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ABSTRACT 

 

Mercury Speciation in Galveston Bay, Texas: The Importance of  

Complexation by Natural Organic Ligands. (December 2004) 

Seunghee Han, B.S., Yonsei University; 

M.S., Yonsei University 

Chair of Advisory Committee: Dr. Gary A. Gill 

 

The major goal of this research is the development of a competitive ligand 

equilibration-solvent solvent extraction (CLE-SSE) method to determine organically 

complexed mercury species in estuarine water. The method was applied to estuarine 

surface waters of Galveston Bay and the water column of Offatts Bayou. 

Thermodynamic equilibrium modeling estimated organically complexed mercury 

species in estuarine water using the conditional stability constants of mercury-organic 

complexes and the concentrations of organic ligands determined by CLE-SSE. 

Two competing ligands, chloride and thiosalicylic acid (TSA), were used for 

CLE-SSE. Chloride ion competition determined conditional stability constants for 1 : 1 

mercury-ligand complexes ranging from ~1023 to ~1024 with concentrations of organic 

ligands at low nM levels. TSA competition determined stronger mercury-binding ligands 

by manipulating the TSA concentration such that a higher binding strength was achieved 

than that for the mercury-chloride complex. TSA competition determined conditional 

stability constants for 1 : 1 mercury-ligand complexes ranging from ~1027 to ~1029, with 
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ligand concentrations ranging from 10 to 100 pM. Mercury-organic binding strengths in 

these ranges are consistent with bidentate mercury complexation by low molecular 

weight organic thiols. A linear relationship was observed between log stability constants 

for the mercury-ligand complex and log ligand concentrations, supporting the hypothesis 

that there is a continuum of mercury binding site strengths associated with dissolved 

organic matter.  

In Galveston Bay, organically complexed mercury accounted for > 95 % of the 

total dissolved mercury in surface water. Organic complexation of mercury coupled with 

mercury dissolution from particulate phases controls the filter-passing mercury 

distribution in surface waters of Galveston Bay. The estuarine distributional features of 

mercury-complexing organic ligands were similar to those of glutathione, supporting 

mercury complexation by a thiol binding group. In Offatts Bayou, a seasonally anoxic 

bayou on Galveston Bay, thermodynamic equilibrium modeling suggests that the 

speciation of dissolved mercury in anoxic systems is dominated by sulfide complexation 

rather than organic complexation.  
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CHAPTER I 

INTRODUCTION  

 

Background 

 

Mercury in Natural Environments 

1Mercury (atomic number 80), a Group IIB transition metal, has a filled electron 

shell configuration (5d10 6s2) along with zinc and cadmium. The oxidation potentials (E 

for M = M2+ + 2e) of zinc, cadmium and mercury are 0.762, 0.402 and -0.854, 

respectively. The very low oxidation potential of Hg represents its relative inertness to 

oxidation reaction. The physical and chemical properties of mercury are characterized by 

high surface tension, low electrical resistance, high specific gravity and constant volume 

of expansion over the temperature range of its liquid state (Lin and Pehkonen, 1999). 

Because of these unique physical and chemical properties, the utilization of mercury 

increased dramatically after the Industrial Revolution, which included expanded uses in 

industry, mining, metallurgy, manufacturing, medicine and dentistry. Various 

compounds of mercury have been used as a catalyst, fungicide, and pesticide. Elemental 

mercury has also been utilized as a flowing cathode in chloro-alkali plants (Schroeder 

and Munthe, 1998; Lin and Pehkonen 1999).  
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Globally, the major source of mercury to seawater is atmospheric deposition 

(Mason et al., 1994) which has both natural and anthropogenic sources.  Natural sources 

of atmospheric mercury include outgassing of the earth’s mantle/crustal material, 

evasion from surface soil, water, vegetation surfaces, volcanoes, and forest fire 

(Schoeder and Munthe 1998). Prior to 1970, the largest source of anthropogenic mercury 

was chloro-alkali plants. Since environmental restrictions and concerns effectively 

closed all chloro-alkali plants, the major sources of anthropogenic mercury are now coal 

combustion, waste incineration, and metal smelting and refining (Schoeder and Munthe 

1998). A global mass balance study by Mason et al. (1994) argued that natural and 

anthropogenic sources of mercury account for one third (2000t/yr) and two thirds (4000 

t/yr) of the global emission to the atmosphere, respectively.  

Mercury is able to exist in three different oxidation states: 0, +1 and +2. In nature, 

most mercury has an oxidation state of 0 and +2. The major chemical form of mercury 

emitted to the atmosphere is thought to be elemental mercury (Hg0). The slow process of 

oxidation from Hg0 to Hg2+, resulting in a long residence time (1 - 2 yr) in the 

atmosphere, causes global circulation of mercury. After oxidation, Hg2+, a highly surface 

reactive species, settles rapidly onto the earth surface through dry and wet deposition 

(Lin et al., 2001). 

 

Speciation of Mercury in Oxic and Anoxic Environments 

In oxic environments, aqueous mercury is partitioned into dissolved (< 0.45 µm) 

and particulate phases. The variation of particulate mercury in natural waters depends 
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principally on variations in suspended particulate matter (SPM) concentrations. The 

content of organic matter in SPM has been considered as an important factor to 

determine the binding mercury (Coquery et al., 1997; Cossa and Gobeil 2000, Laurier et 

al., 2003; Choe et al., 2003). Dissolved aqueous mercury in oxic environments is known 

to have several different chemical forms (Figure 1.1): elemental mercury (Hg0), 

monomethylmercury (MMHg), dimethylmercury (DMHg), inorganic mercury (HgXi), 

and organic associated mercury (HgLi).  

Experimentally, Hg0, MMHg and DMHg are measured by cold vapor atomic 

fluorescence spectroscopy (CVAFS) after chemical separation (Mason and Fitzgerald, 

1991; Mason et al., 1993; Mason et al., 1998). Inorganic mercury can be measured semi-

quantitatively as a SnCl2 reducible mercury, which would include inorganic and 

kinetically labile organic mercury. Thermodynamic calculations indicate that inorganic 

mercury species consists of hydroxyl-, chloro-, and hydrochloro- mercury depending on 

pH and salinity (Turner et al., 1981). Among the diverse mercury species, neutral HgCl2
0 

is considered to be a key species for determining cellular uptake of mercury based on its 

high octanol–water distribution coefficient (Kow of HgCl2 = 3.3; Mason et al., 1996). The 

possibility of complexation by S2- and HS-, which exist at low nM concentrations in oxic 

surface waters, is not yet clear in spite of high stability constants between mercury and 

sulfide species. Hg0 is the chemical form of mercury evading from surface waters into 

the atmosphere.  Photo-reduction, rather than microbial reduction, is known to be the 

principle mechanism for reducing Hg2+ to Hg0 at natural levels of mercury (Morel et al., 

1998).  
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SRB: Sulfate reducing bacteria  
Li: Mercury complexing organic ligands  

 
 
 
 
Figure 1.1. Chemical speciation of aqueous mercury in oxic and anoxic waters modified 
from Morel et al., 1998.  
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The speciation of aqueous mercury in anoxic environments is mainly influenced 

by the high affinity between mercury and sulfide (Figure 1.1). In its solid state, mercury 

sulfide (HgS) exists in two different structures, a black form (metacinnabar) and a red 

form (cinnabar). Metacinnabar, detected in mercury contaminated soil by scanning 

electron microscope (Barnett et al., 1997), is metastable at room temperature and 

pressure and evolves into cinnabar in several days (Morel et al., 1998). Even though 

cinnabar has a very low solubility product (log Ksp = -38.9; Dyrssen and Kremling, 

1990), the solubility of cinnabar increases in real sediment pore water conditions through 

the complexation of mercury by sulfide and bisulfide species (Paquette and Helz, 1997; 

Benoit et al., 1999a; Jay et al., 2000) as well as dissolved organic carbon (DOC) 

(Ravichadran et al., 1998, 1999). This phenomenon would control the mercury 

concentration in pore water. MMHg production has been proven to occur in anoxic 

sediment and water mainly by sulfate reducing bacteria through lab culture experiments 

(Gilmour and Henry 1991; Choi and Bartha, 1993; Choi et al., 1994) and field 

observation (Mason et al., 1993). In anoxic conditions, neutral monosulfide species 

(HgS0) or polysulfide species (HgS5) are predicted to be a bioavailable species by 

thermodynamic calculations and limited experimental evidence (Benoit et al., 1999a; 

Paquette and Helz, 1997; Jay et al. 2000).  

An unknown fraction of Hg(II) is bound by organic acid in oxic and anoxic 

natural water (HgLi). The quantitative and qualitative information of organic associated 

mercury in natural water is very limited due to its low concentration (pM level) and 

heterogeneous characteristics, in spite of its importance to the biogeochemical cycling of 
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mercury (Stordal et al., 1996a).  This research focuses on investigating organic 

associated mercury in marine systems. Specifically, information will be sought on the 

concentrations, binding strengths, correlation with other biological factors and the role of 

Hg-organic matter in estuarine waters.    

 

The Importance of Natural Organic Matter in Mercury Biogeochemistry  

It is generally known that the chemical speciation of an element in natural water 

governs its biogeochemical behavior and bioavailability (Santschi, 1988; Buffle, 1990; 

Santschi et al., 1997). Like many other metals, mercury is readily complexed by natural 

dissolved organic matter (DOM). This interaction is important in controlling the 

solubility, mobility and bioavailability of aqueous mercury. In freshwater environments, 

dissolved organic mercury compounds have been reported through direct measurements 

(Gill and Bruland, 1990; Stordal et al., 1996a) and equilibrium calculations (Wu et al., 

1997; Mason and Sullivan, 1998; Benoit et al., 2001a) to be a major portion of dissolved 

mercury present. Evidence of significant binding between mercury and natural organic 

matter in freshwater environment (Mierle and Ingram 1991; Watras et al., 1995; Driscoll 

et al., 1995; Cai et al., 1999) is provided by strong correlations between concentrations 

of dissolved mercury (including monomethyl mercury) and DOC. In freshwater, 

mercury-organic complexation has been suggested to increase the solubility of mercury, 

playing a role as a mercury transporter from terrestrial to aquatic environments (Mierle 

and Ingram 1991; Watras et al., 1995; Driscoll et al., 1994, 1995; Cai et al., 1999).  
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In estuarine environments, river borne mercury is commonly trapped in estuarine 

sediments, resulting in insignificant amounts being transferred to coastal waters (Cossa 

and Gobeil, 2000). Particulate mercury concentrations often show positive correlations 

with particulate organic matter concentrations in estuaries (Coquery et al., 1997; Cossa 

and Gobeil 2000, Laurier et al., 2003; Choe et al., 2003). A number of reports stress the 

governing role of dissolved organic matter in controlling the distribution of dissolved 

mercury in estuarine systems (Guentzel et al., 1996; Stordal et al., 1996a; Conquery et 

al., 1997; Bilinski et al. 2000; Choe et al., 2003; Conaway et al., 2003). The flocculation 

of DOM and associated mercury during estuarine mixing could explain apparent non-

conservative behavior of dissolved mercury in estuarine waters. Evidence of flocculation 

comes from studies of the partitioning of mercury between dissolved and colloidal 

phases in different estuaries (Guentzel et al., 1996; Stordal et al., 1996a; Choe et al., 

2003).  Stordal et al. (1996b) demonstrated the colloidal pumping mechanism 

(Honeyman and Santschi, 1989), rapid and irreversible adsorption of particle-reactive 

mercury to colloids and subsequent coagulation of these colloids. 

  The role of DOM in mercury bioavailability is complex. Mercury and MMHg 

concentrations are frequently observed to increase in fresh water with the amount of 

DOC released from wetlands. As a consequence, the concentration of DOC can control 

the supply of total mercury and MMHg to the lower trophic level of food chain (Driscoll 

et al., 1994, 1995; Watras et al., 1998). However, high DOC concentrations in 

freshwater systems often do not result in higher mercury in fish. In one case, a lake 

having a very high concentration of DOC (DOC > 25 mg C/L) had declining mercury 



 

 

8

levels in fish (Driscoll et al., 1994, 1995). Driscoll et al. (1995) suggested that 

diminished bioavailability of MMHg by complexation with DOC could be the reason. 

This observation agrees with the fact that the predominant species of mercury in fish is 

MMHg, which shows greater trophic transfer efficiency than inorganic mercury (Mason 

et al., 1996; McAloon and Mason 2003). Microcosm laboratory experiments proved that 

amphipods living in sediment and water with higher organic levels accumulate less 

MMHg and inorganic mercury than amphipods living in lower organic environments 

(Lawson and Mason, 2001). Similarly, the uptake of both inorganic mercury and MMHg 

decreased with increasing concentration of humic substances in dipteran (Chaoborus) 

larvae in a laboratory microcosm experiment (Sjöblom et al., 2000). In addition, higher 

concentrations of MMHg in zooplankton and fish were observed in a lake having lower 

DOC, while lower concentrations of MMHg were observed in a lake showing higher 

DOC and similar concentrations of total mercury (Gorski et al., 2003).    

The previous discussion demonstrates that the chemical speciation of dissolved 

mercury strongly influences its biogeochemical cycling and bioavailability in an 

estuarine environment. Mercury complexation with natural organic matter could increase 

the solubility of terrestrial mercury hence it could control the amount of mercury in the 

freshwater end member. In the estuarine water column, loss of dissolved mercury 

through colloidal coagulation and particle settling could be related to the amount of 

mercury-complexing organic matter.  In addition, the mercury complexed by DOM 

should control the bioavailability of mercury and MMHg mercury through competition 

with lipophilic species.    
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Binding of Mercury by Inorganic and Organic Reduced Sulfur 

In saline systems, the inorganic speciation of mercury is highly dependant on the 

chloride ion content (Turner et al., 1981). At typical oxic seawater conditions, the 

chemical equilibrium program, MINEQL (Schecher and MaAvoy, 1992), estimates that 

> 95 % of the inorganic mercury exists as the trichloro and tetrachloro complexes. 

Reduced sulfur, however, has an even higher affinity for the B-type cations (Hg2+, Cu+, 

Ag+, and Cd2+) (Stumm and Morgan, 1996) but its concentration is usually much lower. 

Hence chloride, inorganic and organic reduced sulfur are likely complexants for 

controlling mercury speciation and its biogeochemical cycling in aquatic systems.  

Most chemical speciation research on mercury-sulfide complexation is focused 

on high sulfidic environments related to the production of monomethyl mercury. Table 

1.1 shows solubility information for cinnabar and formation constants for mercury 

sulfide and bisulfide species. Benoit et al. (1999a) examined the relationship between 

MMHg production and mercury speciation in sulfidic pore water: MMHg production is 

intracellular and HgS0(aq) was assumed as a bioavailable species by passive diffusion 

model. They showed that when equilibrium involves only cinnabar dissolution, HgS0(aq) 

was constant with varying sulfide concentrations, which did not agree with MMHg 

production observations. Assuming mercury adsorption onto solid phases, bioavailable 

HgS0(aq) decreased with increasing sulfide concentration in the µM to mM range. This 

result is compatible with field observations (Benoit et al., 1999a), results from octanol–

water partitioning coefficient (Dow) (Benoit et al., 1999b), and pure culture experiments 

(Benoit et al 2001b. 2001c).  
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Table 1.1.  Formation constants of mercury-(bi)sulfide complexes. 
 

complex Log Kf
a 

Hg2+   +   SH-   =   HgS (s)   +   H+ 38.0 

Hg2+   +   SH-   =   HgS0 (aq)   +   H+ 26.5 

Hg2+   +   SH-   =   HgSH+ 30.5 

Hg2+   +   2SH-   =   Hg(SH)2
0 37.5 

Hg2+   +   2SH-   =   HgS2H-   +   H+ 32.0 

Hg2+   +   2SH-   =   HgS2
2-   +   2H+ 23.5 

aAverage of literature values rounded to the nearest 0.5 log unit by Benoit et al. 
(1999a).   
 

 

The elemental sulfur often occurs near the oxic/anoxic redox boundary in 

sediments. By including elemental sulfur, the model predicted increased solubility of 

cinnabar and HgSnOH- was estimated as the major inorganic species at µM sulfide levels 

(Paquette and Helz, 1997 and Jay et al., 2000). Model results indicate a decreasing 

proportion of ring structured polysulfide species (i.e. HgS5), possible lipophilic species, 

with increasing sulfide concentration, which also corresponds to the experimental 

observation of decreasing MMHg production with increasing sulfide concentration (Jay 

et al., 2000).  

Stability constants between mercury and selected organic ligands are summarized 

in Table 1.2. In general, mercury-thiol complexes have stability constants up to 30 

orders of magnitude higher than those for simple carboxylate and amine complexes. 

Organic compounds having double bonded sulfur (R=S) and thioether (RSR) show lower 

stability constants than those of thiols and higher than those of carboxylates and amines. 
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Table 1.2. Formation constants of mercury-organic complexes. 
 

aK1 = [HgL2-n]/([Hg2+][Ln-]); bβ2 = [HgL2
2-2n]/([Hg2+][Ln-]2); Values in parentheses represent ionic 

strength which the equilibrium constant was determined. 
 

 

Dyrssen and Wedborg (1991) estimated the importance of mercury–thiol species 

in seawater by using conditional stability constants determined by titrations and linear 

free energy relationships (Hg2+ + 2RS- = Hg(SR)2: 1041.6;  Hg2+ + RS- = Hg(SR)+: 1022.0; 

Hg2+ + OH- + RS- = HgOHSR: 1032.2). They suggested that the two most important Hg-

Complex Log K1
a Log β2

b Reference 

Mercaptoacetic acid 
(HSCH2COOH) 34.5 (0.1) 43.8 (1.0) Martell et al., 1998 

2,3-Dimercaptopropanol 
(SHCH2CHSHCH2OH) 25.5 (0.7) 34.1 (0.7) Smith and Martell, 1989 

2-Mercaptobenzoic acid  
(SHPhCOOH) 24.8 (0.1) 33.4 (0.1) Smith and Martell, 1989 

Cysteine 
(HSCH2CH(NH2)COOH) 14.4 (0.1)  Martell et al., 1998 

Thiourea 
(H2NCSNH2) 

11.4 (0.1) 22.1 (1.0) Smith and Martell, 1989 

Diethylenetrithiodiacetic acid 
(HO2CCH2SCH2CH2SCH2CH2SCH2CO2H)  19.1 (0.5) Smith and Martell, 1989 

Ethylenedithiodiacetic acid 
(HO2CCH2SCH2SCH2CO2H)  19.0 (0) Smith and Martell, 1989 

EDTA 
((HOOCCH2)2N(CH2)2N(CH2COOH)2) 

23.5 (0)  Morel and Hering, 1993 

Formic acid 
(HCOOH) 5.4 (0) 7.1 (0) Morel and Hering, 1993 

Acetic acid  
(CH3COOH) 6.1 (0) 10.1 (0) Morel and Hering, 1993 

Methylamine 
(CH3NH2) 

8.7 (0) 17.9 (0) Morel and Hering, 1993 

Aniline 
(PhNH2) 

4.6 (1.0) 9.2 (1.0) Smith and Martell, 1989 
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thiol species were Hg(SR)2 and HgOHSR at  pH = 8, pCl = 0.25 and [RS-] = 0.1 – 10 

nM.  

Recently, X-ray Absorption Spectroscopy (XAS) was used to obtain information 

on the bonding environment between mercury and soil-extracted humic matter (Xia et al., 

1999; Hesterberg et al., 2001; Qian et al. 2002). The chemical identities of binding 

atoms (sulfur and oxygen in the first coordination shell and sulfur and carbon in the 

second coordination shell) and binding lengths were interpreted from extended X-ray 

absorption fine structure (EXAFS). The ratio of reduced to oxidized sulfur was obtained 

from X-ray absorption near edge structure (XANES). Thiol (RSH), disulfide (RSSR) and 

disulfane (RSSH) were proposed as the binding sites for mercury in humic acid (Xia et 

al. 1999). Similar results were obtained by Hesterberg et al. (2001) who showed that the 

fraction of increased Hg–S with increasing S/Hg ratio, which supports the possibility of 

a double sulfur bond at a very low Hg/S ratio. The same technique, applied to MMHg, 

demonstrates that MMHg prefers reduced sulfur rather than oxygen (Qian et al, 2002). 

Even though the most abundant functional groups in humic acid are carboxylic and 

phenolic acids, mercury shows a high affinity to coordinate with reduced sulfur in humic 

acid, which occurs at levels of 1 ‰ or higher (Buffle and De Vitre, 1994).  

 

Occurrence of Sulfide and Thiols in Seawater 

Hydrogen sulfide (H2S) is known to be produced in anoxic environments where 

sulfate is used as an electron acceptor and reduced to sulfide by anaerobic bacteria. The 

presence of hydrogen sulfide in oxic environments has been reported despite its 
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thermodynamic instability. Hydrolysis of carbonyl sulfide (OCS), a well-known 

seawater biological decay product, is known as a major source of hydrogen sulfide in 

surface seawater (Elliott et al., 1987; Cutter and Krahforst, 1988; Radford-Knœry and 

Cutter 1994; Cutter et al., 1999). Sulfate reduction within macroscopic particles or large 

organic aggregates (marine snow) containing oxygen depleted interstitial water is 

another suggested source of sulfide in the oxic water column (Cutter and Krahforst, 

1988).  

In oxic environments, sulfides should be rapidly oxidized by IO3
-, dissolved O2, 

and H2O2 (Millero et al, 1989; Millero 1991a, 1991b). However, this reaction can be 

slowed if sulfide is stabilized by complexation with B-type metals. The importance of 

copper as a complexing metal for dissolved sulfide was suggested from the 

thermodynamic calculation using conditional stability constants between sulfide and 

several metals (Dyrssen, 1988; Al-Farawati and van den Berg 1999). Along with the 

thermodynamic consideration, kinetic inertness of copper-sulfide and zinc-sulfide 

complexes was explained by the electron configuration of the metal and ligand field 

effect (Luther III and Tsamakis, 1989).  

Like sulfide, organic thiol (R-SH) is an important binding group for mercury 

complexation through the high affinity between mercury and reduced sulfur. Glutathione 

(a tripeptide, γGluCysGly) is the most prevalent intracellular thiol species in animals, 

plants and bacteria (Meister and Anderson, 1983). The importance of the thiol ligand in 

glutathione for copper complexation was shown by Leal et al. (1999) and Tang et al. 

(2001). The production of glutathione was increased at increased copper levels (Leal et 
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al., 1999), which could be related to the production of phytochelatin, a cysteine-rich 

polypeptide ((γGluCys)nGly; n = 2 - 11) produced by plants, algae, and fungi as a 

detoxifying ligand (Morel and Hering, 1993). Copper was reported as one of the most 

effective inducers for phytochelatin production (Ahner and Morel, 1995; Ahner et al., 

1997) and lab culture experiments proved that phytochelatin production was induced 

even when algae are not under metal stress (Ahner et al., 1995).  

A relation between glutathione and dissolved mercury has not yet been reported, 

though strong affinity between thiols and mercury suggests that glutathione can be an 

important mercury-binding organic ligand. This hypothesis is supported by the high 

concentration ratio of glutathione to mercury (~1000) in seawater. 

 

Review of Metal Speciation Studies  

Traditionally, two different voltammetric methods have been actively studied for 

copper complexation: differential pulse anodic stripping voltammetry (DPASV) and 

competitive ligand equilibration–cathode striping voltammetry (CLE–CSV). DPASV is 

useful to characterize weak organic ligands, since truly inorganic copper is measured 

during copper titration without competing ligand. The range of log conditional stability 

constants measured by DPASV was 8.5 to 13.5 with ligand concentrations of 1.8 – 46 

nM for estuarine, coastal, and open ocean water (Coale and Bruland, 1988; Donat et al., 

1994; Bruland et al., 2000).  

