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ABSTRACT

Motivated by a logistic regression problem involving diet and cancer, we reconsid-

er the problem of forming a confidence interval for the ratio of two location param-

eters. We develop a new methodology, which we call the Direct Integral Method for

Ratios (DIMER). In simulations, we compare this method to many others, includ-

ing Wald’s method, Fieller’s interval, Hayya’s method, the nonparametric bootstrap

and the parametric bootstrap. These simulations show that, generally, DIMER more

closely achieves the nominal confidence level, and in those cases that the other meth-

ods achieve the nominal levels, DIMER generally has smaller confidence interval

lengths. We also show that DIMER eliminates the probability of infinite length or

enormous length confidence intervals, something that can occur in Fieller’s interval.

Furthermore, we study the real Healthy Eating Index-2005 (HEI-2005) data set

from the NIH-AARP Study of Diet and Health, consider a weighted logistic regres-

sion model in which there are multiple subpopulations, and multiple diseases within

each subpopulation. Based on this model, we present six different approaches to

form the confidence intervals for the relative risks of different diseases in different

subpopulations, including DIMER. The asymptotic distributions of the estimates for

the log(relative risks) by the maximum likelihood and the nonparametric bootstrap

method are provided. Next, the algorithms are presented to perform hypothesis tests

and likelihood ratio tests to check there are significant differences between our pro-

posed model and the other three logistic regression models or not. In addition, the

adaptive lasso and an estimator with bounded constrains are described for variable

selection and a novel algorithm to solve the nonlinear regression model with L1 norm

penalty is proposed. The application of all those methods to the HEI-2005 data are
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illustrated.

Additionally, we expand the linear function of nutrition components inside the

logistic regression model to a nonlinear case. More than that, we consider there

are some limitations from the knowledge of biology and nutrition and propose a

logistic regression model involving I-spline basis functions and an algorithm to solve

it. Application to the real HEI-200d data set and comparison to a logistic model

with total HEI scores are also presented.
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1. INTRODUCTION

This dissertation focuses on study of the real Healthy Eating Index-2005 (HEI-

2005) data set from the NIH-AARP Study of Diet and Health. One of the US

Department of Agriculture’s (USDA’s) strategic objectives is ‘to promote healthy

diets’ and it has developed an associated performance measure, the Healthy Eating

Index-2005 (HEI-2005, see Guenther et al., 2008a,b). The HEI-2005 is based on

the key recommendations of the 2005 Dietary Guidelines for Americans. The index

includes ratios of interrelated dietary components to energy. The HEI-2005 comprises

12 distinct component scores and a total summary score. See Chapter 3 for a list of

these components and the standards for scoring, and see Guenther et al. (2008a,b)

for details. Intakes of each food or nutrient, represented by one of the 12 components,

are expressed as a ratio to energy intake, assessed, and ascribed a score.

The total score defined as the sum of these 12 nutrition components, has been

widely used to analyze the relationship between diseases, mortality and individual

food intake. Reedy, et al. (2008) show that in a Cox regression for colorectal cancer

in the NIH-AARP Study of Diet and Health, with diet assessed by a food frequen-

cy questionnaire (FFQ), higher HEI-2005 total scores are statistically significantly

associated with lower risk, with a relative risk of 0.72 for men and 0.80 for women.

In my research work, firstly I expand Reedy’s work to a weighted logistic re-

gression model. In the other words, we assume each diet component has various

weight in regression, although they are the same in Reedy’s model. Details for the

weighted model are given in Chapter 3. Based on it, one of our key goals to analyze

this data set is determining relative risk for each disease in different subpopulations,

which is closely related to the lengths of confidence intervals for some parameters in

1



the regression model. Therefore, the question arises to form the confidence intervals

of these parameters with reasonable lengths. Two usual approaches, the sandwich

method and nonparametric bootstrap, have been performed in simulation study of

the data set but both coverages are not favorable when compare with the nominal

coverage. In our simulations, estimated values from maximum likelihood estimator

(MLE) of these weight parameters have heavily tailed distributions which are not

close to normal distributions.

To have more accurate distribution approximation of the estimates, an model

transformation is performed. After completion of the transformation, the MLE es-

timates of these weight parameters, in turn, can be approximately considered as

ratios of the two means in some bivariate normal distributions. An usual technique

to build these intervals is introduced by Fieller (1932, 1954). In contrast to most

other methods, Fieller’s interval avoids the distribution approximation of the ratio

directly. Instead of it, it uses the distribution character of a new latent variable. This

gives widely application area than Hinkley’s method (1969) since their approxima-

tion needs the probability of positive denominator converge to 1. However, there are

several limitations of Fieller’s algorithm, which are described detailedly in Appendix

A.1. Our simulation results with the real HEI-2005 data set show while Fiellers in-

terval has correct nominal coverage probability in certain cases, it achieves this at

of cost of sometimes resulting in confidence intervals of enormous or even infinite

length, or even intervals that are the union of disjoint sets. Besides of that, under

come circumstances, it is invalid at all.

Consequently, there are many other existing methods in this area and most based

on the distribution of the ratio of the estimates of the two location parameters (Geary,

1930; Marsaglia, 1965; Hinkley, 1969; Deaton and Kamerud, 1978; Brody et al., 2002;

Cedilnik et al., 2004; Beyene and Moineddin, 2005; Qiao et al., 2006; Pham-Gia et al.,
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2006; Sherman et al., 2011). Most often, a normal approximation to the distribution

is used, with subsequent intervals formed by Wald’s method. Hayya et al. (1975)

showed that, under certain conditions, the distribution of ratio can be treated as a

normal distribution with a second order Taylor expansion. In addition, parametric

and nonparametric bootstrap methods are also used.

After we investigating many other existing methods in this area, we came into

the conclusion that, for the problem of building a confidence interval for ratio with

our data set, except Fieller’s interval, the coverages of existing methods all are not

sufficiently close to the nominal values. And we have described the shortcomings

of the Fieller’s interval. Motivated by such a problem, a new methodology named

as the Direct Integral Method for Ratios (DIMER) is constructed, and details are

provided in Chapter 2.

After solving the problem of how to accurately estimate the confidence interval

for the ratio, based on the weighted model previously mentioned, I turned to analysis

the relative risks for different diseases in different subpopulations. For HEI-2005 da-

ta, besides Reedy’s work, George, et al. (2010) illustrate that higher HEI-2005 total

scores are associated with lower levels of chronic inammation among breast cancer

survivors. Chiuve, et al. (2012) show that the HEI-2005 total score and the Alterna-

tive Healthy Eating Index (AHEI) are significant predictors of chronic diseases such

as coronary heart disease, diabetes, stroke and cancer, and that closer adherence to

the 2005 Dietary Guidelines may lower the risk of major chronic diseases. The AHEI

is also associated with all cause mortality (Akbaraly, et al., 2011). Additionally,

there are some other works related to the HEI-2005 data sets (Fungwe et al., 2009;

Kipnis et al., 2009; Kipnis et al., 2009; Kott et al., 2009; Sinha et al., 2010; Tooze

et al., 2002; Tooze et al., 2006; Zhang et al., 2011).

As mentioned previously, for the HEI-2005 data, one of our main purposes is
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to study the relative risk of different diseases in various subpopulations. In this

dissertation, I propose six different algorithm to analyze it. Details for the various

approaches and asymptotic distributions are provided in Section 3. Additionally,

hypothesis tests and likelihood ratio tests are performed to compare our proposed

weighted model with the other three, including the one used in Reedy’s work.

Furthermore, I propose two different methods, the adaptive lasso (Zou, 2006)

and an estimator with bounded constrains, for variable selection upon the weighted

regression model. One of the most famous methods to solve the lasso problem is

the Least Angle Regression (LARS) which was presented by Efron et al., (2004).

An efficient package lars in R has been widely used. By the coordinate descent

algorithm, Friedman et al., (2007, 2010) proposed solutions for regressions with L1

norm penalty, which resulting in significant time saving when compared to solutions

by LARS. Additionally, Wang and Leng (2007) introduced a method of least squares

approximation (LSA) for unified lasso estimation method. The basis of LSA was to

approximate a nonlinear regression model with L1 norm penalty to a least squares

minimization problem with the same penalty, while there are numerous efficient

solutions for the latter one. Additionally, Wang and Leng (2007) suggested to use

the R package lars directly after obtaining the approximation least square expression.

Since there are quadratic terms for parameters in our nonlinear regression model,

even after the least square approximation, we could not use the lars package directly.

Therefore, we propose a novel algorithm to solve the nonlinear regression model with

L1 norm penalty and apply it to the real HEI-2005 data set with the weighted model.

Next, in order to study the influences of food intake amount on disease, I expand

the weighted model to a logistic regression model containing a nonlinear equation

about the diet intake amount. Some constrains from the nutriology and biology are

also involved here. Details of these constrains are described in Chapter 5. Combining
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all these factors, I apply I-spline basis function (Ramsay, 1988) for the nonlinear

equation fitting in the logistic regression since it is always monotone increasing and

non-negative. In Ramsay’s work, the exact expressions of the I-spline basis functions

for the second order were provided and I expand them to the third order. And then

the application and analysis results in the HEI-2005 data are illustrated.

The arrangement for this dissertation is described as follows: In Chapter 2, I pro-

pose a new method named as the Direct Integral Method for Ratios (DIMER), which

has been used to calculate the confidence intervals for the two location parameters,

and the comparisons to some existing methods have been carried out through sim-

ulations. In Chapter 3, the structure of the Healthy Eating Index-2005 (HEI-2005)

is firstly described. Then a weighted logistic regression model is built and various

methods are proposed to calculate the relative risks for different diseases in HEI-2005

data set, including DIMER. Next, the applications in the nutrition data are illustrat-

ed. In order to compare the different models for the relationship between diseases

and nutrition diets, I apple Hypothesis test and likelihood ratio test in the Chap-

ter 4 to compare four different logistic regression models, and propose two different

methods for variable selection: positive bounded constrains and the adaptive lasso

method. Furthermore, I develop a novel algorithm to solve the nonlinear regression

model with L1 norm penalty. Finally in Chapter 5, the weighted logistic model p-

resented in Chapter 3 is expanded to nonlinear equations for nutrition components

in a logistic regression, which combines some constrains from nutrition and biology.

Results of applications to real HEI-2005 data set are also illustrated. Conclusions

are summarized in Chapter 6.
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2. THE DIRECT INTEGRAL METHOD FOR CONFIDENCE INTERVALS

FOR THE RATIO OF TWO LOCATION PARAMETERS

2.1 Introduction

The work in this Chapter is partially motivated by an analysis of the Healthy

Eating Index-2005 (HEI-2005, see Guenther et al., 2008a,b) data set from the NIH-

AARP Study of Diet and Health (Reedy et al., 2008). In that study, there are two

independent subpopulations for different multiple diseases, and we wish to estimate

and form confidence intervals for ratios of their relative risks. As shown in Chapter

3, after a model transformation method, this problem reduces to the well-known

problem of computing a confidence interval for the ratio of two location parameters.

As described in Chapter 1, performances of existing methods to form the confi-

dence interval of ratio are not favorable. Motivated by such kind of problem, we de-

velope a new methodology named as the Direct Integral Method for Ratios (DIMER).

This methodology is also based on the distribution of the ratio of the estimates of

the two location parameters, which we show can be computed easily by numerical

integration, in contrast to many other methods, followed by simulation to compute

a 100(1− α)% confidence interval. In our simulation studies, we show that DIMER

closely achieves nominal coverage, unlike the Wald methods and the method of Hayya

et al. (1975). DIMER is also much faster computationally than the bootstrap meth-

ods, which is important in examples such as ours, where the model is a nonlinear

logistic regression based on samples of huge sizes (in tens of thousands or more).

In Section 2.2 we describe the methodology, while Section 2.3 compares various

methods via simulation studies. Simulations based on the actual data reinforce the

conclusions of the simulations in Section 2.3. Technical details and additional results
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are given in the Appendix A.

2.2 Methodology

2.2.1 Outline

Consider two random variables T1 and T2 which have density functions f1{(t1 −

u1)/v1} and f2{(t2−u2)/v2}, respectively, with means µ1 and µ2 and standard devia-

tions v1 and v2. In other words, f1 and f2 are the density functions of the standardized

version T1 and T2, respectively. Let F1(·) and F2(·) denote the corresponding dis-

tribution functions. We are interested in making inference for the ratio µ1/µ2. We

will outline a series of cases where it is possible to compute easily the cumulative

distribution function of r̂ = T1/T2.

2.2.2 Independent Case

Suppose that T1 and T2 are independent. We show the following result in Ap-

pendix A.2.

Lemma 1 Define

g(z|x, µ1, µ2, v1, v2) =


(1− F1[{x(µ2 + v2z)− µ1}/v1])f2(z)exp(z2) if z ≤ −µ2/v2,

F1[{x(µ2 + v2z)− µ1}/v1]f2(z)exp(z2) if z > −µ2/v2.

Then the cumulative distribution function of r̂ = T1/T2 is given by

pr(r̂ ≤ x) =

∫ ∞
−∞

g(z|x, µ1, µ2, v1, v2)exp(−z2)dz,

a quantity that is easily computed by Gauss-Hermite quadrature.

Variable x at here is defined as a possible value of r̂, and then we define a partial

part inside the integral as g(z) for simplicity, which is a function of x and parameters
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(µ1, µ2, v1, v2). In Sections 2.2.3 and 2.2.4, the definitions for all x and g(z) are similar

as here.

Remark 1 If the parameters v1 and v2 are unknown, we can apply Lemma 3 using

their estimated values. However, we have found that a much more efficient approx-

imation can be developed in the case of normally distributed T1 and T2. Suppose

their estimated variances are v̂2
1 and v̂2

2 which are independent of each other, and in-

dependent of T1 and T2, and have degrees of freedom d1 and d2, respectively. Then,

both (T1−µ1)/v̂1 and (T2−µ2)/v̂2 follow the t-distribution with d1 and d2 degrees of

freedom, respectively. As an approximation, from these t-distributions, we fix v̂2
1 and

v̂2
2, and by making a change of variables, we get an approximation to the distribution

of (T1, T2) which better reflects the estimation of (v̂2
1, v̂

2
2). We then apply Lemma 3.

Thus, g(z|x, µ1, µ2, v̂
2
1, v̂

2
2) is approximated by

g(z|x, µ1, µ2, v̂
2
1, v̂

2
2) ≈


(1− Ft,d1 [{x(µ2 + v̂2z)− µ1}/v̂1])ft,d2(z)exp(z2) if z ≤ −µ2/v̂2,

Ft,d1 [{x(µ2 + v̂2z)− µ1}/v̂1]ft,d2(z)exp(z2) if z > −µ2/v̂2,

where ft,d(·) and Ft,d(·) are the t-density with d degrees of freedom and the corre-

sponding cumulative distribution function, respectively.

2.2.3 Dependent Case of Two Normally Distributed Variables with Known

Covariance Matrix

Suppose now that (T1, T2) are jointly normally distributed with means (µ1, µ2),

variances (v2
1, v

2
2), covariance v12 and that (v2

1, v
2
2, v12) are known. Let φ(·) and Φ(·)

denote the standard normal density and distribution function. We show the following

result in Appendix A.2.
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Lemma 2 Define g(z|x, µ1, µ2, v
2
1, v

2
2, v12) as follows. If z ≤ −µ2/v2, then

g(z|x, µ1, µ2, v
2
1, v

2
2, v12) = (2π)−1/2(1− Φ[{x(µ2 + v2z)

−(µ1 + zv12/v2)}v2/
√
v2

1v
2
2 − v2

12]) exp(z2/2).

If z > −µ2/v2, then

g(z|x, µ1, µ2, v
2
1, v

2
2, v12) = (2π)−1/2Φ[{x(µ2 + v2z)

−(µ1 + zv12/v2)}v2/
√
v2

1v
2
2 − v2

12] exp(z2/2).

Then the distribution function of r̂ is

pr(r̂ ≤ x) =

∫ ∞
−∞

g(z|x, µ1, µ2, v
2
1, v

2
2, v12)exp(−z2)dz,

which again can be computed by Gauss-Hermite quadrature.

Of course, when v12 = 0, Lemma 2 is a special case of Lemma 1.

2.2.4 Dependent Case of Two Normally Distributed Variables with Estimated

Covariance Matrix

In this section, we discuss the cumulative distribution of the ratio r̂ = T1/T2

when T1 and T2 are jointly normally distributed with jointly estimated variance and

covariance which have the same number of degrees of freedom d, and these estimates

are independent of T1 and T2. These are the same assumptions noted in Fieller

(1954). Define the estimates of the variances and covariance of T1 and T2 as v̂2
1, v̂

2
2

and v̂12. Let η = v12/v
2
2. For fixed η, write W = T1 − ηT2, Then W and T2 are

independent. In addition, if v̂2
1, v̂

2
2 and v̂12 are computed from the sample covariance

matrix of normal random variables from a sample of size d + 1, then we also have
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that T1 − ηT2 and T2 are independent of their estimated variances v̂2
1 − 2ηv̂12 + η2v̂2

2

and v̂2, which are independent of each other and also have d degrees of freedom.

We use the following algorithm, based on the approximation used in Section 2.2.2.

Under our assumptions, the variables Z1 = {(T1−ηT2)−(µ1−ηµ2)}/
√
v̂2

1 − 2ηv̂12 + η2v̂2
2

and Z2 = (T2− µ2)/v̂2 are independent and both have t-distributions with d degrees

of freedom As in Remark 1, we then make the approximation that the density of

(T1, T2), having fixed the estimated covariance matrix, is approximately

v̂−1
2 (v̂2

1−2ηv̂12+ η2v̂2
2)−1/2ft,d[{(t1− ηt2)− (µ1 − ηµ2)}/

√
v̂2

1− 2ηv̂12 + η2v̂2
2 ]ft,d{(t2− µ2)/v̂2}.

If z ≤ −µ2/v̂2, define

g(z|x, µ1, µ2, v̂
2
1, v̂

2
2, v̂12, η)

=

(
1− Ft,d

[
{(x− η)(µ2 + v2z)− (µ1 − ηµ2)}/

√
v̂2

1 − 2ηv̂12 + η2v̂2
2

])
ft,d(z)exp(z2),

while if z > −µ2/v̂2, define

g(z|x, µ1, µ2, v̂
2
1, v̂

2
2, v̂12, η)

= Ft,d

[
{(x− η)(µ2 + v2z)− (µ1 − ηµ2)}/

√
v̂2

1 − 2ηv̂12 + η2v̂2
2

]
ft,d(z)exp(z2).

Then, using the same devise as in Remark 1 we have that

pr(r̂ ≤ x) ≈
∫ ∞
−∞

g(z|x, µ1, µ2, v̂
2
1, v̂

2
2, v̂12, η)exp(−z2)dz. (2.1)

In practice, η is unknown, so we use η̂ = v̂12/v̂
2
2 to estimate it.

2.2.5 Algorithm for Computing the Confidence Interval of Ratios

In the cases in Sections 2.2.2-2.2.4, the distribution function of r̂ is expressed

as F (x; r) = pr(r̂ ≤ x; r = µ1/µ2) when µ2 6= 0. The ratio µ̂1/µ̂2 is an estimate
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of r = µ1/µ2, so that we can view F (x; µ̂1/µ̂2) as an estimate of the population

distribution function F (x; r). Efron (1981) and Benton and Krishnamoorthy (2002)

pointed out that if we generate values r̂i, i = 1, ...,m, from F (x; µ̂1/µ̂2), we can make

inference about the parameter r using the distribution of the generated r̂i’s.

