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ABSTRACT 

This project hypothesizes that changes in climate resulting from urbanization can 

serve as a proxy for the changes expected from climate change, and therefore, future 

climate change effects on the biosphere can be estimated by comparing urban trees to 

rural trees. To study this, an urban-to-rural gradient was set up starting near downtown 

Houston, TX, and extending north approximately 90 km. Three weather stations were 

erected along this gradient to continually monitor weather. Photosynthesis rates of oak 

trees near each weather station were measured on periodic field trips throughout the 

growing season. 

Comparisons of temperature, rainfall, carbon dioxide, and ozone concentrations 

indicate that urbanization is a possible but imperfect proxy for climate change. 

Considering only two years of photosynthesis measurements, the long term effects of 

climate change are difficult to distinguish from short term effects, such as rain, and 

seasonal term effects, such as drought. However, observations hold promise that further 

measurements may lead to more conclusive results. 
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NOMENCLATURE 

 CO2 Carbon Dioxide 

H2O Water 

VOC Volatile Organic Compound 

JDHS Jefferson Davis High School (located in downtown Houston) 

SHNF Sam Houston National Forest 
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1. INTRODUCTION 

It has long been known that changing atmospheric conditions alter carbon 

assimilation rates [Farquhar 1980], and that plants’ secondary metabolism, which is a 

source of volatile organic compounds (VOCs) to the atmosphere [Rasmussen 1972], 

may in turn be altered directly and indirectly [Kesselmeier 1998]. These interactions 

create a feedback loop that potentially can have a large impact on how we understand 

climate change, but the magnitude of that impact remains uncertain [Booth 2012]. 

Essentially, there are two ways to study this problem. First, using controlled 

environments, by analyzing how different plants respond to different stressors such as 

drought, increased temperature, and higher levels of carbon dioxide and ozone. Second, 

via using a climate change proxy, something that incorporates all or most of the changes 

that are expected to result from climate change, to analyze how plants adapted to that 

particular environment. Unless individual stressors dominate effects spatially or 

temporally, this second method lacks the ability to tease out how these stressors are 

affecting plants, but it does allow for a big picture view of what can be expected as the 

climate continues to change. 

This study is of the second type. The Houston metropolitan area and the regional 

climate change it creates as a result of urbanization were examined to determine if they 

could serve as an acceptable climate change proxy. Simultaneously, measurements were 

taken on select oak trees to catalogue changes that resulted from the urban environment. 

For comparison, two other sites, one suburban and one rural, were similarly monitored. 



 

2 

 

Selected results of the first two years of the project, which is scheduled to run for five 

years, are presented here. 
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2. METHODS 

2.1 Sites 

Three sites, their locations shown in figure 1, were selected based on criteria that 

matched the project and research goals. Namely the sites needed to:  

 

 

 

Figure 1: Map of Weather Station Locations 

Jefferson Davis High School (JDHS) is in downtown Houston, The Woodlands is a 
forested suburban community approximately 45 km north of JDHS, and Sam Houston 
National Forest (SHNF) is 45 km further north. Galveston Bay is visible in the lower 
right. 
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1. Be located along a gradient from an urban area to a rural area but have a similar 

background climate so that the degree of urbanization is the primary difference 

between the locations. 

2. Have similar species of trees in close proximity to the weather station in order for 

comparison of photosynthesis measurements taken at each site. 

3. Be accessible to nearby schools to facilitate educational involvement for high school 

and junior high school science students. 

 The urban site is located at Jefferson Davis High School (JDHS) north of 

downtown Houston, TX. The site is inside the inner loop and is 1.6 km west of highway 

59, 1.3 km east of I-45, 1.8 km north of Hwy 90/I-10, and 36 km west-northwest of 

Galveston Bay. The weather station is located next to the school football field and tennis 

courts and directly borders a residential neighborhood composed mainly of low- to 

middle-income single family houses, but light commercial and industrial areas can also 

be found within a few blocks [Park et al., 2011]. 

 The suburban site is located at Jane McCullough Junior High in The Woodlands, 

TX approximately 45 km NNW of the urban site and 4.4 km west of I-45. The 

Woodlands (officially “The Woodlands Township”) is a master-planned community 

started in 1974 and currently covering 115 km2 with a population of over 100,000 

residents and a median household income over $100,000 [US Census Bureau 2012]. As 

the name indicates, The Woodlands is a heavily wooded area. According to their official 

website, "the Woodlands philosophy even encourages ‘natural yards’ with less grass and 

more forest" [The Woodlands Township 2014]. The weather station is located behind the 
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school in an area characteristic of the natural landscape philosophy.  The immediate 

neighborhood is low density residential. 

 The rural site is located at the Sam Houston National Forest ranger station 

approximately 42 kilometers north of the suburban site and 4 km west of I-45. One of 

four national forests in Texas, Sam Houston National Forest covers 650 km2. However, 

it is largely fractured and commonly described as “urban forest” (Salinas 2004). 

 

2.2 Weather Stations 

 Three weather stations from Onset Computer Corp. (Bourne, MA) were set up to 

continually record weather conditions at each of the three sites. Each station was 

equipped with a HOBO® U30 Data Logger, solar panel, and sensors to monitor 

 

Table 1: Weather Station Instrumentation 

Sensor Range Accuracy 
S-BPB Barometric 660 to 1070 hPa ±3.0 hPa at 25°C, ±5.0 hPa over 

all operating temperatures 
Photosynthetically 
Active Radiation 

0 to 2500 μmol/m2/s, 
400 to 700 nm wavelengths 

±5 μmol/m2/s, or ±5%, 
whichever is greater. 

Rain Gauge 0 to 12.7 cm/hr ±1% at up to 20 mm/hr 
Leaf Wetness 0 to 100% Repeatability 5% 
Temperature/RH -40°C to 75°C 

0 to 100% 
±0.21°C from 0°C to 50°C 
±2.5% from 10% to 90% 

Soil Moisture 0 to 0.550 m3/m3 ±0.031 m3/m3 from 0°C to 50°C 
Wind Speed 0 to 45 m/s ±1.1 m/s or ±4%, whichever is 

greater 
Wind Direction 0° to 355°, 5° dead band ±5° 
Model 202 Ozone 
Monitor 

1.5 ppb to 250 ppm 1.5 ppb or 2%, whichever is 
greater 

GMP343 Carbon 
Dioxide Probe 

0 to 1000 ppm ±3 ppm + 1% of reading 
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Figure 2: Pictures of Weather Stations 

From left to right, the weather station locations are JDHS, The Woodlands, and SHNF. 
 

weather conditions. Data was logged every minute, and later averaged to 15 minute 

periods. Additionally, each station was supplemented with a 2B Technologies model 202 

ozone analyzer and a Vaisala GMP 343 carbon dioxide probe. Table 1 shows the full list 

of sensors and their specifications. Figures 2a-b show each station at its site. 