CLE-CSV method, applying different competing ligands, is more effective in the 

adjustment of a window of binding strength than DPASV. The binding strength between 
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copper and the competing ligand controls the binding strength between copper and the 

organic ligand to be identified. Tropolone, catechol, salicylaldoxime, and 8-

hydroxyquinoline have been used as common competing ligands of CLE–CSV for 

copper complexation.  Overall, a wide range of copper complexing ligand concentrations 

and conditional stability constants were measured depending on the binding strength 

between copper and the competing ligand: the measured log conditional stability 

constants and ligand concentrations are 11.5 - 16.1 and 3.2 – 300 nM for salicylaldoxime 

(Campos and ven den Berg, 1994; Bruland et al., 2000; Laglera and van den Berg 2003), 

11.0 - 14.9 and 13 - 196 nM for catechol (Apte et al., 1990a; van den Berg et al., 1990; 

Xue and Sigg, 1993; Tang et al., 2001),  11.0 - 15.8 and 4 – 150 nM for tropolone 

(Donat and van den Berg 1992; Xue and Sunda 1997), and 14 - 15 and 6 - 13 nM for 8-

hydroxyquinoline (Bruland et al., 2000; van den Berg et al., 1990). Voltammetric 

methods successfully estimate organic complexation of copper, indicating dissolved 

copper in estuarine and open ocean water exists predominantly as an organically 

complexed form (99 – 100 %).  

It has been thought that L1, the strong copper–complexing ligand, has a source and 

behavior distinct from other classes of ligands. The chemical and distributional 

characteristics of the L1 ligand, which shows a dominant effect on copper complexation, 

has been actively studied for the last decade (Zhou and Wangersky, 1989; Zhou et al., 

1989; Xue and Sigg, 1990; Moffett et al., 1990; Gonzalez-Davila et al., 1995; Gerringa et 

al., 1995; Moffett and Brand 1996; Moffett et al., 1997). In-situ production of copper 

complexing organic ligands was suggested from the negative relationship between algal 
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blooms and free copper concentrations observed in a eutrophic lake (Xue and Sigg, 1990). 

In addition, culture experiments using marine phytoplankton have demonstrated the role 

of algal exudates in buffering free copper concentration (Zhou and Wangersky, 1989; 

Zhou et al., 1989; Gonzalez-Davila et al., 1995; Gerringa et al., 1995). The function of 

marine cyanobacteria which produce L1 copper complexing organic ligands has been 

demonstrated through culture experiments and field observations (Moffett et al., 1990; 

Moffett and Brand 1996; Moffett et al., 1997).  

In addition to copper, organic complexation of zinc (Bruland, 1989; Donat and 

Bruland 1990; Muller and Kester, 1991; Xue et al., 1995), cadmium (Bruland 1992; Xue 

and Sigg, 1998), iron (Rue and Bruland, 1995), nikel (Donat et al., 1994), cobalt (Zhang 

et al., 1990; Qian et al., 1998; Saito and Moffett, 2001), and lead (Capodaglio et al., 

1990) were assessed by cathodic and anodic striping voltammetry. 

 

Hypothesis 

 

Organic complexation of mercury plays an important role in its biogeochemical 

cycling in an estuarine system, since transport, mobility, and scavenging processes of 

mercury are related to the coupling of organic complexation to adsorption-desorption 

processes. The main hypothesis being tested in this research is that the solution 

speciation of Hg(II) in surface estuarine water is dominated by complexation with an 

organic ligand of low concentration (~ pM) and high conditional stability constant (Kcond 

> 1020).  
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Objectives 

 

The proposed research seeks to determine the importance of mercury 

complexation with natural organic ligands in marine systems. The specific objectives are 

to:  

1. Develop a method for the determination of mercury complexation with natural 

organic ligands in seawater based on competitive ligand equilibration-solvent 

solvent extraction (CLE-SSE) approaches.  

2. Determine the concentrations of organic ligands that are complexing with 

dissolved mercury and determine the conditional stability constants of mercury-

organic complexes by a CLE-SSE technique in surface water samples collected 

from Galveston Bay along a salinity gradient.  

3. Measure the concentration of glutathione and other ancillary parameters such as, 

chlorophyll-a, nutrients, SPM, and DOC in surface water samples of Galveston 

Bay to assess their relationship to the organic complexation of mercury.  

4. Measure the concentrations of mercury-complexing organic ligands and 

conditional stability constants of mercury-organic complexes in a hypoxic water 

column to determine the solution speciation of mercury in sulfidic environments.  
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CHAPTER II  

DETERMINATION OF MERCURY-COMPLEXING ORGANIC LIGANDS:  

COMPETITIVE LIGAND EQUILIBRATION USING CHLORIDE 

 

Introduction  

 

Despite the importance of organic complexation in mercury biogeochemical 

cycling, direct assessments of the organic complexation of mercury and mercury 

speciation is very limited compared to that of other trace metals. Conventional methods 

used to determine organic complexation of metals, such as potentiometric and 

voltammetric methods, can not currently be used for mercury due to its low 

concentration and sensitivity limits associated with the methodologies. Recently several 

different methods for quantification of binding constants and concentrations of mercury 

complexing organic ligands have been reported (Wu et al., 1997; Skyllberg et al., 2000; 

Benoit et al., 2001a; Drexel et al., 2002; Haitzer et al., 2002, 2003; Hsu and Sedlak, 

2003; Lamborg et al., 2003). The measured concentrations and conditional stability 

constants of mercury-binding organic ligands, previously mentioned, are summarized in 

Table 2.1. Overall, the stability constants between mercury and mercury binding organic 

ligands are similar to those of low molecular weight thiols. The data for natural water 

samples shown in Table 2.1 clearly illustrate the dominance of organic complexation 

over inorganic complexation in natural waters.   
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Table 2.1. Reported conditional stability constants of mercury-organic complex (Kcond) 
and concentrations of mercury binding organic ligand (L).  
 
 

Reaction LogKcond [L] pH Sample Type Method Reference 

HgXi + L’ = 
HgLa 

9.7 – 
10.8 

1.4 – 4.5 
nM 7.2 Natural 

water 

Anodic 
stripping 
voltammetry 

Wu et al., 
1997 

Hg2+ + L’ = 
HgL 21 – 23 0.3 – 60 

nM 7.5 Natural 
water 

Sn(II) 
reduction 

Lamborg et 
al., 2003 

RSHn- + Hg2+ = 
RSHg(n-1)- + H+ 

11.6 – 
12.4  6.0 DOM isolate CLE–SSE Benoit et 

al., 2001a 

Hg2+ + L’ = 
HgL > 30 0.09 – 0.5 

nM 7.2 
Waste water, 
eutrophic 
lake water 

CLE-SPE 
Hsu and 
Sedlak, 
2003 

Hg2+ + L2- = 
HgL 28.7 5 nmol/mg 

DOM  DOM 
isolates EDLE Haitzer et 

al., 2003 

Hg2+ + L2- = 
HgL 

31.6 –
32.2  3.0–

3.4 Soil organics Hg sorption 
modeling 

Skyllberg et 
al., 2000 

Hg2+ + doms
- =   

Hgdoms
+ 

 

22.8 – 
23.2  6.0 

DOM 
released 
from peat 

Hg sorption 
modeling  

Drexel et 
al., 2002 

 aHgXi = inorganic mercury species, L’ = [Hg]t – [HgL]. 
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To date, only one study using voltammetry has been reported for conducting 

mercury complexation studies in natural waters: Wu et al. (1997) utilizing anodic 

stripping voltammetry achieved a detection limit of 0.1 nM and observed nM 

concentrations of mercury-binding organic ligands with log conditional stability 

constants of 9.8 – 10.8 (for HgXi + L' = HgL, HgXi = inorganic mercury, L'= [L]t - 

[HgL]) in river, estuarine, and coastal water samples. Recently, Lamborg et al. (2003) 

developed an analogue of the voltammetric method to determine labile mercury species 

using SnCl2 reduction. They found total ligand concentrations ranging 1 and 60 nM with 

log conditional stability constants between 21 and 24 (for Hg2+ + L’ = HgL L’ = [L]t - 

[HgL]) in natural water samples.  

Another approach currently in use to determine metal speciation in natural waters 

is competitive ligand equilibration-solvent solvent extraction (CLE-SSE). Instead of 

measuring labile metal species by voltammetry, metal-ligand concentrations are 

calculated for hydrophilic or hydrophobic species following separation by solvent-

solvent extraction. The advantages of the CLE-SSE method include low detection limit 

set by the metal-detection technique, reduced dissociation of organic complexes 

associated with electrochemical plating, and possible use of various concentrations of 

competing ligands. For example, acetylacetone was used as a competing ligand for 

copper complexation (Moffett and Zika, 1987; Miller and Bruland, 1994) and 

diethyldithiocarbamate was used as a competing ligand for silver complexation (Miller 

and Bruland, 1995). 
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Benoit et al. (2001a) applied CLE-SSE for mercury speciation to extracted 

dissolved organic matter (DOM) samples. In their method, neutral HgCl2
0 was extracted 

into octanol, while the hydrophilic Hg-DOM complex remained in the water phase. 

Assuming ligand concentrations from the reduced S concentrations, log conditional 

stability constants of Hg-DOM were calculated from the known stability constants of 

HgCl2: log Kcond = 11.6 - 12.4 for RSHn- + Hg2+ = RSHg-(n-1) + H+.  

As an analogue of a solution extraction method, solid phase extraction (SPE) was 

developed as a separation technique for mercury speciation study (Hsu and Sedlak, 

2003). Two competing ligands, glutathione (GSH) and diethyldithiocarbamate (DDC), 

were used and the concentrations and the conditional stability constants of Hg-DOM 

were calculated for waste and eutrophic lake waters: log Kcond > 30 for Hg2+ + L’ = HgL 

and 0.07 nM < [L] < 0.5 nM.  

Another approach used to investigate mercury-organic complexation is the 

equilibrium dialysis ligand exchange (EDLE) method (Haitzer et al., 2003). This 

equilibrium model is based on the measurement of a conditional distribution coefficient 

of mercury between solutions inside and outside of a dialysis bag that separates Hg-

DOM and Hg-EDTA complexes. The conditional distribution coefficients of mercury for 

DOM sites were determined using the known stability constant between mercury and 

EDTA at different pH conditions. Experimental results were explained by a simple 

discrete site model having bidentate binding sites: log Kcond = 28.7 for Hg2+ + site2- = 

Hgsite. The binding site concentration of 5x10-9 mol/mg DOM was estimated from the 
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separate experiment that determined the relationship between the [Hg]/[DOM] and the 

conditional distribution coefficient (KDOM’) of Hg-DOM complexes (Haitzer et al., 2002).  

Surface complexation modeling coupled with mercury adsorption experiments 

has been used to determine formation constants between mercury and surface organic 

matter of soil. Surface formation constants were calculated to 1032 for Hg2+ + L2- = HgL 

using the reduced organic S concentration as a ligand concentration (Skyllberg et al., 

2000).  Drexel et al. (2002) reported a similar equilibrium model to fit the mercury Kd 

isotherm. A bidentate binding model for DOM released from peat explained the 

experimentally determined partition coefficient ([Hg] in peat/[Hg] in DOM): log Kcond = 

22.8 - 23.2 for Hg2+ + doms
- = Hg-doms

+ and 7.3 - 8.7 for Hg2+ + domw
- = Hg-domw

+. 

 In summary, two different methods have been developed for the determination of 

organic complexation of filter-passing mercury in natural waters (Wu et al., 1997; 

Lamborg et al., 2003). Both methods indicate high ratios of HgL/HgXi in natural water 

samples. The detection limits of both methods are still high for the determination of 

natural organic ligands in pM level. This chapter describes the development of a new 

CLE-SSE method to determine mercury-organic complexation in natural water. A 

linearization method following mercury titration of natural water samples was used to 

estimate concentrations of binding ligands and binding strengths of mercury-organic 

complexes. The calculated concentrations and binding strengths were compared to other 

speciation results performed for natural water samples. 
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Materials and Methods 

  

Sample Collection  

Filtered surface water samples were collected from Galveston Bay, Lavaca Bay 

and coastal Texas waters using a peristaltic pump system and polyethersulfone 

membrane filters (0.45µm) following ultra-clean sampling protocols (Gill and Bruland, 

1990; Choe and Gill, 2001). Samples for ligand analysis were stored up to two months at 

4˚C in the dark without acidification. Dissolved mercury samples were collected 

separately and acidified (0.06 N high purity HCl) within several hours of sampling. All 

bottles and tubing used for sampling and storage were made of Teflon® and were acid-

cleaned with 6N HNO3 and 4N HCl. Teflon® separatory funnels and vials used for SSE 

were cleaned with Citranox® detergent (Alconox) and were soaked in Micro® detergent 

(International Products Co.) and 4N HCl solution.   

 

Reagents 

A 1 M stock buffer solutions (pH = 7.0) was prepared using 

tris(hydroxymethyl)aminomethane (TRIZMA®, Sigma-Aldrich). HPLC grade toluene 

and reagent grade KCl were used for SSE without further purification. Bromine 

monochloride (BrCl) solution was prepared according to EPA Method 1631: Mercury in 

Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence 

Spectrometry. Low mercury contents in each reagent were verified with blank tests. 

Mercury standard solutions were prepared by dilution of a 1000 ppm stock standard 
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obtained from GFS Chemicals. The river water mercury standard, ORMS (National 

Research Council Canada), and sediment mercury standard, PACS (National Research 

Council Canada), were used to verify accuracy and recovery of cold vapor fluorescence 

spectroscopy (CVAFS) determination of mercury.  

Potential interferences of the organic buffer on mercury speciation were verified 

to be insignificant by comparing the speciation results with those obtained with 

phosphate and borate buffers: The SSE was performed with Milli-Q® water containing 

mercury standard, thiosalicylic acid (as a model organic ligand), KCl (0.1 M), and buffer 

solution (either phosphate, borate or TRIZMA®). The concentration of water-extracted 

mercury was the same for each buffer solutions, demonstrating that the organic buffer, 

TRIZMA, does not form complex with mercury and does not have an effect on mercury 

speciation.  

 

Water–Toluene Extraction  

 Mercury titrations were carried out by adding increasing amounts of inorganic 

mercury into a series of separatory funnels. In each separatory funnel, buffer solution 

(TRIZMA®, 0.01M), KCl, and mercury standard (generally 1 – 15 nM) were added to 

100 mL of natural sample water, after which 10 mL of toluene was added. The mixture 

was allowed to equilibrate for 20 to 24 hours with intermittent shaking. After the last 

vigorous shaking, the water phase was drained from the funnel. A 30 mL aliquots of the 

water phase was acidified for the measurement of total mercury and the rest of the water 

was used for the measurement of pH.  
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Determination of Mercury 

Cold vapor atomic fluorescence spectroscopy (CVAFS) with reduction using 

NaBH4 was used to quantify mercury concentrations (Gill and Bruland, 1990; Choe and 

Gill, 2001). The precision of the CVAFS method was < 4 % (CV) and the detection limit 

(as 3 times the standard deviation of the method blank) was 0.16 pM. Recovery tests 

using a rive water standard (ORMS, National Research Council Canada) and a sediment 

standard (PACS2, National Research Council Canada) averaged 101 and 106 %, 

respectively. 

 In our laboratory, we typically treat natural water samples with UV-irradiation in 

acidic solution (0.06 N HCl, 24 hr.) prior to determination by CVAFS with NaBH4 

reduction (Gill and Bruland, 1990; Choe and Gill, 2001). However, applying the UV 

treatment step to the toluene-extracted water generated interference in the CVAFS 

determination that reduced sensitivity and reproducibility. Therefore an alternative 

digestion procedure was sought.  For nM level mercury additions in natural water, three 

different acidification and digestion methods (0.06 N HCl only, 0.07 N HNO3/0.06 N 

HCl, and 0.5 % BrCl solutions) showed good recovery (95 % for HCl, 100 % for 

HNO3/HCl and BrCl) without UV-irradiation. At pico molar mercury additions in 

natural water, HCl digestion yielded poor recoveries (70 % at 10 pM and 86 % at 100 

pM) while BrCl and HCl/HNO3 digestion yielded 97 – 100 % recoveries. Therefore, the 

solvent extraction solutions were digested with a weak mixed acid (0.07 N HNO3/0.06 N 

HCl).  
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Theory 

 

An apparent conditional stability constant (Kcond’) can be defined in terms of the 

concentration of free mercury ([Hg2+]), the concentration of organic ligand that is not 

bound by mercury ([L’]), and the mercury-organic complexes (HgL).  

]][L'[Hg
[HgL]'K 2cond +

=                                                                                                        (2.1) 

[HgL][L]][L' t −=             (2.2) 

The concentration of HgL can be determined experimentally by linearizing the titration 

data as described in Ruzic (1982) and van den Berg (1984). This technique (2.3) permits 

the calculation of apparent conditional stability constants (Kcond’) and total ligand 

concentrations ([L]t) from the experimental determinations of [Hg2+] and [HgL].  

tcondt
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[L]'K
1

[L]
][Hg

[HgL]
][Hg

+=
++

                                           (2.3) 

Once Kcond’ is determined, conditional stability constants of free ions, Kcond, can be 

calculated using the ratio of unbound ligand to free ligand, αL = [L’]/[Ln-], at the titration 

condition. 

Lcondcond 'KK α=                    (2.4) 

]][L[Hg
[HgL]K n2cond −+=                                                                                                      (2.5) 

Described below is the CLE procedure and theory to isolate and determine the 

concentration of HgL. The procedure is based on a series of inorganic mercury additions 

and water-toluene extractions using natural or artificially added chloride ion as a 
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competing ligand. Figure 2.1 illustrates the CLE that exists between aqueous mercury 

solution species and those that will partition into an organic solvent such as toluene in 

the experimental conditions (pH = 7.0, [Cl] > 0.1 M).  

 

 

 

 

 

 

                        

                        
             
 
 
 
                                                                                               
                               
                     
 
 
 
                                                       
 
 
 
 
HgLo = ΣΗydrophobic organic mercury species 
HgLa = ΣΗydrophilic organic mercury species 
n = 3 and 4 
 
 
 
Figure 2.1. CLE in water–toluene extraction using a competing ligand, chloride, at 
experimental conditions of pH = 7 and [Cl-] > 0.1 M. 
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 With experimental conditions, the total mercury concentration in natural water 

sample (Figure 2.1) can be expressed as (2.6) where Vo is the volume of the organic 

phase and Va is the volume of aqueous phase.  

a
a

o
oa

2
4a3

a

o
o

0
2a

0
2a

2
t [HgL]

V
V

[HgL]][HgCl][HgCl
V
V

][HgCl][HgCl][Hg[Hg] ++++++= −−+

                                                                                                                                       (2.6) 

The distribution of HgCl3
- and HgCl4

2- to the organic phase can be ignored because these 

species are hydrophilic at a 10:1 water to solvent ratio (Benoit et al., 2001a). The neutral 

species Hg(OH)2
0 and Hg(OH)Cl0 will only be important solution species when chloride 

levels are low and pH is high. By adding chloride to samples of low salinity and 

buffering the extractions at pH < 7.5, the amount of these solution species becomes less 

than 1 % of total mercury hence these species were not included in Figure 2.1 and (2.6).  

The linearization of mercury titration requires the concentration of organic-

complexed mercury, [HgL], in natural water. Equations from (2.7) to (2.11) explain the 

calculation of [HgL] from experimentally determined values.  In equation (2.7), the 

concentration of aqueous mercury, [Hg]a, is assumed as sum of [HgCl3
-], [HgCl4

2-], and 

aqueous [HgCl2
0].  The concentrations of [Hg2+]a and [HgL]a can be  ignored due to their 

low concentrations.  

a
0

2a
2

4a3a ][HgCl][HgCl]HgCl[[Hg] ++≈ −−
                (2.7) 

The free mercury concentration, [Hg2+]a, is obtained from the experimentally determined 

[Hg]a using stability constants of HgCln (n = 2,3, and 4) and chloride concentration. The 

stability constants of HgCln (β2 = 1014.0, β3 = 1015.1, and β4 = 1015.4 at I = 0, 25˚C) were 

obtained from Morel and Hering (1993). Free chloride concentration, [Cl-]a, is estimated 
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as the total chloride concentration resulted from the excess concentration of chloride. 

Corrections of stability constants for experimental ionic strength were given by Davies 

equation (Stumm and Morgan, 1996).  

4
a

-
4

3
a3

2
a2

a
a

2

][Cl][Cl][Cl
[Hg]][Hg

βββ ++
=

−−
+     (2.8) 

Once the free mercury concentration is determined, HgCl2
0 in organic phase can be 

calculated from the toluene-water distribution coefficient (Kd) for HgCl2
0 and [HgCl2

0]a. 

The determination of Kd for HgCl2
0 is explained in the next section.  

2
a

-
a

2
2a

0
2 ][Cl][Hg][HgCl += β           (2.9) 

o

a
a

0
2do

0
2 V

V
][HgClK][HgCl =                             (2.10) 

Equation (2.11), which is simplified from (2.6), explains the calculation of mercury-

organic concentration, [HgL], in natural water sample. 

a

o
o

0
2at V

V
][HgCl[Hg][Hg][HgL] −−=                   (2.11) 

The van den Berg/Ruzic plot (2.3), obtained from a series of [HgL] and [Hg2+] 

corresponding each mercury addition, gives the information of Kcond’ and [L]t.  
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Results and Discussion 

 

Toluene-Water Distribution Coefficient for HgCl2 

The toluene-water distribution coefficient of HgCl2
0, Kd(HgCl2

0), was 

determined from the relationship between the amount of mercury added ([Hg]t) and the 

final concentration of mercury in the aqueous phase ([Hg]a) in a series of water-toluene 

extractions of UV-irradiated seawater.  

aa
0

2

oo
0

20
2d V][HgCl

V][HgCl
)(HgClK =   (2.12) 

The concentration of the HgCl2
0 species in each phase can be derived from mass 

balance expressions. The mercury concentration in UV-irradiated seawater is given by: 

[Hg]a = [Hg2+]a + [HgCl2
0]a + [HgCl3

-]a + [HgCl4
2-]a + [Hg(OH)2

0]a + [Hg(OH)Cl0]a                      

  (2.13) 

At a pH of 7 and when [Cl-] > 0.1 M, the relative abundance of the Hg2+, Hg(OH)2
0 , and 

Hg(OH)Cl0 species is very small and the above expression can be reduced to: 

[Hg]a = [HgCl2
0]a + [HgCl3-]a + [HgCl4

2-]a  (2.14) 

If it is assumed that only neutral species extract into the organic phase, then the mercury 

concentration in the organic phase at a pH of 7 and [Cl-] > 0.1 M is given by: 

[Hg]o = [HgCl2
0]o   (2.15) 

Also, the amount of mercury, which extracts into the organic phase, is given by the 

difference between the amount of mercury added in UV-irradiated seawater, [Hg]t, and 

the final concentration of mercury remaining in the aqueous phase at equilibrium, [Hg]a: 
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o

a
ato V

V
)[Hg]([Hg][Hg] −=   (2.16) 

Substituting (2.16) into the general expression for Kd (2.12) gives: 

)][HgCl]([HgCl[Hg]

[Hg][Hg]
)(HgClK

a
2

4a3a

at0
2d −− +−

−
=   (2.17) 

By substituting the slope of titration curve (2.18) and the fractions of HgCl3
- (fHgCl3 = 

[HgCl3
-]/[Hg]t) and HgCl4

2- (fHgCl4 = [HgCl4
2-]/[Hg]t) determined from MINEQL+ into 

(2.17), Kd value is calculated by the equation (2.19).  

t

a

[Hg]
[Hg]

S =         (2.18)   

)ff(S
S1)(HgClK

2
43 HgClHgCl

0
2d

−− +−
−

=    (2.19) 

UV-irradiated seawater with salinity 9, 20, 29, 34 and 35 were used for 

conducting a series of titrations. Each individual titration consisted of three or more 

additions of mercury. On average, Kd(HgCl2
0) of 4.3 ± 2.7 was determined (n = 5).  

