to close one unit of capacity,  $0.01 $100,000 /C

ltG     

M

ltG : cost to operate one unit of capacity,  $0.3 $300,000 /M

ltG    

E

ltG : cost to expand one unit of capacity,  $2.00 $2,000,000 /E

ltG    

D

ltG : cost to contract one unit of capacity, $0.2 $200,000 /D

ltG     . 

Diagonal elements in Table 2 give the cost to construct each alternative capacity, elements 

above (below) the diagonal give the cost to expand (contract) from capacity alternative i to 

capacity alternative j. 

  
 
 

Table 2. Capacity alternative costs 
Alt. 1 2 3 4 

1 $2,000,000 $2,000,000 $4,000,000 $6,000,000 
2 $200,000 $4,000,000 $2,000,000 $4,000,000 
3 $400,000 $200,000 $6,000,000 $2,000,000 
4 $600,000 $400,000 $200,000 $8,000,000 

 

 

The columns of Table 3 give, for each capacity alternative, the fixed cost to open, the 

annual operating cost, the fixed cost to close, and the annual capacity.  Column 6 gives the demand 
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for which the capacity (column 5) would have a utilization of 85% (column 7), a value commonly 

targeted in industry.  For example, if capacity alternative 1 (capacity = 1,000,000) were prescribed 

to correspond to demand in time period 1 under scenario 1 (demand = 850,000), the utilization of 

the facility would be 85%. 

Each scenario deals with 5 locations in each echelon, where {1, ,20}L   : {1, ,5},SL  

{6, ,10}PL   , {11, ,15}DCL    and {16, , 20}CZL   .  We take the 20 most populace cities in 

the U.S. to be the locations in set L  and assign them in groups of five, in order, to the respective 

four echelons.  We determine the cost of transportation from one location to another as the actual 

distance between the cities times $0.01/unit of product/hundred miles. For each scenario and each 

time period, we assign one fifth of the total demand to each of the five CZs. 

 

Table 3. Data for each capacity alternative 

Cap. 
Alt. 

Fixed cost 
to open 

Annual 
operating 

cost 

Fixed 
cost to 
close 

Capacity 
#products/yr 

Demand 
#products/yr 

Utilization= 
100(Demand/ 

Capacity) 
1 $2,000,000 $300,000 $100,000 1,000,000 850,000 85% 
2 $4,000,000 $600,000 $200,000 2,000,000 1,700,000 85% 
3 $6,000,000 $900,000 $300,000 3,000,000 2,550,000 85% 
4 $8,000,000 $1,200,000 $400,000 4,000,000 3,400,000 85% 

 

 

Table 4. Locations 

Suppliers New York Los Angeles Chicago Houston Philadelphia 
Plants San Jose Indianapolis San Francisco Jacksonville Columbus 
DCs Washington El Paso Seattle Denver Nashville 
CZs New Orleans Las Vegas Cleveland Long Beach Albuquerque 

 

 

 

3.2.2 Scenario 1 results  

Both models (i.e., DSCR-T and DSCR-N) prescribe the same solution for scenario 1, which opens 
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and operates DC 12 at El Paso, TX, for 4≤ t ≤5 and DC 15 at Nashville, TN, for 1≤ t ≤8, as 

shown by Figure 2.  The solution agrees with intuition, providing sufficient - but not excess - 

capacity that allows the utilization of total DC facility capacity to be 85% in each time period, a 

common target in industry. That is, the amount of capacity used, 
 DC

lt
l L

k
 , is 85% of the 

capacity provided each period, 
 DC

ltl L
k

 . Run times are 103.44 seconds for the DSCR-N model 

and 150.68 seconds for the DSCR-T model. 

 

 

 

Figure 2. Capacity configuration of DCs vs scenario 1 demand 

 

 

To lend further insight into how the decision variables in traditional model DSCR-T 

interact, we report solution values for primary variables in each of the time periods in Tables 5-8.  

Table 5 shows that DC 15 is never closed (i.e., 0ltc  for 1 8t  ); DC capacity is expanded 

(contracted) in increments of 1 million in periods 2 and 3 (7 and 8), ltk , ( ltk ); and that 0C
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1 8t  , because DC 15 is never closed.  Table 6 gives values for jlto , showing that DC 15 is 

opened at capacity alternative 1 in time period 1 (i.e., 1,15,1 1o  ).  Table 7 gives values of jlta =1 if 

location l is expanded or contracted to capacity alternative j in time period t, showing that DC 15 

is expanded (i.e., 2,15,2 3,15,3 1a a  )  (contracted; i.e., 2,15,7 1,15,8 1a a  ) in periods 2 and 3 (7 and 

8). Finally, Table 8 gives values for jltm , showing that DC 15 is operating at some capacity 

alternative j  in each time period (i.e. ,15,j tm = 1 for 1 8t  ). 

 

3.2.3 Scenario 2 results 

Both models prescribe the same solution for scenario 2, opening and operating DC 12 at El Paso, 

TX, for 1≤ t ≤8 and DC 15 at Nashville, TN, for 1≤ t≤8 as shown in Figure 3.  The utilization 

of DC capacity is 85% in the first and last time periods but the capacity level does not change over 

time, even though demand changes.  This result is optimal because demand requires a capacity of 

at least 4,000,000 in the first and last periods; but the cost of expansion, E

ltG , is more than the cost 

benefit of contraction, D M

lt ltG G . Thus, it is not economical to decrease, then increase, capacity 

levels in this scenario. Run times are 38.36 seconds for DSCR-N and 51.79 seconds for DSCR-T. 

Using data from Tables 2 and 3, both scenarios prescribe the same locations for DCs: DC 

12 at El Paso, TX, and DC 15 at Nashville, TN are opened and operated during the planning 

horizon, while the other DC candidate sites are never opened (see Figure 4). 

To investigate the sensitivity of the solution to the value of the expansion cost parameter, 

E

ltG , we decrease it to $400,000, which is 1/5 of the original expansion cost, so that it compares 

favorably with D M

lt ltG G .  Both models (i.e., DSCR-T and DSCR-N) prescribe the same solution, 

which opens DC 15 at Nashville, TN, for 1≤ t ≤8 and keeps other DCs closed throughout the 
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planning horizon. Figure 5 shows that the capacity level changes with demand, first decreasing, 

then increasing.  The utilization is 85% in each of six time periods (1, 2, 3, 6, 7, 8).  The reason 

that the capacity level does not change with demand in time periods 4 and 5 is that we limited the 

number of expansions and contractions to 4.  Run times are 255.01 seconds for DSCR-N and 

3098.24 seconds for DSCR-T. 

 

 

Table 5. Capacity decisions for DC 15 over time  [(m: million)] 

Dec. Var. 
Time t 

 1 2 3 4 5 6 7 8 
ltc  0 0 0 0 0 0 0 0 

tk  0.85m 1.7m 2.55m 2.72m 2.72m 2.55m 1.7m 0.85m 

tk  1m 2m 3m 3m 3m 3m 2m 1m 

tk  0 1m 1m 0 0 0 0 0 

tk  0 0 0 0 0 0 1m 1m 
c

ltk  0 0 0 0 0 0 0 0 

 

 

Table 6.   ojit  decisions to open DC 15 over time 

Cap. 
Level  j 

Time t 
1 2 3 4 5 6 7 8 

1 1 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 

 
 
 
 
 

Table 7.  ajit  decisions to expand and contract capacity at DC 15 over time 
Cap. 
Level  j 

Time t 
1 2 3 4 5 6 7 8 

1 0 0 0 0 0 0 0 1 
2 0 1 0 0 0 0 1 0 
3 0 0 1 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 
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Table 8. mjit decisions to operate DC 15 over time 
Cap. 
Level j 

Time t 
1 2 3 4 5 6 7 8 

1 1 0 0 0 0 0 0 1 
2 0 1 0 0 0 0 1 0 
3 0 0 1 1 1 1 0 0 
4 0 0 0 0 0 0 0 0 

 
 

 

 
Figure 3. Capacity configuration of DCs vs scenario 2 demand 

 

 

3.3 Computational evaluation 

We now relate our primary computational experiments, designed to fulfill research objective 3 by 

identifying the computational characteristics of the traditional and network-based models and by 

determining if one offers superior solvability.  We program our DSCR-T and DSCR-N 

formulations in AMPL 9.0® and use the IBM ILOG CPLEX12.1® branch-and-bound solver with  
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Figure 4. Solution description 

 
 
 

 

 

 

Figure 5. Capacity configuration of DCs vs scenario 2 demand with small expansion cost 
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default settings.  We perform all computational tests on an Intel Xeon CPU  E5620 @ 2.40GHz (2 

processors), a 64-bit operating system, with 12.0GB RAM. This section comprises three 

subsections; design of experiments, test results, and analysis of results. 

 

3.3.1 Design of experiments 

Our experiment employs six factors, each with a selected number of levels: (1) the number of 

demand scenarios (Scenarios 1 & 2), (2) the number of potential locations for facilities (20, 24, 

28, 32, 36, 40), the number of DCs (5, 6, 7, 8, 9, 10), the maximum number of capacity expansions 

and contractions (3, 4), the number of capacity alternatives at each location (4, 5), and the number 

of time periods in the planning horizon (8, 10). Each experiment deals with a single product type.  

The first capacity alternative is 1,000,000, and each successive alternative increments 

capacity by 1,000,000. In scenario 1, total demand is 850,000 in time period 1 and increases 

850,000 units each time period until | | /2T   , then decreases 850,000 units each time period until 

T , representing a product life cycle. The total demand in scenario 2 reverses the first and second 

halves of demand in scenario 1, decreasing then increasing to represent an economic downturn 

followed by recovery. Total demand in each period is divided equally among CZs. Cost parameters 

for scenario 1 follow Tables 2 and 3. Scenario 2 takes the same cost parameters, except it uses 

$400,000 as expansion cost ( E

ltG ).  

 

3.3.2 Test results 

Table 9 gives the sizes of the 24 test cases before and after preprocessing. Columns in Table 9 are 

organized in three groups: the first group describes the case, giving case number and the level of 

each factor ( | |L , | |DC , 
TotN , | |P , | |K , | |T );the second and third groups give instance size (# 
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of continuous variables, # of binary variables, # of constraints, # nonzeros in constraints) first 

before, then after, preprocessing for DSCR-N and DSCR-T, respectively. Table 10 gives the MIP 

objective, LP optimal objective value (i.e., root-node solution) and % GAP for each case in both 

scenarios. The %GAP is defined as * * *%GAP 100( ) /IP LP IPZ Z Z   , in which *
IPZ  is the value of 

the optimal solution to the integer problem and *
LPZ  is the value of the optimal solution to its linear 

relaxation (i.e., the value of the optimal solution at the root node in the B&B search tree). Table 

11 (12) gives test results for DSCR-T (DSCR-N) in scenario 1, using CPLEX 12.1 default settings. 

These tables detail the cuts generated by CPLEX (cover cuts, implied bound cuts, flow cover cuts, 

MIR cuts, flow path cuts, zero-half cuts, multi-commodity cuts, Gomory fractional cuts, clique 

cuts, total cuts generated), and gives computational results for CPLEX (run time, number of B&B 

nodes). Table 13 (14) gives test results for DSCR-T (DSCR-N) in scenario 2, using CPLEX 12.1 

default settings. 

 

3.3.3 Analysis of results 

This subsection analyzes results, focusing on run time and the number of B&B nodes to assess the 

solvability of each model. We also analyze run time sensitivity to key parameters. 

 

3.3.3.1 Performance comparison 

In each of the cases, DSCR-N has fewer continuous variables and constraints but more binary 

variables, both before and after pre-processing, than DSCR-T.  Preprocessing reduces the numbers 

of continuous variables, binary variables, constraints and non-zeros by 4.20%, 19.49%, 20.83%, 

and 4.43% (7.42%, 22.22%, 15.20%, and 6.07%) in the DSCR-N (DSCR-T) model. On average, 

DSCR-N has 15.73% (12.64%) fewer continuous variables and 22.13% (27.28%) fewer 

constraints but 36.26% (41.08%) more binary variables and 58.04% (60.76%) more non-zeros 
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before (after) pre-processing, than DSCR-T. 

 Interestingly, both models give the same optimal solution as well as the same GAP value 

in each case. The LP relaxations of both models prescribe the same solutions in continuous space. 

But our tests show that for the MIP formulations, DSCR-N performs better than DSCR-T with 

regard to run time. 

 In 19 out of the 24 scenario-1 cases, DSCR-N requires less run time than DSCR-T. On 

average, DSCR-N requires 48.76% less run time but 1.15% more branch-and-bound (B&B) nodes. 

Because DSCR-N closes gaps faster than DSCR-T, it explores, then cuts off, more nodes during 

the B&B search. 

 When solving cases in scenario 2, neither DSCR-T nor DSCR-N solve case 23 to 

optimality, or solve case 24 without exceeding memory. Thus, we only count cases 1 to 22 for test 

result comparison. In 21 out of the 22 scenario-2 cases, DSCR-N requires less run time than 

DSCR-T. On average, DSCR-N requires 72.44% less run time and 82.36% fewer branch-and-

bound (B&B) nodes. On average, DSCR-N (DSCR-T) requires 101.72% (96.13%) more run time 

to solve scenario 2 cases than scenario 1 cases.  Thus, scenario 2 turns to be more challenging to 

solve than scenario 1, and DSCR-N performs much better than DSCR-T in these cases. 

 Run times can be rather long, even though these cases do not appear to be large.   However, 

our DSCR-T (DSCR-N) model contains multiples of 2 | | | |DC T K DC T P L T       

constraints, 2 2 2| | | | | |K DC T DC T       22| |K DC T DC T     binary variables, and 

2 2| | | | | |DC P T   continuous variables, so that case size grows rapidly with the cardinality of sets,

 K , L , P and T . As the size of a case increases, run time for DSCR-T increases significantly, 

compared to that of DSCR-N. Our test results show that DSCR-N provides superior solvability, 

requiring less run time and fewer B&B nodes than DSCR-T. 
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Increasing the number of time periods and locations increases case size (i.e., the number 

of binary and continuous variables as well as constraints), resulting in significant computational 

challenges. Based on test results, the number of time periods has the most significant impacts on 

run time. 

Since runs times are rather long, we also investigated the rate of convergence to optimality.  

Figure 6 shows how values of the objective functions of the two models converge to optimality as 

a function of the number of simplex iterations for a typical case (case 6). We define MIPGAP as 

MIPGAP= | best integer value - best node value | /(| best integer value | 1 10)e   . 

 

3.3.3.2 Run time sensitivity 

We now analyze the impacts of key parameters ( | |P , | |T , | |L , _N Tot ) on run time. Tables 15 

– 18 give results. We observe (Table 15) that increasing the number of products increases run time 

substantially, because the number of continuous variables and constraints both increase with | |P

.  Note that the optimization searches for cases with 4P   and 5P   do not terminate (i.e., Gap 

values are 6.9% and 10.05%, respectively) with optimal solutions after lengthy run times.  Tables 

16-18 show that run time is also sensitive to T , somewhat less so relative to L , and not sensitive 

with respect to _N Tot . 
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Figure 6. Gap vs. simplex iteration count in DSCR-N and DSCR-T 
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Table 9. Sizes of test cases for DSCR-N and DSCR-T before and after preprocessing 
(a) DSCR-N model 

 C
as

e 

 |L
|, 

# 
Lo

ca
tio

ns
 

 |D
C

|, 
#o

f D
C

s 

 N
_T

ot
, 

M
ax

im
um

 #
 

ex
pa

ns
io

ns
/ 

co
nt

ra
ct

io
ns

 

 |P
|, 

# 
Pr

od
uc

ts 

 |K
|, 

# 
C

ap
ac

ity
 

al
te

rn
at

iv
es

 

 |T
|, 

# 
Ti

m
e 

pe
rio

ds
 

Before Preprocesses After Preprocessing 

 #
 C

on
tin

uo
us

 
va

r. 

 #
 B

in
ar

y 
va

r. 

 #
 C

on
st

ra
in

ts
 

 #
 N

on
-z

er
os

 

 #
 C

on
tin

uo
us

 
va

r. 

 #
 B

in
ar

y 
va

r. 

 #
 C

on
st

ra
in

ts
 

 #
 N

on
-z

er
os

 

