
CURVED PATTERN ORIGAMI

A Thesis

by

HAN-WEI KUNG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ergun Akleman
Committee Members, Felice House

Richard Furuta
Department Head, Timothy McLaughlin

December 2014

Major Subject: Visualization

Copyright 2014 Han-Wei Kung

ABSTRACT

Origami is the art of paper folding. It transforms paper into a completed form

through folding techniques. “ORI” means “folding” and “GAMI” means “paper” in

Japanese. Japan has developed the most extensive tradition of origami, although the

exact origin of origami remains unknown. In this thesis, I use a computer to design

folding patterns, and then use a laser cutter to cut and etch the patterns in paper.

Firstly, I implemented a C++ application to define folding patterns and to save

the patterns in EPS file format. I also used another C++ application developed by a

PhD student Ozgur Gonen. This application permits us to create more complicated

geometric patterns. Secondly, I exported the EPS file to an AutoCAD DWG file using

Adobe Illustrator. Thirdly, I set up the AutoCAD file for the laser cutter, moving,

resizing, and placing the drawing elements onto separate layers with different colors

in AutoCAD. Finally, I operated the laser cutter to let laser cut through material.

The application that I implemented allows us to draw both straight lines and

diagonals. However, we can arrange these lines only on a single square. In con-

trast, the application developed by Ozgur Gonen makes us able to arrange these

lines on a diversity of geometries, such as triangles, rims, and polygons, though its

diagonal-drawing function has not been implemented yet. Drawing folds using these

applications has several advantages: scaling, stretching, and repetition are easy. Fur-

thermore, we can always reload and modify any drawings.

To identify the performance requirements in our developed software solutions, I

executed some of the crease patterns from the book “Folding Techniques for Design-

erss: From Sheet to Form” by Paul Jackson as our test cases. The test report will

serve as a base for future studies on how to maintain and drive continuous quality

ii

improvement in the software in meeting user requirements.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my committee chair, Dr. Ergun Akleman.

He helped me come up with the thesis topic and diligently guided me throughout the

course of writing this thesis. I thank him for responding to my questions patiently

and promptly throughout my time as his student.

I also wish to thank my committee members, Dr. Richard Furuta and Prof. Felice

House. I sincerely acknowledge their valuable comments on this thesis. During the

difficult times when I defended this thesis, they gave me encouragement I needed to

move on.

I would also like to thank Ozgur Gonen, who developed the graphics program

Shady. Without his contribution of time and efforts, many of the origami models

could not have been successfully produced.

Finally and foremostly I must thank my parents who raised me with uncondi-

tional love and supported me all these years. They have given up many things for

me to study abroad. I also thank my sisters and brothers-in-law. Their unending

support and faith in me during my good and bad times are so appreciated. This

accomplishment would not have been achieved without them. Thank you.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . xii

1. MOTIVATION AND INTRODUCTION 1

1.1 Motivation . 2

1.2 Introduction . 2

2. RELATED WORK . 5

3. METHODOLOGY . 11

4. CURVED ORIGAMI DESIGN: ORIPATCH 14

4.1 Bezier Curve . 14

4.2 Bezier Surface . 17

4.3 OriPatch Interface Overview . 19

5. CURVED ORIGAMI DESIGN: SHADY 24

6. PROCESS AND IMPLEMENTATION . 29

6.1 Design Curved Origami Shapes . 29

6.2 Prepare Files for Laser Cutting . 29

6.3 Laser Etch/Cut Materials . 33

7. RESULTS AND CONCLUSIONS . 34

7.1 Making Origami Models . 34

7.2 Software Testing . 35

7.3 Conclusions . 36

v

REFERENCES . 44

vi

LIST OF FIGURES

FIGURE Page

1.1 Curved origami sculptures . 3

2.1 Examples of Robert J. Lang’s origami works. 6

2.2 Screenshots of the rigid origami simulation program developed by
Tachi [28]. 7

2.3 (a) ORIPA interface with the crease pattern of a crane (b) Shaded rep-
resentation of origami work in ORIPA. This application is developed
by Mitani [23]. 9

2.4 Users take photos of real-life objects and use Snap-n-Fold [30] to gen-
erate origami models from the photos. 10

2.5 The user completes a polyhedron using the Easigami TUI [10, 11]. . . 10

2.6 A participant interacts with the Origami Simulator [4]. 10

3.1 Examples from interfaces of two software we have developed. (a)
shows an example of origami design from OriPatch interface. In Ori-
Patch users define curved folding structures using a single cubic Bezier
patch. The u, v coordinates of the Bezier patch is used to create fold-
ing curves. Users adjust the attributes of the folding pattern curves
using a set of horizontal sliders. (b) shows an example of origami
design from Shady interface. Shady allows users to design origami
patterns using multiple cubic Bezier patches. One of the fundamental
features of Shady is that it allows users to create a variety of planar
2-manifold structures that consist of multiple Bezier patches. Exam-
ples of such structures include toroidal shapes, polar structures, and
grids. Shady also provides a number of operations over the 2-manifold
structures. In Shady, folding patterns are assigned by using a number
pattern instead of sliders. 12

vii

4.1 An example of an origami model created by using the program Ori-
Patch. (a) Design of folding patterns in OriPatch. The green-color line
segments are valley-fold and the red-color line segments are mountain-
fold. (b), (c), and (d) are the top, front, and three-quarter view of the
finished origami model. 15

4.2 For a given value of u, a point on a cubic Bezier curve can be defined as
the weightd sum of these four control points, (x0, y0), (x1, y1), (x2, y2),
and (x3, y3). That is, BezierCurve(u) = (1 − u)3(x0, y0) + 3(1 −
u)2u(x1, y1) + 3(1− u)u2(x2, y2) + u3(x3, y3) 16

4.3 A tensor-product Bezier surface patch of degree (3, 3). The u and v
coordinates of the control points p00 through p33 determine the curva-
ture and locations of creases and cusps of the surface patch. In other
words, given 16 control points, we can generate a cubic Bezier surface

patch using BezierSurface(u, v) =
3∑

i=0

3∑
j=0

B3
i (u)B3

j (v)pij. 18

4.4 OriPatch interface . 19

4.5 Demonstrations of designing the folding patterns as shown in Fig. 4.4.
(a) The Degree of Samples box shows that we have only one sample
point for every line segment because we work with straight lines in
this case. (b) The Coordinates of Four Corners box displays the four
coordinates of each of the quad’s corners. We can enter numeric values
with the keyboard for these coordinates. (c) The Vertical Edge and
Horizontal Edge box shows that the quad is divided into fourths along
the x-axis and is divided into eighths along the y-axis, using mountain-
fold (red) creases, across the quad. (d) The Diagonal box shows that
the slope of all diagonals is 2 because for every 1 grid unit that the
diagonal travels in x-direction, 2 grid units are traveled in y-direction.
Next, the phase shift is 1 because every diagonal at the right column
is shifted one grid unit upward. All diagonals use valley-fold (green)
creases across the quad. 20

4.6 The more the samples are, the smoother the line segments become: (a)
A cubic Bezier surface patch with 1 sample along each line segment,
(b) A cubic Bezier surface patch with 20 samples along each line segment 21

4.7 Illustration of cubic Bezier surface patches with different slopes and
phase shifts of diagonals. 22

viii

5.1 An example of how u and v coordinates lead to contradictions on
the red patch. This contradiction prevents us from assigning u and v
coordinates globally. 25

5.2 A brief summary of the main Shady interface (a) The following are the
components of the Shady interface: Menu, Toolbar, Tool Option Box,
and Worksapce. The toolbar contains three fundamental toolsets, as
seen in (b), (c), and (d). 26

