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ABSTRACT 

 

In this study, the clinical potential of the endogenous multispectral Fluorescence 

lifetime imaging microscopy (FLIM) was investigated to objectively detect oral cancer. 

To this end, in vivo FLIM imaging was performed on a hamster cheek pouch model with 

an oral epithelial cancer. The autofluorescence emissions of the hamster tissue were 

recorded in three different spectral bands which were determined based on the peak 

emission wavelength of three major fluorophores of hamster mucosal tissue: collagen 

(390±20 nm), NADH (452±22.5 nm), and FAD (>500 nm). Then, a total of 7 features 

pertaining to FLIM were extracted from each channel, providing 21 features overall. 

To design a classifier in a supervised approach, a training set is required, in 

which each pixel is labeled with one of the four groups. In this study, we utilized a total 

of 65 regions of interest (ROI) from the imaged cheek pouch of seven hamsters, for 

which the histopathological diagnosis could be correlated. The resulting database was 

used to train a K-Nearest-Neighborhood (KNN) algorithm aimed to detect benign from 

pre-malignant/malignant lesions. In addition, a Sequential Floating Forward Selection 

(SFFS) was applied to optimize the KNN algorithm and identify a subset of features that 

would maximize the classification performance. The best performance corresponded to 

the 3-NN algorithm with the 
 

 
 lifetime in the NADH channel and the normalized 

intensity in FAD channel as features. The overall accuracy, sensitivity and specificity for 

detecting pre-malignant and malignant lesions were 92.2%, 87.3%, and 94%, 

respectively, assessed using a cross-validation method. It has to be noted that the feature 
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selection algorithm suggested both lifetime parameter and intensity parameter for an 

optimal feature set, which validates the need to utilize endogenous FLIM for the 

objective detection of oral cancer. At last, all data from the 65 ROIs were used to train 

the 3NN classifier to classify the full tissue areas. The results suggest that multispectral 

endogenous FLIM has a potential to screen malignant oral epithelial tissue. This 

technology, however, still needs to be evaluated in human patients. 
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NOMENCLATURE 

 

FLIM Fluorescence Lifetime Imaging Microscopy 

RCM Reflectance Confocal Microscopy 

IRF Impulse Response Function 

UV Ultraviolet 

NIR Near Infrared 

 

 
 lifetime 

 

 
 lifetime 

cc Laguerre Coefficient 

cc_norm Normalized Laguerre Coefficient 

Ik Intensity in channel k 

In Normalized Intensity 

Ink  Normalized Intensity in channel k 

SNR Signal-to-Noise Ratio 

HGD High-Graded-Dysplasia 

LGD Low-Graded-Dysplasia 

Ch Channel 

N/A Not Available 
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CHAPTER I  

INTRODUCTION 

 

In 2013, over 8,000 people in the United States have died from oral or 

pharyngeal cancer, and more than 42,000 patients have been newly diagnosed [1]. The 

5-year survival rate of oral cancer is approximately 80% when it is diagnosed while the 

disease is still localized; however, only around 30% of patients are diagnosed at this 

early stage [1]. The 5-year survival rate drops to approximately 50% once the cancer has 

already spread to adjacent oral tissues or lymph nodes, and almost 50% of patients are 

diagnosed at this stage [1]. The 5-year survival rate falls below 30% once the cancer has 

spread further to distant organs [1]. Furthermore, while the early stage of oral cancer 

treatment may only demand minor treatment on the localized tumor, later stage treatment 

could involve surgery to remove parts of the lip, tongue, jaw, or neck [1]. In addition, 

around 30% of the patients who survived after the first incidence will suffer from a 

recurring cancer [1]. Consequently, early detection of oral cancer includes newly 

developed cancer as well as the recurrent cancer. 

Usually, early detection of oral cancer is hinged on the health provider’s 

individual ability to recognize the subtle changes towards pre-malignant lesions and 

cancers from alterations towards inflammatory benign conditions which possess the 

majority of mucosal abnormalities [2]. As a consequence, the individual ability of the 

clinicians in making such judgments is critical [2]. Once the need to biopsy has been 

suggested, another important challenge arises; to decide where to biopsy the identified 
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lesions [2]. This becomes more important when the lesions are ill-defined, or if the 

cancer is widely spread across the mucosa [2]. Such situations are challenging even for 

experienced professionals [2]. 

A further area of concern involves the demarcation of surgical margins which are 

expected to include all high-risk tissue [2]. Usually, if anatomically feasible, a 10 mm 

normal-looking oral mucosa borders around the clinically cancerous lesion are removed 

[2]. However, carcinoma often recurs where it has appeared before, and it indicates the 

limitation of the current practice [2]. 

Finally, follow-up of patients after treatment is hard [2]. Clinical examinations 

often gets complicated when the cancer recurs where it has been treated already since it 

is hard to recognize pre-malignant or malignant alteration in such case [2]. To these 

patients, repeated comparative biopsies are impractical [2]. There are several tools which 

fall under one of the following three categories: vital staining, exfoliative cytology, or 

optical imaging [3-13]. However, unfortunately, their performance as diagnostic tools 

particularly in detecting lower-risk lesions has not been yet established, and their 

definition for positive diagnosis is not reliable [2]. Thus, clinical tools that can diagnose 

oral precancers and cancers more accurately than visual inspection alone by clinician are 

needed in order to guide tissue biopsy and resection.  

