
COMBINING STRATEGIES FOR PARALLEL STOCHASTIC

APPROXIMATION MONTE CARLO ALGORITHM OF BIG DATA

A Dissertation

by

FANG-YU LIN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Faming Liang
Co-Chair of Committee, Raymond Carroll
Committee Members, Michael Longnecker

Ramalingam Saravanan
Head of Department, Valen Johnson

December 2014

Major Subject: Statistics

Copyright 2014 Fang-Yu Lin



ABSTRACT

Modeling and mining with massive volumes of data have become popular in

recent decades. However, it is difficult to analyze on a single commodity computer

because the size of data is too large. Parallel computing is widely used. As a natural

methodology, the divide-and-combine (D&C) method has been applied in parallel

computing. The general method of D&C is to use MCMC algorithm in each divided

data set. However, MCMC algorith is computationally expensive because it requires

a large number of iterations and is prone to get trapped into local optima. On the

other hand, Stochastic Approximation in Monte Carlo algorithm (SAMC), a very

sophisticated algorithm in theory and applications, can avoid getting trapped into

local optima and produce more accurate estimation than the conventional MCMC

algorithm does. Motivated by the success of SAMC, we propose parallel SAMC

algorithm that can be utilized on massive data and is workable in parallel computing.

It can also be applied for model selection and optimization problem. The main

challenge of the parallel SAMC algorithm is how to combine the results from each

parallel subset. In this work, three strategies to overcome the combining difficulties

are proposed. From the simulation results, these strategies result in significant time

saving and accurate estimation.

Synthetic Aperture Radar Interferometry (InSAR) is a technique of analyzing

deformation caused by geophysical processes. However, it is limited by signal losses

which are from topographic residuals. In order to analyze the surface deformation,

we have to distinguish signal losses. Many methods assume the noise has second or-

der stationary structure without testing it. The objective of this study is to examine

the second order stationary assumption for InSAR noise and develop a parametric
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nonstationary model in order to demonstrate the effect of making incorrect assump-

tion on random field. It indicates that wrong stationary assumption will result in

bias estimation and large variation.
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1. INTRODUCTION

This dissertation consists of two topics, Combining Strategies for Parallel Stochas-

tic Approximation Monte Carlo Algorithm (SAMC) of Big Data and Stationary Test

for InSAR Noise. The work can be applied across the fields of Stochastic Approxima-

tion Monte Carlo (SAMC), data mining, stationarity test and nonstationary model.

The following paragraphs briefly introduce the motivation of two topics.

Enterprises collect billion bytes of data from mobile devices, software logs and so

forth every day and increasingly look for insights into their data. Modeling big data

from the need to answer business question, such as how to increase sales intelligence

and how customer react of their recently ads, become more and more popular in

decades. However, scientists encounter limitations for analyzing big data on a single

commodity computer for two main reasons; volume of data is too big to fit in a single

computer and big data requires a long processing time. The sophisticated way to

overcome those limitations is parallel computation.

The basic idea of parallel computation is to divide the target problem into sev-

eral smaller tasks and to perform the algorithm in each subset simultaneously. To

choose a proper algorithm doing inference in subset, we inspired by the successful

of stochastic approximation Monte Carlo (SAMC) in optimization. The stochastic

approximation Monte Carlo (SAMC) algorithm is introduced in this study. The

stochastic approximation Monte Carlo (SAMC) algorithm has been proposed by

Liang et al. (2007). It addressed the shortages of the conventional MCMC algorithm

trapped into local minima issue and improved the convergence of Wang-Landau algo-

rithm (Wang and Landau (2001)). SAMC algorithm is a self-adjusting mechanism;

it enables to explore whole sample domain during the updating estimator and is
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not trapped by local energy minima even if the data structures are complex. Thus

it is a sophisticate algorithm for Monte Carlo optimization. The main challenges

in this research is how to combine the inference results after parallel computation.

There is no statistical methodology engage in this aspect so far. In this dissertation,

we propose three combining strategies for SAMC parallel computation and examine

the calculating time and accuracy of estimation to compare with SAMC sequential

computation.

Synthetic Aperture Radar (SAR) Interferometry is an important tool to study

earthquake and volcanic deformation. However, to analyzed the deformation of sur-

face through InSAR image is limited because of signal loss. The signal loss comes

from topographic residuals, atmospheric delay and several error sources are difficult

to define. To estimate the noise of InSAR image become the main challenge. Most

of the studies assume the noise structure is the same as in the deforming structure;

i.e. assuming that the noise has a second order stationary structure. However, the

stationary assumption has never been tested. The objective of this research topic is

to examine the second order stationary assumption for InSAR noise and demonstrate

the effect of making incorrect stationarity assumption.

This chapter provides the backgrounds for two research topics with the arrange-

ment as follows. Section 1.1 reviews the Stochastic Approximation Monte Carlo Al-

gorithm and theory of dynamic weighted importance sampling. Section 1.2 provides

the theory of stationary test. Section 1.3 displays the structure of this dissertation.

1.1 Stochastic Approximation Monte Carlo

Suppose that we are interested in sampling from a distribution which can be

written by a proposal density with an unknown normalizing constant in the following
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form,

p(X) = cψ(x) x ∈ X (1.1)

where X is the sample space, c is the normalizing constant and ψ(x) is a non-negative

function. In Bayesian inference, ψ(x) corresponds to the unnormalized posterior

density π(θ|X) = π(θ)f(X|θ).

Suppose the sample space can be partitioned into m disjoint subregions according

to a function defined by U(X), E1 = {x : U(X) ≤ u1}, E2 = {x : u1 < U(X) ≤

u2}, · · · , Em−1 = {x : um−2 < U(X) ≤ um−1}, Em = {x : U(X) > um−1}, where

u1, u2, · · · , um−1 are real pre-specified numbers which can be defined by the user.

SAMC tends to draw samples from each of the subregions with a pre-specified

frequency. Without loss of generality, we assume that there is no empty subregion

in the partition, that is,
∫
Ei
ψ(x)dx > 0 for i = 1, · · · ,m. Let π = (π1, π1, · · · , πm)

represent the vector of desired sampling frequencies of m disjoint subregions, where

0 < πi < 1 and
∑m

i=1 πi = 1. π is called the desired sampling distribution in Liang

et al. (2007). Let θi = log(
∫
Ei
ψ(x)dx/πi) for i = 1, · · · ,m. For convenience, let

θ(t) = (θ
(t)
1 , · · · , θ(t)

m ) denotes the working estimate of θ obtained at iteration t. If

θ(t) can be well estimated, sampling from target distribution pθ(t)(X) will result in

a random walk and each subregions will be sampled with a frequency proportional

to π. Because of updating θ(t) in the SAMC algorithm, if a proposal is rejected,

the weight of the subregion that the current sample belongs to will be adjusted to a

larger value, and thus the proposal of jumping out from the current subregion will

be less likely rejected in the next iteration. It overcomes the difficulty of local trap

from conventional MCMC algorithm.

Let x(t) denote a sample drawn from MH algorithm with proposal distribution

q(x(t), y) ,where x(t) denotes the current state at iteration t and y denotes the pro-

3



posed state. The proposal distribution q(x(t), y) is not necessarily symmetric and

satisfy the following condition. For every x ∈ X , there exist ε1 > 0 and ε2 > 0 such

that |x−y| < ε1 =⇒ q(x(t), y) > ε2. This is a common condition for proposal density

in MCMC theory (Mengersen and Tweedie (1996)). The commonly used proposal

density are normal, Cauchy and Student t-distribution in continuous system. For

discrete system, we can defined the random walk on neighborhood of sample x in a

specific way. Henceforth, The target density pθ(t)(X) for Stochastic Approximation

Monte Carlo algorithm (SAMC) can be briefly explained in the following form,

pθ(t)(X) ∝
m∑
i=1

ψ(x)

eθ
(t)
i

I(x ∈ Ei) i = 1, · · · ,m (1.2)

where I(.) is an indicator function. Because pθ(t)(X) is invariant with respect to θ(t),

then adding to or subtracting a constant vector from θ(t) will not change pθ(t)(X). To

avoid vary truncation of θ(t), we can keep θ(t) in a compact set Θ = [−10100, 10100]m.

Define H(θ(t), x(t+1)) = e(t+1)−π, where e(t+1) = (e
(t+1)
1 , · · · .e(t+1)

m ) and e
(t+1)
i = 1

if x(t+1) ∈ Ei and 0 otherwise. Let γt denotes the gain factor (Robbins and Monro

(1951)) which is a positive, non-decreasing sequence satisfying,

∞∑
t=1

γt =∞
∞∑
t=1

γζt <∞

for some ζ ∈ (1, 2). In this study, we set

γt =
t0

max(t0, t)
, t = 0, 1, 2, 3, · · ·

For some value t0 > 1. To avoid the large variation of estimating θ(t), γt should

be very close to 0 at the end of the iteration. Therefore, t0 control the speed of
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convergence for θ(t), a large t0 will force the sampler to reach all subregions quickly.

Liang et al. (2007) suggests t0 can set to between 2m and 100m, which m indicates

the number of subregions. Let J(x) represent the index of the subregions that the

sample x belongs to, which takes value (1, · · · ,m). With above notations, the SAMC

algorithm can be describes as follows:

The SAMC algorithm:

1. (MH sampling) Simulate a sample x(t) by a MH algorithm with proposal dis-

tribution q(x(t), y). To accept sample from proposal stage y with probability

min(1,r), where transition rate r is

r = e
θ
(t)

J(X(t))
−θ(t)

J(y(t))
ψ(y)q(y, x(t))

ψ(x(t))q(x(t), y)

2. (Weight updating) Set

θ∗ = θ(t) + γt+1H(θ(t), x(t+1))

If θ∗ ∈ Θ, set θ(t+1) = θ∗; otherwise, find a value c such that θ∗ + cIm ∈ Θ, c

can be an arbitrary number that satisfies the condition θ∗ + cIm ∈ Θ.

We partition sample space in a flexible way in SAMC procedure, it will be allowed

the existence of empty subregions. Liang et al. (2007) proved that when t →∞

θ
(t)
i →

 C + log(
∫
Ei
ψ(x)dx)− log(π + d) if Ei 6= ∅

−∞ if Ei = ∅
(1.3)

holds almost surely, where i = 1, · · · ,m, d =
∑

j∈{i:Ei=∅} πj/(m − m0), m0 is the

number of empty subregions, and C = −log(
∫
Em

ψ(x)dx) + log(πm + d).
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Let π̂(t) = P (X(t) ∈ Ei) be the probability of sampling from the subregion Ei at

iteration t. The equation (1.3) implies that as t → ∞, π̂(t) will converge to πi + d

if Ei 6= ∅ and 0 otherwise, which is not dependent on its probability
∫
Ei
p(x)dx. It

implies SAMC is capable of exploring the whole sample space.

The SAMC algorithm is a self-adjusting mechanism; it penalizes the over-visited

subregions and rewards the under-visited subregions. This mechanism guarantees the

algorithm not to be trapped by local optimal. We illustrate an example as follows

to demonstrate the advantage of SAMC algorithm.