 

Hydrophobic Natural Mercury Complexes 

A fundamental requirement of successful application of CLE-SSE for speciation 

determinations is that a major fraction, or preferentially all, of the natural mercury 

complexes extract into one phase (Miller and Bruland, 1994). Water–toluene extractions 

of natural water samples to estimate lipophilicity of mercury complexes are given in 

Table 2.2. Natural mercury concentrations in filtered samples were determined by two 
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different methods: (1) acidification with 0.06 N HCl and 24 hours of UV irradiation; (2) 

acidification with a mixed acid solution (0.06 N HCl/0.07 N HNO3).  

For estuarine water samples, 38 – 55 % of the filter-passing mercury was 

detected without UV irradiation. The lower recovery in lower salinity water indicates 

higher organic complexation. While natural concentrations of filter-passing mercury are 

underestimated most likely due to incomplete sample digestion, this analytical bias 

becomes less significant at higher added mercury concentrations. At added mercury 

concentrations between 10 and 100 pM, mercury recovery was ~ 100 % using mixed 

acid digestion (see Determination of Mercury in MATERIALS AND METHODS).  

The water-toluene extraction experiments suggest that the ligands that complex 

mercury at natural levels (i.e. < 10 pM) may be predominantly hydrophilic. Miller & 

Bruland (1995) reported high hydrophilicity of natural silver complexes which is also a 

B-type metal like mercury. As the concentration of mercury increases in natural waters, 

the hydrophilic ligand capacity is consumed and mercury complexation shifts to a 

mercury complex which is hydrophobic (Table 2.2). The hydrophobicity of mecury 

complexing organic ligands at nM concentrations was reported by Lamborg et al. 

(2003). In Galveston Bay, it appears that low concentrations of strong hydrophilic 

ligands control the complexation of mercury at the low pM levels, while hydrophobic 

organic ligands become more dominant at higher mercury concentrations.  
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Table 2.2. Extractability of mercury complexes in natural water samples from Galveston 
Bay at pH = 8.2 and 10 : 1 = natural water : toluene.  
 
 

Filtered Hg (pM) % Hydrophilic mercury complexc 
S UV 

Irradiationa 
Mixed 
acidb 

Added [Hg] 
= 0 pM 

Added [Hg] 
= 10 pM 

Added [Hg] 
= 100 pM 

Added [Hg] 
= 1 nM 

1 2.6 1.1 111 58 26 11 
7 2.0 0.90 92 39 9.9 9.9 

16 1.6 0.88 84 39 9.6 14 
aFiltered mercury concentration determined following 24 hr of UV irradiation in 0.06 N HCl; 
bFiltered mercury concentration determined following 24 hr digestion with a mixed acid solution 
(0.06 N HCl/0.07 N HNO3); 
c([Aqueous Hg]/[Total Hg])×100 determined following water-toluene extraction and 24 hr 
digestion of aqueous phase with a mixed acid solution (0.06 N HCl/0.07 N HNO3). 
 

 

 

Kinetic Experiments 

The time required to reach equilibrium conditions between organic and inorganic 

mercury complexes was investigated. Concentrations of mercury extracted into the 

aqueous phase were determined in a series of extraction reactions using UV-irradiated 

seawater with reaction times up to 8 hours (Figure 2.2). Water-extracted mercury 

concentration reaches equilibrium within 4 hours. The kinetic experiments were 

extended to natural seawater to test the equilibration time of inorganic mercury in the 

presence of natural organic ligands. A rapid exchange was observed within 2 to 3 hours 

followed by a slow reaction for up to 8 hours (Figure 2.2).  

Lamborg et al. (2003) reported kinetic experiments to determine the equilibration 

time between inorganic mercury and natural organic matter. They observed the Sn(II)-

reducible mercury fraction to decrease fast in the first few hours (half-life 1.4 hrs) 

followed by a slow decrease up to 90 hours. They demonstrated that the slow reaction 



 

 

34

resulted from Teflon-wall sorption and suggested 16 hrs as the equilibration time for the 

uptake of inorganic mercury by natural seawater (Lamborg et al., 2003). The results in 

Figure 2.2 can be explained by Teflon wall sorption of hydrophobic natural mercury 

complexes since only the natural seawater samples showed decreasing aqueous mercury 

with time. Based on the results in Figure 2.2 and Lamborg et al. (2003), about 20 hours 

of reaction time was used for natural water titrations and model titrations.   
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Figure 2.2. Kinetic experiments of CLE-SSE. (a) [Hg]t = 0.05 nM, [TSA]t = 1 nM, 
pH=8.2. (b)(c) [Hg]t = 0.01 nM, [TSA]t =  0.4 nM, pH=8.2. 
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Model Titrations  

 The accuracy of the developed method was tested by conducting a model 

titration using a known organic ligand in UV-irradiated seawater. Thiosalicylic acid 

(TSA) was used as the model organic ligand since its stability constants with mercury 

(Table 2.3) are in the same range as those of the natural organic ligand and the complex 

of Hg(TSA)0 expects to have high liposolubility, like the natural organic ligands that 

bind mercury.  

 
 

Table 2.3.  Stability constants of thiosalicylic acid (TSA) complexes for ionic strength 
0.1. 
 

Complex Log K1 Log K2 Reference 

H-TSA 8.2 3.6 Budesinsky and Svec, 1971 
Hg-TSA 24.84 8.64 Koul & Dubey, 1973 

 
   

 Model titrations were carried out with chloride as the competing ligand and TSA 

as the model organic ligand in UV digested seawater (Table 2.4). The van den 

Berg/Ruzic linearization technique was used to calculate concentrations and conditional 

stability constants for the model organic ligand. Theoretical log Kcond’ at reaction 

condition was calculated using the stability constants in Table 2.3, reaction pH, and 

reaction ionic strength. Given the reproducibility associated with established values for 

conditional stability constants and [L], the results obtained for the model titration 

provide reasonable estimates of the concentration and stability constants of the model 

organic ligands. 
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Table 2.4. Titration of thiosalicylic acid (TSA) as a model ligand (L) with chloride as a 
competing ligand. 
 

[Cl] Measured 
[L] 

Measured  
log Kcond’ 

Added 
[TSA] 

Theoretical 
log Kcond’ 

pH 

M pM  pM   

0.39 35 24.5 49 24.4 8.4 

0.38 190 24.2 200 24.2 8.0 
 
 
 
 

Ligand Spectrums  

Summarized in Table 2.5 are titration results of estuarine water samples 

determined using the natural chloride ion content as a competing ligand. Given in Table 

2.5 are the slopes (slope = [Hg]a/[Hg]t) from the experimental titrations and the 

theoretical slopes determined by chemical equilibrium program using [Cl]t, [Hg]t, and 

pH. The calculated slope should correspond to the theoretical titration slope in the 

absence of any mercury-binding organic ligand. Determined slopes less than 1 represent 

partitioning of HgCl2
0 into the solvent phase.  

The presence of a spectrum of hydrophobic or hydrophilic organic binding sites 

which successively exist in larger concentrations, but with weaker binding strengths (van 

den Berg and Donat 1992; Bruland et al., 2000; Town and Fillera 2000; 2002), may 

cause the decrease or increase of the titration slope from the theoretical value. A change 

of the titration slope by organic interference has been observed in the CLE titration of 

copper (Miller and Bruland, 1994) and the voltammetric titration of mercury (Wu et al., 

1997). From the Galveston Bay samples, deviation from the theoretical slope was higher 
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for the lower salinity samples, indicating higher organic interference for higher DOM 

samples. 

The use of natural chloride as a competing ligand results in reduced window 

strengths for low chloride samples. Commonly, a window strength, which determines 

the detection range of conditional stability constants for ML, is represented by a 

complexation coefficient between metal and competing ligand (van den Berg et al., 

1990). The complexation coefficients between mercury and chloride, log αΗgCl (=β2[Cl-]2 

+ β3[Cl-]3 + β4[Cl-]4), given in Table 2.5 demonstrate the decreased window strength 

with decreasing salinity. The reduced window strength may be responsible for the 

reduced conditional stability constants of HgL for lower salinity samples of Galveston 

Bay surface water.  

 

Table 2.5. Titration results of estuarine water samples with natural chloride as a 
competing ligand.  
 

 S [Cl] Log 
αΗgCl

a 

 
[Hg]b 
(pM) 

[L] 
 (nM) 

Log 
Kcond’c 

Exp. 
slope 

Theor. 
sloped pH 

17 0.27 12.9 2.8 2.9 22.3 0.57 0.65 7.5 Lavaca 
Bay 20 0.32 13.1 3.7 3.6 22.3 0.58 0.70 7.5 

7.2 0.12 11.8 2.2 1.0 21.8 0.60 0.42 7.0 

12 0.19 12.4 1.6 0.38 21.9 0.61 0.55 7.0 

22 0.35 13.2 1.4 0.59 22.4 0.76 0.73 7.0 
Galveston 
Bay 

29 0.46 13.6 0.90 1.9 23.0 0.79 0.82 7.0 
aαΗgCl = β2[Cl-]2 + β3[Cl-]3 + β4[Cl-]4; bFilter-passing mercury concentration; cKcond

’ = [HgL] / 
([Hg2+][L’]), [L’] = [L]t – [HgL]; dThe theoretical slope is the slope that would exist in the 
absence of any complexation of mercury by organic ligands. Slope less than 1 represents 
partitioning of  HgCl2

0 into the solvent phase. 
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The importance of chloride concentration on the determination of mercury 

speciation is shown in Figure 2.3 and Table 2.6. Chloride ions were added as KCl to 

estuarine water samples of initial salinity of 10. The higher conditional stability 

constants were obtained for higher chloride concentrations resulted from the increased 

window strength. The results of Table 2.6 suggest that lower binding strengths 

determined for lower salinity seawaters are analytical artifacts rather than true ligand 

characteristics. It also suggests that the same class of organic ligand can be determined 

to have different conditional stability constants depending on the binding strength 

between mercury and competing organic ligand.  

Conducting titrations at an increased chloride concentration is in agreement with 

Miller and Bruland (1997)’s suggestion that titrations should be carried out from slightly 

higher competition strength than inorganic complexation for the saturation of any 

important weak organic ligand.  

 

 

Table 2.6. Titration results of estuarine water samples (S = 10) with increasing chloride 
concentrations at pH 7.0.  
 

[Cl] Log αHgCl Log Kcond’ [L] 
M   nM 

0.17 12.3 21.8 4.22 
0.38 13.4 22.9 5.10 
0.54 13.9 23.0 5.15 
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Figure 2.3. Titration curves of estuarine water sample (S = 10) with increasing chloride 
concentrations (by KCl) at pH 7.0.    
 
 
 

 

Natural Water Titrations 

Competitive ligand equilibration titrations with increased chloride concentrations 

were conducted on water samples collected from Galveston Bay and Texas coastal 

waters. An example titration curve and linearization plot is shown in Figure 2.4. 

Titration of UV-irradiated samples shows mercury-complexing ligands are digested as 

evidenced by the linear titration curve at all concentrations (Figure 2.4.a). Because the 

van den Berg/Ruzic plot is linear, this suggests that a 1 : 1 complexation exists between 

mercury and the natural organic ligands present. 
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Figure 2.4. (a) Titration of coastal water from the Gulf of Mexico (S = 35) by CLE-SSE; 
(b) Linearization of titration data by van den Berg/Ruzic plot. 
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The results of mercury titrations are summarized in Table 2.7. Mercury-binding 

organic ligand concentrations ranged from 0.4 to 9 nM, and corresponding log 

conditional stability constants (logKcond’) ranged from 23.0 to 24.3, which agrees well 

with those of Wu et al. (1997) and Lamborg et al. (2003). Higher conditional stability 

constants were obtained compared to the results of similar salinity given in Table 2.5 due 

to an increased detection window through increased chloride. Conditional stability 

constants showed little or no variation with salinity. Total organic ligand concentrations 

are generally higher in low salinity water, suggesting river water origin for natural 

organic ligands.  

 

 

Table 2.7. Concentrations of mercury binding organic ligand and conditional stability 
constants from CLE titrations with 0.52 – 0.55 M chloride as a competing ligand. 
 

 S [Hg]a 
(pM) Log αΗgCl

b [L] 
(nM) Log Kcond’c Log αL

d Log Kcond
e pH 

35 0.5 13.9 0.43 24.3 2.8 27.1 7.5 
Coastal water 

33 1.1 13.8 0.79 23.7 2.8 26.5 7.5 

0.1 5.9 13.9 9.4 23.0 3.4 26.4 7.0 

5.9 3.1 13.9 8.1 23.1 3.4 26.5 7.0 

15 2.4 13.9 3.9 23.3 3.4 26.7 7.0 

Galveston Bay 
water 

27 1.2 13.8 1.4 23.0 3.4 26.4 7.0 
aFilter-passing mercury concentration; 
bαΗgCl = β2[Cl-]2 + β3[Cl-]3 + β4[Cl-]4; 
cKcond

’ = [HgL] / ([Hg2+][L’]), [L’] = [L]t – [HgL]; 
dαL = [L’]/[L2-]; 
eKcond = [HgL0]/([Hg2+][L2-]) = Kcond’×αL. 
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The conditional stability constants reported in Table 2.7 were corrected to free 

ion equilibria, Kcond, using deprotonation constants (pKa1 = 6.3, pKa2 = 10.3) of mercury 

binding groups in DOM as suggested by Haitzer et al. (2003). Their estimation of 

deprotonation constants results from the best fit of model data to experimental data for 

the plot of pH vs. Log KDOM’. Conditional stability constants based on free ion equilibria 

range from 1026.4 to 1027.1. These values are similar to the stability constants between 

mercury and low molecular weight thiols (Table 1.1 in chapter I).  

The importance of organic complexation of dissolved mercury in Galveston Bay 

waters can be demonstrated by calculating the % of the dissolved mercury present which 

exists as an organic complex using conditional stability constants, total ligand 

concentrations, and inorganic side reaction coefficients of mercury (αHgXi = 

[HgXi]/[Hg2+]): 
][HgX

[HgL][L]'K

iHgXi

tcond =
α

             (2.20) 

Using the data in Table 2.7, 78 to 100 % of the dissolved mercury exists as an organic 

complex at salinities between 0.1 and 27, with higher organic complexation at lower 

salinity. However, higher organic complexation is predicted at the natural pH of 

estuarine water (pH ~8.2) resulting from a reduced proton competition from mercury 

toward organic acid binding sites (Yin et al., 1997; Haitzer et al. 2003).  

Samples of salinity 11 ppt were repeatedly titrated to determine the method 

precision and kinetic stability of the mercury complexing organic ligands (Table 2.8). A 

reduction in the concentration of mercury complexing organic ligands of 14 % was 

observed following 80 days of storage; the precision was < 9 % (CV).  
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Table 2.8. Kinetic stability of mercury complexing natural organic ligands.  
 

Storage time (days) [L] Log Kcond’ 

4 5.70 ± 0.2 22.9 ± 0.06 

40 5.10 22.5 

80 4.89 ± 0.4 23.2 ± 0.04 
 

 

 

Limitations of the Speciation Method 

The CLE-SSE speciation method has several limitations in its ability to 

comprehensively understand ligand characteristics as well as mercury speciation. First, 

small amounts of (~10 %) hydrophilic organic ligands which exist in natural water 

sample (Table 2.2) can not be determined. Second, even by increased window strength 

through additions of chloride, the slopes of natural water titration curves were generally 

lower than those of UV-treated samples, suggesting that mercury complexation results 

from the spectrum of organic ligands rather than a discrete organic ligand. Third, the 

concentrations and binding strengths of organic ligands were determined for pH 7.0 

instead of at natural pH. To make corrections for pH independent values requires making 

assumptions about the acid-base character of the mercury-binding ligands and careful 

assessment of this assumption is nonetheless warranted. Fourth, the lower concentrations 

of natural organic ligands with higher binding strength may exit since the determined 

organic ligand concentrations constants are three orders of magnitude higher than natural 

mercury concentrations. The higher concentrations of stronger mercury-binding organic 

ligands can be more important for natural mercury speciation.     
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Summary 

 

This chapter describes a newly developed CLE-SSE method, employing chloride 

ion as a competing ligand, to determine stability constants and concentrations of natural 

organic ligands that complex mercury. The level of chloride competing ligand used was 

critical to the detection window. At low salinities, it was necessary to add chloride in 

order to maintain a consistent detection window with that of full strength seawater.  

The log of conditional stability constants between mercury and natural organic 

ligands that complex mercury ranged between 23.0 and 24.3. These results are consistent 

with the range of previously determined values for natural waters and correspond to that 

of low molecular weight thiols. The determined organic ligand concentrations increase 

with decreasing salinity, suggesting a river water origin of mercury-complexing organic 

ligands.  

The measured concentrations of mercury-complexing organic ligands are ~1000 

times higher than natural mercury concentrations, indicating the possible existence of 

lower concentrations organic ligands with higher binding strengths.  The titration with 

multiple competing strengths is required for a more detailed understanding of mercury-

binding organic ligands as well as speciation of dissolved mercury in natural water.  
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CHAPTER III 

DETERMINATION OF MERCURY-COMPLEXING ORGANIC LIGANDS: 

COMPETITIVE LIGAND EQUILIBRATION USING THIOSALICYLIC ACID 

 

Introduction  

 

The organic complexation of dissolved mercury controls the biogeochemical 

cycling of mercury in natural water. The measurement of stability constants and 

concentrations of mercury-complexing organic ligands is required to quantify 

complexation of dissolved mercury by natural organic ligands. Those parameters began 

to be reported recently using isolated organic matter (Skyllberg et al., 2000; Benoit et al., 

2001a; Drexel et al., 2002; Haitzer et al., 2002, 2003) and natural water samples (Wu et 

al., 1997; Hsu and Sedlak 2003; Lamborg et al., 2003).  

Copper is one of the metals which have been actively studied for metal-organic 

complexation. A systematic investigation of the detection window effect on copper-

organic speciation revealed that the measured stability constants between copper and 

copper-binding organic ligands vary depending on the detection window strength (van 

den Berg et al., 1990; van den Berg and Donat 1992). A series of organic ligands in 

seawater, forming various strengths of copper complexes, explains the variation of αCuL 

(= KCuL × [L], L: copper-complexing organic ligand, K: conditional stability constant of 

copper-organic complex) as a function of the detection window. In addition, detected 

ligand concentrations were found to be decreased by the increasing detection window 
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strength. Intercomparison experiments using distinct methods of competitive ligand 

equilibration/adsorptive cathodic stripping voltammetry (CLE/ACSV) with different 

competing ligands support previous results of a continuum of copper-binding ligands 

(Bruland et al., 2000). As the analytical competition strength was increased, the copper-

binding natural ligand concentrations were found to be decreased with increasing 

stability constants.  

The analysis of compiled data for metal complexation extended the continuum of 

copper-binding organic ligand to other trace metals such as, Zn (II), Pb (II), and Cd (II) 

(Town and Filella, 2000; 2002). Comparing various metal complexing organics using 

detection window correction, the linear plot of log [L] vs. log K does not show a 

significant difference between various metals, indicating that behaviors of Cu, Zn, Pb, 

and Cd are not significantly different in terms of organic complexation. In addition, data 

points of log L vs. log K for natural water samples were located between those of biota 

and isolated aquatic fulvic acids, indicating that metal complexants in natural water are a 

combination of dissolved organic matter derived from a terrestrial source and formed in 

situ in the water column (Town and Filella, 2000; 2002).  

In the previous chapter, a newly developed competitive ligand equilibration-

solvent solvent extraction (CLE-SSE) method, employing chloride ion as a competing 

ligand, was used to determine stability constants and concentrations of organic ligands 

that complex mercury in natural waters. The conditional stability constants between 

mercury and natural organic ligands ranged between 22.9 and 24.3 and the organic 

ligand concentrations ranged between 0.4 nM and 9 nM in Gulf of Mexico and 
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Galveston Bay water samples. The concentrations of mercury-complexing organic 

ligands are ~1000 times higher than natural mercury concentrations, indicating that the 

complexation coefficient (αHgL = KHgL × [L]) from chloride competition can 

underestimate true mercury-organic complexation ratios. As discussed previously, 

mercury-binding organic ligands at lower concentrations and of higher binding strengths 

can be dominant for the natural mercury speciation. Therefore, the accurate calculation 

of mercury speciation requires at least two competing ligands including a strong organic 

ligand that exists at natural mercury concentrations (van den Berg and Donat, 1992).  

The necessity of a competing ligand that has a stronger binding strength with 

mercury requires the development of a new competing ligand.  This chapter describes a 

CLE-SSE method using thiosalicylic acid (TSA). TSA is an appropriate ligand to 

determine stronger classes of natural organic ligands that exist at concentrations close to 

the mercury concentrations. With this method, the window strength of mercury titration 

is increased by two orders of magnitude over chloride competition. The obtained data for 

conditional stability constants and ligand concentrations from TSA competition are 

compared to those of chloride competition in Chapter II and to previously reported 

values for natural water samples.  
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Materials and Methods 

 

Sample Collection and Reagents 

The same set of samples described in chapter II was used in the analytical 

development work described in this chapter. Ultra-clean sampling protocols (Gill and 

Bruland 1990, Choe and Gill, 2001) were also used for the sampling process. A pH 10 

buffer solution was made using 2-amino-2-methyl-1,3-propanediol (Sigma-Aldrich) to 

1M stock concentration. The competing ligand, TSA, was prepared fresh for each 

titration in an acetonitrile solution using Milli-Q® water. Other reagents used in this 

procedure were described previously in chapter II.  

  

Water–Toluene Titrations and Determination of Mercury  

The titration method is described in chapter II. Mercury measurements were 

conducted using cold vapor atomic fluorescence spectroscopy (CVAFS) (Stordal et al., 

1996a; Choe and Gill, 2001). Natural water samples to determine filtered mercury 

concentration were treated with UV-irradiation in acidic solution (0.06 N HCl, 24 hr.) 

prior to determination by CVAFS with NaBH4 reduction (Gill and Bruland, 1990; Choe 

and Gill, 2001). Sample pretreatment with 0.06 N hydrochloric acid or 0.5 % bromine 

monochloride (EPA Method 1631) was used for the determination of extracted mercury. 

Hydrochloric acid oxidation was not strong enough to recover all the mercury in natural 

water (See MATERIALS AND METHODS in chapter II). Therefore the results of 
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recovery tests for each sample were applied to determine the concentration of mercury in 

extracts.  