A description of important changes of biochemical and functional biomarkers 

associated to oral epithelial cancer progression is provided in Figure 1. The diagnostic 

competence of autofluorescence imaging and spectroscopy comes from the ability to 

noninvasively probe subtle neoplastic alterations that occur during malignant 
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progresssion [14]. Fluorescence in epithelial tissue comes from multiple fluorophores 

and is influenced by absorption and scattering as light propagates through the epithelium 

and stroma [1, 15, 16]. Both mitochondrial metabolic coenzymes flavin adenine 

dinucleotide (FAD) and the reduced form of nicotinamide adenine dinucleotide (NADH) 

in the epithelial cells as well as collagen-cross links in the underlying stroma have been 

identified as the dominant sources of autofluorescence when the tissue is excited by the 

ultraviolet light [1, 17]. In addition, neoplastic progression also incurs change in the 

amount of both FAD and NADH as well as increase in the epithelial nuclear size, 

chromatin texture, and concentration of epithelial nuclei which induce more frequent 

epithelial scattering [1]. 

In particular for the detection of an oral cancer, the autofluorescence signal from 

both NADH and FAD increases as dysplasia develops whereas it decreases in 

inflammatory benign condition [17]. Such phenomenon allows the benign and 

precancerous lesions to be easily differentiated. However, the overall tissue fluorescence 

intensity generally decreases in both cases [17]. It is because the overall fluorescence is 

dominated by the stromal fluorescence, which decreases in both benign and 

precancerous lesions [17]. Consequently, the autofluorescence signals from stromal 

collagen needs to be separated from the autofluorescence emissions from both NADH 

and FAD in order to distinguish benign and precancerous lesions [17]. In this study, 

therefore, the fluorescence signals from collagen, NADH, and FAD are recorded 

separately in three different channels by considering the emission peak spectra of 

collagen, NADH, and FAD. 
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Figure 1 Summary of relevant endogenous biochemical and functional biomarkers 

associated to oral epithelial cancer progression. 

 

 

 

Traditionally, fluorescence microscopy has mainly been implemented in steady-

state analysis such as overall intensity or peak wavelength, which reveals the 

fluorescence responses as a function of excitation wavelength [18, 19]. This approach 

has been widely examined for clinical application [20]. However, this method is 

sensitive to various intensity-based artifacts which are hard to control during clinical 

procedures [19]. Such artifacts include fluorophore concentration, probe to tissue 

distance, excitation source intensity, etc [19]. On the other hand, lifetime which 

represents the average time that the molecule remains in the excited state before 

returning to the ground state, is less sensitive to such artifacts [20, 21]. 

As a result, fluorescence lifetime imaging microscopy (FLIM) can definitely 

improve the analytical quality of the neoplastic progression of the tissue [22]. The 

lifetime information of both FAD and NADH vary with the metabolic state of the tissue 

and thus provide distinction between different stages of dysplasia, which can be 
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additional means for detecting highly active premalignant tissue [22]. Furthermore, such 

approach can better characterize the tissue with fluorophores of heavily overlapping 

emission spectra [23]. Table 1 shows that the lifetime not only provides distinctive 

values for fluorophores with overlapping spectra such as NADH and collagen but also is 

sensitive to local microenvironment of the tissue, which enables to probe the malignant 

transformation of the lesion [17, 24]. 

FLIM can be performed either in frequency domain or in time domain [25]. 

Though frequency domain FLIM has the advantage of simpler instrumentation, it shows 

its limitation on analysis of a complex signal [25]. Time domain FLIM, however, is 

more suitable for studying a variety of FLIM signals, though it is more demanding in 

terms of experimental setup [25]. In time domain setup, the tissue is excited with the 

pulsed laser pixel-by-pixel. At each pixel, the fluorescence emission is recorded over 

time. Then, the deconvolution algorithm estimates the IRF at each pixel. Finally, the 

decay rate of the IRF is quantified in two different variables: 
 

 
 lifetime and average 

lifetime. 

The goal of this thesis was to demonstrate the potential of endogenous 

multispectral FLIM for detecting and distinguishing benign from pre-malignant and 

malignant oral epithelial tissue in a hamster cheek pouch model of oral epithelial cancer. 
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Table 1 Relevant endogenous fluorophores in epithelial tissue 

 

 

 

 

 

 

 

 

 

 

Fluorophore 
Excitation 

(nm) 

Emission 

(nm) 
Lifetime (ns) 

Collagen 350 390 3-5 

NADH 350 460 0.5/1-3 (free/bound) 

FAD 450 550 2-3/1 (free/bound) 

Porphyrin 400 630 >9 
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CHAPTER II  

METHODOLOGY 

 

2.1 Tissue Sample Preparation 

To perform the in vivo imaging of premalignant oral mucosal tissue, seven 

hamster cheek-pouch models of oral cancer were imaged. In a pathogen-free house, the 

hamsters were fed rodent chow and water ad libitum [17]. To induce the oral 

carcinogenesis at the Golden Syrian hamster pouches, 7; 12-dimethylbenz[α]anthracene 

(DMBA) was used [17]. The animal-use protocol was reviewed and approved by the 

Texas A&M University Institutional Animal Care and Use Committee (IACUC), 

whereas the clinical aspect of the study was supervised by veterinarians [17].The 

procedure to prepare and to image the early stage of oral carcinogenesis has been 

presented by Jabbour et al, which is discussed as follows [17]. 

The right buccal pouch of each hamster served as a cancer tissue whereas the left 

pouch worked as a normal tissue [17]. The right pouch of each hamster was treated with 

0.5% DMBA solution (Sigma-Aldrich) dissolved in mineral oil (Sigma-Aldrich); the left 

pouch of each hamster was treated with mineral oil only [17]. Both the right and the left 

pouches of each hamster were treated 3 times a week for 8 weeks [17]. At the time of 

imaging, 10% urethane solution was intraperitoneally injected in order to anesthetize 

each hamster [17]. Then, the cheek pouch was pulled and clamped onto the custom built 

mount for maximum exposure of the tissue area [17]. In addition, the hamster was kept 

warm with a heating pad so that the exposed cheek pouch was likely between room 
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temperature and the body temperature of the hamster [17]. After imaging of the buccal 

mucosa, the pentobarbital solution was injected into each hamster to euthanize it [17]. 