Figure 1.1: Comparison of SAMC algorithm and MH algorithm

Suppose the target density defined as p(x) ∝ eU(x), where x ∈ [−1.1, 1, 1]2

and U(X) = −{x1 sin(20x2) + x2 sin(20x1)}2 cosh{sin(10x1)x1} − {x1 cos(10x2) +

x2 sin(10x1)}2 cosh{cos(10x2)x2}. Figure 1.1(a) shows contour plot of U(x), it is

clear that U(x) has multitude of local minima. To investigate the benefit of SAMC

algorithm compared with Metropolis Hasting algorithm, we run 20,000 iterations and
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collect 2,000 samples at equally spaced time points. The proposal density for both

algorithms are N2(xt, 0.252I2). Figure 1.1(b) and 1.1(c) shows the evolving path of

the 2,000 samples from SAMC and MH respectively. SAMC samples closely matches

the contour plot of U(x) whereas MH tends to sample uniformly in the sample space

X . Because we usually do not know the location of optimal values and how much

the ratio of subregions’ volume will be, we cannot control the simulation time spent

on optimal regions in conventional MCMC algorithm. However, we can control the

simulation time spent on optimal regions in SAMC by choosing the desired sampling

distribution π. This scheme makes SAMC potentially more efficient than Metropolis

Hasting in optimization, it increases the chance of locating the global optimizer.

Besides, user can partition sample space based on problem orientation. For ex-

amples, if our goal is to find the optimal of the target posterior density, we can

partition the sample space according to the target density function; if our goal is

model selection, then we can partition the sample space according to the index of

models.

1.1.1 Dynamic Weighted Importance Sampling

From SAMC algorithm we have set samples (x(1), θ(1)), · · · , (x(n), θ(n)) after weight

updating stage. Liang (2009) showed SAMC is a dynamic weighting algorithms which

in weight-estimation stage can evaluate Efh(θ) =
∫
h(θ)f(θ|x) under the condition

(A1) and (A2) (see Appendix A).

Let A ⊂ X denote an arbitrary Borel set, and Ac denote the complementary set

of A. Ẽ1 = E1 ∩A, Ẽ2 = E1 ∩Ac, · · · , Ẽ2m−1 = Em ∩A, Ẽ2m = Em ∩Ac are the new

partition of sample space in X , which denotes as an induced partition by A. Thus

J̃(xt) denote the index of the induce subregion xt belongs to, and J̃(x1), · · · , J̃(xn)

forms a sample from a nonhomogeneous Markov chain defined on the finite state
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space {1, · · · , 2m}. The transition matrices of the Markov chain can be defined as

follows,

P̃t(j|i) =

∫
Ẽi

∫
Ẽj

[st(x, dy) + I(x ∈ dy)(1−
∫
x

st(x, dz)]dx (1.4)

where st(x, dy) = q(x, dy)min{1, [fθt(y)q(y, x)]/[fθt(x)q(x, y)]} and it follows from

equation (1.4) that fθt(x) → fθ(x) almost surely. Thus, P̃t(j|i) → P̃ (j|i) almost

surely. The stationary distribution of limiting Markov chain is (p̃1, · · · , p̃2m), where

p̃2i−1 = πiPf (A|Ei) and p̃2i = πiPf (Ac|Ei) for i = 1, · · · ,m.

Proposition 1.1.1 Assume the conditions (A1) and (A2). For a set of samples

generated by SAMC, we have

lim
x→∞

1

n

n∑
i=1

eθtJ(xt)
I(xt∈A) =

m∑
i=1

wiPf (A|Ei) almost surely (1.5)

Consider the set samples (x(1), θ(1)), · · · , (x(n), θ(n)) generated by SAMC with the par-

titionE1, . . . , Em. Let Y (1), . . . , Y (n′) denote the distinct samples among (x(1), . . . , x(n)).

Generate a random variable/vector Y such that

P (Y = y(i)) =

∑n
t=1 e

θ
(t)

J(x(t))I(x(t) = y(i))∑n
t=1 e

θ
(t)

J(x(t))

, i = 1, . . . , n
′

(1.6)

where I(·) is an indicator function, J(x(t)) denotes the index of subregion that the

sample x(t) belongs to, and θ
(t)

J(x(t))
is finite because we restricted Θ in a compact in

SAMC algorithm.

Theorem 1.1 Assume the conditions (A1) and (A2). For a set of samples generated

by SAMC, the random variable/vector Y generated in equation (1.6) is asymptoti-

8



cally distributed as f(.)

P (Y ∈ A)→
∫
A
f(x)dx

The Theorem 1.1 implies that for an integrable function h(x), the expectation

Efh(x) can be estimate by

Êfh(x) =

∑n
t=1 e

θ
(t)

J(x(t))h(xt)∑n
t=1 e

θ
(t)

J(x(t))

(1.7)

As n → ∞, Êfh(x) → Efh(x). From equation (1.7) we can estimate the posterior

mean with dynamic weight parameter θ(t) from SAMC algorithm.

1.2 Stationary Test

Suppose our goal is to test the second order stationary of InSAR noise and we

introduce Jun and Genton (2012) the stationary test approach as a start. The idea of

this approach is based on to divide the spatial domain into two disjoint sub-domains,

D1 and D2, and use the test statistic that is based on the difference between empirical

estimators of covariances at given lags from the disjoint spatial sub-domains.

Consider a spatial random field {Z(s) : s ∈ Z2}. Suppose the observations are

taken over a 2-dimensional space of integer lattice points {Z(s) : s ∈ D} where

D ⊂ Z2 be a finite set of lattice points. We denote the covariance function of lattice

points Z(s) as C(s, s + h) = Cov{Z(s), Z(s + h)} , where s, s + h ∈ D. If the

case of random field Z(s) is weakly stationary, then covariance can be defined as

C(s, s + h) = C(0, h) = C0(h) for all s ∈ D, h, where C0 is a stationary covariance

function.

Consider an empirical moment estimator of Cov(Z(s+h), Z(s)) at a given lag h,
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ÂZ(h) =
1

N(h)

∑
si,sj

Z(si)Z(sj) (1.8)

Here N(h) is the number of pairs of locations where the spatial lag is h. Jun and

Genton (2012) have proven that AZ(h) at a given lag h is asymptotically normally

distributed with mean zero and a certain covariance if Z is weakly stationary.

Suppose we have a set of spatial lags Λ = (h1, ...., hm), and we split the domain

into two disjoint sub-domains D1 and D2. Then we can define empirical moment

estimator Ĝi = {A(h;Di) : h ∈ Λ} for i = 1, 2 and test the null hypothesis of weak

stationarity as follow,

H0: Â(k;D1) = Â(k;D2)

Ha: Â(k;D1) 6= Â(k;D2)

where Â(k;Di) is calculated from equation (1.8) and k ∈ Λ. We can rewrite the

null hypothesis to XĜn=0, where X is contrast matrix and Ĝn is 2 by 1 sample

variogram for disjoint spatial sub-domains. For example, if Λ = {(1, 0), (0, 1)} then

we can write contrast matrix X = (I2,−I2).

Let g =
√
|Dn|(Ĝn− (G,G)T ). Because g is asymptotically normally distributed,

the test statistic is asymptotic chi-squared limiting distribution given by,

T = (Xg)T (XΣXT )−1(Xg) ∼ χ2
rank(X) (1.9)

We can apply equation (1.9) for InSAR noise data with different spatial lags Λ to

investigate the stationarity.

1.3 Dissertation Structure

The arrangement for this dissertation is described as follows; Chapter II develops

three combining methodologies with its theory and application. Those methods ex-
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amine through one typical simulation study and one application data by comparing

processing time and estimation accuracy with non-parallel SAMC algorithm. Chap-

ter III is independent of Chapter II and is dedicated to a spatial statistics fields for

investigating the effect of nonstationarity via stationary test and demonstrating the

second order stationary assumption for InSAR noise. Chapter IV gives a summary

of this dissertation and points out some directions for future research.
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2. COMBINING STRATEGIES FOR PARALLEL STOCASTIC

APPROXIMATION MONTE CARLO ALGORITHM OF BIG DATA

2.1 Introduction

Growing modern computer technology allows us to collect massive volumes of

data, such as atmospheric information from satellite, genetic assay data, credit card

transaction records, search engine logs, and climate data. Enterprises and scientist

collect billion bytes of data and look for insights from their data. Therefore, modeling

and mining with such massive data to meet research or business demands has become

more popular in decades. However, it has difficulty in practically analyzing on a single

commodity computer because of two main reasons. First of all, the amount of data

is too large to fit in the memory of a single computer. Second, it takes too much

time to analyze an entire data using current statistical methods without employing

sampling scheme.

Parallel computing is one way to overcome those circumstances. Parallel compu-

tation is different from sequential instruction computation, because it allows many

calculations to be carried out simultaneously. Parallelism has played a significant

role in high-performance computing for many years, with advancement of multi-

core and cloud computing platforms accessing hundreds to thousands processors. It

not only significantly decreases processing time but overcomes the obstacle of local

computational resource encountered in sequential instruction computation.

The main idea of parallel computation is to break the target problem into discrete

parts and each processor analyzes smaller part of problem concurrently. One efficient

method to analyzing each small part of the problem without making unnecessarily

restrictive assumptions is Markov chain Monte Carlo (MCMC) method.
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MCMC method has played an important role in statistical computations in the

last two decades. It is a classic algorithm for sampling from probability distributions

by constructing a Markov chain that has the desired distribution. It is a powerful

computational tool for complex data structures. The metropolis-Hasting (MH) sam-

pler is originated in statistical physics Metropolis et al. (1953) and Hastings (1970),

it is a typical Markov chain Monte Carlo (MCMC) algorithm. The MH algorithm

is a simulation of stochastic processes having probability densities known up to a

constant. The Metropolis-Hastings algorithm is useful in calculating the necessary

normalization factor, which often extremely difficult. However, it has some flaws.

The most important flaw is that the MH algorithm is prone to getting trapped into

local optima in simulations when it is non-trivial to sample target distribution. Sec-

ond, if the data is too large, it requires a large number of iterations to perform the

MH algorithm.

To avoid trapping in local optima problems advanced Monte Carlo algorithms

have been developed for decades, such as parallel tempering (Geyer (1991)), simu-

lated tempering (Marinari and Parisi (1992)), evolutionary Monte Carlo (Liang and

Wong (2001)), dynamic weighting (Wong and Liang (1997)), multicanonical sam-

pling (Berg and Neuhaus (1991)), the Wang-Landau algorithm (Wang and Landau

(2001)), equi-energy sampler (Kou et al. (2006)), Stochastic Approximation in Monte

Carlo algorithm (Liang et al. (2007)), among others.

Stochastic Approximation in Monte Carlo algorithm (Liang et al. (2007)) is a

very sophisticated method in theory and application. It can yield significant time

saving and more accurate estimation compared to conventional MCMC algorithms

such as Metropolis-Hasting in complex data structure. Motivated by the successes

of SAMC in analyzing complex problems and advantage of parallel computing, we

propose a parallel SAMC algorithm which can be utilized on big data and is workable
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in parallel computing.

