
  

CRYPTIC SPECIATION AND POPULATION CONNECTIVITY IN THE PEANUT 

WORM PHASCOLOSOMA AGASSIZII (SIPUNCULA: PHASCOLOSOMATIDAE) 

 

 

A Thesis 

by 

NATHAN DUNN JOHNSON  

 

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 

 

 

Chair of Committee,    Anja Schulze 
Committee Members,   Jaime Alvarado-Bremer 
   Gilbert T. Rowe 
Interdisciplinary Faculty Chair, Gilbert T. Rowe 

 

December 2014 

 

Major Subject: Marine Biology 

 

Copyright 2014 Nathan Dunn Johnson



 

 ii 

ABSTRACT 

 

 The prevalence of undetected cryptic species in marine environments is one of the 

greatest obstacles to obtaining an accurate estimate of biodiversity.  Morphological 

identification can underestimate true levels of diversity, as it does not allow for the 

detection of cryptic species.  Sipunculans, commonly called peanut worms, are thought 

to contain high levels of cryptic diversity due to their conserved morphology and their 

paucity of taxonomically informative characters.  In this thesis, we use genetic-

identification techniques to examine diversity within the Pacific sipunculan 

Phascolosoma agassizii.  Mitochondrial DNA sequence data shows that P. agassizii is 

comprised of two cryptic species, one isolated to the eastern Pacific and one to the 

western Pacific.  These clades exhibit large amounts of genetic divergence and are not 

recovered as sister taxa, suggesting an early speciation event within the Phascolosoma 

genus.  Based on the location of the original holotype, the eastern Pacific clade 

represents the true P. agassizii, whereas the western Pacific clade is an undescribed 

species of Phascolosoma.     

The long-lived larval stage within Phascolosoma agassizii, known as a 

pelagosphera larva, is thought to engage in long-distance planktonic dispersal.  Using a 

genetic technique called ISSR-PCR, we amplified non-coding polymorphic regions of 

the nuclear genomes of western and eastern P. agassizii to test for levels of population 

connectivity along a coastline.  Our ISSR results gave evidence for three to five 

genetically distinct populations within the western Pacific and two genetically distinct 
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populations within the eastern Pacific.  This data suggests that these coastal regions 

consist of genetically structured populations restricting intraspecies gene flow.  Since the 

prevailing currents in these regions should connect most populations, larval behavior 

resulting in local recruitment may be the mechanism behind such population structure. 

This research suggests that P. agassizii is not a single cohesive species, and in 

fact is comprised of two divergent clades.  Each clade is isolated to a separate Pacific 

coast, with multiple genetically-distinct populations along each coast.  This research 

highlights the need for combining genetic identification methods with morphological 

identification, especially in sipunculan taxonomy.     
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CHAPTER I  

INTRODUCTION 

 

The concept of cryptic speciation, first introduced by Mayr (Mayr, 1948) 

challenges traditional morphology-based species concepts. Cryptic species are those that 

exhibit a high degree of genetic divergence without the presence of any distinguishing 

morphological characters (Knowlton, 1993).  Occasionally, morphological distinctions 

are discovered between groups that were thought to be cryptic species.  In these 

instances, they are referred to as pseudo-cryptic species (Knowlton, 1993).  Some 

authors regard sibling species as synonymous with cryptic species (Knowlton, 1993; 

Sáez & Lozano, 2005).  However in some instances cryptic lineages are not each other’s 

most closely-related species, and therefore do not represent sibling or sister species 

(Knowlton, 1986; Schulze et al., 2012).  The phenomenon known as cryptic speciation is 

thought to have occurred many times in divergent evolutionary lineages, with a recent 

study suggesting there are anywhere between 8,000 and 35,000 instances of cryptic 

speciation in oceanic habitats, conservatively (Appeltans et al., 2012).  A review of 

cryptic speciation in polychaetes concluded that there were no common trends in either 

life history traits, morphological complexity, or ecology of cryptic species that could be 

used to predict the presence of cryptic diversity (Nygren, 2013). 

Characterizing the actual number of species is crucial for conserving 

biodiversity, and the presence of cryptic species may result in an underestimation of 

actual biodiversity.  Without a proper understanding of species ranges and demography, 
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we cannot effectively manage threatened species or populations.  However, with the 

widespread adoption of rapid and inexpensive genetic identification methods based on 

single-gene sequencing, research facilities now have the ability to delineate taxonomic 

classifications previously complicated by cryptic speciation.  Detection of distinct 

genetic lineages will not only allow for more accurate classification, but it also provides 

insight into the processes and mechanisms of speciation (Borda et al., 2013; Nygren, 

2013).  

Sipunculan worms, commonly known as peanut worms, are a taxon of 

approximately 150 currently recognized species (Cutler, 1994).  Formerly classified as 

their own phylum, sipunculans are now generally included as a clade within Annelida 

(Bleidorn, 2007; Boore & Staton, 2002; Weigert et al., 2014).  They are exclusively 

marine, benthic, and can be locally abundant, although usually in cryptic habitats (i.e. 

burrowed in the substrate).  Peanut worms exhibit an unsegmented, vermiform body 

shape comprised of a trunk and an extendable introvert (Figure 1).  At the anterior-most 

portion of the introvert lies the mouth and feeding tentacles, which surround either the 

mouth or the nuchal organ, a putative chemosensory structure.  The anus usually lies at 

the anterior of the trunk but in some species the anus is located higher on the introvert 

(Cutler, 1994).  The introvert is retracted by one to four retractor muscles, found within 

the coelom and attached to the anterior end of the introvert and the inner lining of the 

trunk (Rice, 1993).  The body wall musculature consists of an outer circular layer and an 

inner longitudinal layer. The longitudinal musculature can either form a smooth sheath 

or, more frequently, is arranged into bands.  The gut is typically coiled, extending from 
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the introvert to the trunk and then looping back around to the anus in a j-shaped fashion 

(Cutler, 1994).   

Species delimitation using morphological characters is especially difficult for 

sipunculans, as their simple body plan contains few diagnostic features. Appeltans et al. 

(2012) estimate that 55% of the total diversity within this group may be cryptic.  Stephen 

and Edmonds (1972) originally listed over 300 species within Sipuncula, however the 

currently accepted taxonomy put forth by Cutler in 1994 synonymized many of these.  

There are now 149 formally described sipunculan species, which were identified solely 

by their anatomical characters.  Thus, sipunculans represent an exceptional opportunity 

to study genetic diversity, specifically between geographically isolated regions that may 

contain cryptic species.  Evidence of morphospecies complexes with significant genetic 

divergence already exists for several species within Sipuncula (Kawauchi & Giribet, 

2010; Kawauchi & Giribet, 2013; Schulze et al., 2012; Staton & Rice, 1999).  

Additionally, much is known about the differing developmental modes of sipunculan 

larvae (A. Adrianov & Maiorova, 2010; Rice, 1976; Rice et al., 2012; Rice & Schulze, 

2004).  Depending on the species, sipunculans exhibit one of four modes of larval 

development (Figure 2) (Schulze and Rice, 2009).  These range from direct development 

to a two-phase larval period that includes a form capable of feeding in the water column 

for a few months (A. Adrianov & Maiorova, 2010; Rice, 1976).  Therefore, a more 

accurate picture of genetic diversity within this group may reveal otherwise obscure 

relationships between larval developmental modes and geographic partitioning of cryptic 

adult forms.  
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Figure 1. Morphological depiction of a dissected Phascolosoma sp., revealing its 
external and internal anatomy.  T = tentacles, Hk = introvert hooks, N = 
nephridium, An = anus, DRM = dorsal retractor muscle, VRM = ventral retractor 
muscle, I = intestine.  (Rice, 1993).   
 



 

 5 

 

 
 

Figure 2. The four larval modes found within Sipuncula.  I – direct development; II 
– single larval phase, a short-lived lecithotrophic trochophore; III – two larval 
phases, a short-lived lecithotrophic trochophore and a short-lived lecithotrophic 
pelagosphera; IV – two larval phases, a short-lived lecithotrophic trochophore and 
a long-lived planktotrophic pelagosphera. Form IV represents the development 
mode found within P. agassizii.  (Schulze and Rice, 2009). 
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CHAPTER II  

CRYPTIC SPECIATION IN PHASCOLOSOMA AGASSIZII (SIPUNCULA: 

PHASCOLOSOMATIDAE): EAST-WEST DIVERGENCE BETWEEN NON-SISTER 

TAXA 

 

Overview 

The use of DNA sequence data in taxonomy over the past few decades has led to 

the frequent detection of cryptic species in a wide variety of taxa, increasing 

dramatically our estimates of species diversity (Bickford et al., 2007; Knowlton, 2000; 

Nygren, 2013).  Cryptic species are morphologically similar or identical, and thus are 

typically classified as a single species, yet exhibit significant genetic differentiation 

(Nygren, 2013).  Often they are sibling species. Occasionally, upon a reevaluation of 

their anatomy distinguishing morphological features have been identified.  In these 

instances, they are referred to as pseudo-cryptic or pseudo-sibling species (Knowlton, 

1993).  Much of our current taxonomy has been based on morphological identification 

methods, and therefore does not reflect the presence or overall frequency of cryptic 

biological diversity.  Not only does this lead to an inaccurate estimate of global 

biodiversity, but it also may affect our knowledge of a given species’ distribution, 

reproduction strategy, and environmental tolerance, as certain cryptic species have been 

shown to differ in these respects (Kawauchi & Giribet, 2010; Lewis & 

Karageorgopoulos, 2008; Maltagliati et al., 2001).  The importance of utilizing 

integrative taxonomic approaches has been understood for quite some time (Mayr, 
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1948).  However, it is only recently that the ability to examine an organism’s genetic 

structure has become cost-effective (Nygren, 2013).  Accordingly, identification 

techniques combining genetic and morphological data have been incorporated more 

frequently into biological research (Dayrat, 2005; Padial et al., 2010). This two-pronged 

identification approach allows us to not only detect cryptic species, but also to re-

evaluate the morphology of these organisms for the presence of any taxonomically-

informative characters that previously went unnoticed (Sáez & Lozano, 2005).  Further, 

viewing these approaches as complementary rather than mutually exclusive will promote 

the development of an integrative taxonomic framework that fosters a greater 

understanding of earth’s biodiversity (Schlick-Steiner et al., 2010; Will et al., 2005). 