The cheek pouches were then excised and fixed in 10% formalin to be processed for 

H&E histology [17]. 

 

2.2 Histology Analysis 

Initially, a goal of this study was to classify each image pixel into one of the four 

histopathological groups: cancer, benign, low-graded-dysplasia (LGD), and normal. To 

design a classifier in a supervised approach, a training set is required, in which each 

pixel is labeled with one of the four groups. In this study, the training set is constraint to 

the data from a total of 65 regions of interest (ROI) from seven hamster cheek pouch 

models. More specifically, onlyA total of 65 regions of interest (ROI) in the FLIM 

images could be correlated with the underlying tissue histopathology. Each ROI was 

11×11 pixels in size (0.44mm 0.44mm) and was classified as: normal, cytologic atypia, 

hyperplasia, hyperkeratosis, low-graded-dysplasia (LGD), high-graded-dysplasia (HGD), 

or squamous cell carcinoma (SCC). Cytologic atypia, hyperplasia, hyperkeratosis were 

combined into a benign group. All HGD and SCC lesions were combined into a cancer 

group. Among 65 ROIs, 17 ROIs are classified as cancer, 12 as LGD, 17 as benign, and 

19 as normal. In addition, in this paper, seven hamster cheek pouch models will be 

identified by sequential numbers: 1 through 7. 
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2.3 Fluorescence Lifetime Imaging System 

A detailed schematic of the large-field FLIM system is illustrated in Figure 2 and 

described in a previous publication. Since ultraviolet light excitation can effectively 

excite the endogenous fluorophores present in epithelial tissue, the system employs a UV 

frequency-tripled Q-switched ND:YAG laser (1 ns pulse-width, 355 nm, 100 kHz 

maximum repetition rate, AOT-YVO-100QSP/MOPA, Advanced Optical Technology, 

Essex, United Kingdom) for excitation [1, 17]. The light from the laser is transmitted 

into the high –OH silica core multimode fiber (FVP050055065, Polymicro Technologies, 

Phoenix, Arizona) with a diameter of 50 μm [17]. To correlate the input excitation with 

the resulting fluorescence decay curve, some of the light from the laser transmits into the 

photodiode as well [17]. A dichroic mirror (DM1, NC176741-z355rdc, T > 95% for 380 

to 800 nm, Chroma Technology Corporation, Bellows Falls, Vermont) collimates, 

reflects, and then forwards the ray from the fiber to a pair of close-coupled galvanometer 

mirrors (6200HM40, Cambridge Technology, Lexington, Massachusetts) for two-

dimensional raster scanning, which divides the whole tissue sample area into 388 400 

pixels [17]. Then, the light is focused onto the sample by a UV-to-NIR corrected triplet 

lens (NT64-837, Edmunds Optics, Barrington, New Jersey) with a focal length of 45 mm 

and effective numerical aperture (NA) of 0.06 [17]. 
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Figure 2 Schematic of the combined fluorescence lifetime imaging [17] 

 

 

 

The fluorescence emission from the sample propagates through the same triplet 

lens and then is separated from the laser light by DM1 [17]. After being separated, the 

emission from the sample is coupled into a multimode fiber with a core diameter of 200 

μm (BFL22-200, Thorlabs, Newton, New Jersey) [17]. Two dichroic mirrors (DM2, 

LM01-427-25, T > 95% for 439 to 647 nm, and DM3, FF484-Fdi01,T > 95% for 492 to 

950 nm, Semrock, Rochester, New York), two bandpass filters (FF01-390/40, FF01-

452/45, Semrock), and a long pass filter (FF01-496, Semrock) split the light from the 

fiber into the rays of three different spectral bands, which were determined based on the 

emission spectra of the three endogenous fluorophores of interest: collagen (F1: 390±20 

nm), NADH (F2: 452±22.5 nm) and FAD (F3: >500 nm) [17]. 
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To consecutively record the three different signals with one detector, different 

time delays were applied to each of these three rays of different spectral bands [17]. 

These three rays are coupled into the three multimode fibers with lengths of 1, 13, and 

25 m (BFL22-200, Thorlabs), creating a time delay of 60 ns between two rays of 

consecutive spectral bands [17]. Finally, a high-speed (180 ps rise time, 90 ps TTS) 

micro-channel plate photomultiplier tube (MCP-PMT, R5916U-50, Hamamatsu, 

Bridgewater, New Jersey) collects the three decays consecutively in 200ns [17]. The 

collected signals are then sampled by a digitizer at 6.25 GHz (PXIe- 5185, National 

Instruments, Austin, Texas) after being amplified by the preamplifier (C5594- 12, 

Hamamatsu) [17]. The sampling was carried out by a custom algorithm, built with 

LabVIEW (National Instruments) [17]. The maximum noise level of the FLIM system 

was verified to be negligible by imaging a mirror placed on the FLIM focal plane [17]. 