5.3 A hexagonal parabola created by using the program Shady. 28

5.4 A freeform origami model created by using the program Shady. 28

6.1 An example of an EPS file opened in Adobe illustrator. 30

6.2 Adobe Illustrator AutoCAD Export Options dialog box gives us con-
trol over AutoCAD-format (.dwg or .dxf) images which may be sup-
plied when we export a document to AutoCAD formats. 31

6.3 An example of exporting the artwork from Adobe Illustrator, as seen
in Fig. 6.1, and then importing it to AutoCAD. 32

7.1 Four basic folded designs . 37

7.2 Complex origami . 38

7.3 Although we have not been able to use Shady to directly generate the
pattern that is exactly the same as the one in (a), we can create pattern
(b) which resembles (a). To further make (b) look more similar to (a),
we can change the orientation of the folds in the upper-left triangle
by 120 degrees. Furthermore (c) can be acquired by decreasing the
number of divisions in both upper-left and lower-right triangles. . . . 39

7.4 Examples of the crease patterns that can be made by using OriPatch.
Users can also use Shady to make patterns (a) and (b). However, to
be able to generate pattern (c) using Shady, we should additionally
provide a tool for connecting two existing vertices. Take a square for
example. A user can use this tool to draw an edge between two corners
so the square has two triangles in it. 39

ix

7.5 Examples of the crease patterns that can be made by using Shady
only. Users cannot make these patterns using OriPatch. One of the
reasons why users are unable to define these patterns in OriPatch is
that explicit control of the lengths between edges are not provided.
In OriPatch, a quadrilateral is divided into equally spaced lengths
always. Such manner prevents users from altering either of the two
endpoints of an edge and creating the pattern as shown in (b). To be
able to define these patterns, OriPatch must provide a function for
the user to move a vertex along an edge without shifting the edge itself. 40

7.6 Examples of the crease patterns that can be made by using Shady only.
Users cannot make these patterns using OriPatch. OriPatch provides
a user with only one single Bezier quad to design a folding pattern.
Therefore users cannot create other kinds of geometric shapes, such as
pentagons and hexagons. To aid a user in the attempt to easily form
a composite geometry object, we should have a tool which performs
stitching together multiple objects. We should also provide a feature
that allows a user to scale, translate, rotate, and duplicate targeted
objects to create an array of them. 40

7.7 Examples of the crease patterns that can be made by using Shady
only. Users cannot make these patterns using OriPatch. OriPatch
allows users to define a crease pattern using only one single cubic
tensor-product Bezier quad. Rims, circles and any types of polygons
with more than 4 sides cannot be generated in OriPatch. To let users
create different kinds of geometric shapes, we should provide a user
interface for the user to handle multiple cubic Bezier quads. Further
a merge boundry edge tool option should be provided so that the user
can use it to merge or weld faces together. 41

7.8 Examples of the crease patterns that can be made by using Shady
only. Users cannot make these patterns using OriPatch. When users
define folds on a quad using OriPatch, all folds are arranged across
the entire quad vertically, horizontally, and/or diagonally. Users are
forbidden from breaking and deleting these folds. To let users create
these patterns, we must provide an insert edge loop tool for users to
select and then split a face across an edge ring on the quad. Users
can also use this tool to divide an edge into a series of smaller edges.
Moreover we should support a feature which allows users to remove
unwanted edges. 42

x

7.9 Examples of the crease patterns that cannot be made using either
OriPatch or Shady. These patterns are composed of quadrilaterals
and triangles that neither OriPatch nor Shady can handle. To manage
to create these patterns, we should bring a new feature that allows
a user to flexibly draw new edges to split faces. Therefore a user
can select any two points along two edges of a face. This creates a
straight line which connects the two points, which serves as a new
edge to separate the face into two halves. Besides we should have a
delete edge feature to remove any unwanted edges from a face. These
cases involve some random geometric shapes and there are no clear
patterns that can be simply generalized. For example, pattern (f) is
formed by non-uniform quadrilaterals and triangles and is problematic
to be generated procedurally. 43

xi

LIST OF TABLES

TABLE Page

4.1 A 4× 4 Bezier Geometry Matrix . 19

xii

1. MOTIVATION AND INTRODUCTION

In the sixth century A.D., Buddhist monks brought paper from China to Japan

and Japan has elaborated origami to a very high art form. The Arabs the Moors were

also able to make paper in the eighth century but it is unknown that they practiced

paper folding or that they brought paper folding to Spain. It is known that origami

is very popular in Spain, Germany, Italy, and South America.

Almost every flat material can be used for folding if it can hold a crease. We

sometimes also need glue or tape to fix the material. Different kinds of materials

affect the look of the finished sculpture. Normal copy paper or drawing paper is

suitable for a wide range of models because they are light, flexible, and easy to cut

and fold. Heavier weight paper (e.g., Bristol board) can be used for straight folds

and large sculpture because it is thick and sturdy. Moreover, some kinds of paper

are colored and have pretty patterns, adding a great appeal to the models. Fabric

folding has fundamentally the same folding techniques but with fabric instead of

paper. For example, napkin folding is one of the most popular kinds of fabric folding

and is commonly seen in restaurants.

Origami models could resemble some shapes or forms in daily lives, such as boxes,

hats, cups, and flowers. With a piece of paper, origami could reproduce them in an

expressive way.

Practicing origami is fun, though it requires a lot of exercise. We would have to

calculate the number of folds and the spacing between each fold. We should also

be familiar with the texture of different kinds of materials. Only through constant

experiments can we gain excellent skills and knowledge of origami. At the end,

origami is not just for fun but also has many benefits like improving creativity, eye

1

hand coordination, geometry, measurement, and reasoning skills.

In this section I will motivate and introduce my research.

1.1 Motivation

Curved origami (see Fig. 1.1) is very different from conventional origami. In

conventional origami, we fold along straight lines, while in curved origami, we fold

along curves. The main difference is that the two opposite parts of the paper along

the curved crease cannot lie flat against each other. Therefore paper bends itself into

a natural equilibrium form.

Not many origamists have strived to create designs for curved-crease sculpture.

One of the reasons is that it is hard to draw curved folds by hand. Another reason

is that the results of curved models are usually hard to analyze and expect.

Since most of the existing software for origami design work with straight lines only,

it is necessary to develop computational methods to design and construct complicated

curved origami.

1.2 Introduction

I will now introduce the two programs we have developed and our procedure of

making origami models. In this thesis, we have implemented two computer programs

to design patterns for folding tessellations.

1. OriPatch: OriPatch is a C++ program for defining complicated folds on simple

geometry. The user can use it to create straight lines, curves, and diagonals.

With horizontal sliders, users can interactively modify some adjustable values

(e.g., the number of folds) in the folding pattern. The limit of this program is

that we are only allowed to create a single Bezier patch.

2. Shady : Shady is a C++ program for drawing simple folds on complicated

2

Figure 1.1: Curved origami sculptures

geometry. It supplies a number of tools, such as drawing straight lines, curves,

multiple Bezier patches, except for diagonals. This program is more flexible to

serve the needs of more advanced users.

We introduce a procedure of designing folds using computer software and pro-

ducing origami models using a laser cutter. The first step in the procedure is to

design and sketch out what we want to fold using our programs. Next, we export

our drawing as a file type which the laser cutter can recognize. After that, we place

the material we wish to engrave and cut onto the laser cutter bed and begin the laser

engraving/cutting process. The final step involves hands-on activity. We fold along

all the crease paths on both sides of the material and create an origami model.