 Marine ecosystems are some of the most poorly sampled biomes on earth, and 

thus are thought to contain a large amount of cryptic diversity (Appeltans et al., 2012; 

Bickford et al., 2007).  The relative scarcity of physical barriers to gene flow in the 

ocean compared with terrestrial environments has led to an overestimation of the 

geographical distribution of many marine taxa, since the potential for long-distance 

dispersal does not always result in actual long-distance dispersal (Knowlton & Keller, 

1986).  Thus, some marine species classified according to their morphology were 

erroneously thought to have a cosmopolitan distribution (Kawauchi & Giribet, 2013; 

Schulze et al., 2012).  Phylogeographic associations of such taxa indicate cryptic species 

complexes rather than a cosmopolitan distribution of a single lineage (Hoare et al., 2001; 

Lazoski et al., 2001; Solé-Cava et al., 1991).  In addition to being poorly sampled, 

marine ecosystems are also currently being threatened by climate change and 
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anthropogenic stressors.  These variables can potentially result in decreased oceanic 

biodiversity and shifts in marine species’ distributions (Provan & Maggs, 2012; Thomas 

et al., 2004), which could further impact our understanding of marine taxonomy.  

Introduction  

Sipunculans are unsegmented marine annelids distributed throughout a wide 

range of depths within tropical, temperate, and polar waters (Cutler, 1994; Stephen & 

Edmonds, 1972).  They can reach densities of approximately 300-400 individuals per 

square meter in certain regions (Romero-Wetzel, 1987; Thompson, 1980), and thus are 

thought to play a vital role in marine trophic systems.  They are also active burrowers, 

and are believed to significantly influence the geochemistry of their respective benthic 

habitats (Shields & Kedra, 2009).  Despite being critical components of marine 

ecosystems, only a few invertebrate researchers have studied some species in depth.  

Cutler (1994) revised sipunculan taxonomy based on morphology and reduced the 

number of species from over 300 (according to Stephens & Edmonds 1972) to 149.  

Recent studies have suggested that this may underestimate the true diversity, as genetic 

data has shown evidence of cryptic speciation within nominal species of sipunculans 

(Kawauchi & Giribet, 2010; Schulze et al., 2012).  Thus, there are still large gaps in our 

knowledge regarding the ecology, evolutionary history and intraspecies population 

connectivity of peanut worms.  The sipunculan Phascolosoma agassizii agassizii 

(Keferstein, 1866) has been widely reported from shallow-water habitats throughout the 

North Pacific (Cutler, 1994).  Records of this species exist from California to Alaska on 

the east Pacific and stretching northward from Japan to the Kamchnka Peninsula on the 
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west (Maiorova, pers. obs.).  Additionally, there are a few records of this species along 

the south and west African coast in the Atlantic, as well as certain Indian Ocean 

localities (Cutler, 1994).   

P. agassizii agassizii (Keferstein, 1866), of the family Phascolosomatidae is a 

benthic detritovore. It is distinguished from the subspecies Phascolosoma agassizii 

kurilense by the lack of a secondary lobe on the nephridia of mature worms (Cutler, 

1994); however since there is no literature recognizing kurilense as a distinct subspecies 

since Cutler’s monograph, we remain skeptical of its status as a unique subspecies.  For 

the purposes of this study, we will refer to all specimens as simply P. agassizii to avoid 

any potential confusion.  The life cycle of this species includes two pelagic larval stages 

prior to settling on the substrate (the figure as seen on page 5).  The first is a short-lived 

lecithotrophic trochophore stage, while the second stage, known as pelagosphera, can 

spend up to several months in the water column (A. Adrianov & Maiorova, 2010; Rice, 

1976).  This sequence of planktonic larval stages within P. agassizii can potentially 

facilitate dispersal over long distances, and thus theoretically facilitate long distance 

gene flow between populations.  However, an analysis of P. agassizii’s phylogeography 

within the Pacific Ocean by Schulze et al. (2012) shows evidence of potential cryptic or 

pseudo-cryptic speciation between the east and west coasts, despite its previously 

believed amphi-Pacific distribution.  

Differences in larval development have been observed between populations from 

the eastern and western Pacific.  Egg sizes of P. agassizii in the San Juan Islands are 

approximately 1.5 times larger than those in the Sea of Japan.  Additionally, the 
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spawning season and the duration of the trochophore stage are longer in eastern Pacific 

populations compared to those from the Sea of Japan (A. Adrianov & Maiorova, 2010).  

Previous research suggests this could be a result of differences in water temperatures 

between the two environments, since the Sea of Japan typically experiences more 

variability in temperature throughout the year than do the San Juan Islands (A. Adrianov 

& Maiorova, 2010).  However, if cryptic speciation exists within this nominal species, 

then these differences in life history may not simply be a case of developmental 

plasticity. 

In this study, we utilized DNA sequence data from two mitochondrial markers 

and one nuclear marker to examine the genetic divergence between eastern and western 

Pacific populations of P. agassizii (Figure 3).     

Methods 

Specimen Collection 

Samples were collected from a total of nine different populations on both the 

eastern and western Pacific coasts (the table seen on page 16). Troitsy Bay, Amursky 

Bay, Ussuriysky Bay, Vostok Bay, Sokcho Bay in South Korea and Iturup Island in the 

Kuril Islands comprised the western Pacific sample set.  Friday Harbor (WA), Whiffen 

Spit (BC), and California populations comprised the eastern Pacific sample set.  Samples 

from Peter the Great Bay, Friday Harbor, and Whiffen Spit were from previous 

collections by Anja Schulze and colleagues, and maintained at Texas A&M Galveston.  

Christina Piotrowski at the California Academy of Sciences provided specimens from 

California.  Anastassya Maiorova at the Zhirmunsky Institute of Marine Biology, Far 
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East Branch of the Russian Academy of Sciences provided specimens from Sokcho Bay 

and the Kuril Islands.  Individuals were either hand-collected by SCUBA divers or 

collected via bottom trawling by research vessels.  Except for the California specimens, 

which were collected at depths of 86 – 122 meters, all individuals were collected from 

the shallow intertidal or subtidal regions of their associated locales.  All were fixed in 

95% ethanol and kept at -20° C.   

DNA Extraction and Sequencing 

DNA was extracted from the retractor muscles of individuals according to the 

Qiagen DNeasy Blood and Tissue Kit® protocol.  If a specimen was too small (body 

length < 10 mm) to obtain a sample of the retractor muscle, DNA was extracted from the 

body wall.  1 µl template DNA (0.22 pMol – 0.35 pMol original concentration) was 

combined with Gotaq® Green Master Mix (Promega) (12.5 µl), MgCl2 (2.5 mM final 

concentration), 5’ and 3’ primers (0.4 mM of each), in a total volume of 25 µl to create a 

thermocycling master mix.  For amplification of the cytochrome c oxidase subunit I 

gene, we used the forward primer LCO1490 (5’ – 

GGTCAACAAATCATAAAGATATTG – 3’) and reverse primer HCO2198c (5’ – 

TGATTTTTTGGTCACCCTGAAGTTTA – 3’) (Folmer et al., 1994).   
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Figure 3. Images of Phascolosoma agassizii specimens and introvert hooks. (A) 
Specimen from California. Image is at 6.5X magnification. (B) Specimen from 
Vostok Bay in the Sea of Japan.  Image is at 7.5X magnification. TR = Trunk, IN = 
Introvert, FT = Feeding Tentacles.  Scale bars are 1 mm.  (C) Introvert hooks from 
an eastern Pacific specimen and (D) from the western Pacific specimen.  For (C) 
and (D), scale bars are 20 µm.  CS = clear streak, CT = clear triangle.  (Schulze et 
al., 2012).  
 

 

For amplification of the 16S ribosomal RNA gene, we used the forward primer 16SPagF 

(5’ – GCTAAGGTAGCGCAATCACT – 3’) and the reverse primer 16SPagR (5’ – 

GGGTTAGAGTGCTGCTTCAT – 3’).  These 16S primers were specifically designed 

for P. agassizii over the course of this study.  For amplification of the nuclear ITS gene, 



 

 13 

we used the forward primer ITS18SFPoly (5’ – GAGGAAGTAAAAGTCGTAACA – 

3’) and the reverse primer ITS5.8SRPoly (5’ – GTTCAATGTGTCCTGCAATTC – 3’) 

(Nygren et al., 2009).  The DNA was amplified under the following thermocycling 

protocol for the two mitochondrial genes: initial denaturing step of 94°C for 2 min, 35 

cycles of denaturation at 94°C!for!30!s,!annealing!at!40°C!for!30!s,!and!extension!at!

72°C!for!45!s,!and!a!final!extension!at!72°C!for!7!min.!!An!annealing!temperature!of!

45°C!was!used!for!some!samples!that!exhibited!multiple!bands!per!lane!when!

amplified!at!40°C.!!!The!following!protocol!was!used!for!amplification!of!the!ITS!

gene:!initial denaturing step of 94°C for 4 min, 30 cycles of denaturation at 94°C!for!30!

s,!annealing!at!45°C!for!30!s,!and!extension!at!68°C!for!45!s,!and!a!final!extension!at!

72°C!for!5!min.!!Following!amplification,!DNA!products!were!visualized!on!a!1%!

agarose!gel!and!cleaned!with!ExoSAPQIT®!(Affymetrix).!!Cycle!sequencing!was!

performed!using!BigDye!Terminator!(Life!Technologies)!in!10 µL volumes and 

purified according to standard protocols using the BigDye X Terminator purification kit.  

Sequences were obtained using the ABI3130 Genetic Analyzer from Applied 

Biosystems, and edited using SequencerTM v. 4.8.  Editing consisted of assembling the 

forward and reverse strands of each specimen and removing the primer regions.  All 

sequences were submitted to GenBank under accession numbers KM226349 – 

KM226482 (Table A1). 

Phylogenetic Reconstruction 

Sequences were aligned in MEGA 5.05 (Tamura et al., 2011) using the default 

settings for ClustalW (Larkin et al., 2007).  Phylogenetic analyses were performed using 
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Bayesian Inference (BI), Maximum Likelihood (ML), and Neighbor Joining (NJ).  

Outgroups representing other Phascolosoma species were selected as recommended in 

previous studies (Schulze et al., 2007; Schulze et al., 2012).  This was done to provide 

comparative sequence data for any observed levels of intraspecies divergence within our 

sample set, as well as to root our phylogenetic trees.  Phascolosoma granulatum was 

selected as the root for our trees based on results from earlier studies examining the 

phylogenetic relationships of Sipuncula (Schulze et al., 2005, 2007).  Tree 

reconstruction according to Bayesian Inference was conducted in MrBayes 3.1.2 

(Ronquist et al., 2012) using a generalized-time reversible model incorporating a gamma 

distribution of rate substitution with invariant sites (GTR+I+G).  The GTR+I+G model 

was selected as it resulted in the lowest AIC and BIC scores, calculated in jModelTest 

2.4.1 (Posada, 2008).  Bayesian trees were constructed over 10,000,000 generations with 

a 25% burn in (2,500,000 generations). Analyses using Maximum Likelihood (ML) were 

performed in RAxML (Stamatakis, 2014) using a GTR+I+G model.  Branch support 

values were obtained over 1,000 bootstrap replicates.  Analyses using NJ were 

constructed in MEGA 5.05 using the Tamura-Nei model (1993) with a gamma 

distribution and 1,000 bootstrap replicates.        