 

2.4 Laguerre Deconvolution Method 

In the context of time-domain FLIM, the measured fluorescence intensity decay 

data y(n) is given by the convolution of the fluorescence Impulse Response Function 

(FIRF) h(n) with the instrument response x(n): 

                  y(n) =   ∑  ( ) (   )             
                                       (1) 

The parameter K determines the time length of the FIRF, T is the sampling 

interval, and N is the number of samples measured in y(n) and x(n).  In the context of 

CT-TE, sampling, N = 2
Q
. The LDM expands FIRF on an orthonormal set of Discrete 

Laguerre Functions (DLF):   
 h(n) = T ∑   

   
 ( )   

   , where   
 , are the Laguerre 



 

12 

 

Expansion Coefficients (LEC), which are to be estimated from the input-output data; 

  
 ( ) denotes the order orthonormal DLF; and L is the number of DLFs used to model 

the FIRF (usually L<10) (38). The Laguerre parameter   (0 <   < 1) determines the rate 

of asymptotic decline of the DLFs. The larger the  , the longer the spread over time of a 

DLF. Thus, larger   values imply longer convergence time to zero. The convolution 

equation can be expressed as: y(n) = ∑   
   

 ( )   
   , where   

 (n) = ∑   
 ( ) (     

   

 )  The convolution equation represents a system of linear equations on the coefficients 

  
 , which can be solved by linear least-square estimation. Once the coefficients   

  have 

been calculated, h(n) can be computed and values for average lifetimes can be 

calculated as:   = 
  ∑    ( ) 

   

∑  ( ) 
   

. 

Dabir et al have previously recommended the use of four or five Laguerre bases 

for computational efficiency, and therefore Laguerre functions with an order of one to 

four will be utilized in this study [20]. Furthermore, an optimal value for the Laguerre 

parameter alpha can be estimated by implementing a gradient method, with its step size 

determined by simple bisection method [26]. 
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2.5 Feature Retrieval and Data Preparation 

The FLIM system records the autofluorescence signal with three distinct 

channels, and each channel is aimed to record the autofluorescence emission from one of 

three major fluorophores of interest: collagen, NADH, and FAD. From each channel, 

seven features are extracted either from the FLIM signal or from the estimated impulse 

response function h(n). Since there are three channels, there will be 21 features. 

Consequently, 21 different feature values will be assigned to each of 388 400 pixels in 

every tissue sample, and it generates 21 different feature maps per tissue sample. 

Obviously, since there are 65 regions of interest (ROI) with known histopathological 

classifications, each of 65 ROIs will possess 21different feature values, which will later 

be utilized to build a classifier for supervised machine learning. The retrieved features 

are: normalized intensity of the FLIM curve, four Laguerre coefficients, average lifetime, 

and 
 

 
 lifetime (

 

 
 lifetime). The definition for each feature is presented below. 

Normalized intensity is calculated directly from the FLIM decay curve. Since the 

FLIM signal is collected in three distinct channels, normalized intensity of a given 

channel is the proportional fluorescence energy of the given channel over the 

fluorescence energy of all three channels, which is described in equation 2. Note that “Ik” 

refers to the sum of the intensity over time at channel k whereas “In” refers to the 

normalized intensity which can be calculated by following equation. 

     
  

        
                               (2) 

The Laguerre coefficients, which are the coefficients of Laguerre bases, have 

been measured by solving a least square problem [26]. As stated in the previous section, 



 

14 

 

its detailed procedure has been presented by Pande and Jo [26]. In addition, all Laguerre 

coefficients, which are abbreviated as “cc”, are normalized by the following equation: 

                                                               
   

∑ |   | 
                                                     (3) 

Average lifetime for each pixel is calculated from the estimated IRF with the 

following equation: 

            Average lifetime = 
∑    ( ) 

∑  ( ) 
          (4) 

Lifetime represents the expected time that a molecule spends in the excited state 

prior to return to the ground state [23]. As a result, mathematically, it can be seen as a 

quantity that measures the decay rate. However, there is another feature that measures 

the decay rate in a similar fashion, which is 
 

 
 lifetime. For simplicity, in this paper, 

 

 
 

lifetime can be abbreviated as tau whereas average lifetime can be denoted as lifetime. 

The explanation of 
 

 
 lifetime is presented below. 

If the fluorescence signal at a pixel comes from a single fluorophore, the h(n) 

(IRF) can be modeled with a single exponential equation. In such case, the value of 
 

 
 

lifetime is same with the value of average lifetime. However, in multi-exponential IRF 

model, 
 

 
 lifetime is the time when the IRF intensity equals 

 ( )

 
 where h(t) is the IRF over 

time. Therefore, 
 

 
 lifetime is another quantity that measures the IRF decay rate, and is 

usually shorter than the decay rate represented by average lifetime. 
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2.6 Statistical Analysis 

One goal of this study was to classify each image pixel using the multispectral 

FLIM features into one of the histopathological groups defined above. To design a 

proper statistical classifier following a supervised approach, a training set is required, in 

which each pixel is labeled to one of the groups. This requirement is extremely hard to 

meet, since perfect co-registration between histopathology sections and FLIM maps is 

virtually impossible. To mitigate this problem, we restricted the training set to the pixels 

of the 65 ROI for which a histopathological classification was available. The capacity of 

the 21 FLIM features to distinguish between the histopathological classes was assessed 

via the following statistical analysis. 

The most common statistical test to compare two distributions is the t-test. 

However, the two populations should be normally distributed in order to perform t-test. 

As a consequence, Wilcoxon rank-sum test was implemented as an alternative method. 

This test does not compare the individual value. Rather, it ranks all the data and 

compares the ranks instead of the data themselves. This method is, therefore, less 

sensitive to the extreme outlier in that it abates the size of the deviation by comparing 

the rank. 

In this study, “ranksum” function in Matlab is utilized to carry out the Wilcoxon 

rank-sum test with training dataset from 65 ROIs. Furthermore, feature value 

distributions for different classifications are plotted both as boxplots and as histogram to 

examine which feature can distinguish which set of classifications. 
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2.7 Feature Selection Method with Validation Method 

The statistical analysis described before allowed narrowing down the number of 

features that may be able to distinguish the classes of interest. With those candidate 

feature sets, feature selection algorithm was implemented to find the best feature subset. 

In this study, Sequential Floating Forward Selection method was used as a feature 

selection algorithm based on a performance estimation using the following. 