1 20 5 3 1 4 8 780 1560 1495 13900 740 1265 1195 13150 
2 24 6 3 1 4 8 1080 2016 2088 19176 1032 1638 1656 18180 
3 28 7 3 1 4 8 1428 2520 2709 25284 1372 1995 2121 24010 
4 32 8 3 1 4 8 1824 3072 3416 32224 1760 2408 2680 30640 
5 36 9 3 1 4 8 2268 3672 4203 39996 2196 2853 3303 38070 
6 40 10 3 1 4 8 2760 4320 5070 48600 2680 3330 3990 46300 
7 20 5 4 1 4 8 780 1560 1495 13820 740 1285 1220 13915 
8 24 6 4 1 4 8 1080 2016 2088 20232 1032 1638 1656 19098 
9 28 7 4 1 4 8 1428 2520 2709 26516 1372 2023 2156 25081 
10 32 8 4 1 4 8 1824 3072 3416 33632 1760 2440 2720 31864 
11 36 9 4 1 4 8 2268 3672 4203 41580 2169 2889 3348 39447 
12 40 10 4 1 4 8 2760 4320 5070 50360 2680 3370 4040 47830 
13 20 5 4 1 4 10 970 1970 1910 18660 903 1652 1520 17700 
14 24 6 4 1 4 10 1344 2544 2592 25560 1296 2070 2064 24288 
15 28 7 4 1 4 10 1778 3178 3374 33516 1722 2555 2688 31892 
16 32 8 4 1 4 10 2272 3872 4256 42528 2208 3080 3392 40512 
17 36 9 4 1 4 10 2826 4626 5238 52596 2754 3645 4176 50148 
18 40 10 4 1 4 10 3440 5440 6320 63720 3360 4250 5040 60800 
19 20 5 4 1 5 10 970 2475 1955 24015 930 2105 1540 23095 
20 24 6 4 1 5 10 1344 3150 2646 33078 1296 2646 2088 31854 
21 28 7 4 1 5 10 1778 3885 3437 43561 1722 3227 2716 41993 
22 32 8 4 1 5 10 2352 4680 4408 55464 2208 3848 3424 53512 
23 36 9 4 1 5 10 2916 5535 5409 68787 2754 4509 4212 66411 
24 40 10 4 1 5 10 3540 6450 6510 83530 3360 5210 5080 80690 
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Table 9 Continued 
(b) DSCR-T model 
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1 20 5 3 1 4 8 980 1120 2090 10335 895 880 1785 9625 
2 24 6 3 1 4 8 1320 1488 2748 13554 1200 1170 2334 12654 
3 28 7 3 1 4 8 1708 1904 3486 17157 1568 1477 2947 16051 
4 32 8 3 1 4 8 2144 2368 4304 21144 1984 1816 3624 19816 
5 36 9 3 1 4 8 2628 2880 5202 25515 2448 2187 4365 23949 
6 40 10 3 1 4 8 3160 3440 6180 30270 2960 2590 5170 28520 
7 20 5 4 1 4 8 980 1120 2090 10335 895 880 1785 9625 
8 24 6 4 1 4 8 1320 1488 2748 13554 1200 1170 2334 12654 
9 28 7 4 1 4 8 1708 1904 3486 17157 1568 1477 2947 16051 
10 32 8 4 1 4 8 2144 2368 4304 21144 1984 1816 3624 19816 
11 36 9 4 1 4 8 2628 2880 5202 25515 2448 2187 4365 23949 
12 40 10 4 1 4 8 3160 3440 6180 30270 2960 2590 5170 28520 
13 20 5 4 1 4 10 1220 1400 2610 13410 1110 1125 2245 12560 
14 24 6 4 1 4 10 1644 1860 3432 17532 1512 1470 2934 16452 
15 28 7 4 1 4 10 2128 2380 4354 22134 1974 1855 3703 20804 
16 32 8 4 1 4 10 2672 2960 5376 27216 2496 2280 4552 25616 
17 36 9 4 1 4 10 3276 3600 6498 32778 3078 2745 5481 30888 
18 40 10 4 1 4 10 3940 4300 7720 38820 3720 3250 6490 36620 
19 20 5 4 1 5 10 1220 1550 2705 15275 1110 1270 2340 14370 
20 24 6 4 1 5 10 1644 2040 3546 19890 1512 1644 3048 18744 
21 28 7 4 1 5 10 2128 2590 4487 25025 1974 2058 3836 23618 
22 32 8 4 1 5 10 2672 3200 5528 30680 2496 2512 4704 28992 
23 36 9 4 1 5 10 3276 3870 6669 36855 3078 3006 5652 34866 
24 40 10 4 1 5 10 3940 4600 7910 43550 3720 3540 6680 41240 
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Table 10. MIP solution and gap for both DSCR models in CPLEX12.1 
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1 20 5 3 1 4 8 17,790,633 14,750,975 17.09 19,232,381 15,710,975 18.31 
2 24 6 3 1 4 8 16,621,219 14,162,182 14.79 17,790,939 15,122,180 15.00 
3 28 7 3 1 4 8 16,802,121 14,098,444 16.09 17,954,690 15,058,444 16.13 
4 32 8 3 1 4 8 16,605,912 13,653,609 17.78 17,808,868 14,613,609 17.94 
5 36 9 3 1 4 8 16,468,578 13,517,322 17.92 17,696,158 14,477,319 18.19 
6 40 10 3 1 4 8 16,480,083 13,478,374 18.21 17,644,359 14,438,374 18.17 
7 20 5 4 1 4 8 17,490,633 14,750,975 15.66 19,074,128 15,710,975 17.63 
8 24 6 4 1 4 8 16,621,219 14,162,182 14.79 17,790,939 15,122,180 15.00 
9 28 7 4 1 4 8 16,802,121 14,098,444 16.09 17,954,690 15,058,444 16.13 
10 32 8 4 1 4 8 16,605,912 13,653,609 17.78 17,808,868 14,613,609 17.94 
11 36 9 4 1 4 8 16,456,409 13,517,322 17.86 17,657,933 14,477,319 18.01 
12 40 10 4 1 4 8 16,480,083 13,478,374 18.21 17,644,359 14,438,374 18.17 
13 20 5 4 1 4 10 23,985,341 20,470,213 14.66 26,460,099 21,776,463 17.70 
14 24 6 4 1 4 10 22,939,354 19,587,031 14.61 26,970,719 20,893,280 22.53 
15 28 7 4 1 4 10 23,048,694 19,491,410 15.43 24,601,262 20,797,657 15.46 
16 32 8 4 1 4 10 22,833,502 18,824,163 17.56 24,376,317 20,130,413 17.42 
17 36 9 4 1 4 10 22,343,157 18,619,754 16.66 24,142,132 19,926,004 17.46 
18 40 10 4 1 4 10 22,599,369 18,542,561 17.95 24,163,645 19,867,561 17.78 
19 20 5 4 1 5 10 23,985,341 20,451,463 14.73 29,957,812 21,751,463 27.39 
20 24 6 4 1 5 10 22,939,354 19,568,281 14.70 24,509,074 20,868,280 14.85 
21 28 7 4 1 5 10 23,048,694 19,472,660 15.52 24,601,262 20,772,658 15.56 
22 32 8 4 1 5 10 22,833,502 18,805,413 17.64 24,376,317 20,105,413 17.52 
23 36 9 4 1 5 10 22,343,157 18,601,005 16.75 24,142,100^ 19,901,004 17.57 
24 40 10 4 1 5 10 22,599,369 18,542,561 17.95 24,163,645 19,842,561 17.88 

               ^ best integer 
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Table 11. Test results of DSCR-N with CPLEX12.1 MIP cuts in scenario 1 
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1 20 5 3 1 4 8 348 7 355 4 87 3 10 10 0 824 547 302,988 
2 24 6 3 1 4 8 231 26 532 2 126 0 3 23 0 943 284 34,057 
3 28 7 3 1 4 8 406 30 912 10 216 0 0 15 0 1,589 2,569 183,001 
4 32 8 3 1 4 8 330 28 1,059 13 326 0 4 12 0 1,772 2,208 107,626 
5 36 9 3 1 4 8 420 24 1,259 7 380 1 0 6 0 2,097 4,467 135,869 
6 40 10 3 1 4 8 480 29 1,671 15 508 0 84 4 0 2,791 13,583 241,262 
7 20 5 4 1 4 8 377 0 419 21 101 1 26 8 0 953 103 36,615 
8 24 6 4 1 4 8 264 21 509 5 128 0 7 16 0 950 137 31,109 
9 28 7 4 1 4 8 237 27 757 8 210 0 88 9 0 1,336 1,335 220,487 
10 32 8 4 1 4 8 193 34 933 15 313 0 113 22 0 1,623 1,180 48,771 
11 36 9 4 1 4 8 240 36 909 4 277 0 110 10 0 1,586 1,841 142,560 
12 40 10 4 1 4 8 805 35 1,310 13 416 0 139 2 0 2,720 6,391 394,507 
13 20 5 4 1 4 10 769 10 558 19 116 1 39 15 0 1,527 14,626 686,233 
14 24 6 4 1 4 10 505 24 817 4 200 0 9 14 0 1,573 8,968 308,063 
15 28 7 4 1 4 10 357 28 1,160 25 283 0 76 8 0 1,937 42,045 710,529 
16 32 8 4 1 4 10 1,200 87 1,467 22 424 0 143 10 0 3,353 338,721 2,979,490 
17 36 9 4 1 4 10 1,371 8 1,570 13 451 0 123 6 0 3,542 237,022 1,398,719 
18 40 10 4 1 4 10 1,496 91 1,549 35 414 0 137 20 0 3,742 687,059 4,133,100 
19 20 5 4 1 5 10 900 0 595 20 111 0 0 13 0 1,639 2,716 731,757 
20 24 6 4 1 5 10 696 15 724 16 161 0 4 23 0 1,639 9,034 2,122,092 
21 28 7 4 1 5 10 1,166 8 1,231 26 290 0 6 16 0 2,743 105,079 8,580,809 
22 32 8 4 1 5 10 2,585 15 1,559 28 446 0 68 18 0 4,719 182,767 6,200,084 
23 36 9 4 1 5 10 1,357 0 1,587 8 428 1 3 7 0 3,391 84,193 2,583,929 
24 40 10 4 1 5 10 0 0 840 9 218 0 48 1 0 1,116 523,563 62,667,919 
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Table 12. Test results of DSCR-T with CPLEX12.1 MIP cuts in scenario 1 
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1 20 5 3 1 4 8 234 32 330 16 89 14 0 40 1 756 473 217,710 
2 24 6 3 1 4 8 202 48 399 8 118 6 0 25 0 806 408 255,973 
3 28 7 3 1 4 8 151 45 672 3 174 7 0 33 0 1,085 1,082 279,279 
4 32 8 3 1 4 8 174 45 852 14 274 12 0 29 0 1,400 2,699 417,493 
5 36 9 3 1 4 8 154 54 900 8 284 6 0 36 1 1,443 5,428 409,728 
6 40 10 3 1 4 8 547 53 1,199 8 338 21 0 23 0 2,189 72,478 1,386,364 
7 20 5 4 1 4 8 294 23 336 11 100 14 0 37 0 815 151 80,617 
8 24 6 4 1 4 8 110 25 462 8 139 17 0 21 1 783 205 79,558 
9 28 7 4 1 4 8 217 36 777 7 202 8 0 48 0 1,295 1,165 231,425 
10 32 8 4 1 4 8 206 35 777 6 245 7 0 30 0 1,306 2,581 419,733 
11 36 9 4 1 4 8 226 56 929 9 274 3 0 22 0 1,519 6,207 739,231 
12 40 10 4 1 4 8 518 31 1,270 11 397 12 0 19 0 2,258 16,608 974,814 
13 20 5 4 1 4 10 460 9 397 3 66 18 0 57 1 1,011 24,030 3,361,702 
14 24 6 4 1 4 10 410 0 488 13 117 8 0 34 0 1,070 35,694 4,681,569 
15 28 7 4 1 4 10 788 0 883 16 184 5 0 39 0 1,915 170,485 4,634,768 
16 32 8 4 1 4 10 801 38 1,077 15 306 22 5 32 0 2,296 324,818 6,103,080 
17 36 9 4 1 4 10 1,111 0 1,343 12 377 20 0 48 0 2,911 329,646 6,152,054 
18 40 10 4 1 4 10 2,189 0 1,560 21 409 30 4 37 0 4,250 1,422,269 23,467,836 
19 20 5 4 1 5 10 464 29 435 11 96 4 0 52 0 1,091 5,239 1,245,999 
20 24 6 4 1 5 10 436 34 623 6 155 4 0 37 1 1,296 9,421 1,807,843 
21 28 7 4 1 5 10 868 0 974 21 207 2 0 38 0 2,110 89,706 7,464,197 
22 32 8 4 1 5 10 1,253 0 1,162 24 321 25 0 34 2 2,821 192,952 8,097,857 
23 36 9 4 1 5 10 1,015 42 1,226 11 342 7 1 34 0 2,678 217,399 7,816,357 
24 40 10 4 1 5 10 2,141 48 1,423 10 391 10 6 22 0 4,051 1,499,433 15,756,424 
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Table 13. Test results of DSCR-N with CPLEX12.1 MIP cuts in scenario 2 
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1 20 5 3 1 4 8 506 22 357 8 82 0 14 10 0 999 860 159,579 
2 24 6 3 1 4 8 106 34 472 6 145 0 5 21 0 789 197 18,776 
3 28 7 3 1 4 8 414 48 885 10 264 0 58 6 0 1,685 3,334 164,535 
4 32 8 3 1 4 8 377 64 967 17 341 0 117 5 0 1,888 8,691 238,914 
5 36 9 3 1 4 8 1,006 74 1,348 15 468 0 152 11 0 3,074 59,015 1,535,982 
6 40 10 3 1 4 8 895 100 1,668 3 480 0 124 11 0 3,281 50,504 597,896 
7 20 5 4 1 4 8 308 23 364 7 99 0 10 11 0 822 255 107,382 
8 24 6 4 1 4 8 118 34 554 10 149 1 3 20 0 889 391 28,447 
9 28 7 4 1 4 8 492 48 836 13 255 0 51 6 0 1,701 7,177 305,054 
10 32 8 4 1 4 8 651 63 973 15 339 0 116 8 0 2,165 24,411 498,274 
11 36 9 4 1 4 8 498 74 1,269 6 420 0 160 8 0 2,435 17,372 270,381 
12 40 10 4 1 4 8 844 98 1,462 11 429 1 142 2 0 2,989 57,628 565,917 
13 20 5 4 1 4 10 2,447 28 645 18 132 1 29 36 0 3,336 124,646 7,004,864 
14 24 6 4 1 4 10 386 39 628 44 116 15 20 28 0 1,276 7,197 396,839 
15 28 7 4 1 4 10 740 49 1,072 15 287 2 99 12 0 2,276 28,274 888,901 
16 32 8 4 1 4 10 1,616 61 1,249 14 417 0 182 16 0 3,555 255,345 3,270,248 
17 36 9 4 1 4 10 1,745 71 1,427 5 405 0 166 9 0 3,828 209,714 4,169,010 
18 40 10 4 1 4 10 1,684 93 1,608 1 404 0 204 6 0 4,000 442,150 4,291,442 
19 20 5 4 1 5 10 426 20 634 13 107 2 64 20 0 1,286 1,465 483,516 
20 24 6 4 1 5 10 597 44 766 16 207 0 16 16 0 1,662 10,487 857,907 
21 28 7 4 1 5 10 1,116 47 1,008 5 296 2 95 22 0 2,591 27,630 1,429,512 
22 32 8 4 1 5 10 1,132 62 1,354 15 489 2 131 6 0 3,191 130,024 1,209,698 
23 36 9 4 1 5 10 - - - - - - - - - - 1,564,455 15,701,200 
24 40 10 4 1 5 10 1,883 99 1,654 13 426 0 191 18 0 4,284 607,108 4,350,337* 

               * out of memory 
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Table 14. Test results of DSCR-T with CPLEX12.1 MIP cuts in scenario 2 
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1 20 5 3 1 4 8 325 23 404 4 106 11 0 31 0 904 2,416 472,069 
2 24 6 3 1 4 8 299 35 426 2 133 7 0 26 0 928 1,721 258,450 
3 28 7 3 1 4 8 358 49 736 3 205 23 2 8 0 1,384 6,533 438,707 
4 32 8 3 1 4 8 941 61 770 1 245 12 0 9 0 2,039 67,341 3,988,392 
5 36 9 3 1 4 8 653 81 1,041 3 318 17 0 8 0 2,121 105,497 3,625,876 
6 40 10 3 1 4 8 1,128 101 1,307 2 376 22 3 5 0 2,944 202,112 5,333,746 
7 20 5 4 1 4 8 391 23 373 3 90 13 0 41 0 934 3,098 503,312 
8 24 6 4 1 4 8 256 37 478 0 146 14 0 20 0 951 1,925 367,446 
9 28 7 4 1 4 8 514 50 761 5 233 21 0 8 0 1,592 25,556 1,223,561 
10 32 8 4 1 4 8 421 60 821 1 267 9 0 11 0 1,590 62,122 2,352,476 
11 36 9 4 1 4 8 906 82 1,075 2 353 14 0 6 0 2,438 102,368 2,324,195 
12 40 10 4 1 4 8 881 101 1,243 4 370 10 0 8 0 2,617 75,433 3,208,305 
13 20 5 4 1 4 10 302 21 523 5 95 49 0 30 4 1,029 3,057 418,882 
14 24 6 4 1 4 10 681 43 684 7 191 35 3 31 4 1,679 29,938 2,894,254 
15 28 7 4 1 4 10 1,705 49 955 1 229 14 0 11 0 2,964 391,777 19,347,585 
16 32 8 4 1 4 10 1,750 62 996 2 289 19 2 14 0 3,134 795,549 26,062,302 
17 36 9 4 1 4 10 2,416 81 1,350 9 403 11 0 15 0 4,285 1,459,181 55,631,196 
18 40 10 4 1 4 10 3,469 99 1,592 7 410 18 49 8 0 5,652 1,457,271 18,736,711 
19 20 5 4 1 5 10 262 19 489 3 84 12 1 58 0 928 6,141 1,396,720 
20 24 6 4 1 5 10 560 36 628 3 178 8 0 51 0 1,464 34,664 1,984,459 
21 28 7 4 1 5 10 620 51 863 2 202 4 2 23 0 1,767 105,122 3,884,971 
22 32 8 4 1 5 10 1,215 67 1,109 9 326 14 2 8 0 2,750 383,583 7,101,564 
23 36 9 4 1 5 10 - - - - - - - - - - 1,863,708 26,969,400 
24 40 10 4 1 5 10 2,284 101 1,596 9 424 4 39 23 0 4,480 1,751,226 19,264,453* 

       * out of memory 
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Table 15. Sensitivity with respect to number of products, |P |  (|T|=6, |L|=24, |DC|=6, N_Tot = 4) 

|P| 
Run time 

(secs) 

MIP 
GAP 
(%) 
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 c
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1 28.69 0 816 1488 1584 14712 768 1206 1248 13908 
2 8579.85 0 1632 1448 1770 16440 1536 1182 1362 15420 
3 2355.55 0 2448 1488 1962 18936 2304 1182 1542 17712 
4 1624837.01 6.90 3264 1488 2154 21432 3072 1182 1758 20220 
5 1624619.78 10.05 4080 1488 2346 23928 3840 1182 1902 22512 
6 731012.65 0 4896 1488 2538 26424 4608 1182 2082 25020 

 

 

 

 

 

Table 16. Sensitivity with respect to number of periods, |T | (|L|=36, |DC|=9, |P|=1, N_Tot = 4) 

|T| 
Run time 
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6 9.05 1710 2718 3186 30276 1638 2133 2520 28746 
8 1841.11 2268 3672 4203 41580 2169 2889 3348 39447 
10 84193.23 2916 5535 5409 63720 2754 4509 4212 60800 

 

 

 

 
  

Table 17. Sensitivity with respect to number of locations, |L|  (|T|=8, |P|=1, N_Tot = 4) 

|L| |DC| 

Run 
time 

(secs) 

Before Preprocesses After Preprocessing 
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20 5 103.44 780 1560 1495 13820 740 1285 1220 13915 
24 6 136.80 1080 2016 2082 20232 1032 1638 1656 19098 
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Table 17 Continued 

|L| |DC| 

Run 
time 

(secs) 

Before Preprocesses After Preprocessing 
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28 7 1335.45 1428 2520 2709 26516 1372 2023 2156 25081 
32 8 1180.07 1824 3072 3416 33632 1760 2440 2720 31864 
36 9 1841.11 2268 3672 4203 41580 2169 2889 3348 39447 
40 10 6391.10 2760 4320 5070 50360 2680 3370 4040 47830 

 

 

 

 

 

Table 18. Sensitivity with respect to N_Tot  (|T|=8, |L|=24, |DC|=6, |P|=1) 

N_Tot 

Run 
time 

(secs) 
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2 323.69 1080 2016 2088 20232 1032 1638 1656 19098 
3 283.80 1080 2016 2088 20232 1032 1638 1656 19098 
4 136.80 1080 2016 2088 20232 1032 1638 1656 19098 
5 284.81 1080 2016 2088 20232 1032 1638 1656 19098 
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CHAPTER IV 

SSHFCP 

 

This chapter presents our SSHFCP research. This chapter is organized in three sections.  

Section 4.1 describes our capacity configuration network relative to one service at a given 

potential location and its extensions to prescribe optimal location for the new facility as 

well as its multi-service, multi-period capacity configuration. Section 4.2 models 

attraction of demand from population centers to potential locations in a competitive 

environment with uncertain demand, defines closed form expressions for recourse (i.e., 

expected excess demand and capacity) so that associated cost penalties can be 

incorporated in the objective, formulates SSHFCP as a deterministic RCSPP, and presents 

our algorithm for solving SSHFCP. Section 4.3 describes our case study and sensitivity 

analyses, and 6 gives conclusions and ideas for future research. 

 

4.1 Capacity configuration network 

The index sets, parameters and decision variables are independently defined in Part I and Part II of 

this dissertation. If a same notation is defined in both parts, it holds its respective definition within 

each part. 

We define index sets for Part II: 

 potential facility locations      l L ; 

P  population centers       p P ;  

S  healthcare services of concern      s S ; 

T  time periods        t T ;  

L
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The index set of potential facility locations, L , must be predetermined and decision makers 

must identify an index set of relevant healthcare services, S , of concern.  The region under 

consideration must be partitioned into an index set population centers, P ; for example, a center may 

be defined as a census tract (zip code) in configuring a facility within a county (region).  Finally, the 

set of capacity alternatives in which a facility can be configured in each time period must be specified.  

Because healthcare facilities have long life spans and because the services that a patient requires 

change over time, we deal with the index set of ordered time periods T  to represent a horizon of some 

10-20 years for strategic planning. Operational-level decisions that schedule actual patient arrivals to 

promote smooth patient flow on a daily basis, given the capacity prescribed by our model, are beyond 

the scope of this dissertation. 

This section presents the network aspects of our methodology. It begins by describing the 

time-staged network on which a RCSPP can be solved to prescribe the capacity configuration for one 

service at a specified location (i.e., ls ). It then extends the ls  configuration network to deal with 

multiple services at a given location (i.e., l , s S ). The last section extends this model to prescribe 

location as well as capacity configuration (i.e., l L , s S ). For the purpose of presenting features 

of our capacity configuration network, we describe a deterministic model in this section, and discuss 

the stochastic model in Section 4. 