The main difference between our approach and that of Benton and Krishnamoor-

thy is that instead of generating a larger number of r̂i’s and then obtaining its per-

centiles, we compute the percentile of r̂i directly. Consequently, our method is much

faster computationally. Specifically, our simulation results indicate that DIMER

usually needs less than 30 iteration steps to obtain the quantile of a distribution,

but in Benton and Krishnamoorthy (2002), they used m = 100, 000 r̂i’s to get the

quantiles.

Define the α/2 quantile for F (x; µ̂1/µ̂2) as r̂α/2|µ̂1/µ̂2 . Then an approximate

100(1 − α)% confidence interval for r is (r̂α/2|µ̂1/µ̂2 , r̂1−α/2|µ̂1/µ̂2). Here we give the

steps of our iterative algorithm to obtain the quantiles.

• Step 1. Give two initial values of r̂α/2|µ̂1/µ̂2 as r̂α1 < 0 < r̂α2 and both have suf-

ficiently large absolute values to make sure that r̂α/2|µ̂1/µ̂2 is inside the interval

(r̂α1 , r̂α2).

• Step 2. Apply Gauss-Hermit quadrature to the cumulative distribution func-

tion of r̂ to obtain cα/2 = pr{r̂ ≤ (r̂α1 + r̂α2)/2}. If cα/2 < α/2, let r̂α1 =

(r̂α1 + r̂α2)/2; if cα/2 > α/2, let r̂α2 = (r̂α1 + r̂α2)/2; if cα/2 = α/2, stop the

iteration and let r̂α/2|µ̂1/µ̂2 = (r̂α1 + r̂α2)/2.

• Step 3. Repeat Step 2 until cα/2 is close to α/2 and/or the difference |r̂α2− r̂α1 |

is sufficiently small. Then we have r̂α/2|µ̂1/µ̂2 = (r̂α1 + r̂α2)/2.

• Step 4. Repeat Steps 1–3 to obtain r̂1−α/2|µ̂1/µ̂2 .
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In summary, two different original points are given for the estimate of rα/2|µ̂1/µ̂2 ,

then with repeating Steps (1∼2), the distance between these two points gradually

becomes smaller and smaller until converges to a single point, which is our expected

result. After obtaining the lower limit rα/2|µ̂1/µ̂2 of the confidence interval, then we

repeat steps 1∼3 to obtain the upper limit estimate r̂1−α/2|µ̂1/µ̂2 . Furthermore, since

this is a bisection method, it is absolutely non-sensitive to the starting values, and

the true value of rα/2|µ̂1/µ̂2 or r1−α/2|µ̂1/µ̂2 is certainly be included as long as the range

between the two original points are set large enough.

2.3 Simulations

In this section, we report simulation results on two simple linear regression mod-

els. The first part (Section 2.3.1) is to illustrate an application of the formulas in

Section 2.2.2 where the two variables are independent. The second part (Section

2.3.2) is an example to demonstrate the performance of our method developed in

Section 2.2.4 when the two variables are dependent with estimated variance and

covariance which are independent of the two variables and have same degrees of free-

dom. In both simulations, some other possible methods are outlined and compared

with our method. Since dependence case relies on normality assumption, it would be

important to evaluate how DIMER would perform if such an assumption is violated.

Therefore, in the second simulation, we also consider a case when T1 and T2 do not

have normal distributions. Furthermore, the confidence intervals’ coverage, which is

corresponding to the hypothesis test by the likelihood ratio test, is also compared at

here. More details of the simulations are available in the Appendix A.
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2.3.1 Linear Model When the Two Estimates are Independent

2.3.1.1 Setup

Consider a linear regression model as,

Y1i = β10 +X1iβ11 + ε1i, i = 1, ..., n1;

Y2j = β20 +X2jβ21 + ε2j, j = 1, ..., n2,

where in group 1, Y1i denotes ith response and X1i denotes the ith predictor; in

group 2, Y2j denotes the jth response and X2j denotes the jth predictor. And ε1i and

ε2j are independently normally distributed with mean zero and variance v2
1 and v2

2,

respectively. Our interest is in the ratio of the two slopes, which is β21/β11.

The model could be rewritten as follows for simple expression of the ratio

Y1i = β10 + β11X1iω + ε1i, i = 1, ..., n1;

Y2j = β20 + β21X2jω + ε2j, j = 1, ..., n2, (2.2)

where we set β11 = 1 for identifiability, and then the ratio of slopes now is β21 and

where ω could be considered as the slope in the regression model for the first group

data or the interaction between two slopes when β11 set to 1.

Now our interest is to construct a confidence interval for β21. The loglikelihood

function of the data is

L ∝ −n1log(v1)− (2v2
1)−1/2

∑n1

i=1(Y1i − β10 +X1iω)2

−n2log(v2)− (2v2
2)−1/2

∑n2

j=1(Y2j − β20 − β21X2jω)2.
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The maximum likelihood estimates are

ω̂ = −{
∑n1

i=1Y1i(X1i −X1)}/{(
∑n1

i=1X
2
1i − n1X1

2
)},

β̂21 = {
∑n2

j=1Y2j(X2j −X2)}/{ω̂(
∑n2

j=1X
2
2j − n2X2

2
)}.

First, define λ = β21ω and its estimate λ̂ = {
∑n2

j=1Y2j(X2j −X2)}/{(
∑n2

j=1X
2
2j −

n2X2
2
)}. Both (λ̂ − λ)/v̂λ and (ω̂ − ω)/v̂ω follow independent standard t distribu-

tions with degrees of freedom n2 − 2 and n1 − 2, respectively, where v̂2
λ = {(n2 −

2)−1
∑n2

j=1(Y2j − β̂20 −X2jλ̂)2}/(
∑n2

j=1X
2
2j − n2X2

2
) and v̂2

ω = {(n1 − 2)−1
∑n1

i=1(Y1i −

β̂10 +X1iω̂)2}/(
∑n1

i=1X
2
1i − n1X1

2
).

By the development in Section 2.2.2, the estimated cumulative distribution func-

tion of β̂21 is

pr(β̂21 ≤ x) ≈
∫ ∞
−∞

g(z|x, ω, λ, v̂2
λ, v̂

2
ω)exp(−z2)dz,

where

g(z|x, ω, λ, v̂2
λ, v̂

2
ω) =


(1− Ft,n2−2[{x(ω + σ̂ωz)− λ}/σ̂λ])ft,n1−2(z)exp(z2) if z ≤ −ω/σ̂ω,

Ft,n2−2[{x(ω + σ̂ωz)− λ}/σ̂λ]ft,n1−2(z)exp(z2) if z > −ω/σ̂ω.

Applying the algorithm in Section 2.2.5, we obtain a confidence interval by

DIMER. To compare DIMER with other possible methods, in Section 2.3.1.2, we

outline an application of the Wald interval by inverting the Fisher score matrix,

Fieller’s interval and Hayya’s method in our linear regression model.
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2.3.1.2 Comparison with Other Possible Methods

To form a confidence interval for β̂21, one common method in practice for esti-

mating the variance of the estimates is the inverse Fisher score information matrix,

which is estimated as



n1/v̂
2
1 0 0 −

∑n1
i=1X1i/v̂

2
1

0 n2/v̂
2
2 ω̂

∑J
j=1X2j/v̂

2
2 β̂21

∑J
j=1X2j/v̂

2
2

0 ω̂
∑J

j=1X2j/v̂
2
2 ω̂2

∑J
j=1X

2
2j/v̂

2
2 ω̂β̂21

∑J
j=1X

2
2j/v̂

2
2

−
∑n1

i=1X1i/v̂
2
1 β̂21

∑J
j=1X

2
2j/v̂

2
2 ω̂β̂21

∑J
j=1X

2
2j/v̂

2
2

∑n1
i=1X

2
1i/v̂

2
1 + β̂2

21

∑J
j=1X

2
2j/v̂

2
2


.

Denote the standard error of β̂21 by this method as seβ̂12,Fisher, so that a (1−α)100%

confidence interval for β21 is (β̂21 − zα/2seβ̂12,Fisher, β̂21 + zα/2seβ̂12,Fisher), where zα/2

denotes the 1− α/2 quantile of the standard normal distribution.

In this linear regression setting, Fieller’s interval cannot be applied directly since

v̂2
ω̂ and v̂2

λ̂
are estimated independently. In this case, by the Welch-Satterthwaite

equation (Satterthwaite, 1946; Welch, 1947), the degrees of freedom of (v̂2
λ̂

+ β2
21v̂

2
ω̂)

is approximately given by dF = (v̂2
λ̂

+ β2
21v̂

2
ω̂)2/{(v̂2

λ̂
)2/(n2 − 2) + (β2

21v̂
2
ω̂)2/(n1 − 2)}.

We may use β̂21 instead of β21 in the expression to obtain the estimated degrees of

freedom d∗F = (v̂2
λ̂

+ β̂2
21v̂

2
ω̂)2/{(v̂2

λ̂
)2/(n2 − 2) + (β̂2

21v̂
2
ω̂)2/(n1 − 2)}. Then we have

a = ω̂2 − t2d∗F ,α/2σ̂
2
ω̂, b = −2ω̂λ̂ and c = λ̂2 − t2d∗F ,α/2σ̂

2
λ̂

used in Appendix A.1. Here

ρ = 0 since ω̂ and λ̂ are independent.

Remark 2 Fieller’s interval has a peculiarity in that sometimes it leads to an imag-

inary interval. Looking at the detailed description of Fieller’s method given in Ap-

pendix A.1, we see that if b2 − 4ac < 0, then there is no real solution to Fieller’s

method. Since this actually occurs in our simulations, we will say that when it does,

Fieller’s interval is “invalid”.

15



Another method was proposed by Hayya et al. (1975) in a not very well-known

article. They suggested a normal approximation to the true cumulative distribution

function of the ratio r̂ = T1/T2 obtained by a second order Taylor expansion. By

Monte Carlo simulations, they concluded that if the absolute value of the correlation

between T1 and T2 is less or equal to 0.5, the coefficient of variation of T2 is less

or equal to 0.09 and the coefficient of variation of T1 is larger than 0.19, the ratio

r̂ = T1/T2 is approximately normally distributed with

E(r̂) ≈ (µT1/µT2) + v2
T2
µT1/µ

3
T2
− ρvT2vT1/µ

2
T2
,

var(r̂) ≈ v2
T2
µ2
T1
/µ4

T2
+ v2

T1
/µ2

T2
− 2ρvT2vT1µT1/µ

3
T2
,

where ρ is the correlation between T1 and T2 and r̂ is corresponding to β̂21 in the

model (2.2).

In our context, ρ = 0 since ω̂ and λ̂ are independent. The conditions of Hayya

et al. (1975) thus reduce to only two: cv(ω̂) ≤ 0.09 and cv(λ̂) > 0.19. This can be

thought of as

v̂1/[ω̂

√
{n1(

∑n`
i=1X

2
1i − n1X1

2
)}] ≤ 0.09, v̂2/[β̂21ω̂

√
{n2(

∑J
j=1X

2
2j − n2X2

2
)}] > 0.19,

where v̂2
1 = (n1− 2)−1

∑n1

i=1(Y1i− β̂10 +X1iω̂)2 and v̂2
2 = (n2− 2)−1

∑n2

j=1(Y2j − β̂20−

X2jλ̂)2.

Assuming that the two conditions are satisfied, the distribution of β̂21 can be

approximated as a normal distribution with mean and variance

µ̂β̂21,Hayya ≈ [1 + v̂2
1/{ω̂2(

∑n`
i=1X

2
1i − n1X1

2
)}]β̂21,

σ̂2
β̂21,Hayya

≈ v̂2
2/{ω̂2(

∑J
j=1X

2
2j − n2X2

2
)}+ v̂2

1β̂
2
21/{ω̂2(

∑n`
i=1X

2
1i − n1X1

2
)}.
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A confidence interval with coverage probability 1 − α is constructed as µ̂β̂21,Hayya ±

zα/2σ̂β̂21,Hayya. In addition, we have applied the nonparametric bootstrap and the

parametric bootstrap; see the details in Appendix A.4.

2.3.1.3 Simulation Results

We conducted simulation studies to assess the performance of the six algorithms

in the linear regression model (2.2): the inverse Fisher score, Hayya’s method, the

nonparametric bootstrap, the parametric bootstrap, Fieller’s interval and our pro-

posed DIMER. For simplicity, in all settings, we fixed the variance of ε1i and ε2j to

be 1, and without loss of generality, let the intercepts β10 and β20 be 0. We generated

X1i and X2j independently from the standard normal distribution.

We considered two parameter configurations: (β10, β20, β21, ω)=(0, 0, 1, 1) and

(0, 0, 1, 0.75). For each parameter setting, we performed simulations for (n1, n2) =

(18, 18), (25, 25), (50, 50). In each case, we generated 2000 data sets. Depends on

Efron and Tibshirani (1994), B = 400 was applied as the number of replications for

both nonparametric bootstrap and parametric bootstrap methods, and for the rest

part of this article, all bootstrap computations were adopt this value for B.

The results for the first parameter configuration (β10, β20, β21, ω) = (0, 0,−1,−1)

with (n1, n2) = (18, 18), (25, 25), (50, 50) are given in Table 2.1. Table 2.2 presents

the results for setting (β10, β20, β21, ω) = (0, 0, 1, 0.75) with (n1, n2) = (18, 18),

(25, 25), (50, 50). QQ plots (not shown here) comparing the quantiles of β̂21 to the

quantiles of the standard normal distribution in the two parameter configurations

with n1 = n2 = 18 clearly show that for small to moderate sample sizes, normal

approximations are not appropriate.

In Table 2.2, when n1 = n2 = 18, the averaged estimation for β21 is −2.85, while

the true value is −1.00. The reason for this difference is because beta follows a
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Cauchy likely distribution, and one of characteristics for this distribution is that it

has severely heavy tails. For example, the maximum estimation for the absolute value

of β̂21 has reached 3138 in this case, compared to its true value 1.00. Therefore, the

outlier is dramatically large. But even in such circumstance, the median estimation

for it is still 1.00, which is the same as the true value.

The inverse Fisher information matrix algorithm has the lowest coverage prob-

abilities. Hayya’s method has behavior somewhat intermediate between the inverse

Fisher score and the other methods, and it also has very low coverage probabilities

when the sample sizes are small.

The performance of two bootstrap methods is acceptable when the sample sizes

are relatively large. When the sample sizes are small to moderate, the coverage

rate of the bootstrap methods for the 90% confidence intervals are higher than the

nominal coverage probability but the coverage rate of the 99% confidence intervals

are lower than the nominal values.

Fieller’s interval has good performance overall in coverage. However, when the

sample sizes are small and moderate (n1 = n2 = 18 and n1 = n2 = 25), Fieller’s

interval can be invalid in the sense described in Remark 2. Even if it is valid, it

also has substantial probability to produce infinite confidence interval lengths. The

inverse Fisher information method produced the shortest confidence interval lengths,

but it is not a good method to apply here since the coverage rates are far below the

nominal values. Hayya’s method remains stable but has a low coverage when the

sample sizes are small. Compared with the two bootstrap methods, our method

obviously has markedly shorter lengths in the 90% and 95% confidence intervals

when the sample sizes are small and moderate, especially when (n1, n2) = (18, 18).

18



Mean of Mean of Median of 90% Quantile of
Coverage Length Length Length

Method 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
CI CI CI CI CI CI CI CI CI CI CI CI

n1 = n2 = 18, cv(ω̂) = 0.260, cv(λ̂) = 0.265.

mean(β̂10, β̂20, β̂21, ω̂) = (0.01, 0.01, 1.10, 1.00),median(β̂10, β̂20, β̂21, ω̂) = (0.01, 0.01, 1.00, 1.00)
IF 84.05 89.40 94.60 1.63 1.95 2.56 1.09 1.30 1.71 2.83 3.38 4.44
HM 88.50 92.90 96.70 1.74 2.08 2.73 1.15 1.37 1.80 2.31 2.75 3.61
NB 92.15 94.50 97.75 20.66 24.62 32.35 1.67 1.98 2.61 31.39 37.40 49.15
PB 92.00 94.20 97.35 38.84 46.28 60.83 1.49 1.78 2.34 22.75 27.10 35.62
FI 89.85 95.05 99.35 ∞ ∞ ∞ 1.39 1.80 3.08 4.28 8.25 ∞
DIMER 91.45 95.90 99.50 2.69 4.92 63.53 1.43 1.88 3.35 3.74 6.12 37.32
b2 − 4ac < 0 0.00 0.05 0.45
a < 0 2.90 5.65 14.47

n1 = n2 = 25, (β̂10, cv(ω̂) = 0.211, cv(λ̂) = 0.210.

mean(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.05, 1.00),median(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.00, 1.00).
IF 86.15 92.15 96.50 1.35 1.60 2.11 0.95 1.13 1.49 2.17 2.59 3.41
HM 90.15 94.75 98.20 1.12 1.33 1.75 0.97 1.16 1.52 1.65 1.97 2.59
NB 92.55 95.30 98.45 10.25 12.21 16.05 1.17 1.40 1.83 7.55 8.99 11.82
PB 92.55 95.45 98.40 7.23 8.61 11.31 1.13 1.35 1.77 3.84 4.57 6.01
FI 90.15 95.90 99.60 ∞ ∞ ∞ 1.10 1.38 2.12 2.17 3.02 6.92
DIMER 91.15 96.30 99.70 1.78 2.75 10.96 1.12 1.42 2.23 2.20 3.06 6.74
b2 − 4ac < 0 0.00 0.00 0.05
a < 0 0.50 1.00 4.45

n1 = n2 = 50, cv(ω̂) = 0.144, cv(λ̂) = 0.148.

mean(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.02, 1.00),median(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.00, 1.00).
IF 90.00 93.10 97.25 0.94 1.12 1.47 0.67 0.79 1.04 1.38 1.64 2.15
HM 90.65 95.50 98.65 0.71 0.84 1.11 0.67 0.79 1.04 0.95 1.13 1.48
NB 92.15 95.40 98.55 0.84 1.00 1.32 0.70 0.84 1.10 1.10 1.31 1.72
PB 92.15 96.10 98.65 0.80 0.95 1.25 0.71 0.84 1.11 1.09 1.29 1.70
FI 91.20 95.75 99.00 0.76 0.93 1.35 0.70 0.86 1.19 1.04 1.29 1.90
DIMER 91.50 95.80 99.10 0.77 0.94 1.36 0.71 0.87 1.21 1.05 1.31 1.94
b2 − 4ac < 0 0.00 0.00 0.00
a < 0 0.00 0.00 0.00

Table 2.1: Confidence intervals for β21 in a simulation study with 2000 replications
and true parameter values (β10, β20, β21, ω) = (0.00, 0.00, 1.00, 1.00) for the linear
regression model Y1i = β10 − X1iω + ε1i;Y2j = β20 + β21X2jω + ε2j. Values for
b2−4ac < 0 indicate percents in simulation that Fieller’s interval is invalid and values
for a < 0 represent percents of infinite lengths obtained by Fieller’s interval. IF–
Inverse Fisher Score method, HM–Hayya’s method, NB–Nonparametric Bootstrap,
PB–Parametric Bootstrap, FI–Fieller’s Interval and DIMER–Direct Integral Method
for Ratios.
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Mean of Mean of Median of 90% Quantile of
Coverage Length Length Length

Method 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
CI CI CI CI CI CI CI CI CI CI CI CI

n1 = n2 = 18, (β̂10, cv(ω̂) = 0.346, cv(λ̂) = 0.353.