Cross-validation all the ROIs in one animal served as a test set whereas all the 

other ROIs from all other animals serve as a training set to train the classifier. Since 

seven animals were imaged, a confusion matrix was generated from each of the seven 

folded cross-validations. The seven outcome matrices were then added together to 

produce one confusion matrix, calculated as: 

[
              
              

] = [
∑    
 ∑    

 

∑    
 ∑    

 

]                                       (5) 

Floating Search algorithm is an upgraded version of “plus-l-take-away r” 

algorithm. Most of the sequential search methods assume that the criterion of feature set 

effectiveness is monotonic [27]. More specifically, it implies that the value of the 

criterion function such as an error rate or sensitivity will not be degraded when adding 

another feature to the current feature set [27]. However, “plus-l-take-away r” algorithm 

deals with such problem by imposing an additional algorithm that reduces the size of the 

feature set. Furthermore, floating forward search algorithm brings flexibility in choosing 

both l and r in “plus-l-take-away r” algorithm as well as computational efficiency [27]. 

Error rate is the most common and legitimate criterion for feature selection and was thus 

used here [27]. To summarize, Sequential Floating Forward Selection algorithm can be 
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described in Figure 3 where “J” represents the criterion function of feature set 

effectiveness. Note that there are no features included initially. 

 

 

 

 

Figure 3 Description on Sequential Floating Forward Selection algorithm [27] 
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2.8 Classification Method 

The K-nearest-neighborhood (KNN) algorithm was selected as the classification 

method. The KNN algorithm identifies the k nearest training data points (measured in 

terms of the Euclidean distance) from each test data which is subject to classification. 

Then, the test datum is assigned to class that has the majority among k nearest data 

points. When k is an even number, a tie can happen. To avoid this scenario, an odd 

number for k is recommended. In this study, we evaluated values of k equal to 1, 3, 5 or 

7. 
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CHAPTER III  

RESULTS 

 

3.1 Feature Estimation 

Initially, 21 features were estimated either from the impulse response function 

(IRF) or from the fluorescence emission curve. These 21 features consist of seven 

features per each of three channels, which are normalized intensity, average lifetime, 
 

 
 

lifetime, four normalized Laguerre coefficients. Figure 4 shows examples of the 21 

feature maps; for one of the cheek pouch imaged (denoted as tissue #2). As mentioned in 

section 2.4, “In”, “cc_norm”, “lifetime”, and “tau” refers to the normalized intensity, 

normalized Laguerre coefficients, average lifetime, and 
 

 
 lifetime, respectively. In 

addition, “ch” represents channel, and therefore the three columns in Figure 4 shows the 

feature maps in three different channels. Furthermore, every feature map in Figure 4 

displays the known regions of interest (ROIs) in tissue #2. Each box specifies the ROI 

location, which consists of 11 11 pixels, and the number displayed near the box is a 

ROI number that uniquely represents each ROI. In addition, the corresponding 

histopathological classification of each ROI is revealed by the color of the box; red 

represents cancer whereas blue indicates non-cancer. The classification algorithm was 

designed to distinguish only two groups: non-cancer (including normal, benign and LGD) 

and cancer (including HGD and SCC). A detailed definition of these histopathological 

classes is provided in section 2.1. 
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Figure 4 21 feature maps of tissue #2 
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3.2 Statistical Analysis 

Tables 2, 3, and 4 describe the results of the ranksum test between every possible 

pairs of histopathological classes. The similarity between two distributions is quantified 

with p-value in percentage. Any pair of distributions with p-value less than one is 

considered significantly different, which are in bold text in the tables below. 

 

 

 

Table 2 “p” in percentage from Ranksum Test between four classifications on Channel 1 

 

Channel 1 

Cancer- 

Benign 

Cancer - 

LGD 

Cancer - 

Normal 

Benign-

LGD 

Benign-

Normal 

LGD-

Normal 

cc_norm1 19.06 52.08 26.74 41.27 70.38 79.21 

cc_norm2 0.00 0.03 0.00 61.06 70.38 79.21 

cc_norm3 38.92 36.40 35.81 64.20 92.43 55.65 

cc_norm4 0.02 0.11 0.02 38.79 61.22 82.35 

lifetime 0.01 0.07 0.01 55.00 63.46 85.52 

In 0.00 0.01 0.00 87.68 63.46 50.34 

tau 0.00 0.03 0.00 55.00 65.73 91.92 
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Table 3 “p” in percentage from Ranksum Test between four classifications on Channel 2 

 

Channel 2 

Cancer- 

Benign 

Cancer - 

LGD 

Cancer - 

Normal 

Benign-

LGD 

Benign-

Normal 

LGD-

Normal 

cc_norm1 8.50 7.29 0.71 80.76 31.06 42.90 

cc_norm2 0.05 0.15 0.07 64.20 39.22 52.96 

cc_norm3 0.22 1.09 1.47 36.40 29.57 91.92 

cc_norm4 0.09 0.56 0.17 38.79 10.61 52.96 

lifetime 0.04 0.21 0.08 73.98 22.85 47.79 

In 5.38 2.84 4.95 24.06 54.71 91.92 

tau 0.05 0.21 0.09 49.25 29.57 61.22 

 

 

 

Table 4 “p” in percentage from Ranksum Test between four classifications on Channel 3 

 

Channel 3 

Cancer- 

Benign 

Cancer - 

LGD 

Cancer - 

Normal 

Benign-

LGD 

Benign-

Normal 

LGD-

Normal 

cc_norm1 0.65 9.68 0.02 34.11 22.85 3.32 

cc_norm2 31.79 3.95 82.45 19.15 21.65 1.26 

cc_norm3 0.02 0.37 0.02 57.99 75.13 55.65 

cc_norm4 62.97 3.17 100.00 2.26 52.62 1.58 

lifetime 16.83 73.98 2.45 24.06 12.83 0.37 

In 0.00 0.01 0.00 17.68 97.47 12.83 

tau 3.27 0.65 12.05 24.06 28.13 1.77 

 

 

 

The ranksum test clearly suggests that only the cancer group can be potentially 

distinguished from the other classes; thus, all the other classes were combined into a 
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non-cancer group. The ranksum test was again performed on these two groups. The 

results are described in the Table 5 below. 