 

Theory 

 

 

 

 

 

 

 

 

                            

                        

             

 

                                                                                         
    

TSA = Thiosalicylic acid 
La = Hydrophilic organic ligands 
HgLa = ΣHydrophilic mercury-organic complexes 
L0 = Hydrophobic organic ligands 
HgLo = ΣHydrophobic mercury-organic complexes 
 

 
Figure 3.1. CLE in water–toluene extraction using competing ligand, thiosalicylic acid 
(TSA) at pH = 10. Inorganic mercury species are not presented considering their low 
percentage of total mercury. 
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Illustrated in Figure 3.1 is the proposed mercury equilibria established in a CLE 

titration with inorganic mercury using the competing ligand, TSA. TSA complexes with 

many divalent metals, including Cu(II), Zn(II), Cd(II), Ni(II) (Suffet and Purdy, 1966; 

Al-niaimi and Al-saadi, 1974), Mn(II) (Bodidi and Valle, 1990) and Hg(II) (Koul and 

Dubey, 1973; Al-Niaimi and Al-Saadi, 1974) through two coordination sites, 

sulphhydryl (-SH) and carboxyl (-COOH). Stability constants for the equilibria involved 

in Figure 3.1 are summarized in Table 3.1.  

 

 

 

Table 3.1. Stability constants of inorganic and organic mercury complexes for 
thiosalicylic acid (TSA) competition. 

 
Complex Log βi

a Reference 

HgCl2 14.0 (0)b    Morel and Hering, 1993 

HgCl3 15.1 (0)    Morel and Hering, 1993 
HgCl4 15.4 (0)    Morel and Hering, 1993 
Hg(OH)2 21.8 (0)    Morel and Hering, 1993 

HgOHCl 18.1 (0)    Morel and Hering, 1993 

HgTSA 24.84 (0.1)    Koul and Dubey, 1973 

HgTSA2 33.47 (0.1)    Koul and Dubey, 1973 

a
i

i
i [M][L]

][ML
=β ;  

bValues in parentheses represent ionic strengths at which the equilibrium constants were 
determined.  
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The methodology is based on the assumption that the neutrally charged 

Hg(TSA)0 extracts into the toluene, while all other charged mercury species remain in 

the aqueous phase. Total dissolved mercury per unit volume of sample water can be 

expressed by: 

a

o
oaa

2
2

a

o
o

0
a

0

a

o
oiaia

2
t

V
V

[HgL][HgL]][Hg(TSA)

V
V

][Hg(TSA)]Hg(TSA)[
V
V

][HgX][HgX][Hg[Hg]

+++

++++=

−

+

    (3.1) 

In equation (3.1) and below, HgXi denotes inorganic mercury species including HgCl2
0, 

HgCl3
-, HgCl4

2-, HgOH2
0, and HgOHCl0 complexes. HgL denotes mercury-natural 

organic complexes. Vo and Va represent the volume of the organic phase and the 

aqueous phase, respectively. For the experimental TSA concentration (1 - 2 nM), 

inorganic mercury species represent < 0.1 % of the total mercury present. That inorganic 

mercury portion which is neutrally charged and potentially extractable into organic 

solvent is an even smaller fraction. This assessment can be made by comparing values 

for the product of the equilibrium constant and the ligand concentration: αHgXi = 

[HgXi]/[Hg2+] = 1014.0; αHgTSAi = [HgTSAi]/[Hg2+] = 1017.3 at S =  35, [Hg]t =0.1 nM, 

[TSA]t = 2 nM,  and pH = 10. 

Water-toluene extraction experiments were conducted to show that Hg(TSA)2
2- is 

highly hydrophilic. Speciation modeling predicts that in a solution of 200 nM [TSA] and 

0.1 nM [Hg] in pH 10, all the mercury exists as Hg(TSA)2
2-. When this solution was 

subjected to organic extraction, > 98 % of the mercury remained in the aqueous phase.  

In addition, hydrophilic property of natural organic complexation was determined from 
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the water-toluene extractions of natural mercury complexes (see RESULTS AND 

DISCUSSION in Chapter II). These results allow simplification of equation (3.1) to 

(3.2).  

aa
-2

2
a

o
o

0
a

0
t [HgL]][Hg(TSA)

V
V

][Hg(TSA)][Hg(TSA)[Hg] +++≈                        (3.2) 

Once [HgTSA0]o
 is determined from the mercury concentration extracted into the 

organic phase, each species in equation (3.2) can be determined using following 

relationships: 

ad

oo
0

a
0

VK
V][HgTSA

][Hg(TSA) =            (3.3) 

a
2

1

a
0

a
2

][TSAK
][Hg(TSA)

][Hg −
+ =            (3.4) 

2
a

2
a

2
2a

2
2 ][TSA][Hgβ][Hg(TSA) −+− =           (3.5) 

 The toluene-water distribution coefficient (Kd) for Hg(TSA)0 is explained in the next 

section. The concentration of TSA2- in equation (3.4) and (3.5) can be assumed as total 

added [TSA], since TSA is highly selective for mercury and TSA concentration is excess 

of mercury concentration. The K1 and β2 of Hg-TSA are given in Table 3.1. Corrections 

of stability constants for experimental ionic strength are given by the Davies equation 

(Stumm and Morgan, 1996). Then, equation (3.6) allows the determination of [HgL] 

which is required for linearization of the titration data.  

a
-2

2
a

o
o

0
a

0
ta ]Hg(TSA)[

V
V

][Hg(TSA)][Hg(TSA)[Hg][HgL] −−−=                          (3.6) 
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Linearization of the titration data (Ruzic, 1982: van den Berg, 1984) to determine 

the conditional stability constant between mercury and organic ligand (Kcond’) and the 

total concentration of mercury-binding organic ligand ([L]t) is described in Chapter II 

and given by:  

tcondt

22

[L]'K
1

[L]
][Hg

[HgL]
][Hg

+=
++

                                                                                      (3.7) 

In equation (3.7), conditional stability constant of mercury-organic complex denotes:  

]][L'2[Hg

[HgL]'K cond +
= , [HgL][L]][L' t −=                                                                      (3.8) 

         

                                                            

Results and Discussion 

 

Toluene-Water Distribution Coefficient for Hg(TSA) 

The toluene-water distribution coefficient (Kd) of Hg(TSA)0 is determined from 

the slope of the mercury titration curve of seawater sample which contains appropriate 

amounts of TSA for the formation of Hg(TSA)0 and Hg(TSA)2
2-. The toluene-water 

distribution coefficient of Hg(TSA)0 is given by: 

aa
0

oo
0

d V][Hg(TSA)
V][Hg(TSA)

K =             (3.9) 

The concentration of the Hg(TSA)0 species in each phase can be derived from 

mass balance expressions. The mercury concentration in the aqueous phase is given by: 
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[Hg]a = [Hg2+]a + [HgCl2
0]a + [HgCl3

-]a + [HgCl4
2-]a + [Hg(OH)2

0]a + [Hg(OH)Cl0]a + 

[Hg(TSA)0]a + [Hg(TSA)2
2-]a                                                                                                          (3.10) 

At a pH 10 and when [TSA] = 1 - 2 nM and [Cl] < 0.56 M, the relative abundance of the 

Hg2+, HgCl2
0, HgCl3

-, HgCl4
2-, Hg(OH)2

0, and Hg(OH)Cl0 species is very small and the 

above expression can be reduced to: 

a
0

a
2

2a ][Hg(TSA)][Hg(TSA)[Hg] +≈ −
  (3.11) 

Substituting (3.11) into the general expression for Kd (3.9) gives: 

aa
-2

2a

0o
0

0
d )V][Hg(TSA)([Hg]

V][Hg(TSA)
)(HgTSAK

−
=   (3.12) 

If it is assumed that only neutrally charged species extract into the organic phase, then 

the mercury concentration in the organic phase at the experimental condition (pH 10, 

[Cl] < 0.56 M, and [TSA] = 1 - 2 nM) is given by: 

[Hg]o = [Hg(TSA)0]o   (3.13) 

The amount of mercury which extracts into the aqueous phase can be given by the 

difference between the amount of mercury added in seawater, [Hg]t, and the amount of 

removed mercury from the aqueous phase at equilibrium: 

a

0
0ta V

V
[Hg][Hg][Hg] −=   (3.14) 

Using the slope of titration curve (3.15) in x-axis of total mercury ([Hg]t) and y axis of 

removed mercury from aqueous phase ([Hg]*), and the fractions of Hg(TSA)2
2- in total 

mercury (fHg(TSA)2 = [Hg(TSA)2
2-]/[Hg]t) determined from MINEQL, Kd value is 

calculated by the equation (3.16) which is deduced from (3.12), (3.13), (3.14) and (3.15).  
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at

oo

t

*

V[Hg]
V[Hg]

[Hg]
[Hg]S ==          (3.15) 

HgTSA2

0
d f-S-1

S)(HgTSAK =         (3.16) 

Galveston Bay samples were used for conducting a series of mercury titrations. 

On average, Kd(HgCl2
0) of 5.8 ± 2.5 was determined (n = 13). As discussed in Miller 

and Bruland (1997), determination of Kd for metal-organic complex by natural water 

titration method would include a calibration effect which accounts for uncertainties of 

stability constants and variations in seawater salinities. 

  

Equilibration Conditions 

An optimal reaction pH for the TSA competition was determined by carrying out 

a series of water - toluene extractions of Hg(TSA)2 in DI water (I = 0.1 using KCl) at 

different pH’s. At 200 nM [TSA], 0.10 nM [Hg], and pH > 9.5, 98 - 100 % of the 

mercury was observed in the aqueous phase, which is in agreement with formation of a 

stable hydrophilic compound, Hg(TSA)2
2-. Moreover, this observation agrees with the 

pKa2 reference value for TSA of 8.2 ± 0.1 (I = 0.1, 25°C) (Smith and Martell, 1989).  

Koul and Dubey (1973) also confirmed full ionization of TSA above pH 9.0 through the 

increase of pHg2+ as a function of pH in a reaction mixture of Na2[Hg(TSA)2] and 

Na2TSA.  

A determination of proper reaction time for the equilibration of each mercury 

species is described in RESULTS AND DISCUSSIONS of chapter II. The same reaction 
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time of 20 to 24 hours was used for this method as used in chloride competition 

experiments. 

 

Model Titration 

The TSA competition method was evaluated by model titration using the well 

characterized ligand, diethyldithiocarbamate (DDC), in DI water. The titration curve was 

linearized by Scatchard (Mantoura and Riley, 1975) and the van den Berg/Ruzic plot 

(Ruzic, 1982; van den Berg 1984). Scatchard and van den Berg/Ruzic equations are 

rearranged for HgL2 type model ligand instead of HgL type ligand since Hg(DDC)2
0 is 

the major Hg-DDC complexes to compete with Hg(TSA)2 in model titration. The 

conditional stability constant of HgL2 complex is given by: 

22
2

cond2 ]][L'[Hg
][HgL

' +=β          (3.17) 

In the above equation, a ligand concentration which is not bound by mercury (L’) is 

given by (3.19) from (3.18).  

2HgL2LHg =+          (3.18) 

]2[HgL[L]][L' 2t −=          (3.19) 

The quadratic equations which correspond to Scatchard plot (3.20) and van den 

Berg/Ruzic plot (3.21) are determined by substituting (3.19) into (3.17):  

2
t22t2

2
222

2 [L]][HgL[L]4][HgL4
][Hg
][HgL

βββ +−=
+

     (3.20) 

2
t2

2

t

22
2

t

2
2

2

2

[L]
1][Hg

[L]
4][Hg

[L]
][L'4β

][HgL
][Hg

β
++

−
= ++

+

     (3.21) 
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One of two linearization methods showing higher accuracy for ligand 

concentration was used to calculate the results in Table 3.2. The relative error in 

determining the [DDC] was 9 % and that for the log conditional stability constants was 6 

% (Table 3.3). The model titration successfully demonstrates that the developed method 

provides a reliable estimation of the stability constant and concentration of mercury-

complexing organic ligand. The titration plot for 52 nM DDC at an ionic strength of 0.1 

and a pH of 9.8 is shown in Figure 3.2.  

 

 

 

Table 3.2. Titration of diethyldithiocarbamate (DDC) as a model ligand with 
thiosalicylic acid (TSA) as a competing ligand at pH = 9.8, I = 0.1.  
 

Added [DDC] Added [TSA] Measured [DDC] Measured  
Log β2, cond’a  

Theoretical  
Log β2,cond’b 

nM nM nM I = 0.1 I = 0.1 

10.4 106 11.8 35.8 33.9 

52.0 106 49.5 36.0 33.9 
a β2,cond

’ = [HgL2] / ([Hg2+][L’]2), [L’] = [L]t – 2[HgL2]; 
bCorrections made with pKa(HDDC) = 3.4 (Hsu and Sedlak, 2003).  
 
 
 
 
 
Table 3.3. Stability constants between mercury and diethyldithiocarbamate (DDC) 
determined at I = 0.1. 
 

Reaction Log β2
a Reference 

Hg2+ + 2DDC- = Hg(DDC)2
0 40.6 Yeh et al., 1980 

   aTwo phase solvent extraction constants for [Hg2+]a + 2[DDC-]a = [Hg(DDC)2
0]o.  
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Figure 3.2. Model titration with diethyldithiocarbamate (DDC) 52.0 nM at pH 
9.8 and I = 0.1. (a) Titration with inorganic mercury (b) Scatchard linearization 
plot for a 1 : 2 mercury–ligand complex. (c) van den Berg/Ruzic linearization 
plot for a 1 : 2 mercury–ligand complex. 
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Natural Water Titrations 

Competitive ligand equilibration titrations were conducted on natural water 

samples collected from Galveston Bay, Lavaca Bay, and Texas coastal water using TSA 

as a competing ligand. Figure 3.3 shows an example titration curve for the determination 

of conditional stability constants and concentrations of natural organic ligands. 

Generally, van den Berg/Ruzic plots showed better linearity than Scatchard plots. This 

may be the result of higher analytical errors at lower mercury concentrations since the 

Scatchard plot depends more on the lower levels of mercury. The straight line of the van 

den Berg/Ruzic plot justifies the 1:1 (Hg : ligand) complexation assumption between 

mercury and natural organic ligands.  

 

 

 [Hg]t (nM)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

[H
g]

t -
 [H

g]
a (

nM
)

0.00

0.01

0.02

0.03

0.04

 [Hg2+] (M)

0 2e-28 4e-28 6e-28

[H
g2+

]/ 
[H

gL
]

0.0

2.0e-18

4.0e-18

6.0e-18

8.0e-18

1.0e-17

1.2e-17

(b)(a)

 
 Figure 3.3. (a) Mercury titration of an estuarine water sample from Galveston Bay 
(salinity = 7) with 2 nM TSA as the competing ligand at pH = 9.8 ([Hg]t = total mercury, 
[Hg]a = aqueous mercury). (b) Linearization of the titration data using van den 
Berg/Ruzic approach.  
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A summary of the titration results for natural water samples collected from 

marine sites along the Texas coast is given in Table 3.4. The concentration of 

hydrophilic organic ligands ranged from 11 to 93 pM. Generally, low concentrations of 

mercury complexing ligands were detected in higher salinity waters. This trend is 

consistent with the previous results using chloride competition (Table 2.7) and other 

studies measuring of estuarine waters (Wu et al., 1997; Lamborg et al., 2003). The 

conditional formation constants between mercury and the complexing organic ligands 

range from 1026.6 to 1028.9 at pH of ~10.  

Although the same concentrations of TSA were added for each titration of 

Galveston Bay samples, the lower ionic strength of lower salinity water resulted in 

increased window strengths. The same trend was observed for copper complexation in 

the Scheldt estuary (Laglera and van den Berg., 2003). From their test experiments, it 

was concluded that the detection window increase by decreasing salinity is partially 

responsible for increased conditional stability constants of CuL for lower salinity 

samples. The higher conditional stability constants determined for the lower salinity 

Galveston Bay samples may partially result from the same artifacts of competition 

strength change as copper.   

The precision of the analysis was investigated by performing replicate 

measurements on one of the Galveston Bay samples. Relative standard deviations were 5 

% for [L] and 0.2 % for log Kcond’ from triplicate measurements. The accuracy associated 

with the determination of ligand concentrations and stability constants would rely on the 

accuracy of mercury determination in extracted water samples. One potential source of 
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error is associated with incomplete digestion of the extracts. Because recovery 

corrections were required, the potential for analytical error resulting from this treatment 

may exist.  

 

 

 

 

Table 3.4. Concentrations of mercury binding organic ligand and conditional stability 
constants from CLE titrations using thiosalicylic acid (TSA) as a competing ligand. 
 

 Sampling Region Salinity  [Hg]  Log αHg(TSA)i
a [L]  log Kcond'b pHc 

  pM  pM   

31 0.9 15.6 23 27.4 9.5 

34 1.1 15.6 11 27.8 9.5 Texas coast 

35 0.5 15.5 17 27.5 9.5 

17 2.8 15.7 93 26.6 9.7 

20 7.7 15.7 72 26.9 9.7 Lavaca Bay, TX 

20 3.7 15.7 36 27.4 9.7 

1 2.6 16.7 78 28.9 9.8 

7 2.2 16.2 71 27.9 9.8 

12 1.7 16.2 83±4 27.7±0.06 9.8 

22 1.4 16.1 35 27.6 9.8 

Galveston Bay, TX 

26 1.1 16.0 23 27.5 9.8 

a ;][TSAβ][TSAKα 22
Hg(TSA),2

2
Hg(TSA)1,Hg(TSA)i 2

−− +=  b
]][L'[Hg

[HgL]'K 2cond +
= ; cTitration pH.  
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Organic Mercury Complexation in Natural Waters - A Continuum Binding Model 

Mercury has a strong tendency to bind with inorganic and organic reduced sulfur 

(Dyrssen and Wedborg, 1991; Benoit et al., 1999a; Xia et al., 1999; Hesterberg et al., 

2001; Qian et al. 2002). Recent advances in technology allow us to have a molecular 

level view of bond information between mercury and soil humic acid. Xia et al. (1999) 

and Hesterberg et al. (2001) revealed the importance of RSH (thiol), RSSR (disulfide) 

and RSSH (disulfane) in mercury binding with soil humic substances using X-ray 

absorption spectroscopy (XAS). The thermodynamic information for mercury-

complexing natural organic matter implies the importance of organic thiol group, which 

was recently reported for dissolved organic matter (DOM) isolates (Benoit et al., 2001a; 

Haizer et al., 2002; 2003; Drexel et al., 2002).  

To date, only two studies have reported thermodynamic information for mercury-

complexing organic ligands in natural water (Wu et al., 1997; Lamborg et al., 2003). A 

comparison of these published data is shown in Table 3.5. To allow direct comparison of 

the equilibrium constants, the data reported by Wu et al. (1997) were corrected to reflect 

conditional stability constants based on free mercury concentration. The Sn(II)-reducible 

mercury coefficients (αHgr = [Sn(II)-reducible Hg]/[Hg2+]) determined for estuarine 

samples by Lamborg et al. (2003) were used for the corrections in Table 3.5: Log αHgr = 

13.0 for salinity 0 and 19; Log αHgr = 13.5 for salinity 35. Wu et al. (1997) used 

inorganic mercury concentration approximated by anodic stripping voltammetry (ASV), 

which measures true inorganic mercury and labile organic mercury, in van den 

Berg/Ruzic plot. Therefore, a Sn(II)-reducible mercury coefficient would give an 
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appropriate conversion to allow the estimation of the equilibrium constant based on free 

mercury concentration.   

 

 

 

 
 
Table 3.5. Reported stability constants and concentrations of mercury complexing 
organic ligands in natural water.   
 

Reaction S Log Kcond’ 
Corrected 
Reaction 

Corrected 
Log Kcond’b 

[L] (nM) Reaction 
pH Reference

0 9.7 22.7 2.25 
0 10.2 23.2 4.47 

19 10.6 23.6 2.67 
19 10.8 23.8 2.51 

HgXi + 
L’ = 
HgLa 

35 9.8 

Hg2+ + L’ 
= HgL 

23.3 1.35 

7.2 Wu et al., 
1997 

0 21.5   8.0 
0 21.0   20 
0 21.2   60 
0 22.2   3.8 
0 22.9   6.4 
0 21.6   24.8 
0 22.7   3.0 

~35 23.5   4.0 

Hg2+ + L’ 
=HgL 

~35 23.0   0.3 

7.5 
Lamborg 
et al., 
2003 

aHgXi=inorganic mercury, L’ = [Hg]t – [HgL]; b Corrections made with αHgr (= [reducible 
Hg]/[Hg2+]) = 1013.0 for salinity 0 and 19, and  αHgr = 1013.5 for salinity 35 from Figure 1 in 
Lamborg et al., 2003. 
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Plotted in Figure 3.4 are the ligand concentrations from these previous works 

(Table 3.5) as well as the new information from current work as a function of the 

conditional stability constants (Table 2.7 and 3.4). This treatment is similar to that used 

by Town and Fillela (2000; 2002) to assess the nature of the metal binding ligands. The 

data in Figure 3.4 are fairly consistent despite the fact that the methodologies and 

reaction conditions differ (7.0 < pH < 9.8). The continuous binding characteristics of 

natural organic ligands observed in Figure 3.4 agree with those of other metals (Town 

and Fillela, 2000; 2002). This conceptualization argues that stronger binding sites are 

utilized at lower metal concentrations and progressively weaker binding sites complex 

with higher metal concentrations.  The binding coefficient (αHgL = [HgL]/[Hg2+]) 

calculated from Kcond’×[L] in Figure 3.4 indicates that lower concentrations of organic 

ligands having higher stability constants are more important for mercury speciation than 

higher concentrations of weaker binding ligands: for example, when log [L] = -7, log 

αHgL = ~13; when log [L] = -11, log αHgL = ~18. Therefore, organic ligands that exist in 

the concentration range of natural mercury (few pM) would control the organic 

complexation of dissolved mercury in natural water.  
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Figure 3.4. Relations between concentration of mercury-binding organic ligands and 
conditional stability constant of mercury-organic complexes reported for natural water 
samples. Data are shown in Table 2.7, 3.4, and 3.5. Log Kcond’ = [ΣHgL]/([Hg2+][L’]). 
 

 

Estimation of Formation Constants for HgL 

The value determined for a conditional stability constant can vary depending on 

the pH at which the determination is made. An increase of log Kcond’ as a function of pH 

was shown by Haizer et al. (2003) and Averyt et al. (2004) for mercury complexing 

organic ligands and copper complexing organic ligands, respectively. This arises 

because metal competes with proton for organic binding site.  

The stability constants and ligand concentrations obtained by CLE-SSE are given 

by:  

]][L'[Hg
HgL]['K 2cond +

Σ
=           (3.22) 
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Where [ΣHgL] represents the sum of all the bound mercury at various sites on DOC, and 

L’ represents the ligand concentration not bound by mercury: 

[L’] = [L]t – [ΣHgL]          (3.23) 

If the amount of HgL is small compared to [L]t then, 

t[L]][L' ≈             (3.24)  

The conditional stability constants can be normalized to pH by assuming that: 1) The 

mercury-complexing organic ligand, L, has bidentate binding groups (H2L) as mercury 

generally prefers two coordination site environments (Cotton et al., 1999):   

[L]t = [H2L] + [HL-] + [L2-]           (3.25) 

The acidity constants (pKa) of 6.3 and 10.3 are assumed for H2L as suggested by Haitzer 

et al. (2003).  This assumption also agrees with the results of extended X-ray absorption 

fine structure (EXAFS) for soil humic matter, which shows that one electron donor in 

the first coordination shell is reduced sulfur (8 < pKa < 11) and the other may be an 

oxygen, nitrogen, or sulfur (pKa < 10) functional group (Xia et al., 1999; Hesterberg et 

al., 2001); 2) The sum of organic bound mercury, ΣHgL, is assumed to be a simple 

species of HgL0. This assumption ignores other acid-base species of organic mercury 

complexes such as, HgHL and HgOHL which are not considered important species. 