 

4.1.1  ls capacity configuration network for one service at a given location 

Our capacity configuration model deals with the fundamental features of opening, expansions, 

contractions and closure over a multi-period planning horizon.  

Given service s  and potential location l , one of several capacity alternatives can be 

prescribed in each time period. A cost is incurred if capacity is changed by opening, expanding, 

contracting or closing at the end of a time period. A traditional MIP model that prescribes capacity 
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configuration over a planning horizon must 1) specify one capacity alternative in each time period; 2) 

define the amount of capacity that is opened, expanded, contracted or closed at the end of each time 

period; and 3) assure that capacity is prescribed to adequately serve demand. Several types of binary 

variables would be required to prescribe decisions that deal with opening, expanding, contracting and 

closing, and would require a host of additional constraints to relate them logically. 

 In contrast to such a traditional MIP model, we propose a more compact, time-staged network 

formulation that allows a facility to be configured (i.e., opened, expanded, contracted, and closed) 

over the planning horizon.   We propose to use a RCSPP to structure these decisions for a given 

potential facility l  and service s (i.e., ls  combination).  Figure 7 depicts an ls  capacity configuration 

network with n  nodes and m  arcs in which the source node 0 (far left) originates one unit of flow 

and the sink node n  (far right) demands one unit.  Other nodes are transshipment nodes for which 

each column represents a time period; and each row, an alternative facility capacity. 

Each arc, denoted a , is incident from a node representing a known capacity in period 1t   

to a node of known capacity in period t ; each horizontal arc indicates that the configuration is not 

changed from one time period to the next; one that points upwards (downwards) indicates a capacity 

expansion (contraction) of known amount. Facility closure can be represented by an arc from each 

node to the sink node or to a level of nodes that represent a closed facility in each time period and 

would allow re-opening at a later time if such an option is realistic. We do not show this multiplicity 

of arcs because they would unnecessary complicate Figure 7, which now depicts the fundamental 

structure of interest. 

Note that each arc a  represents a known, particular lst  combination. To facilitate 

presentation, we suppress subscripts ls in this subsection.  We define the following sets and 

parameters associated with the ls  capacity configuration network of  Figure 7.  
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Figure 7. ls capacity configuration network 

  

tA  index set of arcs incident from time period 1t    to time period t  for 1,..., 1t T  ; 

tN   index set of nodes (capacity alternatives) in time period t  for 0,..., 1t T  ; 

iA  iA   index set of directed arcs incident from (to) node i , ti N  in time period t  for  

0,..., 1t T  ; 

ak   capacity (in terms of number of patient visits/year) at the node to which ta A  is incident; 

R   index set of limited resources (e.g., budget or number of expansions); 

r   availability of resource r R ; 

ar   amount of resource r R required by arc ta A ; 

1ib    for 0i  (source node); 1ib    for i n (sink node); and 0ib   for t

t Ti N . 

Now let 
ac  be the fixed cost associated with arc a , including the land purchase cost (if an 

opening arc), the closure cost (if a closure arc), the building cost to open, expand or contract (if 

any), as well as the administration and maintenance cost associated with the node to which a  is 

incident (i.e., the capacity in time period t ). Upon closure, we allow the building and land to be 
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sold, incurring revenue as the total value of the land and building. a , the excess revenue 

associated with arc a  in this deterministic case can be determined as the amount by which revenue 

exceeds cost (i.e., 
ac ). 

A solution prescribes the path (for example, see bold arcs in Figure 1) taken by the unit of 

flow through the network, specifying the RCSP and the capacity configuration profile over the 

planning horizon.  Each node on the path represents the capacity prescribed in a time period; and each 

arc, the excess revenue associated with a particular decision. Using the binary decision variable 1ax   

if a unit of flow is prescribed on arc a  (i.e., if arc a  is on the RCSP); 0 otherwise, the RCSPP, which 

inherently minimizes a linear objective function, aims to find the source-to-sink path with maximum 

excess revenue in the ls  configuration network: 

* :
t

a a

t T a A

Z Min x U
 

 
    

 
 x , where 

 
| |

1
{0,1} : , , 0,..., 1; ,

t
i i

T
m t

a a i ar a r

ta A a A a A

U x x b i N t T x r R 
    

  
         
  

  x .  (34) 

Constraints in (34) invoke flow balance at each node and resource limitations, respectively. 

The r th resource constraint may, for example, represent a budget limitation for the total fixed cost of 

configuration over the planning horizon or a limitation on the total number of expansions and 

contractions at the location. It is clear that | | 1

1

T t

t
m A




  and  | | 1

0

T t

t
n N




 . Because the sink node 

is a “dummy” used only to invoke network flow balance, 0a   for | | 1Ta A  ; and we omit such 

terms in the objective function. Although our goal is to maximize excess revenue, we pose (34) as a 

minimization problem using negative values of excess revenue because an RCSPP is based on finding 

the shortest (i.e., the minimum-length) source-to-sink path in the associated ls  configuration network, 

which is acyclic. 
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4.1.2 Capacity configuration network for all services at a given location 

In this subsection, we extend the ls  capacity configuration network to prescribe capacity 

configuration for a set of services S  over the planning horizon at a given potential location l  by 

specifying opening (in time period 1 or later), expansion(s), contraction(s), and possible closure.   

For a given location l , ls  configuration networks for all services s S  can be arranged in 

series as shown in Figure 8, merging the sink node for service 1s   and the source node for service 

s ; so a RCSPP can be used to configure the capacity associated with each service s S . 

 

4.1.3 Facility location and capacity configuration network 

This subsection extends the network model further to prescribe an optimal facility location and its 

capacity configuration for each service s S . We arrange the set of capacity configuration networks 

associated with each l L  (as described in Figure 8) in parallel.  Figure 9 shows an example of such 

an extended network for 3S   and 3L  .  

 

 

Figure 8. l, s∈S capacity configuration network 

 

 

To prescribe a single location with multiple services, one can solve each of  L S  ls   

configuration networks, and then determine, by enumeration, the best location 

s=1 s=2 s=|S| 

... 
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 * *arg l L lss S
l max Z 
  , where *

lsZ  is defined in (34). Alternatively, one can solve a single, but 

larger RCSPP on the extended network (e.g., Figure 9). The solution path from start node to end 

node prescribes the best location as well as its capacity configuration of each service over the 

planning horizon (e.g., see the bold path in Figure 9). 

The RCSPP that prescribes the optimal location and its capacity configuration is:  

*

,
:

t
ls

a a ls
l L s Sl L s S t T a A

Z Min x U
    

  
    

  
 x  , where 

lsU  is defined in (34). (35) 

It is fortuitous that associated revenue and costs can both be related to arc a  in an ls  

configuration network and that the computational advantages of RCSPP can be retained in problems 

that involve selecting one of multiple potential locations and/or providing multiple services at one 

location by constructing appropriate configuration networks. 

Following recommendations of our healthcare collaborators, the objective is to maximize 

excess revenue over the planning horizon.  This is a “natural” objective for for-profit providers, but 

even not-for-profit providers must maintain a positive cash flow to remain financially viable.  In 

addition, all providers will need funds to conform to new requirements mandated by the ACA.  

Alternatively, a provider could also use our model to minimize total cost by setting revenues to zero.  

 

4.2 Modeling uncertainty in a competitive environment 

This chapter evolves our methodology to deal with uncertainty under competition. The first 

subsection proposes our prototypical MCI demand attraction model, which can be adapted for 

various healthcare applications. The second subsection models demand uncertainty; the third 

formulates expected excess revenue as the objective function in our stochastic model; the fourth 

derives closed-form expressions for expected excess demand and capacity. Finally, the fifth 

subsection presents the equivalent deterministic formulation of our stochastic model and the 
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algorithm we propose to solve SSHFCP. 

 

 

 

Figure 9. Extended network for |L|=3 and |S|=3 

 

 

To model competition, we define an index set 

C  locations of competitors’ facilities     l C ; 

to represent demand in a micro scale, we define index set 

G   demographic groups (each age, gender, race/ethnicity combination) g G ; 

assume that, based on a recent census and a forecast of demographics evolution, we obtain  

gptn  number of people who are members of demographic group g  and reside in 

population center p in time period t ; 

and that, based on historical data, one can obtain 

…
 

l=1 

l=2 

l=3  

... ... 

... 

s=1 s=2 s=3 

Do Nothing 
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gsp  probability that a member of demographic group g  requires healthcare service .s  

We assume mutual statistical independence among locations, population centers, services, 

time periods and demographic groups.  Now, we introduce the following random variables: 

gpstD  Number of members of demographic group g  who reside in population center p  

and seek healthcare service s  in time period t ; 

ˆ
pstD  Total demand (in term of number of patient visits/year) originating from 

population center p  for healthcare service s  in time period t ;  

( )lst aD k  Total demand (in term of number of patient visits/year) attracted to 

facility l  from all population centers ( p P ) for healthcare service s  in time 

period t , given that capacity alternative ak , t
lsa A , is prescribed. 

 

4.2.1 MCI demand attraction model 

Instead of “allocating” all patients in a population center to a particular facility as do location-

allocation models (Harper et al., 2005; Syam, 2008; Syam & Côté, 2010), we propose to use an 

attraction model, reflecting the fact that each person can select the healthcare facility of his/her 

own choice. We present this as a prototypical model because it demonstrates how relevant 

healthcare factors can be used to estimate the attractiveness of each location and because it can be 

readily adapted to other healthcare applications, as we demonstrate in Section 5. 

Let ''l L  be the location of the new facility. Our attraction model adapts the form of an 

MCI model to define ( )lpst ak , the probability that a resident in population center p  will be 

attracted to facility { ''}l C l  for service s  in period t  given that capacity ak  is prescribed, 

using 
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 
' ' ' '

' ''

( ) lst a lp lp

lpst a

l st a l p l p

l C l

k d B
k

k d B

   

   












, where competition factor  (36) 

lst  is a measure of facility attractiveness (e.g., physician rating) relative to healthcare 

considerations such as patient surveys, survival score, patient safety, and care-related 

evaluations;  

ak  is the capacity at the node to which arc t
lsa A  is incident; 

lpd  is the shortest-path distance from (the centroid of) population center p  to location l ;  

lpf  is the time to travel the fastest route from (the centroid of) population center p  to location l ; 

/ | |l lpp P
D d P


  is the average distance of shortest paths from population centers to location 

;l  

/l lpp P
F f P


  is the average time of fastest routes from population centers to location l ; 

   / /lp lp l lp lB d D f F   is an objective index of  accessibility that reflects patient convenience. 

Attraction model (36) can be used to calculate ( )lpst ak  for each facility  "l C l . Our case 

study of section 5 is concerned with a single new facility, "l .  Should m̂  new facilities be 

configured from | |L  potential locations, (36) would have to be formed for each of 
| |

ˆ
L

m

 
 
 

 possible 

site combinations, effectively limiting its applicability to locating a single new facility.  

We include capacity as a factor in our attraction model to reflect the fact that larger 

facilities tend to offer more capable physicians and, therefore, their collective reputations (e.g. 

Mayo Clinic) tend to attract more patients. One could also think of the capacity factor as a 

surrogate for customer waiting: larger facilities can offer more physicians (i.e., servers) to reduce 

patient waiting time. In any event, capacity alternatives are known before the model is optimized 
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so that costs can be calculated to label the expected excess revenue associated with each arc in the 

ls  configuration network. This allows us to model multiple time periods to prescribe globally 

optimal configurations. 

Luo and Wang (2003) proposed measures of accessibility for primary care facilities to 

represent the relative ease with which a patient can reach a facility for service. We initiate the 

definition of lpB . Ratio /lp ld D  ( /lp lf F )  gives the “standardized” distance (time) from population 

center p  to location l , representing the relative ease of access from a particular population center 

to a specific location. Both distance and accessibility may be important in attracting a patient to a 

facility. For example, a short distance may require a long travel time due to traffic lights and other 

bottlenecks (giving poor accessibility). A longer distance on an uncongested freeway that allows 

faster travel speed (giving good accessibility) may be preferred. 

The parameters (i.e., exponents) in (36) represent nonlinearities associated with 

attractiveness,  ; capture rate decay with increasing distance,  ; capacity,  ; and accessibility, 

 .  For each p P , s S  and t T , we note that 0 1lpst   for each  "l C l  and that 

 "
1lpstl C l




 , assuming that 0lpst ak    for at least one  "l C l  and that  0lpd   and 

0lpB   for all  "l C l .  We make measures commensurate by scaling each to the range [1, 

10]. 

We assume that factor lpst  and parameters  ,  ,  , and   are the same for all 

demographic groups in each population center, although they could be made specific to each group 

if data permitted. Attraction model (36) can be used in both deterministic and stochastic cases. In 

this section, we use it to determine ( )lst aD k  as a function of ˆ
pstD , p P : 
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ˆ( ) ( )lst a lpst a pstp P
D k k D


 .       (37) 

 

4.2.2 Demand   

It is clear that the number of patients gpstD  follows a binomial distribution  ,gpt gsB n p with mean 

gpst gpt gsn p  . The distribution of gpstD  can be well-approximated by the Poisson with mean rate 

gpst  because gptn  is sufficiently large and gsp  is sufficiently small. 

Summing up st  demand from all demographic groups g G , we model the number of 

patients originating in population center p  who seek service s  in time period t , gpstg G
D

 , as a 

Poisson random variable with mean rate gpstg G


 . Using probability ( )lpst ak , which is 

determined by our attraction model (36), we split the pst  Poisson patient stream into independent 

Poisson streams, one for each primary care service s S , time period t T  and location 

 "l C l . Thus, the number of patients for each lst  combination, which translates demand from 

population center p   to location l , is Poisson with mean rate ( )lpst a gpstp P g G
k 

   . 

The standard measure of demand and workload used in the industry is the number of 

patient visits/year.  Each patient who arrives may require multiple visits/year.  We define 

parameter: 

gsv  number of visits/year that a patient in demographic group g  requires for service 

s . 

Demand in terms of number of visits/year is no longer Poisson, but a random variable with 

mean gs gpstv   and variance 2
gs gpstv  , assuming, as we do, that gsv  is known deterministically. When 
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these independent random variables are summed over g G  to get ˆ
pstD , then over p P  to get 

( )lst aD k  as described in (37), the distribution of ( )lst aD k  can, by the Central Limit Theorem 

(Casella & Berger, 2001), be approximated by the normal distribution with mean lst  and variance 

2
lst  as defined in (38) and (39), respectively: 

( ) ( ) lst a lpst a gs gpstp P g G
k k v  

 
        (38) 

2 2( ) ( ) lst a lpst a gs gpstp P g G
k k v  

 
  .      (39) 

 

4.2.3  Expected excess revenue 

 In contrast to the deterministic excess revenue (i.e., a ) described in Section 3, we define 

a  as the expected excess revenue associated with arc a  in the face of uncertain demand. This 

subsection models the components that constitute a .  

Since a deterministic capacity, ak , will not equal demand under all possible outcomes, we 

define the following random variables in terms of the number of patient visits per year as functions 

of the capacity (i.e., ak ) represented by the node to which t
lsa A  incident: 

( )lst aK k  Excess capacity for service s  in time period t  at location l ; 

( )lst aD k  Excess demand for service s  in time period t  at location l ; 

ˆ ( )lst aN k   Actual number of visits for service s  in time period t  at location l . 

Let st  be the revenue per visit for service s  in time period t . If we define 

 ˆ ( )a st lst a aE N k c    
 

, the objective function would not include cost penalties for expected 

excess demand (i.e., unserved patient visits) or capacity (i.e., resource idleness). Therefore, we 
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introduce a measure of recourse that penalizes both excessive demand ( lstD ) and capacity, ( )lstK  , 

using (40) to define ( )lst aK k  and ( )lst aD k : 

 ( ) ( ) ( )lst a lst a lst a aD k D k K k k      , , , t
lsl L s S t T a A    . (40) 

Clearly, ˆ ( )lst aN k  is the minimum of demand and capacity: 

ˆ ( ) min{ ( ), }lst a lst a aN k D k k ,   , , , t
lsl L s S t T a A    . (41) 

a  reflects recourse by assessing penalties for the expected amounts of excess demand, 

 lst aE D k 
  , and capacity,  lst aE K k 

  , where 

        max ,0lst a lst a a lst a aE D k E D k k E D k k


              
,   (42) 

        max ,0lst a a lst a a lst aE K k E k D k E k D k
             

.  (43) 

For each lst  combination, let K
lstc  be the time-discounted cost per unit of excess capacity; 

that is, under-utilized resources, or equivalently, the opportunity cost associated with investments 

that could provide other services that are in limited supply; D
lstc  be the time-discounted cost per 

unit of excess demand, which can represent patient delay and/or health ramifications if a patient 

must travel to a distant location or forego healthcare. ACA requires that providers be measured 

relative to patient satisfaction, so excess demand is a valid measure of the level of patient-centered 

service offered; large values may result in an undesirable loss of patients seeking repeat services. 

Knowing the nodes from and to which arc a  is incident allows it to be labeled with fixed 

cost ac  appropriate for the associated capacity change, if any, in transitioning  from the tail node 

to the head node (i.e., opening, expanding, contracting, or closing), as well as revenue and penalties 

for excess demand and capacity, all of which relate to the capacity ak  (i.e., the maximum number 
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of patient visits/year that can be served) for service s  at location l  in period t  that is associated 

with the node to which t
lsa A  is incident. Now, a  for each t

lsa A , l L , s S , t T  is 

defined as 

ˆ ( ) ( ) ( )K D
a st lst a a lst lst a lst lst aE N k c c E K k c E D k              

,   (44) 

leading to the stochastic formulation for SSHFCP associated with the ls  configuration network: 

(SHFCPls): *
: (7),(8),(9),(10) for , ;

                       and .

t
ls

t
a a ls

t T a A
ls

a ls

x a A t T

Z Min

x U

 

   
 

   
  


, 

where a  is defined in (44) and lsU  is defined in (34). 

 

4.2.4 Closed form expressions for recourse 

This section establishes a closed-form model of recourse that represents all possible 

demand outcomes instead of, for example, using a two-stage stochastic program that represents 

outcomes statistically using a (typically small) sample of scenarios.  

Recall that  lst aE D k 
  ,  lst aE K k 

   and  ˆ
lst aE N k 

 
 are functions of the prescribed 

capacity ak  for each t
lsa A  in the ls  configuration network, l L , s S  and t T . For 

simplicity in deriving the closed form expression for recourse, in this subsection, we suppress the 

subscript a  for each capacity alternative as well as the subscript lst . We use  f k  and  F k  to 

denote the probability density and cumulative distribution function, respectively, of the normal 

distribution evaluated at capacity k . Proposition 1 establishes that [ ]E K   is a linear function of 

[ ]E D , regardless of the distribution of D : 

Proposition 1: Regardless of the distribution of demand D , [ ] [ ] [ ]E K E D E D k    . 
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Proof: K  = max( ,0)k D = max(0, )k D k D    = k D D   

  [ ] [ ] [ ]E K E D E D k     .  

Proposition 2 shows that ˆ[ ]E N  can be determined as a function of [ ]E D  or of [ ]E K  , 

regardless of the distribution of D : 

Proposition 2: Regardless of the distribution of demand D , ˆ[ ] [ ] [ ]E N E D E D  = [ ]k E K   . 

Proof: N̂ = min( , )D k  =  max ,D k    max ,D D D k      max 0,D D k   D D 

 ( )D K k D     = k K   .  Linear transformation on expectation gives the results.  

We consider approximating demand D  using the normal distribution  2,N   . 

Proposition 3 gives E D 
  , given that demand is normally distributed. 

Proposition 3: If demand D  is  2,N   ,      1E D z k z           ,  

where   /z k    ,  
21

2
1
2

z
z e




 , and  

2
2

1
2

zz

z e dz





    denote, respectively, 

standard normal and its probability density and cumulative distribution functions.  