Genetic Distance and Diversity Calculations 

Average between-group genetic distances were calculated in MEGA using 

Kimura’s 2-Parameter model (K2P) (1980) as well as the Tamura-Nei model, which was 

selected using jModelTest.  The K2P model was selected to provide a comparison with 

similar studies of P. agassizii (Schulze et al., 2012).  Standard error values for these 
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distances were calculated using 1,000 bootstrap replicates.  Estimates of interpopulation 

and intrapopulation diversity, as well as the coefficient of genetic differentiation (GST) 

were also calculated in MEGA using both the Tamura-Nei model and Kimura’s 2-

Parameter model.  Rate variation between sites incorporated a gamma distribution model 

and took into account only sites that had 95% site coverage or greater.  An analysis of 

molecular variance was performed using Arlequin v. 3.5 (Excoffier & Lischer, 2010) to 

compare variance between groups, between populations, and within a population.  The 

hierarchical arrangement consisted of two groups corresponding to the eastern Pacific 

(East) and western Pacific (West). Collecting localities shown in Figure 4 represented 

populations for this analysis.  Computations were run using the Tamura-Nei model 

(Tamura & Nei, 1993) and incorporated 1,000 permutations.  The number of haplotypes 

and a calculation of FST were also determined in Arlequin.      

Results 

Alignments 

Our COI dataset resulted in a 662 base-pair alignment after deletion of primer 

regions and gap editing.  A total of 68 individuals were represented within this 

alignment, five outgroups within the Phascolosoma genus and 63 nominal P. agassizii 

specimens from nine Pacific populations (Table 1).  Our 16S dataset was comprised of 

58 total individuals with the same five outgroups, resulting in a 509 bp alignment.  A 

third dataset consisting of a 373 bp alignment of the ITS-1 nuclear region for 18 

individuals, representing all populations, was included in our study to explore the 
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possibility of obtaining different phylogenies with nDNA compared to mitochondrial 

DNA. 

Table 1. Phascolosoma agassizii genetic dataset showing collection location, sample 
sizes for each gene sequenced, and depth. 
 

 

Population* Coordinates* COI* 16S* ITS* Concatenated*

Phylogeny*

Concatenated*

AMOVA*

Ocean* Depth*(m)*

Troitsy*Bay*

(TB)*

42.64°N'

131.04°E'

'

10' 10' 2' 10' 10' Northwest'Pacific' 3'

Amursky*Bay*

(AmB)*

43.20°N'

131.92°E'

'

2' 2' 2' 2' 2' Northwest'Pacific' 1.5'

Ussuriysky*

Bay*(UB)*

43.07°N'

131.96°E'

'

10' 7' 2' 10' 7' Northwest'Pacific' 1;2'

Vostok*Bay*

(VB)*

42.89°N'

132.73°E'

'

9' 8' 3' 9' 8' Northwest'Pacific' 4;5'

Sokcho*Bay*

(SB)*

38.21°N'

128.59°E'

'

3' 2' 3' 3' 2' Northwest'Pacific' intertidal'

The*Kuril*

Islands*(KI)*

44.70°N'

147.14°E'

2' 2' 2' 2' 2' Northwest'Pacific' intertidal'

Friday*Harbor*

(FH)*

48.52°N'

123.01°W'

'

15' 12' 2' 18' 9' Northeast'Pacific' intertidal'

Whiffen*Spit*

(WS)*

48.36°N'

123.72°W'

'

7' 6' 1' 8' 5' Northeast'Pacific' intertidal'

California*

(CA)*

38°N'

123.42°W'

5' 4' 1' 5' 4' Northeast'Pacific' 88';'122'

Total* ;' 63' 53' 18' 67' 49' ;' ;'
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Figure 4. Map of the western Pacific and the eastern Pacific collection localities 
(above).  Peter the Great Bay (bottom left) encompasses Vostok Bay, Amursky Bay, 
Ussuriysky Bay, and Troitsy Bay.   The eastern Pacific (bottom center and bottom 
right) sampling sites were Whiffen Spit, Friday Harbor, Cordell Bank and 
Monterey Bay. Map data from Google, DigitalGlobe. Map edited with Adobe 
Illustrator.
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 Measures of Diversity and Genetic Distances 

Mean within-population distances range from 0.2% (The Kuril Islands, Amursky 

Bay) to 2.6% (California) for COI for both the Tamura-Nei model and Kimura’s 2-

Parameter model and from 0 (Amursky Bay, Sokcho Bay) to 1.3% (California, 

Ussuriysky Bay) using Kimura’s 2-Parameter model for 16S.  Using the Tamura-Nei 

model for 16S, mean within-population distances ranged from 0 (Amursky Bay, Sokcho 

Bay) to 1.4% (Ussuriysky Bay).  All standard error values were less than or equal to 4% 

for both datasets.  Genetic distances calculated from our ITS dataset showed extremely 

high levels of between-coast divergence (> 1.0).  This may be due to our small sample 

size (n = 18) or an erroneous alignment, and therefore we recommend revisiting these 

estimates with either a larger dataset or using a different nuclear gene (such as H3, H4, 

or 28S) to obtain valid and accurate estimates of genetic distance.  

Mean inter-population diversity estimated using the Tamura-Nei model (1993) was 

8.4% (16S) and 15.7 (COI) with a standard error of 1.3% and 1.8%, respectively.  We 

report estimates from both models because although Tamura-Nei was selected as the 

most appropriate model for this data (based on results from jModelTest), Kimura’s 2-

Parameter model allows for an adequate comparison with other studies that have used 

this model for estimating population diversity.  Using Kimura’s 2-Parameter model, 

mean inter-population diversity was estimated at 8.3% (16S) and 15.3% (COI) with a 

standard error of 1.2% and 1.7%, respectively.  Mean intra-population diversity was 

0.5% (16S) and 0.9% (COI) with a standard error of 0.1% for each dataset regardless of 
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model selection.  The coefficient of genetic differentiation (GST) when comparing 

eastern populations with western populations was calculated to be 0.943 (COI) and 

0.945 (16S) (the table as seen on page 22).  Standard error values were obtained by 

1,000 bootstrap replicates. 

Mean between-population genetic distances range from 0.2% to 33.1% using the 

Tamura-Nei model (1993) and 0.2% to 32.3% using Kimura’s 2-Parameter model (1980) 

for the COI dataset (Table 2).  For the 16S dataset, mean between-population genetic 

distances range from 0.1% to 17.8% using the Tamura-Nei model and 0.1% to 17.6% 

using Kimura’s 2-Parameter model (Table 3).  Mean between-coast genetic distances 

were 17% (16S) and 32% (COI), with standard errors of 2.5% and approximately 3.5%, 

respectively.  These distances between populations were considerably greater than 

distances between same-coast populations, which were less than or equal to 2% 

regardless of evolutionary model or mitochondrial gene sequence.   

An analysis of molecular variance gave strong support for the separation of the 

eastern and western populations (Table 4).  Within the COI dataset, 95% of molecular 

variance occurred between eastern and western coasts, with -0.2% variation among 

populations within the groups and 4.7% variation within populations.  91.5% of total 

variance within the 16S dataset was attributed to variance between eastern and western 

coasts, with 1.15% variation within groups and 7.32% variation within populations.  The 

greatest proportion of molecular variation that could be attributed to between-group 

variation was found in our COI-16S concatenated dataset (95.4%).  FST values of 0.95, 

0.93, and 0.96 for COI and 16S, and COI-16S respectively, provide evidence of no gene 
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flow occurring between eastern and western populations.  The number of haplotypes 

recovered from these three datasets varied between 27 (16S) and 52 (COI), with 46 

haplotypes being recovered in the combined dataset. 

 

 

Table 2. Mean between-group genetic distances calculated for COI using the 
Tamura-Nei model (above diagonal) and Kimura’s 2-parameter model (below 
diagonal).  Column headings contain site name abbreviations.  Values represent the 
average number of base substitutions per site between all groups. S.E. < 0.04 for all 
samples. 
 

 

 
 

! TB! AmB! UB! VB! SB! KI! FH! WS! CA!

Troitsy*Bay* ' 0.005' 0.006' 0.006' 0.008' 0.005' 0.323' 0.320' 0.328'

Amursky*Bay* 0.005' ' 0.005' 0.004' 0.006' 0.002' 0.324' 0.322' 0.330'

Ussuriysky*Bay* 0.006' 0.005' ' 0.006' 0.007' 0.006' 0.323' 0.321' 0.328'

Vostok*Bay* 0.006' 0.004' 0.006' ' 0.007' 0.004' 0.325' 0.323' 0.331'

Sokcho*Bay* 0.008' 0.006' 0.007' 0.007' ' 0.007' 0.323' 0.321' 0.329'

The*Kuril*Islands* 0.005' 0.002' 0.006' 0.004' 0.007' ' 0.323' 0.321' 0.327'

Friday*Harbor* 0.315' 0.317' 0.316' 0.318' 0.316' 0.316' ' 0.013' 0.020'

Whiffen*Spit* 0.312' 0.314' 0.313' 0.315' 0.313' 0.314' 0.013' ' 0.018'

California* 0.320' 0.322' 0.320' 0.323' 0.322' 0.320' 0.020' 0.018' '
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Table 3. Mean between-group genetic distances calculated for 16S using the 
Tamura-Nei model (above diagonal) and Kimura’s 2-parameter model (below 
diagonal).  Column headings contain site name abbreviations.  Values represent the 
average number of base substitutions per site between all groups. S.E. < 0.03 for all 
samples. 
 

! TB! AmB! UB! VB! SB! KI! FH! WS! CA!

Troitsy*Bay* ' 0.003' 0.009' 0.004' 0.011' 0.013' 0.173' 0.171' 0.174'

Amursky*Bay* 0.003' ' 0.007' 0.001' 0.013' 0.016' 0.177' 0.175' 0.178'

Ussuriysky*Bay* 0.009' 0.007' ' 0.008' 0.014' 0.016' 0.174' 0.172' 0.174'

Vostok*Bay* 0.004' 0.001' 0.008' ' 0.014' 0.017' 0.177' 0.175' 0.178'

Sokcho*Bay* 0.011' 0.013' 0.014' 0.014' ' 0.003' 0.157' 0.154' 0.157'

The*Kuril*Islands* 0.013' 0.016' 0.016' 0.017' 0.003' ' 0.160' 0.158' 0.159'

Friday*Harbor* 0.171' 0.175' 0.172' 0.175' 0.156' 0.159' ' 0.003' 0.010'

Whiffen*Spit* 0.169' 0.173' 0.170' 0.173' 0.153' 0.157' 0.003' ' 0.010'

California* 0.172' 0.176' 0.172' 0.176' 0.156' 0.158' 0.010' 0.010' '
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Table 4. The results of our AMOVA analysis on the COI, 16S, and concatenated 
datasets.   GST values were calculated in MEGA 5.05 using Kimura’s 2-Parameter 
model comparing eastern and western populations and incorporating a gamma 
distribution of rate variation.  Support for GST was calculated over 1,000 bootstrap 
replicates. * represents significant values (p < 0.01). 
 