 

 

 

Table 5 “p” in percentage from Ranksum Test between cancer data and non-cancer data 

 

Channel 1 Channel 2 Channel 3 

Cancer-

noncancer 

Cancer-

noncancer 

Cancer-

noncancer 

cc_norm1 18.65 0.84 0.04 

cc_norm2 0.00 0.00 21.26 

cc_norm3 25.97 0.08 0.00 

cc_norm4 0.00 0.01 35.09 

lifetime 0.00 0.00 7.45 

In 0.00 1.19 0.00 

tau 0.00 0.00 0.96 

 

 

 

According to the results of the ranksum test, only 15 features showed significant 

difference (p < 1%) between the non-cancer and cancer groups, which are cc_norm2, 

cc_norm4, lifetime, normalized intensity, and tau in channel 1; cc_norm1, cc_norm2, 

cc_norm3, cc_norm4, lifetime, and tau in channel 2; cc_norm1, cc_norm3, normalized 

intensity, and tau in channel 3. 
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Fig. 2. Boxplot of cancer 

and non-cancer data with 

15 features selected from  

Figure 5 Boxplot of cancer and non-cancer data distribution with 15 features selected 

from ranksum test 



 

25 

 

Figure 6 Histogram of cancer and non-cancer data distribution with 15 features selected 

from ranksum test. 

 

 

 

After examining the p-values of the ranksum test, we also looked at both the 

boxplot (Figure 5) and the histograms (Figure 6) of each feature to gain some insight 
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about their underlying distributions. Based on these, we further discarded the following 

features: cc_norm1 in channel 2; cc_norm1, cc_norm3, and tau in channel 3. As a result, 

only 11 features were remaining: cc_norm2, cc_norm4, lifetime, normalized intensity, 

and tau in channel 1; cc_norm2, cc_norm3, cc_norm4, lifetime, and tau in channel 2; 

normalized intensity in channel 3. 

 

3.3 Classifier Settings with Corresponding Performance 

The Sequential Floating Forward Selection algorithm was carried out. Initially, 

the algorithm was carried out on the remaining 11 features selected out of the statistical 

analysis. The results are summarized in Tables 7-8 and Figures 7-10. In the table, each 

step comprises of two columns. The left column represents the error rate assuming the 

inclusion of the new feature whereas the right column represents the error rate assuming 

the exclusion of the current feature. In addition, note that the last step is purposely 

omitted in the tables below since it will not bring any changes to the recommended 

feature set. In each step, the suggested features are highlighted in bold. As delineated in 

Figure 3, selected feature set changes in a way that lowers the error rate the most. The 

two most bottom rows shows the confusion matrices with feature set chosen by the 

corresponding step.  
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Table 6 Error rate for 1-Nearest-Neighbor method 

1NN Step 1 Step 2 Step 3 

cc_norm2_ch1 0.137  N/A 0.108  N/A 0.083  N/A 

cc_norm4_ch1 0.161  N/A 0.112  N/A 0.083  N/A 

lifetime_ch1 0.135  N/A 0.119  N/A 0.090  N/A 

In_ch1 0.118  N/A 0.098  N/A 0.083  N/A 

tau_ch1 0.718  N/A 0.111  N/A 0.091  N/A 

cc_norm2_ch2 0.171  N/A 0.087  N/A 0.081  N/A 

cc_norm3_ch2 0.298  N/A 0.102  N/A 0.081  N/A 

cc_norm4_ch2 0.207  N/A 0.101  N/A 0.078  0.080  

lifetime_ch2 0.190  N/A 0.098  N/A 0.089  N/A  

tau_ch2 0.627  N/A 0.080  0.114  N/A  0.101  

In_ch3 0.114  N/A N/A  0.627  N/A  0.194  

TN FP 5342 466 5424 384 5445 363 

FN TP 432 1625 246 1811 250 1807 

 

 

 

 

Figure 7 The flow of changes on specificity, sensitivity, and correct rate for 1NN 
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Table 7 Error rate for 3-Nearest-Neighborhood method 

3NN Step 1 Step 2 

cc_norm2_ch1 0.101  N/A 0.101  N/A 

cc_norm4_ch1 0.114  N/A 0.101  N/A 

lifetime_ch1 0.100  N/A 0.116  N/A 

In_ch1 0.094  N/A 0.094  N/A 

tau_ch1 0.649  N/A 0.107  N/A 

cc_norm2_ch2 0.130  N/A 0.083  N/A 

cc_norm3_ch2 0.246  N/A 0.090  N/A 

cc_norm4_ch2 0.165  N/A 0.091  N/A 

lifetime_ch2 0.142  N/A 0.094  N/A 

tau_ch2 0.613  N/A 0.078  0.094  

In_ch3 0.094  N/A N/A  0.613  

TN FP 5460 348 5457 351 

FN TP 389 1668 262 1795 

 

 

 

 

Figure 8 The flow of changes on specificity, sensitivity, and correct rate for 3NN 
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Table 8 Error rate for 5-Nearest-Neighborhood method 