mean(β̂10, β̂20, β̂21, ω̂) = (0.01, 0.01, 2.85, 0.75),median(β̂10, β̂20, β̂21, ω̂) = (0.01, 0.01, 1.00, 0.75).
IF 83.60 88.60 94.15 4.51 5.38 7.07 1.46 1.74 2.29 4.59 5.47 7.19
HM 86.45 91.65 95.55 2974.62 3544.48 4658.24 1.54 1.83 2.41 4.06 4.84 6.36
NB 93.35 95.10 97.75 74.05 88.24 115.97 4.54 5.41 7.11 105.09 125.22 164.57
PB 93.05 94.55 97.35 1634.42 1947.53 2559.48 3.55 4.23 5.56 94.25 112.31 147.60
FI 91.44 96.04 99.35 ∞ ∞ ∞ 2.13 2.97 7.75 ∞ ∞ ∞
DIMER 92.80 96.55 99.55 7.57 15.87 56.16 2.15 3.05 8.28 10.03 25.88 105.14

b2 − 4ac < 0 0.65 1.60 7.05
a < 0 11.17 16.92 34.64

n1 = n2 = 25, cv(ω̂) = 0.281, cv(λ̂) = 0.280.

mean(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.17, 0.75),median(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.00, 0.75).
IF 85.65 91.40 96.30 2.02 2.40 3.16 1.27 1.51 1.99 3.20 3.81 5.01
HM 89.45 94.15 97.75 5.06 6.03 7.92 1.30 1.55 2.03 2.69 3.20 4.21
NB 93.40 95.55 98.25 42.36 50.47 66.33 2.07 2.47 3.24 45.18 53.84 70.75
PB 93.10 95.50 98.30 53.39 63.62 83.61 1.91 2.28 2.99 35.70 42.54 55.90
FI 91.05 96.49 99.65 ∞ ∞ ∞ 1.59 2.11 3.90 5.72 15.03 ∞
DIMER 92.40 96.95 99.75 4.53 9.82 35.54 1.62 2.16 4.15 4.64 7.96 61.76

b2 − 4ac < 0 0.05 0.15 1.10
a < 0 4.20 6.96 19.26

n1 = n2 = 50, cv(ω̂) = 0.192, cv(λ̂) = 0.197.

mean(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.00, 1.04, 0.75),median(β̂10, β̂20, β̂21, ω̂) = (0.00, 0.01, 1.00, 0.75)
IF 89.20 93.00 97.25 1.19 1.41 1.86 0.89 1.07 1.40 2.00 2.38 3.13
HM 90.80 95.30 98.45 0.99 1.17 1.54 0.89 1.06 1.39 1.43 1.70 2.23
NB 93.00 95.60 98.35 2.57 3.06 4.02 1.01 1.20 1.58 2.33 2.77 3.64
PB 92.75 96.10 98.65 3.79 4.52 5.93 1.00 1.19 1.57 2.19 2.61 3.43
FI 91.30 95.80 99.10 ∞ ∞ ∞ 0.97 1.21 1.77 1.73 2.28 4.13
DIMER 91.55 96.05 99.10 1.16 1.52 3.70 0.98 1.22 1.81 1.75 2.31 4.23

b2 − 4ac < 0 0.00 0.00 0.00
a < 0 0.05 0.25 1.30

Table 2.2: Confidence intervals for β21 in a simulation study with 2000 replications
and true parameter values (β10, β20, β21, ω) = (0.00, 0.00, 1.00, 0.75) for the linear
regression model Y1i = β10 − X1iω + ε1i;Y2j = β20 + β21X2jω + ε2j. Values for
b2−4ac < 0 indicate percents in simulation that Fieller’s interval is invalid and values
for a < 0 represent percents of infinite lengths obtained by Fieller’s interval. IF–
Inverse Fisher Score method, HM–Hayya’s method, NB–Nonparametric Bootstrap,
PB–Parametric Bootstrap, FI–Fieller’s Interval and DIMER–Direct Integral Method
for Ratios.

20



This is true whether length is measured by mean length, medial length, the in-

terquartile range of length, or the 90th percentile of length, the interquartile range of

length shown in Tables A.1 and A.2 in the Appendix A. In the length comparison

for the mean, median, interquartile range and 90% quantile of the 99% confidence

intervals, the results from our method are occasionally higher than those of the non-

parametric bootstrap and parametric bootstrap, because the interval coverage rates

of the latter two methods are somewhat lower than the nominal coverage probability.

When the sample sizes are small, DIMER and Fieller’s interval have similar median

and interquartile ranges of lengths, but our method is much shorter in terms of mean

length and the 90th percentile of length.
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2.3.2 Linear Model with Two Dependent Estimates

2.3.2.1 Setup

Consider another simple linear regression model:

Yi = β(Xi − µ) + εi, i = 1, ..., n,

where the parameter of interest µ is −1 multiplied by the ratio between the intercept

−βµ and the slope β, and εi is independent and identically normally distributed with

mean zero. If one wants to obtain the confidence interval for the intercept/slope ratio,

they can simply calculate the inverse value for limits the β’s confidence intervals and

multiply by −1.

Let λ = βµ and define Xnew = (−1,X) , where X = (X1, . . . , Xn)T. Then the

maximum likelihood estimates are (λ̂, β̂)T = (XT
newXnew)−XT

newY , where (XT
newXnew)−

is a generalized inverse of XT
newXnew and Y = (Y1, . . . , Yn)T. The estimated covari-

ance matrix of (λ̂, β̂)T is σ̂2(XT
newXnew)−, where σ̂2 = (n− 2)−1

∑n
i=1(Yi− λ̂− β̂Xi)

2.

Write the estimated variances as v̂2
λ̂

and v̂2
β̂
, and write the estimated covariance as

v̂λ̂,β̂. Then v̂2
λ̂
, v̂2
β̂

and v̂λ̂,β̂ are independent of λ̂ and β̂ and jointly estimated with the

same degrees of freedom n− 2.

Under these conditions, this case is particularly suitable for the application of

Fieller’s interval. Our intention here is to illustrate that a confidence interval con-

structed by our DIMER performs at least equally or even better than Fieller’s interval

in terms of coverage rates, but without Fieller’s method’s limitations on confidence

interval length.
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Using the results in Section 2.2.4, the estimated cumulative distribution of µ̂ is

pr(µ̂ ≤ x) ≈
∫ ∞
−∞

g(z|x, µλ, µβ, v̂2
λ, v̂

2
β, v̂λ,β, η̂)exp(−z2)dz,

where η̂ = v̂λ,β/v̂
2
β, and g(z|x, µλ, µβ, v̂2

λ, v̂
2
β, v̂λ,β, η̂) is defined as follows.

If z ≤ −µβ/v̂β, define

g(z|x, µλ, µβ , v̂2
λ, v̂

2
β , v̂λ,β , η̂)

=
(

1− Ft,n−2

[
{(x− η̂)(µβ + vβz)− (µλ − η̂µβ)}/

√
v̂2
λ − 2η̂v̂λ,β + η̂2v̂2

β

])
ft,n−2(z)exp(z2),

while if z > −µω/v̂ω, define

g(z|x, µ1, µ2, v̂
2
1 , v̂

2
2 , v̂12, η)

= Ft,n−2

[
{(x− η̂)(µβ + vβz)− (µλ − η̂µβ)}/

√
v̂2
λ − 2η̂v̂λ,β + η̂2v̂2

β

]
ft,n−2(z)exp(z2).

Accordingly, in order to compare the results, the other five methodologies, the

inverse Fisher score, Hayya’s method, the nonparametric bootstrap, the parametric

bootstrap and Fieller’s interval are also performed and the corresponding results are

presented in Section 2.3.2.2.

2.3.2.2 Simulation Results

We performed simulations on two test cases to compare the performance of

the six methods of forming confidence intervals: the inverse Fisher score, Hayya’s

method, the nonparametric bootstrap, the parametric bootstrap, Fieller’s interval

and DIMER.

We generated εi and Xi from independently standard normal distribution. The

number of simulations was 2000 and there were 400 bootstrap replications for each

simulation. Two cases were set as follows: Case 1, (β, µ) = (1.00, 1.00). That is to

say, in the circumstance of intercept equals to 1.00, we established the confidence
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intervals for the ratio between intercept multiplied by −1 and slope. In Case 2,

(β, µ) = (2.00, 1.00). In the settings, we defined β = 2, that is ratio= 2. In order

to investigate DIMER’s performance under the non-normal condition, at here we

defined εi in response follows a skew normal distribution with zero mean, variance of

1 and skewness of 0.78. Under such circumstance, both β̂µ̂ and µ̂ are not normally

distributed.And we also compared the coverage from likelihood ratio tests in this case,

although we did not obtain the lower and upper limits for the confidence intervals

from this method. Both cases were performed with sample sizes n = 10, 25, 50.

In the first case (Table 2.3), DIMER is always competitive with Fieller’s interval

in coverage and gives reasonable lengths of confidence intervals. More importantly,

it will never be invalid. In contrast, Fieller’s interval has a positive probability to be

invalid, especially if the sample sizes are small (n = 10). When n = 10, DIMER has

shorter lengths for the mean of 90% and 95% confidence intervals while it has a higher

mean value of 99% confidence intervals than the Hayya’s method since the coverage of

the latter approach is much lower than the nominal value. The median, interquartile

range and 90% percentile of the confidence intervals by the inverse Fisher information

and Hayya’s method are lower than DIMER, but they behave poorly in coverage,

where the interquartile range of length is shown in Table A.3 in the Appendix A. The

nonparametric bootstrap and the parametric bootstrap have much longer lengths

than the inverse Fisher score and Hayya’s method. However, their coverage rates

are still not very favorable. Fieller’s interval and our DIMER have good behavior in

coverage overall. A QQ plot (not given here) showing the quantiles of µ̂ when n = 10

over the quantiles of the standard normal distribution indicates that the distribution

of µ̂ has much longer tails than the normal distribution.

When the sample size is small (n = 10), DIMER and Fieller’e interval perform

better than the other four methods in coverage while when the sample size is large
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(n = 50), they are still the best in coverage. The values of the mean, median, in-

terquartile range and 90% quantile by DIMER are rather stable. It has longer lengths

of 99% confidence intervals than the other methods except Fieller’s interval because

their coverage rates are lower than the nominal value. Performances of the inverse

Fisher information and Hayya’s method are improved when the sample size increases

to 50, and DIMER and Fieller’s interval still perform the best. Interval lengths by

all method are quite close. We changed parameter values to (β, µ) = (2.00, 1.00) and

εi had a skew normal distribution with skewness of 0.78 in Case 2. The simulation

results are given in Table 2.4. Theoretically, DIMER relies on normality assumption

in case of dependent. However, even when this normal assumption was not satisfied,

the simulation results show that the performance of all the methods are fairly close

to that in Case 1 and DIMER still has the best performance compared to all other

method, especially when the sample size was small (n=10). The coverage from the

likelihood ratio test is the best among all methods except DIMER and the Fieller’s

interval, but in practical applications, generally speaking, it is not easy and straight-

forward to compute the confidence interval for parameters by using the fact that

twice the difference in these log-likelihoods follows a chi-square distribution. Details

of interquartile range of lengths are shown in Tables A.2 in the Appendix A.

Combining all these factors together, along with the much longer computational

time for the bootstrap methods, this simulation suggests that our DIMER is at least

competitive with and often superior to the other methods proposed in the literature.

Based on these simulations in this section, we recommend DIMER, as it is easy to

compute and it performs stably and reliably. Overall, it behaves the best in terms

of both coverage probability and confidence interval length.
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Mean of Mean of Median of 90% Quantile of
Coverage Length Length Length

Method 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
CI CI CI CI CI CI CI CI CI CI CI CI

n = 10, (β, µ) = (1.00, 1.00), cv(β̂) = 0.385, cv(β̂µ̂) = 0.343, ρ(β̂, β̂µ̂) = −0.008.

mean(β̂, µ̂) = (0.99, 1.06),median(β̂, µ̂) = (1.01, 0.98).
IF 89.70 93.05 97.05 77.28 92.09 121.02 1.51 1.80 2.37 5.13 6.11 8.03
HM 78.55 84.90 90.70 51.90 61.84 81.27 1.45 1.73 2.27 4.63 5.52 7.25
NB 93.00 94.55 96.70 236.37 281.65 370.15 6.96 8.29 10.89 132.71 158.14 207.83
PB 90.95 93.15 95.90 193.31 230.35 302.73 3.80 4.53 5.95 129.34 154.12 202.55
FI 91.39 95.74 99.30 ∞ ∞ ∞ 2.35 3.76 57.35 ∞ ∞ ∞
DIMER 92.70 95.95 99.15 11.29 23.58 96.24 2.25 3.36 12.71 15.18 36.78 124.01

b2 − 4ac < 0 2.40 5.00 21.15
a < 0 18.44 27.37 48.57

n = 25, (β, µ) = (1.00, 1.00), cv(β̂) = 0.214, cv(β̂µ̂) = 0.205, ρ(β̂, β̂µ̂) = 0.005.

mean(β̂, µ̂) = (0.99, 1.08),median = (β̂, µ̂) = (0.99, 1.01).
IF 91.70 94.95 97.90 1.72 2.05 2.70 0.95 1.13 1.49 1.68 2.00 2.63
HM 87.70 93.10 97.40 1.53 1.82 2.40 0.94 1.12 1.47 1.60 1.91 2.50
NB 91.80 94.85 97.85 9.57 11.40 14.98 1.09 1.30 1.71 7.37 8.78 11.53
PB 91.75 95.00 98.20 8.63 10.28 13.51 1.09 1.30 1.71 4.34 5.17 6.80
FI 89.90 95.05 99.20 ∞ ∞ ∞ 1.08 1.38 2.19 2.28 3.29 10.03
DIMER 90.35 94.95 99.10 1.92 2.71 17.66 1.08 1.37 2.15 2.24 3.17 7.57

b2 − 4ac < 0 0.00 0.00 0.10
a < 0 0.60 1.20 5.41

n = 50, (β, µ) = (1.00, 1.00), cv(β̂) = 0.141, cv(β̂µ̂) = 0.144, ρ(β̂, β̂µ̂) = −0.011.

mean(β̂, µ̂) = (1.00, 1.02),median(β̂, µ̂) = (0.99, 1.00).
IF 91.90 95.60 98.25 0.70 0.84 1.10 0.66 0.79 1.04 0.93 1.11 1.46
HM 90.45 95.10 98.15 0.70 0.83 1.09 0.66 0.79 1.03 0.95 1.13 1.49
NB 92.10 95.30 98.10 0.91 1.08 1.42 0.69 0.82 1.08 1.14 1.35 1.78
PB 93.00 95.55 98.30 0.78 0.93 1.22 0.70 0.83 1.10 1.09 1.30 1.71
FI 90.60 95.05 99.50 0.76 0.94 1.38 0.70 0.86 1.21 1.07 1.33 1.98
DIMER 90.65 95.00 99.40 0.76 0.94 1.36 0.70 0.85 1.20 1.07 1.33 1.97

b2 − 4ac < 0 0.00 0.00 0.00
a < 0 0.00 0.00 0.00

Table 2.3: Confidence intervals for µ in a simulation study with 2000 replications for
linear regression model Yi = β(Xi−µ)+εi with Setting I: (β, µ) = (1.00, 1.00). Values
for b2 − 4ac < 0 indicate percents in simulation that Fieller’s interval is invalid and
values for a < 0 represent percents of infinite lengths obtained by Fieller’s interval.
IF–Inverse Fisher Score method, HM–Hayya’s method, NB–Nonparametric Boot-
strap, PB–Parametric Bootstrap, FI–Fieller’s Interval and DIMER–Direct Integral
Method for Ratios.
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Mean of Mean of Median of 90% Quantile of
Coverage Length Length Length

Method 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
CI CI CI CI CI CI CI CI CI CI CI CI

n = 10, (β, µ)=(2.00,1.00), cv(ω̂)=0.190, cv(λ̂)=0.174, ρ(ω̂, λ̂)=0.021.

mean(β̂, µ̂)=(2.01,1.03), median(β̂, µ̂)=(2.00,0.99).
IF 91.05 93.60 97.65 0.90 1.07 1.41 0.77 0.92 1.21 1.35 1.61 2.12
HM 81.75 88.60 94.75 0.80 0.96 1.26 0.71 0.84 1.11 1.26 1.50 1.97
NB 91.00 94.15 97.35 8.18 9.75 12.82 0.94 1.12 1.48 8.81 10.50 13.80
PB 88.30 93.15 97.00 5.10 6.08 7.99 0.79 0.94 1.24 2.39 2.85 3.74
FI 89.64 94.98 98.84 ∞ ∞ ∞ 0.89 1.15 1.94 2.05 3.08 19.86
DIMER 90.15 94.95 98.80 1.54 2.36 7.16 0.89 1.14 1.86 1.98 2.87 8.15
LR 91.95 95.95 99.35
b2 − 4ac < 0 0.05 0.40 1.05
a < 0 0.90 1.86 7.93

n = 25, (β, µ)=(2.00,1.00), cv(ω̂)=0.107, cv(λ̂)=0.105, ρ(ω̂, λ̂)=-0.013.

mean(β̂, µ̂)=(2.01,1.01), median(β̂, µ̂)=(2.01,1.00).
IF 90.20 94.75 97.85 0.50 0.59 0.78 0.47 0.56 0.74 0.63 0.76 0.99
HM 87.80 92.35 97.45 0.48 0.57 0.75 0.46 0.54 0.72 0.63 0.75 0.99
NB 88.20 93.35 97.75 0.51 0.60 0.79 0.47 0.56 0.74 0.70 0.83 1.09
PB 89.65 93.95 97.75 0.51 0.61 0.80 0.48 0.57 0.74 0.70 0.83 1.09
FI 89.75 94.30 98.90 0.52 0.64 0.91 0.49 0.60 0.84 0.72 0.89 1.28
DIMER 89.80 94.30 98.80 0.53 0.64 0.90 0.49 0.60 0.83 0.72 0.88 1.26
LR 90.70 95.80 99.20
b2 − 4ac < 0 0.00 0.00 0.00
a < 0 0.00 0.00 0.00

n = 50, (β, µ)=(2.00,1.00), cv(ω̂)=0.072, cv(λ̂)=0.072, ρ(ω̂, λ̂)=-0.021.

mean(β̂, µ̂)=(2.00,1.01), median(β̂, µ̂)=(2.00,1.00).
IF 89.90 94.35 98.85 0.34 0.40 0.53 0.33 0.40 0.52 0.41 0.48 0.64
HM 88.90 93.95 98.65 0.33 0.40 0.52 0.33 0.39 0.51 0.41 0.49 0.64
NB 88.35 93.40 98.25 0.33 0.40 0.52 0.33 0.39 0.51 0.41 0.49 0.65
PB 89.75 94.40 98.90 0.34 0.41 0.53 0.33 0.40 0.52 0.43 0.51 0.67
FI 89.50 94.60 98.75 0.35 0.42 0.56 0.34 0.41 0.55 0.43 0.52 0.71
DIMER 89.55 94.55 98.65 0.35 0.42 0.56 0.34 0.41 0.55 0.43 0.52 0.70
LR 89.90 95.15 99.30
b2 − 4ac < 0 0.00 0.00 0.00
a < 0 0.00 0.00 0.00

Table 2.4: Confidence intervals for µ in a simulation study with 2000 replications for
linear regression model Yi = β(Xi−µ)+εi with (β, µ) = (2.00, 1.00), where εi follows
a skew normal distribution with mean 0, variance 1 and skewness 0.78. Values for
b2−4ac < 0 indicate percents in simulation that Fieller’s interval is invalid and values
for a < 0 represent percents of infinite lengths obtained by Fieller’s interval. IF–
Inverse Fisher Score method, HM–Hayya’s method, NB–Nonparametric Bootstrap,
PB–Parametric Bootstrap, FI–Fieller’s Interval, DIMER–Direct Integral Method for
Ratios and LR–Likelihood ratio test.
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2.4 Discussion

I have developed the Direct Integral Method for Ratios (DIMER) for forming con-

fidence intervals for the ratio of two means. The method, based on analytical results

and further approximations to account for nuisance parameters, is computationally

efficient. Compared to other methods in the literature, our simulations indicated

that DIMER more nearly achieves nominal coverage levels while at the same time

resulting in shorter confidence interval lengths. The most important reason why

our DIMER method is better than the other compared methods is that there are

severely heavy tail in the distribution of the ratio, our DIMER method avoid this by

direct probability computation, while other methods are badly hindered at this part,

especially for those methods which based on the assumption that use the normal

distribution to approximate the Cauchy likely distribution.