 Prior to deployment, the weather stations were set up next to each other outside 

the laboratory on the roof of Eller O&M Building at Texas A&M University to collect 

data for three weeks. The measurements were compared to ensure precision.  

 Comparisons of pressure, temperature and relative humidity readings between 

the towers returned r2 (determination coefficient) values greater than 0.99 and ozone 

comparisons returned values greater than 0.98. The carbon dioxide probes for The 

Woodlands and Sam Houston National Forest likewise returned a comparison r2 value 

greater than 0.98; however the comparison of the Jefferson Davis High School probe 
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with the other two gave r2 values greater than 0.90. Figure 3 shows two examples of the 

comparisons done. The Sam Houston National Forest weather station was the first to 

begin operations on March 17, 2011. This was followed by The Woodlands station on 

March 18, 2011 and the downtown Houston station on March 22, 2011. 

 Carbon dioxide probes were calibrated for the first time in November 2011 and 

have been calibrated roughly monthly since then. As the testing prior to deployment 

indicated, the carbon dioxide probe in Houston tended to have the most trouble staying 

calibrated and was found to at times drift several ppm between calibrations. Eventually it 

was decided to substitute carbon dioxide measurements from the Houston weather 

station with carbon dioxide measurements being taken as part of another project just 0.6 

km away. 

Figure 3: Examples of Instrument Inter-Calibration Checks 
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 Ozone analyzers were zeroed one to two times per month since the start of the 

project and its Teflon PTFE inlet filters (Sartorius AG, Goettingen, Germany) replaced 

each time the analyzers were zeroed. They were returned to the laboratory and cleaned 

or returned to the manufacturer for repair as needed, which has happened approximately 

annually. 

 Only a few corrections were needed for the data after it had been collected. 

Weather data was spot-checked to ensure that no power spikes or outages caused the 

instruments to turn off. Drift in the ozone and carbon dioxide analyzers were linearly 

corrected between each calibration. All data was converted to 15-minute averages from 

the 1-minute averages recorded by the data logger before any analysis was done.  

 Temperatures at SHNF were corrected for the measurement height difference 

because the sensor was installed at 5 m above ground level while the other sites 

measured at 2 m above ground level. No correction was made for the 95 m change in 

elevation between JDHS and SHNF because part of the experiment was to analyze how 

trees were impacted by temperature experienced, so while a correction for height above 

ground level is necessary, a correction for altitude is not. Regardless of whether an 

elevation correction is applied, it would not significantly impact the conclusions that are 

made because it would only emphasize that a sea breeze is the controlling factor in 

keeping JDHS temperatures cool during summer afternoons. The gradients observed at 

other times were all larger than an elevation correction, which would therefore not alter 

the analysis. Carbon dioxide measurements were adjusted to account for changes in 

pressure and temperature. Separately pressure was converted to sea level pressure. 



 

9 

 

2.3 CIRAS-II Photosynthesis System 

 The CIRAS-II is a user-friendly, portable photosynthesis measurement system. It 

combines four infrared gas analyzers with carbon dioxide and water vapor absorbent 

columns to accurately control concentrations in a leaf cuvette. The leaf cuvette itself 

clamps onto a leaf and isolates a 2.5 cm2 area of the leaf exposing it to accurately 

controlled gas flows and light from an array of photodiode lamps. After a period of time 

sufficient to allow the leaf clamped into the cuvette to acclimate to the cuvette 

environment, measurements of gas exchange of the leaf allow for calculations of 

photosynthesis and transpiration rates. The instrument records measurements every 10 

seconds, but only data from the final minute of measurements, after the exposed leaf 

area had 5 to 7 minutes to acclimate and readings were steady, are used in the analysis. 

 Each field site was visited roughly every 1 to 2 weeks during the sampling 

season between May and October each year. At each site, a selection of trees was chosen 

that would be revisited during each trip to the site. Trees were selected based on species, 

relative age, orientation, and accessibility. A species misidentification occurred early in 

the project and was unfortunately only discovered during the second year. The "post 

oak" (Quercus stellata) at the downtown Houston site was actually an overcup oak 

(Quercus lyrata). This prevents direct comparison of those measurements with post oak 

measurements at other sites, but measurements done on other tree species can still be 

compared between the sites, and the overcup oak measurements can be used to analyze 

trends that occurred at the downtown Houston site. Other tree species sampled included 
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water oak (Quercus nigra), southern red oak (Quercus falcata), and American sweetgum 

(Liquidambar styraciflua). Not all of these measurements are presented in this thesis. 

 All data processing and analysis was done in R and Microsoft Excel. R is a 

computer language and environment used for statistical analysis and graphic production. 

It is free software developed as a GNU project and available for download online [R 

Core Team 2012]. Statistical analyses done include student t-tests, analysis of variance, 

and linear regression, all of which are functions built into R. 
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3. EVALUATION OF URBAN CLIMATE VS. CLIMATE CHANGE 

3.1 Introduction 

 The first part of this project, which must be completed before knowing how to 

interpret photosynthesis measurement results, is an evaluation of the quality of the 

chosen locations, specifically with regard to how well the chosen urban-to-rural gradient 

reflects the expected changes that are predicted to result from global climate change. 

This will be done in steps; first an examination of literature and IPCC reports is 

necessary to determine effects expected from climate change. Then, the experiment’s 

data will be analyzed to determine if changes along the urban-to-rural gradient are 

similar to the expected changes resulting from climate change. Then the collected 

photosynthesis data can be interpreted both in terms of the effects of urbanization and 

the effects of climate change. 

 

3.1.1 Expected Changes from Climate Change 

 Global climate change observed over the last 50 years is very likely not caused 

by natural forcings [IPCC 2007]. Carbon dioxide, CO2, emitted by the burning of fossil 

fuels and as a result of deforestation, represents the largest anthropogenic contribution to 

climate change [IPCC 2007]. The warming that results from anthropogenic greenhouse 

gas emissions leads to several feedbacks that also increase atmospheric carbon dioxide 

concentrations such as thawing of permafrost and increasing respiration rates. 

Background carbon dioxide concentrations have increased from 270 ppm in pre-

industrial times to 391 ppm in 2005 [IPCC 2007], reaching 399.77 ppm during May 
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2013 at the Mauna Loa NOAA ESRL observing station [Tans 2014]. Concentrations are 

expected to continue increasing at increasing rates until major policy changes are made. 

 Increased atmospheric carbon dioxide concentrations have a direct effect on 

global temperatures. Anthropogenic emission scenarios, along with natural feedbacks, 

lead to estimated temperature increases between 1.8°C and 4°C, but possibly as high as 

6.4°C during this century [IPCC 2007]. Depending on the emissions scenario, the fastest 

rate of increase will occur during the middle to late part of the century, and only a 

0.15°C to 0.3°C increase per decade for the near-term projections [IPCC 2007]. But 

these are global estimates, and warming will be neither spatially nor temporally uniform. 