5NN Step 1 Step 2 Step 3 Step 4 Step 5 

cc_norm2_ch1 0.091  N/A 0.100  N/A 0.081  N/A 0.078  N/A 0.078  N/A 

cc_norm4_ch1 0.102  N/A 0.099  N/A 0.082  N/A 0.078  N/A 0.077  0.078  

lifetime_ch1 0.088  N/A 0.113  N/A 0.078  0.081  0.000  0.082  N/A  0.083  

In_ch1 0.092  N/A 0.091  N/A 0.079  N/A 0.081  N/A 0.081  N/A 

tau_ch1 0.628  N/A 0.102  N/A 0.081  N/A 0.078  N/A 0.079  N/A 

cc_norm2_ch2 0.120  N/A 0.083  N/A 0.080  N/A 0.078  N/A 0.078  N/A 

cc_norm3_ch2 0.227  N/A 0.085  N/A 0.082  N/A 0.078  0.078  N/A 0.078  

cc_norm4_ch2 0.149  N/A 0.090  N/A 0.080  N/A 0.079  N/A 0.078  N/A 

lifetime_ch2 0.126  N/A 0.094  N/A 0.079  N/A 0.079  N/A 0.079  N/A 

tau_ch2 0.592  N/A 0.081  0.088  N/A 0.113  N/A 0.110  N/A 0.112  

In_ch3 0.088  N/A N/A 0.592  N/A 0.084  N/A  0.084  N/A 0.084  

TN FP 5492 316 5451 357 5716 92 5719 89 5720 88 

FN TP 379 1678 278 1779 523 1534 522 1535 521 1536 

 

 

 

 

Figure 9 The flow of changes on specificity, sensitivity, and correct rate for 5NN 
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Table 9 Error rate for 7-Nearest-Neighborhood method 
7NN Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

cc_norm2_ch1 0.085  N/A N/A  0.593  N/A  0.082  N/A  0.077  N/A  0.076  0.076 N/A 

cc_norm4_ch1 0.098  N/A 0.083  N/A 0.080  N/A 0.081  N/A 0.076  N/A 0.076 0.076 

lifetime_ch1 0.089  N/A 0.084  N/A 0.082  N/A 0.077  0.079  N/A  0.082  N/A 0.083 

In_ch1 0.089  N/A 0.097  N/A 0.086  N/A 0.081  N/A 0.080  N/A 0.080 N/A 

tau_ch1 0.617  N/A 0.084  N/A 0.087  N/A 0.082  N/A 0.077  N/A 0.077 N/A 

cc_norm2_ch2 0.115  N/A 0.088  N/A 0.090  N/A 0.080  N/A 0.077  N/A 0.076 N/A 

cc_norm3_ch2 0.219  N/A 0.083  N/A 0.081  N/A 0.080  N/A 0.076  0.077  N/A 0.076 

cc_norm4_ch2 0.144  N/A 0.090  N/A 0.079  N/A 0.079  N/A 0.077  N/A 0.076 N/A 

lifetime_ch2 0.123  N/A 0.094  N/A 0.092  N/A 0.078  N/A 0.077  N/A 0.078 N/A 

tau_ch2 0.593  N/A 0.080  0.085  N/A  0.098  N/A  0.106  N/A  0.108  N/A 0.109 

In_ch3 0.087  N/A 0.098  N/A  0.079  0.080  N/A  0.082  N/A  0.083  N/A 0.081 

TN FP 5683 125 5720 88 5506 302 5740 68 5743 65 5744 64 

FN TP 542 1515 541 1516 322 1735 534 1523 532 1525 533 1524 

 

 

 

 

Figure 10 The flow of changes on specificity, sensitivity, and correct rate for 7NN 
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Considering both error rate and sensitivity, classifiers with various Ks shows similar 

performances with suggested feature set. Furthermore, as K gets lower, the performance 

tends to slightly move towards sensitivity whereas the performance tends to shift 

towards specificity as K gets higher. More specifically, 1NN can cause over-fitting due 

to the high sensitivity whereas low sensitivity can be an issue for high K. Good 

compromise is indeed on demand in this case. As a result, 3NN will be implemented. 

Furthermore, the sequential floating forward search algorithm suggests utilize 
 

 
 lifetime 

in channel 2 and normalized intensity in channel 3 with 3NN. The resulting correct rate, 

specificity, and sensitivity for detecting cancerous were 92.2%, 94.0%, and 87.3%, 

respectively. 

 

3.4 Tissue Classification 

At this point, all the parameters that need to be determined in order to build an 

optimal classifier have been found. Now, 3-Nearest-Neighborhood classifier with 
 

 
 

lifetime in channel 2 and normalized intensity in channel 3 can classify the whole 

regions from seven tissues, and the results are described below from Figure 11-17. Note 

that the Classification Map on the left shows cancer region as black and non-cancer 

region as white. A photograph of the imaged tissue is also provided on the right as a 

reference. In addition, the ROIs used to train the classifier are marked with 11 11 pixel 

squares; blue for the non-cancerous and red for the cancerous ROI. 
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Figure 11 Results of the classification and the actual tissue image of the tissue #1 

 

 

 

 

Figure 12 Results of the classification and the actual tissue image of the tissue #2 
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Figure 13 Results of the classification and the actual tissue image of the tissue #3 

 

 

 

 

 

Figure 14 Results of the classification and the actual tissue image of the tissue #4 
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Figure 15 Results of the classification and the actual tissue image of the tissue #5 

 

 

 

 

 

Figure 16 Results of the classification and the actual tissue image of the tissue #6 
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Figure 17 Results of the classification and the actual tissue image of the tissue #7 
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CHAPTER IV  

DISCUSSION 

 

 In this study, all the features except normalized intensity are derived from the 

impulse response function (IRF), which is estimated from the Laguerre deconvolution 

algorithm. It is therefore, obvious that the accuracy of the deconvolution algorithm plays 

a major role in determining the performance of the classifier. 