Then pH normalized formation constant of HgL is given by:  

]][L[Hg
][HgLK
22

0

−+
=          (3.26) 

The formation constants based on free ion concentration (3.26) are given in 

Figure 3.5 as a function of mercury-binding ligand concentration.  The formation 
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constants based on free ion concentration range from 1023.8 to 1029.5. The formation 

constants in this range are consistent with stability constants of mercury complexation 

by thiol groups. The linearity in Figure 3.5 indicates that the observed continuous 

binding characteristics of ligands rely on the true heterogeneous characteristics of 

mercury complexing organic ligands rather than reaction conditions associated with the 

measurement. Generally, lower concentrations of stronger binding ligands dominate 

natural mercury speciation.   
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Figure 3.5. Relations between concentration of mercury binding organic ligand and 
conditional stability constant of mercury-organic complex reported for natural water 
samples. Log K = [HgL0]/([Hg2+][L2-]). 
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Summary 

 

Whereas complexation of dissolved mercury by inorganic ligands is well known, 

complexation by organic ligands is less understood primarily due to a lack of a proper 

detection method. In this work, a competitive ligand equilibration method using TSA as 

a competing ligand was successfully applied to dissolved mercury in natural water. 

Hydrophilic organic ligands which exist at 11 – 93 pM concentrations with log 

conditional stability constants of 26.6 - 28.9 were detected in coastal and estuarine water 

samples at pH 9.5 – 9.8.  

The higher concentrations of mercury-complexing organic ligands in lower 

salinity samples agree with previous results determined by chloride competition. After 

the correction to the free ions equilibrium constant, the mercury-binding constants 

correspond to those of low molecular weight organic thiols. A linear relationship was 

observed between log K and log [L], supporting the hypothesis of continuous binding 

characteristics of metal-complexing organic ligands rather than the existence of discrete 

ligand class. The CLE-SSE method using TSA competition extends the detection limit of 

natural organic ligands to the pM molar level, which permits a detailed investigation of 

organic complexation of dissolved mercury in natural water.  
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CHAPTER IV 

COMPLEXATION OF MERCURY BY ORGANIC LIGANDS 

IN GALVESTON BAY ESTUARY 

 

Introduction 

   

 It is well recognized that the chemical speciation of mercury plays an important 

role in its estuarine cycling, influencing its evasion, dissolution, adsorption, and 

bioavailability. In estuarine environments, rivers are major sources of mercury with 

substantial additions from the atmosphere and sediments depending on sedimentary and 

biogeochemical conditions (Coquery et al., 1997; Mason et al., 1997, 1999). Most of the 

river-borne and estuarine mercury has been reported to be associated with suspended 

particles (Cossa and Noel 1987; Coquery et al., 1997; Mason et al., 1999; Lawson et al., 

2001; Domagalski et al., 2001; Choe et al. 2003; Conaway et al., 2003). Mobilization of 

mercury from the particulate phase has been suggested in turbid estuarine waters through 

the co-variation between dissolved mercury and suspended particulate matter (SPM) 

(Cossa and Noel, 1987; Cossa and Martin 1991). In addition, the microbial degradation 

of sedimentary organic matter is known to release mercury into sediment pore water in 

relation to the reduction/oxidation behavior of iron and manganese oxide (Gobeil and 

Cossa, 1993).  

To date, few studies have reported the chemical speciation of mercury in esturine 

systems. Some specific dissolved mercury species can be determined experimentally 
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including elemental mercury (Hg0), dimethylmercury (DMHg), monomethylmercury 

(MMHg), and the operationally defined reactive mercury (Mason et al., 1993; Coquery 

et al., 1997; Mason et al., 1998; Mason et al., 1999; Lacerda et al., 2001). The 

concentration of organic mercury was determined as the differences between total 

mercury and reactive mercury based on determination using SnCl2 reduction (Gill and 

Bruland, 1990).  

Thermodynamic calculations have also been used to estimate the complexation 

of mercury. Leermakers et al. (1995) estimated conditional stability constants between 

mercury and humic matter (K’ = 1019, [humics] = 10 % of total DOC) corresponding to 

the experimental determination of reactive mercury. Their modeling results suggested 

that the mercury-humic fraction decreases from 100 % of the total solution concentration 

of mercury at the river water end-member to < 5 % at salinity 30. Guenzel et al. (1996) 

used experimentally determined colloidal mercury fractions to estimate the stability 

constants of mercury-organic complexes and concentrations of mercury-complexing 

organic ligands. HgL2 complexation through two thiol functional groups (log K1 = 22.1; 

log K2 = 41.6; [L] = 1 - 5 nM) was shown to give a good estimation of colloidal mercury 

concentrations in estuarine water.  

Furthermore, a surface complexation model (MOCO) was applied to simulate 

chemical and physical speciation of mercury in turbid estuarine environments (Laurier et 

al., 2003). Independently determined surface complexation parameters (such as, specific 

surface area, site density, surface acidity constant, surface complexation constant with 

mercury, and exchangeable particulate fraction) and  estimated concentrations of 
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dissolved thiol ligands and stability constants of Hg-thiol complexes reproduced the 

phase and solution partitioning of mercury in the Seine estuary, France (Laurier et al., 

2003).    

 In this chapter, the complexation of mercury by organic ligands in Galveston Bay 

was investigated. The concentrations and stability constants of mercury-complexing 

organic ligands were measured and were used to calculate the solution speciation of 

filter-passing mercury. The speciation measurements were investigated in relation to the 

physical and biogeochemical conditions of estuarine waters. The salinity, temperature, 

and SPM concentrations were measured to estimate hydrosedimentary conditions of 

Galveston Bay along with other geochemical conditions such as nutrients, DOC, 

chlorophyll-a and glutathione concentrations.  

 

Study Area 

 

Galveston Bay in Texas is the second largest estuary along the coastline of the 

Gulf of Mexico. It encompasses 1554 km2 of surface area and is surrounded by 526 km2 

of marshland (Pinckney et al., 2002). The major source of freshwater input to Galveston 

Bay is the Trinity River (~ 83 %) and minor sources include the San Jacinto River (8 %) 

and Chocolate Bayou (< 1 %) (Orlando et al., 1993). Even though Galveston Bay is 

located next to many industrial complexes, especially the petroleum industry, the 

concentrations of trace metals in Galveston Bay with the exception of the San Jacinto 
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River and upper Houston Ship Channel are low and similar to other pristine estuaries 

along the Texas coast (Wen et al., 1999).  

As a shallow (average depth of ~2 m) and turbid estuary, Galveston Bay has a 

high riverine and sedimentary flux of nutrients and trace metals. The cycling of 

phosphate in Galveston bay is controlled by the sedimentary flux as well as 

phytoplankton uptake and release as the distribution as a function of salinity is non-

conservative (Santschi 1995). The measurement of sediment-water exchange flux of 

several trace metals showed that benthic flux can be a primary input in Galveston (Wen 

et al., 1999; Warnken et al., 2001). Tang et al. (2002a) recently reported that the 

distribution of some of trace metals (Cd, Cu, Ni, Pb and Zn) showed mid-estuary maxima 

as well, which indicates the role of sedimentary fluxes in Galveston Bay as sources of 

those metals. Stordal et al. (1996a) determined concentrations of filter-passing mercury 

between 0.3 and 6.8 pM in the surface water of Galveston Bay estuary. Like other trace 

metals, mercury concentrations are elevated in the upper Houston Ship Channel (~ 6 pM).       

Galveston Bay can be divided into four regions depending on geographic 

locations: Trinity River, Trinity Bay, Upper Galveston Bay, and Lower Galveston Bay. 

The locations of each region are shown in Figure 4.1.  
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Figure 4.1. Sampling locations in Galveston Bay estuary on June 3 and 4, 2003 (circle) 
and October 13 and 18, 2003 (square). UGB: Upper Galveston Bay. LGB: Lower 
Galveston Bay.  
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Materials and Methods 

 

Sample Collection 

Surface water samples in Galveston Bay were collected along a salinity gradient 

(Figure 4.1) on June 3 (Station 1 – 6) and 4 (Station 7 – 12), 2003 and on October 13 

(Station 1 - 6) and 18 (Station 7 – 12), 2003 using ultra-clean sampling protocols (Gill 

and Bruland 1990; Stordal et al., 1996a; Choe and Gill 2001). Unfiltered samples were 

collected at approximately one meter depth using Teflon® tubing connected to a 

peristaltic pump. Filtered samples were collected by the same method by placing a 

polyethersulfone membrane filter (0.45µm) on the exit tubing. Suspended particulate 

matter (SPM) and chlorophyll-a samples were collected in 1L polyethylene bottles: 

sample filtrations were performed within 24 hours after sampling. Samples for nutrients 

and dissolved organic carbon (DOC) analysis were frozen immediately after collection 

using dry ice and were stored frozen until analysis. Samples collected for glutathione 

(GSH) analysis were stored in Teflon® vials and were acidified with methanesulfonic 

acid (1mM) within several hours after sampling. Filtered samples collected for mercury-

complexing ligand analysis were stored in 2 L Teflon® bottles at 4˚C without any 

preservation for up to two months. Filtered and unfiltered mercury samples were 

collected in 500 mL Teflon® bottles and were acidified (0.06 N high purity HCl) within 

12 hours of collection. Teflon® bottles and tubing used for sampling and storage were all 

acid-cleaned following ultra-clean sampling protocols (Gill and Bruland, 1990; Stordal 

et al., 1996a; Choe and Gill, 2001).  
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Sample Analyses 

The concentration of suspended particulate matter (SPM) was determined by dry 

weight of particles following vacuum filtration using polycarbonate filters (0.45 µm). 

Chlorophyll-a samples were filtered using GF/F (Whatman) filters, after which acetone 

extractions and measurements by a fluorometric method were performed. Nutrients were 

analyzed by a flow-injection spectrophotometric method (Armstrong and Stearns, 1967).  

A catalytic high temperature organic carbon analyzer (Shimadzu TOC 5000) was used to 

determine the concentrations of organic carbon in filtered water samples. Filter-passing 

glutathione (GSH) concentrations were determined by HPLC using a fluorescence 

detection method (Tang et al., 2000, 2002b).  

Filtered and unfiltered mercury concentrations were analyzed by NaBH4 

reduction, gas-phase stripping onto gold, and detection by cold vapor atomic 

fluorescence spectroscopy (CVAFS) following UV digestion (Choe et al., 2003). The 

precision of the CVAFS method was < 4 % (CV) and the detection limit (as 3 times the 

standard deviation of the method blank) was 0.16 pM. The concentrations and stability 

constants of mercury-complexing organic ligands were determined by mercury titrations 

using CLE-SSE as described in chapters II and III. Two different detection windows of 

chloride competition and thiosalicylic acid (TSA) competition were applied to the 

October samples, while only thiosalicylic acid competition was applied to the June 

samples.  
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Ultrafiltration  

Cross-flow ultrafitrations (Wen et al., 1996; Guo et al., 2000a, 2000b) were 

carried out on six of the October samples using a 10 kD membrane (Amicon® 

Miniplate). Filtrations were performed within 24 hours after the sampling to minimize 

phase change of mercury due to coagulation (Choe and Gill, 2001). The ultrafiltration 

method is described in Choe and Gill (2001). Concentration factors > 15 (see Table 4.1) 

were used based on the results in Choe and Gill (2001) in which they found effective 

retention for molecules larger than the nominal pore size and less retention for molecules 

smaller than the nominal pore size. Prior to use, membrane performance was tested using 

standard organic molecules: vitamin B-12 (mw 1350) and dextran (mw 4400 and 19500) 

(Table 4.1). The colloidal concentrations in Table 4.1 were calculated as described 

below. When ultrafiltration was completed, the system was rinsed with permeate 

solution (~70 mL) for ~ 5 min. under low back pressure (5 psi) to improve the recovery 

of retained material. The [wash] in (4.1) denotes the concentration of solute in this 

fraction.  

wCF
[permeate][wash]

CF
[permeate]][retentate][colloidal −

+
−

=        (4.1) 

 volumeretentate
 volumeinitialCF = ; 

ewash volum
 volumeinitialCFw =  

Retention coefficients were 0.014, 0.53, and 1.1 for vitamin B12 (mw 1350), 

dextran of molecular weight 4400, and 19500, respectively. The retention of organic 

molecules smaller than the nominal pore size have been reported by Guo et al. (2000) 

and Choe et al. (2001) in which the higher retention was observed when the CF is lower 
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and standard molecules are larger.  

 
Table 4.1. Retention coefficient (Rc) and permeation coefficient (Pc) of organic 
macromolecules by 10 kD membranes. 
 

Molecule MW CF Initial Conc. Permeate  
Conc. 

Colloidal 
Conc. Pca Rcb Mass 

Balancec 
   mM mM mM   % 

Vitamin 
B12 1350 17 2.8 2.6 0.040 0.93 0.014 94 

Dextran 4400 19 1.6 0.77 0.84 0.49 0.53 102 

Dextran 19500 18 0.51 0.046 0.55 0.05 1.1 116 

[initial]
[permeate]Pc

a = ; 
[initial]

][colloidalR c
b = ; 100

[initial]
[permeate]][colloidalbalance Massc ×

+
= . 

 
 

Results and Discussion 

 

Biogeochemical Environments of Galveston Bay 

 Figure 4.2 shows Trinity River discharge as a daily mean gage height (ft) at 

Romayor, Texas (http://waterdata.usgs.gov/tx/nwis). This site is considered 

representative of flow of Trinity River into Galveston Bay (Warnken and Santschi, 

2004). The average daily discharges rate for the June sampling period (May 3, 2003 - 

June 3, 2003) was 62 m3/sec and for the October sampling period (September 13, 2003 - 

October 13, 2003) was 119 m3/sec. Discharge during both sampling periods was lower 

than the average of 311 m3/sec during the recent decade (1992-2001).   
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Figure 4.2. Daily mean gage height of Trinity River measured at Romayor, 
Texas (http://waterdata.usgs.gov/tx/nwis).   

  
 
 
 

   The salinity, temperature, SPM, chlorophyll-a, and nutrients are shown in Table 

4.2 and Figure 4.3. The high turbidity zone (HTZ) occurring at the Trinity River and 

upper Trinity Bay has been reported in other studies (Wen et al., 1999; Hung et al., 

2001; Tang et al., 2002a).  Salinities increased considerably with depth at stations two to 

five during both transects, supporting the generation of an HTZ by density-driven 

circulation at the head of Trinity Bay. The resuspension of bottom sediments due to high 

hydrodynamic energy may shift the turbidity maximum to Upper Trinity Bay in June 

(the low flow season) from Trinity River in October (the high flow season). The HTZ 

occurring in Upper Galveston Bay (Station 8 and 9) in June and coastal regions (Station 

11) in October may be attributed to the local hydrodynamic conditions such as, tidal- or 

strong wind-driven resuspension. 

Sampling Period 

Sampling Period 
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Table 4.2. Temperature, salinity, suspended particulate matter (SPM), chlorophyll-a, and 
dissolved nutrients concentrations in Galveston Bay estuary in June and October 2003. 
 

Temp. Salinity SPM Chl-a Phosphate Silicate Nitrate Ammonium Station 
Number (ºC)  (mg/L) (µg/L) (µM) (µM) (µM) (µM) 

Jun 
2003         

1 28.7 0 45 13 1.2 58 19 2.3 

2 28.9 0.9 61 8.2 2.3 31 14 6.9 

3 29.2 3.6 56 7.7 1.6 22 9.6 8.2 

4 - 5.4 47 13 2.5 22 5.9 2.2 

5 29.5 7.2 38 9.3 2.4 20 nd 0.26 

6 29.2 9.8 20 6.5 2.6 29 nd 0.35 

7 30.5 12.2 18 5.1 3.5 51 0.10 0.51 

8 28.2 16.2 54 11 2.5 25 nd 0.72 

9 - 18.2 46 7.3 2.6 14 0.29 1.4 

10 28.0 21.8 14 5.6 1.2 9.4 nd 0.61 

11 - 25.7 17 6.1 0.80 7.2 0.094 0.76 

12 26.7 28.6 5.0 2.6 0.29 7.1 0.079 0.70 
October 

2003         

1 24.6 0.1 71 8.4 2.5 68 9.3 1.1 

2 26.0 1.3 57 8.4 2.1 40 2.2 2.9 

3 25.7 3.7 49 6.0 2.2 49 2.4 4.1 

4 26.4 5.9 17 15 3.1 37 0.45 0.48 

5 25.7 7.3 5.7 12 3.7 30 2.6 1.3 

6 25.7 10.6 7.4 8.2 3.8 49 nd 0.47 

7 25.6 12.6 11 15 4.1 64 nd 0.42 

8 - 15.3 14 9.1 3.1 60 nd 0.61 

9 25.0 17.3 29 12 2.3 52 0.67 0.64 

10 24.5 19.5 33 8.8 1.9 46 0.84 0.93 

11 23.8 23.3 54 5.3 1.2 30 0.89 1.7 

12 25.3 26.8 1.3 1.9 0.36 12 0.094 0.61 
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Figure 4.3. Estuarine distributions of suspended particulate matter (SPM), dissolved 
nutrients (nitrate, ammonium, silicate, and phosphate), and chlorophyll-a in Galveston 
Bay estuary in June and October of 2003. 
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The distributions of silicate and phosphate showing a mid-estuary maxima at 

salinity 12, which agrees on the previous reports (Santschi 1995; Wen et al., 1999; Hung 

et al., 2001; Tang et al., 2002a), suggest the importance of benthic fluxes of those 

nutrients. The regeneration of phosphorous from anaerobic diagenesis of iron minerals 

was suggested by Santschi (1995) based on the accumulated nutrients data of Galveston 

Bay. The distributions of nitrate showing non-conservative mixing behaviors indicate 

removal of nitrate by biological activities such as photosynthesis and denitrification. The 

low concentrations of nitrate occurring in Lower Trinity Bay and Galveston Bay may 

indicate nitrate-limiting primary production which has been observed in Galveston Bay 

during all seasons from May 1999 to July 2000 (Örnólfsdóttir, 2002). Higher 

chlorophyll-a concentrations were observed at Trinity Bay and Upper Galveston Bay 

where waters are calmer and nutrient fluxes are higher (Wen et al., 1999; Hung et al., 

2001; Tang et al., 2002a).   

 
Distribution of Organic Carbon 

Dissolved organic carbon concentrations ranged from 82 to 221 µM in June and 

from 97 to 290 µM in October (Table 4.3 and Figure 4.4). Previous observations range 

between 100 and 500 µM in Galveston Bay (Wen et al., 1999; Guo et al., 2000a; Tang et 

al., 2002a). The higher DOC in October than June at the river water end-member is in 

agreement with Warnken and Santschi (2004) who reported DOC in the Trinity River 

linearly increasing with increasing river water discharge. The same authors estimated 

that the benthic DOC flux accounts to 20 – 80 % of the total DOC flux to Trinity Bay 
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during low flow conditions.  

 
 
 
Table 4.3. The concentrations of organic carbon in Galveston Bay surface waters. 
 

Station 
Number Salinity DOCa COCb UOCc Mass 

Balance CF 

  (µM) (µM) % d (µM) % e %  
June 2003         

1 0 209       
2 0.9 213       
3 3.6 221       
4 5.4 208       
5 7.2 218       
6 9.8 211       
7 12.2 -       
8 16.2 178       
9 18.2 146       

10 21.8 95.9       
11 25.7 90.7       
12 28.6 82.0       

October 2003         
1 0.1 266 49.3 19 243 91 110 14.1 
2 1.3 289       
3 3.7 290 27.8 10 243 84 93 17.7 
4 5.9 252       
5 7.3 261 21.9 8 213 82 90 16.4 
6 10.6 236       
7 12.6 192 20.8 11 158 82 93 16.1 
8 15.3 213       
9 17.3 195 12.2 6 179 92 98 16.4 

10 19.5 136       
11 23.3 119 12.0 10 108 91 101 15.2 
12 26.8 97.2       

aDissolved organic carbon (<0.45 µm);  
bColloidal organic carbon (10 kD – 0.45 µm);  
cUltrafiltrate organic carbon (<10 kD);  
d[COC]/[DOC]×100; 
e[UOC]/[DOC]×100. 
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Figure 4.4. Distributions of organic carbon in Galveston Bay. (a) DOC < 0.45 µm. (b) 
October samples, DOC <0.45 µm, 10 kD < COC < 0.45 µm, UOC <10 kD. 
 
 

 

Ultrafiltration was carried out on six of the October samples using 10 kD 

membranes. The ultrafiltration results for DOC are shown in Table 4.3 and Figure 4.4. 

An average of 11 ± 4 % of the filter-passing organic carbon was colloidal-size (10 kD – 

0.45 µm) organic carbon. These results agree with previous determinations in Galveston 

Bay: 23 ± 9 % (10 kD – 0.45 µm) in July, 1995 (Wen et al., 1999) and 6.4 ± 1 % (10 kD 

– 2 µm) in July, 1993 (Guo and Santschi, 1997). While DOC exhibits nearly 

conservative estuarine mixing behavior, COC shows a non-conservative estuarine 

distribution, suggesting there is an in-situ removal of COC by flocculation.   

 

Distribution of Glutathione 

Glutathione (GSH) concentrations in surface waters of Galveston Bay ranged 
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from 18 to 79 nM for the June samples and from 20 to 111 nM for the October samples 

(Table 4.4). The estuarine distribution exhibits nearly conservative mixing in October 

during higher flow conditions, while a slight estuarine source is observed in June during 

low flow conditions (Figure 4.5).  The distribution of GSH along the salinity gradient 

co-varies with the distribution of DOC (Figure 4.6). The correlation factor (r2) between 

[GSH] and [DOC] was 0.92, suggesting that Trinity River may be the primary source of 

GSH in surface waters of Galveston Bay with a smaller contribution from sediment flux 

during low flow conditions.   

 

 

Table 4.4. Glutathione (GSH) concentrations in filter-passing (< 0.45 µM) surface 
waters of Galveston Bay estuary. 
 

Station Salinity GSH Station Salinity GSH 
Number  (nM) Number  (nM) 
Jun-03   Oct-03    

1 0 73.8 1 0.1 104 ± 1.5 a 
2 0.9 77.4 2 1.3 111 ± 3.8 
3 3.6 78.6 3 3.7 107 ± 2.1 
4 5.4 78.2 4 5.9 92.2 ± 1.4 
5 7.2 70.1 5 7.3 79.8 ± 1.1 
6 9.8 64.0 6 10.6 75.8 ± 4.4 
7 12.2 61.6 7 12.6 67.2 ± 3.2 
8 16.2 57.0 8 15.3 57.7 ± 0.1 
9 18.2 50.9 9 17.3 52.4 ± 1.5 

10 21.8 36.6 10 19.5 48.0 ± 1.9 
11 25.7 27.6 11 23.3 35.6 ± 0.5 
12 28.6 18.1 12 26.8 20.1 ± 0.4 

aStandard deviation determined from the duplicate measurements. 
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Figure 4.5. Estuarine distribution of filter-passing glutathione in surface waters of 
Galveston Bay. 
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Figure 4.6. Relationship between the concentrations of filter-passing glutathione and 
filter-passing organic carbon in Galveston Bay surface waters. 
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GSH is known to be produced by the bacterial degradation of organic matter in 

anoxic pore water. Few nM to µM concentrations of glutathione have been reported in 

anoxic pore waters (Mopper and Taylor, 1986; Kiene et al., 1990). GSH in oxic surface 

water has recently been determined using cathodic stripping voltammetry and other 

approaches (Table 4.5). Cathodic stripping voltammetry was able to detect a sulfide-like 

peak in natural seawater and it was believed to be a thiol species due to its kinetic 

stability (Al-Farawati and van den Berg, 2001). Since the voltammetric method was not 

able to identify each thiol species, concentrations were estimated as GSH or thiourea 

equivalents (Christine et al., 1998; Leal et al., 1999; Al-farawati and van den Berg, 

2001), or as total reduced sulfur concentrations (Tang et al., 2001). Reported thiol 

concentrations range from 0.7 to 15 nM for coastal waters and from 0.2 to 130 nM for 

estuarine waters (Table 4.5). Co-variations between thiol concentration and chlorophyll-

a concentration have been observed in coastal waters of the Western North Sea and 

English Channel (Al-farawati and van den Berg, 2001), and in estuarine waters of 

Galveston Bay (Tang et al., 2001).  