Proof: [ ] [( ) ] ( ) ( )
k

E D E D k w k f w dw


      

2 2

2 2
( ) ( )

2 21 1= ( ) ( )
2 2

w w

k k
w e dw k e dw

 

  
 

 
  

     

 2= ( ) ( ) 1 ( )f k k F k    ( ) ( )[1 ( )].z k z        (45) 

Invoking Propositions 1 and 2, Corollary 4 presents E K  
   and ˆE N 

 
 for  2,D N   : 

Corollary 4: If demand D  is  2,N   ,  

E K E D k           and 
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ˆE N E D k E K              
. 

Capacity may actually be a random variable instead of a fixed number. Let k̂  be the 

expected number of patient visits/year that one physician can serve. If the capacity of one physician 

is 2 2ˆ ˆ( , )N k k , the capacity of   physicians is a random variable, K  ~ 2 2ˆ ˆ( , )N k k  .  The 

random variable D K  is normally distributed and max(0, )D D K   . Corollary 5 defines 

[ ]E D  by replacing k  with k̂  and   with 2 2 2k̂    in Proposition 3. 

Corollary 5: If demand D  2,N   and K
2 2ˆ ˆ( , )N k k  ,  

     ˆ 1E D z k z            , where 2 2 2k̂     and  ˆz k    .  

4.2.5 Solution methodology 

The network formulation offers the advantage that revenue, which is a function of 

ˆ
lstE N 

 
, and all costs, including ac , and the penalties associated with lstE D 

   and lstE K  
  , are 

related to the capacity ak  prescribed in period t  by arc a .  Using closed-forms of  (41), (42) and 

(43), constraints (40) can be eliminated and expected excess revenue a  in (44) can be calculated 

a priori and used to label arc a . This fortuitously avoids nonlinearity in the objective function and 

allows the stochastic SSHFCP to be solved as a deterministic RCSPP. Proposition 6 defines the 

closed-form SSHFCP ls : 

Proposition 6: For a given ls  configuration network with known mean (i.e., ( )lst ak ) and 

variance (i.e., 2 ( )lst ak ) of demand, SHFCPls is  

*
lsZ =  :t

ls
a a a lst T a A

Min x x U
 

    , where 

  ( ) ( ) ( )K K K D
a st lst lst a lst a a st lst lst lst ac k c k c c c E D k              ,  (46) 
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( )lst aE D k 
 

 is defined by (45)  and lsU  is defined by (34). 

Proof: The maximum expected excess revenue associated with an ls  configuration network is 

 ˆ ( ) ( ) ( )t
ls

K D
st lst a a lst lst a lst lst a at T a A

Max E N k c c E K k c E D k x 

 
              , 

where expected revenue ˆ ( )st lst aE N k 
 

 and penalties for expected excess capacity and demand, 

( )K
lst lst ac E K k 

 
 and ( )D

lst lst ac E D k 
 

, are represented explicitly as functions of ak ; that is, of 

decision variable ax . 

 From Propositions 1 and 2, ˆ ( ) ( )lst a lst lst aE N k E D k        
 and 

( ) ( )lst a lst a lst aE K k E D k k          ; by substituting, we obtain 

   ( ) ( ) ( )K K K D
a st lst lst a lst a a st lst lst lst ac k c k c c c E D k               ; 

and the objective function of SSHFCP results: 

          *
t t
ls ls

ls a a a at T a A t T a A
Z Max x Min x

   
        .  

If the capacity impact is eliminated from attraction model (36) (i.e., 0  ), lst and 2
lst  are 

constants with respect to decision variable ax , and the objective function can be further simplified: 

Corollary 7: If the capacity factor is eliminated from attraction model (36) (i.e., 0  ), SHFCPls 

reduces to: 

*
lsZ =    ˆ :t

ls

K
st lst lst a a a lst T t T a A

c Min x x U
  

       , where  

 ˆ ( ) ( )K K D
a lst a a st lst lst lst ac k c c c E D k          ,  

( )lst aE D k 
   is defined by (45) and lsU  is defined by (34). 

 Figure 10 shows how  L S  ls  configuration networks can be used in an enumerative 
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process to prescribe a single optimal location  * *arg l L lss S
l max Z 
   and the capacity 

configuration of services it offers. The algorithm runs in pseudo-polynomial time.  

 

 

I. For each l L , s S : 

1. For each time period t T  and each capacity alternative ak , t
lsa A  :  

(1) Compute ( )lpst ak , the probability that a resident in population center p  seeks 

service s  at facility l  if capacity alternative ak  is prescribed in time period t  using 

(3); 

(2) Compute mean (i.e., ( )lst ak ) and variance (i.e., 2 ( )lst ak  ) of demand attracted 

facility l  if capacity alternative ak  is prescribed in time period t  using (5) and (6) 

(3) Compute the expected excess demand ( ( )lst aE D k 
  ) associated with arc t

lsa A  

using (12) in Proposition 3. 

(4) Label the expected excess revenue a  on arc t
lsa A  using (13) in Proposition 6. 

2. Solve the RCSPP (1) associated with the ls  configuration network, obtaining the 

optimal configuration and the expected excess revenue for the ls combination, *
lsZ  . 

II. Prescribe the best location *l  for the new facility:  * *arg l L lss S
l max Z 
  . 

Figure 10. Steps in solving SSHFCP 

 

 

4.3 Case study 

To demonstrate managerial use of our model, we now describe a case study that prescribes the 

configuration of a new primary care center that can provide up to three services (family practice 

(FP), internal medicine (IM), and pediatrics (P)) over a ten-year planning horizon. We base this 

hypothetical, yet realistic, case on publically available data, expecting that a provider conducting 
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an actual study could supplement this data, for example, with proprietary, historical data and/or 

by purchasing more detailed information such as forecasts from a demographics service. 

Our case study uses the extended network as described in Figure 9 for a compact 

formulation. We follow step 1 in Figure 10 to label 
a  on arc , ,

t

l L s S t T lsa A   , then solve a 

single RCSPP for SSHFCP: 

(SSHFCP): * :  for , ,
t
ls

t

a a a ls ls
t Tl L s S t T a A

Z Min x x U a A l L s S
   

  
       

  
 ,  

     where 
lsU  is defined in (34). 

We assume that personnel are downsized in a contraction but that the building is not 

changed, because it would not be possible to lease or sell part of the building.  In our case study, 

our ls  configuration network is extended to define each capacity alternative as a (number of 

physicians, building size) pair, so, if a contracted facility were later expanded, the correct building 

size would be represented. As a result, the fixed configuration cost (i.e., 
ac ) embodies the 

economies of scale. 

This section comprises four subsections.  The first describes the case setting and the data 

we use.  The second presents a sensitivity analysis that we conduct to assess the relative impacts 

of competition factors and key parameters on location and configuration decisions.  The third 

describes a sensitivity analysis relative to the variance of physician capacity; and the fourth, 

penalty cost values.  Because run times are not significant, we do not include a detailed analysis 

of run time as a function of parameters.  

 

4.3.1 Case setting and data 

This subsection describes the setting upon which we base our case study as well as the data sources 

we employ. The following discussion reviews the sites of existing primary care centers and 
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potential locations for a new one; current and forecast demand by demographic group in each year; 

analysis of primary care centers to specify capacity alternatives, including staffing levels and costs 

(e.g., land, building, annual operating, expanding, contracting and closing); revenue per visit; and 

attraction model (36) parameters.  

To reflect practical features with fidelity, our model deals with a variety of relevant data.  

Table 19 relates data to our publically available sources. Column 1 gives the set or parameter; 

Column 2, our source (typically a government website); and Column 3, an index we use in this 

section to refer to each source that is identified by this table. We report data specific to the Brazos 

County in this section. The interested readers can obtain the rather voluminous data we have 

obtained from national sources on the authors’ website (http://ise.tamu.edu/nsfhc). 

Our case study focuses on rural Brazos County, TX (population 194,851).  The cities of 

College Station (population 93,857) and the adjoining Bryan (population 76,201) form a long, 

narrow metropolis that runs southeast to northwest within the county (Figure 11).  Although a few 

medical offices are scattered around, the three principal centers of primary care are in the center-

north of Bryan and the center-north and center of College Station, as depicted by three flags 

(C={E1, E2, E3}) in Figure 11.  College Station has grown rapidly over the last decade, mostly 

southward, creating potentially underserved areas. Our case study seeks to identify the best 

configuration for a new primary care center, given the three existing centers. Figure 5 also shows 

eight tear drops (L1-L8) that identify potential locations "l L  where a new primary care center 

could be sited. We identified these parcels of land by consulting with city planning offices (s1) to 

learn about development plans and areas where growth is expected, and by consulting local real estate 

data bases (s7) to determine available parcels and their prices (Table 19). 

This case study involves a relatively small county, we define each population center as a 

census tract. By definition, each is a geographic area within a county that has between 2,500 and 

http://ise.tamu.edu/nsfhc
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8,000 residents and boundaries that follow physical features (e.g., roads, highways, rivers). The 

U.S. Census Bureau (s2) partitions Brazos County into 40 census tracts. We use ArcGIS to 

determine the centroid of each tract p  and Google Maps to compute the shortest travel distance 

and time from it to each existing primary care center ( l C ) and to each potential location ( l L ). 

 

 

Table 19. Source for each type of data 

Sets or Parameters Source Index 

L  http://ims.bryantx.gov/gis/website/new_development/view
er.htm  

s1 

2000 and 2010 census http://www.census.gov/; s2 
Population growth 
projection 

http://txsdc.utsa.edu/data/TPEPP/ Projections/Index.aspx s3 

gsp  and gsv  http://www.cdc.gov/nchs/data/ahcd/namcs_summary/2010
_namcs_web_tables.pdf  

s4 

st  www.amnhealthcare.com/industry-research/ 2010-
Physician-Inpat 
FP ($1,622,832), IM ($1,678,341), and P ($856,154) 

s5 

lst   https://www.healthtap.com/ (Table 3) s6 
Land purchase cost 
(part of 

ac ) 
https://propaccess.trueautomation.com/clientdb/?cid=65 
(Table 2) 

s7 

Capacity:  
# visits/year/physician 

http://www.medscape.com/sites/ public/ physician-
comp/2012 
FP (3836), IM (3564), and P (3754) 

s8 

Staff associated with 
physician 

https://www.vendorportal.ecms.va.gov s9 

Clinic & parking-lot 
size standards 

http://iss.unm.edu/PCD/docs/UNMH-Clinic-
Standards_Revised04-12-10.pdf 

s10 

Construction cost (part 
of 

ac ) 
http://www.license.state.tx.us/ab/2012abtas5.htm; s11 

Physician and staff 
salaries (part of 

ac ) 
www.salary.com 
Physician: FP ($178,000), IM ($189,000) and P 

($174,000), Registered nurses ($80,372), Licensed 

practical nurses ($52,685), and Physician assistants 

($107,934) 

s12 

http://ims.bryantx.gov/gis/website/new_development/viewer.htm
http://ims.bryantx.gov/gis/website/new_development/viewer.htm
http://www.census.gov/
http://txsdc.utsa.edu/data/TPEPP/%20Projections/Index.aspx
http://www.cdc.gov/nchs/data/ahcd/namcs_summary/2010_namcs_web_tables.pdf
http://www.cdc.gov/nchs/data/ahcd/namcs_summary/2010_namcs_web_tables.pdf
http://www.amnhealthcare.com/industry-research/%202010-Physician-Inpat
http://www.amnhealthcare.com/industry-research/%202010-Physician-Inpat
https://www.healthtap.com/
https://propaccess.trueautomation.com/clientdb/?cid=65
http://www.medscape.com/sites/%20public/%20physician-comp/2012
http://www.medscape.com/sites/%20public/%20physician-comp/2012
https://www.vendorportal.ecms.va.gov/
http://iss.unm.edu/PCD/
http://www.license.state.tx.us/ab/2012abtas5.htm
http://www.salary.com/
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Figure 11. Census Tracts within Brazos County 
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Table 20. Land cost at potential locations 
Potential 
Location 

Cost 
($/acre) 

Potential 
Location 

Cost 
($/acre) 

1 326,699.9 5 87,120.2 
2 134,747.8 6 39,426.4 
3 87,119.8 7 13,721.3 
4 209,088.1 8 282,269.6 

 

 

The U.S. Census Bureau (s2) reports the total population for each of the 40 tracts, as well 

as the number in each demographic group, each of which comprises one of the possible 

combinations of (age, gender, race/ethnicity) 

 Age   <15, 15-24, 25-44, 45-64, 65-74,  75 

 Gender   male or female 

 Race/Ethnicity  African American, Caucasian, Hispanic or Latino, Asian; 

giving | | 6 2 4 48G      (age, gender, race/ethnicity) groups altogether. In order to forecast the 

annual demand for service s  from within population center p  during time period t  for a T -year 

planning horizon, we combined data from the U.S. Census Bureau (s2), the Texas State Data Center 

(s3) and the Center for Disease Control and Prevention (s4), which give, respectively, the 2010 

population for each census tract within Brazos County by demographic group; the population 

projections for Brazos County by age, sex, and race/ethnicity; and the national number of annual visits 

by age for primary care services. Some 50,000 students attend Texas A&M University in College 

Station, but we do not include them as they typically use healthcare facilities on campus. 

Tracts in the center of Brazos County have increased populations over the years and are now 

“saturated,” providing little space for new homes, so we assume they will experience growth rates 

less than 5% per year.  We assume that residents of saturated tracts have lived there for some time so 

that 50% are committed to their PCP and will not consider changing physicians.  However, we assume 
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that 50% of the residents in each of these tracts are amenable to our attraction model because they 

may be selecting a PCP for the first time or may have purchased an existing home and moved into the 

tract recently. For tracts with populations that are projected to grow by more than 5% per year, we 

assume that 100% of the population is amenable to our attraction model because these residents are 

typically young and may be moving into the area as new houses are built. 

The Center for Disease Control and Prevention (s4) provides the number of office 

visits/year/100 persons for primary care (i.e., FP, IM, and P) for each patient-age category (i.e., 

aggregating visits for genders and race/ethnicities in each age group). To obtain 
lst , we adapt our 

model by first adding our population forecasts for genders and race/ethnicity in each age group and 

then, for each service, multiplying by the annual number of office visits for each age group.  

Next, we analyze primary care facilities to determine meaningful capacity alternatives, 

basing each on the number of physicians it provides. For each ls  configuration network, we define 

the capacity alternatives (nodes) in each time period as comprising 0, 1, 2, 3, 4, 5, 8, 10, 15 or 20 

physicians. We measure the capacity of each type of primary care using the number of visits/year 

with which each PCP can deal. We set 
st , the revenue/visit for service s  by dividing the 

revenue/year/PCP reported by a 2010 survey (s5) by the average number of visits/year each serves 

(s8). We do not employ a budget limitation but do restrict the number of expansions and 

contractions to four for each service over the planning horizon. In particular, we define | | 1R  ; 

1 1a   if a  is an expansion/contraction arc, 0 otherwise, and 1  = 4 in (34). 

Components of a primary care center can be estimated, given the number of physicians.  

For example, primary care clinics average 2.17 clinical support staff and 3 rooms for each 

physician (s9). We estimate the number of square feet needed for the building associated with each 

capacity alternative using these ratios along with typical clinic and parking-lot size standards (s10) 

and then determine construction cost using a web site designed for that purpose (s11).  Using linear 
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regression, we define the fixed cost for a building with an area that can accommodate as many as 

  physicians and their supporting staff and equipment as  $1,221,400 78,910  , reflecting 

economies of scale.  We include a table on our website (http://ise.tamu.edu/nsfhc) that describes 

each alternative, including economies of scale as capacity increases, the numbers of physicians 

and clinical support staff, the numbers of rooms and square feet, and the capacity (i.e., number of 

patient visits/year that can be served). 

We use average annual compensation of family practitioners, internists, pediatricians, and 

support staff, including registered nurses, licensed practical nurses, and physician assistants in 

Bryan/College Station (s12) in determining the annual administration cost for each capacity 

alternative. Annual operating cost includes physician and staff remuneration plus maintenance at 

5% of building cost.  Because the land and building costs differ by location and operating costs 

are different for each service, this large amount of data, can be found at our website 

(http://ise.tamu.edu/nsfhc). 

We use physician ratings in Table 21 (s6) to set the reputation factor 
lst  in our attraction 

model (36). We assume that the new facility tends to hire PCPs with respected reputations so that 

they share the same PCP ratings as at E2, which are higher than those at E1 and E3.  

 

Table 21. Physician ratings 

Facility FP IM P 
E1 7.37 7.03 7.77 
E2 7.94 7.2 8.05 
E3 7.16 6.97 7.32 

 

 

Table 22 gives the annual growth rate we assume for each of the 40 tracts. We determine 

the growth rates by measuring the evolution of census tracts from 2000 to 2010 census (s2), and 

http://ise.tamu.edu/nsfhc
http://ise.tamu.edu/nsfhc
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validate the compound growth that results over the planning horizon with the growth rate projected 

by the county (s3). We assume that each existing facility increases capacity by 4% each year to 

correspond with the overall growth rate and to reflect competitor reactions to the new facility. As 

an example, Table 22 compares the demand for FP attracted from each tract to each location in 

2015 before/after a new facility at L3 enters the market with 1  , 2  , 1   and 1  . A 

new facility at L3 attracts a larger market share in growing tracts (20.06-20.13) than in the 

saturated tracts (7-9, 11, 13), which are more distant and have a lower portion of residents willing 

to consider a new PCP.  The sum of demands in each tract attracted away from existing facilities 

equals the demand attracted to L3. 

 

4.3.2 Sensitivity analyses 

We now conduct sensitivity analyses with the goal of assessing the relative impacts on 

configuration decisions of key competition factors (e.g., physician rating, distance); parameters 

,  , ,  ; and percentage of the population amenable to attraction model (36). Initially (base 

case 1), we set 1    and 2  , emphasizing travel distance, but subsequently conduct 

sensitivity analyses relative to these parameters as described in the next subsection. We evaluate the 

impact of including capacity in attraction model (36) by comparing results with 0   and 1   

in each case. We also employ test cases 6 and 7, which fix one new facility and prescribe the best 

location for a second new facility. 

Table 23 gives results for our 11 test cases.  Columns 1 and 2 give, respectively, the case 

number and the setting that defines each case.  Columns 3-6 (7-10) report results when capacity is 

not  . ., 0i e    (is  . ., 1i e   ) incorporated in attraction model (36), including the optimal location, 

and expected excess revenue (x108), and the number of PCP years prescribed; and the run time (in 
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seconds). Each case 2-11 differs from base case 1 in one setting to assess its impact.  The impact 

of including capacity in the attraction model can be assessed by comparing results for a given case 

 

Table 22. Demand attraction before and after the new facility is located at L3 

Census Growth  E1 E2 E3 L3 
Tracts rate/year before after before after before after new 
1.01 3.07% 841 826 1564 1536 1835 1802 76 
1.02 2.47% 666 651 1095 1070 1306 1277 68 
1.03 3.26% 209 203 303 295 348 339 21 
2.01 0.76% 320 313 1059 1035 848 829 49 
2.02 3.18% 555 548 1874 1853 1056 1045 38 

3 1.32% 503 492 1571 1539 1187 1162 68 
4 0.39% 225 223 1285 1275 778 772 19 
5 0.01% 236 234 1450 1435 632 625 23 

6.03 0.57% 231 229 1604 1589 601 596 22 
6.04 1.54% 307 303 1790 1767 821 811 38 

7 0.07% 47 47 955 952 185 184 4 
8 0.96% 47 47 1957 1953 208 208 5 
9 -1.55% 65 65 601 596 217 215 8 
10 2.71% 187 185 1360 1344 664 656 26 
11 -0.72% 79 79 1236 1232 533 532 6 

13.01 3.48% 30 29 135 135 814 812 2 
13.02 0.00% 57 57 65 65 875 871 4 
16.04 4.11% 596 551 207 192 428 395 93 
16.05 0.64% 364 352 172 166 389 377 29 
16.06 0.64% 474 446 114 107 200 188 47 
17.01 3.13% 250 246 136 133 837 824 20 
17.02 3.14% 376 363 100 96 240 231 25 
18.01 -0.59% 1405 1335 81 77 152 144 82 
18.03 0.27% 1510 1278 89 76 151 128 269 
18.04 0.00% 335 308 8 8 19 18 30 

19 0.57% 91 91 1836 1829 453 451 10 
20.01 0.64% 959 930 242 235 681 661 56 
20.02 4.39% 1848 1766 340 325 692 661 129 
20.06 6.02% 1470 492 75 25 134 45 1117 
20.07 5.40% 3044 1545 318 162 692 351 1996 
20.08 6.40% 2823 2423 420 361 938 805 592 
20.09 6.65% 2655 2514 585 554 1204 1140 236 
20.10 15.00% 1189 1137 394 377 785 751 103 
20.11 15.00% 1074 1028 570 546 866 829 108 
20.13 6.16% 4026 3595 774 691 1291 1153 652 
20.14 6.15% 377 363 382 368 527 508 47 
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with 0   (columns 3-6) and with 1   (columns 7-10).  To provide a single, summary measure 

to compare the various cases over the planning horizon, we add the numbers of physicians 

prescribed in FP, IM and P practices each year over the 10 years and report this summary measure 

(#PCP years) in Table 23. 