To investigate if our programs satisfy the needs of origamists, I will further test

our programs by executing some of the cases shown in Paul Jackson’s book “Fold-

ing Techniques for Designers: From Sheet to Form. [14]” This book methodically

3

explains the key of folding techniques with clear instructions and inspirational dia-

grams. It begins with simple straight-line folds, including linear creases and pleat

surfaces. As the designs become more complex, Jackson moves to more organic ab-

stracts, such as curvature folds, crumpling and pinching. Therefore I will use our

programs to accomplish some of the examples in this book, so that we can identify

which examples can be implemented using our programs and which cannot.

For those patterns that cannot be produced using either OriPatch or Shady, pos-

sible solutions will also be discussed at the end. Some problems may be straightfor-

ward to be solved while others are fairly challenging, especially for the patterns that

are composed of non-uniformly random geometries. A number of possible further

studies could therefore concentrate on the enhancement of our programs. Using the

same experimental set up and our programs, origami artists can be better equipped

to tackle the challenge of designing for origami work.

4

2. RELATED WORK

I will describe some of the work related to origami. In 1989 at the first Interna-

tional Meeting of Origami Science and Technology Humiaki Huzita enumerated six

different ways of defining a single fold by bringing together one or more combinations

of points and lines on a sheet of paper [12]. Meanwhile Jacques Justin, in the same

proceedings of that very first Origami Science and Technology conference, presented

a paper in which he identified seven distinct operations of possible combinations [16].

In fact Justin’s seven operations included Huzita’s six operations and one extra op-

eration which was not mentioned in Huzita’s paper. However, Justin’s investigation

somehow remained unknown for many years. On the contrary Huzita’s six operations

became the foundation of the study of origami and was known as the Huzita Axioms.

Afterwards in 2001 a Japanese origami specialist Koshiro Hatori found another way

of creating a single crease that cannot be described in terms of any of Huzita’s six

operations [9]. Namely Hatori discovered the seventh axiom. Surprisingly it turned

out that Huzita’s six axioms plus Hatori’s operation are actually Justin’s seven op-

erations in 1989. Later in 2006 Roger C. Alperin and Robert J. Lang proved that

the seven axioms are complete combinations of the alighments [2]. The seven axioms

have become known as the Huzita-Hatori axioms, which has been widely used in the

study of origami constructions.

Several researchers have probed the mathematics of paper folding over the years.

For instance, Marshall Bern and Barry Hayes showed that, if we are provided with

a crease pattern and a mountain and valley assignment which guarantees the crease

pattern can be folded to a flat origami, determining the correct layering ordering of

a flat folded status is NP-hard [3]. More recently Demaine and Rourke presented a

5

thorough coverage of the mathematics of folding in Euclidean space. In their book

“Geometric Folding Algorithms: Linkages, Origami, Polyhedra” [6] they divided

folding problems into three categories: linkages (one-dimensional objects), paper

(two-dimensional objects), and polyhedra (three-dimensional objects). Then they

emphasized the algorithms and computational aspects for each of these categories.

There have been some approaches for synthesizing crease patterns that can pro-

duce three-dimensional origami models. For example, the leading origami artist and

theorist Robert J. Lang has investigated methods for designing flat-folded uniaxial

bases [21]. The base can be shaped by adjusting the lengths of the flaps. He de-

veloped the tree algorithm [19, 20]. It allows users to design an origami base that

topologically resembles a tree graph with preferred edge lengths, which can be folded

into an origami sculpture. Lang’s methods are suitable for designing organic models,

such as insects, animals, and other living forms. Fig. 2.1 shows some of his origami

works.

(a) Bull Moose, 2002 (b) Giraffe, 2011 (c) Beachcomber, 2013

Figure 2.1: Examples of Robert J. Lang’s origami works.

Tomohiro Tachi proposed a method for simulating rigid origami and developed

a system for simulating folding process from an origami crease pattern to a final

base fold, using rigid origami simulation [28]. Fig. 2.2 shows the interface of this

system. He studied the rigid deployable structures and proposed computational

6

Figure 2.2: Screenshots of the rigid origami simulation program developed by Tachi
[28].

methods [27, 29] to acquire variations of Miura-ori-like quadrilateral mesh origami

that preserves rigid-foldability and flat-foldability. He further developed the software

program Origamizer [5] which can efficiently generate a crease pattern for an arbi-

trary polygonal model. In Origamizer origami structure is represented by describing

geometric properties, such as the positions of vertices and the lengths of creases.

A user can determine vertices and creases at any arbitrary position and orientation,

and therefore manage to generate crease patterns for very complex three-dimensional

forms

Jun Mitani et al. [7, 24] proposed computational rendering techniques to con-

struct an origami model using a matrix that represents the overlapping relation

between two faces. At that time he [23] developed an application, ORIPA, which

renders a folded paper shape from a crease pattern inputted by the user. Fig. 2.3

displays the application window of ORIPA and its rendered origami result.

Other tools have also been created to support the origami design process. For

example, the software Doodle [13] translates the source code written in its special

descriptive language into an origami diagram that illustrates how folds should be

made. In addition, Akitaya et al. [1] proposed an algorithm which generates a corre-

sponding diagram (step-by-step folding sequences) for a crease pattern, accelerating

7

the process of drawing step-by-step instructions. Snap-n-Fold developed by Zhu et

al. [30] gives users natural interface to generate folding patterns. Users can use

mobile devices to take pictures of real-life objects and then use Snap-n-Fold to cre-

ate folding patterns of the objects. Fig. 2.4 shows two example results of using the

Snap-n-Fold tool.

Several researchers have further employed origami-inspired structure to engineer-

ing applications. One of the early studies is Takeo Kanade’s “Origami World The-

ory” and skew symmetry [17]. Kanade introduced the “Origami World” for han-

dling region-segmented images. It is a surface-oriented model where using the skew

symmetry heuristic to determine the orientation of planes in space becomes more

straightforward than other known methods. Kanade’s approach has contributed to

the field of computer vision over years. Lately Greenberg et al. [8] presented four

natural phenomena of paper folding, with their corresponding dynamics and graph

models, to demonstrate the analogy between origami models and spherical lamina

emergent mechanisms. Moreover Lee et al. [22] applied the magic-ball crease pattern

to design a wheel robot that can be printed on paper and then be folded and shaped

into its final shape.

Other systems integrate our physical world with the power of computational

models. For instance, Easigami [10, 11] is a tangible user interface and embedded

interactive system. It allows users to model polyhedral objects by connecting and

folding flat polygonal pieces. Refer to Fig. 2.5 to see how Easigami can be used

to create a truncated tetrahedron. Furthermore, Chang et al. [4] presented a 3D

Origami Simulator with multi-touch interaction. Users can interact with virtual

3D origami objects with multi-touch and physics simulation. Fig. 2.6 displays the

Origami Simulator with a multi-touch interface. Finally, Origami Desk [15] provides

users with multiple modes of interfacing with itself in creating an origami box or an

8

(a) (b)

Figure 2.3: (a) ORIPA interface with the crease pattern of a crane (b) Shaded
representation of origami work in ORIPA. This application is developed by Mitani
[23].

origami crane. The desk projects video clips to instruct users how to fold origami

paper. Animations are also projected onto users’ paper to show how to make folds.

The system also utilizes electric field sensing to determine the location of the touch

inputs on the desk surface, and swept frequency sensing to extract a fold.