The GSH concentrations determined in this work agree well with previous 

determinations by cathodic stripping voltammetry and copper titrations (Tang et al., 

2001; Laglara and van den Berg, 2003). However, an order of magnitude difference was 

observed between current results and Tang et al. (2000) who determined concentrations 

of each thiol species in surface waters of Galveston Bay in August, 1999.  
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Table 4.5. Reported concentrations of filter-passing thiols in estuarine, coastal and open 
ocean waters. 
 

Sample 
Type 

Sampling 
Region Thiol concentration Method Reference 

Open ocean 
water 

North East 
Atlantic 

1 - 15 nM 
(glutathione 
equivalents) 

Cathodic 
stripping 

voltammetry 

Christine et al., 
1998 

Coastal 
water 

Western North 
Sea, 

English 
Channel 

0.70 - 3.60 nM 
(thiourea equivalents) 

Cathodic 
stripping 

voltammetry 

Al-Farawati 
and van den 
Berg, 2001 

Estuarine 
water Galveston Bay 

10 - 130 nM 
(glutathione 
equivalents) 

Cathodic 
stripping 

voltammetry 

Tang et al., 
2001 

Estuarine 
water 

Scheldt 
Estuary 24 - 114 nM Cu titration Laglera and van 

den Berg, 2003 

Estuarine 
water Galveston Bay 0.2 - 6.2 nM 

(glutathione) HPLC Tang et al., 
2000 

 
 

 

 

GSH concentrations from ultrafiltration are shown in Table 4.6. The majority of 

the GSH was detected in the permeate fraction (<10 kD), attributable to the small 

molecular size of GSH (mw 307.33). About 7 % of the GSH in Trinity River water was 

retained by the 10 kD membrane, which is thought to be an artifact of the ultrafiltration 

processes (Guo et al., 2000b).  With the exception of the river water end member, GSH 

concentrations in the colloidal size fraction are less than 2 % of total GSH.  
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Table 4.6. Filter-passing, colloidal, and ultrafiltrate glutathione (GSH) concentrations in 
surface water samples of Glaveston Bay collected in October, 2003. 
 

Filter-passing 
GSHa Colloidal GSHb Ultrafiltrate GSHc Mass 

Balance Station 
Number nM 

CF 
nM % nM % % 

1 104 ± 2 14.1 6.8 ± 1 6.6 90 ± 4 87 93 
3 107 ± 2 17.7 0.81 ± 0.3 0.76 100 ± 4 93 94 
5 80 ± 1 16.4 1.50 ± 0.2 1.9 74 ± 1 93 95 
7 67 ± 3 16.1 0.80 ± 0.04 1.2 65 ±0.9 96 98 
9 52 ± 2 16.4 0.54 ± 0.05 1.0 50 ± 0.3 95 96 

11 36 ± 0.5 15.2 0.42 ± 0.07 1.2 32 90 91 
a < 0.45 µm;  
b10 kD – 0.45 µm; 
c < 10 kD. 
 

 

Total and Particulate Mercury 

Total mercury concentrations in unfiltered surface waters of Galveston Bay 

ranged from 1.7 to 13 pM in June and from 1.8 to 25 pM in October (Table 4.7 and 

Figure 4.7). These results are similar to previously measured values in Galveston Bay 

(Stordal et al., 1996a). Total mercury concentrations in Galveston Bay are dominated by 

the particulate mercury fraction due to the high affinity of mercury to bind with SPM as 

in many aquatic systems (Coquery et al., 1997; Mason and Sullivan, 1998; Mason et al., 

1999; Domagalski, 2001; Lawson et al., 2001; Conaway et al., 2003; Choe et al., 2003; 

Laurier et a., 2003). Particulate mercury was 73 ± 12 % of the total mercury in June and 

70 ± 17 % in October.  
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Figure 4.7. (a) Distributions of unfiltered mercury in surface waters of Galveston Bay. 
(b) Relationship between concentration of suspended particulate matter (SPM) and 
particulate mercury.  
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Table 4.7. The concentrations of unfiltered, filter-passing (< 0.45 µm), particulate (> 0.45 µm), colloidal (10 kD – 0.45 
µm) and permeate (< 10 kD) mercury in surface waters of Galveston Bay. 
 

Unfiltered 
Hg 

Filter-
passing Hg 

Particulate 
Hg Colloidal Hg Permeate Hg Mass 

Balance St # Salinity 
(pM) (pM) (pM) (pM) % (pM) % % 

CF 

Jun. 2003           
1 0 9.3 2.5 6.8       
2 0.9 13 2.6 9.9       
3 3.6 12 2.4 9.2       
4 5.4 9.6 2.0 7.6       
5 7.2 11 2.2 8.5       
6 9.8 5.7 1.8 3.9       
7 12.2 4.7 1.6 3.1       
8 16.2 12 1.1 11       
9 18.2 9.1 1.4 7.7       

10 21.8 4.0 1.4 2.6       
11 25.7 3.3 1.1 2.2       
12 28.6 1.7 0.9 0.8       

Oct. 2003           
1 0.1 27 5.0 22 2.6 51 3.3 65 117 14 
2 1.3 21 5.5 16       
3 3.7 16 4.0 12 0.89 22 3.0 77 99 18 
4 5.9 7.6 2.6 5.1       
5 7.3 3.7 1.6 2.1 0.18 11 1.3 83 94 16 
6 10.6 3.5 1.7 1.8       
7 12.6 4.8 1.7 3.1 0.11 6 1.3 73 80 16 
8 15.3 4.8 1.5 3.3       
9 17.3 8.8 1.4 7.5 0.12 9 1.0 71 80 16 

10 19.5 10 1.2 8.8       
11 23.3 17 1.2 15 0.12 10 1.1 87 98 15 
12 26.8 1.8 1.2 0.6       
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SPM influence on total mercury concentration occurs through the interaction 

between particulate organic carbon (POC) and mercury in freshwater and estuarine water 

environments (Mason and Sullivan, 1998; Lawson et al., 2001; Choe et al., 2003; 

Laurier et al., 2003). SPM in October showed a higher enrichment of mercury than in 

June (Figure 4.7.b), which might be related to an organic carbon enrichment in October 

particles. The higher chlorophyll-a concentration in October SPM supports the organic 

carbon enrichment of October SPM (Figure 4.8). The role of phytoplankton biomass 

controlling particulate mercury concentration has been reported in other turbid estuaries 

(Coquery and Welbourn, 1995; Coquery et al., 1997; Laurier et al., 2003).    
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Figure 4.8. (a) Distributions of chlorophyll-a/SPM. (b) Distributions of particulate 
mercury/SPM. 
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Mercury concentrations in filtered (< 0.45 µm) surface water samples ranged 

from 0.90 to 2.6 pM in June and from 1.0 to 5.5 pM in October (Table 4.7) and were 

similar to previous results (Stordal et al., 1996a). A non-conservative estuarine mixing 

behavior was observed for dissolved mercury in October, but was not apparent in June 

(Figure 4.9.a). In-situ removal is hypothesized as a reason of the non-conservative 

mixing behaviors observed for dissolved mercury in October rather than a dilution of 

river water mercury concentrations because river water discharge rates are low. This 

hypothesis is supported by the positive correlation observed between particulate mercury 

(as [unfiltered mercury] – [filtered mercury]) and dissolved mercury (Figure 4.9.b). 

When data points corresponding to the HTZ in the mid-estuary, where dissolved 

mercury may not be in equilibrium with particulate mercury, were excluded, the 

correlation becomes even more significant (r2 increases from 0.61 to 0.86). Figure 4.9.b 

indicates that particle-water interactions may control the concentration of dissolved 

mercury in Galveston Bay. Interaction between dissolved mercury and particulate 

mercury phases have been suggested in turbid estuaries where organic degradation 

occurs in surface and subsurface sediments (Cossa and Noel, 1987; Cossa and Martin 

1991; Cossa and Gobeil, 2000; Laurier et al., 2003).  
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Figure 4.9. (a) Distribution of dissolved mercury in Galveston Bay surface waters; (b) 
Relationships between dissolved mercury and particulate mercury. 
 

 

Ultrafiltration  

Ultrafiltration results for mercury conducted on six of the October samples are 

shown in Table 4.7 and Figure 4.10.  Six to 51 % of the filter-passing mercury was in the 

≥ 10 kD size fraction. These results are similar to those obtained by Guentzel et al. 

(1996) for Ochlockonee Estuary: 3 - 40 %. Previous work in Galveston Bay by Stordal 

et al. (1996a) determined colloidal mercury to range between 12 to 93 % with an average 

of 57 ± 20 % using a 1 kD membrane. Colloidal mercury and colloidal organic carbon 

(COC) concentrations co-varied (Figure 4.10.b), demonstrating that COC controls the 

distribution of colloidal mercury in Galveston Bay (Guentzel et al., 1996; Stordal et al., 

1996a; Choe et al., 2003). The colloidal coagulation and flocculation have been 

suggested as a removal process of dissolved trace metals (Honeyman and Santschi, 



 94

1988; Santschi et al., 1997) and dissolved mercury (Cossa et al., 1988; Stordal et al., 

1996a; Stordal et al., 1996b).   
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Figure 4.10. (a) Distributions of dissolved (<0.45 µm), colloidal (10 kD – 0.45 µm) and 
ultrafiltrate (<10 kD) mercury in Galveston Bay surface waters; (b) Relationship 
between colloidal organic carbon (COC) and colloidal mercury.  
 

 

 

A particle concentration effect, a decrease in Kd as a function of SPM due to the 

presence of colloidal ligands (Benoit et al., 1994; Benoit 1995; Benoit and Rozan 1999), 

was observed in both seasons (Figure 4.11). The Kd
’s determined for Galveston Bay are 

similar to those found previously and in other estuaries (Stordal et al. 1996a; Mason and 

Sullivan 1998; Choe et al., 2003). A significantly reduced particle concentration effect is 

observed when the colloidal phase is taken into consideration (Figure 4.11.b). 



 95

Log Cp (kg/L)

-6.0 -5.6 -5.2 -4.8 -4.4 -4.0

Lo
g 

K
d (

L/
K

g)

4.6

4.8

5.0

5.2

5.4

5.6

5.8

June
October

Log Cp (kg/L)

-5.6 -5.2 -4.8 -4.4 -4.0

Lo
g 

K
 (L

/K
g)

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

Kd
Kp
Kc

(a) (b)

           
Figure 4.11. (a) Relationship between particle-water partition coefficients (Kd) and 
particle concentrations (Cp): Kd (L/kg) = [particulate mercury] (mol/kg) / [filter-passing 
percury] (mol/L). (b) Distributions of Kd, Kc, and Kp as a function of particle 
concentration (Cp): Kc (L/kg) = [colloidal mercury] (mol/kg) / [filter-passing mercury] 
(mol/L); Kp (L/kg) = [permeate mercury] (mol/kg) / [filter-passing mercury] (mol/L). 
 

 

Distribution of Mercury-Complexing Organic Ligands 

Measured concentrations of mercury-complexing organic ligands ([L]) and 

conditional stability constants (K’) are given in Table 4.8 and Figure 4.12. The 

concentrations of strong mercury-complexing organic ligands (Ls) range from 23 pM to 

78 pM in June and from 19 pM to 93 pM in October, with average log KLs’ values of 

28.1 and 27.9, respectively. The weak mercury-complexing organic ligands (Lw) 

concentrations range from 1.4 nM to 10 nM in October with an average log KLw’ value 

of 23.1. The weak class ligand was not determined for the June samples. The Ls ligand 

shows esturine distributional features similar to those of silicate and phosphate, 

suggesting an importance of sediment–water exchange, while Lw ligand shows more 
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linear distributional features along a salinity gradient.   

 
 
 
 
 
Table 4.8. Concentrations and conditional stability constants of mercury complexing 
organic ligands in filtered surface water samples of Galveston Bay. 

aL1  dL2 Station 
number Salinity bLog 

αHgTSA 
cLog 
KHgLs' 

[Ls]t (pM)  
eLog 
αHgCl 

fLog KHgLw' [Lw]t (nM) 

Jun-03         
1 0 17.00 29.2 77.5     
2 0.9 16.71 28.9 77.5 g     
3 3.6 16.52 29.1 68.5     
4 5.4 16.42 28.7 71.9     
5 7.2 16.23 27.9 70.9 g     
6 9.8 16.23 27.8 76.9     
7 12.2 16.18 27.7 83.0 g     
8 16.2 16.13 27.6 58.5     
9 18.2 16.12 27.5 51.8     
10 21.8 16.12 27.6 35.1 g     
11 25.7 16.00 27.5 36.5 g     
12 28.6 16.00 27.6 22.9     
Oct-03         
1 0.1 16.91 28.8 86.2  13.94 23.0 9.35g 
2 1.3 16.71 28.6 92.6  13.93 22.9 9.80 
3 3.7 - - -  13.93 23.3 6.21 
4 5.9 16.42 27.9 78.7  13.94 23.1 8.06 g 
5 7.3 16.22 27.5 88.5  13.93 23.0 7.30 
6 10.6 16.22 27.7 82.8  13.97 22.9 5.70 
7 12.6 16.17 27.2 88.5  13.87 22.9 4.78 
8 15.3 16.17 27.5 75.8  13.87 23.3 3.91 g 
9 17.3 16.17 27.6 63.3  13.93 23.2 3.86 
10 19.5 16.12 28.0 51.8  13.84 23.4 2.60 
11 23.3 16.12 27.6 35.1  13.81 23.1 2.36 
12 26.8 16.12 28.1 18.7  13.81 23.0 1.38 g 

aDetermined by TSA competitions; bαΗgTSΑ = K1,HgTSA[TSA2-]+β2,HgTSA2[TSA2-]2;  
cKHgLs’ = [HgLs]/([Hg2+][Ls’]), [Ls’]=[Ls]t–[HgLs]; dDetermined by chloride competitions; 
eαΗgCl  = β2,HgCl2[Cl-]2 + β3,HgCl3[Cl-]3 + β4,HgCl4[Cl-]4; fKHgLw’ = [HgLw]/([Hg2+][Lw’])  
[Lw’]=[Lw]t–[HgL]; gData  are also shown in chapter II and III. 
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Figure 4.12. Distributions of concentration of mercury-complexing organic ligand ([L]) 
and conditional stability constant of HgL (log K’) in Galveston Bay surface waters. 
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The concentrations and conditional stability constants determined for Lw are 

compatible to previous reports for natural waters (Wu et al. 1997; Lamborg et al. 2003). 

The gradual decrease of mercury-complexing organic ligand concentration with 

increasing salinity is in agreement with that observed for copper-complexing ligands in 

estuarine water by Apte et al. (1990a), Tang et al. (2001), and Laglera and van den Berg 

(2003).  

Note that the numerical value of the conditional stability constant for Lw does 

not vary with salinity, while the conditional stability constant for Ls increases at lower 

salinities (Figure 4.12). The change in KHgLs’ with salinity may not be real, but rather a 

function of window strength of the determination (Apte et al., 1990b; Laglera and van 

den Berg, 2003). The constant distributions of log KHgLw’ along the salinity gradient are 

attributable to the constant window strength as a function of salinity as represented by 

log αHgCl (Table 4.8). However, the log KHgLs’ increases approximately 1.5 log unit at 

zero salinity with the increase in log αHgTSA of ~ 1. The ionic strength effect may result 

in an increase in the detection window for low salinity waters when constant 

concentrations of TSA were added (~ 2 nM) for the whole salinity range. A similar 

change in stability constants with salinity was reported for copper complexation by 

Laglera and van den Berg (2003). They observed an increased log αCuSA (SA = 

salicylaldoxime) from 5.1 to 6.1 with salinity decreasing from 30 to 0.2 when [SA] is 

held constant. The log K’ of the copper-organic complex was correspondingly increased 

from 14.5 to 15.9. Additionally, they demonstrated from the separate experiments that at 

a constant detection window, the variation of conditional stability constants by salinity 



 99

change was relatively small: for salinity 0.2 water, when log αCuSA = 6.2, [L1] = 33 nM 

and log K’ = 15.8; when log αCuSA = 5.2, [L1] = 43 nM and log K’ = 15.2. Their results 

indicate that the detected stability constants of low salinity waters are overestimated by 

the detection window increase resulted from an ionic strength change.  

 

Relationship between Glutathione and Mercury-Complexing Organic Ligand 

The concentrations of the Ls and Lw ligands show positive relationship with 

GSH concentrations (Figure 4.13), demonstrating that processes which influence GSH 

dynamics in Galveston Bay also influence the biogeochemical cycling of mercury-

complexing organic ligands. A relationship between GSH and mercury-complexing 

organic ligands has not been reported to date, though a relationship between copper-

complexing organic ligands and thiols have been reported in estuarine waters (Tang et 

al, 2001; Laglera and van den Berg, 2003).  
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Figure 4.13. Relationship between mercury-complexing organic ligands (L) and 
glutathione (GSH) concentrations. 
 

 

 

 

Concentrations and binding strengths of mercury-complexing ligands in filter-

passing (< 0.45 µm) and permeate (< 10 kD) fractions of Galveston Bay waters are 

shown in Table 4.9. The conditional stability constants determined in permeate waters 

(average 1023.8) were slightly higher than those determined for filter-passing samples 

(average 1023.1) with the same detection windows (log αHgCl = 13.9). An average of 53 % 

of the mercury-complexing organic ligands were partitioned into the permeate fractions 

(< 10 kD). However, direct comparison should be carefully considered due to the 

different conditional stability constants of each phase.  

The weak organic ligand (Lw) occurring in concentrations an order of magnitude 
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lower than GSH concentrations show significant portions of macromolecules, which 

supports the hypothesis that Lw ligands are not simple small molecules like GSH. The 

inclusion of macromolecules (> 10 kD) in the titration resulted in weaker binding 

strengths, demonstrating that the complexation between mercury and low molecular 

weight ligands are stronger than the complexation between mercury and high molecular 

weight ligands.  

The strong organic ligand (Ls) concentrations are 1000 times lower than GSH 

concentrations, suggesting that the Ls ligand is very specific and has highly selective 

binding strength with mercury. As described previously, its estuarine distribution shows 

a good correlation with GSH distributions, indicating that Ls, Lw, and GSH might have 

a common source and biogeochemical behavior in estuarine environments.  

 
 
 
 
 
Table 4.9. Concentrations and conditional stability constants of mercury-complexing 
organic ligands in filter-passing (< 0.45 µm) and ultrafiltrate (< 10 kD) waters of 
Galveston Bay. 
 

Filter-passing Ultrafiltrate Station 
number Salinity 

[Lw] (nM) Log KLw' 
CF 

[Lw] (nM) % Log KLw' 
Oct-03        

1 0.1 9.4 23.0 14.1 4.4 47 23.6 
3 3.7 6.2 23.3 17.7 4.8 77 23.5 
5 7.3 7.3 23.0 16.4 2.2 30 23.8 
7 12.6 4.8 22.9 16.1 2.3 48 24.0 
9 17.3 3.9 23.2 16.4 1.9 49 23.9 

11 23.3 2.4 23.1 15.2 1.1 46 24.0 
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Continuum Binding Ligand Model  

It has been postulated that natural organic matter has a continuum of binding 

sites with varying binding strengths (Bruland et al., 2000; Town and Filella, 2000; 

2002). Evidence for the existence of this hypothesis is often demonstrated by plotting 

ligand concentrations against conditional stability constants. In a continuum model, 

ligand concentration decreases as the conditional stability constants increases. This 

relationship implies that a low concentration of high strength binding sites on DOC are 

responsible for binding metals, when metal concentrations are low, rather than a 

particular ligand (e.g. glutathione or EDTA) or ligand class (e.g. thiols). 

The linear relationship between ligand concentrations and stability constants are 

presented in Figure 4.14 using the data compiled in Table 2.5, 3.4, 3.5, and 4.8. In Figure 

4.14.a, the log Kcond’ show linear relationship with log [L]t despite of different reaction 

conditions, which have been reported for other trace metals (Town and Fillela, 2000; 

2001). The organic complexation of mercury observed in this work clearly suggests a 

continuous binding model.  The conditional stability constants are corrected to free ion 

equilibria as described in Chapter III (Figure 4.13.b). Formation constants based on free 

ion concentrations show a smaller range of values (1026.3 - 1029.8) than those of [L’] 

(1022.9 -1029.2), which is attributable to the normalization of pH variation associated with 

the measurement. Formation constants in this range are consistent with the stability 

constants of mercury complexation by thiol groups (see Table 1.2) and those determined 

by Haitzer et al. (2003). As described in chapter III, generally, lower concentrations of 

stronger binding ligands dominate natural mercury speciation.   
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Figure 4.14. Relationship between the concentration of mercury-complexing organic 
ligand (L) and the stability constant (K) of HgL. Data are presented in Table 2.5, 3.4, 
3.5, and 4.8. (a) Kcond’ = [ΣHgL]/([Hg2+][L’]), L’ = [L]t - [ΣHgL]. (b) K = 
[HgL0]/([Hg2+][L2-]). 
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Chemical Speciation of Filter-Passing Mercury 

The concentrations of organic and inorganic dissolved mercury species in 

Galveston Bay estuary were determined using a thermodynamic equilibrium modeling 

program, MINEQL (Schecher and McAvoy, 1992). The formation constants used for 

inorganic mercury species are summarized in Table 4.10. These values have been 

commonly used in other reports (Leermakers et al. 1995; Guenzel et al., 1996; Laurier et 

al., 2003). The concentrations of organic species (HgLs and HgLw) were calculated 

using the mercury and ligand concentrations presented in Table 4.7 and Table 4.8, 

respectively. The mercury-organic ligand stability constants given in Table 4.8 are 

conditional constants and are only usable at the pH of the determinations. A correction 

can be made for pH if an assumption is made about the pKa for the ligand. Given in 

Table 4.11 are the corrected stability constants for the representative HgLs and HgLw 

when pKa1 of 6.3 and pKa2 of 10.3 are assumed (Haitzer et al., 2003). Assumptions and 

calculation process are described in Chapter III.   
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Table 4.10. Stability constants for formation of mercury inorganic complexes (at zero 
ionic strength and 25 ºC, Morel and Hering, 1993). 
 

Complex log β 
  HgOH 10.6 

  Hg(OH)2  21.8 
  Hg(OH)3 20.9 

  HgCl2  14.0  
  HgCl3 15.1 
  HgCl4  15.4 

  HgOHCl 18.1 
 
 
 
 
Table 4.11. Correction results of conditional stability constants of HgLs and HgLw using 
pKa of H2L: pKa1 = 6.3 and pKa2 =10.3. 
 