Warming is projected to be more extreme in polar regions than in tropical regions [IPCC 

2007]. Additionally, studies have found that for a given location, the frequency of 

extreme heat events will increase as the frequency of extreme cold events decreases 

[IPCC 2007]. On even smaller time scales, it has been observed that night time 

minimum temperatures during the 20th century increased more than day time maximum 

temperatures resulting in an overall decrease in the diurnal temperature range (DTR) 

[IPCC 2007, Zhou 2009]. Projections indicate regional variability in diurnal temperature 

range will be closely anti-correlated with cloud cover [IPCC 2007]. 

 Projected changes in precipitation are also variable at regional scales. In general, 

increases in precipitation can be expected in the high latitudes while decreases can be 

expected in the subtropics [IPCC 2007]. Additionally, as a result of higher temperatures 

and thus the capacity for higher atmospheric water vapor concentrations, the frequency 

of heavy precipitation events is expected to increase [IPCC 2007]. 
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3.1.2 Expected Effects of Urbanization 

 Compared to global climate change, urbanization affects climate on a relatively 

local scale; however the magnitude of its effects can be just as strong. One of the most 

studied aspects of urbanization is the urban heat island, UHI, effect. It describes the 

phenomenon of urban areas being warmer, sometimes several degrees warmer, than their 

surrounding countryside. This effect results from a number of different causes including: 

 City canyon effect, in which large vertical surfaces of tall buildings make it more 

difficult for longwave radiation to escape, thus decreasing longwave albedo, 

 Lowered evapotranspiration due to reduced vegetation amounts,  

 Increased heat storage due to construction materials with high heat capacities,  

 Direct, anthropogenic heat emissions from buildings and vehicles, and  

 Some urban surfaces (e.g. pavement, roofs) being darker than undeveloped 

surfaces, such as bare soil or grassland, resulting in lower shortwave albedo. 

[U.S. EPA 2008]. 

Like climate change, the temperature increases that result from urban heat islands are not 

spatially or temporally uniform. Rather, the strongest effects are seen during the winter 

and at night such that the diurnal temperature range is decreased as a result of the heat 

island [U.S. EPA 2008]. There is also some indication that urban heat islands can 

increase precipitation 30-60 km downwind of cities [Kanda 2007]; however it was 

concluded that more observations would be necessary before determining the urban 

effect on precipitation [Kanda 2007]. 
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 Further studies have established that in addition to heat islands, urban areas can 

also form islands of elevated carbon dioxide [George 2007, Weissert 2014]. While 

carbon dioxide is a long lived gas and can be described as having near uniform 

background levels across the globe, which will continue to increase as anthropogenic 

emissions continue, proximity to emission sources can cause elevated concentrations on 

a regional scale. In addition to regionally increased concentrations, another study has 

shown that urban canopy structure in combination with a stable night time boundary 

layer can cause carbon dioxide build-up in excess of the surrounding areas [Moriwaki 

2005]. 

 Urban areas are also frequently noted for their pollution plume, which is an area 

of increased atmospheric pollution, notably ozone (Trainer et al., 1995; Schade et al., 

2011), downwind of city sources. Ozone is considered a secondary pollutant, meaning 

that it is formed by a series of chemical reactions that begin with primary pollutants. The 

ozone formation pathway is [Sharkey 2007]: 

 VOC + •OH + O2 RO2 + H2O [R1] 

 RO2 + NO  RO + NO2 [R2] 

 RO + O2  R`CHO + HO2•  [R3] 

 HO2• + NO  NO2 + •OH  [R4] 

 2(NO2 + hv + O2  NO + O3) [R5] 

This reaction series takes a few hours, so peak ozone concentrations are often found 

downwind of cities. One study done near Birmingham, AL found ozone concentrations 

highest 40 km downwind of the city center [Trainer 1995]. 
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3.2 Results – Comparison of Urban and Rural Climate 

 Two years of data collection showed two different climatologies affected by a 

unique Houston area climate dominated by its proximity to the Gulf of Mexico, and 

highly variable based on synoptic weather conditions. To illustrate this, this thesis will 

present both climatic means and analytical case studies. 

 

3.2.1 Means 

3.2.1.1 Temperature 

Average temperatures for the three sites are shown in figure 4. JDHS was 

warmer than both of the other two sites during both years. 2011 was characterized by a 

record setting summer. Both June and August 2011 were the warmest Junes and Augusts 

on record, and April through September were all in the top ten [HGX Webmaster 2013]. 

Daytime temperatures during the summer were at least 2.5°C warmer in 2011 than in 

2012 at all three sites. The urban heat island effect is very clearly observed as the 

downtown Houston site consistently 1-3°C warmer than the rural site with the exception 

of daytime summer temperatures. The Houston UHI effect is further illustrated in figures 

5 and 6, which show spatially extrapolated temperature data from this project’s three 

weather stations alongside TCEQ (Texas Commission on Environmental Quality) and 

NCDC (National Climatic Data Center) station temperature data. In figure 5 (winter 

morning), the UHI effect is very evident, and while the Gulf of Mexico is the warmest 

feature on the map, downtown Houston, Galveston, and the other urban and suburban 

areas are significantly warmer than the rural sites. 
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Figure 5: Spatial Temperature Pattern, 
Summer Day 

Average daytime (12PM – 6PM LST) 
winter temperatures.  

 

 

 

 

Figure 4: Mean Temperatures at Weather Stations 

Mean temperatures and standard deviations from each site for summer (JJA) and winter 
(DJF), day (12PM to 6PM LDT) and night (1AM to 6AM LST). Asterisks represent the 
significance of the difference between the highest and lowest temperature. * = 0.1; ** = 
0.05; *** = 0.01. 

 

 

Figure 6: Spatial Temperature Patterns, 
Winter Morning 

Average morning (10AM – 12PM LST) 
winter temperatures. Project weather 
stations represented by triangles, TCEQ 
represented by circles, and NCDC sites 
represented by x’s. 
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In comparison, figure 6 (summer day) shows The Woodlands and Sam Houston 

National Forest as slightly warmer than Houston, driven by an afternoon sea/bay breeze 

that is present on most days during the summer. Figure 7 shows the average diurnal 

cycle of temperature at each site. Of note is that the maximum daytime temperature in 

Houston is reached earlier in the day than at either The Woodlands or Sam Houston 

National Forest. A previous study has found a similar phenomenon of sea surface 

temperatures and sea breezes affecting urban heat islands and potentially rainfall during 

the summer [Oda 2009]. As the Gulf of Mexico/Galveston sea/bay breeze front moves 

inland, it causes a significant temperature drop at the JDHS site during passage, which 

usually happens just before the expected daytime maximum temperature, thus affecting 

daytime averages under southerly wind directions dominant during summer.  