A few studies have discussed the computation of curved folding. Some interactive

systems for designing curved folds have also been proposed. For example, Kilian et

al [18] presented a computational framework for representing curved folding using

planar quad mesh. Mitani [25] proposed a method for designing curved origami on

two principal types of rotational geometry: cylinders and cones. Mitani and Igarashi

[26] also proposed an interactive system to design planar curved folds using mirror

reflection through an implicitly defined plane.

While there have been several systems built for making folding patterns, most of

them focus on traditional origami, where creases are straight lines. As a consequence,

there is a need for innovative tools that allow users to design curved folding patterns.

In this research, we have implemented two applications which focus on facilitating

the process of designing curved origami patterns.

9

Figure 2.4: Users take photos of real-life objects and use Snap-n-Fold [30] to generate
origami models from the photos.

Figure 2.5: The user completes a polyhedron using the Easigami TUI [10, 11].

Figure 2.6: A participant interacts with the Origami Simulator [4].

10

3. METHODOLOGY

I will now introduce the research methodology for this study. To employ modern

technology in producing our origami, we follow a procedure that consists of the

following four steps:

1. Design Curved Origami Shapes: Currently, there is few software to design

curved origami patterns. Therefore, we developed two 2D drawing programs

to generate curved crease patterns for designing curved origami. The interfaces

and representational powers of these two programs are different as shown in

Figure 3.1.

The first program, OriPatch, allows users to design curved origami using one

single cubic tensor-product Bezier patch. Therefore, OriPatch provides a grid

structure topologically. Each of the curved folds in OriPatch is obtained using

either u, v or u+v constant curve. The simplicity of underlying structure helps

us to define folding patterns simply using sliders.

The second program Shady is developed to provide more general shapes and

structures for origami. With Shady, it is possible to create more complicated

structures as planar 2-manifold surfaces, in which every face is a cubic tensor-

product Bezier patch. To create triangles we simply move two control points

to the same position. This allows us to construct a complicated structure that

visually consists of only quadrilaterals and triangles with curved boundaries.

In Shady, we still use u or v constant curves to obtain folds. However, unlike

OriPatch in this case u or v patterns cannot necessarily be consistent globally.

Therefore, we cannot provide same type of global interface to obtain patterns.

Instead, we let users locally assign patterns using local u and v constant curves.

11

Because of this limitation, it is also hard to assign diagonal patterns that

correspond to u + v constant curves.

(a) OriPatch Interface (b) Shady Interface

Figure 3.1: Examples from interfaces of two software we have developed. (a) shows
an example of origami design from OriPatch interface. In OriPatch users define
curved folding structures using a single cubic Bezier patch. The u, v coordinates
of the Bezier patch is used to create folding curves. Users adjust the attributes of
the folding pattern curves using a set of horizontal sliders. (b) shows an example of
origami design from Shady interface. Shady allows users to design origami patterns
using multiple cubic Bezier patches. One of the fundamental features of Shady is
that it allows users to create a variety of planar 2-manifold structures that consist
of multiple Bezier patches. Examples of such structures include toroidal shapes,
polar structures, and grids. Shady also provides a number of operations over the
2-manifold structures. In Shady, folding patterns are assigned by using a number
pattern instead of sliders.

2. Prepare Files for Laser Cutting: The second step in the procedure is to set

up a file for laser cutting so that the laser cutter can engrave and cut through

a material according to the file information. In our case, we use OriPatch

and Shady to export our artwork in EPS file format, and then use third-party

software to convert and format the file for laser cutting. The laser cutter

determines whether to cut or etch an edge based on which layer that contains

12

the edge. At this point, we have a proper file format with correct layers which

are assigned to proper edges. We also scale the drawing pattern appropriately

using the third-party software in order to make it fit the laser cutter bed.

3. Laser Etch/Cut Materials: Once we have our file ready for laser cutting, the

next step is to bring laser-safe materials to the laser cutter to engrave and cut

the artwork. Almost all paper products (normal copy paper, cardboard, mat

board, Bristol board, etc.) are generally safe materials.

4. Fold the Model: The final stage is folding the necessary creases and then

collapsing the material along the fold lines into the final model.

Using the above procedure, we are able to design and create a wide variety of

origami models.

13

4. CURVED ORIGAMI DESIGN: ORIPATCH

The following section details the features of OriPatch. The program OriPatch

enables us to define curved crease patterns using one single cubic tensor-product

Bezier surface patch. A cubic tensor-product Bezier surface patch can be constructed

by a grid of sixteen control points. Then the curved creases are given by the u, v

coordinates of these control points on the Bezier surface patch. In OriPatch we are

able to edit the color and the number of curved creases by adjusting the horizontal

sliders. We can thus divide a square into strips in horizontal, vertical, and diagonal

directions, to create complex forms (see Fig. 4.1) We are also able to change the way

each line segment bends by dragging the blue control handle on each corner of the

square.

The common technique to model a smooth surface is to apply a Bezier surface.

Since a cubic Bezier surface creates a smooth and continuous surface, I utilized

a cubic Bezier surface as the basis of the drawing model in OriPatch. A cubic

Bezier surface represents the region bounded by a set of closed Bezier curves. To

explain cubic Bezier surfaces, I will begin with cubic Bezier curves because they are

easier to understand and implement. Next I will discuss Bezier surfaces, whcih are

generalizations of Bezier curves to higher dimensions. At the end of the chapter we

cover the basics of the OriPatch user interface.

4.1 Bezier Curve

In our case, we used a cubic Bezier curve that is defined by four control points.

Two of the four control points are endpoints or anchor points. They determine the

starting point (x0, y0) and destination point (x3, y3) of the curve. The rest of the

control points, (x1, y1) and (x2, y2), are handles, which influence the shape of the

14

(a) Folding Pattern Design (b) Top View

(c) Front View (d) Three-quarter View

Figure 4.1: An example of an origami model created by using the program OriPatch.
(a) Design of folding patterns in OriPatch. The green-color line segments are valley-
fold and the red-color line segments are mountain-fold. (b), (c), and (d) are the top,
front, and three-quarter view of the finished origami model.

15

Figure 4.2: For a given value of u, a point on a cubic Bezier curve can be defined as
the weightd sum of these four control points, (x0, y0), (x1, y1), (x2, y2), and (x3, y3).
That is, BezierCurve(u) = (1−u)3(x0, y0)+3(1−u)2u(x1, y1)+3(1−u)u2(x2, y2)+
u3(x3, y3)

curve. Fig. 4.2 illustrates a cubic Bezier curve that is determined by four control

points (x0, y0), (x1, y1), (x2, y2), and (x3, y3).

Equation 4.1 and Equation 4.2 are the parametric equations for the Bezier curve

BezierCurve(u) = {x(u), y(u)}.

x(u) =
3∑

i=0

B3
i (u)xi (4.1)

y(u) =
3∑

i=0

B3
i (u)yi (4.2)

where Bm
i is a Bernstein polynomial, using Equation 4.3 below.