Although parallel computation improves the capability to compute big data, it is

still unclear about how current statistical methods can be applied in parallel systems

and how to combine the parallel results. Big data and parallel computing have posed

great challenges for the current statistical methodology.

In this study, we propose three combining strategies for Stochastic Approximation

Monte Carlo in parallel computation. The chapter structures are as follows. Section

2.1 briefly introduces the parallel computation concept, Section 2.2 provides the

theory of three proposed methodologies, Section 2.3 evaluates the performance of

the proposed methodologies through a simulation example, and Section 2.4 applies

parallel SAMC in the Shuttle data.

2.2 Parallel Computation

Using sequential programs to implement the instructions is the main way in the

traditional computation and data analysis. The process runs a program on a single

computer and executes on after another when previous instructions have been done.

Figure (2.1) illustrates the process of sequential programs where only one instruction

can be executed at a time. In the world there are many complex and massive volumes

of data, such as climate data, biological assay data, credit card transaction records,

transportation logs, and satellite’s data, which can not be practically analyzed on a

single node computer because their sizes are too large to fit in computer’s memory.

A single computer with multiple processors or number of computers connected by

a network can be defined as parallel computing resources. Benefited by the growth

of computer technologies, nowadays we can use multiple computer resources to solve

numerous computational problems. The idea of parallel computing was born in this

sophisticated sense. Figure (2.2) shows the procedure of parallel computing which is
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Figure 2.1: Structure of sequential computation

running tasks using multiple processors simultaneously and each processor works on

its own section of the problem but can exchange information with each other.

There are several advantages performing parallel computing listed below,

1. Solving large problems

Parallel computing can handle large and complex problems that it is impractical

to solve on a sequential computing process, specially the CPU or memory are

limited.

2. Saving process time

Parallel computing divides a task into several sub-tasks and executes sub-tasks

in parallel. If multiple processors perform computing tasks simultaneously,

generally the execution speed will be faster.

3. Overcoming limited memory

Single computer has finite memory resource. For large problems, using the

memories from multiple computers may overcome this obstacle.

4. Using of non-local resources
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Figure 2.2: Structure of parallel computation

It can perform the computation on a wide area network when local comput-

ing resources are limited. For example: RIKEN Advance Institute for Com-

puter Service (AICS) in Japan, contains 705,024 cores of CPU, National Su-

percomputing Center in Tianjin, China, contains 186,368 cores of CPU, and

DOE/SC/OAK Ridge National Laboratory contains 224,162 cores of CPU

(May, 2014).

Parallel computer has three type of memory architectures,

1. Shared memory

Shared memory parallelism is the mechanism where all processors can access

all memory as global space. Figure (2.3) illustrates the shared memory process,

which can operate independently but share the same memory resources. In this

parallelism, the data can be shared between tasks to make process faster and

uniform due to the proximity of memory to CPUs.

2. Distributed memory

16



Figure 2.3: Shared memory parallelism

Distributed memory parallelism is that all processors have their own memory

and operate independently. Figure (2.4) represents the distributed memory

parallelism, each memory resides in one processor and is not accessible to other

processors. In this parallelism, the memory systems require a communication

network to connect inter-processor memory. When increase the number of

processors during the task, the size of memory increase proportionately.

3. Hybrid distributed-shared memory

Hybrid distributed-shared parallelism is the combination of shared and dis-

tributed memory machines. The largest and the fastest computer in the world

are Hybrid distributed-shared memory system. The main advantage of combin-

ing distributed-memory and shared-memory is that communication can itself
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Figure 2.4: Distributed memory parallelism

be treated as another task or set of dependency tasks in a single instruction.

Figure (2.5) illustrates the Hybrid distributed-shared memory. In each clus-

ter of shared-memory, each machine computes its part of the solution and

uses distributed-memory parallelism to communicate the computation results

among others.

Figure 2.5: Hybrid distributed-shared memory parallelism
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There are lots of parallel programming languages for automatically segmenting

a task into multiple processes and/or threads to be executed on the available pro-

cessors concurrently in a parallel system. Shared memory systems communicate by

manipulating shared memory variables. Distributed memory systems communicate

via message passing. OpenMP and POSIX Threads are the most widely used ap-

plication passing interface in distributed memory system. Message Passing Interface

(MPI) also plays a significant role for application program interface (API) in message

passing system. It is a library specification for message-passing and can provide a

powerful, efficient, and portable way to depict parallel programs. Nowadays, MPI

can be used in C and FORTRAN for point-to-point communication in a parallel

program.

2.3 Methodologies

The parallel SAMC algorithm can be viewed as constructing an efficient algorithm

by partitioning our target density into disjoint small parts, performing a Bayesian

analysis in each part, and combining the analysis results from each part to yield an

overall posterior model. To make this procedure work well, data-splitting and data

combination framework are essential.

The data-splitting procedure can be done according to the number of available

computational servers we have and the complexity of the given problem. For example,

if we aim to sample from a trail density which is a high dimension function, then

we must not split into too many parts to ensure number of parameters p << ni in

general cases. The randomly split data with the same number of observation in each

part will contain approximately the same amount of information of the entire data.

We recommended splitting data randomly n/k with a reasonable number of subset

k which does not lead to a high dimension problem, but is workable for concurrent
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computational units.

The SAMC algorithm will perform within each subsets with the same working

prior, iteration number, proposal density and the same partition of the sample space

and generate (x(1), θ(1)), · · · , (x(n), θ(n)) posterior samples in each subsets. The pos-

terior mean in each subset denoted as Eih(θ) =
∫
h(θ)π(θ|Yi), where Yi denotes

the ith subset and h(θ) is an integrable function. By Theorem 1.1 we can estimate

Eih(θ) =
∫
h(θ)π(θ|Yi) by

∑n
j=1 h(θ

(i)
j )w

(i)
j /

∑n
j=1w

(i)
j , which will converge to Eih(θ)

almost surely as n → ∞

Our objective is to estimate the posterior mean of big data. When SAMC has

been done on each subset and the posterior samples for each subset are available,

we can perform combining strategies to yield an overall posterior mean for big data.

Three combining strategies describe as follows; section 2.3.1 describes Bayesian Infer-

ence via Divided-and-Combined (D&C), section 2.3.2 introduces Bayesian inference

via Divided-and-Resample (D&R) and section 2.3.3 describes Weighted Combination

via SAMC Importance Sampling.

2.3.1 Bayesian Inference via Divided-and-Combined

It is known that under mild regularity conditions, the maximum likelihood (ML)

estimate θ̂ of θ is asymptotic normal θ̂ ∼ N(θ,Σ), where Σ denotes the associated

large-sample covariance matrix. Let Y1, · · · ,Yk denote the subsets from random

partition of the big data Y = {Xi : i = 1, · · · , n} each with sample size nk ≈

n/k. Let θ̂i denotes posterior mean estimator of each subset. For large nk, we

have approximately θ̂i ∼ N(θ,Σk), where Σk is the large sample covariance matrix

associated with θ̂i.

For the fixed effect model we assume that there exist a true mean effect which is

shared by all individual studies. Each individual observed effects will be distributed

20



about θ with a within-study error εi, where εi is normal distribution with mean zero

and variance Σk. That is,

θ̂i = θ + εi where εi ∼ N(0,Σk)

To calculate ML estimator based on the above formula, the likelihood function can

be form as follows,

log-likelihood ∝
k∑
i=1

(− log |Σi| −
1

2
(θ̂i − θ)TΣ−1

i (θ̂i − θ))

dl

dθ
=

k∑
i=1

((θ̂i − θ)Σ−1
i ) = 0

θ̂ = (
k∑
i=1

θ̂iΣ
−1
i )(

k∑
i=1

Σ−1
i )−1

It can be defined as a weight average where the weights are determined by co-

variance matrix in each subset. The posterior mean of big data in the recombination

step can be estimated by,

θ̃ = [Σ−1
1 + · · ·+ Σ−1

k ]−1[Σ−1
1 θ̂(1) + · · ·+ Σ−1

k θ̂(k)]

The Bayesian inference via divided-and-combined algorithm is defined as follows,

1. (Partition) Partition the big data into k number of subsets with each contain-

able in the memory of a single computer node.

2. (Parallel Simulation) Simulate from the posterior of each subset in parallel

using SAMC

(a) (ω-estimation) Run SAMC to estimate ωi’s

(b) (MH sampling) Simulate samples from fŵ(x) using a MCMC algorithm
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3. (Aggregation) Combine the kth posterior mean into the big data posterior mean

with θ̃ = [Σ−1
1 + · · ·+ Σ−1

k ]−1[Σ−1
1 θ̂(1) + · · ·+ Σ−1

k θ̂(k)]

The flowchart of implementing parallel computing for Bayesian Inference via

Divided-and-Combined (D&C) is shown in Figure (2.6). The parallel implemen-

tation involves two message passing interface (MPI) instructions: broadcast and

reduce. The broadcast instruction is to assign the SAMC algorithm instructions

from the master processor to slave processors, and each slave processors calculate

posterior mean θ̂i concurrently. The reduce instruction is to reduce values on all pro-

cessors to a single value on the master processor, which is performing the aggregation

step. In this matter, Bayesian Inference via D&C combining strategy in parallelism

procedure will save a lot of computational time.

2.3.2 Bayesian Inference via Divided-and-Resample

Markov Chain Monte Carlo (MCMC) methods have been proved to be a useful

analyst tool for complex Bayesian inference. Let π(θ) be the prior distribution for

the big data. The posterior distribution can be defined as

π(θ|Y) = π(θ)
n∏
i=1

f(Xi|θ) for θ ∈ Θ

where Y represents the big data and f(Xi|θ) represents the likelihood function of big

data. Suppose that a Monte Carlo sample Sk = {θ(i,k); i = 1, · · · , Nk} is obtained

from k-th posterior distribution, that is,

πk(θ) ∝ π(k)(θ)`k(θ)

where the priors π(k)(θ) are the working prior density. In terms of the working pos-

teriors distribution πk(θ), the desired posterior distribution can be written as
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π(θ|Y) ∝ η(θ)
k∏
k=1

πk(θ)

where η(θ) ∝ π(θ)/
∏K

k=1 π
(k)(θ), and θ ∈ Θ. That is, η(θ) equal to a constant if∏k

k=1 π
(k)(θ) = π(θ).

The interesting issues raised here include (1) creating a posterior sample {θ(j) :

j = 1, · · · , N} from the individual Monte Carlo samples, and (2) approximating

the posterior mean for any given function h(θ) based on the individual Monte Carlo

samples and evaluating the associated Monte Carlo error. To address this problem

can be challenging. However, it is not impossible because the individual sample

S1, · · · , Sk contain information in each working posterior density πk(θ). The only

challenge is that the recombination needs to be done via random set intersection.

To extend the idea of random set intersection, we introduce the Dempster-Shafer

theory.