 

 

  

Figure 7: Average Diurnal Cycle 

Average diurnal cycle (in LST) made by averaging temperatures every half hour during 
the 2011 summer. Horizontal lines indicate the average high and low temperatures. 
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3.2.1.2 Precipitation (Frequency and Intensity) 

 There were approximately half as many days experiencing rain in 2011 than in 

2012, but in both cases, the rural location had more rainy days than either the suburban 

or urban sites (figure 8a). The rural site also received significantly more precipitation 

than the other two sites during 2011 (figure 8b), and on average received 14.1 mm of 

rain per rainy day compared to 11.1 mm and 10.2 mm for the suburban and urban sites. 

However, this pattern does not hold true for 2012. The SHNF rainfall data for 2012 is 

likely wrong since NCDC sites in Conroe and Huntsville both received more than twice 

the amount of precipitation that the SHNF site measured, and increases in soil water 

content following rain events indicated that much more rain fell than was recorded by 

the rain gauge. Using changes in soil water content from 2011 as a local metric (r2 of 

0.69) for estimating rainfall in 2012, the rainfall at SHNF would amount to 1453 mm 

(±320 mm). Figure 9a-b shows the SHNF regression and a comparison with a similar 

regression analysis for the Woodlands site. The result is on par with measurements from 

the two closest NCDC sites in Conroe and Huntsville, which showed increases from 806 

mm to 1168 mm and 673 mm to 1053 mm from 2011 to 2012, respectively.  

 However, even though SHNF received more rain than either of the other two 

sites, average rainfall intensity and maximum intensity in SHNF was different. 

Calculating rainfall intensity as the amount of rainfall per day [IPCC 2007], we found 

that SHNF rainfall intensity was lower than either of the other sites during 2011 (figure 

10). JDHS saw an average intensity of 10.4 mm/day in 2011 while SHNF saw an 

average intensity of only 8.1 mm/day. Figure 11 illustrates that rain in SHNF was 
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dominated by days with intensity below 1.6 mm/day while JDHS and the Woodlands 

had median rainfall intensities at 3.3 and 5.5 mm/day, respectively. 

 

 

Figure 9: Comparison of Regression used for SHNF Precipitation Estimation 

The SHNF regression had an r-squared of 0.69 while the Woodlands regression had an r-
squared of 0.78. For both regressions, rainfall amounts 0.2 mm and below were ignored. 

Figure 8: Rainfall Amounts and Frequency 

Number of days with rain and the amount of rain measured at each site during 2011 
and 2012.  
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Figure 10: Rainfall Intensity 2011 

Average rainfall intensity for JDHS was 10.3 ±15.5 mm/day, for the Woodlands it was 
11.1 ±17.7mm/day, for SHNF it was 8.1±17.3 mm/day. Maximum rainfall intensity for 
JDHS was 110 mm/day, for the Woodlands it was 152 mm/day, and for SHNF it was 
124 mm/day 
 
 

 

Figure 11: Frequency of Storms by Intensity 

Note that the overlay of colors indicates an occurrence at multiple sites, so rain occurring 
at all three sites appears as a brown bar (blue + green + red). 
 



 

21 

 

3.2.1.3 Carbon Dioxide 

 Daytime carbon dioxide concentrations during both years were higher in 

downtown Houston than at either the suburban or rural sites (figure 12). However the 

opposite tended to be true for night time observations with carbon dioxide 

concentrations usually being significantly lower in Houston than at the other two 

locations. This is likely the result of the urban heat island effect, which typically leads to 

higher nocturnal boundary layers [Pal 2012], which combined with less vegetation 

reducing plant respiration lowers CO2 in Houston compared to the other two sites. It 

appears that although nighttime temperatures are higher in Houston, this effect is 

overridden by the fact that impervious areas, typically varying between 30 and 90% of 

surface in urban areas, strongly reduce the amount of emitting soil and plant surfaces. 

Although anthropogenic emissions may be expected to compensate for the lack of 

vegetation respiration, most anthropogenic emissions (e.g. from car traffic) occur during 

daytime, and human respiration does not compensate for lack of plant respiration either.  
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Figure 12: Mean CO2 Concentrations at Weather Stations 

Asterisks represent the significance of the difference between the highest and lowest 
temperature. * = 0.1; ** = 0.05; *** = 0.01. 

 

Figure 13: Number of Days with Ozone Exceedances 

Number of days each year that ozone concentrations exceeded the EPA 8-hour 
standard at each weather station. 
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3.2.1.4 Ozone 

 Ozone is an EPA regulated pollutant under the National Ambient Air Quality 

Standards (NAAQS) with the current limit set at an 8-hour average of 0.075 ppm 

(strictly, referring to the 4th highest value using a 3-year time-series, the so-called 

“design-value”). Figure 13 shows the number of days that each site exceeded the EPA 

standard during each year, and figure 14 shows the average summer time ozone 

concentrations. From figure 14, it is clear that summer time afternoon ozone 

concentrations during 2011 were much higher at all locations than during 2012. This can 

also be inferred from figure 13, at least for The Woodlands and downtown Houston, 

which both saw large decreases in the number of days they violated the EPA 8-hour 

Figure 14: Mean Ozone Concentrations at Weather Stations 

Ozone concentrations measured at each site during the summer mornings (10AM to 
12PM LST) and afternoons (3PM to 8PM LST). 
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standard from 2011 to 2012. However the Sam Houston National Forest site did not 

show a similarly large change.  

 Figure 15 shows two ozone indices, w126 and AOT40. Both are designed for the 

purpose of quantifying the effect ozone has on agricultural crops. The w126 is a 

weighted index such that higher ozone concentrations have a larger effect than lower 

concentrations [U.S. EPA 2010]. The weighting formula used is: 

𝐷𝑎𝑖𝑙𝑦 𝐼𝑛𝑑𝑒𝑥 =  ∑ [𝑂3𝑖] × (
1

1 + (4403 × 𝑒−126×[𝑂3𝑖]
)

7 𝑝𝑚

𝑖=8𝑎𝑚

 

where brackets denote concentration. The index is designed to reflect ozone’s increasing 

and non-linear detrimental effects on photosynthetically active plants. EPA suggested in 

2010 (U.S. EPA 2010) to sum daily index values over three months as the appropriate 

measure for rural ozone exposure during the vegetative season. The older AOT40 index 

looks only at ozone concentrations over 40 ppb, but all concentrations are weighted the 

same so long as they are above the 40 ppb cutoff [U.S. EPA 2006]. Calculating the 

AOT40 index is done by: 