Due to the this reason, the performances of the nonparametric bootstrap method

and the parametric bootstrap method are not favorable, although they are usually

used as benchmarks to compare with other methods. Firstly, they are still based on

the assumption that the ratio approximately follows a normal distribution. Second-

ly, when calculating the estimated standard deviation for this normal distribution,

few outliers due to heavy tails will severely affect the estimation for the standard

deviation by bootstraps, and consequently influence on the coverage and lengths of

the confidence intervals.
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3. RELATIVE RISKS ANALYSIS AND MODEL COMPARISON IN DIETARY

INDEX MODELING FOR HEI-2005

3.1 Introduction

Our goal is to expand the Reedy’s model to a weighted regression model, which

is described in Chapter 1 and then apply it to the relative risk computation for

diseases. Therefore, the structure of this Chapter is outlined as follows. In Section

3.2 we describe details the data structure, a weighted logistic model and methodol-

ogy to obtain estimates and their estimated variance. Section 3.3 compares various

methods to form the confidence intervals for relative risks of different diseases in

different subpopulations and provides the asymptotic theories for the estimates for

the log(relative risks) by the maximum likelihood and the nonparametric bootstrap

method. Discussion is shown in 3.4.

Details of the 12 nutrition components are listed in Table 3.1.
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Component Units HEI-2005 score calculation
Total Fruit cups min (5, 5× (density/.8))
Whole Fruit cups min (5, 5× (density/.4))
Total Vegetables cups min (5, 5× (density/1.1))
DOL cups min (5, 5× (density/.4))
Total Grains ounces min (5, 5× (density/3))
Whole Grains ounces min (5, 5× (density/1.5))
Milk cups min (10, 10× (density/1.3))
Meat and Beans ounces min (10, 10× (density/2.5))
Oil grams min (10, 10× (density/12))
Saturated Fat % of if density ≥ 15 score = 0

energy else if density ≤ 7 score = 10
else if density > 10 score = 8− (8× (density− 10)/5)
else, score = 10− (2× (density− 7)/3)

Sodium milligrams if density ≥ 2000 score=0
else if density ≤ 700 score=10
else if density ≥ 1100

score = 8− {8× (density− 1100)/(2000− 1100)}
else score = 10− {2× (density− 700)/(1100− 700)}

SoFAAS % of if density ≥ 50 score = 0
energy else if density ≤ 20 score=20

else score = 20− {20× (density− 20)/(50− 20)}

Table 3.1: Description of the HEI-2005 scoring system. Except for saturated fat and
SoFAAS, density is obtained by multiplying usual intake by 1000 and dividing by
usual intake of kilo-calories. For saturated fat, density is 9× 100 usual saturated fat
(grams) divided by usual calories, i.e., the percentage of usual calories coming from
usual saturated fat intake. For SoFAAS, the density is the percentage of usual intake
that comes from usual intake of calories, i.e., the division of usual intake of SoFAAS
by usual intake of calories. Here, “DOL” is dark green and orange vegetables and
legumes. Also, “SoFAAS” is calories from solid fats, alcoholic beverages and added
sugars. The total HEI-2005 score is the sum of the individual component scores.
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3.2 Basic Model

3.2.1 Data Structure and Setting

Although in this Chapter we only apply our methodologies on the experimental

data of cohort cancer on two subpopulations: male and female, all our notations and

formulas are for the general case which has multiple subpopulations with different

multiple diseases. Therefore, all equations and algorithms in this work allow the

general data sets enter into the models directly.

In the HEI-2005 data set, let j = 1, ..., J denote the dietary component, where

J = 12. Let there be k = 1, ..., K` types of disease in subpopulation `, where

` = 1, ..., L denotes different subpopulation and there are i = 1, ..., nk` individuals

with available data on disease k and gender `. In practice, we have nk` = n`.

The data observed are as follows.

• Let Yik` denote a health binary outcome for person i, disease k and gender `.

• Let (Xi1`, ..., XiJ`) be the FFQ values for person i either of density for the jth

dietary component or the HEI score for that component, j = 1, ..., J = 12.

• For each disease/gender, there may be different covariates/confounders, which

always include the FFQ for energy, and other possible terms like age, ethnic-

ity, education, body mass index, smoking, physical activity and etc. These

covariates/confounders are denoted as Zik`.

To weight the component scores in a way that better captures disease risk, we

assume the following model

pr(Yik` = 1|Xij`, Zik`) = H(αk` + βk`
∑J

j=1Xij`ωj + ZT
ik`θk`). (3.1)
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where β11 = −1 for identifiability.

3.2.2 Scoring Method

Define Θ = (α11, θ11, α12, . . . , ω) and based on the model (3.1), the the loglikeli-

hood scores functions are computed as follows.

For (α11, θ11) with i = 1, ..., n1

fi1(Θ) = (1, ZT
i11)T{Yi11 −H(α11 + β11

∑J
j=1Xij1ωj + ZT

i11θ11)}.

For (αk`, βk`, θk`) when (k, `) 6= (1, 1) with i = 1, ..., n`; k = 1, ..., K`; ` = 1, ..., L

fik`2(Θ) = (1,
∑J

j=1Xij`ωj, Z
T
ik`)

T{Yik` −H(αk` + βk`
∑J

j=1Xij`ωj + ZT
ik`θk`)}.

For ωj

fik`3j(Θ) = βk`Xij`{Yik` −H(αk` + βk`
∑J

j=1Xij`ωj + ZT
ik`θk`)}.

Suppose that there are totally Q parameters in Θ. Define the Q × 1 vector of

scores as S(Θ), and the Fisher scoring Hessian Q × Q as F (Θ), which is defined as

the expectation of the derivatives of the loglikelihood scores. Then, if Θcurr is the

current value of Θ in the iteration, the update is

Θnew = Θcurr − F−1(Θcurr)S(Θcurr).

Therefore, after updating Θcurr gradually, all unknown parameters in the regression

model (3.1) can be solved.
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3.2.3 Sandwich Method

Rewrite the estimating functions in a more convenient as follows. Let Ψik` =(
Ψik`1

T,Ψik`2
T,Ψik`3

T
)T

. Here define Ψik`1 = fi1 if (k, `) = (1, 1), and is equal to

0 otherwise. Define Ψik`2 =
(
Ψik`2.1

T, . . . ,Ψik`2.L
T
)T

, where Ψik`2.`′= (Ψik`22`′
T,

. . . , Ψik`2K
`
′ `
′
T)T for `

′
= 1 and Ψik`2.`′ = (Ψik`21`′

T, . . . ,Ψik`2K
`
′ `
′
T)T for `

′ 6=

1 ; Ψik`2k′`′ = fik`2 if (k, `) = (k
′
, `
′
), and 0 otherwise. Also we have Ψik`3 =

(fik`31, fik`32, . . . , fik`3J)T.

Asymptotically

N−1/2
∑2

`=1

∑n`
i=1

∑K`
k=1Ψik`(Θ) ∼ Normal(0, VΨ(Θ)),

VΨ(Θ) = N−1
∑2

`=1n`cov{
∑K`

k=1Ψik`(Θ)},

if n1, ..., nL → ∞ and max(n1, ..., nL)/min(n1, ..., nL) → c < ∞, and where N =∑2
`=1K`n`.

Define µ̂` = n−1
`

∑n`
i=1

∑K`
k=1Ψik`(Θ̂), so that an estimate for VΨ(Θ) is given by

V̂Ψ(Θ̂) = N−1
∑2

`=1

∑n`
i=1{

∑K`
k=1Ψik`(Θ̂)− µ̂`}{

∑K`
k=1Ψik`(Θ̂)− µ̂`}T = VΨ(Θ) + op(1).

The asymptotic limit distribution of Θ̂ by the sandwich method (see Carroll,

Ruppert and Stefanski, 2006) is as follow.

N1/2(Θ̂−Θ) v Normal{0, A−1(Θ)VΨ(Θ)A−T(Θ)},

where A(Θ) = −N−1
∑2

`=1

∑K`
k=1

∑n`
i=1E{∂Ψik`(Θ)/∂ΘT} and a consistent estimate of

it is A(Θ̂) = −N−1
∑2

`=1

∑K`
k=1

∑n`
i=1E{∂Ψik`(Θ̂)/∂Θ̂T}.

We use A−1(Θ̂)V̂Ψ(Θ̂)A−T(Θ̂) to estimate A−1(Θ)VΨ(Θ)A−T(Θ) and obtain the

estimated variance of MLE Θ̂.
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3.3 Relative Risks Analysis

To be notice here, the asymptotic distributions of the relative risks are directly

related to the structure of the covariates Xi`, where Xi` = (Xi1`, · · · , XiJ`)
T. Suppose

Xi`’s are regarded as random variables following some parametric model which may

be unknown, we define Λk` = (βk`, ω
T)T, its estimate Λ̂k` = (β̂k`, ω̂

T)T, and the

random variable Sik`(βk`, ω) = Sik`(Λk`) = βk`X
T
i`ω. Let Sα,k`(βk`, ω) be the αth

population percentile of the Sik`(Λk`), i.e., α = pr{Sik`(Λk`) ≤ Sα,k`(Λk`)}.

We are interested in estimating the relative risk for moving from the 10th to

the 90th population percentile of the Sik`(Λk`), i.e., we wish to estimate Rk` =

exp{S0.90,k`(Λk`)− S0.10,k`(Λk`)}, and form a confidence interval for it. This problem

can be reduced to construct a confidence interval for Vk` = S0.90,k`(Λk`)−S0.10,k`(Λk`),

which we would then exponentiate.

If we assume that the observed Xi`’s are regarded as a sequence of known fixed

constants, then this question transfers to estimate the relative risk for moving from

the 10th to the 90th sample percentile of the Sik`(Λk`). Let Ŝα,k`(Λk`) be the αth

sample percentile of the Sik`(Λk`), i.e., α = n−1
`

∑n`
i=1I{Sik`(Λk`) ≤ Ŝα,k`(Λk`)}. In the

other words, the interested term changes to Rk` = exp{Ŝ0.90,k`(Λk`) − Ŝ0.10,k`(Λk`)}

and again we need to form a confidence interval for it. Similarly, this question can

be reduced to construct a confidence interval for Vk` = Ŝ0.90,k`(Λk`)− Ŝ0.10,k`(Λk`).

For simplicity, we use the second assumption in this article because if we assume

the Xi`’s are regarded as random variables, the parametric models of Xi`’s need

to be built and estimated unknown parameters and might involve misspecification

problem.

In Section 3.3.1, we present the asymptotic theories of MLE for the log(relative

risks) and estimate by using the nonparametric bootstrap method.
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3.3.1 Asymptotic Distributions

3.3.1.1 Asymptotic Distribution of V̂k`

Our estimate for Vk` is V̂k` = Ŝ0.90,k`(Λ̂k`)− Ŝ0.10,k`(Λ̂k`). We show the following

result in the Appendix B.1.

Lemma 3 Define

Dk` = {∂Ŝ0.90,k`(Λk`)/∂ΛT
k`}var(Λ̂k`){∂Ŝ0.90,k`(Λk`)/∂Λk`}

+{∂Ŝ0.10,k`(Λk`)/∂ΛT
k`}var(Λ̂k`){∂Ŝ0.10,k`(Λk`)/∂Λk`}

−2{∂Ŝ0.90,k`(Λk`)/∂ΛT
k`}var(Λ̂k`){∂Ŝ0.10,k`(Λk`)/∂Λk`}.

The asymptotic limit distribution of V̂k` is given by

N1/2(V̂k` − Vk`) ∼ Normal(0, Dk`)

3.3.1.2 Asymptotic Distribution of V̂∗k`

For the given paired data (Yik`, Xi`, Zik`), we resample them with replacements

to a new data set named as (Y b
ik`, X

b
i`, Z

b
ik`) with b = 1, ..., B, and then compute the

V̂bk` based on this sampled data set (Y b
ik`, X

b
i`, Z

b
ik`). In Appendix B.1.1, we prove the

following result.

Lemma 4 Define V̂∗k` = B−1
∑B

b=1 V̂bk` and D̂∗k` = (B − 1)−1
∑B

b=1

(
V̂bk` − V̂∗k`

)2

.

The asymptotic limit distribution of V̂∗k` is given by

B1/2(D̂∗k`)
−1/2(V̂∗k` − Vk`) v Normal(0,1).
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In further work, we not only use this asymptotic distribution to construct the

confidence intervals for Vk`, but also run the hypothesis test to verify whether the

relative risks are statistically significantly different in four models.

In Section 3.3.2, we describe six methods to form the confidence intervals of Vk` so

that the corresponding confidence intervals for the relative risks Rk` could be easily

constructed.

3.3.2 Confidence Interval Construction

3.3.2.1 The Sandwich Method and the Inverse Fisher Score Method

As a benchmark, a first way to form the confidence intervals of Vk` is using the

asymptotic distribution of V̂k` in Section 3.3.1.1, where the estimated variance of V̂k`

is achieved by the partial {∂Sα,k`(Λk`)/∂Λk`} and the estimated variance of Λ̂k` from

the sandwich method. Accordingly, the confidence intervals of Rk` are formed.

Instead of the sandwich method, another common method to estimate the vari-

ance of Λ̂k` is the inverse Fisher score information matrix. After obtaining the

estimated variance, similarly, one can construct the confidence intervals of Rk` with

combining the partial {∂Sα,k`(Λk`)/∂Λk`}.

Depends on the results presented in Chapter 2, for the estimated variance of

β̂k`, if calculated by the sandwich method, then the results’ accuracy is far from

satisfactory. And in that paper, we pointed out that β̂k` in model (3.1) can be

approximately written as a ratio of two normally distributed variables, which would

follow a Cauchy-like distribution. So that the normal distribution approximation for

β̂k` by the sandwich method is not appropriate for the data set used in our study.

Furthermore, this will inevitably influence the accuracy of the estimated variance for

the estimates of the other parameters, since they are jointly estimated by using the

sandwich method or the inverse Fisher score matrix. For example, refers to other
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results from our study which is not presented here, we found the estimated variance

for α̂k` is not accurate if the sandwich method or the inverse Fisher matrix was

applied, even though it is an intercept parameter instead of the weight parameter

such as β̂k`.

However, if the targeted estimate is ω̂,the estimated variance from the sandwich

method or the inverse Fisher matrix is very reliable and stable. This had been proved

by the results from the nonparametric bootstrap method. Therefore, we present the

process in Section 3.3.2.2 to estimate the confidence intervals of the relative risks.

3.3.2.2 the Direct Integral Method for Ratios

In that paper, for given similar logistic regression model, we proposed an algo-

rithm to compute the confidence interval of βk` reliably and stably which can be

summarized as follows.

Define a new latent variable Γk` = βk`ω and rewrite the model (3.1) as

pr(Yipm = 1|Xijm, Zipm) =


H(αpm + βpm

∑J
j=1Xij`Γk`,j/βk` + ZT

ipmθpm), if (p,m) 6= (k, `);

H(αk` +
∑J
j=1Xij`Γk`,j + ZT

ik`θk`), if (p,m) = (k, `),

(3.2)

with β11 = −1.

Define Θk` = (α11, θ11, α12, . . . ,Γk`). We write the log-likelihood function with

latent variable Γk` but without ω. Then it is easy to obtain the estimate Θ̂k` for

parameter Θk` by the scoring method and the estimated variance by the sandwich

method. And in that paper, we also provided the algorithm to estimate the covari-

ance of (ω̂, Γ̂k`).

Since we have Γ̂k` = β̂k`ω̂, with a J × 1 dimensional constant vector e, β̂k` can

be thought of as the ratio of two variables eTΓ̂k` and eTω̂, which follow a bivariate

normal distribution. For simplicity, we set e = 1. After setting β̂kl is distributed as

ratio of two normal variables, we could apply the direct integral method presented in
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that paper to form the confidence intervals of βk`, which gives rise to the approaches

in Appendix B.1.2.1 to build the confidence intervals for Vk` and get the according

confidence intervals of the relative risks Rk`.

In Section 3.3.2.3, we introduce a technology to avoid computing the confidence

interval of βk` for comparison.

3.3.2.3 Model Transformation Method

Since in model (3.3.2.2) we had defined Γk` = βk`ω, and considered the estimated

variance of it is as reliable as the estimated variance of ω̂, one might naturally ask

the question: why not to replace the direct integral method by the following one to

get the confidence intervals of the relative risks since it is more straightforward after

all? For this question, we will answer it detailedly in Section 3.4. First, we describe

the algorithm as follows.

Same as the definition Ŝα,k`(Λk`), let Ŝα,k`(Γk`) be the αth sample percentile of

the Sik`(Γk`), i.e., α = n−1
`

∑n`
i=1I{Sik`(Γk`) ≤ Ŝα,k`(Γk`)}.

The relative risk moving from the 10th to the 90th sample percentile of the

Ŝik`(Γk`) is expressed as Rk` = exp{Ŝ0.90,k`(Γk`) − Ŝ0.10,k`(Γk`)}, and oue purpose

is to construct a confidence interval for it, which can be reduced to form a confidence

interval of Ωk` = Ŝ0.90,k`(Γk`)− Ŝ0.10,k`(Γk`).

Define the estimate for Ωk` is Ω̂k` = Ŝ0.90,k`(Γ̂k`) − Ŝ0.10,k`(Γ̂k`). Similarly as

Lemma 3, we can write the following result.

Lemma 5 Define

DΩk` = {∂Ŝ0.90,k`(Γk`)/∂ΓT
k`}var(Γ̂k`){∂Ŝ0.90,k`(Γk`)/∂Γk`}

+{∂Ŝ0.10,k`(Γk`)/∂ΓT
k`}var(Γ̂k`){∂Ŝ0.10,k`(Γk`)/∂Γk`}

−2{∂Ŝ0.90,k`(Γk`)/∂ΓT
k`}var(Γ̂k`){∂Ŝ0.10,k`(Γk`)/∂Γk`}.
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The asymptotic limit distribution of Ω̂k` is given by

n
1/2
` (Ω̂k` − Ωk`) ∼ Normal(0, DΩk`).

If (k, `) = (1, 1), Γ̂k` is equivalent to −ω̂. For cases (k, `) 6= (1, 1), we use the

model (3.3.2.2) to obtain the estimate of Γ̂k` and its estimated variance.

Therefore, a confidence interval of Ωk` is formed by the asymptotic distribution

of Ω̂k` and this algorithm avoids to compute the confidence intervals of βkl.

3.3.3 The Nonparametric Bootstrap Method

In Lemma 4, we have already described the asymptotic distribution of the esti-

mate of log(relative risk) by the nonparametric bootstrap method. As a matter of

course, the procedure in Appendix B.1.2.2 is applied to calculate the estimation of

the log(relative risk) and its distribution.

This procedure is then applied to the male and female cohort cancer 2005-HEI

data set. In this data set, we have only one disease, the cohort cancer, in two sub-

populations, male and female, where n1 = 293616 (male), n2 = 198246 (female) and

there are 3110 incident colorectal cancer cases (2151 in male and 959 in female). For

the covariates Zik`, there are 24 components for male, for one individual on disease

k = 1 and gender ` = 1; and for female, there are two more terms, so that 26

components for one individual on disease k = 1 when gender ` = 2.