Dempster’s rule of combination is an application of random set intersection from

Dempster-Shafer theory. It can be used to combine independent sets of probability

mass density in specific situations. The rule is to derive the common shared belief

function between different individual studies and ignore all the conflicting (non-

shared) portions. Let X be the universal which represents all possible states of a

system to be considered, and 2X be the power set which is the set of all subsets of

X . A, B, and C denote the subset of the power set. The belief function m(.) of each

23



subset is a mapping from power set to a real number [0,1] and it has two properties:

m(∅) = 0∑
A∈2X

m(A) = 1

The combination (joint belief function) is calculated from the two sets of masses

function m1 and m2 in the following form,

m1,2(∅) = 0

m1,2(A) = (m1 ⊕m2)(A) =
1

1−K
∑

B∩C=A 6=∅

m1(B)m2(C)

where K =
∑

B∩C=∅

m1(B)m2(C)

With the Dempster-Shafer theory of belief functions, we can generate an algorithm

to demonstrate entire data posterior samples in the recombination operation. Here

we consider a simple example.

Consider a simple case with a sample size n=2, X1 and X2. Suppose that the

sample model is the Gaussian distribution with unknown mean θ and unit variance,

i.e., X1, X2 ∼ N(θ, 1). We divide the data into two (k =2) subsets consisting of a

single observation for each subset and take a flat prior, π(θ) ∝ 1 for θ. Bayesian

analysis is conducted on each subset using the working prior π(k)(θ) ∝ 11/k. It pro-

duces the posterior distribution with posterior samples Sk = {θ(i,k) : i = 1, · · · , Nk}

for k =1 and 2. By definition of Dempster-Shafer combination rules, consider the
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target posterior probability in a small neighborhood of θ0, [θ0, θ0 + ∆].

Pr(θ ∈ [θ0, θ0 + ∆]|X1, X2) ≈

∆−1

∫ θ0+∆

θ0

∫ ∞
−∞

π1(θ1|X1)[π2(θ2|X2)Iθ1≤θ2≤θ1+∆]dθ2dθ1

(2.1)

The posterior is defined in the expended space (−∞,∞)× (−∞,∞) for (θ1, θ2),

and can be used in the recombination step. Equation (2.1) suggests to replace the

posterior draws θ(i,2) with a small intervals, i.e.,[θ(i,2) −∆/2, θ(i,2) + ∆/2]. The com-

bination algorithm with an acceptance-rejection rules is defined as follows,

1. (Re-sample) Take a sample θ∗1 from S1 = {θ(i,1) : i = 1, · · · , N1} and a sample

θ∗2 from S2 = {θ(i,2) : i = 1, · · · , N2} at random

2. (Recombine) Accept θ∗1 if θ∗1 ∈ [θ∗2 −∆/2, θ∗2 + ∆/2]

3. Repeat step 1 and step 2 until we get enough recombination posterior samples

For computational efficiency, this recombination re-sampling method can be sim-

plified to weighted sampling from S1 = {θ(i,1) : i = 1, · · · , N1} with weights depend-

ing on S2. In a numerical example, we took θ1 = −1, θ2 = 1 and N1 = N2 = 10, 000

and created a posterior sample of size 1,000 using the above recombination re-

sampling algorithm. The results are shown in Figure (2.7) in terms of QQ-normal

plots. It is shown that the posterior distribution p(θ1|X1) and p(θ2|X2) are Gaussian

distribution with unit variance and mean θ1 = −1 and θ2 = 1 respectively. The

target posterior based on both X1 and X2 is N((X1 + X2)/2, 1/2) = N(0, 1/2). We

see that the recombination re-sampling results are consistent with the theoretical

results.

The Bayesian inference via divided-and-resample algorithm is defined as follows,
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1. (Partition) Partition big data into k number of subsets with each containable

in the memory of a single computer node.

2. (Parallel Simulation) Simulate from the posterior of each subset in parallel

using SAMC

(a) (ω-estimation) Run SAMC to estimate ωi’s

(b) (MH sampling) Simulate samples from fŵ(x) using a MCMC algorithm

3. (Aggregation) Combine the kth posterior mean into big data posterior mean

with Recombination Re-sampling algorithm

(a) Sample a posterior sample x
(1)
i with probability respect to ĝi = eθ

(1)
t from

subset 1

(b) Sample a posterior sample x
(2)
i with probability respect to ĝi = eθ

(2)
t from

subset 2

(c) Accept x
(1)
i from subset 1 if x

(1)
i ∈ [x

(2)
i −∆/2, x

(2)
i +∆/2]. Otherwise return

to step (a).

(d) Repeat (a)-(c) for subset 3 & 4 and so forth until combined k subsets.

Figure (2.8) shows the flowchart of the implementation of parallel SAMC algo-

rithm. The parallel implementation involves two main message passing interface

(MPI) instructions, receive and send. The send instruction is to send the results

from the slave processor to master processors and the receive instruction is the op-

posite way. In implementing the parallelism for Bayesian inference via Divided-and-

Resample algorithm, the slaves send all the posterior samples with corresponding

ĝi = eθ
(1)
t to the master. The master received the data in order to perform the

aggregation step of recombination re-sampling algorithm.
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2.3.3 Weighted Combination via SAMC Importance Sampling

Importance sampling is more than a variance reduction method. It is an efficient

approach to sample a posterior sample. In essence, we draw a posterior sample from

an alternative distribution whose support is concentrated in the truncation region.

The principle of importance sampling is,

∫
f

xf(x)dx =

∫
g

x
f(x)

g(x)
g(x)dx =

∫
g

xw(x)g(x)dx

That is, sampling x from f(x) distribution equivalent to sampling x × w(x) from

g(x) distribution, with importance sampling weight w(x) = f(x)
g(x)

.

Let {Y1, . . . , Yn} denotes a single subject of the big data, and Y1, . . . ,Yk be the

subsets of big data, where Yi is one of the subset. Let π(θ) be the prior distribution

for big data. Under the assumption of i.i.d random variables and Bayesian rule, the

posterior density can be shown by following,

π(θ|Y1, . . . ,Yk) =
f(Y1, . . . ,Yk|θ)π(θ)

f(Y1, . . . ,Yk)
∝ π(θ|Y1)

k∏
i=2

f(Yi|θ) (2.2)

where θ denotes the parameter vector of the model, f(Yi|θ) is the likelihood function

for each subset of big data, and π(θ|Y1) denotes the posterior density of the first

subset.

In order to get correctly importance weighted with respect to π(θ|Y1 . . .Yk), we

motivate by the principle of importance sampling, and rewrite our importance sam-

pling weight as follows,

π(θ|Y1, . . . ,Yk)
π(θ|Y1)

∝ f(Y1, . . . ,Yk|θ)π(θ)

f(Y1|θ)π(θ)
= f(Y2|θ)× · · · × f(Yk|θ) (2.3)
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It implies that we can draw posterior samples from the posterior density of first

subset with importance sampling weight which is product of likelihood function for

the rest of subsets. Suppose (θ
(1)
1 , w

(1)
1 , . . . , θ

(1)
n , w

(1)
n ) is a set of posterior sample we

drawn from SAMC algorithm for the first subset of π(θ|Y1). Here wi =
∫
Ei
ψ(x)dx

is invariant with respect to the importance weights (IWIW) (Liang (2009)). Thus,

the correctly weighted (w
(1:k)
1 , . . . , w

(1:k)
n ) for k subset of big data can be form as

w
(1:k)
l = w

(1)
l

k∏
i=2

f(Yi|θ) l = 1, . . . , n (2.4)

The correctly weighted of the proposal density in the equation (2.4) can be sub-

stituted for any subset posterior density. Thus, the generalized correct weights are

defined as,

w
(1:k)
l = w

(j)
l

k∏
i=1,i 6=j

f(Yi|θ) l = 1, . . . , n (2.5)

We finally have a correctly weighted with posterior samples (θ1, w
(1:k)
1 , . . . , θn, w

(1:k)
n )

in each subset, and we can estimate posterior mean θ̂(i) (i = 1, · · · , k) for each subset

by equation (2.5). Regarding contribution for big data posterior mean is not equal

in each subset, we estimate it by weight average in following form,

θ̃ = [Σ−1
1 + · · ·+ Σ−1

k ]−1[Σ−1
1 θ̂(1) + · · ·+ Σ−1

k θ̂(k)]

where Σi (i = 1, · · · , k) is the covairance matrix associated with θ̂(i). The weighted

combination via SAMC importance sampling algorithm is defined as follows,

1. (Partition) Partition the big data into k number of subsets with each contain-

able in the memory of a single computer node.
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2. (Parallel Simulation) Simulate from the posterior of each subset in parallel

using SAMC

(a) (ω-estimation) Run SAMC to estimate ωi’s

(b) (MH sampling) Simulate samples from fŵ(x) using a MCMC algorithm

3. (Aggregation) Combine the kth posterior mean into the big data posterior mean

with weighted combination algorithm

(a) Compute correctly weighted for k subset

(b) Compute posterior mean with correctly weighted for each subset

(d) Combine the kth posterior mean into the big data posterior mean with

θ̃ = [Σ−1
1 + · · ·+ Σ−1

k ]−1[Σ−1
1 θ̂(1) + · · ·+ Σ−1

k θ̂(k)]

The implementation of parallel SAMC algorithm is depicted on a flowchart shown

in Figure (2.9). The passing message instructions we used for weighted combination

algorithm are broadcast and reduce. The slaves calculate the subset posterior mean

with corresponding combined weights, then reduce them to the master processor for

estimating big data posterior mean.

2.4 Simulation Study

In this section, we demonstrate the computational advantage of parallel SAMC

algorithm by simulation studies. We consider the problem of estimating the logistic

regression coefficients with five covariates x1, · · · , x5. Let Yi be the binary response

and xi = (1, x1, x2, x3, x4, x5)T . Then the logistic regression model can be written as

P (Yi = 1) =
exp{xTi β}

1 + exp{xTi β}
, i = 1, · · · , n

where β = (β0, β1, β2, β3, β4, β5)T is coefficient vector for regression, and n is the

number of observations. In our simulations, we set the true regression coefficients as
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β = (β0, β1, β2, β3, β4, β5)T = (1, 2, 3, 4, 5, 6)T and the sample size as n = 106. The

predictors are drawn independently from the standard normal distribution. This

example is modified from one example of Lin and Xi (2011).

To conduct parallel SAMC algorithm for Bayesian analysis in this example, we

set an independent normal prior distribution for each component of β with mean 0

and variance 400. In order to explore the performance of parallel computing with

different size of subset, we try three type of settings with k = 10, 20, and 40 and nk

are equal to 105, 5×104 and 2.5×104 by comparing it with big data n = 106. Recall

that k denotes the number of subset and nk denotes the size of each subset.

For each choice of (k, nk), we run 20 independent parallel SAMC algorithm to

demonstrate the CPU time saving and accuracy of parameter estimation. Each run

consisted of 50,000 iterations. The proposal distribution used in MH step is a Gaus-

sian random-walk y ∼ N(β, s2), where s2 is targeted to have a desired acceptance

rate. In all simulations, we set s = 0.15 in order to keep a reasonable acceptance

rate.

We perform parallel computation by using Brazos cluster at Texas A& M Uni-

versity, which is designed to meet the high-throughput computing and is capable of

executing MPI applications. It contains 311 computing nodes with a total of 9.3TB

of RAM. Table (2.1), Table (2.2) and Table (2.3) summarize the estimates of β in

parallel SAMC with different number of subset in 20 independent runs for three com-

bining methods. The results show the posterior mean, standard error of posterior

mean in 20 independent runs and CPU process time in different number of subset.