𝐴𝑂𝑇40 =  ∑([𝑂3] − 40) × 𝑡𝑖𝑚𝑒 

where only ozone concentrations over 40 ppb are used. When ozone concentrations 

exceed 40 ppb only marginally, there is not much difference between the two indices, 

but they each tell a different story when comparing their values in the light of peak 

ozone concentrations. The three-month sums at JDHS during both years reached a peak 

during October. The AOT40 index reached 18 ppm·h in 2011 and decreased 66% to 6.2 

ppm·h in 2012. On the other hand, w126 reached 23.5 ppm·h in 2011 and decreased 
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70% to 7.1 ppm·h in 2012. This is largely because the highest ozone concentration 

during the August to October period of 2012 was 92 ppb. During the same months in 

2011, this concentration was exceeded on 19 days. Such very high concentrations in 

2011 are weighted much more heavily on the w126 index than on the AOT40 index, and 

thus the w126 index emphasizes the difference between the two years. 
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Figure 15: Ozone Index Comparison 

Two common ozone indices, AOT40 and w126, are compared. Both are designed 
with the purpose of examining the impact ozone can have on agricultural crops and 
other plants. 
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  3.2.2 Case Study - High Ozone 

 The days of August 12, 2011 (doy 224) through August 31, 2011 (doy 243) 

provided an excellent opportunity to examine the potential effects of high ozone on the 

field-grown oaks studied. During this three week period, the ozone meters recorded 

ozone levels in excess of the EPA standard at Houston on 16 days, at The Woodlands on 

7 days, and at SHNF on 4 days. However, on the final two days of this period (242 and 

243), Houston concentrations stayed much lower than concentrations in The Woodlands 

and SHNF. The reason for this was evaluated via NOAA Hysplit back trajectories, 

surface weather maps, and surface ozone concentration time series. Back trajectories 

were calculated using the NAM (North American Mesoscale Forecast System), 12 km 

gridded meteorological input data. August 26, 2011 (figure 16) illustrates a low wind 

speed condition where winds in Houston were coming from Houston and transporting 

pollutants downwind to the other two experimental sites. The initial concentration 

increase in Houston is likely caused by mixing after the nocturnal boundary layer broke 

up, and concentrations continued to increase throughout the day as a result of emissions 

and low wind speeds. Downwind of Houston, there were comparable morning increases 

in ozone, but afternoon increases are noticeably offset by the amount of time needed for 

the Houston plume to reach those sites; the increase in Woodlands occurred at ~1900 

LST and the increase in SHNF approximately two hours later. 
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Figure 16: High Ozone Case Study, August 26, 2011 

Winds were slow throughout the day (green, blue then red ending at 1400, 1700, 2000 
LST), as indicated by the points along each trajectory indicating 1800, 1200, 0600, 0000 
LST. At all times, however, winds originated in Houston, before rotating clockwise to their 
destination. The plot of vertical height indicates subsidence. 
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 Three days later, a weak stationary front had developed in the experiment area 

(figure 17). This meant the establishment of a continental air mass on its northeast side. 

For the region, this type of air mass typically has higher than normal background ozone 

concentrations. Therefore, when the nocturnal boundary layer broke up over SHNF and 

The Woodlands, mixing of surface air with the free troposphere dramatically increased 

surface ozone concentrations even faster than the concentration increased in downtown 

Houston (figure 18). Wind speeds were also faster on August 31, 2011 preventing JDHS 

ozone concentrations from getting as high as they did on August 26. 

 By September 1, 2011, all three sites were seeing rapidly increasing ozone 

concentrations in the morning when the nocturnal boundary layer disintegrated (figure 

19). However, winds shifted over the course of the day, so air reaching the Woodlands 

and SHNF largely missed Houston, and so ozone concentrations did not reach as high as 

they had on August 29 because fewer ozone formation precursors (NOx and VOCs) were 

advected towards the more rural sites.  
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Figure 17: Surface weather conditions for August 29, 2011 [NOAA 2014]. 

A stationary front is located in the experiment area, which would have higher than 
normal background ozone concentrations for the area.  
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Figure 18: High Ozone Case Study, August 31, 2011 

Early winds are slightly faster on this day than on August 26, 2011, and still increase 
throughout the day. Trajectories are originating from the Gulf of Mexico. 



 

31 

 

  

 

Figure 19: High Ozone Case Study, September 1, 2011 

Morning wind speeds are significantly higher than on the previous two case study dates 
and are generally coming out of the east. 
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Under significant wind speeds reinforced by a summer synoptic meteorological 

setup, ozone values in Houston typically remain lower due to constant advection of low 

ozone level Gulf of Mexico air masses. However, ozone builds up as the air advects 

north of Houston, with speed and direction dictating where the afternoon ozone 

maximum materializes. Thus, even though the region north of Houston produces few 

ozone precursors, it is affected by high ozone in Houston’s urban pollutant plume under 

typical summer southerly air flows, particularly when wind speeds are relatively low. 

 

 

  

Figure 20: Water Oak Photosynthesis Rates at Standard Conditions 

Standard water oak photosynthesis measurements were made at 30°C and 390 
ppm CO2. 
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It appears likely that several factors, high temperatures, low soil moistures and high 

ozone may have led to the dramatic decrease in water oak photosynthesis rates in 

Houston and the Woodlands (figure 20). The SHNF water oak photosynthesis rate was 

already very low, so it is hard to tell how it was further affected by this period. 

Regardless, the trend was mirrored in the post oak photosynthesis rates at The 

Woodlands and SHNF, though it was not as strong as in the water oaks (figure 21).  

 

 

 

 

 

Figure 21: Post Oak Photosynthesis Rates at Standard Conditions 

Standard water oak photosynthesis measurements were made at 30°C and 390 ppm 
CO2. 
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3.2.3 Case Studies - Winds from Different Directions 

3.2.3.1 Case Study - Winds from Different Directions: SE 

 Wind direction and speed plays a significant role in the day to day weather and 

air quality in the Houston area. Winds most often come from the south or south east, 

from the Gulf of Mexico. Average wind directions for each site over the course of 

summer 2011 are shown in figure 22. The wind directions for all three sites on June 11, 

2011 are shown in figure 23. For much of the day, winds were coming out of the SSE at 

all three sites, but still closely mirrored the average wind directions from figure 22. 

NOAA Hysplit model back trajectories (figure 24) show that the air mass was coming 

straight off the Gulf of Mexico. Figure 25 shows the temperature development for the 

day which closely mirrored the summer 2011 average diurnal cycle (figure 7). The 

temperature at JDHS reached a maximum earlier in the day than either Woodlands or 

SHNF, and begins cooling in the early afternoon because of a sea/bay breeze (figure 25). 

Figure 22: Average Diurnal Wind Directions 

Wind directions were averaged every 15 minutes for each day in JJA 2011. Error bars 
are spaced every hour and represent the standard deviation for the 15-minute interval. 
Wind speeds below 0.2 m/s are not included. 
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Ozone concentrations (figure 26) were lower in Houston than at either of the downwind 

sites. 

  

   

 

  

Figure 23: Case Study June 11, 2011 - Wind Direction 

(Unchanging wind direction indicates calm conditions.) 