However, refers to the other work of us mentioned previously, the presented sim-

ulation results show that, for the logistic regression of HEI-2005 case-control data

set (in which the control/case ratio is 3), if computed by the nonparametric boot-

strap method, the resulted coverage of confidence intervals for βk` is not even close

to the nominal value. We checked but did report in the paper that when we per-

formed the nonparametric bootstrap method to the whole data set, the coverage is
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as bad as in the case-control data set. Therefore, a further investigation on why the

nonparametric bootstrap method is not feasible in such circumstance is necessary.

The following content summarizes the process: firstly, transfer the model into

model (3.3.2.2). This allows us to estimate (β̂k`, Γ̂k`), based on which the corre-

sponding ω̂ = Γ̂k`/β̂k` can be back calculated. Usually, the results from this proce-

dure should be the same as the results obtained by applied this data set to model

(3.1). However, in some circumstances, the results from model (3.3.2.2) might be

diverged while model (3.1)’s results are converged, or different with model (3.1)’s

results even if both obtain converged results. Intuitively, we think the reason for this

might due to the very low incidence of cohort cancer among females in this data set.

In addition, the data applied in the nonparametric bootstrap method requires resam-

pling with replacement, which will cause even in this low incidence, there are still

duplicated patients data exists. Also, as Reedy, et al. (2008) pointed out that there

might be inherent differences between how men and women complete the AARP food

frequency questionnaire, giving rise to increased measurement error. These conclude

the possible reasons for the diverged results of model (3.3.2.2). On the other hand,

in model (3.1), we directly set the value for β11 as −1, and since the male data is

more reliable and under this model it mainly dominates the whole simulated data

set, so the probability of estimation getting diverged results would be much smaller,

although the female data still have large influences on the estimated values.

Based on the above analysis, a modified methodology is put forward. For the

same set of simulated nonparametric bootstrap data, both model (3.1) and model

(3.3.2.2) were applied to compute the estimation of Θ = (α11, θ11, α12, . . . , ω). If the

two results both converged and are the same, then this simulated data set will be

kept. Otherwise, they will be abandoned. We call this process as ‘ the modified

nonparametric bootstrap method’.
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3.4 Results and Discussions

The results in the cohort cancer HEI-2005 data set for the six different method-

ologies are presented and compared in Table 3.2. The six methodologies are listed as

below: the inverse Fisher method, the sandwich method, the direct integral method,

the model transformation method, the nonparametric bootstrap method and the

modified nonparametric bootstrap method.

There are two methods, the inverse Fisher score method and the sandwich method,

need to compute the derivative terms {∂Ŝ0.90,k`(Λk`)/∂Λk`} and {∂Ŝ0.10,k`(Λk`)/∂Λk`}.

Define X[α],k` as Ŝα,k`(Λk`) = XT
[α],k`Λk`. Since we assumed that Xi`’s are regarded

as a sequence of known fixed constants, we have

∂Ŝα,k`(Λk`)/∂Λk` = (XT
[α],k`ω,X

T
[α],k`βk`)

T,

where α = (0.10, 0.90).

Due to X[α],k` is a 12−dimensional vector, one might concern the stability of

(XT
[α],k`ω,X

T
[α],k`βk`)

T. An alternative way to compute the term ∂Ŝα,k`(Λk`)/∂Λk`

which in purpose decreases the stability is to involve more points in the computation

∂Ŝα,k`(Λk`)/Λk` = (2P + 1)−1HT
ω,βk`

∑P
d=−PX[α]+d,k`,

where I is the 12 × 12 dimensional identity matrix and Hω,βk` = (ω, Iβk`), and

X[α]+d,k` is defined as follows. Rewrite the sample percentile Ŝα,k`(Λk`) as n`α =∑n`
i=1I{Sik`(Λk`) ≤ Ŝα,k`(Λk`)} , and define n`α+d =

∑n`
i=1I{Sik`(Λk`) ≤ Ŝ[α]+d,k`(Λk`)}.

Then let Ŝ[α]+d,k`(Λk`) = XT
[α]+d,k`Λk`. It is obvious that totally there are 2P+1 points

involved in the derivative computation.

Accordingly, the derivative ∂Ŝα,k`(Γk`)/∂Γk` could also be obtained in this way.
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Therefore, for the computation of the relative risk 95% confidence intervals including

terms ∂Ŝα,k`(Λk`)/∂Λk` or ∂Ŝα,k`(Γk`)/∂Γk`, sensitivity studies were carried out for

the three presented methods’ performances, on the influences caused by different

number of points used in the derivative calculation. From Figure B.1 to Figure B.3

in the Appendix B.2 we can see, the confidence intervals have the widest range when

there is only one point involved in the derivative computation, and it strictly follows

the rule that, as the number of points increases, the range’s upper limit goes lower

while the lower limit rises higher. In other words, as the number of points increases,

the range of confidence intervals rapidly converged to narrow-band. Especially, P = 5

is a critical value. In the results which is not reported here, we investigated all the

cases with various number of points included in derivative calculation, in the range of

1 to 201. As results show, when the number of points increased beyond 11 (P = 5),

the range becomes steady and the results do not have significant changes. Therefore,

we choose 11 points in the derivative computations for all the three methods.

Furthermore, our data set size is rather large (n1 = 293616, n2 = 198246) compar-

ing to 11, therefore, all 11 points are quite near the αth percentile and it is reasonable

to use the average of them to compute the derivatives.

Next, it is clear that both the sandwich method and the model transformation

method obtain exactly the same estimation of Rk` and it’s 95% confidence interval.

The reason is explained as following: since ω and Γk` are from the same logistic

model up to a parameter transformation, there is potential relationship between the

estimated variances of ω̂ and Γ̂k`. The following formula can be proved by the delta

method

Hω,βk`var(Λ̂k`)H
T
ω,βk`

= var(Γ̂k`).
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Furthermore, in the calculations for the derivative ∂Ŝα,k`(Λk`)/∂Λk` and

∂Ŝα,k`(Γk`)/∂Γk`, both use the same points of Xik` for given the same number of

points involved in the process. This is because for fixed Xi`, its corresponding

Sik`(Λk`) and Sik`(Γk`) have the same order in their sequences. Define XP,[α]+d,k` =

(2P + 1)−1
∑P

d=−PX[α]+d,k`, then we have ∂Ŝα,k`(Λk`)/∂Λk` = HT
ω,βk`

XP,[α]+d,k` and

∂Ŝα,k`(Γk`)/∂Γk` = XP,[α]+d,k`. Therefore, these two methods result the identical es-

timated variance of V̂k` and Ω̂k` through analyses, and this consequently causes their

estimations on the confidence interval are exactly the same as each other.

Based on comparisons in Table 3.2 we can easily see: for the male relative risk

confidence intervals, the six presented methods obtain rather close results. The

reason is that, for the model’s identifiability, β11 value had been set to be −1, so

Sα,k` = −XT
i`ω. Therefore, the only variable considered at here is ω. As we previous

stated, we could obtain the reliable estimated variance of its estimate ω̂ by using the

sandwich method or the inverse Fisher score matrix.

However, for the confidence intervals of the female relative risk, the results from

the direct integral method and the modified nonparametric bootstrap method are well

matched with each other. For the rest of methods, results of the inverse Fisher score

method and the sandwich method are lower than the ones from the direct integral

method and the modified nonparametric bootstrap method, while the nonparametric

bootstrap method’s results are higher than them. This observation is just same as

the one presented in the other paper of us. In that paper, the confidence interval’s

coverages for βk` from the inverse Fisher and the sandwich method are always lower

than the nominal value, while the coverage from the usual nonparametric bootstrap

method is too high on the contrary.

In Table 3.3, details of the comparison between the results from the nonpara-

metric bootstrap and the modified nonparametric bootstrap methods. Based on our
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screening rules, there are 2320 effective data sets among the total of 2500 nonpara-

metric bootstrap data sets. Therefore, the B value is set to be equal to 2320 in the

modified nonparametric bootstrap. Both of them obtain similar results for male,

while the results for female are different. In addition, the two methods have sig-

nificant difference when estimated the variable β̂k`, but for the relative risk, their

estimations are close to each other.

For the aspect of computation time, due to the extremely large data amount, the

time consumption ratio between the modified nonparametric bootstrap method and

the direct integral method is around 7000, and this is a special case in which the

data set only considers single disease and two subpopulations. In the future, if these

formulas were applied to more complicated cases such as several different multiple

diseases in multiple subpopulations, the time consumption ratio will consequently

become even higher. In conclusion, regardless of reliability, accuracy and computa-

tion efficiency, the direct integral method is obviously the best among all the method

presented in this paper to compute the relative risks and their confidence intervals.
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Male Female
Relative Risk 95% CI Relative Risk 95% CI

IF 0.662 (0.585,0.750) 0.752 (0.654,0.866)
SM 0.662 (0.584,0.751) 0.752 (0.654,0.865)

DIMER 0.662 (0.593,0.740) 0.752 (0.584,0.912)
MT 0.662 (0.584,0.751) 0.752 (0.654,0.865)
NB 0.646 (0.573,0.742) 0.753 (0.562,1.046)

MNB 0.646 (0.572,0.740) 0.732 (0.560,0.925)

Table 3.2: Relative Risks and their 95% Confidence intervals for colorectal cancer on
HEI component scores with model pr(Yik` = 1|Xi`, Zik`) = H(αk` +βk`

∑J
j=1Xij`ωj +

ZT
ik`θk`), where β11 = −1. IF–the inverse Fisher method, SM–the sandwich

method, DIMER–the direct integral method for ratios, MT–the model transfor-
mation method, NB–the nonparametric bootstrap method and MNB–the modified
nonparametric bootstrap method. The nonparametric bootstrap method has 2500
simulated data sets and the modified bootstrap method has 2320 simulated data
sets.
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Nonparametric Bootstrap Modified Nonparametric Bootstrap
Male Female Male Female

10th perc Til 0.268 0.340 0.275 0.347
95% CI for 10th perc Til (-0.195,0.707) (-0.128,0.785 (-0.170,0.708) (-0.103,0.787)

90th perc Til 0.707 0.751 0.714 0.759
95% CI for 90th perc Til (0.211,1.180) (0.257,1.234) (0.229,1.180) (0.271,1.234)

β̂k` -0.996 -0.774 -1.000 -0.818
Relative Risk 0.646 0.753 0.646 0.732

95% CI for RR (method I) (0.573,0.742) (0.562,1.046) (0.572,0.740) (0.560,0.925)
95% CI for RR (Method II) (0.566,0.735) (0.546,1.012) (0.566,0.733) (0.565,0.932)

Table 3.3: Bootstrap results of Relative Risks for colorectal cancer on HEI component
scores. RR–relative risks. Method I–by percentile of relative risk from bootstrap.

Method II–the exponent of V∗k`± 1.96(D̂∗k`)
1/2 based on the normal approximation of

log(Relative Risk). The nonparametric bootstrap method has 2500 simulated data
sets and the modified bootstrap method has 2320 simulated data sets.
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4. MODEL COMPARISON AND VARIABLE SELECTION IN DIETARY

INDEX MODELING FOR HEI-2005

4.1 Introduction

To verify there are statistical significant difference between our logistic model

(3.1) and the Reedy’s model or not, as well as other simple models, four different

models are compared in Section 4.2 by using the hypothesis test and the likelihood

ratio test. Furthermore, a simple technology of bounded constrains estimator in

Section 4.3 and the adaptive lasso method in Section 4.4 are interpreted to identify

which components in HEI components are more important to cancers. Additionally,

a novel solution algorithm for solving the L1 norm penalty for nonlinear regression

model is proposed and we show applications in real HEI-2005 data set.

4.2 Model Comparison in HEI-2005

The definitions of these four models are listed as below

Model I: pr(Yik` = 1|Xij`) = H(αk` + βk`
∑J

j=1Xij`),

Model II: pr(Yik` = 1|Xij`) = H(αk` + βk`
∑J

j=1Xij`ωj) with β11 = −1,

Model III: pr(Yik` = 1|Xij`, Zik`) = H(αk` + βk`
∑J

j=1Xij` + ZT
ik`θk`)),

Model IV: pr(Yik` = 1|Xij`, Zik`) = H(αk` + βk`
∑J

j=1Xij`ωj + ZT
ik`θk`) with β11 = −1.

In which, Model III represents Reedy’s model, and Model IV refers to the model

we presented in Section 3.2.1. Hypothesis tests are carried out for the comparisons

between Model I and II, Model II and IV, Model III and IV, respectively. For

each pair, differences between the relative risks and the log value are then obtained.

The 95% confidence intervals are also presented for the difference and ratio of the
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corresponding relative risks.

The modified nonparametric bootstrap method, which was introduced in Section

3.3.3, is applied to compute the needed values for the hypothesis test. The details

are described in Section 4.2.1 and Section 4.2.2. As for the original data set, since

the relatives risk’s values from the different models are not independent,therefor,

all models are using the same simulated bootstrap data set. In Section 4.2.3, we

discuss how to compute the 95% confidence intervals of the difference and ratio for

the relative risks in the compared models, as well as how to perform the likelihood

ratio test for compared models in Section 4.2.4.

4.2.1 Hypothesis Test for Log Relative Risk

If we define two models required for comparison as Modelc1 and Modelc2. For

both compared models Modelc1 and Modelc2, the same bth effective simulated non-

parametric bootstrap data set (Yik`,b, Xij`,b, Zik`,b) for ` = 1, . . . , L, k = 1, . . . , K`

and i = 1, . . . , n` is taken into analysis, from which the log(relative risks) for the

disease k in the ` subpopulation for this data set can be obtained as V̂bk`,c1 and V̂bk`,c2

, respectively. Based on the asymptotic normal distribution of log(relative risk), the

hypothesis test for these two models with equal log (relative risk) can be expressed

as

H0 : Vk`,c1 = Vk`,c2,

where Vk`,c1 is the true log(relative risk) in Modelc1, and Vk`,c2 is the true log(relative

risk) for Modelc2.

As we proved in Appendix B.1.1, the requirement for the modified nonparametric

bootstrap method to satisfy asymptotic distribution condition is n`/B → ∞. It is

clear that our data sets met this requirement, since they have n1 = 293616(male),
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n2 = 198246(female) and B is in the range [2000, 2500]. Therefore, two samples

paired t-test can be applied. The test statistic can be written as

TS = (σ̂dk`,c1,c2)−1dbk`,c1,c2,

where dbk`,c1,c2 = V̂bk`,c1 − V̂bk`,c2, dbk`,c1,c2 = B−1∑B
b=1 d

b
k`,c1,c2 and σ̂dk`,c1,c2

2
= (B −

1)−1
∑B

b=1(dbk`,c1,c2 − dbk`,c1,c2)2.

In the hypothesis test, the test statistic obviously follows the standard student

t-distribution which has B− 1 degree of freedom. Its number of degree of freedom is

so large that we can approximately assume the test statistic has a standard normal

distribution.

In the following Section 4.2.2, the direct hypothesis test for the relative risks is

presented.

4.2.2 Models Comparison for Relative Risk

In the previous Section 4.2.1, the hypothesis test for log(relative risk) had been

discussed. Although the conclusion on the log(relative risk) test can be directly

transferred to the relationships of the according relative risk, we still present the

hypothesis test’s procedure which are straightly applied to the relative risk as follows.

According to the asymptotic distribution of log(relative risk), under the same

condition n`/B → ∞, the relative risk can be expressed asymptotically using the

delta theorem

B1/2{exp(V̂∗k`)− exp(Vk`)} v Normal[0, {∂exp(Vk`)/∂VT
k`}D̂∗k`{∂exp(Vk`)/∂Vk`}].

Furthermore, the null hypothesis which results the equal relative risks for both
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Modelc1 and Modelc2 can be written as

H0 : exp(Vk`,c1) = exp(Vk`,c2),

where exp(Vk`,c1) is the true relative risk in Modelc1, and exp(Vk`,c2) is the true

relative risk for Modelc2.

Correspondingly, the statistics for this test is

TS = TS = (σ̂dk`,c1,c2)−1dbk`,c1,c2, ,

where dbk`,c1,c2 = exp(V̂bk`,c1)− exp(V̂bk`,c2), dbk`,c1,c2 = B−1∑B
b=1 d

b
k`,c1,c2 and σ̂dk`,c1,c2

2
=

(B− 1)−1
∑B

b=1(dbk`,c1,c2 − dbk`,c1,c2)2.

As same as in Section 4.2.2, the modified nonparametric bootstrap method is

utilized to compute the test statistic. Similarly, with the large value of B, the test

statistic TS approximately normally distributed.

4.2.3 Confidence Interval of Difference and Ratio of Relative Risk

Another approach to the comparison for the relative risks’ statistical difference

between two various models, is to construct the confidence intervals for their differ-

ence and ratio.

After obtained the relative risks from the modified nonparametric bootstrap

method, define their difference and ratio as κbk` = exp(V̂bk`,c1) − exp(V̂bk`,c2) and

γbk` = exp(V̂k`, c1b − V̂bk`,c2), the ratio of relative risks, respectively.

Repeat the above procedure for b = 1, ..., B, the resulted 95% confidence interval

for the difference and ratio of the relative risks are (κbk` ± 1.96seκbk`) and (γbk` ±

1.96seγbk`), respectively.
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4.2.4 Likelihood Ratio Test

We also applied the likelihood ratio test to examine whether statistical differences

were existing in the four different models. The test statistic equals to two times the

negative difference between the log-likelihood functions for the null model and the

alternative model. Furthermore, it has a chi-distribution, and its degree of freedom

equals to the difference between the numbers of variables for the alternative model

and the null model.

4.2.5 Results

The comparisons of relative risks between models are tabulated in Table 4.1,

and the results of likelihood ratio tests are presented in Table 4.2. In this study,

the modified nonparametric bootstrap method is applied. In total, there are 2500

simulated nonparametric bootstrap data sets being analyzed, in which effect data

sets are B = 2316. The results in Table 4.1 show that, for the three pairs of models

in comparison (model I vs model II, model II vs model IV and model III vs model

IV), the relative risks of cohort cancer for female do not have statistical significant

difference. A reasonable guess for this, is that, in the questionnaire survey on daily

diet, the answers from females are not as accurate as the answers from males (in

other word, women usually incline to conceal their true diet information). Turn

to the males’ relative risks for cohort cancer, when covariates Z are not taken into

consideration, the relative risk computed from the overall data set of HEI-2005,

has statistical significant difference compared to the relative risk which is obtained

from the total score of the HEI-2005 components. If covariates Z were included, in

other words, when the FFQ for energy, age, ethnicity, education, body mass index,

smoking, physical activity....etc. were taken into consideration, we also come to the

same conclusion.
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Model I vs Model II Model II vs Model IV Model III vs Model IV
Male Female Male Female Male Female

∆Vk`
0.09 0.14 0.01 -0.04 0.12 0.15

TS∆Vk`
2.11 1.50 0.19 -0.67 2.43 1.27

p-value∆Vk`
0.03 0.13 0.85 0.50 0.02 0.20

∆exp(Vk`) 0.06 0.10 0.00 -0.03 0.08 0.11
TS∆Vk`

2.10 1.51 0.17 -0.66 2.39 1.27

p-value∆exp(Vk`)
0.04 0.13 0.86 0.51 0.02 0.20

95 % CI of DRR (0.00,0.11) (-0.03,0.23) (-0.03,0.04) (-0.11,0.06) (0.02,0.15) (-0.06,0.28)
95 % CI of RRR (1.00,1.18) (0.94,1.36) (0.95,1.06) (0.86,1.07) (1.02,1.25) (0.90,1.43)

Table 4.1: Relative risks comparisons between four different models by the modi-
fied nonparametric bootstrap method with B=2316. ∆Vk`–mean of the difference of
log(relative risks). TS∆Vk`

–test statistic of log(relative risks). p-value∆Vk`
–p-value of

the hypothesis test for log(relative risks). ∆exp(Vk`)–mean of the difference of rel-
ative risks. TS∆exp(Vk`)

–test statistics of relative risks. p-value∆exp(Vk`)
–p-value of

the hypothesis test for relative risks. DRR–Difference of relative risks. RRR–Ratio
of relative risks.
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Model I vs Model II Model III vs Model IV Model II vs Model IV
Test Statistics 26.573 33.037 769.691

Degree of freedom 11 11 50
p-value 0.005 0.001 0.000

Table 4.2: Likelihood Ratio tests between four different models, where the test s-
tatistics follow chi-square distributions.
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On the other hand, when weight factor is assigned to each component of HEI-

2005, no matter the computation is based on p-value or on the confidence intervals

of difference and ratio, it is clear that the resulted relative risks for male have no

statistical significant differences, regardless whether the covariates Z are included or

not.