The CPU process time is measured by one run for different number of subsets. As

number of subset k increase, the CPU time decrease dramatically, specially k = 40 is

at least 20 times faster than big data estimation in three methods. As expected, the

estimator is close to true parameter in different number of subset and the variation
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is quite small in the proposed three methods. This example confirms the validity of

the divided-and-combined strategy in parallel SAMC algorithm and also shows that

parallel SAMC is quite robust to the choices of number of subset k. Parallel SAMC

algorithm can indeed lead to a great saving of computational time without losing

any information.

Table 2.1: Posterior mean estimation for Bayesian inference via D&C method in
different number of subset

Subset b̂0 b̂1 b̂2 b̂3 b̂4 b̂5 CPU Time
k=1 0.991 2.000 3.011 4.018 5.019 6.018 127m 50s

(0.0016) (0.0015) (0.0018) (0.0018) (0.0029) (0.0025)
k=10 0.989 2.004 3.011 4.021 5.018 6.023 13m 38s

(0.0027) (0.0035) (0.0109) (0.0140) (0.0158) (0.0218)
k=20 0.996 1.992 2.988 3.976 4.978 5.980 7m 33s

(0.0028) (0.0049) (0.0056) (0.0085) (0.0088) (0.0111)
k=40 0.978 1.961 2.928 3.916 4.897 5.867 6m 27s

(0.0031) (0.0058) (0.0082) (0.0107) (0.0132) (0.0137)

Table 2.2: Posterior mean estimation for Bayesian inference via D&R method in
different number of subset

Subset b̂0 b̂1 b̂2 b̂3 b̂4 b̂5 CPU Time
k=1 0.991 2.000 3.011 4.018 5.019 6.018 127m 50.47s

(0.0016) (0.0015) (0.0018) (0.0018) (0.0029) (0.0025)
k=10 0.990 1.998 2.995 4.000 4.995 5.995 17m57.54s

(0.0132) (0.0203) (0.0283) (0.0319) (0.0406) (0.0533)
k=20 0.997 1.992 2.985 3.972 4.979 5.975 13m0.29s

(0.0179) (0.0237) (0.0359) (0.0271) (0.0424) (0.0452)
k=40 0.972 2.054 2.976 4.083 5.024 6.058 11m33.07s

(0.0201) (0.0254) (0.0419) (0.0352) (0.0574) (0.0471)
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Table 2.3: Posterior mean estimation for weighted combination via SAMC impor-
tance sampling method in different number of subset

Subset b̂0 b̂1 b̂2 b̂3 b̂4 b̂5 CPU Time
k=1 0.991 2.000 3.011 4.018 5.019 6.018 127m 50.47s

(0.0016) (0.0015) (0.0018) (0.0018) (0.0029) (0.0025)
k=10 0.989 1.996 2.992 3.991 4.988 5.981 13m20s

(0.0040) (0.0065) (0.0110) (0.0090) (0.0226) (0.0247)
k=20 1.017 1.994 2.986 4.006 5.002 5.993 8m37s

(0.0032) (0.0031) (0.0058) (0.0058) (0.0063) (0.0075)
k=40 0.997 1.997 2.978 3.984 4.968 5.968 6m43s

(0.0063) (0.0066) (0.0140) (0.0135) (0.0235) (0.0228)

The likelihood function for simulation example is not complicated and can be

evaluated very fast. In next section we will use one real example for which the likeli-

hood function is more complex in order to investigate the time saving and accuracy

of estimation.

2.5 Application Data in Shuttle Data

Shuttle dataset is a datalog original from NASA which is about the position

of radiator within the space shuttle ”Challenger”, specially an investigation ensued

into the reliability of the shuttle’s propulsion system. The full dataset is provided

by Jason Catlett who was at the Basser Department of Computer Science, Univer-

sity of Sydney, Australia and data available at UCI machine learning repository (

http://archive.ics.uci.edu/ml/ ).

There are seven target classes: Rad Flow, Fpv Close, Fpv Open, High, Bypass,

Bpv Close, and Bpv Open, which represent the location of space shuttle and 9 ex-

planation variables from three sensors monitored at one second. Approximately 80

percent of the data belong to Rad Flow class and only 6 observations in the class

of Bpv Close. The data was provided as two portions, training dataset which con-
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tains 43,500 observations and testing dataset which contains 14,500 observations.

Our goal is to successful classify Rad Flow group (class 1) from 9 quantitative vari-

ables and shorten the computational time. We consider the problem of estimating

the multinomial logistic regression coefficients with nine covariates x1, · · · , x9. Let

Yi = (1, · · · , 7) be the seven outcomes and xi = (1, x1, x2, x3, x4, x5, x6, x7, x8, x9)T .

Then the multinomial logistic regression model can be written as

P (Yi = 1) =
exp{xTi β1}

1 +
∑6

k=1 exp{xTi βk}

P (Yi = 2) =
exp{xTi β2}

1 +
∑6

k=1 exp{xTi βk}
...

P (Yi = 7) =
1

1 +
∑6

k=1 exp{xTi βk}

where βk = (β0k, β1k, β2k, β3k, β4k, β5k, β6k, β7k, β8k, β9k)
T is coefficient vector for re-

gression. Before processing the data, we normalized 9 quantitative variables to be a

mean 0 and unit variance and divided the training data into three and five subsets

(k =3 and 5) on data splitting procedure. The observations we draw for each subset

are constructed by randomly due to the unbalanced number of observations in seven

class, the ranges from 0.014% to 78.4 %. Each subset contains 11,369 and 6,821

observations for Rad Flow (class 1) in three subsets and five subsets respectively. To

conduct parallel SAMC algorithm, we set an independent normal prior distribution

for each component of parameters with mean 0 and variance 400. The proposal dis-

tribution used in MH step is a Gaussian random-walk y ∼ N(β, 0.22) with reasonable

acceptance rate and each subset we consisted of 50,000 iterations.

Table (2.4) summarizes the results of prediction rate for training data and testing

data in three combining strategies we proposed in section 2.3. As shown in the table,
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Table 2.4: Prediction rate and CPU time for three combing strategies

subset Training Data % Prediction Data % CPU Times
k=1 78.99 79.51 7m23.719s
k=3

ML D&C 79.57 80.06 2m 38s
Bayesian D&R 79.52 80.04 4m 18s
Weighted combination 79.45 79.86 2m 37s

k=5
ML D&C 78.99 79.40 2m 31s
Bayesian D&R 79.77 80.23 4m 41s
Weighted combination 81.36 81.43 2m 27s

the prediction rate is consistently higher than 79.5% in all setting without losing

much information and with more accuracy prediction rate compare with entire data

estimation (k = 1). About the computational time, it is extremely faster than entire

data estimation, partition k = 5 is three times faster than big data estimation. We

note that the above settings are not necessarily optimal. In this application example

we demonstrate that parallel SAMC algorithm with three combining strategies can

be effectively used for big data problems.
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Figure 2.6: Flowchart for parallel computation in Bayesian inference via Divided-
and-Combined
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Figure 2.7: Q-Q plot for π(θ(1)|X1), π(θ(2)|X2) and π(θ|X1, X2)
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Figure 2.8: Flowchart for parallel computation in Bayesian inference via Divided-
and-Resample algorithm
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Figure 2.9: Flowchart for parallel computation in weighted combination via SAMC
importance sampling algorithm
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3. STATIONARY TEST FOR INSAR NOISE

Synthetic Aperture Radar (SAR) Interferometry is a synthesis of the SAR and

a interferometry technique. It can provide ground maps for analyzing deformation

caused by geophysical processes on earth with centimeter-level accuracy. This maps

provides fine resolution and high measurement accuracy with wide spatial coverage.

It is capable at delivering a day-and-night image on all-weather conditions as well.

InSAR technique has played an important role in past decades for numerous studies,

such as volcanic, earthquakes, post-seismic process, glacier flow, pressure change in

aquifer. The technique of InSAR analyzing displacement is to compare interferomet-

ric processing of two SAR images recorded at different time, i.e. before deformation

and after deformation, which is referred as differential SAR interferometry: dInSAR.

It can provide vertical ground change information caused by geophysical process.

InSAR has become an important tool to study earthquake and volcanic defor-

mation, however, it is limited by signal loss which are from topographic residuals,

atmospheric delay and several error sources. In order to analyze the surface deforma-

tion, we have to distinguish other phase components which caused signal loss from

InSAR images. It is not easy to distinguish between deformation and atmospheric

signals in single interferograms because the error structure is different from image to

image and is non-trivial to be estimated and to be included in calculations. There-

fore, the InSAR noise has usually been ignored or incorrectly addressed, which leads

to biases estimation of model parameters. Some studies have estimated the InSAR

noise structure relative with power spectrum; Hanssen (2001) found that on average

the InSAR noise has more power at the longer distances with a high power-law index

for the spectrum (such as 8/3 and 5/3, spatial scales 0.5-2 km and > 2 km respec-
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tively). Other method to estimate InSAR noise is to analyze the non-deforming part

of an interferogram and assume the noise structure is the same as in the deforming

part; i.e. assuming that the noise has a second order stationary structure. This

method has became a usual way to estimate InSAR noise; however, the stationary

assumption has never been tested.

The objective of this study is to examine the second order stationary assumption

for InSAR noise and to develop a non-stationary model in order to demonstrate the

effect of making incorrect assumption on random field.

This Chapter is arranged as follows; Section 3.1 described the InSAR noise and

investigated the second order stationary assumption for InSAR noise. Section 3.2 de-

veloped the nonstationarity covariance structure with gradually increasing the non-

stationarity in the model to investigate the effect of nonstationarity in stationary

test. Section 3.3 illustrated the effect of wrong covariance model fitting.

3.1 InSAR Noise

We have two InSAR noise dataset provided by Dr. Sigurjn Jnsson research team

in King Abdullah University of Science and Technology shown in Figure 3.1. Each

image represents a 129×129 (km) domain. It is not obvious to determine by eyes

whether the InSAR noise is stationary or not. To examine the stationarity we used

the method proposed by Jun and Genton (2012) shown in section 1.3.

Instead of calculating test statistics based on asymptotic Chi-squared distribution

shown in equation (1.9), we can use a subsampling approach to calculate p-values.

Subsampling approach has been widely used. In the spatial statistics fields, it can

be applied to estimate the spatial covariance model (Hall (1988); Possolo (1991);

Sherman and Carlstein (1994); Heagerty and Lumley (2000); Guan et al. (2004)).

The fundamental idea of subsampling approach is to divide a target domain field D
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Figure 3.1: Image plot of InSAR noise

into over lapping subblocks. Each small subblock is contained in each split domain D.

In practice, the subblock can be set cardinality to be of order l2(n), where l(n) = cnα

for some c >0 and α ∈ (0, 1).