Loci! Between!

Groups!

Between!

Populations!

Within!

Populations!

FCT! FSC! FST! GST! Haplotypes!

(n)!

COI' 95.47%' ;0.20%' 4.74%' 0.95' ;0.05' 0.95*' 0.933' 52'

16S' 91.47%' 1.15%' 7.32%' 0.92*' 0.13' 0.93*' 0.925' 27'

Both' 95.40%' 0.34%' 4.26%' 0.95*' 0.07' 0.96*' 0.926' 46'

 

 

 

Phylogeny 

Phylogenetic trees were constructed using a concatenated mtDNA dataset 

representing 72 individuals, including five outgroup specimens (the table as seen on 

page 16). These phylogenies, constructed according to ML and Bayesian inference 

(Figure 5, as seen on page 24) recovered consistent eastern Pacific and western Pacific 

clades with high bootstrap support/posterior probability (100%/1.0).  The same western 

and eastern clades were recovered using the three-gene concatenated dataset, as well as 

in NJ trees constructed with single-gene datasets (100% bootstrap support).  This 

indicates that the divergence of these clades is represented in both mitochondrial and 

nuclear sequence data and is not reliant on a single evolutionary model.  However, 

because ITS sequences were not available for the five outgroup specimens, it was not 
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possible to root the tree using our nuclear data.  The presence of the eastern and western 

clades are independent of outgroup selection, as they remained well supported with 

multiple different outgroup combinations.  Phylogenetic trees constructed using 

Bayesian inference resulted in some fine-scale genetic structure within a coastal clade 

with strong support (> 0.80 posterior probability), though these groupings were not 

associated with any geographical region and were not recovered in all analyses.  Trees 

constructed in MEGA 5.05 using Maximum Parsimony, Minimum-Evolution, and 

Neighbor-Joining (the latter two trees incorporating only transversions) recovered the 

same eastern and western clades without any reproducible structure exhibiting high 

bootstrap support (< 50%).   

 In all phylogenetic reconstructions obtained with any combination of mtDNA 

sequence information (COI only, 16S only, and COI-16S), the eastern clade of P. 

agassizii and the western clade of P. agassizii were not recovered as sister groups.  The 

gene phylogenies indicate that their divergence precedes the divergence of the eastern 

clade from P. nigrescens, and from the common ancestor of P. scolops and P. 

stephensoni. The only separation event that occurred prior to the divergence of the 

eastern and western clades was the divergence of P. granulatum, which represents the 

root of our tree, from the common ancestor of the rest of the species.  P. stephensoni and 

P. scolops represent the most closely-related species to the eastern clade of P. agassizii  

The western clade, on the other hand, is most closely related to P. perlucens (which has 

since been shown to be a cryptic species complex (Kawauchi & Giribet, 2010)). 
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Figure 5. Phylogenetic tree based on the COI-16S sequences of 67 P. agassizii 
individuals.  The eastern and western clades were recovered in all phylogenetic 
analyses using either NJ, ML, or BI.  This tree was constructed using Bayesian 
Inference according to a GTR+I+G model over 10,000,000 generations with a 25% 
burn-in period.  Bootstrap support was determined from a ML tree constructed 
using a GTR+I+G model with 1,000 bootstrap replicates.  Outgroups were selected 
based on their relation to P. agassizii determined from previous studies. 
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Discussion 

Our data indicates that P. agassizii is not monophyletic throughout its 

distribution range, a finding consistent with the previous study by Schulze et al. (2012).  

Instead, P. agassizii consists of two highly divergent species, with corresponding 

phylogeographic associations to the west and east Pacific coasts.  Phylogenetic analyses 

(Figure 5) show that the western Pacific clade split off early in the evolution of the genus 

and is more closely related to P. perlucens. Together, these two taxa emerge as sisters to 

the group formed by P. nigrescens, P. stephensoni + P. scolops, and the eastern Pacific 

clade.  Regardless of which Phascolosoma species is used to root our trees, the eastern 

and western P. agassizii clades are not identified as sister taxa.  This early split between 

the lineages would explain the large genetic distances between the two P. agassizii 

clades.  The general consensus for maximum intra-species distance seems to be 

approximately 2-3% (Herbert et al., 2003). Each of the populations along a given coast 

separately falls within that range, but the average distance between the coasts far 

exceeds this value.       

 Our fixation indices measured for both COI and 16S, indicate that the eastern and 

western Pacific populations of P. agassizii are genetically isolated from each other.  This 

notion is supported by our AMOVA statistics, with greater than 95% of observed 

molecular variance attributed to east-west divergence.  The differences in coastal 

variation values between 16S and COI may be attributed to the faster mutation rate 

found in COI.  This would skew estimates of genetic diversity measured for these 

populations, especially in the presence of fine-scale population structure.  A separate 
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study using ISSR-PCR is currently being conducted to examine population structure 

within the western and eastern Pacific sample sets.  This method is a rapid and 

inexpensive technique that categorizes fine-scale genetic structure through a size-

fragment analysis of nuclear loci flanked by microsatellites.  It provides genetic 

information on intraspecies populations or closely-related species in a shorter amount of 

time than DNA sequencing requires.    

 The presence of a long-lived pelagosphera larvae in populations on both coasts 

was thought to support a cosmopolitan distribution of these sipunculans (Scheltema & 

Hall, 1975).  However, if these two populations belong to separate species, then this 

pelagosphera stage is most likely symplesiomorphic in these lineages.  Our findings 

suggest that no significant genetic exchange occurs between the eastern and western 

species. However, this does not disprove that the larvae are capable of crossing the 

distance between the coasts.  It is possible that they simply do not encounter suitable 

habitat for metamorphosis on the opposite coasts or that they occasionally do, but either 

do not survive to adulthood or have not been sampled in our study. Physical 

oceanographic modeling may provide additional insight into levels and distances of 

dispersal within P. agassizii populations, and thus the extent of connectivity between 

coasts and along a coastline.  Pelagosphera larvae of P. agassizii have been kept alive in 

laboratory conditions for up to seven months (Rice, 1967).  Although it is unknown how 

long this larval duration lasts in the field, a previous study of other sipunculan 

pelagosphera larvae suggests that the maximum lifespan in the field might be closer to 

three to four months.  This was inferred based on current speeds and the distance from 
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the sampling site to the closest near-shore habitat (Scheltema & Hall, 1975).  The 

complexity of the Pacific coastline makes it difficult to predict with much specificity 

areas of sipunculan recruitment.  However, the genetic relationships found in this study 

suggest that adequate levels of dispersal and recruitment are present along the eastern 

and western Pacific coasts.  The lack of fine-scale genetic structure associated with any 

particular population is intriguing, especially considering that the Sea of Japan is an 

almost entirely enclosed region.  Our data implies that gene flow is occurring between 

the Kuril Island populations and those located within the Sea of Japan, despite the 

restricted geography of the latter basin.  It is possible that westward larval dispersal is 

occurring via oceanic currents, transporting individuals from the Kuril Islands to suitable 

habitats inland.  This would potentially facilitate reproduction and gene flow between 

these western populations. 

 Cutler (1994) recognized two subspecies within P. agassizii, P. agassizii 

agassizii (Keferstein 1866) and P. agassizii kurilense (Sato 1937), with the former’s 

western Pacific distribution largely occurring in Japanese waters while the latter is found 

only in the Kuril Islands.  Additionally, P. agassizii kurilense is differentiated from P. 

agassizii agassizii by the presence of a small secondary lobe on the nephridia of mature 

specimens (Cutler, 1994).  We were unable to examine the internal anatomy of our 

samples from the Kuril Islands, so we cannot verify the presence or absence of this 

diagnostic character. Previous observations of individuals from this population have 

verified the presence of an expanded secondary lobe, however it should be noted that 

they were made using old formalin-fixed specimens in poor condition (Maiorova, pers. 
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obs.)  Our data suggest that even if there are morphological distinctions between these 

two subspecies, there are no reproductive barriers between populations from the Kuril 

Islands and the rest of the populations within the western clade.  Further, much of the 

current literature treats kurilense as a synonym of agassizii (Maiorova & Adrianov, 

2013), and therefore the two seem to be functionally the same species.  

This genetic analysis of P. agassizii samples collected throughout its geographic 

range indicates sufficient levels of divergence to taxonomically split this morphospecies 

complex into two isolated cryptic species.  We recommend that steps be taken to revise 

the taxonomic information for P. agassizii to reflect its differentiation from the taxon 

found in the western Pacific, as the type specimen for the original description came from 

California.  Further, the western Pacific populations should be formally described as 

corresponding to a new sipunculan species, as these do not appear to match the 

distributions of any species synonymized under P. agassizii (Cutler, 1994).  Previous 

work has shown differences between the developmental events and environmental 

preferences for western Pacific individuals compared to those in the eastern Pacific, 

including longer spawning seasons and longer trochophore duration times, with smaller 

egg sizes observed in the Sea of Japan (A. Adrianov & Maiorova, 2010; Rice, 1967; 

Schulze et al., 2012).  These developmental trends were thought to be a result of 

phenotypic plasticity brought about by varying water temperatures, since temperature 

fluctuations are greater in the eastern Pacific localities than in the relatively stable 

western Pacific localities.  Although we cannot rule out effects of phenotypic plasticity 

on the pelagic larval duration in sipunculans, given the high degree of genetic 
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divergence between the two species, the differences in larval development probably have 

a genetic basis as well.   

A formal revision of P. agassizii and the description of the western Pacific 

species should also incorporate an in-depth morphological analysis to determine whether 

they represent truly cryptic species or whether morphological differences exist which are 

not reflected in their taxonomy (making them pseudo-cryptic or pseudo-sibling species).  

The shape and characteristics of proteinaceous hooks located on the anterior portion of 

the introvert are the most commonly used species-specific structures for identifying 

Phascolosoma species (Cutler, 1994).  Schulze et al. (2012) presented microscopic 

images of the hooks from both species and although both fit the description of P. 

agassizii, they show notable differences in shape and proportions (the figure as seen on 

page 12). However, hook shape and size can vary depending on the size of the specimen 

and the position along the introvert. To thoroughly evaluate this feature, carefully 

preserved material with fully extended introverts would be necessary. The samples used 

for this study were largely contracted and unsuitable for morphometric analyses. Though 

these eastern and western clades should currently be considered cryptic species, it is not 

unusual for diagnostic morphological features to be found upon reanalyzing a detected 

cryptic species complex (Nygren, 2013).   

The sparse fossil record of sipunculans makes estimations of evolutionary 

timescales difficult, however recent analyses using relaxed molecular clocks help to 

reduce uncertainty in phylogenetic dating (Drummond et al., 2006; Drummond & 

Rambaut, 2007).  Though we cannot currently predict a sufficient divergence event for 



 

 30 

the separation of P. agassizii, further studies incorporating relaxed molecular clocks 

compared with a literature review of COI mutation rates within annelids may prove to be 

useful starting points to determine the evolutionary history of Phascolosoma. 