  Log KHgL’a pHb Log KHgL
c 

Ls 23.0 7.0 26.4 

Lw 28.0 9.8 28.6 
                             aKHgL’ = [HgL]/([Hg2+]([Lt] – [HgL]));  
                             bTitration pH; 
                             cKL= [HgL0]/([Hg2+][L2-]). 

 

 

 

The solution speciation in Table 4.12 and 4.13 was calculated for seawater of pH 

8.2 using the pH normalized conditional stability constants. MMHg concentrations are 

included in the October data based on separate determinations (Choe and Gill, 2003). 

MMHg and Lw ligand were not determined for June samples. Other mercury species 

such as elemental mercury and dimethylmercury included in total filter-passing mercury 

are generally less than 5 % of total dissolved mercury in estuarine environments (Mason 
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Table 4.12. Concentrations of filter-passing mercury species in surface waters of Galveston Bay collected on June 2003, 
T=29ºC, pH=8.2.  
 
 

St # S Log KHgLs 
Ls 

(M) 
HgLs 
(M) 

HgCl2 
(M) 

HgCl3 
(M) 

HgCl4 
(M) HgOHCl (M) total Hg 

(M) 

1 0 29.8 7.75E-11 2.53E-12 1.69E-22 1.06E-24 1.20E-27 6.86E-21 2.53E-12 

2 0.9 30.0 7.75E-11 2.60E-12 8.46E-20 1.53E-20 5.79E-22 1.28E-19 2.60E-12 

3 3.6 30.5 6.85E-11 2.39E-12 4.13E-19 2.99E-19 5.22E-20 1.69E-19 2.39E-12 

4 5.4 30.2 7.19E-11 2.02E-12 1.45E-18 1.57E-18 4.35E-19 4.05E-19 2.02E-12 

5 7.2 29.5 7.09E-11 2.21E-12 1.41E-17 2.04E-17 7.85E-18 3.02E-18 2.21E-12 

6 9.8 29.5 7.69E-11 1.83E-12 1.93E-17 3.80E-17 2.09E-17 3.11E-18 1.83E-12 

7 12.2 29.4 8.30E-11 1.61E-12 3.00E-17 7.37E-17 5.23E-17 3.96E-18 1.61E-12 

8 16.2 29.4 5.85E-11 1.07E-12 4.87E-17 1.59E-16 1.57E-16 4.96E-18 1.07E-12 

9 18.2 29.3 5.18E-11 1.37E-12 1.12E-16 4.10E-16 4.62E-16 1.02E-17 1.37E-12 

10 21.8 29.5 3.51E-11 1.43E-12 1.56E-16 6.85E-16 9.51E-16 1.21E-17 1.43E-12 

11 25.7 29.4 3.65E-11 1.07E-12 1.92E-16 9.93E-16 1.66E-15 1.27E-17 1.07E-12 

12 28.6 29.5 2.29E-11 8.96E-13 2.53E-16 1.46E-15 2.76E-15 1.52E-17 9.00E-13 
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Table 4.13. Concentrations of filter-passing mercury species in surface waters of Galveston Bay collected on October 2003, 
T=25ºC, pH=8.2.  
 
 
St 
# S Log KHgLs 

Ls 
(M) 

Log 
KHgLw 

Lw 
(M) 

HgLs 
(M) 

HgLw 
(M) 

HgCl2 
(M) 

HgCl3 
(M) 

HgCl4 
(M) 

MMHg 
(M) 

total Hg 
(M) 

1 0.1 29.6 8.62E-11 26.6 9.35E-09 4.24E-12 4.83E-13 4.14E-21 8.33E-23 2.84E-25 2.76E-13 5.00E-12 

2 1.3 29.7 9.26E-11 26.8 9.80E-09 4.67E-12 6.56E-13 5.31E-19 1.39E-19 7.14E-21 2.07E-13 5.54E-12 

4 5.9 29.4 7.87E-11 27.4 8.06E-09 1.24E-12 1.28E-12 5.98E-18 7.10E-18 1.98E-18 5.35E-14 2.57E-12 

5 7.3 29.1 8.85E-11 27.4 7.30E-09 5.87E-13 9.73E-13 7.54E-18 1.11E-17 3.95E-18 3.20E-14 1.59E-12 

6 10.6 29.4 8.28E-11 27.4 5.70E-09 1.00E-12 6.98E-13 1.42E-17 3.03E-17 1.66E-17 1.96E-14 1.72E-12 

7 12.6 29.0 8.85E-11 27.5 4.78E-09 6.25E-13 1.07E-12 2.89E-17 7.33E-17 4.90E-17 2.06E-14 1.72E-12 

8 15.3 29.3 7.58E-11 27.9 3.91E-09 4.86E-13 1.00E-12 1.91E-17 5.87E-17 4.92E-17 1.07E-14 1.50E-12 

9 17.3 29.4 6.33E-11 27.8 3.86E-09 5.27E-13 8.13E-13 2.50E-17 8.69E-17 8.40E-17 1.89E-14 1.36E-12 

1
0 19.5 29.8 5.18E-11 28.0 2.60E-09 6.48E-13 5.22E-13 1.89E-17 7.42E-17 8.23E-17 1.44E-14 1.18E-12 

1
1 23.3 29.5 3.51E-11 27.8 2.36E-09 5.04E-13 6.85E-13 6.11E-17 2.87E-16 3.90E-16 9.61E-15 1.20E-12 

1
2 26.8 30.0 1.87E-11 27.7 1.38E-09 8.64E-13 3.35E-13 8.43E-17 4.54E-16 7.25E-16 5.35E-15 1.21E-12 
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et al., 1993; Leermakers et al., 1995; Mason et al 1998, 1999) hence any inaccuracy 

caused by ignoring these species would be minimal.  

For the June transect, the organic-mercury species, HgLs, dominates (99.6 – 

100 %) over the major inorganic mercury species, HgCl3
- and HgCl4

2-, for the whole 

salinity range. Note that if the pKa2 of H2L would be higher, this would cause a decrease 

of % HgLs, but only at high salinity (data not shown). For the October transect, MMHg, 

separately determined, was 0.4 to 5.5 % of total filter-passing mercury, decreasing with 

increasing salinity. The organically complexed mercury species is calculated as a major 

mercury species (HgL > 94.5 %). Table 4.13 shows that HgLs competes with HgLw in 

the mid-salinity range, when both are assumned to be present. Even though conditional 

stability constants of HgLw are two orders of magnitude lower than those of HgLs, the 

greater in concentration gives a comparable complexation capacity to that of the Ls 

ligand. Similar observations were reported for copper-binding organic ligands, in which 

the αCuL (= KCuL’ × [L]) remains constant with varied conditional stability constants 

range and gives approximately constant CuL concentrations (Bruland et al., 2000).  

The chemical equilibrium modeling of filter-passing mercury has several 

limitations in its interpretation. First, the other trace metals which compete with mercury 

for thiol binding sites were not included in the model calculations. However, since 

mercury is highly selective for thiol binding sites (for example, Log KHgDDC = 31.9, Log 

KCuDDC = 13.7, DDC = Diethyldithiocarbamates, Stary and Kratzer, 1968), any 

inaccuracy caused by ignoring these side reactions of thiol ligand could be ignored. 

Second, the log conditional stability constants of HgL can increase to a range 
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from 30 to 33 when mercury-binding ligands concentrations extrapolate to natural 

mercury concentrations (1 - 10 pM) from Figure 4.14. In that case, the complexation 

coefficient of HgL (αHgL) may be higher than reported values in Table 4.12 and 4.13. 

Third, in addition to thermodynamic equilibrium, kinetics of reactions, such as, 

reduction to Hg0, adsoption/desoprtion with particulate phase, and MMHg production, 

control the concentrations of dissolved mercury species in estuarine environments 

(Laurier et al., 2003). Covariation between dissolved reactive mercury and dissolved 

gaseous mercury (reduction product) was shown in the surface water samples of Seine 

Estuary, France (Laurier et al., 2003). Cossa et al. (2002) reported enhanced reduction of 

ionic mercury (up to 20 % of total dissolved mercury) during summer in the same 

estuary. While methylation of dissolved mercury has been reported to be ignorable 

(Laurier et al., 2003; Conaway et al., 2003; Choe et al., 2003), the reduction of Hg2+ to 

Hg0 need to be considered for the understanding of dissolved mercury distributions in 

surface estuarine waters.  
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Summary 

 

Two classes of ligands that complex mercury were determined in Galveston Bay 

estuary: a strong ligand (Ls), which exists at pM levels and is hydrophilic and a weak 

class ligand (Lw), which exists at nM concentrations and is hydrophobic. Both mercury-

complexing organic ligands (Ls and Lw) show estuarine distributional features similar to 

GSH and DOC distributions, suggesting a common source and biogeochemical cycling 

in estuarine environments. Based on linear relationships determined for Log [L] and Log 

K, these ligands appear to be part of a continuum of binding sites on DOC fractions.   

Almost all of filter-passing mercury in Galveston Bay exists as an organic 

complex ([HgLs] > 94.5 % of [Hg]t) based on chemical speciation modeling using 

measured stability constants and concentrations of mercury-complexing organic ligands. 

Concentrations of MMHg ranged from < 1 to 6 % of total dissolved mercury with 

increasing concentrations by decreasing salinity.   

 Overall, the distribution of unfiltered mercury in Galveston Bay surface waters 

was controlled by different hydrodynamic and biogeochemical conditions of the bay. 

Particularly important is the resuspension of bottom sediments and organic carbon 

content in particles. Dissolution from particulate mercury and removal by sinking 

particles through colloidal coagulation/particle adsorption are hypothesized to be major 

production and removal processes of filter-passing mercury in surface waters of 

Galveston Bay. Galveston Bay appears to be a sink for filter-passing mercury during 

both seasons, trapping high concentrations of filter-passing mercury in the sediment. 
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CHAPTER V 

MERCURY SPECIATION IN OFFATTS BAYOU – 

A SEASONALLY ANOXIC BAYOU ON GALVESTON BAY 

 

Introduction 

 

Biogeochemical behavior of mercury in a water column with varying redox 

conditions is determined by the different adsorption-desorption reactions involving 

physical and chemical speciation changes of mercury. Reducing conditions are known to 

increase the dissolution of Mn(IV) and Fe(III)  oxyhydroxide as a consequence of the 

microbial degradation of organic matter and to change the speciation of dissolved trace 

metals (Dyrssen and Klemming, 1990; Perry and Pederson, 1993; Balistrieri et al., 1994; 

Cooper and Morse, 1996). The particulate and colloidal mercury adsorbed on Mn(IV) and 

Fe(III)  oxyhydroxide (Tiffreau et al., 1995; Quemerais et al., 1998) and organic solid 

(Dmytriw et al., 1995) can be the source of dissolved mercury in anoxic water columns. 

Mobilization of mercury due to the dissolution of such mineral phases has been reported 

in anoxic sediment pore water (Gobeil and Cossa, 1993) and estuarine water (Mason et 

al., 1993).  

Particulate FeS is thought to control dissolved trace metal concentrations in 

anoxic environments through the scavenging of metal sulfide complexes (Dyrssen and 

Kremling 1990). Cooper and Morse (1996) showed that the total reactive (HCl plus 

HNO3 extractable) mercury fraction in anoxic sediments was dominantly associated with 
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pyrite. Mercury released by the dissolution of manganese and iron oxide can be re-

adsorbed on the same phase while dissolved mercury diffuses to oxic layers or can be 

scavenged onto FeS (Mason et al., 1993). The precipitation to mercuric sulfide is also 

possible in high concentrations of mercury and sulfide: The pE-pH diagram of mercury 

speciation for Onondaga Lake ([S2-]t = 2 mM, [Cl-] = 0.01 M, [Hg]t = 100 pM) predicted 

HgS precipitation under mild reducing conditions (-5 < pE < 5) and pH < 7.0 (Wang and 

Driscoll, 1995).  

The solid HgS has an extremely low solubility product: 10-38.5 for HgS + H+ ↔ 

Hg2+ + HS- (Dyrssen, 1989). Crystalline mercuric sulfide (HgS) in the form of 

metacinnabar and cinnabar has been found in mine impacted sediments (Kim et al., 2004) 

and mercury contaminated flood plains (Barnett et al., 1997).  Mercury complexation by 

sulfide and bisulfide (HgS2H2, HgS2H-, HgS2
-) in the presence of S2- was shown to 

increase the solubility of solid mercuric sulfide through thermodynamic calculations 

(Morel et al., 1998). The existence of dissolved organic matter (DOM) in anoxic 

condition would drive competition between dissolution and adsorption/precipitation, 

resulting in an increased dissolved concentration of mercury. Organic matter isolated 

from Florida Everglade was shown to increase the solubility of cinnabar (Ravichandran, 

1998) and precipitation/aggregation of metacinnabar was inhibited by humic fraction of 

DOM (Ravichandran, 1999).  

According to Dyrssen and Wedborg (1991), mercury-thiol complex should be a 

dominant species of dissolved mercury as long as sulfide concentration does not highly 

exceed thiol concentration based on the higher stability constants of mercury-thiol 
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species than those of mercury-sulfide species (Hg2+ + 2SH- = Hg(SH)2: Log K = 37.7; 

Hg2+ + 2RS- = Hg(RS)2: Log K = 41.6). However, depending on the reaction conditions, 

such as concentration of DOM, concentration of sulfide, and pH, the competition 

between the organic-mercury and sulfide-mercury complexes can occur. Evidences 

supporting a possible competition between sulfide and DOM species for mercury are 

provided by the inhibitions of DOM from the nucleation of metacinnabar and by the 

enhanced dissolution of cinnabar in the existence of DOM (Ravichandran et al., 1998, 

1999; Ravichandran 2004).  

Offatts Bayou, a sub-estuary of Galveston Bay, is located on Galveston Island. 

During the early 1900’s, this area was used as a borrow pit for major construction, 

resulting in a 1 km x 2 km size artificial basin. The depth of the basin is 2 - 5 times 

deeper than surrounding waters, resulting in a restricted water exchange between Offatts 

Bayou and adjacent coastal waters (Cooper and Morse 1996). In addition, there is a 

significant annual change in surface water temperatures which result in a seasonal 

thermohaline stratification of the water column. A highly sulfidic bottom layer develops 

every summer due to the intense oxidation of organic matter and limited mixing of water 

(Cooper and Morse, 1996).  

In this chapter, the dissolved mercury speciation in a stratified water column, 

which has anoxic bottom water, is estimated by the thermodynamic calculations. The 

concentrations of mercury-complexing organic ligands and stability constants of 

mercury-organic complexes are experimentally determined. Literature values are used for 
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mercury-sulfide speciation and thermodynamic calculation are carried out using 

MINEQL.  

 

Materials and Methods 

 

Sample Collection 

Samples were collected on September 9, 2003 at the eastern end of Offatts Bayou 

in a basin that is ~ 7 m depth. Dissolved oxygen (DO) concentrations were measured at 

0.5 m depth intervals by DO meter and the measured concentrations of dissolved oxygen 

were used to decide sample collection depths. Teflon coated Go-Flo bottles which were 

cleaned with weak hydrochloric acid were used to collect water samples from four 

different depths: one oxic, two transitions, and one anoxic. Go-Flo bottles were 

developed two times for each depth and the first bottles were used for the in-situ 

measurements of dissolved oxygen, salinity, temperature, and pH. The second Go-Flo 

bottles were moved to the lab immediately after the sample collections, after which 

filtrations using peristaltic pump were carried out in the clean lab. The filtration process 

using ultraclean protocol is described in Chapter IV. The filtered water samples were 

stored separately for the analysis of sulfide, mercury, monomethylmercury (MMHg), 

glutathione (GSH), dissolved organic carbon (DOC), and mercury-complexing organic 

ligands. A CTD was deployed at the sampling site to obtain water column profiles of 

salinity, temperature, and DO.   

Sample Analysis 
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Dissolved sulfide concentrations were analyzed by the methyleneblue 

spectrophotometric method (Okumura et al., 1999) modified from Cline method (Cline 

1969). The preparation of reagents and standard sulfide solutions are described in 

Okumura et al. (1999). About 100 mL sample were filtered into two graduates syringes 

(50mL) connected to other syringes each of which is containing 4 mL mixed diamine 

solutions (0.08 g N,N-dimethyl-p-phenylenediamine sulfate, 0.6 g iron (III) chloride, and 

4 g of magnesium chloride in 100 mL of 6 M hydrochloric acid). The two solutions were 

mixed through the tubing between two syringes and, after 20 minutes, the generated 

colored solution was passed through Sep-Pak® C18 cartridges (Waters). The absorbed 

methyleneblue complex was re-eluted with 3 mL of methanol/0.01 M hydrochloric acid 

solution. The absorbance of elute was measured at 659 nm. The pre-concentration step 

using Sep-Pak® C18 cartridge was not applied to bottom layer samples which show high 

sulfide concentrations (> 200 µM).  

Dissolved copper concentrations were measured by GFAAS with Zeeman 

background correction (Wen et al., 1996; Tang et al., 2002a). The analysis method for 

mercury, MMHg, GSH, DOC, and mercury-complexing organic ligands were described 

in Chapter IV.  
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Results and Discussion  

 

Temperature, Salinity, and Dissolved Oxygen 

  Water column profiles of temperature, salinity, and dissolved oxygen obtained 

using a CTD are shown in Figure 5.1. The water column is stratified with significant 

oxygen depletion (≤ 0.5 mg/L) in near bottom waters. A broad transition zone exists 

between approximately 3.5 m and 5.5 m depth. The salinity increases with depth over the 

upper and mid water column (~ 6 m), which is responsible for producing the stratified 

structure. The persistence of a thermohaline structure during summer and the shift to 

mixed water column structure during winter is a common feature of this system (Cooper 

and Morse, 1996).     
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Figure 5.1. Profiles of temperature, salinity and dissolved oxygen in Offatts Bayou on 
September 9, 2003.  
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Water Column Chemistry 

Measurement of salinity, DO, pH, suspended particulate matter (SPM), DOC, 

GSH, sulfide, and dissolved copper were made on discrete samples obtained from the 

water sample collections (Table 5.1).  

Values of pH decrease by depth from 8.5 to 7.5, probably co-varying with ΣCO2. 

The highest concentration of SPM at surface oxic layer suggests that major portion of 

SPM has a biological origin. DOC does not show a specific trend by depth. The highest 

GSH concentration at the bottom layer suggests that a sediment–water exchange flux is 

an important source of GSH. Dissolved copper concentration decreases with depth. 

Detailed investigation of copper distribution in an anoxic water column by Balistrieri et 

al. (1994) showed that decreased dissolved copper corresponds to an enrichment of Fe in 

particles at the same depth, which reflects the scavenging of Cu-sulfide species by 

particulate iron phases. 

The total dissolved sulfide concentrations were determined to 26 nM - 234 µM 

which agrees with Cooper and Morse (1996) who reported 200 – 400 µM at the 6 – 7 m 

depth and < 5 uM at 0 – 5 m depth in September 1993. The total dissolved sulfide 

concentrations in bottom layer, 234 µM, rapidly decreased in the oxic and transition zone, 

showing that the stratified water column structure limits the mixing of dissolved sulfide 

between bottom layer and upper layers.  
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Table 5.1. Salinity, dissolved oxygen, pH, suspended particulate matter (SPM), dissolved 
organic carbon (DOC), glutathione (GSH), sulfide, and copper concentrations of the 
sampling site in Offatts Bayou (T = 29ºC).  
 

Depth S O2 pH SPM DOCa GSHa sulfidea Cua 

m  mg/L  mg/L µM nM nM nM 

0 - 1 25.9 6.6 8.5 90 166 47 35 15 

3 - 4 26.8 5.0 8.2 28 145 42 55 8.2 

4 - 5 28.0 2.1 7.9 29 175 44 180 9.2 

6 - 7 29.5 0.49 7.5 18 165 61 230000 2.9 
        aIn a filter-passing fraction (< 0.45 µm). 

 

Mercury and Monomethylmercury Concentrations  

Mercury concentrations in unfiltered and filtered surface waters (Table 5.2) are 

comparable to those found in the Galveston Bay surface water transect (Chapter IV). 

Unfiltered mercury concentrations ranged from 1.9 to 2.2 pM in the upper layers and 

increase rapidly at the bottom layer to 6.7 pM. The filter-passing mercury showed a 

similar pattern, ranging from 0.73 to 1.1 pM in the upper layers, and increasing to 3.1 pM 

in the bottom layer.  Unfiltered and filtered mercury concentrations show rapid increase 

at the sulfidic bottom layer, which is primarily caused by the increase of MMHg.  

Higher MMHg concentrations were observed in the anoxic layer, which is often 

observed in stratified lakes (Bloom and Effler, 1990). MMHg is produced by sulfate-

reducing bacteria in anoxic sediments (Compeau and Bartha, 1985; Gilmour et al., 1992). 

High MMHg concentrations in bottom water most likely result from the diffusion of 

MMHg from sediment pore water. However, Mason et al. (1993) reported higher 

concentrations of MMHg at the picnocline than anoxic layer, and the maximum MMHg 
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depth agreed with high bacterial populations. More detailed sample collections and 

analyses are needed to explain the relationship between MMHg distribution and redox 

cycle in a stratified water column. 

Unfiltered mercury and MMHg concentrations do not covary with SPM 

concentrations. This stands in marked contrasts to the estuarine distribution where 

unfiltered mercury and MMHg concentrations covary with the distribution of SPM 

(chapter IV; Coquery et al., 1997; Mason and Sullivan, 1998; Mason et al., 1999; 

Domagalski, 2001; Lawson et al., 2001; Conaway et al., 2003; Choe and Gill, 2003; Choe 

et al., 2003; Laurier et a., 2003). In addition, filter-passing mercury and particulate 

mercury, which show linear relationship in Galveston Bay transect, do not show similar 

distributions in the sampling water column of Offatts Bayou (Table 5.2 and Table 5.3). 

This suggests that particle-water interactions that control the distribution of dissolved 

mercury in surface water of Galveston Bay do not control mercury cycling in stratified 

and oxygen depleted water column.  

 

Table 5.2. Mercury and monomethyl mercury (MMHg) concentrations in Offatts Bayou.  
 

Depth Unfiltered  Hg Filter-passing Hg Unfiltered MMHg Filter-passing MMHg 

m pM pM pM %a pM %b 
0 - 1 2.2 ± 0.07 1.0 ± 0.08 0.043 ± 0.02 2.0 0.021 ± 0.03 1.9 
3 - 4 2.1 ± 0.02 0.73 ± 0.04 0.054 ± 0.01 2.6 0.030 ± 0.01 4.1 
4 - 5 1.9 ± 0.03 1.1 ± 0.03 0.053 ± 0.02 2.8 0.046 ± 0.01 4.2 
6 - 7 6.7 ± 0.3 3.1 ± 0.2 2.7 ± 0.3 40 2.0 ± 0.1 65 

a% = [Unfiltered MMHg]/[Unfiltered Hg] x 100; 
b% = [Filter-passing MMHg]/[Filter-passing Hg] x 100. 
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The filter-passing mercury fraction averaged 47 ± 9.6 % of the total mercury, 

which is higher than observed for surface waters of Galveston Bay (28 ± 14 %). A higher 

percentage of dissolved mercury in total mercury pool is also supported by a low particle-

water partition coefficient (Kd, L/Kg) (Table 5.3). The Kd determined for Offatts Bayou 

averaged to 4.5 ± 0.3 (for Cp = 18 – 90 mg/L): the average for Galveston Bay was 5.1 ± 

0.2 (for Cp = 1 - 71 mg/L). Lower particulate mercury fraction in total mercury agrees 

with Mason et al. (1993) who measured mercury concentrations in the stratified water 

columns of Pettaquamscutt estuary. 