We use boost (http://www.boost.org) to compute standard normal ( )z values, AMPL 

9.0®, and the IBM ILOG CPLEX12.1® branch-and-bound solver with default settings.  We perform 

all computational tests on an Intel Xeon CPU E5620 @ 2.40GHz (2 processors), a 64-bit operating 

system, with 12.0GB RAM.  Our case study RCSPP represents 40 census tracts, 48 demographic 

groups, 3 existing facilities, and 8 potential new locations; it involves 225,984 binary variables and 

11,082 constraints. 

 

Table 23. Settings and test results for 11 cases 

C
as

e 

Setting 

W/O capacity impact  With capacity impact 1   

Opt
Loc 

Opt 
Obj 
x108 

#PCP 
years 

Run 
time 
secs 

Opt 
Loc 

Opt 
Obj 
x108 

#PCP 
years 

Run 
time 
secs 

1 1  , 2  , 1    L3 $1.31 168 23.2 L3 $0.37 62 22.1 

2 2  , enhance physician 
ratings  L3 $1.34 172 23.8 L3 $0.40 68 21.0 

3 Attraction model applies to 
everyone  L5 $1.84 217 23.0 L7 $0.80 136 25.3 

4 4000 visits/PCP/year for each 
service L3 $1.35 155 24.7 L3 $0.31 54 20.6 

5 Physician ratings now E1’s not 
E2’s  L3 $1.28 164 24.7 L3 $0.33 60 21.4 

6 0 expansion/contraction for 
each service L3 $1.24 140 6.49 L3 $0.36 60 6.05 

7 Make L8 an existing facility L3 $1.18 151 19.9 L3 $0.32 59 17.1 
8 Make L3 an existing facility L5 $0.93 109 19.8 L4 $0.08 20 14.9 

9 
0  , 2  , 0  , distance 

only 
L3 $1.29 163 24.8 L3 $0.30 49 20.8 

10 
0  , 0  , 1  , 

accessibility only 
L4 $1.15 148 24.2 L4 $0.10 40 21.4 

11 
0  , 2  , 1  , distance 

& accessibility 
L3 $1.28 164 24.5 L3 $0.33 60 20.1 

0 

http://www.boost.org/
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Tables 24 ( 0  ) and 25 ( 1  ) detail optimal configurations over the planning horizon, 

in case 1.  Columns give the year and (# of Physicians (PC), Building Capacity (BC)) for each of 

FP, IM, and P. At most 3 expansions over the planning horizon are observed for both 0   and 

1  . Our web site (http://ise.tamu.edu/nsfhc) gives configuration tables for all cases. 

Table 26 breaks down the expected excess revenue reported in Table 23 for case 1 with 

0   1   in column 2 (3).  Rows give E[Revenue], E[Excess demand penalty], E[Excess 

capacity penalty], facility operating cost (physicians, staff and maintenance costs), and facility 

configuration cost (land purchase, opening and expansion building costs). Elements in columns 2 (3) 

sum to give expected excess revenue for 0   ( 1  ): $1.31 ($0.37) 810 . Table 27 shows the 

detailed capacity configurations for cases 2 to 11, each involving two settings, γ=0 and γ=1. 

 

 

Table 24. Optimal configuration, case 1, γ = 0 
Period 

 
FP IM P 

PC BC PC BC PC BC 
2011 5 5 5 5 3 3 
2012 5 5 5 5 3 3 
2013 5 5 5 5 4 4 
2014 5 5 5 5 4 4 
2015 8 8 5 5 4 4 
2016 8 8 5 5 4 4 
2017 8 8 5 5 4 4 
2018 8 8 8 8 5 5 
2019 8 8 8 8 5 5 
2020 8 8 8 8 5 5 

 

 

 

t

http://ise.tamu.edu/nsfhc
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Table 25. Optimal configuration, case 1, γ = 1 

Period 
 

FP IM P 
PC BC PC BC PC BC 

2011 1 1 2 2 1 1 
2012 2 2 3 3 1 1 
2013 2 2 3 3 1 1 
2014 2 2 3 3 1 1 
2015 2 2 3 3 1 1 
2016 2 2 3 3 1 1 
2017 2 2 4 4 1 1 
2018 2 2 4 4 1 1 
2019 2 2 4 4 1 1 
2020 2 2 4 4 1 1 

 

 

 

Table 26. Case 1 revenue & costs ×$108 

Objective breakdown (108) 0   1   
E[Revenue] 2.253 0.791 

E[Excess demand penalty] -0.114 -0.005 
E[Excess capacity penalty] -0.191 -0.157 

Facility operating cost -0.544 -0.230 
Configuration cost -0.090 -0.031 

 

 

 

Case 1. Including capacity in the attraction model allows a facility to attract more demand as its 

capacity increases relative to other facilities.  However, the capacity of existing facility E1 is so 

large, it dominates competitors when , so that the new facility cannot attract enough demand 

to be very large. In contrast, if capacity is not included in the attraction model  0  , E1 loses 

the competitive advantage conferred by its larger capacity so that it cannot attract as much demand, 

allowing other facilities to attract larger market shares. New location L3 is close to growing tracts 

in southern College Station; it competes directly with E1 because the two locations are not far 

t

1 
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from each other.  As a result, new location L3 attracts more demand and enjoys a larger expected 

excess revenue when 0  .   

Case 2. Set α = 2, enhancing the impact of physician ratings.  The physician ratings assumed at 

the new facility are high, so L3 gains a competitive advantage when the ratings are emphasized, 

allowing it to attract even more demand than in case 1. 

 Case 3. Everyone is amenable to the attraction model; no one refuses to consider a new PCP.  

Existing facilities lose competitive advantage if long-time residents consider new PCPs; total 

demand for each service at each potential new location increases and, correspondingly, the number 

of PCP years increases. Long-term residents in the saturated tracts (mostly in the north and center 

of the county) pull the optimal location northward to L5 at the center of the county when 0  , 

and to L7 at the north of the county to exploit the lack of nearby existing facility capacity for 1.   

Case 4.  Each physician can handle 4000 visits/year.  As the capacity of each physician increases, 

the number of PCP years decreases. The capacity increment for IM (FP) is the largest (from 3564 

to 4000) (smallest (from 3836 to 4000)) among the three services, so, as expected, it is the most 

(least) sensitive to this factor change. 

Case 5. Physician ratings at the new location decrease from those as high as E2 to those at E1.  

The portion of demand it attracts from each tract decreases, reducing the number of PCP years. 

Case 6.  Limit the number of expansions/contractions to 0.  In other cases, we restrict the number 

of expansions and contractions to 4.  It turns out that this constraint is not tight, so RCSPP reduces 

to an SPP and CPLEX solves all cases at the root node. In Case 6, the CPLEX pre-solver eliminates 

expansion/contraction arcs, resulting in a network with only horizontal arcs (i.e., , ,t

lsA l L s S  ,

t T ); it is solved at the root node in little run time.  Providing larger capacities in early years 

does not induce increases in demands for IM or P that offset the associated costs, so this case 

foregoes expansions in later years, reducing the number of PCP years.   
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Case 7.  Make location L8 an existing facility with 4 FP, 0 IM, 0 P, and PCP rating the same as 

firm E2.  Because L8 does not provide IM or P, it does not compete with these services offered at 

L3. The market share for FP at L3 is smaller than in base Case 1, because demand is cannibalized 

by facilities E2 and L8, which have the same physician ratings.  

Case 8. Fix L3 as an existing facility with the optimal configuration prescribed in base case 1.  

This case demonstrates use of our model as a heuristic to configure multiple new facilities, 

specifying one location at a time.  The optimal additional location for the second facility is L5 

(L4) with 0    1  .  

Case 9. Set 2   and 0   , so each patient selects the closest facility. Because physician 

ratings are not considered, L3 loses an advantage it had in competing with E1, reducing PCP years. 

Case 10. Set 1   and 0   , so the attraction model considers only accessibility. L4 is along a 

major highway amidst growing tracts in College Station, so it has a competitive advantage. 

Case 11. Set 2  , 1   and 0  , so the attraction model considers both distance and 

accessibility. L3 is close to growing tracts and not too far from a state highway; it attracts less demand 

(requiring fewer PCP years) than in base case 1 but more than in case 9, because it also has a favorable 

accessibility.  

Cases 1, 2, 4-7, 9, and 11 prescribe L3, indicating that it is quite robust.  For case 3 in 

which everyone is amenable to considering a new PCP, L5 (L7) is optimal when 0   1  .  In 

case 8, after L3 is fixed as an existing facility, L5 (L4) is the optimal choice for a second facility 

when 0   1  .  In case 10, which uses only the accessibility competition factor, L4 is optimal 

whether 0   or 1  . 
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Table 27. Optimal capacity configuration for cases 2 -11 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 5 5 5 5 3 3 
2012 5 5 5 5 3 3 
2013 5 5 5 5 4 4 
2014 5 5 5 5 4 4 
2015 8 8 5 5 4 4 
2016 8 8 5 5 4 4 
2017 8 8 8 8 5 5 
2018 8 8 8 8 5 5 
2019 8 8 8 8 5 5 
2020 8 8 8 8 5 5 

(a)  case 2, γ=0 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 2 2 2 2 1 1 
2012 2 2 3 3 1 1 
2013 2 2 3 3 1 1 
2014 2 2 3 3 1 1 
2015 2 2 3 3 1 1 
2016 2 2 3 3 1 1 
2017 2 2 4 4 1 1 
2018 2 2 4 4 2 2 
2019 2 2 5 5 2 2 
2020 2 2 5 5 2 2 

(b)  case 2, γ=1 

 
Period 

t  
FP IM P 

PC BC PC BC PC BC 
2011 8 8 8 8 4 4 
2012 8 8 8 8 5 5 
2013 8 8 8 8 5 5 
2014 8 8 8 8 5 5 
2015 8 8 8 8 5 5 
2016 8 8 8 8 5 5 
2017 8 8 8 8 5 5 
2018 10 10 8 8 5 5 
2019 10 10 8 8 5 5 
2020 10 10 10 10 5 5 

(c) case 3, γ=0 

 
Period 

t  
FP IM P 

PC BC PC BC PC BC 
2011 2 2 5 5 3 3 
2012 2 2 8 8 4 4 
2013 2 2 8 8 4 4 
2014 2 2 8 8 4 4 
2015 2 2 8 8 4 4 
2016 2 2 8 8 4 4 
2017 2 2 8 8 4 4 
2018 2 2 8 8 4 4 
2019 2 2 8 8 4 4 
2020 2 2 8 8 4 4 

(d) case 3, γ=1 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 5 5 4 4 3 3 
2012 5 5 4 4 3 3 
2013 5 5 5 5 3 3 
2014 5 5 5 5 4 4 
2015 5 5 5 5 4 4 
2016 8 8 5 5 4 4 
2017 8 8 5 5 4 4 
2018 8 8 5 5 4 4 
2019 8 8 5 5 5 5 
2020 8 8 8 8 5 5 

(e) case 4, γ=0 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 1 1 2 2 1 1 
2012 2 2 2 2 1 1 
2013 2 2 2 2 1 1 
2014 2 2 2 2 1 1 
2015 2 2 2 2 1 1 
2016 2 2 3 3 1 1 
2017 2 2 3 3 1 1 
2018 2 2 3 3 1 1 
2019 2 2 3 3 1 1 
2020 2 2 3 3 1 1 

(f) case 4, γ=1 
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Table 27 Continued 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 5 5 5 5 3 3 
2012 5 5 5 5 3 3 
2013 5 5 5 5 3 3 
2014 5 5 5 5 4 4 
2015 5 5 5 5 4 4 
2016 8 8 5 5 4 4 
2017 8 8 5 5 4 4 
2018 8 8 8 8 5 5 
2019 8 8 8 8 5 5 
2020 8 8 8 8 5 5 

(g) case 5, γ=0 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 1 1 2 2 1 1 
2012 2 2 2 2 1 1 
2013 2 2 3 3 1 1 
2014 2 2 3 3 1 1 
2015 2 2 3 3 1 1 
2016 2 2 3 3 1 1 
2017 2 2 3 3 1 1 
2018 2 2 4 4 1 1 
2019 2 2 4 4 1 1 
2020 2 2 4 4 1 1 

(h) case 5, γ=1 

 
Period 

t  
FP IM P 

PC BC PC BC PC BC 
2011 5 5 5 5 4 4 
2012 5 5 5 5 4 4 
2013 5 5 5 5 4 4 
2014 5 5 5 5 4 4 
2015 5 5 5 5 4 4 
2016 5 5 5 5 4 4 
2017 5 5 5 5 4 4 
2018 5 5 5 5 4 4 
2019 5 5 5 5 4 4 
2020 5 5 5 5 4 4 

(i) case 6, γ=0 
 

 
Period 

t  
FP IM P 

PC BC PC BC PC BC 
2011 2 2 3 3 1 1 
2012 2 2 3 3 1 1 
2013 2 2 3 3 1 1 
2014 2 2 3 3 1 1 
2015 2 2 3 3 1 1 
2016 2 2 3 3 1 1 
2017 2 2 3 3 1 1 
2018 2 2 3 3 1 1 
2019 2 2 3 3 1 1 
2020 2 2 3 3 1 1 

(j) case 6, γ=1 
 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 4 4 5 5 3 3 
2012 4 4 5 5 3 3 
2013 5 5 5 5 4 4 
2014 5 5 5 5 4 4 
2015 5 5 5 5 4 4 
2016 5 5 5 5 4 4 
2017 5 5 5 5 4 4 
2018 5 5 8 8 5 5 
2019 5 5 8 8 5 5 
2020 8 8 8 8 5 5 

(k) case 7, γ=0 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 1 1 2 2 1 1 
2012 1 1 3 3 1 1 
2013 1 1 3 3 1 1 
2014 1 1 3 3 1 1 
2015 2 2 3 3 1 1 
2016 2 2 3 3 1 1 
2017 2 2 4 4 1 1 
2018 2 2 4 4 1 1 
2019 2 2 4 4 1 1 
2020 2 2 4 4 1 1 

(l) case 7, γ=1 
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Table 27 Continued 

 
Period 

t  
FP IM P 

PC BC PC BC PC BC 
2011 3 3 3 3 2 2 
2012 4 4 3 3 2 2 
2013 4 4 4 4 2 2 
2014 4 4 4 4 2 2 
2015 4 4 4 4 2 2 
2016 4 4 4 4 3 3 
2017 5 5 4 4 3 3 
2018 5 5 5 5 3 3 
2019 5 5 5 5 3 3 
2020 5 5 5 5 3 3 

(m) case 8, γ=0 

 
Period 

t  
FP IM P 

PC BC PC BC PC BC 
2011 0 0 1 1 0 0 
2012 0 0 1 1 0 0 
2013 0 0 1 1 0 0 
2014 0 0 1 1 0 0 
2015 0 0 2 2 0 0 
2016 0 0 2 2 0 0 
2017 1 1 2 2 0 0 
2018 1 1 2 2 0 0 
2019 1 1 2 2 0 0 
2020 1 1 2 2 0 0 

(n) case 8, γ=1 
 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 5 5 4 4 3 3 
2012 5 5 5 5 3 3 
2013 5 5 5 5 3 3 
2014 5 5 5 5 4 4 
2015 5 5 5 5 4 4 
2016 8 8 5 5 4 4 
2017 8 8 5 5 4 4 
2018 8 8 8 8 5 5 
2019 8 8 8 8 5 5 
2020 8 8 8 8 5 5 

(o) case 9, γ=0 
 

 
Period 

t  
FP IM P 

PC BC PC BC PC BC 
2011 1 1 2 2 0 0 
2012 2 2 2 2 0 0 
2013 2 2 2 2 0 0 
2014 2 2 3 3 0 0 
2015 2 2 3 3 0 0 
2016 2 2 3 3 0 0 
2017 2 2 3 3 0 0 
2018 2 2 4 4 0 0 
2019 2 2 4 4 0 0 
2020 2 2 4 4 0 0 

(p) case 9, γ=1 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 5 5 5 5 3 3 
2012 5 5 5 5 3 3 
2013 5 5 5 5 3 3 
2014 5 5 5 5 3 3 
2015 5 5 5 5 4 4 
2016 5 5 5 5 4 4 
2017 5 5 5 5 4 4 
2018 8 8 5 5 4 4 
2019 8 8 5 5 4 4 
2020 8 8 8 8 4 4 

(q) case 10, γ=0 

Period 
t  

FP IM P 
PC BC PC BC PC BC 

2011 0 0 2 2 0 0 
2012 0 0 3 3 0 0 
2013 0 0 3 3 0 0 
2014 0 0 3 3 0 0 
2015 0 0 4 4 0 0 
2016 0 0 5 5 0 0 
2017 0 0 5 5 0 0 
2018 0 0 5 5 0 0 
2019 0 0 5 5 0 0 
2020 0 0 5 5 0 0 

(r) case 10, γ=1 
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Table 27 Continued 

 

Period t  
FP IM P 

PC BC PC BC PC BC 
2011 5 5 5 5 3 3 
2012 5 5 5 5 3 3 
2013 5 5 5 5 3 3 
2014 5 5 5 5 4 4 
2015 5 5 5 5 4 4 
2016 8 8 5 5 4 4 
2017 8 8 5 5 4 4 
2018 8 8 8 8 5 5 
2019 8 8 8 8 5 5 
2020 8 8 8 8 5 5 

(s) case 11, γ=0 

 
Period 

t  
FP IM P 

PC BC PC BC PC BC 
2011 1 1 2 2 1 1 
2012 2 2 2 2 1 1 
2013 2 2 3 3 1 1 
2014 2 2 3 3 1 1 
2015 2 2 3 3 1 1 
2016 2 2 3 3 1 1 
2017 2 2 3 3 1 1 
2018 2 2 4 4 1 1 
2019 2 2 4 4 1 1 
2020 2 2 4 4 1 1 

(t) case 11, γ=0 
 

 

4.3.3 Sensitivity with respect to the variability of physician capacity 

We have not found publically available data to estimate the variance of physician capacity, so we 

analyze sensitivity parametrically with respect to its coefficient of variation,  , using results of 

Corollary 5.  We test five values of   (0.0, 0.1, 0.2, 0.5 and 1.0) using Case 1 with  =0 as a 

benchmark; all cases in this subsection have 0   and PCP capacity  2 2ˆ ˆ,N k k  .  Columns 

of Table 28 give case number,  ,  prescribed location, expected excess revenue, number of PCP 

years, and run time (in seconds). 