Our current study has provided sufficient genetic data to suggest that 

Phascolosoma agassizii includes at least two cryptic allopatric lineages, with amphi-

Pacific distribution, comprising the majority of this complex’s geographic range.  Thus, 

P. agassizii appears to be the latest member of a growing number of nominal sipunculan 

species that are in fact species complexes (Kawauchi & Giribet, 2010; Kawauchi & 

Giribet, 2013; Schulze et al., 2012; Staton & Rice, 1999).  Although in some of these 

complexes morphological differences among the lineages have been reported in 

hindsight (Kawauchi & Giribet, 2010), genetic identification methods provide the best 

initial detection of these divergent lineages.  Certain estimates put the level of cryptic 

diversity within sipunculans at greater than 50% (Appeltans et al., 2012).  Whether this 

is an accurate representation or not, it is clear that the current number of 149 

morphologically-distinguishable sipunculan species underestimates the true level of 

diversity within this group.  Aside from their practical taxonomic benefits, studies such 

as this highlight the gaps in our knowledge of speciation events and provide baseline 

data for follow-up studies regarding larval dispersal, speciation mechanisms, and 

changes in species distributions.  Further, with the current threats facing the health of our 

oceans and their biological communities, it is crucial that we accurately estimate and 

monitor marine biodiversity so that we can best protect these ecosystems and the 

services they provide. 
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CHAPTER III  

POPULATION STRUCTURE OF PHASCOLOSOMA AGASSIZII DETECTED WITH 

ISSR-PCR AND ITS IMPLICATIONS FOR LARVAL DISPERSAL 

 

Introduction 

Phascolosoma agassizii is a well-studied marine worm in the Sipuncula clade.  

Though traditionally considered a phylum, Sipuncula is currently accepted as an annelid 

clade (Weigert et al., 2014).  Sipunculans represent a unique opportunity to study 

population connectivity because this relatively small taxonomic group (149 species) 

exhibits a variety of developmental modes, from direct development to possessing a 

long-lived planktotrophic stage called a pelagosphera larvae. This diversity of life-

histories can therefore be used to further understand the relationship between larval 

duration, realized larval dispersal, and gene flow among adult populations.  

The sipunculan P. agassizii, which possesses a long-lived planktotrophic 

pelagosphera form, was thought to have an amphi-Pacific distribution (Cutler, 1994).  

However, a phylogeny of Pacific samples of this species found a high degree of genetic 

differentiation between coastal populations (Schulze et al., 2012).  An additional study, 

with greater sample coverage in the eastern and western coasts of the North Pacific, 

showed no gene flow occurring between coasts as the samples from either coast 

belonged to reciprocally monophyletic clades (Chapter II).  Therefore, P. agassizii 

comprises at least two cryptic or pseudo-cryptic species.  The ontogenetic development 

of specimens belonging to these two clades of P. agassizii is well documented. In 
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laboratory conditions, eastern Pacific P. agassizii pelagospherae have been kept alive for 

approximately seven months (Rice, 1967); in the western Pacific, it is thought that larvae 

settle and metamorphose after approximately one month (A. Adrianov & Maiorova, 

2010).  Adults of P. agassizii in both eastern and western Pacific populations are benthic 

and semi-sessile, and thus the majority of their dispersal occurs during their larval stage.  

Although the presence of a long-lived planktonic larval form often predicts high 

dispersal and low genetic structure (in the absence of physical barriers), this is not 

always the case (Kawauchi & Giribet, 2013; Knowlton & Keller, 1986; Levin, 2006 and 

references therein). 

 Populations of the western clade are highly abundant within the Sea of Japan, 

from Peter the Great Bay off the southern coast of Russia to South Korea’s eastern coast.  

Additionally, members of this clade can also be found in the Kuril Islands northeast of 

Japan.  The Sea of Japan, and specifically Peter the Great Bay, is a relatively enclosed 

basin with a few straits along its eastern and southern borders allowing the entry of 

Pacific currents.  Conversely, the Kuril Islands form a long archipelago on the edge of 

the western Pacific continental shelf, and are subject to currents from the North Pacific 

Gyre, specifically the Oyashio Current (Nishioka et al., 2007).  This stream of cool 

waters originates in the Arctic and stretches south to eastern Japan, where it collides with 

the northward Kuroshio Current and redirects eastward.  These differing environmental 

regimes may potentially influence the larval dispersal of Phascolosoma agassizii along 

the west Pacific coast, and therefore could have a significant impact on population 

connectivity and gene flow.  Populations of P. agassizii from the eastern Pacific can be 
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found from Alaska to Mexico (Cutler, 1994). The samples for this study were collected 

from Vancouver, the San Juan Islands, and California.  Compared to those in the western 

Pacific, the oceanography of this region is more homogeneous, with the Strait of Juan de 

Fuca allowing for potential connectivity between populations off the U.S. coast and 

those from the more inland San Juan Islands.   

 Schulze et al. (2012) and our study from Chapter II used sequence data from two 

mitochondrial genes to show the presence of two cryptic species within P. agassizii.  

These clades were isolated to the western Pacific coast and eastern Pacific coast, 

respectively.  An examination of the nuclear ITS gene of eighteen individuals also 

showed two coastal clades within this nominal species.  However, the levels of coastal 

variation within the mitochondrial and nuclear sequences were low and did not provide 

evidence of within-region population differentiation (Chapter II).  Therefore, in order to 

answer questions regarding realized larval dispersal and population connectivity, a more 

variable genetic marker is needed to properly test whether fine-scale genetic structure 

exists.   

Inter Simple-Sequence Repeat Polymerase Chain Reaction (ISSR-PCR) is a 

method of fragment-length polymorphism analysis that amplifies nuclear loci flanked by 

microsatellites.  This technique represents a rapid and inexpensive method for analyzing 

fine-scale population structure within a single species or between closely related species 

(Coupé et al., 2011; Zietkiewicz et al., 1994).  A single primer is designed to attach to 

regions containing a repeated sequence followed by a unique sequence, thereby allowing 

for amplification in both the 5’ and 3’ direction.  This technique amplifies numerous 
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variable regions within the nuclear genome simultaneously, which are then run through a 

gel electrophoresis protocol and visualized.  Thus, it allows for the detection of more 

subtle genetic differentiation than DNA sequencing methods.  In contrast to traditional 

microsatellite approaches, no prior knowledge of specific DNA sequences is required for 

ISSR analysis (Ye et al., 2012).  Amplified regions are typically non-coding, ensuring 

selective-neutrality of the loci being scored (Demarchi et al., 2010).  The relatively 

longer bands obtained using ISSR and the higher annealing temperatures associated with 

this technique translate to greater repeatability compared to many approaches using 

traditional RAPD primers (Semagn et al., 2006).  Additionally, it generates more 

amplified polymorphic loci per sample than RAPDs (Zietkiewicz et al., 1994) and can 

be developed and scored faster than most AFLPs (De Aranzamendi et al., 2009).     

In this study, we used ISSR-PCR to amplify multiple nuclear loci within ten 

populations of Phascolosoma agassizii (Table 5). We then used these polymorphisms to 

compute estimates of heterozygosity within each population and gene flow between 

populations.  Because this technique is best suited for closely-related individuals or 

intraspecific comparisons, we restricted our analysis to same-coast populations; this 

study did not compare the genetic divergence between eastern and western Pacific 

populations.  The data gathered via ISSR-PCR was used to determine whether 

populations along a coastline are interbreeding or if some regions contain genetically 

distinct populations. 
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Methods 

Specimen Collection 

Samples were collected from a total of nine different populations on both the 

eastern and western Pacific coasts (Table 5).  Amursky Bay, Troitsy Bay, Ussuriysky 

Bay, and Vostok Bay are all located off the coast of Russia in Peter the Great Bay.  

Individuals from Sokcho Bay, South Korea and Iturup Island in the Kuril Islands 

completed the western Pacific sample set.  Samples from Friday Harbor (WA), Whiffen 

Spit (BC), Cordell Bank, and Monterey Bay (CA) populations comprised the eastern 

Pacific sample set.  Samples from Peter the Great Bay, Friday Harbor, and Whiffen Spit, 

B.C., were from previous collections by Anja Schulze and colleagues.  Christina 

Piotrowski at the California Academy of Sciences provided specimens from Cordell 

Bank and Monterey Bay.  Anastassya Maiorova at the Zhirmunsky Institute of Marine 

Biology, Far East Branch of the Russian Academy of Sciences provided specimens from 

Sokcho Bay and the Kuril Islands. Individuals were either hand-collected by SCUBA 

divers or collected via bottom trawling by research vessels.  Except for three specimens 

collected at 88 meters in Cordell Bank and two specimens collected at 122 meters in 

Monterey Bay, all were collected from the shallow intertidal or subtidal regions of their 

associated locales.  All were fixed in 95% ethanol and kept at-20° C.   
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Table 5. Sampling localities represented in this study along with their respective 
sample sizes, locations within the Pacific, and collection depths (if available). 
 

Population Sample Size Pacific Coast Depth 

Troitsy Bay 8 West 3 m 

Amursky Bay 2 West 1.5 m 

Ussuriysky Bay 7 West 1 – 2 m 

Vostok Bay 7 West 4 – 5 m 

Sokcho Bay 3 West - 

The Kuril Islands 2 West - 

Whiffen Spit 6 East intertidal 

Friday Harbor 10 East intertidal 

Cordell Bank 3 East 86 m 

Monterey Bay 2 East 122 m 

 

 

 

DNA Extraction and ISSR Amplification 

DNA was extracted from the retractor muscles of individuals according to the 

Qiagen DNeasy Blood and Tissue Kit® protocol.  If a specimen was too small (< 10 mm 

body length) to obtain a sample of the retractor muscle, DNA was extracted from the 

body wall.  Quantity and quality of DNA was then measured using a Nanodrop 2000 
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Spectrophotometer (Thermo Scientific) to ensure similar and adequate concentrations 

were obtainable with this extraction method.  1 µl template DNA (0.22 pMol – 0.35 

pMol original concentration) was combined with 12.5 µl Gotaq® Green Master Mix 

(Promega), MgCl2 (2.5 mM), and a given primer (0.4x mM), in a total volume of 25 µl 

to create a thermocycling master mix.  Amplification of ISSR regions was performed 

with four primer combinations (the table as seen on page 42), using the following 

thermocycling protocol: an initial denaturation step at 94° C for 3 min, a cycle of 

denaturation at 94° C for 30 s, annealing at 48° C for 30 s, and extension at 72° C for 45 

s repeated 35 times, and a final extension at 72° C for 5 min.  Amplified samples were 

visualized on a 1.0% Agarose gel.  The gel was run at 80 volts (400 mA) for 2 hours and 

40 minutes and stained in 10X EtBr solution for 2 hours to ensure adequate visualization 

of bands.  Bands were visualized and scored on a Bio-Rad Molecular Imager® Gel 

Doc™ XR System using Quantity One© 4.6 1-D Analysis software.  Each sample was 

amplified at least twice separately to ensure bands were reproducible (the figure as seen 

on page 41).  Bands present in only a single amplification of a specific sample were 

excluded from analyses, and a third amplification was done to ensure consistent band 

scoring.  To ensure reliable estimates of population structure, individuals that exhibited 

consistently smeared or absent bands for a given primer were eliminated from our 

combined dataset.  