We estimate Σ by the subsampling estimator Σ̂ given by follows,

Σ̂ =
1

knfn

kn∑
i=1

|Di
l(n)|(Ĝi

l(n) − Ḡn)(Ĝi
l(n) − Ḡn)T (3.1)

where kn is total number of subblocks, Ĝi
l(n) is a vector of sample variogram calculated

on each Di
l(n), fn = 1 − |Dl(n)|

|Dn| and Ḡn = 1
kn

∑kn
i=1 Ĝ

i
l(n). On each of these subblocks,

we can define the test statistic,

T il(n) = (Xgil(n))
T (XΣ̂XT )−1(Xgil(n)) (3.2)

Σ̂ → Σ and T il(n) → χ2
rank(X) as n → ∞ by Multivariate Slusky Theorem (Ferguson
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(1996)). Following Politis et al. (1999), the p-value of the test statistics can be

formed as follows,

p− value ≈ 1

kn

kn∑
i=1

I(T il(n) > T ) (3.3)

T is the stationary test statistics in the whole target domain shown in equation (1.9).

Null hypothesis is rejected if the calculated p-value is smaller than significance level

α. To test the stationarity of InSAR noise. We consider the following lags,

Λ1 :h : (0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (2, 2), (0, 3), (3, 0), (3, 3), (4, 0), (0, 4), (4, 4)

Λ2 :{h : (0, 13), (13, 0), (13, 13), (0, 15), (15, 0), (15, 15), (0, 17), (17, 0), (17, 17),

(0, 20), (20, 0), (20, 20)}

Λ3 :h : Λ1,Λ2, (8, 8), (0, 8), (8, 0)

Λ4 :h : (0, 1), (0, 2), (0, 3), (0, 4)

Λ5 :h : (0, 13), (0, 15), (0, 17), (0, 20)

Λ6 :h : Λ4,Λ5, (0, 8)

Λ7 :h : (1, 0), (2, 0), (3, 0), (4, 0)

Λ8 :h : (13, 0), (15, 0), (17, 0), (20, 0)

Λ9 :h : Λ7,Λ8, (8, 0)

Table 3.1 reports the p-values from the subsampling approach for two spatial images,

Data 1 and Data 2. By splitting procedure for the stationary test into two images,

we tried a horizontal split and vertical split. We also tried various subblock size of

l(n) = cnα for α = 0.5 and c at 0.5 and 1 in order to get p-value through subsampling

as well as to estimate covariance structure Σ, which correspond to subblocks of size

18×18 and 36×36 grids. The result shows that all the p-value are below 5% and it
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rejects the null hypothesis of weak stationary. Therefore, the test statistic tells us

that it is not second-order stationary, and it is not suitable to assume InSAR noise

from non-deforming part is the same as deforming part.

Table 3.1: Stationary test for two InSAR noise

Data 1 Data 2 Data 1 Data 2
Vertical Vertical Horizontal Horizontal

Lag Size Subblock Lag P-value P-value P-value P-value
Λ1 0.0000 0.0159 0.0000 0.0000
Λ2 0.0000 0.0000 0.0000 0.0000
Λ3 0.0000 0.0000 0.0000 0.0000
Λ4 0.0000 0.0190 0.0000 0.0000

30 Pixels 18 Λ5 0.0000 0.0004 0.0000 0.0000
Λ6 0.0000 0.0199 0.0000 0.0000
Λ7 0.0000 0.0028 0.0000 0.0000
Λ9 0.0000 0.0000 0.0000 0.0000
Λ1 0.0000 0.0000 0.0000 0.0000
Λ2 0.0000 0.0000 0.0000 0.0000
Λ3 0.0000 0.0000 0.0000 0.0000
Λ4 0.0000 0.0104 0.0000 0.0000

30 Pixels 36 Λ5 0.0000 0.0000 0.0000 0.0000
Λ6 0.0000 0.0009 0.0000 0.0000
Λ7 0.0000 0.0000 0.0000 0.0000
Λ9 0.0000 0.0000 0.0000 0.0000

3.2 Nonstationary Covariance Structure

A stochastic random field Z = z(x), x ∈ R is usually defined as,

z(x) = µ(x) + σ(x)ε(x)

where µ(x) = E(Z(x)), σ2(x) = V ar(Z(x)) and ε(x) is a weakly stationary process

with mean zero and unit variance. To deal with a nonstationary stochastic process

43



Z = z(x), x ∈ R , we can be deformed through a sequence of mean E(Z(x)) and

second order moment V ar(Z(x)).

Many literature has plenty of examples of addressing nonstationary spatial co-

variance structure. However, they do not provide a general model for nonstationary

covariance model. Obled and Creutin (1986) provide a general approach called empir-

ical orthogonal function to model nonstationary space-time process. Sampson and

Guttorp (1992) present a new framework for generating nonstationary covariance

model by directly modeling ε(x) = γ(f(x)), where γ is a weakly stationary process

and f represents a smooth continuous bijective function. It is equivalent to deal with

a nonstationary variogram model γ(||f(x) − f(y)||), where ||f(x) − f(y)|| denotes

Euclidean distance between site locations in a bijective transformation of geographic

coordinates system x and y, and γ is a isotropic and stationary variogram model.

There are some literature discussing the property of deformation function f .

Sampson and Guttorp (1992) develop the nonparametric approach for estimating de-

formation function f by defining f as a thin-plate spline. Iovleff and Perrin (2004) es-

timate the space deformation using a simulated annealing algorithm. Those method-

ologies deal with deformation function by using the nonparametric approaches. Per-

rin and Monestiez (1999) propose a parametric family of bijective functions, called

the Radial Basis Deformation function, which is analogy to the Radial Basis Function

(RBF) (Powell (1987)). It has an advantage that the bijective condition is ensured

for parametric family. In this study, we will introduce Radial Basis Deformation

function and to use this approach conducting a nonstationary random field.
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3.2.1 Definition of Radial Basis Deformation

We introduce the parametric family of radial basis deformations from Geography-

plane x ∈ R2 into the deformation-plane f(x) ∈ R2 defined as follows,

f(x) = c+ (x− c)Φ(||x− c||),∀f ∈ B (3.4)

where c is the coordinates in our target domain, which is the center of the deformation

and Φ(.) is a Radial function form R+ to R. Powell (1987) proved that any function

that satisfies the property Φ(x) = Φ(||x||) is a radial function. Perrin and Monestiez

(1999) introduce the choice of parametric radial function form Φ as follows:

exponential : Φ(ρ) = 1 + b exp(−aρ) (3.5)

Gaussian : Φ(ρ) = 1 + b exp(−aρ2) (3.6)

where ρ = ||x− c|| and a > 0

Each deformation function is a warping from the geography-plane into the deformation-

plane, which is saying that a pair of two-dimensional functions that maps a position

x in the G-plane to position y in the D-plane.

y = f(x) = (f(x1), f(x2))

Therefore, a nonstationary covariance structure can be formed as follows:

D(x1, x2) = γβ(||f(x1)− f(x2)||) (3.7)

where ||f(x1)−f(x2)|| denotes the Euclidean distance between x1 and x2 in D-plane.

45



f represent a smooth bijective radial basis deformation function, and γ represents a

stationary and isotropic variogram function with parameter β.

3.2.2 Definition of Parametric Family in Radial Basis Function

We work on Gaussian radial basis deformation as a start which can be defined as

follows:

f(x) = c+ (x− c)(1 + b exp(−a||x− c||2)) (3.8)

where c is two dimension coordinate system and represents the center of deformation,

a is a range parameter and b is the intensity of stretching (b >0) or shrinking (b <0).

b = 0 indicates no deformation, i.e. f(x) = x.

Perrin and Monestiez (1999) proved that Gaussian Radial Deformation f(x) will

be an bijective function with parameters a > 0, c ∈ R and b ∈ (−1, 1
2

exp(3
2
)) (See

Appendix A). We now illustrate the behavior of parameters for Gaussian deformation

in one dimensional case shown in Figure (3.2). We use a sequence of x between -1 and

1 and γβ is set to be an exponential variogram. When parameter b = 0, the Gaussian

deformation function f(x) = x, which has no deformation and indicates exponential

variogram in our case. In Figure (3.2), we fixed parameter b=2.24 and c=(0,0) to

show the behavior of deformation parameter a. It is more curvier from center (0,0)

when deformation parameter a is getting smaller. There is only a slight difference

when we increase the parameter a from 1 to 10. It is obvious that parameter a

controls the range of deformation. When deformation parameter a gets small, it

results in larger deformation.

Figure (3.3) shows the case when we fixed range parameter a = 1 and chose

various values of parameter b in the range between -1 and 2.24. b ∈ (−1, 1
2

exp(3
2
)) =

b ∈ (−1, 2.24). It shows that f(x) stretched upward on positive coordinates side

when b > 0 and shrink down when b < 0.
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Figure 3.2: RBF deformation parameter a in one dimension system

Now we illustrate the pattern of parameter changed in two dimension coordinate

system shown in Figure (3.4). We chose a target domain Z(s) ∈ (0, 1) × (0, 1)

and deformation from center c=(0.5,0.5) to investigate the behavior of change in

deformation parameter a and b. We use γβ to be an exponential variogram in this case

as well. In Figure (3.4), the upper three plots represent deformation parameter b =

−0.9 with three different values of deformation parameter a, 0.1, 1, 10 respectively.

It shrinks in the center much more on a = 0.1 than a = 1 or a = 10. The lower

three plots in Figure (3.4) represent deformation parameter b = 2.24, it diverges

from center point c = (0.5, 0.5) on a = 0.1 than a = 1 or a = 10 as well. However,

it diverges too much when a = 0.1 which results in no deformation at all on the

D-plane.

In next section, we demonstrate the behavior of deformation parameter by eval-

uated the power of stationary test in a simulation example.
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Figure 3.3: RBF deformation parameter b in one dimension system

Figure 3.4: RBF deformation parameter in two dimension coordinate system
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3.3 Simulation Study

Our goal is to simulate random fields from non-stationary covariance structure

and by gradually increasing nonstationarity in the model to see the effect of non-

stationarity in the stationary test. We consider a mean zero weakly stationary

(isotropic) Gaussian random field Z(s), s ∈ D and use Gaussian radial deforma-

tion function to generate D-plane, to test the stationarity and calculate the power

of stationary test. The covariance structure for assessing the test statistics power is

an exponential variogram model as follows:

γ(h;α, β) = −α exp(
−h
β

) (3.9)

We test the case when α = 1 and β = 0.0167, 0.0333, 0.0833, where variogram pa-

rameter β represents different strength of dependence (weak to strong). We generate

5000 realizations for each combination of (α, β) in the domain of (0, 1)× (0, 1) with

20x20 or 40x40 square grids. The Gaussian Radial basis deformation is performed

here and to compute the Euclidean distance in D-plane. Figure 3.5 represent the

image plot for D-plane in three combination of exponential variogram parameters

and three combination of deformation parameters. It is non-trivial to observe by eye

that which one has non-stationary covariance structure.

We split the domain into two 10x20 or 20x40 neighboring squares, compute em-

pirical estimator ÂZ(h) = 1
N(h)

∑
si,sj

Z(si)Z(sj) in rectangular domains and use
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Note: the upper three plots represent low spatial dependency (β = 0.0167) with fixed deformation

parameter a = 1 and various deformation parameter b; the middle three plots represent the median

spatial dependency (β = 0.0333); and the lower three plots represent the high spatial dependency

(β = 0.0833).