Increasing values of   (0.0, 0.1, 0.2, 0.5 and 1.0) have no effect on location decisions. 

When capacity changes from a fixed number k̂  to a random variable following 2 2ˆ ˆ( , )N k k  , 

the variance of D K  increases from 2  to 2 2 2k̂  .  As a result, recourse values E D    and 

E K      increase, while the expected actual workload ˆE N 
 

 decreases, leading expected excess 

revenue to decrease. Expected excess revenue (Table 28) is quite sensitive to  , reducing relative 
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to the expected excess revenue of case 1 (with 0  ) by 1.3%, 4.9%, 24.6%, 65.8% as   

increases in cases 12-15, respectively. 

 

 
Table 28. Sensitivity to physician-capacity coefficient of variation 

Case 
Coefficient of 
variation for 

physician capacity 

Opt. 
Loc. 

Expected excess 
revenue (×108) 

#PCP 
years 

Run 
time 

(secs) 
12 0  , 0.1   L3 $1.30 168 22.7 
13 0  , 0.2   L3 $1.25 168 23.2 
14 0  , 0.5   L3 $0.99 169 23.7 
15 0  , 1.0   L3 $0.45 124 23.4 

 

 

When   is small (e.g., cases 12 and 13), optimal capacity configurations stay the same 

as in case 1. As   increases, the distribution of capacity flattens out, causing larger penalties for 

both expected excess capacity (due to large values in the right tail of the capacity distribution 

occurring with higher likelihood) and demand (similarly, due to small values of capacity in the left 

tail).  Increasing values of   have no effect on capacity configurations for FP and IM in our case 

studies. But because the revenue/visit for P is smallest, it is more sensitive than FP and IM to these 

larger penalty costs. In case 14, the optimal capacity of P adds one physician in 2017 to better 

balance penalty cost ramifications of the larger   value.  In case 15, it is better not to open the P 

service at all because the capacity distribution is so flattened that the expected excess demand and 

capacity penalty costs exceed revenue dramatically. 

 

4.3.4 Sensitivity with respect to penalty costs 

To characterize sensitivity of expected excess revenue relative to penalties Dc  and Kc , we 

normalize relative to revenue/visit, evaluating the sensitivity of base case 1 ( 0)   with respect 
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to /Kc   vs /Dc  .  The response surface (optimal, expected excess revenue) of Figure 5 is 

smooth, convex and nearly planar. Table 29 details the sensitivity of the number of PCP years to 

/Kc   vs /Dc  , showing that PCP years increases with /Dc   (penalizing excess demand more) 

or decreasing /Kc   (penalizing excess capacity less). 

 

 

 

 

 

Table 29. Objective sensitivity w/r cD and cK 

/Dc   
/Kc   

0.6 0.8 1 1.2 1.4 
0.6 168 164 163 157 156 
0.8 171 165 164 163 157 
1 172 171 165 163 163 

1.2 172 171 168 165 163 
1.4 176 172 171 165 165 

 

Figure 12. Objective sensitivity with respect to cD and cK 
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CHAPTER V 

SMHFCP 

 

This chapter presents our SMHFCP research. This chapter is organized in four sections. Section 

5.1 presents our formulation of SMHFCP. Section 5.2 (3) proposes our column-generation 

heuristic (approximation method) and demonstrates the application of our algorithm on a 

numerical example. Our single facility model described in Chapter III is employed by each 

of our two solution methods to estimate the expected excess revenue for each lp  

assignment, l L , .p P Section 5.4 reports computational experiments of these two 

methods on a series of case studies that locate primary care centers in mid-Texas rural area 

from 20 zip codes to 101 zip codes. 

 

5.1 SMHFCP formulation 

The goal of this section is to prescribe our model for the multi-facility case, SMHFCP. We first 

introduce the decision variable and demand modeling in SMHFCP. Next, we describe a graph that 

defines adjacency of population centers, which we use to restrict assignments of population centers 

to facilities; and finally we present our location-allocation model, a mixed integer programming 

(MIP). 

For the location-allocation model, we define binary decision variable  

lpy  to be 1 if population center p , p P , is assigned to facility l , l L , and to be 

0 otherwise; 

and let ( )l lp p Py y  be the vector of p  assignments to facility l . 
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Given the assignment vector ( )l lp p Py y  and following the derivation of stochastic 

patient demand in Section 4.2, we claim that the demand (in terms of number of patient visits/year) 

in facility l  for service s  in  time period t , ( )lst lD y , can be well approximated by a normal 

distribution with mean 
lst  and variance 

lst  defined in (47) and (48) respectively: 

( )  lst l lp gs gpt gsp P g G
y v n p

 
 y       (47) 

2 2( )  lst l lp gs gpt gsp P g G
y v n p

 
 y .      (48) 

From our research for single-facility case (Chapter IV), If demand ( )lst lD y  is 

 2( ), ( )lst l lst lNormal  y y , then we can find the closed-form ( )a l y : 

 ( ) ( ) ( ) ( )K K K D

a l st lst lst l lst a a st lst lst lst ac c k c c c E D k             y y , where (49) 

       ( ) 1lst a lst lst l aE D k z k z            y , where   (50) 

  /a lst lstz k    ,  
21

2
1
2

z
z e




 , and  

2
2

1
2

zz

z e dz





    denote, respectively, 

standard normal and its probability density and cumulative distribution functions.  

For a given l  capacity configuration network with a given assignment 
ly , the stochastic, 

single facility capacity configuration problem for a given l , SSHFCPl , is defined as 

*( )l lC y =  ( ) : ,t
ls

a l a a lss S t T a A
Min x x U s S

  
      y ,    (51) 

where 
lsU  is defined in (34). 

Next, we introduce the adjacency graph. Two population centers are defined to be adjacent 

if they share a border with each other. We represent adjacency by constructing graph ( , )G P A , 

with each node representing a population center and each edge ( , ')p p  representing adjacency of 

population centers p  and 'p . For each l L , we construct an adjacency tree by specifying the 



 

93 

 

population center in which facility l  is located (denoted as 
lp ) as the root node and performing a 

breadth-first-search (BFS) on G . The resulted adjacency tree for l  is denoted as 
lBFS . In 

lBFS , 

each path from 
lp  to a descendant node p  represents the shortest path from 

lp  to population 

center p  in G , that is, containing the smallest number of edges between p  and 
lp . 

We now introduce parameters: 

lpq  depth of population center p  in 
lBFS , which reflects the number of population 

centers (i.e., edges) that a patient in p  must traverse to seek service at facility l  

located in 
lp  (i.e., root node of 

lBFS ). 

lpc  expected excess revenue that would result from assigning p  to l  throughout the 

planning horizon. 

We assume that, if population center 'p  is assigned to facility l , then each p P  with 

'lp lpq q  must also be assigned to facility l . This assignment assumes that no residents of a 

population center that is closer to 
lp  than some p  that is assigned to 

lp  will want to travel to a 

more distant location. 
lp We restrict the assignment of population centers to l  by imposing a depth 

limit in 
lBFS . Therefore, we define parameter  

lq  maximum depth at which a population center can be assigned to facility l . 

We now define our location-allocation model for SMHFCP: 

(P):  *max lp lp

l L p P

Z c y
 

         (52) 

s.t.  1lp

l L

y


   p P        (53) 

 lp lp lq y q   l L  , p P       (54) 

'lp lpy y   l L , , 'p p P , 'lp lpq q     (55) 
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{0,1}lpy    l L  , p P .      (56) 

(52) maximizes the expected excess revenue from lp  assignments; (53) makes sure that each 

population center p  is assigned to some facility l ; (54) imposes the depth limit; (55) requires a 

facility that serves a population center at a given depth also serves each one that is at a lesser depth. 

Given the assignment vector
ly , we can compute ( )lst l y  and 2 ( )lst l y  using (47) and (48), 

and calculate the total expected excess revenue associated with facility l  relative to assignment
ly

using (51), ( )lC y . However, we cannot determine lpc  a prior for each lp  pair because the 

capacity prescribed at l  can be determined after 
ly  is determined (i.e., all open facilities are known 

and all population centers have been assigned). The cost function is not separable for each p P . 

Thus, we propose to use ( )lC y  to replace lp lpp P
c y

 . Define  

k

l  = 1 if assignment vector k

l lKy  is selected, 0 otherwise, where 

| |

' '

{0,1} :         for    

                     for    , ' ,  

P

l lp lp l

l

lp lp lp lp

q y q p P
K

y y p p P q q

    
  

    

y
.    (57) 

The master problem (MP) in our column-generation scheme is equivalent to (P): 

(MP): max ( )
l l

MP k k k k

lp lp l l l

l L k K p P l L k K

Z c y C 
    

 
  

 
   y      (58) 

s.t.  ( ) 1
l

k k

lp l

l L k K

y 
 

  p P        (59) 

 1
l

k

l

k K




   l L        (60) 

 {0,1}k

l    l L , 
lk K .      (61) 
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5.2 Column-generation heuristic for SMHFCP 

The goal of this section is to describe our column-generation heuristic. Subsections present the 

design of our algorithm, a special condition for optimality and a case study that demonstrates the 

use of our column-generation heuristic. 

Because lpc ’s are not known, it is not helpful to branch on assignment variable lpy  for 

each lp  pair in (P). The linear relaxation of (MP) is amenable to a Dantzig-Wolfe decomposition; 

and, therefore, branch and price (B&P). Note that each 
lK  includes the nullspace of | |P , so it 

allows no population centers to be assigned to l , forcing l  to stay closed. We form the linear 

relaxation of (58)-(61), further relaxing (59) from equalities to inequalities, so that the slack 

variable associated with population center p  in (63) indicates whether p  is either partially or 

fully served by facilities in L . The restricted master problem (RMP) we use is defined as 

(RMP): max ( )
l l

RMP k k k k

lp lp l l l

l L k K p P l L k K

Z c y C 
    

 
  

 
   y     (62) 

s.t.  ( ) 1
l

k k

lp l

l L k K

y 
 

  p P        (63) 

 0 1k

l    l L , 
lk K       (64) 

 and (60), 

where  ,k

l l lk K K y  is the subset of columns in 
lK that have been entered in (RMP). 

 

5.2.1 Column generation procedure 

Let *
pw , p P , and *

l , l L , be the dual solutions associated with (63) and (60), respectively, 

in (RMP). The objective of the subproblem associated with each l , (SPl), is to prescribe the column 

that maximizes reduced cost to identify the most improving column to enter RMP: 
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 (SPl):  
* * * *max ( ) ( ) ( ) :SP

l l lp p lp l l l l l l

p P

Z c w y C K 


      y y w y y ,  (65) 

where 
lK  is defined in (57). 

Note that ( )lC y  cannot be computed before 
ly  is specified; so it is difficult to tell if 

( ) 0SP

l lZ y  for all 
l lKy  without enumerating all 

l lKy , making (SPl) challenging to solve to 

optimality. As a result, in a B&P framework, a stopping rule for column generation in each SPl is 

difficult to define. So, Type II column generation (Wilhelm, 2001) is not appropriate. Therefore, 

we resort to type I column generation (Wilhelm, 2001). Thus, we generate a set of attractive 

columns and select the best. 

From the solution of RMP, k

l , we set parameter p  to be 1 if the p th constraint in  (63) 

is a strict inequality, and to be 0 otherwise. According to a duality relationship between the primal 

and dual problems of RMP, if 1p   (i.e., ( ) 1
l

k k

lp l

l L k K

y 
 

 ), then the dual variable 

corresponding to the p th row in (63) must be zero (i.e., * 0pw  ). Note that 1p   indicates that 

population center p  is not 100% assigned to facilities, but only a fraction is. We want to generate 

columns, each of which serves 100% of the population center, giving 1p  . Thus, the column 

generation problem associated with facility l is defined as 

(CGPl)  max :CG

l p lp l l

p P

Z y K


  y ,       (66) 

where 
lK  is defined in (57). 

Figure 13 details the steps to perform our column-generation heuristic. Note that (SPl) 

cannot be solved to optimality without enumerating on 
l lKy . Even when the reduced cost for 

each
ly  generated from (CGPl) is non-positive for l L , we still cannot tell if every column in 

lK  
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has a non-positive reduced cost; i.e., ( ) 0SP

l lZ y . Thus, our method is a heuristic. After the 

column generation procedure terminates, some population centers may each remain unassigned to 

a particular facility. Thus, we need step 6 to assign such remaining population centers to the nearest 

opened facility. 

 

 

Figure 13. Column-generation heuristic framework 

 

 

 

Step 1. Initialization. For each l L , construct and enter the column that covers depth-1 

population centers in 
lBFS  to (RMP). 

Step 2. Solve (RMP) and obtain its dual variables. 

Step 3. Solve (CGPl). For each l L , if the optimal solution,
ly , is not null, generate a 

column
ly . If there is no column generated, go to Step 6. 

Step 4. Solve (51) to obtain ( )lC y  for each l L and compute the reduced cost of this column 

as defined in (65); i.e., * *( ) ( )SP

l l l l lZ C   y y w y .  

Step 5. For each l L , if ( ) 0SP

l lZ y , enter 
ly  to RMP (i.e., add 

ly  as a column in the 

coefficient matrix of RMP and add a decision variable associated with
ly ). If there is no 

improving column to enter RMP, go to Step 6. Otherwise, go to Step 2. 

Step 6. Examine the solution of RMP. If there exists a p P  that is not assigned to a 

particular facility, assign p  to the nearest facility that is opened (i.e., in set 'L ). Otherwise, 

STOP. 



 

98 

 

5.2.2 Optimality of RMP under special conditions 

Because of the difficulty of solving (SPl) to optimality, we want to establish additional properties 

of expected excess revenue and reduced cost functions that would allow us to claim optimality of 

(RMP) upon termination.  

Let q

ly be the vector that assigns all population centers up to depth q  at facility l . Define

q

lq lpp P
N y


  to denote the total number of population centers assigned to facility l  by vector 

{ }q q

l lp p Py y . The average reduced cost per population center associated with q  is computed as 

* *( ( ) ) /q q

l l l lqC N y w y .  

Claim: If the following three conditions are met for every l L , RMP is solved to optimality: 

(i) ( )q

lC y  is an increasing function of q ; 

(ii) * *( ( ) ) / 0q q

l l l lqC N  y w y  for 1,..., lq q ; and 

(iii) The optimal solution of (CGPl), ˆ
ly , provides a non-positive reduced cost in (RMP) (i.e., 

* *ˆ ˆ ˆ( ) ( ) 0SP

l l l l lZ C    y y w y ). 

Condition (i) requires that the expected excess revenue at one facility increases when 

population centers of greater and greater depths (i.e., more and more population centers) are 

assigned to this facility. Condition (ii) requires that on average, upon assigning one more 

population center to a particular facility l , the increment of dual objective associated with l  is 

greater than or equal to the increment of expected excess revenue associated with l . Condition 

(iii) requires that the optimal solution of  (CGPl) provides a non-improving column to RMP. We 

want to show that these three conditions can guarantee that there is no improving column for any

l L , indicating that the current (RMP) solution is optimal. 

Proof: Let k

l lKy  be an arbitrary feasible assignment vector to facility l . Then there are two 
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cases of the largest depth in this assignment. 

 Case 1: k

ly  is a column with    ˆmax maxk

p P lp lp p P lp lpq y q y   (i.e., a column with largest 

depth of population centers assigned to facility l  that is no greater than the largest depth 

assigned according to ˆ
ly ).  

       From condition (i), ˆ( ) ( )k

l lC Cy y . Also, k

ly  must include a 'p l  assignment that is 

not prescribed by ˆ
ly , so that ' 0p  . Otherwise, if  ' 1p  , then 'p  must be assigned to l  in 

ˆ
ly . ' 0p  indicates that *

' 0pw  , leading to the fact that * * ˆk

l lw y w y . Therefore, 

* * * *ˆ ˆ ˆ( ) ( ) ( ) ( ) 0SP k k k SP

l l l l l l l l l lZ C C Z        y y w y y w y y . 

 Case 2: 
ly  is a column with    ˆmax maxk

p P lp lp p P lp lpq y q y   (i.e., a column with largest 

depth of population centers assigned to facility l  that is greater than the largest depth assigned 

according to ˆ
ly ). 

       Condition (ii) shows that the average reduced cost per population center up to any 

depth is always negative, so the reduce cost will decrease when any additional population 

center at a larger depth is assigned to l  in comparison with ˆ
ly . Therefore, assigning each 

additional population center in ˆ-k

l ly y  cannot make ( )SP k

l lZ y  any larger than ˆ( )SP

l lZ y . 

Any k

l lKy  falls into either case 1 or case 2 so that it has a non-positive reduced cost. If 

these three conditions hold for every l L , we can conclude that there is no improving column to 

enter (RMP); so the current (RMP) is optimal.        

 

5.2.3 Numerical example 

This subsection presents a case study that applies our column-generation heuristic to locate and 

configure capacity of primary care centers in Brazos County, TX.  We use the Brazos County data 
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applied by the single-facility case (Chapter IV). Figure 14 is the map of Brazos County. In this 

numerical example, population centers are defined as census tracts. So the total number of 

population centers in this case study is | | 36P  . 8 potential locations are identified ( | |L = 8) in 

Figure 14 denoted as drop tears. Three existing facilities are denoted as hospital signs. 

lpq , the depth of population center p  in 
lBFS , is shown in Table 30 for each l L . We 

set 3lq q   for each l L , so that at most three population centers can be traversed by a patient 

seeking service at any facility. 

Initial columns. We generate a set of initial columns; each assigns all depth 1q    

population centers in 
lBFS  to facility l , l L . This procedure informs RMP which population 

centers are closest to each potential site, and leaves some population centers unassigned. We also 

generate all zero columns for each l L  with negative expected excess revenue (because all 

demand is excess) to represent the case in which no population centers are assigned to location l  

(because no facility is located at l ). 