Population Analysis 

Presence/absence matrices were created for each primer, consisting of all 

amplified samples with representation from each of the ten populations.  A successfully 
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amplified locus, indicated by the presence of a band, represents a dominant state at that 

locus.  The absence of a polymorphic band at a specific locus, therefore, represents the 

recessive state at that locus.  The presence of a given polymorphic band was determined 

if a band of the same size as the reference band was visible within the sample’s lane.  

Faint bands were scored as present, as long as they were visible in subsequent, separate 

amplifications.  Streaked bands were eliminated from our analysis.  After a 

presence/absence matrix was constructed, each primer sample set was analyzed using 

AFLP Surv 1.0 (Vekemans et al., 2002).  A locus within a sample was scored as a 1 if 

the band was present, a 0 if the band was absent, or a 9 if the locus was not scored.  

Analyses consisted of calculating values of expected heterozygosity, gene diversity, and 

FST for eastern and western populations separately.  FST values were estimated using 

10,000 permutations.  Genetic distances were estimated over 1,000 bootstrap replicates.  

Allele frequencies were calculated assuming a Bayesian method with non-uniform prior 

distribution, and the populations analyzed were assumed to be in Hardy-Weinberg 

equilibrium.  An initial analysis of the combined dataset was run according to the 

previously described parameters in AFLP Surv 1.0.  This analysis, which measured 

eastern and western populations separately, assumed that each sampling locality 

represented a genetically-distinct population.  Subsequent analyses using the same 

parameters were run to delineate actual genetically-distinct groups, either consisting of 

single populations or a combination of populations.  Populations with FST values of less 

than 0.05, which was selected based on interpretations of similar studies (Casu et al., 
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2006; Coupé et al., 2011) or with non-significant values of FST (within a 99% confidence 

interval), were assumed to be a single gene pool.   

  STRUCTURE v. 2 (Pritchard et al., 2000) was then used to determine the 

number of distinct clusters within our western and eastern Pacific dataset.  Our dataset 

was prepared following the protocol in Vekemans et al. (2002), which treats the data as 

haploid.  Each specific locus within each sample was scored as present (indicated by a 1) 

or absent (indicated by a 2).  The second gene for each sample was scored as -9 for all 

loci, indicating missing data resulting from the dominant nature of the markers 

(Vekemans et al., 2002).  A burn-in period of 100,000 reps was determined to be 

adequate for this analysis, followed by a run-length of 300,000 subsequent repetitions.  

After this time the summary statistics, such as alpha, F, and the parameter values of P 

and Q, converged on a small range of values.  This convergence can be interpreted as 

indicating a suitable run length (Pritchard et al., 2003).  Four iterations were used for 

each K.  Because ISSR analyses assume present bands represent dominant loci, and that 

absent bands represent the homozygous recessive allele, some genotypic information 

cannot be directly visualized on a gel (i.e. distinctions between heterozygous individuals 

and homozygous dominant individuals).  AFLP-Surv formally corrects for this in its 

estimates of genetic diversity, however STRUCTURE only does so under the no-

admixture model (Pritchard et al., 2003).  Despite the fact that the admixture model does 

not formally correct for this loss of genotypic information, the authors of STRUCTURE 

believe this model will provide reasonably unbiased estimates of population composition 

(Pritchard et al., 2003).  Because of its ability to account for mixed ancestry and hybrid 
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zones, we decided to compare the admixture model’s results with those under the no-

admixture model.  We ran both admixture and no-admixture models for each dataset, 

incorporating a correlated allele frequency model and using our sampling locations as 

prior information for clustering (Falush et al., 2003).  We used STRUCTURE Harvester 

(Earl, 2012) to interpret the results and determine the optimal number of populations (K) 

according to the Evanno method (2005).  An analysis of molecular variance (AMOVA) 

was run in the program Arlequin v 3.5 (Excoffier & Lischer, 2010) to determine the 

variation between groups, among groups, and between populations.  Groups were 

determined to be populations or combinations of populations that our analysis 

determined to be genetically unique.  Thus, they either exhibited FST values greater than 

or equal to 0.05 or were detected as a unique cluster in STRUCTURE.     

Results 

Polymorphic Loci 

A combined matrix constructed from four different primers for both the eastern 

and western populations resulted in a dataset of 62 scored polymorphic loci, comprised 

of 21 eastern individuals from four localities and 29 western individuals from six 

localities.  Visualized bands ranged from 350 bp to roughly 1500 bp in length for each of 

the four primers used (Figure 6).  The number of polymorphic bands per lane obtained 

from each primer ranged from two to thirteen, with an average of seven bands per 

individual sample per primer (Table 6).  A significant FST estimate of 0.11 was obtained 

among the western populations, and a non-significant FST estimate of 0.09 was obtained 

among the eastern populations (assuming each locality represented a genetically-distinct 
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population).  Estimates of total gene diversity (HT) for the eastern and western 

populations were 0.345 and 0.379 respectively, with estimates of within-population 

diversity (HS) equaling 0.313 and 0.338.  Estimates of Nei’s DST, therefore, were found 

to be 0.03 and 0.04 for the eastern and western populations, respectively.   

 

 

 

 

Figure 6. Image of a 1.0% TBE agarose gel stained with EtBr and run for 140 min 
at 80 volts.  Specimens from Amursky Bay (1-2) and Ussuriysky Bay (3-9) were 
amplified twice (a and b) to ensure accurate band identification using primer II 
((AC)8CA).  Ladders (L) are 5 PRIME PerfectSize 100 bp XL ladders, with 11 
fragments ranging from1,500 bp to 100 bp. 
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Table 6. Primer sequences, sample sizes from each coast, number of polymorphic 
loci scored for each primer, and the average number of dominant alleles per 
individual for each primer.   
 

 Sequence Sample size 
(n) 

# of polymorphic 
loci 

Mean # of bands per 
lane 

Primer I 
West 

(GTG)4GC 30 16 7.43 

Primer II 
West 

(AC)8CA 32 15 7.75 

Primer III 
West 

(AG)8G 31 16 5.16 

Primer IV 
West 

(AC)8T 30 15 6.90 

Primer I 
East 

(GTG)4GC 29 16 6.62 

Primer II 
East 

(AC)8CA 27 15 7.61 

Primer III 
East 

(AG)8G 22 16 5.36 

Primer IV 
East 

(AC)8T 23 15 5.91 

 

 

Genetic Structure 

Amursky Bay, Ussuriysky Bay, Vostok Bay, and the Kuril Islands were found to 

represent genetically-distinct populations (FST = 0.12) (Table 7).  Conversely, Troitsy 

Bay and Sokcho Bay could not be differentiated (FST = 0.038, p-value = 0.07). Instead, 

our data indicate that they represent a single population separate from the rest of our 

western Pacific localities.  Assuming Hardy-Weinberg genotypic proportions, the 

expected heterozygosity (H) levels were 0.39, 0.28, 0.34, 0.32, and 0.34 for Amursky 

Bay, Ussuriysky Bay, Vostok Bay the Kuril Islands, and the combined population of 
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Troitsy Bay and Sokcho Bay, respectively.  Pairwise FST estimates support the scenario 

of five distinct populations in the west (Table 8).    

 Within the eastern Pacific, significant estimates of FST were obtained when 

comparing the northeast Pacific samples with the California samples (FST = 0.07) (Table 

7).  The northeast Pacific population consists of Friday Harbor and Whiffen Spit, while 

the separate California population is comprised of individuals from Cordell Bank and 

Monterey Bay.  No significant structure was found within the California population (p-

value = 0.20), and the FST estimate obtained when testing for structure between Friday 

Harbor and Whiffen Spit was low enough to consider them not genetically distinct (FST 

= 0.038, p-value = 0.011).  Therefore, our results indicate the presence of two distinct 

populations within the eastern Pacific, one comprised of the northeast localities and one 

comprised of the California localities. 
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Table 7. Measures of genetic diversity obtained for two different scenarios of 
population structure among western and eastern Pacific communities of P. 
agassizii.   The combined population in the five-population scenario is comprised of 
Troitsy Bay, and Sokcho Bay.  The northeastern Pacific population is comprised of 
Whiffen Spit and Friday Harbor.  The California population is comprised of 
Monterey Bay and Cordell Bank.  
 
 Distinct Populations FST HT HS Confidence 

Level 

p-Value 

West, five 

populations 

Ussuriysky Bay, 

Vostok Bay, Amursky 

Bay, Kuril Islands, 

combined population 

0.12 0.38 0.34 99% 0.001 

       

East, two 

populations 

Northeast Pacific, 

California 

0.07 0.34 0.31 99% 0.003 
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Table 8. Pairwise FST estimates for the five population scenario within the western 
Pacific (top) and for the two population scenario within the eastern Pacific  
(bottom).  Measurements were obtained using 1,000 bootstrap replicates. 
 

 CP AmB UB VB KI 

Combined population 0 - - -  

Amursky Bay 0.0987 0 - -  

Ussuriysky Bay 0.1013 0.1276 0 -  

Vostok Bay 0.0517 0.0934 0.1453 0  

Kuril Islands 0.1179 0.1472 0.1329 0.1705 0 

 

 C NP 

California 0 - 

Northeast Pacific 0.0669 0 

 

 

 

Structure Analysis and AMOVA Testing 

 Within the western Pacific, the uppermost hierarchical structure obtained using 

the Evanno method (2005) resulted in two distinct clusters.  This method estimate the 

number of K groups from the dataset by plotting the change in the likelihood distribution 

over a specified range of K.  The second cluster comprised individuals from Ussuriysky 

Bay (approximately ≥ 80% membership), the first all other individuals (approximately ≥ 
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60% membership) (Figure 7A, as seen on page 48).  However, further structure was seen 

when assuming three distinct clusters, with individuals from Vostok Bay representing a 

distinct population (Figure 7C), but this pattern was not recovered without incorporating 

the locality prior information.  No further structure was seen within the west when we 

tested for up to 15 distinct clusters.  The composition of clusters did not differ between 

the admixture and no-admixture models.   