Bm
i (u) =

(
m

i

)
ui(1− u)m−i (4.3)

Therefore, to calculate the coordinates of a point on the curve at a specific param-

eter value u (0 ≤ u ≤ 1), we solve for x and y by substituting Equation 4.3 into

16

Equation 4.1 and Equation 4.2, as seen below.

x(u) =
3∑

i=0

B3
i (u)xi

= B3
0(u)x0 + B3

1(u)x1 + B3
2(u)x2 + B3

3(u)x3

=

(
3

0

)
u0(1− u)3x0 +

(
3

1

)
u1(1− u)2x1 +

(
3

2

)
u2(1− u)1x2 +

(
3

3

)
u3(1− u)0x3

= (1− u)3x0 + 3(1− u)2ux1 + 3(1− u)u2x2 + u3x3

y(u) =
3∑

i=0

B3
i (u)yi

= B3
0(u)y0 + B3

1(u)y1 + B3
2(u)y2 + B3

3(u)y3

=

(
3

0

)
u0(1− u)3y0 +

(
3

1

)
u1(1− u)2y1 +

(
3

2

)
u2(1− u)1y2 +

(
3

3

)
u3(1− u)0y3

= (1− u)3y0 + 3(1− u)2uy1 + 3(1− u)u2y2 + u3y3

where

0 ≤ u ≤ 1

4.2 Bezier Surface

A Bezier surface is formed as the Cartesian product of two orthogonal Bezier

curves.

In OriPatch I applied a tensor-product Bezier surface patch of degree (3, 3).

Fig. 4.3 illustrates a single bicubic Bezier surface patch that is defined by a set of 16

17

Figure 4.3: A tensor-product Bezier surface patch of degree (3, 3). The u and v
coordinates of the control points p00 through p33 determine the curvature and lo-
cations of creases and cusps of the surface patch. In other words, given 16 control
points, we can generate a cubic Bezier surface patch using BezierSurface(u, v) =
3∑

i=0

3∑
j=0

B3
i (u)B3

j (v)pij.

control points. The parametric equation of the surface is given as

BezierSurface(u, v) =
3∑

i=0

3∑
j=0

B3
i (u)B3

j (v)pij =
3∑

i=0

3∑
j=0

B3
i (u)B3

j (v)(xij, yij)

Recall that Bm
i is a Bernstein polynomial, as seen in Equation 4.3. For each of

the equations x(u, v) and y(u, v) defined in the interval u, v ∈ [0, 1], a point on the

Bezier surface is given by

x(u, v) =
3∑

i=0

3∑
j=0

B3
i (u)B3

j (v)xij

y(u, v) =
3∑

i=0

3∑
j=0

B3
i (u)B3

j (v)yij

where xij and yij are the x and y values at row i and column j of the 4×4 Bezier

geometry matrix, as seen in Table 4.1.

18

pij = (xij, yij) =


p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33


Table 4.1: A 4× 4 Bezier Geometry Matrix

4.3 OriPatch Interface Overview

Fig. 4.4 shows the complete user interface of OriPatch. The toolbox on the right

side of the interface consists of four group boxes: the Degree of Samples box, the

Coordinates of Four Corners box, the Vertical Edge and Horizontal Edge box, and

the Diagonal box. Refer to Fig. 4.5 to see each of these boxes.

Figure 4.4: OriPatch interface

The following features are available to OriPatch users.

1. The Degree of Samples box contains one slider which determines how smooth

the creases are. The slider controls a variable of an integer type which serves

as the number of samples along each line segment. We interpolate the u and

19

(a) Degree of Samples box

(b) Coordinates of Four Corners box

(c) Vertical Edge and Horizontal Edge box (d) Diagonal box

Figure 4.5: Demonstrations of designing the folding patterns as shown in Fig. 4.4.
(a) The Degree of Samples box shows that we have only one sample point for every
line segment because we work with straight lines in this case. (b) The Coordinates
of Four Corners box displays the four coordinates of each of the quad’s corners. We
can enter numeric values with the keyboard for these coordinates. (c) The Vertical
Edge and Horizontal Edge box shows that the quad is divided into fourths along the
x-axis and is divided into eighths along the y-axis, using mountain-fold (red) creases,
across the quad. (d) The Diagonal box shows that the slope of all diagonals is 2
because for every 1 grid unit that the diagonal travels in x-direction, 2 grid units are
traveled in y-direction. Next, the phase shift is 1 because every diagonal at the right
column is shifted one grid unit upward. All diagonals use valley-fold (green) creases
across the quad.

v coordinates provided by the control points so that we calculate each of the

position of the sample points. Then OriPatch draws a smooth line through

20

(a) (b)

Figure 4.6: The more the samples are, the smoother the line segments become: (a)
A cubic Bezier surface patch with 1 sample along each line segment, (b) A cubic
Bezier surface patch with 20 samples along each line segment

these sample points. Fig. 4.6 illustrates the effects of increasing the number of

samples per line segment generates a smoother edge.

2. The Coordinates of Four Corners box provides four pairs of floating point spin

boxes which specify the coordinates of the cusps of the Bezier surface patch.

The eight numbers represent x and y coordinates of the upper-left, upper-right,

lower-left and lower-right corners, respectively. These spin boxes give users full

controls to edit the coordinates of the four corners rather than just graphically

dragging those corners. In addition to clicking and dragging the cusps to the

location where we want our new cusps to be, we can precisely type in the x

and y coordinates of the cusps.

3. The Vertical Edge and Horizontal Edge box contains three sliders for each of

the vertical and horizontal directions respectively. For vertical edges, one of

the three sliders controls the number of divisions in vertical direction while

21

(a) A cubic Bezier surface patch with diago-
nals’ slope 1 and phase shift 0.

(b) A cubic Bezier surface patch with diago-
nals’ slope 2 and phase shift 0.

(c) A cubic Bezier surface patch with diago-
nals’ slope 2 and phase shift 1.

Figure 4.7: Illustration of cubic Bezier surface patches with different slopes and phase
shifts of diagonals.

22

two of them determine the color of each vertical line segment. Identically, for

horizontal edges, one of the three sliders controls the number of divisions in

horizontal direction while two of them determine the color of each horizontal

line segment.

4. The Diagonal box provides six sliders. One of the sliders specifies the phase

shit of diagonals (see Fig. 4.7.) The phase shift is the difference, expressed in

the number of grid units, between two columns having the same motif. Another

slider controls the slope of diagonals. The slope is the change in the vertical

difference of a diagonal on the grid structure over the change in horizontal

difference. The rest two pairs of sliders let us work with the colors of diagonals

going top-left to bottom-right direction and the colors of diagonals going top-

right to bottom-left direction.

23

5. CURVED ORIGAMI DESIGN: SHADY

In this following section I will describe the features of our second program Shady.

Shady is a program for designing a variety of complex geometric folding patterns. It

enables us to draw not only squares but also polygons (e.g., pentagons and hexagons),

circles, and any freeform shapes. Furthermore, we can create a triangle by first cre-

ating a four-vertex object, then moving two of the four vertices to the same position

to form a triangle. In Shady the connected planar shapes in two-manifolds are ex-

pressed as a union of cubic tensor product Bezier patches. One of the advantages

of using quad patches to form these shapes is that we can represent complicated

geometric structures that are composed of only quadrilaterals and triangles bounded

by a set of Bezier curves.

We still calculate the u and v coordinates for interpolating a Bezier curve as we

did in OriPatch. However, in Shady we cannot guarantee that u and v coordinates

are always compatible with each other globally. Hence we have difficulties designing

the same global interface to define folding patterns as we did for OriPatch. To solve

this problem, in Shady we let users assign patterns to each two-manifold surface in-

dividually by using local u and v coordinates. It is also difficult to make the divisions

parallel to diagonals due to this restraint. Fig. 5.1 demonstrates an incompatible uv

coordinate systems.

In this section we present the three main toolsets in our program Shady. Fig. 5.2

displays an overview of the user interface.