Figure 3.5: Image plot of random field with various RBF deformation parameters

following lags set:

Λ1 : h : (1, 0), (0, 1)

Λ2 : h : (1, 0), (0, 1), (1, 1), (−1, 1)

Λ3 : h : (1, 0), (0, 1), (1, 1), (−1, 1), (2, 1), (1, 2), (−2, 1), (−1, 2)

We try a horizontal split for spatial domain and use subsampling approach to

calculate p-values. Table 3.2 reports the power test from subsampling approach in

20x20 and 40x40 spatial domain. The empirical power is quite small when defor-

mation parameter a = 0.1 and b = 2.24. It has been shown in Figure (3.4) which

indicates nearly no deformation. The empirical power values does not change much

through deformation parameter b when deformation parameter a = 10. The de-
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formation seems to be too concentrated around the center, which does not reflect

on whole target domain. When we have extremely deformation parameter b, say

b = 2.24 or b = −0.9 with deformation parameter a = 1, we get 90 percent power

value.

We continue to investigate the effect of various subblocks and spatial lags with

fixed deformation parameter a = 1. We use criterion l(n) = cnα for α = 0.5 and

c at 0.5, 1 and 1.5 respectively, which corresponds to number subblock 2,4 and 7.

The results are shown in Table 3.3 and Table 3.4. The power values are significantly

bigger in 40x40 domain, 90% of statistical power when deformation parameter b is

close to 2.24.

3.4 Effect of Wrong Fitting

In the previous section, we analyzed the structure of InSAR noise in examples of

deformation interferograms and tested the stationary assumption. It proved that sta-

tionary assumption does not hold for InSAR noise. If we try to estimate deformation

process with wrong covariance structure assumption, it will lead to a non-accurate

and biased estimation. We now turn our attention to investigate the effect of wrong

covariance fitting.

The simple Mogi point source model has been playing an important role to explain

observed inflation and deflation on volcanoes process for decades. The main idea is

based on an elastically expanded point source in a half space. The geologists use the

surface deformation results from the InSAR data and the Mogi source model (Mogi

(1958)), and invert the ground deformations to find the locations and intensities of

several deformation sources. It can describe the observed line-of-sight (LOS) data at
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Table 3.2: Statistical power for stationary test with various deformation parameter

20x20 40x40
beta b a=0.1 a=1 a=10 a=0.1 a=1 a=10

-0.9 29.62 30.98 4.60 97.82 27.96 4.80
-0.7 10.62 15.62 4.54 67.90 13.30 4.62
-0.4 5.16 6.46 4.56 12.82 5.88 4.52
-0.1 4.46 4.58 4.50 4.86 4.66 4.52

0.0167 0 4.48 4.48 4.40 4.56 4.56 4.56
0.5 4.44 4.78 4.34 5.14 6.10 4.62
1.1 4.40 5.80 4.58 5.12 15.34 4.72
1.6 4.44 7.02 4.68 4.92 38.70 4.98
2.1 4.46 8.72 5.22 4.74 73.40 5.32

2.24 4.46 9.92 5.54 4.68 80.22 5.46
-0.9 36.80 41.60 5.76 96.34 40.82 6.52
-0.7 17.78 26.20 5.54 68.04 26.64 6.54
-0.4 8.90 10.98 5.54 22.08 12.30 6.40
-0.1 6.08 5.96 5.68 7.30 6.82 6.22

0.0333 0 5.66 5.66 5.66 6.28 6.28 6.28
0.5 4.74 9.40 5.72 10.90 15.02 6.18
1.1 4.28 18.68 5.98 14.64 52.82 6.20
1.6 4.40 26.54 6.70 13.36 87.34 6.46
2.1 4.42 32.46 7.62 11.04 97.88 7.22

2.24 4.40 34.06 7.82 10.54 98.70 7.56
-0.9 53.34 43.72 14.50 87.86 43.46 17.64
-0.7 36.16 30.60 14.34 56.96 32.60 17.60
-0.4 22.80 20.12 14.22 28.94 21.68 17.28
-0.1 16.18 15.18 14.42 18.74 17.36 17.12

0.0833 0 14.50 14.50 14.50 17.16 17.16 17.16
0.5 9.82 16.34 15.02 18.14 23.94 17.18
1.1 7.20 27.84 15.60 29.48 57.66 17.48
1.6 6.38 41.14 16.28 39.50 88.34 17.94
2.1 5.68 54.28 17.40 47.04 97.38 18.64

2.24 5.60 57.56 17.84 48.42 98.18 18.76
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Table 3.3: Statistical power for stationary test in 20× 20 domain with various sub-
blocks

0.0167 0.0333 0.0833
subblock b Lag 2 Lag 4 Lag 8 Lag 2 Lag 4 Lag 8 Lag 2 Lag 4 Lag 8

-0.9 30.98 22.06 24.62 41.60 32.82 38.56 43.72 39.74 51.12
-0.7 15.62 10.94 15.20 26.20 19.34 25.46 30.60 27.40 38.70
-0.4 6.46 5.18 9.84 10.98 8.76 14.94 20.12 16.08 27.42
-0.1 4.58 4.04 8.86 5.96 4.58 11.32 15.18 12.38 23.00

2 0 4.48 3.92 8.74 5.66 4.42 11.12 14.50 11.64 22.10
0.5 4.78 4.24 9.46 9.40 7.18 14.66 16.34 13.48 24.26
1.1 5.80 5.30 10.92 18.68 17.56 24.92 27.84 27.78 38.18
1.6 7.02 8.76 15.28 26.54 35.06 41.04 41.14 48.88 55.08
2.1 8.72 21.38 29.26 32.46 55.46 60.80 54.28 70.42 73.38

2.24 9.92 26.24 34.40 34.06 60.56 64.26 57.56 74.52 76.46
-0.9 31.52 31.96 71.08 39.04 39.08 77.22 16.38 38.60 79.70
-0.7 19.74 21.34 62.86 26.36 27.88 70.12 9.14 27.20 71.74
-0.4 10.32 14.06 55.54 13.58 16.78 61.42 4.54 17.82 63.04
-0.1 7.80 11.96 53.38 8.76 12.62 55.48 3.20 14.08 58.48

4 0 7.96 12.02 53.26 8.40 12.66 55.14 3.02 13.76 58.10
0.5 9.06 12.62 53.24 12.96 17.12 59.16 4.66 18.60 63.68
1.1 10.28 14.92 55.78 23.60 30.88 70.70 11.26 36.36 77.50
1.6 11.40 20.00 61.30 31.00 46.76 80.96 20.48 57.58 87.80
2.1 12.66 32.38 74.52 35.30 62.06 89.90 30.20 73.32 93.62

2.24 13.70 35.94 77.60 36.80 64.50 91.34 32.74 76.42 94.54
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Table 3.4: Statistical power for stationary test in 40× 40 domain with various sub-
blocks

0.0167 0.0333 0.0833
subblock b Lag 2 Lag 4 Lag 8 Lag 2 Lag 4 Lag 8 Lag 2 Lag 4 Lag 8

-0.9 27.96 19.46 11.78 40.82 31.24 21.34 43.46 35.80 31.48
-0.7 13.30 9.94 6.82 26.64 19.22 13.2 32.60 25.58 23.42
-0.4 5.88 5.18 4.14 12.30 8.92 6.52 21.68 17.20 16.62
-0.1 4.66 4.32 3.78 6.82 5.32 4.76 17.36 14.50 14.28

2 0 4.56 4.36 3.82 6.28 5.22 4.76 17.16 14.22 14.18
0.5 6.10 5.18 4.16 15.02 11.06 8.10 23.94 18.74 18.36
1.1 15.34 11.52 7.70 52.82 40.20 29.08 57.66 46.78 42.84
1.6 38.70 28.68 18.90 87.34 78.32 68.84 88.34 80.94 76.92
2.1 73.40 63.56 53.26 97.88 96.56 95.60 97.38 95.74 95.96

2.24 80.22 72.90 66.00 98.70 97.60 97.68 98.18 96.80 97.54
-0.9 23.32 17.80 15.12 33.20 25.10 21.36 33.42 25.38 22.80
-0.7 13.42 10.64 10.72 21.92 17.72 15.48 22.56 16.92 16.30
-0.4 6.62 6.34 7.90 10.94 9.14 9.98 12.02 9.16 10.18
-0.1 5.20 5.38 7.08 6.18 6.10 7.84 8.24 6.64 7.72

4 0 5.10 5.36 7.06 6.02 5.80 7.80 8.06 6.60 7.58
0.5 6.98 6.52 7.66 14.26 11.38 11.84 15.32 11.70 11.40
1.1 15.98 13.08 12.50 51.60 41.58 35.42 53.62 42.22 36.56
1.6 38.68 30.02 25.54 86.24 77.68 71.12 85.56 77.22 69.62
2.1 70.44 60.84 55.34 97.58 95.64 93.90 96.34 93.36 91.38

2.24 76.88 69.20 65.62 98.28 97.02 96.22 97.24 94.88 93.74
-0.9 24.44 23.74 35.84 31.82 30.34 42.48 34.06 32.00 44.40
-0.7 15.56 17.06 29.26 23.00 23.68 36.26 23.92 23.06 35.00
-0.4 8.66 11.86 24.52 13.06 15.10 27.80 12.68 13.94 25.54
-0.1 7.50 10.98 23.68 8.06 11.18 24.26 8.00 9.52 21.38

7 0 7.42 11.02 23.66 7.78 10.78 24.10 7.70 9.10 21.12
0.5 8.92 12.18 24.70 17.00 17.80 30.88 17.26 17.08 29.56
1.1 18.98 19.32 32.40 53.30 48.64 59.72 56.36 51.86 60.08
1.6 40.28 37.20 48.06 85.06 81.06 84.94 85.34 81.58 84.86
2.1 69.86 64.10 73.58 96.76 94.80 96.74 95.34 93.42 95.38

2.24 74.76 69.96 79.40 97.84 96.08 97.86 96.26 94.52 96.42
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location (x,y) as,

do(x, y) = iTu+ ε (3.10)

where i is a unit vector pointing towards the satellite, u is the 3-dimensional ground

displacement predicted at (x, y) by a Mogi source with model parameters (volume

change ∆V , the depth d, and the source location (x′, y′) and ε is InSAR noises.

The objective of this study is to estimate the volume change ∆V of displacement.

To evaluate the effect of making wrong stationary assumption for InSAR noise, we

simulate with three different type of covariance structures; uncorrelated, stationary

and non-stationary.

We simplify the equation (3.10) to a linear regression model with true parameter

of volume change bvc = 0.005.

Y = Xbvc + ε

Based on the information of displacement parameter ∆V equal to 0.005 km3m,

depth is 5.75 , deformation location (x′, y′) = (0.3, 0.7), we can generate the corre-

sponding X and Y . We simulate 1000 realization for three types of InSAR noise:

identical independent noise, stationary covariance noise and nonstationary covariance

noise in a target domain 32x32 pixel grid, where a pixel spacing 1 km, and (x, y)

∈ (0, 1)× (0, 1). The InSAR noise ε ∼ N(0, σ2I) for identical independent noise;

ε ∼ N(0,Σθ) for exponential variogram with parameter θ = (α, β) = (σ2, 0.0167),

and ε ∼ N(0,Σθ,γ) with Gaussian Radial deformation with exponential variogram

parameter θ = (α, β) = (σ2, 0.0167) and deformation parameter γ = (a, b, c). We

compare four different scale of variances, standard error from 0.00325 to 0.052. The
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correct model fitting results are shown in Figure (3.6).