However, if the likelihood ratio tests were performed, all the three pairs of models

in comparison (model I vs model II, model II vs model IV and model III vs model

IV), show that there are statistical significant differences. The detailed results of the

likelihood ratio tests are given in Table 4.2.

4.3 Variable Selection by the Bounded Constrains

The following method is applied to bound all ωj (j = 1, . . . , J) as positive.

1. Run the analysis in the original model.

2. Fix α, β, θ, then update ω with constrain that they must be positive.

3. Fix ω, update α, β, θ.

4. Repeat steps 1-3 until it converge

We performed this bounded constrain algorithm by using the Matlab function

‘fmincon’, and results are given in Table 4.3. The estimates from the original data

set, their standard errors, and p-values for individual components are also provided

for comparison. We see that three components in HEI-2005 were adjusted to zeroes

with constrains that ωj > 0, they are ‘Total Fruit’ with original estimate 0.120 and

p-value 0.958, ‘Meats and Beans’ and ‘Saturated Fat’ with original negative estimates

−1.646 and −0.706, p-value 0.217 and 0.360, respectively. The other terms are rather

near the original estimates and only have trivial changes.
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4.4 The Adaptive Lasso Method

We assume that model (3.1) contains both significant and insignificant dietary

components and then propose the adaptive lasso for variable selection (Zou, 2006).

Let A = {j : ωj 6= 0} and further assume that |A| = J0 < J . Without loss of

generality, we assume that A = {1, 2, . . . , J0} and a two-step estimating procedure

for ωj is described as follows.

Step I. Let α = (αk` : 1 ≤ k ≤ K`, 1 ≤ ` ≤ L)T, θ = (θT
k` : 1 ≤ k ≤ K`, 1 ≤ ` ≤

L)T, and ω = (ω1, . . . , ωJ)T. By assuming that βk` are known, denote the negative

log-likelihood function as L(α, θ, ω) = −logP (Y |X,Z) = −
∑2

`=1

∑K`
k=1

∑n`
i=1{Yik`log(pik`)

+(1 − Yik`)log(1 − pik`)}, where pik` = H(αk` + βk`
∑J

j=1Xij`ωj + ZT
ik`θk`). Let

ω̂0 = (ω̂1,0, . . . , ω̂J,0)T be the unpenalized estimate of ω minimizing the negative

likelihood function. Then ω̂0 is a root-n consistent estimate of ω (i.e.,
√
N(ω̂0 − ω)

converges to a Normal distribution.). As given in Zou (2006), we pick a γ > 0

and define the weight vector t̂ = (t̂1, . . . , t̂J)T with t̂j = 1/|ω̂j,0|γ. The estimates of

(α, θ, ω) are given by

(α̂, θ̂, ω̂) = arg min
(α,θ,ω)

{2L(α, θ, ω) + λN
∑J

j=1t̂j|ωj|}

where λN is a regularization parameter controlling the amount of shrinkage, and ω̂ is

the adaptive lasso estimates of ω. Let A∗N = {j : ω̂j 6= 0}. Then ω̂ = (ω̂T
A∗N
, ω̂T
A/A∗N

)T,

where ω̂T
A∗N

= (ω̂j : j ∈ A∗N) and ω̂A/A∗N = (ω̂j : j ∈ A/A∗N).

Step II. We refit the model by using the subsetA∗N of (1, . . . , J) selected from Step

I. Let ω∗A∗N = (ωj : j ∈ A∗N). Then the estimates of (α, θ, ω∗A∗N ) denoted as (α̃, θ̃, ω̃∗A∗N )

are obtained by minimizing L(α, β, θ, ω∗A∗N ) subject to ωj ≥ 0 for all j ∈ A∗N , where
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β = (βk` : 1 ≤ k ≤ K`, 1 ≤ ` ≤ L)T and

L(α, β, θ, ω∗A∗N ) = −
∑2

`=1

∑K`
k=1

∑n`
i=1{Yik`log(p∗ik`) + (1− Yik`)log(1− p∗ik`)},

p∗ik` = H(αk` + βk`
∑

j∈A∗N
Xij`ωj + ZT

ik`θk`).

An iteration algorithm to obtain the estimates for the adaptive lasso method is

shown in Section 4.4.2.

4.4.1 Oracle Properties of the Adaptive Lasso Estimator

Let Ik` be the
∑2

`=1K`-dimensional vector with the (
∑`−1

`′=1
K`′+k)th element being

1 and others being 0, and Z∗ik` = {(0T
d11
, . . . ,0T

d(k−1)`
), ZT

ik`, (0
T
d(k+1)`

, . . . ,0T
dKLL

)}T,

where dk` is the dimension of Zik`. Let d =
∑2

`=1K`+
∑

k,`dk`+J . Define (Qikl)d×1 =

(IT
kl, Z

∗
ik`

T, βk`X
T
i`)

T, Vikl = pikl(1− pikl), QN×d = {Qikl : 1 ≤ i ≤ n`, 1 ≤ k ≤ K`, 1 ≤

` ≤ L}, and V is a N ×N diagonal matrix with Vikl as its diagonal elements, where

N =
∑2

`=1K`n`. Assume that QTVQ/N → Σ, and let Σ =

 Σ11 Σ12

Σ21 Σ22

, where

Σ11 is a d0 × d0 matrix and d0 =
∑2

`=1K` +
∑

k,`dkl + J0.

Lemma 6 Suppose that λN/
√
N → 0 and λNN

(γ−1)/2 → ∞. Then the adaptive

lasso estimates satisfy:

i) lim
N
P (A∗N = A) = 1,

ii)
√
N{(α̂T, θ̂T, ω̂T

A)T − (αT, θT, ωT
A)T} → Normal(0,Σ−1

11 ),

where ω̂A = (ω̂j : j ∈ A) and ωA = (ωj : j ∈ A).

Proof details of Lemma 6 are provided in Appendix C.1.
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4.4.2 Algorithm for L1 Norm Penalty in Non-linear Regression

Generally, assume our target is to minimum the function with L1 norm as

argmin{Φ(Θ) +
∑J

j=1λj|ωj|}, (4.1)

where Θ contains all unknown parameters, ωj denotes parameter with penalty for

j = 1, ..., J , and λj is the tuning parameter for ωj.

Let Θ̂∗ be the minimizer to function Φ(Θ), as

Θ̂∗ = argminΘ{Φ(Θ)}.

By Taylor expansion of Φ(Θ) at Θ̂∗, we have

Φ(Θ) = Φ(Θ̂∗) + {∂Φ(Θ̂∗)/∂Θ}T(Θ− Θ̂∗) + 1/2(Θ− Θ̂∗)T{∂2Φ(Θ̂∗)/∂Θ2}(Θ− Θ̂∗)

= C(Θ̂∗) + (Θ− Θ̂∗)TV (Θ̂∗)(Θ− Θ̂∗),

where C(Θ̂∗) = Φ(Θ̂∗) and V (Θ̂∗) = 1/2{∂2Φ(Θ̂∗)/∂Θ2}, both are constants for

unknown parameters Θ; and V (Θ̂∗) is symmetric and non-negative defined.

Therefore, Eq(4.1) can be written as

argmin{(Θ− Θ̂∗)TV (Θ̂∗)(Θ− Θ̂∗) +
∑J

j=1λj|ωj|}. (4.2)

Separate Θ into two parts Θ−ω and ω, where ω = (ω1, ..., ωJ)T are parameters

with penalty and Θ−ω contains all other parameters except ω which do not have
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penalty. Without loss of generality, Eq(4.2) can be re-written as

argmin({(Θ−ω − Θ̂∗−ω)T, (ω − ω̂∗)T}

 VΘ−ω
VΘ−ω,ω

Vω,Θ−ω
Vω


{(Θ−ω − Θ̂∗−ω)T, (ω − ω̂∗)T}T +

∑J
j=1λj |ωj |)

= argmin[(Θ−ω − Θ̂∗−ω)TVΘ−ω
(Θ−ω − Θ̂∗−ω) + 2(Θ−ω − Θ̂∗−ω)TVΘ−ω,ω(ω − ω̂∗)

+(ω − ω̂∗)TVω(ω − ω̂∗) +
∑J
j=1λj |ωj |].

Consequently, based on the current estimate ω̃ for ω, we update Θ−ω by

Θ−ω = Θ̂∗−ω − (VΘ−ω)−1VΘ−ω ,ω(ω̃ − ω̂∗). (4.3)

For updating parameter ωj, assume current estimates for other parameters Θ−ω

and ωp with p 6= j are Θ̃−ω and ω̃p, respectively. Define ωj is corresponding to the

hj
th element in Θ, hence, for fix current estimates of Θ−ω and ωp, we minimize the

following equation

argmin{2(ωj − ω̂∗j )
∑

m6=hjVhjm(Θ̃m − Θ̂∗m) + (ωj − ω̂∗j )2Vhjhj + λj|ωj|}.

Assume ωj > 0, the partial of above function to ωj is

2
∑

m6=hjVhjm(Θ̃m − Θ̂∗m) + 2(ωj − ω̂∗j )Vhjhj + λj.

Thus, the solution of ωj with ωj > 0 is


Θ̂∗m −

∑
m 6=hj

Vhjm(Θ̃m − Θ̂∗m)/Vhjhj − λj/(2Vhjhj ) ,

if λj/(2Vhjhj ) < Θ̂∗m −
∑
m6=hj

Vhjm(Θ̃m − Θ̂∗m)/Vhjhj ;

0 , otherwise.
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Similarly, we obtain the solution of ωj with ωj < 0


Θ̂∗m −

∑
m 6=hj

Vhjm(Θ̃m − Θ̂∗m)/Vhjhj
+ λj/(2Vhjhj

) ,

if λj/(2Vhjhj
) < −(Θ̂∗m −

∑
m6=hj

Vhjm(Θ̃m − Θ̂∗m)/Vhjhj
);

0 , otherwise.

In practice since the sign of ωj is unknown, a reasonable estimate is the sign of

Θ̂∗m −
∑

m 6=hjVhjm(Θ̃m − Θ̂∗m)/Vhjhj because Θ̂∗m −
∑

m6=hjVhjm(Θ̃m − Θ̂∗m)/Vhjhj is

the estimate of ωj to minimize function Φ(Θ) based on current estimates of all other

parameters.

We use Θ̂∗ as the initial guess of Θ, update ωj one by one for j = 1, ..., J , and

then update Θ−ω. Repeat the updating process until it converges.

4.4.3 Details of Procedure

Details of variable selection by the adaptive Lasso are as follows.

1. Run the analysis in the original model.

2. Run the adaptive Lasso only the ω’s to update the estimates of the all unknown

parameters.

(a) Separate the data in 10-folds.

(b) For fixed λN , by the modified scoring method, use 9 folds are training

data, and 1 fold as test data, to calculate the prediction errors.

(c) Repeat it until all folds has be treated as test data, add all prediction

errors together for this λN .

(d) Repeat all interested values of λN , and find out the value of λN which

minimize the prediction errors, define as λ0.
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3. For λ0, use all data set to calculate all unknown parameter except βk`, and

remove any component score in HEI 2005 whose ωj = 0.

4. Refit the original model (3.1) subject to ωj ≥ 0 with all parameters except the

removed components in ω by using the procedure described in Section 4.3.

4.5 Result of the Adaptive Lasso

During the procedure of cross validation, our calculations for the colorectal can-

cer data in which 293615 men with 2151 cases and 198245 women with 959 cases,

show that this model apparently has the smallest prediction error with tuning pa-

rameter λN = 0.5. Figures C.1 and C.2 in Appendix C.2 show the prediction error

versus tuning parameter λN . For better understanding the relationship between tun-

ing parameter value and performance of the adaptive lasso algorithm, we compared

analysis results by using procedure in Section (4.4.3) with six different values of λN

at (0.100, 0.250, 0.500, 1.000, 2.000, 5.000) with γ = 1.5.

Table 4.4 gives the results of the colorectal cancer on HEI component scores of

men and women together. If one of the terms in ω is removed by the 3th step of the

methodology introduced in Section 4.4.3, then its position in the table will be empty.

While, if this term is kept through the 3th step, but equals to 0 after the bounded

constrain in the 4th step, then its value is written as 0.000 in the corresponding

position. As λN value increases, more and more terms in ω will be removed or

written as 0.000. Furthermore, terms in ω with negative MLE and large p-values

usually are kept by the adaptive lasso with small λN and adjusted to 0.000 by the

positive constrain, and then often been removed by the adaptive lasso as λN increases.

It is clear that whether one component will be removed or not is depending on the

value of λN , the individual p-value of this component and the sign of its MLE.

Next, we introduce an algorithm to compute ω̂HEI as follows.
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• Obtain ω̂ by the score method.

• Apply the the adaptive lasso method to get ω̂ALS.

• Remove jth HEI component if ω̂ALS,j = 0.

• Obtain ω̂New by refitting model with residual components and constrain that

ω̂New ≥ 0.

• ω̂HEI = ω̂New × /(XT
maxω̂New).

• Use the delta method to get the estimated variance for ω̂HEI .

Table 4.5 gives the result of ω̂HEI for the colorectal cancer data set, in which

there are 293615 men with 2151 cases and 198245 women with 959 cases. Table

4.6 shows the result for the colorectal and lung cancers on HEI component scores

of men (219612 with 3348 and 4187 cases, respectively ) and the breast, colorectal

and lung cancers on women (169480 with 6647, 1846 and 2933 cases, respectively)

together, in which both genders have 38 covariates on smoking except HEI scores.

For eliminating the multicollinearity between Total Fruit and Whole Fruit, Total

Grains and Whole Total Grains, and Total Vegetables and DOL, Table 4.7 displays

the ω̂HEI for the later data set on ‘Whole Fruit’, ‘Total Fruit - Whole Fruit’, ‘Whole

Grains’, ‘Total Grains - Whole Grains’, ‘DOL’ and ‘Total Vegetables - DOL’, where

other HEI score components are kept the same.

It is clear that in the regression of colorectal cancer data, ‘Milk’, ‘Whole Grains’

and ‘Oil’ are three key factors of nutrition components and have significant effects on

the disease. Table 4.6 show that in the regression of the colorectal and lung cancers on

HEI component scores of men and the breast, colorectal and lung cancers on women

together, key factor of nutrition elements are ‘Milk’, ‘Total Grains’, ‘Sodium’, ‘Oil’,
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‘SoFAAS’ and ‘DOL’ and they have significant effects on the diseases. If we change

components of ‘Total Fruit’, ‘Total Grains’ and ‘Total Vegetables’ to ‘Total Fruit -

Whole Fruit’, ‘Total Grains - Whole Grains’ and ‘Total Vegetables - DOL’, Table 4.7

shows that ‘Whole Grains’, ‘Total Grains - Whole Grains’, ‘Milk’, ‘Sodium’, ‘Oil’,

‘Whole Fruit’ and ‘SoFAAS’ have significant effects in the regression of the latter

data set.

Table 4.8 gives the result of β̂k`, their standard error and p-values for the un-

weighted model and weighted model, respectively. The Unweighted Model is ex-

pressed as pr(Yik` = 1|Xij`, Zik`) = H(αk`+βk`
∑J

j=1Xij`+ZT
ik`θk`), and the weighted

Model is pr(Yik` = 1|Xij`, Zik`) = H(αk` + βk`
∑J

j=1Xij`ω̂j + ZT
ik`θk`), where ω̂j the

MLE. The likelihood ratio test is performed for model comparison. Among these

five disease, only the colorectal cancer of female has significant difference between

the unweighted model and weighted model.
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Component Estimate Estimate s.e p-value
bounded constrain Original by Sandwich

Total Fruit 0.000 0.120 2.266 0.958
Whole Fruit 3.072 3.189 2.129 0.134
Total Grains 3.264 3.375 2.529 0.182

Whole Grains 6.069 6.059 2.020 0.003
Total Vegetables 0.074 0.185 2.581 0.943

DOL 2.285 2.458 1.801 0.172
Milk 3.011 2.785 0.766 0.000

Meats and Beans 0.000 -1.646 1.334 0.217
Oil 1.697 1.748 0.797 0.028

Saturated Fat 0.000 -0.706 0.772 0.360
Sodium 0.310 0.007 1.288 0.996

SoFAAS 0.016 0.077 0.482 0.873

Table 4.3: Variable selection results by the bounded constrain algorithm for the
logistic regression of the colorectal cancer on HEI component scores of men and

women together, where β11 = −1, β̂12 = −0.7411.
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ω̂ ω̂ ω̂ ω̂ ω̂ ω̂ MLE p-value
λN 0.100 0.250 0.500 1.000 2.000 5.000

Total Fruit 0.120 0.958
Whole Fruit 3.182 3.170 3.160 3.174 3.158 3.156 3.189 0.134
Total Grains 3.034 3.005 3.014 3.017 2.999 2.994 3.375 0.182

Whole Grains 6.109 6.106 6.100 6.115 6.112 6.107 6.059 0.003
Total Vegetables 0.185 0.943

DOL 2.187 2.185 2.188 2.187 2.188 2.187 2.458 0.172
Milk 2.988 2.990 2.990 2.990 2.990 2.986 2.785 0.000

Meats and Beans 0.000 0.000 0.000 0.000 0.000 -1.646 0.217
Oil 1.701 1.687 1.682 1.704 1.689 1.682 1.748 0.028

Saturated Fat 0.000 0.000 0.000 0.000 -0.706 0.360
Sodium 0.007 0.996

SoFAAS 0.077 0.873

Table 4.4: Variable selection results by using the adaptive lasso method and positive
constrain for the logistic regression of the colorectal cancer on HEI component scores

of men and women together, where β11 = −1, β̂12 = −0.7411 and γ = 1.5. MLE–
maximum likelihood estimator.
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ω̂HEI ω̂HEI ω̂HEI ω̂HEI ω̂HEI ω̂HEI MLE p-value
λN 0.100 0.250 0.500 1.000 2.000 5.000

Total Fruit 0.120 0.958
Whole Fruit 2.658 2.657 2.656 2.656 2.652 2.654 3.189 0.134
Total Grains 2.536 2.522 2.531 2.523 2.518 2.518 3.375 0.182

Whole Grains 5.123 5.132 5.129 5.125 5.133 5.136 6.059 0.003
Total Vegetables 0.185 0.943

DOL 1.836 1.838 1.837 1.834 1.838 1.839 2.458 0.172
Milk 2.510 2.510 2.508 2.506 2.511 2.512 2.785 0.000

Meats and Beans 0.000 0.000 0.000 0.000 0.000 -1.646 0.217
Oil 1.414 1.415 1.415 1.425 1.418 1.415 1.748 0.028