 An analysis of the eastern Pacific population resulted in the detection of two 

distinct clusters at the K=2 scenario following the Evanno method.  Cluster one 

comprises four individuals, with representation from Cordell Bank, Whiffen Spit, and 

Friday Harbor.  Cluster two is comprised of all the other individuals (Figure 7B).  Thus, 

the structure obtained assuming K = 2 is not concordant with the geographic proximity 

of our sampling locations nor does it coincide with our results from our AFLP-Surv 

analysis, which showed no significant structure within our California samples or within 

our northeast Pacific samples.  Further structure was again seen when assuming three 

distinct clusters, though this was not recovered in all iterations for K = 3.  Individuals 

from the California populations and a single individual from Friday Harbor comprised 

cluster one, while the majority of individuals from Whiffen Spit and Friday Harbor made 

up cluster two.  Cluster three is represented by Cordell Bank, Whiffen Spit and Friday 

Harbor, the same individuals as those from cluster one when assuming K = 2 (Figure 

7D).  

 An analysis of molecular variance (AMOVA) for the eastern population was 

performed incorporating two distinct groups, the first consisting of individuals from 
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California (Cordell Bank and Monterey Bay populations) and the second consisting of 

individuals from the northeast Pacific (Friday Harbor and Whiffen Spit populations).  

This analysis resulted in approximately 14% of the variation being attributed to variation 

between California samples and northeast Pacific samples (Table 9, as seen on page 49). 

However, the majority of variation was seen within populations (approximately 77%).  

Within the western Pacific, under the five-population scenario only 8.5% of the variation 

could be attributed to between groups.  The five-population scenario was not supported 

by STRUCTURE, since Amursky Bay and the Kuril Islands were not identified as 

representing unique clusters.  However, even less variation (approximately 2.5%) was 

seen among groups when Amursky Bay and the Kuril Islands were combined into a 

population with Troitsy Bay and Sokcho Bay (also supported by STRUCTURE).  This 

program did identify Vostok Bay as a unique cluster, despite relatively low genetic 

differentiation with the combined western population.  When Vostok Bay was grouped 

with this population, the among-group variation was calculated at 5.3%.  When all of the 

locations except Ussuriysky Bay were grouped together, the among-group variation 

dropped to 4.7%.  Therefore, we posit that the five-population scenario accounts for 

most genetic structure among our sampling localities within the western Pacific.     
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Figure 7. ! plots representing the membership coefficients of each individual to a 
specific cluster.  Clockwise from top left: A = Western Pacific, K = 2; B = Eastern 
Pacific, K = 2; C = Western Pacific, K = 3; D = Eastern Pacific, K = 3.  
Abbreviations on X-axis indicate sampling localities.  Plots are taken from 
STRUCTURE runs incorporating an admixture model and using prior sampling 
location information.  The same composition of each cluster for each K is seen using 
a no-admixture model. 
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Table 9. Three – level AMOVA testing for the eastern and western datasets.  The 
two populations in the eastern Pacific are comprised of the California samples 
(Monterey Bay and Cordell Bank) and the northeast Pacific samples (Whiffen Spit 
and Friday Harbor).  The five populations in the western Pacific are Vostok Bay, 
Ussuriysky Bay, Amursky Bay, the Kuril Islands, and a combined population of the 
Troitsy Bay and Sokcho Bay samples. FCT = variance between regions relative to 
total variance; FSC  = variance among populations within regions; FST = variance 
among populations relative to total variance.  Asterisks indicate statistically 
significant fixation indices, with p-value < 0.001. 
 

Analysis of Molecular Variance % Variation 

 East Pacific – Two Populations - 

Among groups 14.13 

Among populations within groups 8.85 

Within populations 77.03 

FCT 0.141 

FSC 0.103* 

FST 0.230* 

West Pacific – Five Populations - 

Among groups 8.54 

Among populations within groups 10.78 

Within populations 80.68 

FCT 0.085 

FSC 0.118 

FST 0.193* 
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Discussion 

Our data indicate the presence of five distinct populations of Phascolosoma 

agassizii within the western Pacific based on our AFLP-Surv analysis.  The results from 

our STRUCTURE analysis, however, indicate the presence of only three distinct regions 

in the western Pacific.  Although they were not detected as unique clusters in 

STRUCTURE, the relatively large pairwise FST values for Amursky Bay and the Kuril 

Islands suggest that these populations experience barriers to gene flow with the rest of 

the Sea of Japan.  Additionally, the Ussuriysky Bay population exhibits significant 

genetic differentiation when compared with other populations in the western Pacific.  

Vostok Bay represents a genetically-distinct population with some degree of 

connectivity to our other sample sites.  This genetic structure could be maintained by 

oceanic conditions within the region.  The Sea of Japan’s currents flow in a counter-

clockwise direction, with the western edge dominated by the southern-moving Liman 

Current (Martin & Kawase, 1998).  This could potentially facilitate dispersal of 

planktonic P. agassizii larvae among the coastal populations throughout the Sea of 

Japan, specifically between Vostok Bay, Troitsy Bay, and Sokcho Bay.  However, the 

complex geographical structure of Amursky Bay and Ussuriysky Bay may prevent 

significant dispersal of larvae into these inlets.  Additionally, the location of the Kuril 

Islands could prevent connectivity between this region and the Sea of Japan, since these 

islands are subject to differing currents and are connected only through the narrow La 

Perouse and Tsugaru Straits. 
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 Amursky Bay and Ussuriysky Bay surround Vladivostok, a heavily populated 

city known for its shipping industry.  Thus, the fauna of these bays experience 

significant anthropogenic stressors and pollution resulting from the heavy ship traffic.  

The genetic structure observed between Amursky Bay and Ussuriysky Bay may be a 

result of strong levels of local recruitment within these habitats.  Modeling studies 

incorporating larval mortality show higher-than-expected levels of retention (Cowen et 

al., 2000; Ellien et al., 2004).  In a heavily industrialized bay system, one might expect 

to see more larval mortality causing reduced long-distance dispersal and relatively more 

local recruitment.  Further, large fluctuations in salinity and temperature dominate the 

hydrological regimes within these bays (Kuzmin et al., 2001).  These factors can affect 

larval settlement, particularly of benthic fauna (Kingsford et al., 2002).  Therefore, 

ecological differences between our sampling sites may play a role in influencing the 

population connectivity between the waters of Vladivostok and the rest of the Sea of 

Japan. 

 We see relatively weak structure among the eastern Pacific sampling sites.  Our 

AFLP-Surv and STRUCTURE analysis show low, yet significant levels of genetic 

differentiation between the northeast populations and the California populations.  

Whiffen Spit and Friday Harbor are located along the Strait of Juan de Fuca, which 

experiences strong eastward winds in the summer season.  This may prevent significant 

larval dispersal from these habitats westward into the Pacific Ocean.  However, if larvae 

do exit the Strait of Juan de Fuca via the western opening, they could be transported 

north by the poleward-flowing Vancouver Island Coastal Current (Masson & Cummins, 
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1999) or south by the seasonal shelf currents (MacFadyen et al., 2005).  Based on our 

analyses and the oceanographic regimes of the northeastern Pacific, it would seem that 

while larval dispersal between California populations and northeastern populations can 

occur, it is limited.  The mean annual water temperatures for Cordell Bank and Monterey 

Bay range from 8 - 16° C, while in the Strait of Juan de Fuca they range from 8 – 12° C 

(Schulze et al., 2012).  Additionally, the freshwater influence within the strait increases 

salinity fluctuations of this region relative to the offshore California waters.  Therefore, 

it is possible that ecological differences may negatively influence larval dispersal and 

settlement between these populations.    

 In addition to oceanic currents and environmental conditions, larval behavior can 

be a significant factor affecting dispersal.  Sipunculan trochophore larvae are planktonic 

and have been shown to exhibit positive phototaxis (Cutler, 1994).  However, the 

pelagosphera larval form of P. agassizii is predominantly a bottom feeder, at least in 

laboratory conditions (Rice, 1973).  During metamorphosis from the trochophore stage 

to the pelagosphera stage, P. agassizii also forms a posterior terminal organ, which is 

used for attaching itself to the substrate as it feeds (Rice, 1973).  Thus, it appears that in 

addition to a morphological transformation, P. agassizii also undergoes an ecological 

shift between larval forms.  While largely planktonic during its trochophore stage, it 

seems to exhibit benthic feeding and a preference for benthic habitats as a pelagosphera.  

A study of vertical migration in damselfish larvae showed that downward movement 

throughout ontogeny results in higher natal retention (Paris & Cowen, 2004).  If P. 
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agassizii undergoes similar vertical migrations throughout its larval duration, it may 

display similar patterns of limited dispersal.  

 Adult populations of certain marine invertebrate groups are known to influence 

local recruitment of their larvae, and a plankton survey within Vostok Bay gave 

evidence for natal retention of polychaetes within this system (Omelyanenko & 

Kulikova, 2011).  Rice (1986) showed that larvae of the sipunculan Golfingia misakiana 

(now classified as Apionsoma misakianum) settled and metamorphosed more frequently 

in areas that contained adult members of the same species.  She determined that a water-

soluble, low molecular weight metamorphosis-inducing factor released by adult 

individuals, possibly in conjunction with a specific type of substrate, was responsible for 

this increased settlement (Rice, 1986).  Although the possibility of settlement cues for P. 

agassizii are not documented in the literature, the presence of local adult populations 

may positively influence local recruitment of planktonic larvae.    

This study represents the first attempt to describe genetic connectivity among 

sipunculans at the population level using ISSR-PCR; previous studies on population 

structure within this group focused on mtDNA sequence data and allozyme variation 

(Du et al., 2009; Staton & Rice, 1999; Xiaodong et al., 2008).  For some collecting 

localities, our sample sizes were extremely small and therefore may not represent the 

entire local population.  Additional collections from the Kuril Islands, Sokcho Bay, 

Amursky Bay, and California would allow for a more thorough examination of intra and 

interpopulation diversity.  The small sample sizes from Amursky Bay and the Kuril 

Islands may be the reason for the disparity between STRUCTURE and AFLP-Surv 
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regarding the populations as genetically-distinct regions.  Larval transport exhibits its 

greatest influence on genetic structure on scales of approximately hundreds of kilometers 

(Hellberg et al., 2002; Palumbi, 2003).  However, we cannot rule out the possibility of 

climatic, geological, or bottleneck events affecting gene flow among these populations.  

Increased sample sizes and studies incorporating other genetic markers would be useful 

to examine this question.  Records exist of P. agassizii in Baja California, Alaska, and 

the Atlantic and Indian Ocean as well (Cutler, 1994).  Samples from these locations will 

allow for a more holistic view of this species’ dispersal and population structure.  

However, given the reported cryptic diversity of this species within the Pacific (Chapter 

II, Schulze et al., 2012), it is possible that these records are a result of misidentifications 

or represent additional cryptic lineages.  Regardless, their investigation would be 

necessary to understand the distribution range of the nominal P. agassizii species.   

Increasing the number of scored polymorphic loci may also contribute to a more 

accurate estimate of population structure.  When estimating the number of distinct 

groups in STRUCTURE using AFLPs or ISSR data, Evanno recommends incorporating 

at least 100 loci to ensure the detection of all present groups (Evanno et al., 2005).  