Optimality conditions. In Table 31, we compute ( )q

lC y , * *q

l lw y , qN  and 

* *( ( ) ) /q q

l l l qC N y w y for 1,2,3q  . This shows that ( )q

lC y  is monotonically increasing with 

q  (depicted in Figure 15), and * *( ( ) ) / 0q q

l l l qC N  y w y  for all l L and 1,...,q q . Thus, 

Conditions (i) and (ii) are met. If we cannot find any improving column using (CGPl), then we can 

terminate the column generation procedure and claim optimality of (RMP). 
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Figure 14. Column-generation heuristic and approximation method solutions 

L7 
L5 
L8 

L6 

L5 

L8 

Existing facility 

Potential location 

Column-
generation 

  
Approximation 

Solutions 



 

102 

 

Table 30. qlp in each BFSl 

l=0 l=1 l=2 l=3 l=4 l=5 l=6 l=7 

p qlp p qlp p qlp p qlp p qlp p qlp p qlp p qlp 
25 0 24 0 28 0 31 0 21 0 3 0 9 0 30 0 
6 1 22 1 23 1 24 1 17 1 4 1 3 1 29 1 

11 1 23 1 24 1 26 1 20 1 9 1 4 1 31 1 
14 1 28 1 29 1 27 1 22 1 12 1 8 1 32 1 
15 1 29 1 34 1 29 1 26 1 13 1 12 1 33 1 
27 1 31 1 17 2 30 1 18 2 0 2 13 2 34 1 
0 2 17 2 22 2 32 1 19 2 5 2 0 2 24 2 
5 2 21 2 31 2 22 2 23 2 7 2 5 2 28 2 
7 2 26 2 30 2 23 2 16 2 8 2 7 2 26 2 

10 2 34 2 33 2 28 2 24 2 35 2 35 2 27 2 
12 2 30 2 35 2 20 2 27 2 10 2 10 2 35 2 
13 2 27 2 18 3 21 2 31 2 11 2 11 2 23 2 
16 2 32 2 19 3 0 2 28 3 14 2 14 3 22 3 
1 2 18 3 21 3 1 2 34 3 1 3 1 3 20 3 

26 2 19 3 26 3 15 2 15 3 2 3 2 3 21 3 
31 2 20 3 27 3 16 2 29 3 6 3 6 3 0 3 
32 2 33 3 32 3 25 2 0 3 27 3 27 3 1 3 
2 3 35 3 4 3 34 2 1 3 33 3 33 3 15 3 
4 3 0 3 20 4 33 2 25 3 34 3 34 3 16 3 
8 3 1 3 0 4 17 3 32 3 25 3 25 3 25 3 
3 3 15 3 1 4 19 3 30 3 15 3 15 4 4 3 
9 3 16 3 15 4 2 3 33 4 16 4 16 4 17 3 

20 3 25 3 16 4 4 3 35 4 26 4 26 4 19 4 
21 3 4 4 25 4 5 3 14 4 31 4 31 4 2 4 
22 3 2 4 3 4 6 3 2 4 32 4 32 4 5 4 
24 3 5 4 5 4 14 3 4 4 30 4 30 4 6 4 
29 3 6 4 7 4 11 3 5 4 23 4 23 4 14 4 
30 3 14 4 8 4 35 3 6 4 28 4 28 4 11 4 
33 3 11 4 9 4 18 4 11 4 29 4 29 4 3 4 
35 4 3 5 13 4 3 4 13 5 20 5 20 5 7 4 
19 4 7 5 2 5 7 4 3 5 21 5 21 5 8 4 
17 4 8 5 6 5 8 4 7 5 22 5 22 5 9 4 
23 4 9 5 14 5 9 4 8 5 24 5 24 5 13 4 
28 4 13 5 11 5 13 4 9 5 17 5 17 5 18 4 
34 4 10 5 12 5 10 4 10 5 19 6 19 6 10 5 
18 5 12 5 10 5 12 4 12 5 18 6 18 6 12 5 
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Table 31. Components of average reduced cost 

  ( )q

lC y  (xE+06) * *q

l lw y  (xE+06) qN  
* *( ( ) ) /q q

l l l qC N y w y  
(xE+06) 

l q=1 q=2 q=3 q=1 q=2 q=3 q=1 q=2 q=3 q=1 q=2 q=3 

0 432 168 297 54.1 217 335 6 17 29 -1.83 -2.87 -1.30 

1 71.8 173 248 91.7 199 266 6 13 23 -3.33 -2.03 -0.80 

2 55.8 143 214 55.8 143 244 5 11 18 0.00 0.00 -1.68 

3 117 229 289 148 266 313 7 19 28 -4.39 -1.96 -0.86 

4 14.4 106 222 42.2 112 260 5 12 21 -5.57 -0.48 -1.81 

5 43.8 122 215 65.9 122 219 5 13 21 -4.42 0.00 -0.17 

6 47.9 119 214 71.0 122 217 5 12 20 -4.63 -0.21 -0.14 

7 128 179 253 134 183 305 6 12 22 -0.97 -0.37 -2.35 

 

 

 

 

Figure 15. Expected excess revenue up to each depth level for each facility 
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Numerical results. For each l , we generate columns according to (CGPl) with 1,2,3q 

and enter the columns that have positive reduced costs into (RMP). This provides more choices of 

attractive columns. So at most three columns associated with facility l  will be entered. We stop 

the column generation procedure when ( ) 0SP

l lZ y  for all l L  and all {1,2,3}q . 

In our example, fortuitously, the optimal solution to RMP is integral. Therefore, it is the 

optimal solution to (MP). This optimal solution opens facilities L5, L6 and L8. The optimal 

assignment of population centers to each new facility is highlighted in Table 32. The expected 

excess revenues associated with L5, L6 and L8 are $1.14E+08, $1.64E+08 and $8.36E+07, 

respectively, giving a total of *RMPZ  = $3.62E+08. The run time is 323.53 seconds. 

 

 

Table 32. Assignments using column-generation heuristic 
L5 L6 L8 

p qlp p qlp p qlp 
21 0 9 0 30 0 
17 1 3 1 29 1 
20 1 4 1 31 1 
22 1 8 1 32 1 
26 1 12 1 33 1 
18 2 13 2 34 1 
19 2 0 2 24 2 
23 2 5 2 28 2 
16 2 7 2 26 2 
24 2 35 2 27 2 
27 2 10 2 35 2 
31 2 11 2 23 2 
28 3 14 3 22 3 
34 3 1 3 20 3 
15 3 2 3 21 3 
29 3 6 3 0 3 
0 3 27 3 1 3 
1 3 33 3 15 3 

25 3 34 3 16 3 
32 3 25 3 25 3 
$1.14E+08 $1.64E+08 $8.36E+07 
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Figure 14 shows the assignments of population centers to facilities on the map of Brazos 

County. The population centers outlined in red, blue and green are assigned to L5, L6 and L8 

respectively.   

Figure 16 shows the average expected excess revenue per population center up to each 

depth ( 1,2,3q  ) for each potential location. An interesting finding is that population centers 

assigned to each *l  in the optimal solution is up to the depth that has the largest average expected 

excess revenue per population center. For example, L5 and L6 both have the largest average 

expected excess revenue per population center at depth 3, and the largest depth of population 

centers assigned to L5 and L6 is 3. Also, L8 has the largest average expected excess revenue per 

population center at depth 1, and the largest depth of population centers assigned to L8 is 1. 

 

 

 

Figure 16. Average expected excess revenue per population center up to depth q for each facility 
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5.3 Approximation method 

The goal of this section is to describe our approximation method. Subsections present the detailed 

algorithm, the bounding procedure and demonstrate the use of our approximation method using 

the case as described in Section 6.2.3.  

Because lpc  cannot be defined knowing just an lp  pair, we transform (P) into an 

equivalent formulation (MP) that gives the expected excess revenue of assignment vector 
ly  

relative to l , ( )lC y  and Type I column generation (Wilhelm, 2001). Thus, this section describes 

a new method to approximate the values of lpc ’s so that we can solve (P) directly. 

 

5.3.1 Approximation steps 

Our approach is based on finding the average incremental expected excess revenue associated with 

each facility, which approximates the value of lpc  for each lp  pair. 

We approximate lpc  at each depth in BFSl, l L . First, compute the average incremental 

expected excess revenue per population center at depth q  in BFSl, qlc :  

1

1

( ) ( )q q

l l
ql

q q

C C
c

N N










y y ,  1,2,...q q      (67) 

Second, replace lpc  with qlc  if lpq q ; i.e., all population centers at depth q  in BFSl adopt 

the same cost per population center. 

Let 
ly be an assignment vector with  max 'p P lp lpq y q  . Then, if we approximate 

( )lC y with a series of qlc ’s up to depth 'q , we can make sure that 
' 1

' 1

1
( )

q
q

l ql

q

C c






y . The 

approximation is accurate for the aggregation of population centers up to depth ' 1q   and may 
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incorporate errors only relative to the population centers at depth 'q . 

Third, solve (MP) using the approximated objective coefficients. 

 

5.3.2 Bounding 

This section derives two upper bounds on the optimal solution as well as the gap between our 

approximation method solution and the optimal solution. 

For a given ( )l lp p Py y , the demand attracted to facility l  for service s  in time period 

t in terms of number of patient visits/year, 
lstD , follows a normal distribution with mean and 

variance defined in (47) and (48). For each t

lsa A , l L , s S , t T , the excess revenue 

associated with a  is defined in (49) as: 

  ˆ ( ) ( ) ( )K D

a l st lst a lst lst a lst lst a aE N k c E K k c E D k c              
y . 

Upper Bound 1. We want to find an upper bound on ˆ ( )st lst aE N k 
 

 and a lower bound 

on ( ) ( )K D

lst lst a lst lst ac E K k c E D k        , so as to derive an upper bound on  a l y  for each arc ,a

and, further, an upper bound on ( )q

lC y  for each 1,...,q q . 

Claim: Given 
ly , ( )lst aE D k    is convex in 

ak . 

Proof. As 
lstD  ~ 2( , )lst lstNormal   , ( ) ( ) ( )[1 ( )]lst a lst lst aE D k z k z         , where 

a lst

lst

k
z






  ,  

21
2

1
2

z
z e




 , and  

2
2

1
2

zz

z e dz





    denote, respectively, standard 

normal and its probability density and cumulative distribution functions (Chapter IV). 

The first derivative is 
( )

'( ) 1 ( ) ( ) ( )lst a

lst lst a

a a a

dE D k dz dz
z z k z

dk dk dk
   

  
     . 
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Note that 
21

2
1'( ) ( )
2

z
z z e z z 




     and 1

a lst

dz

dk 
 , so that 

( ) 1 1( ) 1 ( ) ( ) ( )

                     ( ) 1 ( ) ( )
                     1 ( ) 0 for [ , ].

lst a

lst lst a

a lst lst

dE D k
z z z k z

dk

z z z z z

z z

   
 

 

  
     

    

      

    (68) 

The second derivative is 

2

2

( ) ( )( ) 0lst a

a a lst

dE D k dz z
z

dk dk






  
   .       (69) 

Thus, ( )lst aE D k    is convex in 
ak .        

 Now, we substitute ( )lst aE K k  with ( )lst aE D k    using 

( ) ( )lst a lst a lst aE K k E D k k          , as derived in Chapter IV: 

 ( ) ( ) ( ) ( )

                                                  ( ) ( ) .

K D K D

lst lst a lst lst a lst lst a lst a lst lst a

K D K K

lst lst lst a lst a lst lst

c E K k c E D k c E D k k c E D k

c c E D k c k c





   



                  

     

  (70) 

From (69), it is obvious that the second derivative of (70) with respect to 
ak is 

( )( ) 0K D

lst lst

lst

z
c c




  . Thus, the penalty cost on arc a , ( ) ( )K D

lst lst a lst lst ac E K k c E D k        , is a convex 

function of 
ak  as well. Given l , s , t , and assuming that physician capacity is continuous on 

[0, ) and using the claim, we can find a lower bound on the penalty cost. Using (68), we can 

derive that the first derivative of (70) with respect to 
ak  is  

 ( ) ( )
( )( 1 ( ))

K D

lst lst a lst lst a K D K

lst lst lst

a

d c E K k c E D k
c c z c

dk

       
     .   (71) 
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By setting (71) to 0, we can solve for *
lstk  such that 

 * argmin ( ) ( ) , 0K D

lst lst lst a lst lst a ak c E K k c E D k k          . 
*

* lst lst
lst

lst

k
z






 , then *( )

D

lst
lst K D

lst lst

c
z

c c
 


, 

and the minimum value of the penalty cost is 

 

* *

* *

* * * *

*

    ( ) ( )

( ) ( )

( ) ( ) ( )[1 ( )]

( ) ( ) (

K D

lst lst a lst lst a

K D K K

lst lst lst a lst a lst lst

K D K K

lst lst lst lst lst a lst lst a lst lst

K D K D

lst lst lst lst lst lst

c E K k c E D k

c c E D k c k c

c c z k z c k c

c c z c c



   

 

 



      

     

      

    * *

* * *

*

)( )

( ) ( ) ( ) ( )

( ) ( ).

K
K Klst

lst a lst a lst lstK D

lst lst

K D K K

lst lst lst lst lst lst a lst a lst

K D

lst lst lst lst

c
k c k c

c c

c c z c k c k

c c z

 

   

 

  


     

 

  (72) 

Note that  ˆ ( ) min ,lst a lst aN k D k indicates that  ˆ ( )lst a lst lstE N k E D    
 

 and 

ˆ ( )lst a aE N k k  
 

, so an upper bound on ˆ ( )lst aE N k 
 

 is at hand: 

 ˆ ( ) min ,lst a lst aE N k k  
 

       (73) 

Using (72) and (73), we define  a l y as an upper bound on  a l y  for t

lsa A : 

 

 

 

* *

*

ˆ ( ) ( ) ( )

           min , ( ) ( )

           min , ( ) ( )

           

K D

a l st lst a lst lst a lst lst a a

K D

st lst a lst lst a lst lst a a

K D

st lst a lst lst lst lst a

E N k c E K k c E D k c

k c E K k c E D k c

k c c z c



  

 

 

              

          

    

y

 : .a l  y

   (74) 

 Let ( )lC y  be the maximum expected excess revenue using  a l y as the cost 

associated with arc t

lsa A , s S , which is prescribed by the shortest path p . Let p  be the 

shortest path that prescribes ( )lC y  using  a l y as the cost associated with arc t

lsa A , .s S

So ( ) ( ) ( ) ( ) ( )l a l a l a l la p a p a p
C C

  
        y y y y y . The first inequality holds 
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because p  is the shortest path using a as the cost associated with a . The second inequality holds 

because a  is an upper bound on 
a . 

Upper Bound 2. Upon defining penalty costs, we do not set K D

lst lstc c  because that would 

make the total penalty the same for all possible outcomes of demand. Utilizing the differences 

between K

lstc  and K

lstc , we show that  a l y  is an upper bound on  a l y  for t

lsa A : 

 

   

 

* *

ˆ ( ) ( ) ( )

ˆ           ( ) min , ( ) min , ( )

           : .

K D

a l st lst a lst lst a lst lst a a

K D K D

st lst a lst lst lst a lst lst lst a a

a l

E N k c E K k c E D k c

E N k c c E K k c c E D k c

 

 

             

             

 

y

y

  (75) 

Let ( )q

lC y  be the maximum expected excess revenue using  a l y as the cost associated 

with arc t

lsa A , s S . Using the same argument to establish UB1, we can claim that ( )q

lC y is 

an upper bound on ( )q

lC y . 

Gap. Figure 17 demonstrates the bounds for facility l  as a function of depth q . The green 

line comprises straight line segments between ( )q

lC y  and 1( )q

lC 
y , in which the slope of segment 

q  represents the average expected excess revenue per population in depth p  in 
lBFS . The blue 

(red) dashed line segments shows the upper bound defined by ( )q

lC y ( ( )q

lC y ). The black curve 

shows the actual expected excess revenue as more and more population centers are assigned to l ; 

it is bounded by both the blue and red line segments. 

 

5.3.3 Numerical example 

Using the Brazos County example as described in Chapter IV, the solution from our approximation 

method selects L5, L7 and L8 as the new facility sites. Table 33 presents the qlc  values that are 

computed and used in the approximation method. Table 34 shows the assignment of population 
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centers to each facility. The expected excess revenues for L5, L7 and L8 are $1.13E+08, 

$1.22E+08 and $9.97E+07, respectively, for a total expected excess revenue of $3.35E+08. The 

gap between the objective function values prescribed by our approximation ($3.35E+08) and our 

column -generation heuristic ($3.62E+08) is 7.46%, showing that our approximation method gives 

a close-to-optimal solution. The run time is 57.26 seconds, which is only 17.7% of the run time 

required by our column-generation heuristic. 

The gap for each lq  combination is defined as: 

( ) ( ) ( ) ( )min ,
( ) ( )

q q q q

l l l l

q q

l l

C C C C

C C

  
 
 

y y y y

y y
,  

and the gap associated with facility l  is 

 
1,...,

( ) ( ) ( ) ( )max min ,
( ) ( )l

q q q q

l l l l

q qq q
l l

C C C C

C C

    
  
   

y y y y

y y
.     (76) 

Now, because each new facility may serve a portion of | |P  population centers, the gap 

that the approximation method prescribes is a convex combination of the gaps of all new facilities, 

which will be no larger than the maximum gap prescribed by all facilities: 

' 1,...,

( ) ( ) ( ) ( )gap_app max max min , .
( ) ( )l

q q q q

l l l l

q ql L q q
l l

C C C C

C C 

      
    

     

y y y y

y y
   (77) 

The assignment of population centers to locations prescribed by our approximation 

method is shown by Figure 14. The population centers colored in red, blue and green blocks are 

assigned to L5, L7 and L8 respectively. The assignment of population centers to each new facility 

is highlighted in Table 34. 

 

5.4 Computational experiments 

The goal of this section is to compare our column-generation heuristic and approximation method 
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in application to a case study, which is based on a mid-Texas rural area that comprises 101 zip 

codes across 15 counties (Figure 18). We use each zip code as a population center and identify 26 

potential locations. Figure 8 also shows the population density level of each zip code. We identify 

more potential locations in population-dense zip codes than in sparsely populated ones. Fixed cost 

ac  on arc t

lsa A  and demand associated with each zip code are determined as described in Chapter 

IV. We assume that there is no competitor in the market. 

 

 

Figure 17. Bounding for approximation method 

 

 

Table 33. Average incremental expected excess revenue per population center 

 ( )q

lC y  qlc  

l q=1 q=2 q=3 q=1 q=2 q=3 

0 4.32E+07 1.68E+08 2.97E+08 7.192E+06 1.14E+07 1.07E+07 
1 7.18E+07 1.73E+08 2.48E+08 1.196E+07 1.44E+07 7.52E+06 
2 5.58E+07 1.43E+08 2.14E+08 1.115E+07 1.45E+07 1.02E+07 
3 1.17E+08 2.29E+08 2.89E+08 1.673E+07 9.33E+06 6.63E+06 

q (depth) 

  

m
illions 
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Table 33 Continued 

4 1.44E+07 1.06E+08 2.22E+08 2.872E+06 1.32E+07 1.28E+07 
5 4.38E+07 1.22E+08 2.15E+08 8.753E+06 9.75E+06 1.17E+07 
6 4.79E+07 1.19E+08 2.14E+08 9.575E+06 1.02E+07 1.19E+07 
7 1.28E+08 1.79E+08 2.53E+08 2.133E+07 8.47E+06 7.47E+06 

 

 

 

 

Table 34. Assignments using the approximation method 

L5 L7 L8 
p qlp p qlp p qlp 

21 0 9 0 30 0 
17 1 3 1 29 1 
20 1 4 1 31 1 
22 1 8 1 32 1 
26 1 12 1 33 1 
18 2 13 2 34 1 
19 2 0 2 24 2 
23 2 5 2 28 2 
16 2 7 2 26 2 
24 2 35 2 27 2 
27 2 10 2 35 2 
31 2 11 2 23 2 
28 3 14 3 22 3 
34 3 1 3 20 3 
15 3 2 3 21 3 
29 3 6 3 0 3 
0 3 27 3 1 3 
1 3 33 3 15 3 

25 3 34 3 16 3 
32 3 25 3 25 3 
$1.13E+08 $1.22E+08 $9.97E+07 
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5.4.1 Case study results 

To evaluate the run times of our methods relative to problem size as measured by the number of 

zip codes, we start with zip code 78502 (i.e., the zip code in which L18 is located as a “seed”) and 

construct five adjacency graphs, forming five test cases by taking the first 20, 40, 60, 80 and 101 

population centers (i.e., zip codes) in BFS order, respectively. Each successive case includes the 

zip codes used in the previous case as well as an additional set of locations.  

Table 35 summarizes the size of problem in each case using each method. The first column 

identify the case number. The second column gives |P|, the number of population centers in each 

case. The third column gives |L|, the number of potential locations in each case. A pair of columns 

is associated with each method, showing the number of decision variables (labeled “# variables”) 

and number of constraints (labeled “# constraints”), respectively. The number of decision variables 

in our column-generation heuristic is the same as the number of columns that have been generated. 

The number of constraints in our column-generation heuristic is |L|+|P|, the total number of rows 

in constraints (60) and (63). The number of decision variables in our approximation method is 

|L|*|P|, because lpy  is defined for each lp  pair. The number of constraints in our approximation 

method is O (|L|*|P|2) because of the set of constraints in (55). 