1. Ellipse, Grid, Polygon, Torus, Spine, and Image Shape tools: Using these tools,

we can design different kinds of geometry including circles, triangles, squares,

pentagons, and hexagons etc. For example, we can create an easy square using

24

Figure 5.1: An example of how u and v coordinates lead to contradictions on the red
patch. This contradiction prevents us from assigning u and v coordinates globally.

a simple procedure done with the Grid Tool and a few adjustments in the

option box. Similarly, to create a square donut, we can use the Torus Tool and

set the attributes in the option box to become square.

2. Drag, Extrude Edge, Extrude Face, Insert Segment, and Delete Face tools: This

toolset lets us to edit the geometry. The Drag Tool enables us to move the

handles to deform the geometry. Further, we can add more geometry to an

existing geometry using the Extrude feature. We can extrude polygon edges

or faces using the feature. For example, when we extrude the exterior edges, it

creates new connecting faces outwards along the edges. In addition, the Insert

Segment Tool lets us split one or more polygon faces in a geometry by clicking

an exterior edge of a face to specify the location of the split. Last, we can also

delete a face in order to create a hole in the geometry using the Delete Face

feature.

3. Assign Pattern and Set Folds tools: The Assign Pattern feature lets us quickly

25

(a) Shady interface.

(b) Ellipse, Grid, Polygon, Torus, Spine, and Im-
age Shape tools

(c) Drag, Extrude Edge, Extrude Face, Insert Segment, and
Delete Face tools

(d) Assign Pattern and
Set Folds tools

Figure 5.2: A brief summary of the main Shady interface (a) The following are the
components of the Shady interface: Menu, Toolbar, Tool Option Box, and Worksapce.
The toolbar contains three fundamental toolsets, as seen in (b), (c), and (d).

assign colors to folds so that we are able to apply the red marks to make

mountain folds and the green marks to make valley folds all at once. We can

associate each fold with a different color so that it is easier to identify which

26

folds are mountain folds or valley folds. Moreover, we can use the Set Folds

feature to divide a polygon face into two or more equal parts. This is useful

when we need to divide paper into two or more lengths or angles.

Fig. 5.3 demonstrates how to design a hexagonal parabola using Shady. To create

a hexagon, first on the toolbar, click Torus, and the torus tool option box appears

in the side bar. Then type 6 to set the Sides value in the option box. Next turn off

the Keep Tangents Smooth option to generate a hexagon with sharp corners. Finally

click Insert to create a hexagon. To make creases which alternate mountain-valley-

mountaion-valley... across the hexagon, first on the toolbar, click Assign Pattern.

Then manually type in the pattern value of “1, 2” in the option box and press Enter.

Finally click each of the six edges of the hexagon to mark mountain-valley-mountaion-

valley... creases.

Fig. 5.4 demonstrates another example of drawing a shape with a freeform outline

using Shady. To create a freeform shape, first click Spine on the toolbar. Then click

on the workspace to create a path with straight segments. To close the path, hover

over another point and right-click to close the path. Next, simply click Insert in

the spine tool option box in the side bar to produce the freeform shape. Moreover,

the Drag tool on the toolbar lets us change the shape of this freeform object by

dragging any of the cusp points. Similarly, to make creases which alternate mountain-

valley-mountaion-valley... across the freeform shape, we use the same workflow as

we apply for creating a hexagon, as seen in Fig. 5.3. First go to Assign Pattern on

the toolbar. Then enter numerical values of “1, 2” in the option box in the side bar

and press Enter. Finally click each of the edges that outline the freeform shape to

mark mountain-valley-mountaion-valley... creases.

27

(a) Use Shady to design a hexagon shape. (b) A hexagonal parabola made from the hexagon
shape.

Figure 5.3: A hexagonal parabola created by using the program Shady.

(a) Use Shady to design a shape with a freeform outline.

(b) A freeform origami model made from the freeform shape.

Figure 5.4: A freeform origami model created by using the program Shady.

28

6. PROCESS AND IMPLEMENTATION

This section summarizes our process of making curved origami models.

6.1 Design Curved Origami Shapes

First, we use our programs, OriPatch and Shady, to design folding patterns. We

are able to make crease patterns that include not only straight lines but curves. As

the user designs an initial origami geometry, a simple patch, such as a strip or a

circle, is usable. Then the user can deform the geometry and specify the number

and color of the folds on the geometry. In our software, red lines represent mountain

folds and green lines represent valley folds. As we finish the design, we save it in an

EPS format using our software.

6.2 Prepare Files for Laser Cutting

To laser cut our files, we can use files from different kinds of software as long as

we can export or save as a vector-format file type. In our case, we use AutoCAD,

which saves vector files as DWG. The vector format is the only format the laser

cutter understands. A vector file is a graphics file that contains vector graphics

only, rather than raster graphics. Vector graphics uses geometrical primitives and

mathematical formulas to represent images. Therefore these images that are made up

by points, lines, curves, and shapes are more flexible because they are fully resizable

and stretchable. On the contrary, raster graphics represents images through pixels.

Hence raster images are less flexible because they always appear burry when scaled

up.

Before we create a lasercutting file using AutoCAD, we first convert the EPS file

from our programs to a DWG file using Adobe Illustrator. Fig. 6.1 shows the artwork

29

in Shady, as seen in Fig. 3.1 (b), brought from EPS files into Adobe Illustrator.

Here is a typical workflow to export an EPS file as a DWG file in Adobe Illustrator.

1. Click on File in the menubar when Adobe Illustrator loads, then click Export

in the drop-down menu.

2. Select a location for the file, enter a filename, select the AutoCAD Drawing

(DWG) format, and then click Save.

3. Set the AutoCAD export options. In our case, we first choose AutoCAD Ver-

sion 2004/2005/2006. We enter values of 1’s for Scale Units and disable Scale

Lineweights option. Next we have 8 colors for the color depth of the exported

file and choose PNG for Raster File Format. Last we select Maximum Editabil-

ity and disable the rest of other options. The DXF/DWG Options dialog box

is shown in Fig.6.2.

Figure 6.1: An example of an EPS file opened in Adobe illustrator.

30

Figure 6.2: Adobe Illustrator AutoCAD Export Options dialog box gives us control
over AutoCAD-format (.dwg or .dxf) images which may be supplied when we export
a document to AutoCAD formats.

Once we have created our DWG file, we are ready to format it in AutoCAD

and then send the file to the laser cutter. Fig. 6.3 displays a DWG file opened in

AutoCAD.

The first thing we should do is to decide what material we want to cut our artwork

from. Once we know our material size, we can make our artwork fit within that area.

We may set our file up to the sheet size our material comes in, though it is not

necessary to use the full sheet of material. Recall that when printing with paper, we

include a small margin in the file. Likewise, as we layout our design, we should keep

in mind that we leave a small gap between the design and the edge of the material.

In our case, we use a laser cutter with a 32′′ × 18′′ bed and a margin of 1/4
′′

around

all margins. Therefore if the given sheet size is 32′′×18′′, then the largest safe design

31

Figure 6.3: An example of exporting the artwork from Adobe Illustrator, as seen in
Fig. 6.1, and then importing it to AutoCAD.

we can cut on this sheet size is 31.5′′ × 17.5′′.

The second step will be scaling our drawing to make sure that it can fit the sheet

size. This following is intended to serve as a guide on how to scale our design size to

the size of the sheet you are cutting in AutoCAD.

1. Type “scale” into the command prompt and press Enter.

2. Select the objects that need to be scaled and press Enter.

3. Specify a base point.

4. Type “r” and press Enter to use the “Reference” option.

5. Choose two points on the object that need to be scaled to the desired length.

6. Type “p” and press Enter to use the “Points” option.

7. Choose two points that establish the desired length.

32

Next, we set up layers with RGB top-bar colors and move each line the laser

cutter associates with each action to each layer with the corresponding color. In our

case, the laser cutter only accepts 2 colors from our files. Blue is used for all lines to

be cut through the material, and yellow is used for all lines associated with scoring

or engraving. The laser cutter will ignore any other colors supplied in the file.