In Table 5.3, the particulate mercury/SPM (nmol/g) ratio is significantly lower in 

upper layers of Offatts Bayou compared to bottom layer and it was also lower than 

Galveston Bay samples (0.23 ± 0.08 nmol/g). Mercury enrichments of bottom water 

particles may relate to the organic-enriched SPM due to sediment organic degradation or 

to the presence of FeS precipitates scavenging dissolved mercury species.   

 

 

Table 5.3. Concentrations of particulate mercury (Hgp), particulate monomethylmercury 
(MMHgp), and partition coefficients (Kd) in Offatts Bayou. 
 

Depth Hgp Hgp / SPM log Kd
a of 

Hg MMHgp MMHgp / SPM log Kd
a of 

MMHg 
m pM nmol/g L/kg pM pmol/g L/kg 

0 - 1 1.1 0.012 4.1 0.022 0.24 4.1 
3 - 4 1.4 0.049 4.8 0.024 0.86 4.5 
4 - 5 0.80 0.028 4.4 0.0070 0.24 3.7 
6 - 7 3.6 0.20 4.8 0.70 39 4.3 

Kd (L/kg) = [Particulate mercury] (mol/kg) / [Filter-passing mercury] (mol/L). 

 



 121

Concentrations of dissolved manganese and iron were not determined, however 

higher dissolved manganese and iron concentrations are expected at the oxic/anoxic 

interface (Gobil and Cossa, 1993; Mason et al., 1993). Dissolved Fe(II) and Mn(II) in the 

suboxic zone diffuse upward and are oxidized to Mn(IV) and Fe(III) at or above the 

oxic/anoxic interface. While dissolved Fe(II) and Mn(II) diffuse to oxic zone, highly 

insoluble phases such as MnO2 and Fe(OH)3 are formed and may resettle toward anoxic 

zone (Perry and Pedersen, 1993). The lowest particulate Hg and particulate MMHg 

concentrations occurred at 4 - 5 m depth (Table 5.3), which can be attributed to the 

mobilization of mercury by the dissolution of Mn and Fe solid phases.  

 

Mercury-Complexing Organic Ligands 

 Mercury concentrations and conditional stability constants of mercury-

complexing organic ligands were determined by competitive ligand equilibration-

mercury titrations using thiosalicylic acid (TSA) as a competing ligand (chapter III). The 

window strengths (αHgTSA = K1[TSA2-] + β2[TSA2-]2 = 16.0 - 16.1) were similar to those 

used with the Galveston Bay samples (chapter IV). The potential interferences of sulfide 

on the mercury titrations was considered by comparing titration slopes obtained for the 

Galveston Bay samples with those for the Offatts Bayou samples. The average slope for 

the Galveston Bay titration curves was 0.47 ± 0.07: slopes for Offatts Bayou samples 

were 0.44, 0.46, 0.47, and 0.39 for 0.5 m, 3.5 m, 4.5m, and 6.5 m samples, respectively.  

Concentrations of mercury-complexing organic ligands were higher in Offatts 

Bayou (Table 5.4) than Galveston Bay surface water in the same salinity range (19 – 37 
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pM). The high ligand concentrations in Offatts Bayou may be attributable to the 

sediment-water exchange flux, resulting from an enhanced degradation of sedimentary 

organic matter in Offatts Bayou. The production of GSH due to bacterial degradation of 

organic matter (Mopper and Taylor, 1986; Kiene et al., 1990) might be related to the 

sedimentary flux of mercury-complexing organic ligands. Similar dynamics observed 

between GSH and mercury-complexing organic ligands in Offatts Bayou as well as 

Galveston Bay surface waters (chapter IV) support the previous hypothesis.  

The stability constants of mercury-complexing organic ligands measured by the 

TSA competition at pH 9.6 condition were normalized to the pH independent conditional 

stability constants as described in chapter III. The corrected conditional stability 

constants are shown in Table 5.4. 

 
 
 
 
 
 
 

Table 5.4. Concentrations of mercury-complexing organic ligands ([L]), conditional 
stability constants of mercury-organic complexes determined at pH = 9.6 (K'), and pH-
corrected formation constants (K). 
 

Depth (m) αHgTSA [L] (pM) Log K'a bLog Kb 
0 – 1 16.1 68 27.3 28.1 
3 – 4 16.1 81 27.3 28.1 
4 – 5 16.0 121 27.0 27.8 
6 – 7 16.0 162 26.8 27.6 

      aK’ = [HgL]/([Hg2+][L’]), [L’] = [L]t – [HgL]; 
      bK = [HgL0]/([Hg2+][L2-]). 
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Chemical Speciation of Filter-Passing Mercury in Stratified Water Column 

  The chemical speciation of filter-passing mercury was calculated using the 

equilibria described in Table 5.4 through 5.7 and the experimentally determined 

concentrations given in the previous section. The formation constants between mercury 

and dissolved sulfide shown in Table 5.5 were obtained from Benoit et al. (1999a; 

1999b) who reported average literature values of formation constants between mercury 

and sulfide. The total sulfide concentrations ([H2S] + [HS-] + [S2-]) measured by the 

methyleneblue method (Okumura et al., 1999) were used to approximate the 

concentration of hydrogen sulfide (HS-) using the first dissociation constant for 

hydrogen sulfide (pKa1 = 6.8) taken from Dyrssen (1985) (Table 5.7).  

 

 

 
 

Table 5.5. Formation constants between mercury and dissolved sulfide. 
 

Reaction Log Kf
a 

Hg2+ + HS- = HgS0(aq) + H+ 26.5 

Hg2+ + HS- = HgS (s) + H+ 36.5 

Hg2+ + HS- = HgSH+ 30.5 

Hg2+ + 2HS- = Hg(HS)2
0 37.5 

Hg2+ + 2HS- = HgS2H+ + H+ 32.0 

Hg2+ + 2HS- = HgS2
2-  + 2H+ 23.5 

       aBenoit et al. 1999a; 1999b. 
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Table 5.6. Formation constants between copper and dissolved sulfide. 
 

Reaction Log Kf
a 

Cu2+ + HS- = CuHS+ 14.1 

Cu2+ + 2HS- = Cu(HS)2
0 21.6 

aDyrssen, 1988. 
 

 

Table 5.7. Acidity constants of hydrogen sulfide and mercury-complexing organic ligand. 
 

 pKa1 pKa2 

H2Sa 6.88 14.15 

H2Lb 6.3 10.3 
aDyrssen, 1985. 
bHaitzer et al., 2003. 
 

 

 

Solution speciation of mercury was conducted using the chemical equilibrium 

program MINEQL (Schecher and McAvoy, 1992). The results for the major mercury 

species are shown in Figure 5.2 and Table 5.8. Mercury saturation indexes were negative 

for all four depths, hence mercury-sulfide precipitation is not predicted. The modeling 

predicts that the dissolved mercury complexation is dominated by hydrogen sulfide 

rather than organic ligands in all depths. The mercury-organic (HgL) complexes are < 

0.01 % of the total dissolved mercury, despite high stability constants between mercury 

and organic ligands.  
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Table 5.8. Concentrations of dissolved mercury-sulfide and mercury-organic species 
calculated by MINEQL using data in Table 5.4 - 5.7.   
 

Depth HgS2
2- HgS(HS)- HgS0 HgL 

m M M M M 

0.5 1.4×10-14 5.5×10-15 1.1×10-12 1.7×10-22 

3.5 1.2×10-14 9.1×10-15 6.8×10-13 5.1×10-23 

4.5 3.1×10-14 4.7×10-14 9.8×10-13 1.5×10-20 

6.5 2.2×10-13 8.6×10-13 1.3×10-14 1.3×10-25 
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Figure 5.2. The chemical speciation of filter-passing mercury in the stratified water 
column of Offatts Bayou. Concentrations of each species are in Table 5.2 and 5.8.   
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The weak mercury-complexing organic ligands, L2, were not determined here, 

however, their inclusion would not change the predicted mercury speciation since the 

KHgL1×[L1] is similar to the KHgL2×[L2] (chapter IV). The dominance of sulfide 

speciation on mercury in sulfidic environments is predicted from the concentrations each 

ligand and the stability constants of Hg-sulfide and Hg-organic. Since the stability 

constants between mercury and organics (1027.6 - 28.1) are lower than those of mercury-

sulfide (1035.0 for Hg2+ + HS- = HgS0(aq) at pH 8.5), and also concentrations of organic 

ligands (70 – 160 pM) are lower than those of sulfide (20 nM – 200 µM), the 

concentration of Hg-organic complex were determined to be much lower than Hg-sulfide 

concentration. The strong complexation of mercury by sulfide may be the reason for the 

low Kd values of mercury described in previous section. 

The substrate for MMHg production in anoxic sediment is thought to be neutral 

mercury species such as HgS0 (Benoit et al., 1999a, 1999b, 2001b). Such species are 

highly membrane permeable as evidenced by high octanol-water partition coefficient 

(Benoit et al., 1999b). Thermodynamic calculation predicts that the HgS0 species 

decrease with increasing sulfide concentrations (Table 5.8), which agrees well with other 

thermodynamic calculations using cinnabar dissolution models (Benoit et al., 1999a; Jay 

et al., 2000). In Figure 5.2, the concentration of MMHg was highest at the lowest HgS0 

concentration, suggesting that that inorganic solution speciation of mercury is not only 

parameter that influences MMHg concentrations in anoxic systems.  

The presence of elemental sulfur is known to increase the solubility of cinnabar 

through the complexation by polysulfide ligands, such as Hg(Sn)SH-, Hg(Sn)2
2-, 
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Hg(Sn)OH-, and HgS5 (Paquette and Helz, 1997; Jay et al., 2000). If elemental sulfur is 

present, then equilibrium calculations suggest that HgS0 concentrations would decrease 

in bottom water in favor of the dissolved mercury species such as, Hg(Sn)OH, Hg(Sn)2
2-. 

Similarly, in the upper layers, HgS0 would decrease to < 1 % of total dissolved mercury 

by the formation of HgSnOH-. The existence of elemental sulfur can be related to the low 

concentrations of MMHg at the mild reducing conditions (4.5 m depth) though higher 

resolution sampling and analysis are required to test this possibility. 

 
 
Summary 

 

 In this chapter, dissolved mercury speciation in the stratified water column of 

Offatts Bayou was investigated using a combination of chemical equilibrium modeling 

and experimentally determined thermodynamic data. Thermodynamic equilibrium 

modeling suggests that solution speciation of dissolved mercury in Offatts Bayou is 

dominated by inorganic sulfide-mercury species rather than organic-mercury species. The 

ratio of mercury-sulfide to mercury-organic was > 107. The modeling result suggests that 

different sorption/desorption from the surface estuarine water controls cycling of mercury 

in stratified water column. 

The filtered mercury concentrations were similar in the upper layers and increased 

at the bottom water primarily due to an increased MMHg. Particulate mercury and 

particulate MMHg concentrations showed the lowest values at the oxic/anoxic interface, 

suggesting that dissolution of manganese and iron oxyhydroxide mobilizes mercury from 
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particulate into solution phase. Increased concentrations of particulate mercury and 

particulate MMHg in the bottom layer may be related to the scavenging of mercury-

sulfide complexes by FeS. Overall, mercury cycling in stratified water column is related 

to the Fe and Mn redox cycle, particulate scavenging and sinking, and MMHg production. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

Summary 

 

Mercury Speciation Studies 

Studies of organic complexation of mercury in natural water are very limited 

compared to those of other trace metals. Standard voltammetric methods using a 

mercury electrode can not be used for mercury speciation and low concentrations of 

mercury in natural water inhibit the simple application of the voltammetric method. 

Despite these complications, various detection methods to quantify mercury-complexing 

organic ligands and to determine conditional stability constants of mercury-organic 

complexes have been reported recently (Wu et al., 1997; Skyllberg et al., 2000; Benoit et 

al., 2001a; Drexel et al., 2002; Haitzer et al., 2002, 2003; Hsu and Sedlak 2003; 

Lamborg et al., 2003). What is most encouraging is that the methods employed are quite 

diverse and the results of obtained show good agreement for conditional stability 

constants.   

 

Analytical Research Accomplishments 

Among the most significant accomplishments of this research was the successful 

development of a new method to measure concentrations and stability constants of 

mercury-complexing organic ligands in natural estuarine water and fresh water. 
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Significant analytical details of the method include: (1) no extraction step is necessary to 

isolate dissolved organic matter from the sample matrix; (2) the method has the 

advantage of being easily applied across a salinity gradient; (3) the detection limit for 

determining natural organic ligand concentrations can be lowered to pM levels, which is 

being reported for the first time. This latter feature is a result of the combined effect of 

the low detection limit of cold vapor atomic fluorescence spectroscopy and use of a 

strong competing ligand, thiosalicylic acid.  

 

Estuarine Mercury Cycling  

Complexation of mercury by dissolved organic ligands influences its transport 

and distribution in estuarine water through a competition with other processes such as 

particle scavenging. Release of mercury from particulate matter during remineralization 

is enhanced by organic complexation through increased solubility. There have been 

several pieces of indirect evidence which suggest that dissolved organic matter is an 

important factor controlling mercury distributions in surface estuarine waters. While 

there have been reports which provide information on mercury-organic (HgL) 

complexation in estuarine waters, these studies are based on operationally defined 

analytical approaches and hence are not rigorously defined thermodynamically. As 

demonstrated by this research, thermodynamic calculations using measured stability 

constants and ligand concentrations can be utilized to determine [HgL] in estuarine 

waters.  

Over 95 % of the filter-passing mercury in Galveston Bay exists as an organic 



 131

complex based on chemical speciation modeling.  This result supports the hypothesis 

that dissolution from particulate mercury and removal by sinking particles through 

colloidal coagulation/particle adsorption are the major production and removal processes 

of filter-passing mercury in surface waters of Galveston Bay. This observation is also 

evidenced by the estuarine distribution of other factors such as SPM, dissolved and 

colloidal carbon, and particulate, dissolved, and colloidal mercury.  

 

Thermodynamic Modeling of Mercury Speciation 

To date, a number of publications have treated the interaction between mercury 

and natural organic ligands as unique complexes with unique conditional stability 

constants. However, my research suggests that mercury-binding ligands in Galveston Bay 

estuary should be characterized as a series of binding sites on natural dissolved organic 

matter. Hence, stability constants should be reported as a relative value of [L] or 

[Hg]/[DOM]. Recently, several reports (Skyllberg et al., 2000; Haitzer et al., 2002) 

pointed out that as the ratio of [Hg]/[DOM] changes, so does the strength of the binding  

between mercury and DOM. These reports showed that higher stability constants are 

determined at lower [Hg]/[DOM] ratios. This finding agrees with the results of this 

current dissertation research, that higher stability constants of HgL are observed at lower 

ligand concentrations.  

The chemical speciation of dissolved mercury using thermodynamic calculations 

should be understood in relation to a continuous binding site model. In Chapter IV, 

competitive ligand equilibration-solvent solvent extraction (CLE-SSE) using thiosalicylic 
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acid competition determined the concentrations of mercury-complexing organic ligands 

(LS), which were one to two orders of magnitude higher in concentration than typical 

natural mercury concentrations. The continuous binding site model argues that the 

dominant mercury-complexing organic ligand would exist at concentration level 

equivalent to that of natural mercury concentration. This treatment further suggests that 

mercury-binding organic ligands of higher K and lower [L] values than those found in 

this research using thiosalicylic acid may exist in estuarine waters.  

 

Mercury Speciation in the Presence of Sulfide 

The results of thermodynamic equilibrium modeling for the anoxic water column 

of Offatts Bayou suggest that the sulfide complexation of mercury can be important for 

surface oxic water. Tang and Santschi (2000) reported sulfide concentrations of 

Galveston Bay surface water of 4.3 ± 0.6 nM, which is only a factor of 8 lower than that 

observed in Offatts Bayou surface water. The calculated ratio of [HgS0]/[HgL] in the 

surface water of Offatts Bayou was ~1010, which suggests a predominance of HgS0 

species over organically complexed mercury species. This finding implies a 

contradiction with the results of Chapter IV that the organic complex is the major form 

of dissolved mercury in fully aerobic surface water. One possible caveat is that the 

organic complexation coefficients (K × [L]) determined underestimate the true binding 

that exists between mercury and dissolved organic matter. As described in the previous 

section, the complexation of mercury in Galveston Bay estuary should be modeled using 

a continuous binding site model. By extrapolating the data in Figure 4.14 to a ligand 
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concentration equivalent to typical concentrations of mercury in Galveston Bay estuary 

(~1 pM), the predicted log stability constant of HgL would be 31.7 for an average ionic 

strength of 0.5 and 33.0 for an ionic strength of 0 (Figure 6.1). Hence the continuous 

binding site model predicts a complexation coefficient (K×[L]) of 1021.0 (= 1033.0 × 10-12).  
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Figure 6.1. Extrapolation of linear relationship between the concentration of mercury-
complexing organic ligand and the stability constant of HgL (K = [HgL0]/[Hg2+]/[L2]) 
modified from Figure 4.14. 

 

 

The impact of this organic complexation case in the presence of dissolved sulfide 

is illustrated in Table 6.1. Table 6.1 shows the competition for mercury between 

dissolved sulfide and mercury-binding organic ligands in surface water of Galveston Bay 

determined by chemical equilibrium modeling for a range of sulfide levels. The values 

of [L] and KHgL used in Table 6.1 were obtained from figure 6.1 based on the assumption 

that organic ligands in natural mercury concentrations dominate the complexation of 
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dissolved mercury. The thermodynamic formation constant for HgS0, also used in 

Chapter V, were obtained from Benoit et al. (1999b) who reported average literature 

values for the reaction: Hg2+ + SH- = HgS0 + H+. It is important to include copper in this 

modeling since it is a dominant sulfide species (CuHS+) in marine systems (Al-Farawati 

and van den Berg, 1999). The results in Table 6.1 demonstrate that sulfide, in the range 

of pM to nM, competes with mercury-complexing organic ligands, even in the presence 

of 10 nM of Cu which will bind most of the HS- in that concentration range.  

 

Table 6.1. Comparison between organic and sulfide speciation of dissolved mercury in 
surface waters of Galveston Bay based on thermodynamic equilibrium modeling.  
 

Log KHgS
a [SH]t (pM) Log KHgL

b [L]t (pM) HgLc (%) HgSc(%) 

26.5 1 33.0 1 88 12 

26.5 10 33.0 1 66 34 

26.5 100 33.0 1 29 71 

26.5 1000 33.0 1 5 95 
aKHgS for Hg2+ + SH- = HgS + H+  (Benoit et al., 1999b); 
bKHgL for Hg2+ + L2- = HgL0 determined from Figure 6.1 and corrected to zero ionic strength by 
Davies equation;  
cEquilibrium conditions: pH = 8.2. [Cl] = 0.4 M, [Hg]t = 1 pM, [Cu]t = 10 nM, and log KCuSH = 
14.1 (Dyrssen, 1988).   

  
 

There are two major caveats that must be recognized with assessing this 

modeling exercise. First, the reported values for the formation constant of HgS0 vary 

over several orders of magnitude. Second, the formation constant of HgL in Figure 6.1 

also varies over ~3 log units as a function of estuarine salinity. Generally, the lower 

salinity estuarine water shows higher stability constants than higher salinity estuarine 
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water. Hence, the results in Table 6.1 should be viewed somewhat as an approximation 

rather than an absolute. For example, if surface water has 1 nM [SH-] and 1 pM [Hg]t, 

the major mercury species is predicted to be HgS0 (92 % of the dissolved mercury). 

However, if KHgS is two orders of magnitude lower than the value used to generate 

concentrations in Table 6.1, then the major species of dissolved mercury will be HgL 

(75% of the dissolved mercury).  

Clearly, dissolved sulfide can be an important ligand, competing with natural 

organic ligands to complex mercury in surface water. The dissolved mercury speciation 

in Galveston Bay surface water and Offatts Bayou surface water varied significantly 

depending on relatively small changes in the stability constants used for HgS0 and HgL. 

Therefore, the determination of accurate stability constants of HgS0 and HgL are 

required to estimate the relative importance between sulfide and organic ligands for the 

complexation of dissolved mercury in surface estuarine water.  

 

Conclusions 

 

Hypothesis 

The main hypothesis that this study addressed was to test whether the solution 

speciation of Hg(II) in surface estuarine water was dominated by complexation with an 

organic ligand of low concentration (~ pM) and high conditional stability constant (Kcond 

> 1020). CLE-SSE revealed that indeed there are organic ligands in Galvesyon Bay in low 

concentration (~pM) and high conditional stability constants (Kcond > 1023). However, the 
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organic mercury complexation is not by a unique ligand but a series of organic binding 

sites on natural dissolved organic matter. Since the complexation coefficient (K × [L]) is 

higher at lower concentration of L, the most dominant binding sites will be those with 

concentrations equivalent to the natural mercury concentration (few pM). In this 

concentration range, the stability constants ([HgL0]/([Hg2+][L2-])) between mercury and 

the binding sites on natural organic matter will range from 1030 to 1033 (Figure 6.1). This 

range of conditional stability constants agrees with that observed by Skyllberg et al. 

(2000) who reported surface complex formation constants between mercury and soil 

organic matter.   

 

Future Research Efforts 

The CLE-SSE method for determining the organic complexation of mercury 

developed in this study has a number of potential applications for future research on 

mercury. First, monomethylmercury production and the bioavailability of mercury is 

known to be related to the chemical speciation of dissolved mercury. Studies on mercury-

organic complexation using CLE-SSE can be used as a tool to help elucidate the 

relationship between the methylation of mercury and the solution complexation of 

mercury. The relationship between the bioavailability of mercury and mercury-organic 

complexation can also be studied using the CLE-SSE method.  

Second, the chemical speciation of dissolved mercury is an essential part of our 

understanding of the biogeochemical behavior of mercury, particularly the reduction of 

Hg(II) into Hg(0).  The role of DOM on the direct and photochemical reduction of 
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mercury is important but poorly understood. Further chemical speciation studies need to 

be carried out to understand the role of DOM in mercury reduction.  

Third, CLE-SSE can contribute to the investigation of the chemical speciation of 

dissolved mercury in open ocean water. In Galveston Bay estuary, mercury complexing 

organic ligand concentrations decreased during estuarine mixing, allowing the inorganic 

mercury species to become more significant. If ligand concentrations continue to 

decrease into the open ocean, then mercury speciation in surface open ocean water would 

show the competition between organic and inorganic complexation. This trend agrees 

with the results of an instrumental speciation study using SnCl2 reduction (Cossa and 

Noel, 1987; Laurier et al., 2003).  

Fourth, the CLE-SSE method can be used to understand the role of biota in the 

organic complexation of mercury in natural waters. The relationship between 

phytoplankton abundance and mercury-complexing organic ligands, and the relative 

importance between biogenic organic matter and refractory organic matter for mercury 

complexation can be studied in order to clearly understand the importance of biogenic 

organic matter in mercury biogeochemistry.  

 

Final Remarks 

The entire research process from the development of CLE-SSE method to the 

analyses of Galveston Bay samples was a challenging procedure, which requires 

complicated calculation processes and careful applications of recent techniques. Most of 

the research period was dedicated to develop the novel method of CLE-SSE and to 
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confirm the accuracy of the method. The CLE-SSE developed in this study can be a 

useful tool for the further study of mercury as discussed above. In addition, the result of 

this study highlights the potential importance of sulfide for the mercury complexation in 

natural waters.  
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