In this examination, we perform three types of scenario; fitting with i.i.d covari-

ance structure through ordinary least square method, fitting with exponential vari-

ogram covariance structure and fitting with nonstationary variogram model through

generalize least square method. We first consider estimating volume change ∆V by

ordinary least square. The equation is defined as follows,

bvc = (XTX)−1XTY

Figure (3.7) shows the ordinary least square result for three different noise covariance

structures in 1000 simulations. There is no surprise that independent noise covariance

structure has smaller variation of volume change estimation than correlated noise

covariance structure when we estimated by OLS.

We continue to estimate the volume change with generalize least square. The

general equation for GLS is defined as follows,

bvc = (XTΣX)−1XTΣ−1Y

To estimate the volume change bvc with three different noise structures by using

generalize least square, we have to estimate covariance matrix Σ first. We used

Newton-type algorithm to estimate the likelihood function from Gaussian random

field with mean zero and stationary covariance Σθ and nonstationary covariance Σθ,γ.

Then re-write the estimating equation for bvc as follows,

b̂vc = (XT Σ̂θX)−1XT Σ̂−1
θ Y

b̂vc = (XT Σ̂θ,γX)−1XT Σ̂−1
θ,γY
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Table 3.5: Estimation of exponential variogram for three types of InSAR noise

Sigma iid stationary nonstationary
0.00325 mean of alpha 0.0000106 0.0000105 0.0000104

mean of beta 0.0044857 0.0165676 0.0250997
0.0065 mean of alpha 0.0000421 0.0000421 0.0000417

mean of beta 0.0045062 0.0165676 0.0250997
0.013 mean of alpha 0.0001691 0.0001686 0.0001666

mean of beta 0.0044532 0.0165676 0.0250997
0.052 mean of alpha 0.0027050 0.0115928 0.0026657

mean of beta 0.0043897 0.0165679 0.0250997

Figure (3.8) represents the generalize least square results with fitting exponential

variogram Σ̂θ for three different types of InSAR noise in 1000 simulations. The

stationary noise and independent noise both have smaller variation of volume change

estimation than nonstationary noise. Generalize least square estimation corrected

the accuracy for stationary noise. However, the bvc estimation has larger variation

when true model is the nonstationary covariance structure but we fitted with the

stationary covariance. Table 3.5 shows the exponential covariance parameters (α, β)

estimation results for three InSAR noises. The true exponential variogram parameter

β is 0.0167 but nonstationary model will result in 1.5 times more of dependence.

The results suggests that we will increase the strength of dependence when we fit

stationary model to a non-stationary covariance structure.

Figure (3.9) represents the generalize least square result with nonstationary co-

variance function Σ̂θ,γ for three different noise covariance structure in 1000 simu-

lations. It is obvious that nonstationary covariance structure has smaller variation

than stationary and i.i.d covariance structure when we estimate with nonstationary

covariance model.

Table 3.6 shows more statistics details for three covariance model estimation.
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Table 3.6: Statistics index of volume change estimation in three types of InSAR noise

Mean Median SD MSE (×103 %) 95% Percentile
NS 0.005010 0.005005 0.000157 0.0025 0.004703 0.005318
S 0.005007 0.005000 0.000219 0.0048 0.004578 0.005436

IID 0.005007 0.005007 0.000217 0.0047 0.004581 0.005433

Even though stationary and i.i.d covariance structure can be estimated as good

as non-stationary model for volume change; however, it produces a much wider

confidence interval and mean square error is 1.9 times more than correct model.
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Note: part a)-d) indicates difference standard error of noise. S represents stationary noise estimating
with stationary covariance model; NS represent nonstationary noise estimating with non-stationary
covariance model and iid indicates stationary noise estimating with uncorrelated covariance model.

Figure 3.6: Boxplot of correct estimation for Volume Change
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Note: a. For i.i.d random variable we used normal distribution with mean zero and different sigma

values. b. For Gaussian random field we used exponential with parameter beta=0.0167 and alpha

(represents the variance) exactly the same with i.i.d setting. c. For Radial Basis Deformation we

based on exponential variogram with alpha exactly the same with i.i.d setting and beta=0.0167.

The deformation parameter for RBF1, we used a=1, b=-0.9 and c=(0.05,0.05). The deformation

parameter for RBF2, we used a=1, b=2.24 and c=(0.05,0.05)

Figure 3.7: Boxplot of OLS estimation
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Note: part a)-d) indicate difference sigma for noise setting. For i.i.d random variable we used

normal distribution with mean zero and constance variance. For Gaussian random field we used

exponential with parameter beta=0.0167 and alpha (represents the variance) exactly the same with

i.i.d setting. For Radial Basis Deformation we based on exponential variogram with alpha exactly

the same with i.i.d setting and beta=0.0167. The deformation parameter for RBF1, we used a=1,

b=2.24 and c=(0.05,0.05).

Figure 3.8: Boxplot of GLS estimation with fitting stationary covariance structure
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Note: part a)-d) indicate difference sigma for noise setting. For i.i.d random variable we used

normal distribution with mean zero and constance sigma values. For Gaussian random field we

used exponential with parameter beta=0.0167 and alpha (represents the variance) exactly the same

with i.i.d setting. For Radial Basis Deformation we based on exponential variogram with alpha

exactly the same with i.i.d setting and beta=0.0167. The deformation parameter for RBF1, we

used a=1, b=2.24 and c=(0.05,0.05)

Figure 3.9: Boxplot of GLS estimation with fitting nonstationary covariance struc-
ture
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4. SUMMARY AND CONCLUSIONS

In this dissertation we work on two parts. In the first part, we propose a new

algorithm for big data analytic in Bayesian fields; parallel computation for Stochastic

Approximation Monte Carlo algorithm. In addition, we demonstrate how parallel

SAMC algorithm can be applied to estimate the parameter of the model and propose

combining strategies to aggregate the information from parallel results.

SAMC algorithm is a Stochastic Approximation Monte Carlo algorithm. It is an

adaptive MCMC algorithm that has been proven in theory and application. Unlike

other conventional MCMC algorithm, such as Metropolis-Hasting, SAMC algorithm

can avoid being trapped into local minima by additionally updating weight parameter

in each iteration step. Because of that, SAMC can converge to the desired target

distribution quickly. It can perfectly be applied to subset analytic.

The parallel computation is a modern technology which allows to break a target

problem into several smaller pieces and to calculate these pieces simultaneously.

Although the idea of parallel computation is very straightforward, however, there

is no statistical literature discussing how to combine the parallel results and how

accurate the estimator is in parallel computing.

The Bayesian inference via Divided-and-Combined method is the first method

we propose for aggregation step. It can be treated as a fixed effect problem with

an unknown mean effect and within-study error. It is straightforward to solve mean

effect by ML estimator. This aggregation step can be done very fast because there

is no subsets communication during the parallel computation. In other words, each

subset only evaluates its posterior mean without communicating with other subsets.

Compared with the first aggregation method, we propose a Bayesian inference via

63



Divided-and-Resample method, which allows communication among other subsets in

the aggregation step. The basic idea of recombination re-sampling algorithm is to

derive the common shared belief function between different subsets. The numerical

results show that this method has more accurate estimation than Bayesian inference

via Divided-and-Combined aggregation but it will take longer processing time.

By taking the advantage of fast processing time in first aggregation method and

more accurate estimation for communicating with subsets in the second aggregation

method, we propose the third aggregation method: weighted combination via SAMC

importance sampling. It calculates the correctly weighted parameter w(1:k) for all

subsets to evaluate big data posterior mean. The numerical results shows that it is

not only as fast as the first aggregation method but also more accurate than second

aggregation method.

The strength of parallel computation is to reduce the processing time. Our nu-

merical results suggest that parallel SAMC algorithm can save the process time

compared with sequential computation. As we increase the subsets which break

from the big data, it dramatically decreases the calculating time. The application of

space shuttle data shows that parallel SAMC algorithm keeps the same prediction

rate (80%) as we do the entire data inference. Therefore, we conclude that parallel

SAMC algorithm is a new, promising method which is working perfectly in big data

problem.

The second part of this dissertation focuses on a deformation framework for a sta-

tionary spatial random field and investigates the effect of making wrong stationary

assumption. We use an InSAR data to demonstrate an example of non-stationary

random field via stationary test. It is non-trivial to examine by eye whether the

fields is stationary or not. Therefore to make a stationary assumption for InSAR

noise data is not appropriate. We also propose a deformation framework to investi-
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gate the nonstationarity with gradually increasing the deformation parameters. The

numerical study suggests that as dependency of deformation parameter b increases

to the boundary, the power test for stationary test achieves 90% in larger testing

random field, which indicates non-stationary model for sure. That is, instead of gen-

erating a whole new non-stationary model, we can use deformation framework in a

stationary model to create a parameter nonstationarity random field.
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APPENDIX A

PROOFS OF CHAPTER II

(A1) The sequence {γt} is positive and non-increasing, and satisfies the conditions:

lim
t→∞

γt = 0,
∞∑
t=1

γt =∞,
∞∑
t=1

γηt <∞

for some η ∈ (1, 2)

(A2) Let Pθ denote the MH transition kernel for a given θ ∈ Θ. For any θ ∈ Θ,

Pθ is ψ-irreducible and aperiodic (Meyn and Tweedie, 1995). In addition, there exist

a function V: X → [1,∞) and a constant α ≥ 2 such that for any compact subset

K ⊂ Θ,

1. there exist a set C ⊂ X, an integer l, constants 0 < λ < 1, b, ζ , δ > 0 and a

probability measure ν such that

2. there exists a constant c such that for all (θ, θ
′
) ⊂ K ×K
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APPENDIX B

PROOFS OF CHAPTER III

If G is a open subset of R2 and if f : G → R2 is an injective and continuously

differentiable function that Jocobian determinat det(Jf (x)) 6= 0 for all x ∈ G, then

f(G) is a open subset of R2 and f defines a diffeomorphism from G onto f(G).

For Gaussian radial deformation with c=c(0,0), f = ρ(1 + b exp(−aρ2)), which

the Jacobian determinant is det(Jf (x)) = 1 + bexp(−aρ2)[1 − 2aρ2]. Now we must

to determine the parameter a and b in which the det(Jf (x)) is not equal to zero.

Let g(ρ) = 1 + bexp(−aρ2)[1 − 2aρ2], then take the first derivative to g(ρ) and

set g
′
(ρ) = 0

g
′
(ρ)⇒ −2ab exp(−aρ2)[3− 2aρ2] = 0

ρ =

√
3

2a

when g
′
(ρ) > 0⇔ b < 1

2
exp(3

2
)

g
′
(ρ) < 0⇔ b > −1

The above have proved that when b ∈ [−1, 1
2

exp(3
2
)] the function f is a bijective

function.
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