When comparing the results obtained using the admixture model with those obtained 

using the no-admixture model, we found no significant differences in the composition of 

recovered clusters or the estimates of membership coefficients.  Thus, we believe the 

admixture model to be a reliable predictor of population structure in this study.  

 The long-held paradigm that larvae are simply passive dispersers is shifting.  

Studies over the past decade have shown that larval behavior plays a crucial role in their 
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dispersal (Krug & Zimmer, 2004; Levin & Huggett, 1990).  There is a growing body of 

evidence that suggests longer planktonic larval durations do not necessarily mean greater 

connectivity among populations (Selkoe & Toonen, 2011; Shanks, 2009; Swearer et al., 

2002), even within Sipuncula (Staton & Rice, 1999).  In this examination of P. agassizii 

population structure, we see significant restriction of gene flow between Ussuriysky Bay 

and the Sea of Japan, regions that are separated by less than 100 km.  In addition to 

highlighting the gaps in our knowledge of sipunculan larval dispersal, this study brings 

up an issue of population management within Ussuriysky Bay.  Though there are no 

known estimates of population size, P. agassizii is a common member of the benthic 

invertebrate community around Vladivostok and is the most common sipunculan in the 

Sea of Japan (A. V. Adrianov et al., 2011).  Therefore, it represents an important source 

of food for bottom-feeding fish, crabs, and other large invertebrates (A. Adrianov & 

Maiorova, 2010).  Additionally, sipunculans play a significant role in the geochemistry 

of their ecosystems via their burrowing activity (Romero-Wetzel, 1987; Williams & 

Margolis, 1974).  Ussuriysky Bay and Amursky Bay exhibit high amounts of water 

pollution due to the high shipping traffic and human activity in Vladivostok 

(Vashchenko, 2000).  P. agassizii is extremely abundant within the waters surrounding 

Vladivostok, and therefore will not likely warrant management.  However, further 

studies on the genetic connectivity of other marine fauna in this region may delineate 

similar restrictions to gene flow, which in turn may require separate management of 

these intraspecies populations.  
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Integrative studies combining physical modeling with the use of environmental and 

genetic markers can greatly advance our understanding of larval dispersal and its relation 

to genetic structure within marine ecosystems (Levin & Huggett, 1990).  Additionally, 

the examination of lesser-studied groups such as sipunculans will result in a more 

thorough understanding of gene flow and evolution throughout metazoans.      
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CHAPTER IV  

CONCLUSIONS 

 

Our research confirms that the nominal species Phascolosoma agassizii indeed 

consists of two cryptic species forming reciprocally monophyletic but not sister clades 

within the genus Phascolosoma.  DNA sequencing of two mitochondrial genes and one 

nuclear gene consistently resulted in a paraphyletic phylogeny of P. agassizii specimens 

from throughout their Pacific range.  These clades were based on their geographical 

location, with one clade isolated to the western Pacific and one to the eastern Pacific.  

Our estimates of genetic distance and gene flow between these lineages indicate that 

their divergence and reproductive isolation occurred relatively early within the evolution 

of the genus.  The eastern Pacific clade represents the true P. agassizii based on the type 

specimen’s location, whereas the western Pacific clade comprises an undescribed species 

of Phascolosoma.  Due to the paucity of sipunculan fossils and unknown mutation rates, 

we are unable to estimate a divergence time within this region.  One could use the 

average COI mutation rate found in annelids such as polychaetes, which Nygren 

estimates to be approximately 1.9% per million years (2013).  However, this method 

would not provide the accuracy that a specifically-calibrated molecular clock would; in 

the absence of such a clock, this general technique may provide good starting points for 

determining speciation events within Phascolosoma.   

Our population-structure analysis confirmed that ISSR-PCR is a credible and 

effective method of detecting fine-scale genetic differentiation.  The data indicate that 
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the western Pacific clade is further subdivided into between three and five genetically 

distinct populations, while the eastern clade contains two genetically-distinct regions, 

despite the presence of a long-lived planktotrophic larval form in both clades. This 

population structure is most likely a result of larval retention within a given spawning 

region.  The exact mechanism used in their local recruitment is unknown and may differ 

between coastal clades but active habitat choice by the larvae may play a significant role.  

A logical next step would be a formal species description of the western Pacific clade, as 

well as a revision of the true range of P. agassizii (i.e. restricted to the eastern Pacific).  

This would entail a thorough morphological examination of both clades and a 

comparison with type material in museum collections.  It would allow us to determine 

whether the currently recognized P. agassizii contains two cryptic species or two 

pseudo-cryptic species. The reported occurrences of this species in the Indian and 

Atlantic Oceans warrant investigation as well, especially in light of our population 

study’s findings.  These may be results of misidentification, further cryptic diversity, or 

species introductions.   

Larval behavior studies, aimed at determining settlement cues and realized dispersal 

in both P. agassizii clades could provide insight into the mechanisms behind our 

observed genetic structure.  Additionally, an ecological study of P. agassizii in the Sea 

of Japan, specifically Peter the Great Bay, would be prudent given the unique nature of 

the Ussuriysky Bay population.  If they indeed represent a genetically-isolated cluster, 

further studies regarding this population may be warranted.  Most investigations into 

Peter the Great Bay consist of marine biological surveys rather than genetic 
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comparisons.  However, more of the latter would indicate whether Ussuriysky Bay and 

Amursky Bay harbor unique populations of other local marine fauna as well.  

Considering the high levels of pollution experienced in this region, anthropogenic 

bottlenecks may have resulted in distinct population structure of organisms that are 

particularly susceptible to environmental stress.  Finally, since multiple instances of 

cryptic diversity have been observed within Phascolosoma, a revised phylogeny of the 

genus would be extremely useful as baseline data for future studies.     

Genetic identification techniques can greatly benefit taxonomic studies, and should 

continue to be utilized in future research.  As evidenced by our results, morphological 

characters alone do not always capture the true level of diversity within a species; in the 

case of cryptic species, they never do.  It is critical, therefore, that genetic methods 

aimed at detecting diversity continue to be developed and improved upon.  

Interdisciplinary communication can certainly aid us in this goal, as some techniques are 

“adopted” by certain fields but not by others.  For example, though ISSR-PCR was 

previously used mostly in botanical studies, recent research has shown that it can be 

equally effective in studies of animal diversity.  An integrative taxonomy would, ideally, 

incorporate not only genetic and morphological information but also ecological and 

developmental data for a given species.  This holistic classification will better equip the 

scientific community to detect and mitigate potential harmful effects of climate change 

and ocean acidification on marine environments.    
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APPENDIX A 

Table A1. Phylogenetic ID numbers, their associated collecting localities, and 
GenBank accession numbers for specimens used in this thesis. 

Specimen ID Collecting locality COI 16S ITS 

100220 Friday Harbor KM226395 KM226454 - 

100222 Friday Harbor KM226396 KM226455 - 

100223 Friday Harbor KM226401 - - 

100339 Troitsy Bay KM226368 KM226414 - 

100340 Troitsy Bay KM226369 KM226415 - 

100341 Troitsy Bay KM226370 KM226416 - 

100342 Troitsy Bay KM226371 KM226417 - 

100343 Troitsy Bay KM226349 KM226418 KM226465 

100344 Troitsy Bay KM226350 KM226419 KM226466 

100345 Troitsy Bay KM226372 KM226420 - 

100346 Troitsy Bay KM226373 KM226421 - 

100347 Troitsy Bay KM226374 KM226422 - 

100348 Troitsy Bay KM226375 KM226423 - 

100375 Amursky Bay KM226351 KM226424 KM226467 

100376 Amursky Bay KM226352 KM226425 KM226468 

100377 Ussuriysky Bay KM226376 KM226426 - 

100378 Ussuriysky Bay KM226377 KM226427 - 

100379 Ussuriysky Bay KM226360 KM226428 KM226476 

100380 Ussuriysky Bay KM226353 KM226429 KM226469 

100381 Ussuriysky Bay KM226378 KM226430 - 

100382 Ussuriysky Bay KM226379 KM226431 - 

100383 Ussuriysky Bay KM226380 KM226432 - 

100384 Ussuriysky Bay KM226402 - - 

100385 Ussuriysky Bay KM226403 - - 

100386 Ussuriysky Bay KM226404 - - 
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Table A1 (Continued). 

Specimen ID Collecting locality COI 16S ITS 

100401 Vostok Bay KM226381 KM226433 - 

100402 Vostok Bay KM226361 KM226434 KM226477 

100403 Vostok Bay KM226354 KM226435 KM226470 

100404 Vostok Bay KM226362 KM226436 KM226478 

100405 Vostok Bay KM226382 KM226437 - 

100406 Vostok Bay KM226383 KM226438 - 

100407 Vostok Bay KM226384 KM226439 - 

100408 Vostok Bay KM226385 KM226440 - 

100409 Vostok Bay KM226405 - - 

100451 Friday Harbor KM226386 KM226441 - 

100452 Friday Harbor KM226387 KM226442 - 

100453 Friday Harbor KM226388 KM226443 - 

100454 Friday Harbor KM226389 KM226444 - 

100455 Friday Harbor KM226356 - KM226472 

100456 Friday Harbor KM226367 KM226412 - 

100457 Friday Harbor - KM226413 - 

100458 Friday Harbor KM226406 - - 

100459 Friday Harbor KM226407 - - 

100460 Friday Harbor KM226391 KM226448 - 

100467 Friday Harbor - KM226449 - 

100469 Friday Harbor KM226408 - - 

100473 Friday Harbor - KM226450 - 

100474 Friday Harbor KM226392 KM226451 - 

100475 Friday Harbor KM226357 - KM226473 

100476 Whiffen Spit KM226390 KM226445 - 

100477 Whiffen Spit KM226358 KM226446 KM226474 

100478 Whiffen Spit - KM226447 - 

100479 Whiffen Spit KM226411 - - 
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Table A1 (Continued). 

Specimen ID Collecting locality COI 16S ITS 

100480 Whiffen Spit KM226393 KM226452 - 

100482 Whiffen Spit KM226397 KM226456 - 

100483 Whiffen Spit KM226409 - - 

100484 Whiffen Spit KM226398 KM226457 - 

100760 California KM226359 KM226461 KM226475 

100761 California KM226410 - - 

100762 California KM226394 KM226453 - 

100764 Sokcho Bay KM226364 KM226460 KM226480 

100765 Sokcho Bay KM226363 KM226462 KM226479 

100766 Sokcho Bay KM226355 - KM226471 

100767 The Kuril Islands KM226366 KM226463 KM226482 

100768 The Kuril Islands KM226365 KM226464 KM226481 

101183 California KM226399 KM226458 - 

101184 California KM226400 KM226459 - 

P. perlucens South Africa GU190274 GU190328 - 

P. nigrescens South Africa DQ300141 GU230182 - 

P. stephensoni South Africa GU230174 GU230185 - 

P. scolops South Africa GU230173 GU230184 - 

P. granulatum Spain DQ300138 GU230181 - 

 