Table 36 (37) describes the solutions from our column-generation heuristic 

(approximation method) in these five cases. The first column in Table 36 (37) lists potential 

locations. Five pairs of columns follows, one for each test case. Each pair of columns gives the 

case number, and the number of new facilities prescribed, | ' |L , for the associated case. The first 

column is # PCP years, which is the sum of the number of primary care physicians prescribed each 

year throughout the planning horizon. The second column is c_bar, which is the total expected 

excess revenue calculated using (51). If, in a particular case, a potential location is in a zip code 

that is not included in this case, its #PCP years and c_bar entries are both encoded by “-”. If, in a 
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particular case, a location has its #PCP years equal to zero (0), it is a potential location, but is not 

selected in the solution, so its c_bar must be 0. Row 29, labeled “Total”, gives the total # PCP 

years and total expected excess revenue in each case. Row 30, labeled “Run time”, records the run 

time in each case in seconds. In Table 37, row 31 (32), labeled “# PCP years” (“c_bar_gap”), gives 

the differences between #PCP year (total expected excess revenue) of our two methods as a 

percentage of #PCP years (total expected excess revenue) prescribed by our column-generation 

heuristic. 

 

Table 35. Problem sizes 
 

Case 
 

 
|P| 

 

 
|L| 
 

Column generation heuristic Approximation method 
# variables # constraints # variables # constraints 

(# cols) (|L|+|P|) (|L|*|P|) O (|L|*|P|2) 
1 20 6 65 26 120 553 
2 40 11 339 51 440 3456 
3 60 17 495 77 1020 10332 
4 80 23 717 103 1840 21218 
5 101 26 1425 127 2626 31817 

 

 

In each of the test cases, our column-generation heuristic prescribes a larger total expected 

excess revenue but fewer new facilities than our approximation method. Except case 1 (| | 20),P 

the gap of # PCP years prescribed by our two methods is very little (  2%) and the gap between 

total expected excess revenues is relatively small (  10.8%). Our approximation method requires 

an average of 80.1% less run time than our column-generation heuristic. 

Our approximation method tends to prescribe several locations with respective population 

centers that are adjacent to each other, while our column-generation heuristic tends to prescribe a 

single location to serve nearby population centers. Our approximation method (column-generation 

heuristic) gives an average | ' | / | |L L  value over all cases of 50.6% (27.1%). Our approximation 
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method prescribes clusters of nearby facilities when they have similar adjacency BSF trees and 

similar average incremental expected excess revenue per population center. It cannot differentiate 

between the locations, so it prescribes all of them. For example, in case 2, our approximation 

method prescribes L18, L19 and L20. On the other hand, our column-generation heuristic 

prescribes L12, which is surrounded by L18, L19 and L20. This phenomenon deteriorates the 

solution quality of our approximation method because it does not “see” the “big picture” that our 

column-generation heuristic does, especially for a small-scale problem like case 1. 

As the number of population centers increases, our approximation method prescribes more 

scattered locations of new facilities and the | ' | / | |L L ratio monotonically decreases from 83.3% 

(in case 1) to 34.6% (in case 5). Because opening many facilities that are close to each other is not 

cost-effective for serving a larger area, clusters of locations are less attractive in larger scale 

instances. On the other hand, our column-generation heuristic gives an | ' | / | |L L ratio that 

increases monotonically form 18.2% (in case 2) to 34.6% (in case 5), with the exception of 33.3% 

in case 1. As the number of population centers increase, our column-generation heuristic would 

prescribe additional locations when the current set of selected locations cannot make the total 

expected excess revenue any larger by serving more population centers, because the increasing 

expected excess demand poses a larger penalty cost on the total expected excess revenue. 

In our largest-scale case (i.e., case 5), both of our methods prescribe similar solutions, 

each with nine locations; the gap between the total expected excess revenues (#PCP years) 

prescribed by our two methods is only 3.18% (-1.32%). Figure 19 (20) presents the solution of our 

column-generation heuristic (approximation method) in case 5. Six (L5, L19, L22, L11, L17, L13) 

of nine locations are prescribed by both methods. The other three locations prescribed by our two 

methods can be paired to be counterparts because the pair of counterparts are located close to each 

other (i.e., located in adjacent zip codes). For example, L24 prescribed by our column-generation 
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heuristic is close to L1 prescribed by our approximation method. The other two pairs of 

counterparts prescribed by our column-generation heuristic (approximation method) are L18 (L23) 

and L26 (L9). Both of the two methods prescribe four new facilities in Williams and Travis 

Counties to serve these population-dense areas as well as rural areas in Burnet County. The rural 

area in Lampasas is assigned to L19 (in Bell County) by our column-generation heuristic and to 

L1 (in McLennan County) by our approximation method. 

 

5.4.2 Bounding procedure 

We specify the depth limit 
lq  as the smallest depth that contains over 30 population centers in 

lBFS . Table 38 shows results of the bounding procedure used in our approximation method for 

case 5. The first column gives locations and is followed by five triples of columns, one for each 

depth. Each triple gives: qN , the total number of population centers up to depth q ; Gap1, 

( ) ( )
( )

q q

l l

q

l

C C

C

y y

y
; and Gap2 , ( ) ( )

( )

q q

l l

q

l

C C

C

y y

y
. The last column gives Gap, which is computed 

using (76). The maximal Gap in the last column defines gap_app (defined in (77)), which is 8.4%.  

Because our approximation method runs much faster than our column-generation 

heuristic, we can use the gap derived for our approximation method (i.e., gap_app) to infer 

gap_cgh, the gap between expected excess revenues prescribed by our column-generation heuristic 

and the optimal solution. For example, in case 5, gap_cgh is computed as: 

       (1 8.4%) (1 8.4%) (1 3.2%) 1 3.2%gap_cgh 1 4.8%
(1 8.4%) (1 8.4%) 1 8.4%

APP CGH APP APP

APP APP

C C C C

C C

     
    

  
, 

where APPC  ( CGHC ) stands for the expected excess revenue associated with our approximation 

method (column-generation heuristic). 
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Figure 18. Mid-Texas map and potential locations 
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Table 36. Column-generation heuristic solutions (Mid-Texas) 
Case (|L’|) 1 (2) 2 (2) 3 (4) 4 (6) 5 (9) 

 # PCP 
yrs 

c_bar 
($) 

# PCP 
yrs 

c_bar 
($) 

# PCP 
yrs 

c_bar 
 ($) 

# PCP 
yrs 

c_bar 
($) 

# PCP 
yrs 

c_bar 
($) 

L1 - - 0 0 0 0 0 0 0 0 
L2 - - - - - - 0 0 0 0 
L3 - - - - 0 0 151 2.02E+08 0 0 
L4 - - - - - - 0 0 0 0 
L5 - - - - 70 9.57E+07 0 0 20 3.19E+07 
L6 0 0 0 0 0 0 0 0 0 0 
L7 336 5.85E+08 0 0 0 0 0 0 0 0 
L8 - - 110 1.74E+08 0 0 0 0 0 0 
L9 - - - - 0 0 0 0 0 0 
L10 - - - - 0 0 0 0 0 0 
L11 - - - - - - 0 0 190 3.11E+08 
L12 0 0 650 1.07E+09 0 0 0 0 0 0 
L13 - - - - - - - - 380 6.70E+08 
L14 - - - - - - - - 0 0 
L15 - - 0 0 0 0 0 0 0 0 
L16 - - - - - - - - 0 0 
L17 - - - - - - 605 9.73E+08 380 5.99E+08 
L18 0 0 0 0 0 0 0 0 157 2.26E+08 
L19 - - 0 0 0 0 219 3.41E+08 565 9.40E+08 
L20 52 6.09E+07 0 0 0 0 0 0 0 0 
L21 - - - - 590 9.91E+08 70 1.01E+08 0 0 
L22 - - - - - - 0 0 222 3.48E+08 
L23 0 0 0 0 0 0 0 0 0 0 
L24 - - - - 525 8.92E+08 110 1.69E+08 330 5.78E+08 
L25 - - 0 0 50 3.63E+07 665 1.13E+09 0 0 
L26 - - - - - - 0 0 103 1.33E+08 
Total 388 6.45E+08 760 1.25E+09 1315 2.02E+09 1820 2.92E+09 2347 3.84E+09 

Run time (sec) 65.574 389.391 680.66 1150.796 3226.691 
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Table 37. Approximation method solution (mid-Texas) 
Case (|L’|) 1 (5) 2 (6) 3 (7) 4 (9) 5 (9) 

 # PCP yrs c_bar ($) # PCP yrs c_bar ($) # PCP yrs c_bar ($) # PCP yrs c_bar ($) # PCP yrs c_bar ($) 
L1 - - 0 0 0 0 520 9.17E+08 520 9.17E+08 
L2 - -  - -  - - 0 0 0 0 
L3 - -  -  - 0 0 0 0 0 0 
L4 - -  -  - - - 0 0 0 0 
L5 - -  -  - 460 6.84E+08 18 1.50E+07 18 1.50E+07 
L6 164 2.01E+08 383 6.16E+08 0 0 0 0 0 0 
L7 40 2.21E+07 0 0 10 1.17E+07 0 0 0 0 
L8 - - 110 1.74E+08 65 5.68E+07 0 0 0 0 
L9 - -  -  - 0 0 0 0 102 1.56E+08 
L10 - -  -  - 0 0 0 0 0 0 
L11 - - -   - - - 110 1.63E+08 190 3.12E+08 
L12 90 1.40E+08 0 0 0 0 0 0 0 0 
L13 - -  -  - - - -   - 401 6.72E+08 
L14 - -  -  - - - -   - 0 0 
L15 - - 0 0 0 0 0 0 0 0 
L16 - -  -  - - - - -  0 0 
L17 - -  -  - - - 384 6.24E+08 465 7.08E+08 
L18 50 3.84E+07 66 8.11E+07 0 0 0 0 0 0 
L19 - - 166 2.04E+08 0 0 328 5.00E+08 328 5.14E+08 
L20 0 0 20 2.53E+07 336 5.64E+08 0 0 0 0 
L21 - -  -  - 0 0 60 6.34E+07 0 0 
L22 - -  -  - - - 197 3.12E+08 197 3.13E+08 
L23 96 1.08E+08 0  0 131 1.76E+08 63 5.39E+07 95 1.08E+08 
L24 - -  -  - 218 3.04E+08 0 0 0 0 
L25 - - 20 2.21E+07 9 2.86E+06 120 1.66E+08 0 0 
L26 - -  -  - - - 0 0 0 0 
Total 440 5.09E+08 765 1.12E+09 1229 1.80E+09 1800 2.82E+09 2316 3.71E+09 

Run time (sec) 26.823 72.784 112.213 164.396 289.504 
# PCP years gap 13.4% 0.66% -0.49% -1.1% -1.3% 

c_bar gap 21.1% 10.0% 10.8% 3.6% 3.2% 
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Figure 19. Column-generation heuristic solution for mid-Texas case study 
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Figure 20. Approximation method solution for mid-Texas case study 
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Table 38. Bounding by our approximation method in case 5 

    q   1     2     3     4     5   

Gap   Nq Gap1 Gap2 Nq Gap1 Gap2 Nq Gap1 Gap2 Nq Gap1 Gap2 Nq Gap1 Gap2 
L1 10 15.8% 0.6% 18 8.4% 0.9% 28 8.5% 0.2% 43 41.1% 6.4% - - - 6.4% 
L5 3 25.6% 1.9% 11 29.0% 2.1% 18 14.1% 1.0% 31 11.2% 0.9% - - - 2.1% 
L9 9 14.7% 0.7% 21 12.9% 1.5% 37 78.4% 7.5% - - - - - - 7.5% 
L11 5 10.2% 0.6% 12 10.0% 0.7% 22 43.6% 6.6% 38 91.3% 6.6% - - - 6.6% 
L13 4 14.8% 0.6% 9 14.3% 0.3% 17 11.7% 0.4% 26 12.9% 1.1% 33 14.2% 0.5% 1.1% 
L17 5 10.9% 0.6% 12 15.2% 1.8% 23 41.0% 6.2% 34 57.7% 8.4% - - - 8.4% 
L19 8 26.0% 1.0% 21 8.7% 0.3% 37 35.2% 5.3% - - - - - - 5.3% 
L22 3 24.9% 1.8% 11 16.3% 0.9% 23 24.0% 3.5% 39 92.0% 6.4% - - - 6.4% 
L23 7 17.7% 0.9% 22 15.3% 0.7% 40 20.4% 2.8% - - - - - - 2.8% 
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

 

This chapter comprises two sections. The first section draws conclusions on our DSCR research 

and presents further research opportunities. The second section draws conclusions on our research 

in healthcare facility location and capacity configuration under stochastic demand (i.e., SSHFCP 

and SMHFCP) and presents relevant further research. 

 

6.1 DSCR: conclusions and future research 

The first part of this dissertation contributes by formulating two models of the DSCR problem, 

one a traditional integer program and one based on a network structure.  Tests promote intuitive 

interpretation of these models, assess their solvability, and identify the sensitivity of run time to 

primary parameters. This research also contributes because it is applicable to a number of DSCR 

problems in both of public and private sectors.  

Our first model, DSCR-T, establishes a framework that has the flexibility to deal with 

many practical aspects of dynamic supply chain reconfiguration, providing a unique capability to 

reconfigure within a multi-period, multi-product, multi-echelon supply chain network to meet a 

time varying demand and/or cost structure. Thus, the model provides the adaptability needed in 

the competitive modern business environment. The model incorporates practical features that have 

not been taken into account in prior models, including budget constraints, single sourcing, 

inventory, backordering, outsourcing, and limits on the numbers of capacity expansions and 

contractions.  

Our second model, DSRC-N, employs a convenient network structure to model the same 

set of practical features. It requires fewer binary variables, continuous variables, and constraints 
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and less run time than DSCR-T.  Interestingly, our tests show that the linear relaxations of both 

models give the same optimal solution in each case but that DSCR-N offers superior solvability 

compared to DSCR-T.  

Test examples of a product life cycle and an economic downturn with recovery lend 

insight into model interpretation, showing that the models prescribe the same solution in each case, 

one that results in a capacity utilization of 0.85, a typical industrial target.  Tests show that model 

run time is highly sensitive to P , sensitive to T ,  mildly sensitive to L , and relatively 

insensitive to _N Tot .   

Future research could formulate models with improved solvability and/or more effective 

solution methods.  This should not be unexpected, however; (A Klose & Drexel, 2005)emphasized 

the challenges posed by production-distribution network design, a specialization of DSCR.  In 

particular, scalability becomes an issue as problem size increases but DSCR-N lends itself well to 

branch-and-price decomposition, which would result in a relatively small, resource-constrained 

shortest path sub-problem for each product and DC location combination, a structure that promises 

improved computational capability.  For cases in which uncertainties (e.g., demands and costs) are 

significant, future research could devise an effective stochastic optimization method. The proposed 

DSCR models deal with domestic financial issues; however, they could easily be extended to 

address the international business environment by incorporating corresponding financial issues 

(e.g., border crossing costs, transfer prices, tariffs, income tax rates, local contents rules). Our 

research continues along these lines. 

 

6.2 SSHFCP and SMHFCP: conclusions and future research 

Our model shows that SSHFCP can be cast as a deterministic RCSPP to locate a facility and 

configure its capacity.  We model competition among facilities using an attraction model, which 
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estimates the demand each facility would attract as a function of healthcare factors (physician 

ratings; facility capacity; the shortest-path distance, the time to travel the fastest route, and a 

measure of accessibility from (the centroid of) each population center to each location) and 

parameters that reflect the emphasis that patients place on each factor.  We deal with stochastic 

demand by employing recourse to maximize expected excess revenue, which includes closed-form 

penalties for expected excess demand and expected excess capacity.  The network structure allows 

each arc to be labeled with the expected excess revenue it provides, facilitating solution by 

avoiding the need to optimize a stochastic program with a nonlinear objective function.  The case 

study demonstrates application of the model in a realistic setting and our sensitivity analyses assess 

the relative impacts of important factors, key parameters, variability of physician capacity, and 

penalty cost values, revealing insights that can be used to guide healthcare decisions.  

Our SSHFCP model can represent demand in terms of fundamental parameters for which 

data is available from commercial sources, but it is also sufficiently flexible to accommodate the 

data that is available publically.  The Center for Disease Control and Prevention provides the 

number of visits/year/100 persons for primary care services by age, not by demographic group. 

We have not been able to find data that give the probability that a resident would consider changing 

her\his PCP or the distribution of visits/year for each person who seeks treatment.  The ACA 

requires providers to maintain extensive data bases; studies like ours show the utility of gathering 

data needed to support the level of quantitative analysis that our prototype model shows to be 

possible. 

 Test results validate our model to large degree.  After completing our tests, we learned 

that one local provider had already planned to build a new primary care center at location L3, 

which we found (independently) to be quite robust.  Also, another local provider opened a new 

primary care center two years ago at a site that we used as a potential location, expecting our model 
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to prescribe it.  However, our model did not prescribe that location under any of our test scenarios.  

We were concerned but later learned that the provider found that the location did not attract the 

new demand that some decision makers had expected.  In addition, our healthcare collaborators 

agreed with test results, providing further validation based on their extensive practical experience. 

Competition factors in attraction model (36) (i.e., lst , lpd , lstk , and lpf ) are objective 

measures that are readily available.  The emphasis actually placed on them by patients, as 

represented by parameters (i.e., , , ,    ), could be estimated by surveying patients, should 

values assigned intuitively and/or by sensitivity analysis prove unacceptable.  Future research 

could evaluate yet additional factors and seek further empirical validation.  In particular, it would 

be of interest to characterize how a new facility cannibalizes demand from existing facilities in the 

same firm.  Cannibalization can be favorable if it provides better service and/or frees up space 

needed for other purposes but detrimental if it reduces economies of scale.  

Healthcare insurance and government policy play major roles in patients’ selections of 

physicians and facilities. The selection of an insurer is an involved decision that may be affected 

by insurance policies that are offered by one’s employer, government policy, and 

coverage/deductibles. Our attraction model (36) could easily be extended with an additional 

dimension (i.e., subscript) for insurer so that it finds the probability that a patient carrying a type 

of insurance in a demographic group in a population center will seek service at a particular 

location. We were not able to find publically available data that relates insurance carriers to 

healthcare services. We expect that providers who apply our model can employ proprietary 

historical data and/or purchased information that would allow the full capabilities of our 

prototypical model to be used.   

  SMHFCP employs a location-allocation model for stochastic, multiple healthcare facility 

location problem and a network model to solve multi-period facility capacity configuration 
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problem under stochastic patient demand. We propose a novel column-generation heuristic that 

deals with columns associated with stochastic objective function value, using RCSPP as 

assignment subproblem associated with each facility. We show that, under certain specific 

conditions, the RMP in our column-generation heuristic can be solved to optimality. In addition, 

we propose an approximation method that utilizes the average incremental expected excess 

revenue to approximate the expected excess revenue for each pair of population-center-to-location 

assignment, as well as a bounding procedure to find the gap between the expected excess revenue 

prescribed by our approximation method and the optimal solution. 

We perform a set of computational experiments to locate primary care centers in two 

realistic case studies: one involves 36 census tracts in Brazos County, Texas; the other, 101 zip 

codes in rural mid-Texas. Our column-generation heuristic prescribes somewhat larger expected 

excess revenues, while our approximation method requires less run time. The difference between 

the solution values prescribed by our two methods reduces as the number of population centers 

increases. We recommend using our column-generation heuristic to solve an instance and our 

approximation method in conjunction to assess the quality of the solution. 

Future research can deal with problems of expanded scope, for example, prescribing 

multiple levels of healthcare services (i.e., primary, secondary and tertiary care) in a rural health 

care network.  Current and future capacities of existing facilities could be treated as decision 

variables to better represent the leader-follower decisions of competitors as the new facility 

changes capacity.  Finally, some patients may require multiple services (e.g., diabetes often leads 

to heart disease) and such relationships can be incorporated as well. Our research continues along 

these lines. Our SMHFCP approach can also be extended for application in other stochastic facility 

location and capacity configuration settings, such as schools, supply chains, retail stores and 

restaurants.  
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