 

Figure 24: Case Study June 11, 2011 - NOAA Hysplit Back Trajectories. 
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Figure 25: Case Study June 11, 2011 - Temperature 

 

Figure 26: Case Study June 11, 2011 - Ozone Concentrations 
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3.2.3.2 Case Study 2 - Winds from Different Directions: NW 

 A very different wind pattern occurred on doy 325 (figure 27). Winds shifted 

from the SE in the morning to NNW in the afternoon at all locations consecutively as a 

cold front passed through (figure 28); temperature (figure 29) was higher in Houston 

throughout the day, and ozone concentrations (figure 30) were low. In Houston, the 

lowest ozone concentration occurred just after noon. Cold fronts typically occur during 

the late fall and winter, and rarely during the summer. Since this was a fall time cold 

front with cloudy and rainy skies, the replacing air mass, which seemingly did not 

originate in high ozone precursor emissions areas (Figure 28), was not elevated in ozone, 

and hardly any additional ozone formation occurred as a result of local formation in the 

afternoon following the frontal passage (Figure 29). 
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Figure 27: Surface Weather Map November 22, 2011 

 

 

 

 
Figure 28: Case Study November 22, 2011 - NOAA Hysplit Back Trajectories 
 

 



 

39 

 

 

 

3.2.3.3 Case Study 3 - Winds from Different Directions: SW 

 The third meteorological situation is one where winds are from the SSW. 

Ultimately, they still originate in the Gulf of Mexico, but the air mass travels over 

significantly more land before reaching the Houston area (figure 31). This is a middle 

Figure 29: Case Study November 22, 2011 - Temperature 

Figure 30: Case Study November 22, 2011 - Ozone Concentration 
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ground situation in many aspects. The temperature in Houston is very close to the 

temperature in The Woodlands indicating that the usual cooling that results from a sea 

breeze is having a reduced effect (figure 32). Ozone concentrations in Houston 

approached 100 ppb, and SHNF ozone peaked at 80 ppb, lower than concentrations in 

Houston, but still elevated (figure 33). In both cases, the air mass advected over areas 

Figure 31: Case Study May 29, 2012 - NOAA Hysplit Back Trajectories 

 

Figure 32: Case Study May 29, 2012 - Temperature 
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with fewer ozone precursor emissions, but likely more in the case of Houston than in the 

case of SHNF. A small amount of rain on the previous day, coupled with evaporative 

cooling as there were no clouds on this day, is likely the reason SHNF remained cooler 

than normal compared to the other two site, which did not receive rain.  

 

3.3 Discussion 

 Table 2 shows a summary of the expected effects of climate change compared to 

the observed effects of Houston urbanization. First, daytime concentrations of carbon 

dioxide were higher in Houston than at the other two sites. This was not the case for 

night time concentrations, but since the night time concentrations are largely dependent 

on local weather patterns and vegetation density, whereas daytime concentrations better 

reflect background CO2 concentrations, the daytime concentrations are better suited for 

Figure 33: Case Study May 29, 2012 - Ozone Concentrations 
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comparison with climate change effects. Therefore, this observation supports the 

hypothesis that urbanization can be used as a proxy for climate change. 

 Temperature in the urban environment was higher at the urban site than at the 

rural site, 1.5°C in 2011 and 2.1°C in 2012 (table 2). However, unlike the predicted 

climate change scenarios, warming as a result of Houston's urban heat island occurs 

dominantly during nights and in winter, with daytime summer temperatures on average 

slightly cooler than the rural environment in 2011 due to the regional sea breeze. Thus, 

the comparison to the effect of climate change is not ideal. 

 

Table 2: Expected Climate Change vs. Urban Climate Change 

Summary of expected changes resulting from climate change and observed differences 
between Houston (urban) and Sam Houston National Forest (rural). 

Climate Factor 
Expected Change from Climate Change 
(from IPCC 4th Assessment Report, 2007) Observed Effect in Houston vs SHNF 

Carbon Dioxide  Concentrations are expected to increase to 
between 425 and 454 ppm based on emission 
scenario by 2030. 

Daytime summer concentrations are 4 to 
9 ppm higher in Houston compared to 
SHNF. 

Temperature Global Average temperatures are expected to 
warm between +0.64 and +0.65 °C between 
2011 and 2030. 

1 to 3 °C warmer than surrounding 
countryside, except during summer 
daytimes when it is 0-1 °C cooler. 

Tropospheric 
Ozone 

Ozone concentrations are expected to 
increase, but increases are highly dependent 
on location and policies implemented to 
control them. An increase of 3.7 ppb is 
expected in the eastern part of the United 
States by 2050, with higher increases in urban 
areas. 

During ozone season, average 
concentrations are 4 to 15 ppb higher in 
Houston than in SHNF depending on 
time of day. 

Rain Overall rainfall is projected to decrease by 20% 
in the southwestern United States, but there is 
a large amount of uncertainty in this 
projection, especially for the much wetter 
(mesic) east Texas location, which could 
become wetter instead of dryer.  
Individual precipitation events are expected to 
become more intense. 

SHNF had 5 more days of rain in 2011 
and 13 more days in 2012, increases of 8 
to 14% over Houston. For actual rainfall, 
SHNF received 276 mm more rain than 
Houston in 2011 and an estimated 366 
mm more in 2012, a difference of 34 to 
52% compared to Houston.  
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 The third major change expected from climate change is in precipitation.  In 

2011, Houston received 52% less rain and experienced fewer days with rain than Sam 

Houston National Forest. Similarly, in 2012, Houston received an extrapolated 34% less 

rain than SHNF. Climate change predictions are for 20% less precipitation in dryer areas 

such as the US-SW, so the differences observed here parallel the prediction that large 

parts of the subtropics will become more drought-prone. According to the IPCC reports, 

high intensity precipitation events are also expected to increase. This was also observed 

in the comparison between Houston and SHNF. Average rainfall intensity at JDHS was 

almost double the rainfall intensity at the SHNF site. In terms of using urbanization in 

Houston as a proxy for climate change, these data suggest that the changes in rainfall 

may parallel climate change predictions more closely than other factors.  
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4. CHANGES IN PHOTOSYNTHESIS 

4.1 Background 

 The largest fluxes of the contemporary global carbon cycle are the absorption of 

CO2 by plants through photosynthesis and emission through plant respiration and decay. 

These fluxes are strongly influenced by climate variables such as light availability, 

carbon dioxide concentration, and temperature. But, surprisingly little research has been 

done to incorporate uncertainties in the global carbon cycle into global climate change 

models. A 2011 publication by Booth et al. (2012) found that "the spread of CO2 

concentrations arising from land carbon cycle uncertainties is greater than the full spread 

of future SRES [Special Report on Emissions Scenarios] concentration scenarios when 

carbon cycle uncertainties are neglected." The authors further concluded that the largest 

variables in this uncertainty were the plant physiological responses to increased CO2, 

and temperature dependencies of photosynthesis. 