6.3 Laser Etch/Cut Materials

Now that we know our design fits safely within our material and all lines are

associated with correct actions, we choose appropriate materials (i.e., paper or board)

and use the laser cutter to cut the material.

33

7. RESULTS AND CONCLUSIONS

7.1 Making Origami Models

For this thesis, Shady was used to generate most of the folds, and OriPatch was

used to define diagonal folds. Then Adobe Illustrator was used to convert our folding

patterns (EPS) into AutoCAD formats (DWG.) Laser cutting file preparation was

done in AutoCAD, with some layout setup to accommodate the desired origami

model size, and eventually we cut the origami model out of a laser cutter.

I used folds of parallel straight lines, parallel curves, radial straight lines, and

radial curves as my initial test cases. The first case is dividing paper using a set of

parallel straight lines while the second case is dividing paper using a set of parallel

curves. The length between the mountain-valley pairings may differ from the one

between the valley-mountain pairings, although in our cases the lengths between

every line and every curve are equally spaced. In the same way, the third case is

dividing paper using a set of radial straight lines while the fourth case is dividing

paper using a set of parallel curves. Likewise the angle between the mountain-valley

pairings may differ from the one between the valley-mountain pairings.

Fig. 7.1 displays each of these four crease patterns and its corresponding result.

Fig. 7.1.(a) is a crease pattern with a collection of equally spaced parallel straight

lines. Red lines represent mountain folds while green lines represent valley folds.

Using such pattern, we can fold a strip of paper along these parallel straight lines

and then glue one end to the other end to create a simple cylinder, as seen in

Fig. 7.1.(b). Additionally Fig. 7.1.(c) is a crease pattern with a collection of equally

spaced parallel curves. Fig. 7.1.(d) is a strip of paper that is folded along these

curves and then be glued one end to the other to make a cylinder. Fig. 7.1.(e) is a

34

crease pattern with a set of radial straight lines that are arranged around a rim. All

lines rotate by equal angles. We can apply this pattern to a rim of paper, folding

along these radial straight lines to shape a cone, as seen in Fig. 7.1.(f). Similarly

Fig. 7.1.(g) is a crease pattern with a set of radial curves that are arranged around

a rim. All curves rotate by equal angles. Fig. 7.1.(h) is a rim of paper that is folded

along these curves.

These four cases are the foundations on which more complex work can be built.

Once the four basics have been learned, it is possible to create a lot of variations.

Fig. 7.2 shows some more complex origami work. Fig. 7.2.(a) is a rim with consecutive

mountain and valley folds that are all concentric circles. When the creases are

folded, the sheet becomes structurally complex and can be twisted into many different

shapes, as seen in Fig. 7.2.(b). Fig. 7.2.(c) is a quadrilateral that is divided by

parallel equally spaced S-shaped curves. Further a zig-zag line is arranged across the

quadrilateral. When a piece of paper is folded based on this pattern, it bent itself into

a roof-like form, as seen in Fig. 7.2.(d). Similarly in many respects, Fig. 7.2.(e) is also

a quadrilateral divided by parallel equally spaced S-shaped curves, except that there

are two zig-zag lines that divide the quadrilateral into thirds. With this pattern, we

can bend and flex a sheet to make a tunnel-like object, as seen in Fig. 7.2(f).

7.2 Software Testing

To evaluate the capability of our programs and determine if they can provide

patterns that are used by origami artists, I used drawings in the book “Folding

Techniques for Designers: From Sheet to Form” by Paul Jackson. The results of the

software test can be seen in Fig. 7.4 to Fig. 7.9. It turned out that Shady is more

applicable than OriPatch in terms of accomplishing such a wide variety of examples

in this book.

35

There are some patterns from the book that cannot be obtained using either Ori-

Patch or Shady. However, it is possible to extend some capabilities of the programs

to obtain these patterns. For example, we cannot use Shady to create the pattern as

shown in Fig. 7.3.(a). However we can create a pattern, as seen in Fig. 7.3.(b), which

is similar to the original pattern in many respects, except that the folds in one of the

two triangles do not rotate as expected. Thus we can obtain the original pattern if we

have the option to control the orientation of folds in the triangle. Take Fig. 7.3.(b)

for example. If we can change the orientation of the folds in the upper-left triangle

by 120 degrees, we can make the pattern almost the same as the original. Afterward,

we can acquire the pattern as seen in Fig. 7.3.(c) by simply decreasing the number

of divisions in each triangle.

Apart from this, we can create a broad variety of patterns if we can move and sew

edges back together. The move and sew feature is useful for quickly joining together

separate geometric shapes. For instance, it can combine separate triangles along

their selected border edges by moving one selected triangle and merging the selected

edges together so that one quadrilateral results. Following this further, we can join

together triangles and quadrilaterals to produce crease patterns such as the ones in

Fig. 7.9 by selecting the edges we want to join and then executing the feature.

7.3 Conclusions

Complex crease patterns could recommend future work for us to extend the at-

tributes of our program. In future work we will follow up on the experience gained

from this initial study to further mature our program. Our long-term goal is to

eventually bring a program for origamists to design crease patterns procedurally.

Consequently they can use a computer to draw folding patterns easily rather than

use geometry equipment to draw them on paper by hand.

36

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.1: Four basic folded designs

37

(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Complex origami

38

(a) (b) (c)

Figure 7.3: Although we have not been able to use Shady to directly generate the
pattern that is exactly the same as the one in (a), we can create pattern (b) which
resembles (a). To further make (b) look more similar to (a), we can change the
orientation of the folds in the upper-left triangle by 120 degrees. Furthermore (c)
can be acquired by decreasing the number of divisions in both upper-left and lower-
right triangles.

(a) (b) (c)

Figure 7.4: Examples of the crease patterns that can be made by using OriPatch.
Users can also use Shady to make patterns (a) and (b). However, to be able to
generate pattern (c) using Shady, we should additionally provide a tool for connecting
two existing vertices. Take a square for example. A user can use this tool to draw
an edge between two corners so the square has two triangles in it.

39

(a) (b) (c)

Figure 7.5: Examples of the crease patterns that can be made by using Shady only.
Users cannot make these patterns using OriPatch. One of the reasons why users are
unable to define these patterns in OriPatch is that explicit control of the lengths
between edges are not provided. In OriPatch, a quadrilateral is divided into equally
spaced lengths always. Such manner prevents users from altering either of the two
endpoints of an edge and creating the pattern as shown in (b). To be able to define
these patterns, OriPatch must provide a function for the user to move a vertex along
an edge without shifting the edge itself.

(a) (b) (c)

Figure 7.6: Examples of the crease patterns that can be made by using Shady only.
Users cannot make these patterns using OriPatch. OriPatch provides a user with
only one single Bezier quad to design a folding pattern. Therefore users cannot create
other kinds of geometric shapes, such as pentagons and hexagons. To aid a user in
the attempt to easily form a composite geometry object, we should have a tool which
performs stitching together multiple objects. We should also provide a feature that
allows a user to scale, translate, rotate, and duplicate targeted objects to create an
array of them.