Saturated Fat 0.000 0.000 0.000 0.000 -0.706 0.360
Sodium 0.007 0.996

SoFAAS 0.077 0.873

Table 4.5: Analysis results of ω̂HEI by the adaptive lasso method for the logistic
regression of the colorectal cancer on HEI component scores of men (293615 with 2151

cases) and women (198245 with 959 cases) together, where β11 = −1, β̂12 = −0.7411
and γ = 1.5. ωHEI–algorithm is in Section 4.5. MLE–maximum likelihood estimator.
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ω̂HEI ω̂HEI ω̂HEI ω̂HEI ω̂HEI ω̂HEI MLE p-value
λN 0.100 0.250 0.500 1.000 2.000 5.000

Total Fruit 0.314 0.551 0.716
Whole Fruit 1.440 1.613 1.613 1.610 1.657 1.855 2.477 0.081
Total Grains 3.918 3.851 3.854 4.047 4.118 3.822 6.772 0.000

Whole Grains 0.497 0.480 0.483 0.870 0.531
Total Vegetables 0.097 0.956

DOL 1.581 1.545 1.552 1.524 1.555 1.334 2.707 0.034
Milk 1.962 1.938 1.934 1.926 1.937 2.047 3.384 0.000

Meats and Beans 0.504 0.497 0.490 0.445 0.876 0.323
Oil 0.965 0.938 0.939 0.912 0.962 0.967 1.668 0.004

Saturated Fat 0.792 0.804 0.808 0.787 0.654 1.390 0.128
Sodium 0.937 0.939 0.931 0.938 0.906 1.048 1.621 0.003

SoFAAS 0.483 0.493 0.496 0.505 0.515 0.436 0.831 0.015

Table 4.6: Analysis results for the logistic regression of the colorectal and lung cancers
on HEI component scores of men (219612 with 3348 and 4187 cases, respectively )
and the breast, colorectal and lung cancers on women (169480 with 6647, 1846 and
2933 cases, respectively) together, where β11 = −1, γ = 1.5. ω̂HEI–algorithm is in
Section 4.5. MLE–maximum likelihood estimator.
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ω̂HEI ω̂HEI ω̂HEI ω̂HEI ω̂HEI ω̂HEI MLE p-value
λN 0.100 0.250 0.500 1.000 2.000 5.000

Whole Fruit 2.004 2.007 1.991 2.048 2.122 2.130 3.029 0.013
Total Fruit - Whole Fruit 0.000 -0.551 0.716

Whole Grains 1.907 1.902 1.903 1.917 1.886 1.878 7.642 0.000
Total Grains - Whole Grains 0.000 0.000 0.000 0.000 0.000 0.000 -6.772 0.000

DOL 1.342 1.350 1.343 1.349 1.395 1.365 2.804 0.067
Total Vegetables - DOL -0.097 0.956

Milk 2.130 2.118 2.109 2.166 2.181 2.200 3.384 0.000
Meats and Beans 0.608 0.624 0.648 0.548 0.876 0.323

Oil 1.048 1.045 1.040 1.065 1.129 1.123 1.668 0.004
Saturated Fat 0.251 0.254 0.266 0.211 0.044 1.390 0.128

Sodium 1.106 1.110 1.107 1.114 1.091 1.095 1.621 0.003
SoFAAS 0.704 0.698 0.694 0.708 0.736 0.735 0.831 0.015

Table 4.7: Analysis results for the logistic regression of the colorectal and lung cancers
on HEI component scores of men (219612 with 3348 and 4187 cases, respectively )
and the breast, colorectal and lung cancers on women (169480 with 6647, 1846 and
2933 cases, respectively) together, where β11 = −1, γ = 1.5. ωHEI–algorithm is in
Section 4.5. MLE–maximum likelihood estimator.
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Unweighted Model Weighted Model Model Comparison

Gender Disease β̂k` s.e p-value β̂k` s.e p-value LR p-value
Male Colorectal Cancer -1.413 0.153 0.000 -1.734 0.163 0.000 26.620 0.000
Male Lung Cancer -0.862 0.138 0.000 -0.721 0.147 0.000 -14.908 1.000

Female Breast Cancer -0.003 0.122 0.979 -0.025 0.128 0.847 0.036 0.850
Female Colorectal Cancer -1.034 0.219 0.000 -1.330 0.231 0.000 10.616 0.001
Female Lung Cancer -0.523 0.169 0.002 -0.607 0.179 0.001 1.858 0.173

Table 4.8: Analysis results of β̂k` for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where β11 = −1, γ = 1.5. Un-

weighted Model–pr(Yik` = 1|Xij`, Zik`) = H(αk` + βk`
∑J

j=1Xij` + ZT
ik`θk`), Weighted

Model–pr(Yik` = 1|Xij`, Zik`) = H(αk`+βk`
∑J

j=1Xij`ω̂j+Z
T
ik`θk`). LR–Likelihood ra-

tio test statistic, log-likelihood(weighted model)−log-likelihood(unweighted model),
which follows a chi-squared distribution with degree freedom 1.
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5. VARIABLE SELECTION IN DIETARY INDEX MODELING FOR HEI-2005

5.1 Introduction

Naturally, the next thing we are interested is what the function would be if the

nutrition component related part in the logistic regression turns out to be nonlinear.

More than that, one should also note there are limitations from the knowledge of

biology and nutrition. In this Chapter, we establish a logistic regression model to

satisfy all these requirements, and apply it to the real HEI-2005 data set.

Since our interests focus on the effects of increasing nutrition component values

on various diseases across different subpopulations, a logistic regression is built as

pr(Yik` = 1|Xi1`, ..., XiJ`, Zik`) = H{αk` + βk`
∑J

j=1mj(Xij`) + ZT
ik`βzk`},

where mj(·) for j = 1, ..., J are modeled to satisfy some crucial constrains coming

from the biology and nutrition, which are listed as follows.

• Monotonicity: The dietary components are chosen so that larger values are

meant to denote a lower chance of disease, so that the functions m1(·), ...,mJ(·)

are all required to be monotone nondecreasing. It makes sense to reorder the

components so that increasing the score does not increase risk.

• Positivity: The functions m1(·), ...,mJ(·) are all required to be nonnegative, to

mimic the HEI-2005 and other dietary pattern scores.

• Upper Bounds: The nutritionists believe that above a certain level, no extra

benefit to health occurs by exceeding that level. Call the level for dietary

component j as cPj, where the P stands for protective. This means that for

69



x > cPj, mj(x) = mj(cPj).

• Lower Bounds: The nutritionists also believe that below a certain level, no

extra harm to health occurs by being below that level. Call the level for dietary

component j as cRj, where the R stands for risk. This means that for x < cRj,

mj(x) = mj(cRj).

• Bad Diets: To mimic the HEI-2005 score, there is the constraint that mj(cRj) =

0.

In Section 5.2, we describe an expression of mj(x) with I-spline basis functions

to satisfy these constraints, also the identifiability of the regression model; and then

present methodology to obtain estimates and their estimated variance. Applications

of these methodologies and discussions are illustrated in Section 5.3.

5.2 I-spline Basis Function and Regression Model

5.2.1 I-spline Basis Function

I-splines is defined as the integration of M-splines, which is always nonnegative

and the full field integration is 1. Therefore, I-splines is always nonnegative and

monotonic. Assume the pth order I-splines is define in an interval with e interior

knots, then totally there are 2p+ e knots defined as

t1 ≤ t2... ≤ t2p+e,

t1 = t2 = ... = tp, tp+e+1 = tp+e+2 = ... = t2p+e,

tm < tm+p for all m,

where t’s are values of knots.

In the work of Ramsay (1988), expressions of I-spline basis functions for p = 2
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are provided for x ∈ [tm, tm + 1) with tm < tm+1, and they are piecewise quadratic

functions as

Im(x|p = 2, t) = (x− tm)2/{(tm+1 − tm)(tm+2 − tm)},

Im−1(x|p = 2, t) = 1− (tm+1 − x)2/{(tm+1 − tm)(tm+1 − tm−1)}.

Based on that, I derive the basis functions for the 3th order I-splines for x ∈

[tm, tm + 1) as follows, which are piecewise cubic

Im(x|p = 3, t) = (x− tm)3/{(tm+1 − tm)(tm+2 − tm)(tm+3 − tm)},

Im−2(x|p = 3, t) = 1− (tm+1 − x)3/{(tm+1 − tm−2)(tm+1 − tm−1)(tm+1 − tm)},

Im−1(x|p = 3, t) = (tm − tm−1)2/{(tm+1 − tm−1)(tm+2 − tm−1)}+ a1/b1 + a2/b2.

where

a1 = 3/2(tm+1 + tm−1)(x2 − t2m)− 3tm−1tm+1(x− tm)− (x3 − t3m),

a2 = 3/2(tm+2 + tm)(x2 − t2m)− 3tmtm+2(x− tm)− (x3 − t3m),

b1 = (tm+1 − tm)(tm+1 − tm−1)(tm+2 − tm−1),

b2 = (tm+1 − tm)(tm+2 − tm)(tm+2 − tm−1).

5.2.2 Regression Model

Assume we have the same number of interior points for all nutrition components,

named as e. And the interior knots on the interval [cRj, cPj] are equally spaced.

Consequently, the distance of the interior points for jth component is dj = (cPj −

cRj)/(e + 1). With these specifications, the special expression of I-splines functions

are given in Appendix D.1 detailedly.

Furthermore, an easy way to satisfy the requirements of ‘Upper Bounds’ and
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‘Lower Bounds’ for function mj(x) is to transfer the HEI density values x by the

following expression

x→


cRj for x < cRj;

x for x ∈ [cRj, cPj];

cPj for x > cPj,

before inputting it into mj(x).

Next, we apply the I-splines into our logistic regression model with pth order and e

interior points, where p is the order of I-splines, e is the number of interior knots and

we assume p and e are the same for all nutrition components. Let the I-splines basis

functions defined on the jth component interval [cRj, cPj] be Ijq(·) for q = 1, ..., Q,

where Q = p + e. Therefore, after transforming all jth component values into the

interval [cRj, cPj], the mj(x) is defined as mj(x) =
∑Q

q=1 Ijq(x) exp(γjq), where we

have
∑Q

q=1 Ijq(cRj) exp(γjq) = 0 and
∑Q

q=1 Ijq(cPj) exp(γjq) =
∑Q

q=1 exp(γjq) based

on definitions of I-splines.

In consequence, we construct a logistic regression model as

pr(Yik` = 1|Xi1`, ..., XiJ`, Zik`) = H[αk` + βk`
∑J

j=1{
∑Q

q=1Ijq(Xij`) exp(γjq)}+ ZT
ik`θk`],

with β = −1 for identifiability.

Obviously, this regression model satisfies the requirements of ’Bad Diets’ since

mj(cRj) =
∑W

w=1 Ijw(cRj) exp(γjq) = 0, ‘Monotonicity’ and ‘Positivity’.

5.2.3 Iteration Algorithm and Variance Estimation

For the regression model in Section 5.2.2, mj(x) could be considered as a linear

function of ωjq with positive constrains of ωjq, where ωjq = exp(γjq). Therefore, the
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domain of ωjq is [0,+∞) not R. The scoring method does not converge here because

it always tends to make some ωjq to the negative domain, which leads to some γjq

go to negative infinity.

Rewrite the previous model as

pr(Yik` = 1|Xi1`, ..., XiJ`, Zik`) = H[αk` + βk`
∑J

j=1{
∑Q

q=1Ijq(Xij`)ωjq}+ ZT
ik`θk`],(5.1)

with β11 = −1 and constrain ωjq ≥ 0. Upon that, we introduce the following iteration

algorithm which has good performances in convergence. First, define all unknown

parameters in previous regression model as Θ with Θ = (α11, α21, ..., β21, ..., θ11, ...,

ω11, ..., ωJQ)T, ωj = (ωj1, ..., ωjQ)T and ω = (ωT
1 , ..., ω

T
J )T. Let Θ−ωj denote all pa-

rameters except ωj, and Θ−ω denote all parameters except all ωj for j = 1, ..., J

as Θ−ω = (α11, α21, ..., β21, ..., θ11, ..., θKL)T. Here we give the steps of our iterative

algorithm to obtain the estimated values for Θ.

1. Obtain the initial values of the Θ.

2. Define current estimate for ω as ω̃, update Θ−ω for fixed ω̃.

3. Define current estimate for Θ−ωj as Θ̃−ωj , update ωj for fixed Θ̃−ωj with con-

strain ωjq ≥ 0.

4. Repeat Step 3 for j = 1, ..., J .

5. Repeat Steps 2∼4 until it converges.

Matlab program ‘fmincon’ is used in our real data analysis of the above algorithm.

Additionally, we could use the inverse Fisher matrix or the sandwich method to

estimate the variance of Θ̂. Depends on our analysis results, the estimated variance

for the estimates are very close so that in this paper, we only use the previous one.
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5.3 Results and Discussion

We apply the algorithm introduced in Section 5.2.3 to the real HEI-2005 data.

In this data set, there are 219612 males with 3348 individuals have colorectal cancer

and 4187 have lung cancer; and for 169480 females, there are 6647 individuals with

breast cancer, 1846 with colorectal cancer and 2933 with lunch cancer, respectively.

The concerned 12 nutrition components were presented in Table 1. Furthermore,

this data set also included 38 smoking related covariates for both male and female

samples.

The results from I-spline analysis are presented in Tables 5.1∼5.2, and Figures

D.1∼D.2 in Appendix D.2. From these two tables, we can clearly see, for some

nutrition components, their corresponding p-values will be changed as the intake

amount changes. Such as ‘Milk’, comparing with the first quintile, the p-values for

quintiles 2∼5 are (0.030, 0.003, 0.016, 0.000), which indicates this component has

statistical significance on intake amount and suggests people should be better intake

more milk to the recommended amount so that the best results can be achieved.

Another two examples for such significant changes when comparing with quintile 1 is

‘Oil’ and ‘Sodium’. Especially for ‘Sodium’, its p-values has significant decreases as

the intake amount increases, and finally reaches the statistically significant influence

level. Comparing quintiles 2-5 to quintile 1, we can still observe trends from some

components, even without obtaining statistical significance. For example, the p-

values of ‘DOL’ and ‘Total Grains’ are obviously decreasing with the increasing

of intake amount, although there are no statistical significances. However, when

compared with quintile 1, the significance in disease related to quintile 5 intake

amount is clearly larger than the quintile 2 intake amount. Also, there are some

components which are not so sensitive to the intake amount, such as ‘Whole Gain’,
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‘Meats and Bean’, etc.

In order to compare between the results from segmented I-spline with positive

constraint and the results from the following model as in Reedy’s paper, based on

the different subpopulations, we present the likelihood ratio tests’ results for both

two models of each disease. The results are summarized in Table 5.3. Obviously,

for the lung cancer in female, and the colorectal cancer in both male and female,

I-spline model with positive constraint has significant difference to the total score

model. While for the rest two, lung cancer in male and breast cancer in female, there

is no statistical significance between them. A possible reason for this is because the

positive constraints have been applied.

Furthermore, to eliminate the multi-collinearity in the data set, (‘Total Fruit’,

‘Whole Fruit’, ‘Total Grains’, ‘Whole Grains’, ‘Total Vegetables’, ‘DOL’) in the

nutrition components are changed to (‘Whole Fruit’, ‘Total Fruit- Whole Fruit’, ‘W-

hole Grains’ , ‘Total Grains - Whole Grains’, ‘DOL’, ‘Total Vegetables - DOL’) And

then Tables D.1∼D.3 and Figures D.3∼D.4 summarize and present the correspond-

ing analysis results for them. From which one can easily see, the trends for these

modified components are very similar to the original nutrition components.
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Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Total Fruit Estimate 0.107 0.050 0.055 0.055 0.055

s.e (vs quintile 1) 0.084 0.074 0.084 0.075
p-value (vs quintile 1) 0.557 0.453 0.511 0.463

Whole Fruit Estimate 0.000 0.007 0.035 0.041 0.041
s.e (vs quintile 1) 0.082 0.075 0.086 0.070

p-value (vs quintile 1) 0.933 0.644 0.631 0.556
Total Grains Estimate 0.028 0.002 0.012 0.056 0.116

s.e (vs quintile 1) 0.134 0.131 0.138 0.138
p-value (vs quintile 1) 0.990 0.927 0.682 0.403

Whole Grains Estimate 0.213 0.014 0.018 0.018 0.018
s.e (vs quintile 1) 0.047 0.048 0.073 0.084

p-value (vs quintile 1) 0.762 0.715 0.811 0.834
Total Vegetables Estimate 0.467 0.005 0.024 0.028 0.028

s.e (vs quintile 1) 0.105 0.102 0.111 0.112
p-value (vs quintile 1) 0.964 0.817 0.798 0.799

DOL Estimate 0.000 0.015 0.071 0.086 0.089
s.e (vs quintile 1) 0.051 0.051 0.067 0.058

p-value (vs quintile 1) 0.774 0.162 0.198 0.124

Table 5.1: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where β11 = −1.
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Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Milk Estimate 0.144 0.104 0.130 0.143 0.270

s.e (vs quintile 1) 0.048 0.044 0.059 0.056
p-value (vs quintile 1) 0.030 0.003 0.016 0.000

Meats and Beans Estimate 0.443 0.005 0.031 0.059 0.074
s.e (vs quintile 1) 0.165 0.155 0.160 0.157

p-value (vs quintile 1) 0.975 0.841 0.714 0.636
Oil Estimate 0.068 0.157 0.208 0.212 0.215

s.e (vs quintile 1) 0.064 0.058 0.066 0.062
p-value (vs quintile 1) 0.015 0.000 0.001 0.001

Saturated Fat Estimate 0.047 0.038 0.082 0.093 0.241
s.e (vs quintile 1) 0.049 0.049 0.074 0.169

p-value (vs quintile 1) 0.440 0.096 0.211 0.153
Sodium Estimate 0.000 0.003 0.031 0.112 0.190

s.e (vs quintile 1) 0.079 0.066 0.070 0.073
p-value (vs quintile 1) 0.975 0.643 0.110 0.010

SoFAAS Estimate 0.198 0.034 0.042 0.042 0.059
s.e (vs quintile 1) 0.065 0.057 0.069 0.075

p-value (vs quintile 1) 0.605 0.465 0.542 0.436

Table 5.2: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where β11 = −1.
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Unweighted Model Weighted Model Model Comparison

Gender Disease β̂k` s.e p-value β̂k` s.e p-value LR p-value
Male Colorectal Cancer -0.018 0.002 0.000 -3.050 0.261 0.000 56.114 0.000
Male Lung Cancer -0.012 0.002 0.000 -1.470 0.230 0.000 -4.246 1.000

Female Breast Cancer 0.001 0.002 0.722 0.322 0.227 0.156 1.896 0.169
Female Colorectal Cancer -0.013 0.003 0.000 -2.516 0.396 0.000 21.184 0.000
Female Lung Cancer -0.007 0.002 0.002 -1.273 0.302 0.000 7.942 0.005

Table 5.3: I-spine analysis results of β̂k` for the logistic regression of the colorectal
and lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where β11 = −1. LR–Likelihood
ratio test statistic.
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6. CONCLUSIONS

In this dissertation, first I proposed a method named as Direct Integral Method

for Ratios (DIMER) to construct confidence intervals for the ratio of two location

parameters. The method, based on analytical results and further approximations

to account for nuisance parameters, is computationally efficient. Compared to oth-

er methods in the literature, our simulations indicated that DIMER more nearly

achieves nominal coverage levels while at the same time resulting in shorter confi-

dence interval lengths. The most important reason why our DIMER method is better

than the other compared methods is that there are severely heavy tail in the distribu-

tion of the ratio, our DIMER method avoid this by direct probability computation,

while other methods are badly hindered at this part, especially for those methods

which based on the assumption that use the normal distribution to approximate the

Cauchy likely distribution.