 

4.1.1 Effects of Temperature 

 Temperature is one of the largest factors affecting photosynthesis and growth. 

All plants have a broad "optimum temperature" range for photosynthesis. Below this 

temperature, increases in temperature will bring the biological reactants closer to the 

activation energy needed for chemical reactions associated with photosynthesis to 

proceed [Jones 1992]. However temperature increases above the optimum temperature 

will lead to decreases in photosynthesis for a variety of reasons, but mainly due the 

exponential increase in autotrophic respiration with temperature, and ultimately due to 
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induced harm to the enzymes that catalyze photosynthetic reactions. The optimum 

temperature for photosynthesis is different between species largely as a result of 

differences in thermal stability of chloroplast membranes and the ability of photosystem 

II to withstand temperature stresses [Jones, 1992]. Optimum temperature can also vary 

even between different plants of the same species as a result of their adaptations to a 

particular climate. Kattge and Knorr [2007] in a reanalysis of 36 species demonstrated 

how temperatures during the previous month of growth affect the two main factors 

governing photosynthesis rates and optimum temperature. They found that moderate 

acclimation is enough to double photosynthesis at 40°C if plants had been grown at 25°C 

rather than 17°C. 

 

4.1.2 Effects of Carbon Dioxide 

 Increasing atmospheric CO2 will affect plants in several different ways. C4 plants 

(examples include maize and sorghum) and CAM plants (mostly cacti) will not be 

strongly affected by increases in atmospheric CO2, whereas C3 plants (most plants and 

all trees) will likely increase carbon assimilation and growth. This is due to differences 

in C3 vs. C4 photosynthesis systems. Where C3 plants use the enzyme RUBISCO 

[Ribulose-1,5-bisphosphate carboxylase oxygenase] to uptake and photosynthesize CO2, 

C4 plants use PEP Carboxylase to uptake CO2 and deliver it to RUBISCO, and CAM 

plants store CO2 as an acid until it can be released for photosynthesis. But not all C3 

plants will see equal benefits from increased CO2 concentrations. For instance, Hunt et 

al. [1991] found that growth rate increases varied from 5% to 46% among C3 plants in 
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response to doubling CO2. In general, increased CO2 abundance can only be beneficial to 

plants when other growth factors, such as water and nutrients, are of sufficient supply. 

 Increased CO2 may also help plants better withstand drought conditions; with 

higher CO2 concentrations, leaf stomata do not need to open as much, thus decreasing 

transpiration through the leaf and increasing plant water use efficiency [Jones 1992]. 

Further research has indicated that this effect may be disproportionately in favor of 

evergreens due to the structure of needles versus leaves, allowing an evergreen to have 

even greater water use efficiency [Niinemets 2010]. Another study done on Norwegian 

Spruce trees found that trees grown in higher CO2 environments had longer "memories." 

That is, after being exposed to drought-like conditions, plants grown in a higher CO2 

environment retained increased activity of catalase and guaiacol peroxidase 

(antioxidative enzymes) longer than plants grown at ambient CO2 [Schwanz 1996]. In 

the presence of both increased ozone and CO2, the results were even more pronounced.  

 

4.1.3 Effects of Ozone 

 Ozone is a relatively well studied stressors for plants. Two different effects have 

been observed in plant interactions with ozone. The first is necrosis, or the death, of 

leaves. The second is chlorosis, which is a condition whereby leaves produce reduced 

amounts of chlorophyll. These effects are observed when plants are exposed to acutely 

high levels of ozone and light [Heath 1988]. In addition, lower levels of ozone can 

inhibit photosynthesis, reducing overall carbon fixation, and possibly lessening overall 

productivity (yield for crops) of the plant [Heath 1994]. Several possible mechanisms 
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could cause this reduction. One proposed by Heath [1994] is that ozone interactions 

within leaf cells could result in the injury of leaf stomata, causing them to close 

prematurely thus reducing CO2 uptake. This hypothesis found support in a study on the 

effect of ozone on rice yields, which noted elevated ozone levels led to decreased 

stomatal conductivity and transpiration, and ultimately led to lower rice yields [Peng 

2013]. Another proposed mechanism is that ozone interactions with the leaf will cause it 

to produce toxins, such as peroxides, that damage chlorophyll structures in the leaf 

[Heath 1994]. Peroxide production, in turn, generally increases plant antioxidant 

production. 

 

4.1.4 Interactive Effects 

 None of the above effects are completely independent or additive. Combinations 

of elevated carbon dioxide, ozone, temperature, and drought stress can lead to 

unexpected changes in plant physiology and photosynthesis. For example, a study on 

aspen showed that, while elevated ozone will always cause decreases in photosynthesis, 

the negative effects of elevated ozone can be amplified by the presence of elevated 

carbon dioxide [Noormets 2009]. A separate study on Norwegian spruce trees measured 

the antioxidant content of needles and found that after drought stress, trees grown at 

elevated CO2 maintained higher antioxidant levels longer than trees grown at ambient 

CO2. This effect was further increased by the presence of elevated ozone [Schwanz 

1996]. A study examining the effects of all possible combinations of stressors would 

have to be very extensive, and until that happens, generalizations will be necessary. This 
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is especially true for our project where the studied plants are located outdoors in 

uncontrolled environments. 

 

4.2 Results 

4.2.1 Water Oaks 

 Water oaks were present at all three sites and were tested throughout 2011. 

Temperature curves for early and late 2011 water oaks are shown in figure 34. The 

measurement season is divided at August 6, a date which falls in the middle of the 

climatically warmest time of the year in Houston. On this day, the average high 

temperature (1981-2010) is 35°C [HGX Webmaster 2013]. As discussed in section 3.2.1, 

2011 was a year characterized by little rainfall and high temperatures. As shown in 

Figure 34: Early vs. Late Season Water Oak Temperature Curves 

Average temperature curves for 2011, divided into early and late year. Error bars represent 
standard error. No error bars on a point indicates it represents only one data point. 
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Figure 34, photosynthesis was generally higher at 25°C during both times of the year at 

Houston and The Woodlands sites although differences were insignificant for Houston 

early in the season. The SHNF water oak showed photosynthesis rates broadly peak at 

30°C early in the year shifting to higher photosynthesis rates at 25° later in the year. 

Overall, photosynthesis rates decreased at most temperatures between the early and late 

growing season. At 30°C in the Houston water oak, rates decreased from 8.2 μmol m-2 s-

1 to 5.3 μmol m-2 s-1, and at SHNF, they decreased from 7.3 μmol m-2 s-1 to 3.2 μmol m-2 

s-1. Considering the 25°C and 30°C measurements (because significantly more data was 

collected at those temperatures), SHNF water oak – compared to the other sites – saw 

the smallest decrease in photosynthesis from early 2011 to late 2011, an average change 

of -1.3 μmol m-2 s-1, a 20% decrease, at 25° and 30°C. Water oaks were affected by 

water stress sooner than the post oaks, but also had quicker recovery after periods of 

rain. 