40

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.7: Examples of the crease patterns that can be made by using Shady only.
Users cannot make these patterns using OriPatch. OriPatch allows users to define
a crease pattern using only one single cubic tensor-product Bezier quad. Rims,
circles and any types of polygons with more than 4 sides cannot be generated in
OriPatch. To let users create different kinds of geometric shapes, we should provide
a user interface for the user to handle multiple cubic Bezier quads. Further a merge
boundry edge tool option should be provided so that the user can use it to merge or
weld faces together.

41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.8: Examples of the crease patterns that can be made by using Shady only.
Users cannot make these patterns using OriPatch. When users define folds on a quad
using OriPatch, all folds are arranged across the entire quad vertically, horizontally,
and/or diagonally. Users are forbidden from breaking and deleting these folds. To
let users create these patterns, we must provide an insert edge loop tool for users to
select and then split a face across an edge ring on the quad. Users can also use this
tool to divide an edge into a series of smaller edges. Moreover we should support a
feature which allows users to remove unwanted edges.

42

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.9: Examples of the crease patterns that cannot be made using either Ori-
Patch or Shady. These patterns are composed of quadrilaterals and triangles that
neither OriPatch nor Shady can handle. To manage to create these patterns, we
should bring a new feature that allows a user to flexibly draw new edges to split
faces. Therefore a user can select any two points along two edges of a face. This
creates a straight line which connects the two points, which serves as a new edge to
separate the face into two halves. Besides we should have a delete edge feature to
remove any unwanted edges from a face. These cases involve some random geometric
shapes and there are no clear patterns that can be simply generalized. For example,
pattern (f) is formed by non-uniform quadrilaterals and triangles and is problematic
to be generated procedurally.

43

REFERENCES

[1] Akitaya, H., Mitani, J., Kanamori, Y., and Fukui, Y. Origami diagrams

and 3d animation from flat-foldable crease patterns sequences. In SIGGRAPH

2013 poster (2013).

[2] Alperin, R. C., and Lang, R. J. One-, two, and multi-fold origami axioms.

Origami 4 (2006), 371–393.

[3] Bern, M., and Hayes, B. The complexity of flat origami. In Proceedings

of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (1996),

Society for Industrial and Applied Mathematics, pp. 175–183.

[4] Chang, S. H.-H., Stuart, L., Plimmer, B., and Wünsche, B. Origami

simulator: A multi-touch experience. In CHI ’09 Extended Abstracts on Human

Factors in Computing Systems (New York, NY, USA, 2009), CHI EA ’09, ACM,

pp. 3889–3894.

[5] Demaine, E., and Tachi, T. Origamizer: A practical algorithm for folding

any polyhedron. Manuscript, 2010.

[6] Demaine, E. D., and ORourke, J. Geometric folding algorithms. Cambridge

University Press Cambridge, 2007.

[7] Furuta, Y., Mitani, J., and Fukui, Y. A rendering method for 3d origami

models using face overlapping relations. In Smart Graphics (2009), Springer,

pp. 193–202.

[8] Greenberg, H., Gong, M., Magleby, S., and Howell, L. Identifying

links between origami and compliant mechanisms. Mech. Sci 2, 2 (2011), 217–

225.

44

[9] Hatori, K. K’s origami: Origami construction.

http://origami.ousaan.com/library/conste.html, 2006 (accessed June 17,

2014).

[10] Huang, Y., and Eisenberg, M. Easigami: Virtual creation by physical

folding. In Proceedings of the Sixth International Conference on Tangible, Em-

bedded and Embodied Interaction (New York, NY, USA, 2012), TEI ’12, ACM,

pp. 41–48.

[11] Huang, Y., Gross, M. D., Do, E. Y.-L., and Eisenberg, M. Easigami:

A reconfigurable folded-sheet tui. In Proceedings of the 3rd International Con-

ference on Tangible and Embedded Interaction (New York, NY, USA, 2009),

TEI ’09, ACM, pp. 107–112.

[12] Huzita, H. Axiomatic development of origami geometry. In Proceedings of the

First International Meeting of Origami Science and Technology (1989), pp. 143–

158.

[13] J. Gout, X. Fouchet, V. O. Doodle. http://doodle.sourceforge.net/, (ac-

cessed May 21, 2014).

[14] Jackson, P. Folding techniques for designers: from sheet to form. Laurence

King Publishing, 2011.

[15] Ju, W., Bonanni, L., Fletcher, R., Hurwitz, R., Judd, T., Post,

R., Reynolds, M., and Yoon, J. Origami desk: Integrating technological

innovation and human-centric design. In Proceedings of the 4th Conference on

Designing Interactive Systems: Processes, Practices, Methods, and Techniques

(New York, NY, USA, 2002), DIS ’02, ACM, pp. 399–405.

45

[16] Justin, J. Resolution par le pliage de lequation du troisieme degre et applica-

tions geometriques. In Proceedings of the First International Meeting of Origami

Science and Technology (1989), pp. 251–261.

[17] Kanade, T. A theory of origami world. Artificial Intelligence 13, 3 (1980),

279–311.

[18] Kilian, M., Flöry, S., Chen, Z., Mitra, N. J., Sheffer, A., and

Pottmann, H. Curved folding. ACM Trans. Graph. 27, 3 (Aug. 2008), 75:1–

75:9.

[19] Lang, R. J. A computational algorithm for origami design. In Proceedings of

the Twelfth Annual Symposium on Computational Geometry (New York, NY,

USA, 1996), SCG ’96, ACM, pp. 98–105.

[20] Lang, R. J. Treemaker 4.0: A program for origami design.

http://www.langorigami.com/science/computational/treemaker/TreeMkr40.pdf,

1998 (accessed June 18, 2014).

[21] Lang, R. J., and Hull, T. C. Origami design secrets: mathematical methods

for an ancient art. The Mathematical Intelligencer 27, 2 (2005), 92–95.

[22] Lee, D.-Y., Kim, J.-S., Kim, S.-R., Koh, J.-S., and Cho, K.-J. The

deformable wheel robot using magic-ball origami structure. In ASME 2013

International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference IDETC/CIE (Portland, Oregon, USA,

2013).

[23] Mitani, J. The folded shape restoration and the rendering method of origami

from the crease pattern. In 13th International Conference on Geometry and

Graphics (Dresden, Germany, 2008).

46

[24] Mitani, J. Rendering method for flat origami. In Eurographics’08: Annex to

the Conference Proceedings (Crete, Greece, 2008), pp. 291–294.

[25] Mitani, J. A design method for 3d origami based on rotational sweep.

Computer-Aided Design and Applications 6, 1 (2009), 69–79.

[26] Mitani, J., and Igarashi, T. Interactive design of planar curved folding by

reflection. In 19th Pacific Conference on Computer Graphics and Applications

(Pacific Graphics 2011) (Kaohsiung, Taiwan, 2011), pp. 77–81.

[27] Tachi, T. Generalization of rigid foldable quadrilateral mesh origami. In

Symposium of the International Association for Shell and Spatial Structures

(50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construc-

tion of Shell and Spatial Structures: Proceedings (2009), Editorial Universitat

Politècnica de València.

[28] Tachi, T. Simulation of rigid origami. Origami 4 (2009), 175–187.

[29] Tachi, T. Freeform rigid-foldable structure using bidirectionally flat-foldable

planar quadrilateral mesh. Advances in Architectural Geometry 2010 (2010),

87–102.

[30] Zhu, K., Deshan, C., and Fernando, O. N. N. Snap-n-fold: Origami pat-

tern generation based real-life object structure. In CHI ’12 Extended Abstracts

on Human Factors in Computing Systems (New York, NY, USA, 2012), CHI

EA ’12, ACM, pp. 2345–2350.

47