Currently, the algorithm implements the global alpha that minimizes the global 

error which is defined as the mean square error of the estimated IRF [26]. However, the 

alpha reflects the decay rate of the Laguerre function as can be noticed from Figure 18. 

Specifically, larger alpha creates slow decay and vice versa. For example, if 

fluorophores with a short lifetime dominates the tissue, global alpha will be low. 

However, if there is a small region where the fluorophores of high lifetime dominate, the 

IRF in this region may not be estimated accurately. Obviously, multiple alphas can be a 

solution to solve such problem. Segmenting the image based on the FLIM curve and 

assigning different optimal alpha to each of the segmented regions may be one way to 

improve the algorithm. 
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Figure 18 First-order Laguerre function with different alpha and unit coefficient 

 

 

 

As the dimensionality of the features increases, the volume of the feature space 

increases as well as the sparsity of the data. The sparse data can be problematic since the 

models are built through learning, and it is valid only in the area where the learning data 

are available [28]. With every other constraints unchanged, the size of the required data 

grows exponentially with the dimension [28]. For example, if 10 data points seem 

reasonable to develop a reliable 1-dimensional model, 100 data points are necessary to 

train a 2-dimensional model with the same reliability [28]. As a result, both the large size 

of the data and the low dimensionality are desirable in developing reliable classification 

algorithm. In most circumstances, the size of the data is limited, and therefore the 

dimensionality should be kept low for low sparsity [28]. In this study, the feature 

dimensionality has been reduced through two different steps: statistical analysis and 
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feature selection algorithm. At the end, the optimal features included both lifetime 

parameter and the intensity parameter, and it validated the advantage of using FLIM. 

As presented in section 3.2, 3NN with its selected feature set (tau_ch2, In_ch3) 

has shown decent performance. However, it turns out that most of the misclassification 

has occurred in the data from one of the hamster (tissue #6).  

 The exceptional behavior of the data from tissue #6 can be seen more clearly 

from the confusion matrix. Equation 6 illustrates how much hamster tissue #6 

contributes to the overall misclassification. The 6th matrix in equation 6 corresponds to 

the 6th cross-validation, which uses the data from hamster tissue #6 as test set whereas 

all the other data are used as training set. It can be calculated that approximately 87.5% 

of the false positive and approximately 76.0% of the false negative has come from the 

tissue #6 data.  
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 Without tissue #6, the feature selection algorithm suggested cc_norm2 in the 

channel 1and normalized intensity in the channel 1 as the best features for 3NN. The 

performance of this classifier is illustrated as a confusion matrix in equation 7. 

[
      
      

]                                 (7) 

The performance of this classifier looks extremely promising. Its correct rate, 

specificity, and sensitivity for detecting cancer lesions were 98.9%, 99.2%, and 97.7%, 

respectively. The rate of misclassification for the ROIs of tissue #6 can partially be 
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explained in terms of its unique histopathological characteristics. More specifically, ROI 

#10, #17, #18 in tissue #6 show comparatively thin epithelium. Though these three ROIs 

were all labeled as high-graded-dysplasia (HGD) the epithelial layers on these ROIs are 

much thinner compared to the HGD ROIs in the other animals. 

Although many lesions were clearly distinguishable based on visual inspection, 

some of them were not. As an example, the classification map shown in Figure 19 

highlighted several cancerous regions (marked by red circles) that were not obvious by 

visual inspection. These are promising results in that the proposed 3NN classifier can 

help clinician more accurately detect the oral cancer than by visual inspection only. 

 

 

 

 

 

 

 

 



 

40 

 

Figure 19 Various precancerous lesions which are not revealed from visual inspection 
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CHAPTER V  

CONCLUSION 

 

In this study, the clinical potential of the endogenous multispectral Fluorescence 

lifetime imaging microscopy (FLIM) was investigated to objectively detect oral cancer. 

To this end, in vivo FLIM imaging was performed on a hamster cheek pouch model with 

an oral epithelial cancer. The autofluorescence emissions of the hamster tissue were 

recorded in three different spectral bands which were determined based on the peak 

emission wavelength of three major fluorophores of hamster mucosal tissue: collagen 

(390±20 nm), NADH (452±22.5 nm), and FAD (>500 nm). Then, a total of 7 features 

pertaining to FLIM were extracted from each channel, providing 21 features overall. 

To design a classifier in a supervised approach, a training set is required, in which each 

pixel is labeled with one of the four groups. In this study, we utilized a total of 65 

regions of interest (ROI) from the imaged cheek pouch of seven hamsters, for which the 

histopathological diagnosis could be correlated. The resulting database was used to train 

a K-Nearest-Neighborhood (KNN) algorithm aimed to detect benign from pre-

malignant/malignant lesions. In addition, a Sequential Floating Forward Selection (SFFS) 

was applied to optimize the KNN algorithm and identify a subset of features that would 

maximize the classification performance. 

The best performance corresponded to the 3-NN algorithm with the 
 

 
 lifetime in 

the NADH channel and the normalized intensity in FAD channel as features. The overall 

accuracy, sensitivity and specificity for detecting pre-malignant and malignant lesions 
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were 92.2%, 87.3%, and 94%, respectively, assessed using a cross-validation method. It 

has to be noted that the feature selection algorithm suggested both lifetime parameter 

and intensity parameter for an optimal feature set, which validates the need to utilize 

endogenous FLIM for the objective detection of oral cancer. At last, all data from the 65 

ROIs were used to train the 3NN classifier to classify the full tissue areas.  

These results suggest that multispectral endogenous FLIM has a potential to 

screen malignant oral epithelial tissue. This technology, however, still needs to be 

evaluated in human patients. 
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