 

4.2.2 Post Oaks1 

 Post oaks provided a different challenge. After the first year of data collection, 

the decision was made to focus on post oaks during the second year and use them to do 

comparisons between years. Unfortunately towards the end of 2012, it was realized that 

the tree identified as a post oak (Quercus stellata) in Houston was an overcup oak 

(Quercus lyrata). This data is still used to compare 2011 to 2012 in Houston, but the 

comparison cannot be directly done between Houston and the other two sites. 

                                                 
1 See text 
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 The Houston overcup oak did not do well in 2011 (figure 35): from early to late 

growing season, its carbon assimilation dropped by 8.4 μmol m-2 s-1 or 71%. At 35° and 

40°C the percentage drop was even larger. And as with the water oaks, there was no 

clear indication of a temperature acclimation of photosynthesis during the course of 

2011. In early 2012 (figure 36), the overcup oak had a clear optimum temperature 

around 30°C. In contrast to 2011, late 2012 photosynthesis at 30° was only down 7%, 

and at 35° and 40°C, within the error bars, photosynthesis was unchanged. 

 

 

 

 

 

Figure 35: Early vs. Late 2011 Season Post Oak* Temperature Curves 

Average temperature curves for 2011, divided into early and late year. Error bars 
represent standard error. No error bars on a point indicates it represents only one data 
point. Again, the tree representing Houston here was an overcup oak. 
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 Post oaks at The Woodlands and SHNF did show signs of acclimation. In early 

2011, both the trees in The Woodlands and SHNF had the highest photosynthesis rates at 

20°C. However by late season, while carbon assimilation overall had decreased, 

temperature curves showed that photosynthesis rates were not strongly affected by 

temperature between 25 and 35°C, with photosynthesis rates at 35° being slightly higher 

than at the lower temperatures. This indicates the post oaks adjusted their photosynthesis 

optima to higher temperatures. At the start of 2012, while overall photosynthesis had 

again increased, the overall pattern of the curves resembled the pattern seen at the end of 

2011. By the end of 2012, both curves had surprisingly reverted back to the expected 

curve shape with peaks at 25° and 30°C. However, only the post oak in The Woodlands 

showed much lower overall photosynthesis rates compared to early season 

measurements, possibly a result of lower soil moistures at this site. 

Figure 36: Early vs. Late 2012 Season Post Oak* Temperature Curves 
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4.3 Discussion 

 In comparing the water oak and post oak data for 2011, it appears that the 

drought did not have as large an effect on the water oaks as it did on the post oaks at 

SHNF and The Woodlands. However, this is somewhat deceiving. Analysis showed that 

the water oaks had the largest photosynthesis response to rain events, indicating that they 

were also fastest to react to a lack of rain early in 2011 resulting in low photosynthesis 

rates and therefore relatively small changes in photosynthesis rates between early and 

late 2011. The effects of the drought in 2011 took longer to affect the post oaks in SHNF 

and the Woodlands, and even the overcup oak at JDHS. Therefore large changes in 

photosynthesis rates appear between early 2011 and late 2011. 

 Interannual changes in the post oaks at SHNF and The Woodlands are especially 

interesting. While overall photosynthesis rates increased from late 2011 to early 2012, 

the shape of the temperature curve, and the relatively high photosynthesis rates at 35 °C 

persisted from late 2011 to early 2012. By the end of 2012, temperature curves had 

reverted back to having a peak photosynthesis rate at 25 and 30 °C, similar to the 

situation observed in early 2011. More data would need to be collected to confirm 

whether this is a general trend, but this seems to indicate the post oaks could have a 

longer “memory” than currently thought. 

 The overcup oak, though closely related to post oaks, did not exhibit a similar 

behavior. While the overcup oak photosynthesis rates were higher early in 2011 

compared to the post oaks at the other two sites, and higher than the water oak located in 

Houston, by the end of 2011 its photosynthesis had dropped lower than that of either 
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post oaks or water oaks, suggesting a stronger response of this species to the drought 

conditions, possibly for reasons of its growth between two impervious areas within a 

meter of its stem, limiting soil water infiltration. 

 In terms of location, between the water oaks in 2011, the Houston location fared 

marginally better than the water oaks at the other two sites. During late 2011, the water 

oaks at The Woodlands and SHNF, within error bars, had approximately the same 

photosynthesis rates above 30°C. This is in contrast to the post oaks in The Woodlands 

and SHNF. During both 2011 and 2012, at almost every temperature level, the post oak 

in The Woodlands exhibited higher photosynthesis rates than the one in SHNF in the 

early part of the growing season. This completely reversed in the latter half of both years 

when the SHNF post oak displayed higher photosynthesis rates at every temperature. 

Future measurements are designed to confirm this tendency, and to eliminate that other 

factors, such as the chosen tree, its location, or leaf location on the tree affected this 

result. 
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5. CONCLUSIONS 

 In terms of the study objectives, first using the shift in climate from a rural area 

to an urban area as a proxy for climate change was only somewhat useful in our setup. 

Table 2 lists the factors examined, which include temperature, total rainfall and rainfall 

intensity, and carbon dioxide and ozone concentrations. The expected shifts resulting 

from global climate change, and the observed shifts from downtown Houston to Sam 

Houston National Forest match imperfectly. While increases in temperature are expected 

from global climate change, Houston exhibited lower daytime temperatures than Sam 

Houston National Forest during both summer 2011 and summer 2012, however, largely 

driven by the regional sea/bay breeze. Nevertheless, temperature increases during the 

winter and nights are roughly on par with what is expected from climate change over the 

next 50 to 100 years. Carbon dioxide increases in Houston, present only during the 

daytime, are less than half of the lower end of predicted carbon dioxide increases over 

the same 50 to 100 years. Ozone was highly variable, but in general, concentrations were 

higher in Houston than Sam Houston National Forest, which agrees with climate change 

predictions. Perhaps the best match was found regarding precipitation. Regionally, 

precipitation is expected to decrease while the intensity of precipitation is expected to 

increase. Both of these were mirrored in Houston, which had lower precipitation overall 

and higher intensity than Sam Houston National Forest. 

 Few conclusions can be made regarding the second goal of this project, namely 

that differences in oak tree photosynthesis rates can be attributed to urbanization, and 

therefore indicate what may result from climate change. Differences in temperature and 
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rainfall between downtown Houston and Sam Houston National Forest were smaller 

than interannual changes between 2011 and 2012. Without more data, this fact makes it 

difficult to separate the effects of the drought from the effects of the urban or rural 

environment. However, the observation of the effect of high ozone on photosynthesis 

rates in the case study, and the observation of post oak acclimation between late 2011 

and early 2012 suggest that more definitive conclusions could be made with more data. 
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