Second, relative risk analysis is performed for the real HEI-2005 data set. The

results from the DIMER and the modified nonparametric bootstrap method are well

matched with each other. For the rest of methods, results of the inverse Fisher score

method and the sandwich method are lower than the ones from the direct integral

method and the modified nonparametric bootstrap method, while the nonparametric

bootstrap method’s results are higher than them.

For the aspect of computation time, due to the extremely large data amount, the

time consumption ratio between the modified nonparametric bootstrap method and

the direct integral method is around 7000, and this is a special case in which the

data set only considers single disease and two subpopulations. In the future, if these

formulas were applied to more complicated cases such as several different multiple
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diseases in multiple subpopulations, the time consumption ratio will consequently

become even higher. In conclusion, regardless of reliability, accuracy and computa-

tion efficiency, DIMER is obviously the best among all the method presented in this

paper to compute the relative risks and their confidence intervals.

Furthermore, variable selection methods are used for identify which nutrition

component is more important for diseases across genders. And models comparison

results are also provided. In addition, a model with I-spline basis function is built

to satisfy some constraints from nutriology and biology. The results from I-spline

analysis show the effect changing of the nutrition components on diseases.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Fieller’s Method

Consider a ratio r = µ1/µ2, where µ1 and µ2 are means from two correlated

normal distributions T1 ∼ Normal(µ1, v
2
1) and T2 ∼ Normal(µ2, v

2
2). Let ρ denote the

correlation coefficient between these two distributions. The estimated variance and

covariance v̂2
1, v̂2

2 and ρ̂v̂1v̂2 are jointly estimated with the same number of degrees

of freedom d, and are independent of T1 and T2.

Introduce a latent variable W = T1 − rT2. Since W/
√
v̂2

2 − 2rρ̂v̂1v̂2 + r2v̂2
2 fol-

lows a t distribution with d degrees of freedom, a confidence interval with coverage

probability 1− α is calculated by using −td,α/2 ≤ W/
√
v̂2

2 − 2rρ̂v̂1v̂2 + r2v̂2
2 ≤ td,α/2,

where td,α/2 denotes the (1− α/2)100% quantile for the t distribution with d degree

freedom.

Rewrite the inequality and solve it as

r2{T 2
2 − t2d,α/2v̂2

2} − 2r(T1T2 − t2d,α/2ρ̂v̂1v̂2) + {T 2
1 − t2d,α/2v̂2

1} ≤ 0.

Let a = T 2
2 − t2d,α/2v̂

2
2, b = (T1T2 − t2d,α/2ρ̂v̂1v̂2) and c = T 2

1 − t2d,α/2v̂
2
1. Following

the inequality ar2 + br + c ≤ 0, two real roots d1 = (−b −
√
b2 − 4ac)/(2a) and

d2 = (−b+
√
b2 − 4ac)/(2a) are obtained if b2 − 4ac ≥ 0.

A confidence interval of r which has coverage probability 1− α is constructed as
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follows:

Confidence Interval =


(d1, d2) if a ≥ 0,

(−∞, d1)
⋃

(d2,∞) if a < 0 and td,α/2 < tcom,

(−∞,∞) if td,α/2 ≥ tcom,

where tcom = (T 2
1 v̂

2
2−2T1T2v̂12 +T 2

2 v̂
2
1)/(v̂2

1 v̂
2
2− v̂2

12) and it is certain that a < 0 when

td,α/2 > tcom as Fieller (1954) showed that T 2
2 /v̂

2
2 ≤ t2com.

There are several limitations of Fieller’s algorithm. First, b2−4ac ≥ 0 is required;

otherwise the inequality function has two complex roots. Second, when a decreases

to 0, the interval range increases rapidly and can become infinite. Finally, if a is

negative, the confidence interval is deterministic to have infinite length.

A.2 Proofs of Lemmas 1-2

Proof of Lemma 1:
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Lemma 1 follows because

pr(r̂ ≤ x) = pr(T1 ≤ xT2, T2 > 0) + pr(T1 ≥ xT2, T2 < 0)

=

∫ ∞
0

∫ xt2

−∞
(v1v2)−1f1{(t1 − µ1)/v1}f2{(t2 − µ2)/v2}dt1dt2

+

∫ 0

−∞

∫ ∞
xt2

(v1v2)−1f1{(t1 − µ1)/v1}f2{(t2 − µ2)/v2}dt1dt2

=

∫ ∞
0

F1{(xt2 − µ1)/v1}v−1
2 f2{(t2 − µ2)/v2}dt2

+

∫ 0

−∞
[1− F1{(xt2 − µ1)/v1}]v−1

2 f2{(t2 − µ2)/v2}dt2

z=(t2−µ2)/v2
=

∫ ∞
−µ2/v2

F1[{x(µ2 + v2z)− µ1}/v1]f2(z)dz

+

∫ −µ2/v2

−∞
(1− F1[{x(µ2 + v2z)− µ1}/v1])f2(z)dz.

For simplicity, define g(z|x, µ1, µ2, v1, v2) as in Section 2.2.2, then we have the

cumulative distribution function of r̂ = T1/T2 as

pr(r̂ ≤ x) =

∫ ∞
−∞

g(z|x, µ1, µ2, v1, v2)exp(−z2)dz,

Proof of Lemma 2:

Similarly, by letting V = cov(T1, T2) Lemma 2 follows from the fact that

pr(r̂ ≤ x)

=

∫ ∞
0

∫ xt2

−∞
(2π|v2

1v
2
2 − v2

12|1/2)−1exp{−(t1 − µ1, t2 − µ2)V −1(t1 − µ1, t2 − µ2)T/2}dt1dt2

+

∫ 0

−∞

∫ ∞
xt2

(2π|v2
1v

2
2− v2

12|1/2)−1exp{−(t1 − µ1, t2 − µ2)V −1(t1 − µ1, t2 − µ2)T/2}dt1dt2

z=(t2−µ2)/v2
= (2π)

−1/2
∫ ∞
−µ2/v2

Φ[{x(µ2 + v2z)− (µ1 + zv12/v2)}v2/
√
v2

1v
2
2 − v2

12] exp(−z2/2)dz

+(2π)
−1/2

∫ −µ2/v2

−∞
(1− Φ[{x(µ2+v2z)− (µ1+zv12/v2)}v2/

√
v2

1v
2
2 − v2

12]) exp(−z2/2)dz.
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Similarly, define g(z|x, µ1, µ2, v
2
1, v

2
2, v12) as in Section 2.2.3. Therefore, the cumula-

tive distribution function for r̂ is

pr(r̂ ≤ x) =

∫ ∞
−∞

g(z|x, µ1, µ2, v
2
1, v

2
2, v12)exp(−z2)dz,

Proof of Algorithm in Section 2.2.4:

Since Z1 and Z2 are independent and both have t distributions with degree freedom

of d, which are defined as Z1 = {(T1 − rT2) − (µ1 − rµ2)}/
√
v̂2

1 − 2ηv̂12 + η2v̂2
2 and

Z2 = (T2 − µ2)/v̂2 in Section 2.2.4, respectively. Therefore, the jointly density

distribution of Z1 and Z2 is

f(Z1, Z2) = ft,d(Z1)ft,d(Z2),

where ft,d is the standard student t density with degree of freedom d.

Based on that, by the density transform method, the jointly distribution of T1, T2,

that is

f(T1, T2) = v̂−1
2 (v̂2

1 − 2ηv̂12 + η2v̂2
2)−1/2

ft,d[{(t1 − dt2)− (µ1 − ηµ2)}/
√
v̂2

1 − 2ηv̂12 + η2v̂2
2]ft,d{(t2 − µ2)/v̂2}.

Similarly, let z = (t2 − µ2)/v̂2, and define g(z|x, µ1, µ2, v̂
2
1, v̂

2
2, v̂12, η) as in Section

2.2.4, we get the cumulative distribution function of r̂ = T1/T2 as

pr(r̂ ≤ x) ≈
∫ ∞
−∞

g(z|x, µ1, µ2, v̂
2
1, v̂

2
2, v̂12, η)exp(−z2)dz.

A.3 More Details of Simulation Results in Chapter 2
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A.4 Bootstrapping Details

Here are the general steps we used for the nonparametric bootstrap and para-

metric bootstrap.

• Procedure for the nonparametric bootstrap:

– For given data set (Y1, Y2, X1, X2), obtain the estimates (β̂10, β̂20, β̂21, ω̂).

– Generate B = 400 bootstrap data sets with replacement for two subgroups

separately.

– For the bth generated data set (Y1,b, Y2,b, X1,b, X2,b), obtain (β̂10,b, β̂20,b,

β̂21,b, ω̂b). Repeat this process for all resampled data sets.

– Compute the standard error of β̂21,b as seβ21,nonpara,boot.

– Construct the (1− α)100% confidence interval:

(β̂21 − zα/2seβ21,nonpara,boot, β̂ + zα/2seβ21,nonpara,boot).

• Procedure for the parametric bootstrap:

– For given data set (Y1, Y2, X1, X2), obtain the estimates (β̂10, β̂20, β̂21, ω̂).

– Fix (β̂10, β̂20, β̂21, ω̂) and (X1, X2), we generate B = 400 data sets of

(Y1,b, Y2,b) using a parametric model.

– For the bth generated data set (Y1,b, Y2,b) with (X1, X2), obtain (β̂10,b, β̂20,b,

β̂21,b, ω̂b). Repeat this process for all resampled data sets.

– Compute the estimated standard error of β̂21,b as seβ21,para,boot.

– Construct the (1− α)100% confidence interval:

(β̂21 − zα/2seβ21,para,boot, β̂ + zα/2seβ21,para,boot).
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1 Proof of Lemma 3

We have

N1/2{Ŝα,k`(Λ̂k`)− Ŝα,k`(Λk`)} = {∂Ŝα,k`(Λk`)/∂ΛT
k`}N1/2(Λ̂k` − Λk`) + op(1),

and asymptotically, N1/2(Λ̂k` − Λk`) follows a normal distribution as

N1/2(Λ̂k` − Λk`) = Normal(0, VΛk`),

where the estimate of VΛk` can be directly obtained from A−1(Θ̂)V̂Ψ(Θ̂)A−T(Θ̂) in

Section 3.2.3 which acquired by using the sandwich method.

In consequence, the asymptotic limit distribution of N1/2{Ŝα,k`(Λ̂k`)− Ŝα,k`(Λk`)}

is

N1/2{Ŝα,k`(Λ̂k`)− Ŝα,k`(Λk`)} = Normal
(

0, {∂Ŝα,k`(Λk`)/∂ΛT
k`}VΛk`{∂Ŝα,k`(Λk`)/∂Λk`}

)
.

And

N1/2(V̂k` − Vk`) = N1/2[{Ŝ0.90,k`(Λ̂k`)− Ŝ0.90,k`(Λk`)} − {Ŝ0.10,k`(Λ̂k`)− Ŝ0.10,k`(Λk`)}]

, therefore asymptotically

N1/2(V̂k` − Vk`) ∼ Normal(0, Dk`),
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where

Dk` = {∂Ŝ0.90,k`(Λk`)/∂ΛT
k`}var(Λ̂k`){∂Ŝ0.90,k`(Λk`)/∂Λk`}

+{∂Ŝ0.10,k`(Λk`)/∂ΛT
k`}var(Λ̂k`){∂Ŝ0.10,k`(Λk`)/∂Λk`}

−2{∂Ŝ0.90,k`(Λk`)/∂ΛT
k`}var(Λ̂k`){∂Ŝ0.10,k`(Λk`)/∂Λk`}.

B.1.1 Proof of Lemma 4

We have defined V̂∗k` = B−1
∑B

b=1 V̂bk` and D̂∗k` = (B − 1)−1
∑B

b=1

(
V̂bk` − V̂∗k`

)2

.

Obviously as B→∞, by central limit theorem, we could write

B1/2(D̂∗k`)
−1/2(V̂∗k` − V̂k`) v Normal(0,1).

And based on previous section, we get n`
1/2(Dk`)

−1/2(V̂k` − Vk`) v Normal(0,1).

Write

B1/2(D̂∗k`)
−1/2(V̂∗k` − Vk`) = B1/2(D̂∗k`)

−1/2(V̂∗k` − V̂k`) + B1/2(D̂∗k`)
−1/2(V̂k` − Vk`).

Hence if we could prove that B1/2(D̂∗k`)
−1/2(V̂k` − Vk`) weakly converge to 0, by

Slutsky’s theorem it is enough to write B1/2(D̂∗k`)
−1/2(V̂∗k` − Vk`) v Normal(0,1).

It can be expanded as

B1/2(D̂∗k`)
−1/2(V̂k` − Vk`) = (B1/2/n

1/2
` ){n1/2

` (Dk`)
−1/2(V̂k` − Vk`)}{D1/2

k` /(D̂
∗
k`)

1/2}.

By Chebyshev’s inequality

P{|D̂∗k` − E(D̂∗k`)| < ε} > 1− var(D̂∗k`)/ε
2.
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As the data from bootstrap are identically and independently distributed, when

B→∞, we have var(D̂∗k`)→ 0 w.p.1 and E(D̂∗k`) = D̂k`, hence D̂∗k` weakly converges

to Dk`. Also we have n`
1/2Dk`

−1/2(V̂k`−Vk`) = Op(1). Therefore, if n` is much larger

than B as n`/B→∞, the asymptotic distribution for V̂∗k` as follows

B1/2(D̂∗k`)
−1/2(V̂∗k` − Vk`) v Normal(0, 1).

B.1.2 Procedures

B.1.2.1 Procedures for Compute the Relative Risk by the Direct Integral Method

In the model (5.1), after obtaining ω̂j for j = 1, ..., J , write Ti` =
∑J

j=1Xij`ω̂j. For

the first disease in the first subpopulation (where we set β11 = −1 for identifiability),

the relative risk and its confidence intervals are given by the following procedures

• Compute 10th and 90th percentile of Ti1 as T1,90th
and T1,10th

, respectively.

• Run logistic regression model as pr(Yi11 = 1|Ti1, Zi11) = H(α∗11 + β∗11Ti1 +

ZT
i11θ

∗
11), obtain estimate β̂∗11 of β∗11 and its estimated standard deviation σβ̂∗11

.

• Calculate 100(1−α)% CI for β∗11 as (β̂∗11−Zα/2σβ̂∗11
, β̂∗11+Zα/2σβ̂∗11

), which defined

as (a1,11,α, a2,11,α) and where Zα/2 is the (α/2)th quantile of the standard normal

distribution.

• The relative risk estimate is exp{β̂∗11(T1,90th
− T1,10th

)}.

• The confidence interval of the relative risk is(
exp{a1,11,α(T1,90th

− T1,10th
)}, exp{a2,11,α(T1,90th

− T1,10th
)}
)
.

For any other βk` which (k, `) 6= (1, 1), here we give the steps to obtain the

estimate of the relative risk and its confidence intervals.
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• Compute 10th and 90th percentile of Ti` as T`,90th
and T`,10th

, respectively.

• Calculate 100(1 − α)% CI for βk` as (a1,k`,α, a2,k`,α) by the direct integral

method.

• The relative risk for the kth disease in the `th subpopulation is exp{β̂k`(T`,90th
−

T`,10th
)}.

• The confidence interval of the relative risk is(
exp{a1,k`,α(T`,90th

− T`,10th
)}, exp{a2,k`,α(T`,90th

− T`,10th
)}
)
.

B.1.2.2 Bootstrapping Details

Procedure for the nonparametric bootstrap:

1. Generate B = 2500 bootstrap data sets with replacement for two subgroups,

male and female, respectively.

2. For the bth generated data set (Yik`,b, Xij`,b, Zik`,b) for ` = 1, . . . , L, k = 1, . . . , K`

and i = 1, . . . , n`, run regression model pr(Yik`,b = 1|Xij`,b, Zik`,b) = H(αk` +

βk`
∑J

j=1Xij`,bωj + ZT
ik`,bθk`) with β11 = −1 to obtain (α̂11,b, θ̂11,b, α̂12,b, . . . , ω̂b)

3. Define Ti`,b =
∑J

j=1Xij`,bω̂j,b, compute 10th and 90th percentile of Ti`,b.

4. Run logistic regression model as pr(Yik`,b = 1|Ti`,b, Zik`,b) = H(α∗k`,b + β∗k`,bTi` +

ZT
ik`θ

∗
k`,b) to estimate β̂∗k`,b.

5. Compute log(relative risk) as Vk`,b = β̂∗k`,b(Ti`,b90th
− Ti`,b10th

).

6. Repeat steps (2 ∼ 5) for all resampled data sets.

7. Construct the 95% confidence interval of the relative risk by method I(
exp{V(k`,b)2.5th

}, exp{V(k`,b)97.5th
}
)
.
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8. Construct the 95% confidence interval of the relative risk by method II(
exp(Vk`,b − 1.96seVk`,b), exp(Vk`,b + 1.96seVk`,b)

)
,

where Vk`,b is mean of Vk`,b and seVk`,b is its standard error.

B.2 Plots of Confidence Intervals Lengths
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Figure B.1: Relationship between the 95% confidence interval by using the inverse
Fisher matrix and the number of points which involved in computing the derivative

∂Ŝ0.90,k`(Λk`)/∂ΛT
k` and ∂Ŝ0.10,k`(Λk`)/∂ΛT

k`.
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Figure B.2: Relationship between the 95% confidence interval by using the sand-
wich method and the number of points which involved in computing the derivative

∂Ŝ0.90,k`(Λk`)/∂ΛT
k` and ∂Ŝ0.10,k`(Λk`)/∂ΛT

k`.
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Figure B.3: Relationship between the 95% confidence interval by using the model
transformation method and the number of points which involved in computing the

derivative ∂Ŝ0.90,k`(Λk`)/∂ΛT
k` and ∂Ŝ0.10,k`(Λk`)/∂ΛT

k`.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

C.1 Proof of Lemma 6

We first prove ii) of Lemma 6. Let αN = α+v
√
N , θN = θ+s/

√
N and ωN = ω+

u/
√
N , where v = (v11, . . . , vKLL)T, s = (sT

11, . . . , s
T
KLL

)T and u = (u1, . . . , uJ)T. Let

ΨN(v, s,u) = 2L(α+v
√
N, θ+s/

√
N,ω+u/

√
N)+λN

∑J
j=1t̂j|ωj +uj/

√
N |. Define

(v̂T
N , ŝ

T
N , û

T
N)T = arg min ΨN(v, s,u), then α̂N = α + v̂N/

√
N , θ̂N = θ + ŝN/

√
N ,

ω̂N = ω+ û/N
√
N , and v̂N =

√
N(α̂N − α), ŝN =

√
N(θ̂N − θ), ûN =

√
N(ω̂N − ω).

Define εik` = Yik` − pik` and ε = {εik` : 1 ≤ i ≤ n`, 1 ≤ k ≤ K`, 1 ≤ ` ≤ L}T. Then

by Taylor expansion

ΨN(v, s,u)−ΨN(0)

= 2{L(α + v
√
N, θ +

s/
√
N,ω + u/

√
N)− L(α, θ, ω)}+ λN

∑J
j=1t̂j(|ωj + uj/

√
N | − |ωj|)

=
∑2

`=1

∑K`
k=1

∑n`
i=1Vik`(v

T, sT,uT)Qik`Q
T
ik`(v

T, sT,uT)T/N

−2
∑2

`=1

∑K`
k=1

∑n`
i=1εik`Q

T
ik`(v

T, sT,uT)T/
√
N

+λN/
√
N
∑J

j=1t̂j
√
N(|ωj + uj/

√
N | − |ωj|) +O(N−1/2)

= (vT, sT,uT)(QTVQ/N)(vT, sT,uT)T − 2(vT, sT,uT)(QTε/
√
N)

+λN/
√
N
∑J

j=1t̂j
√
N(|ωj + uj/

√
N | − |ωj|) +O(N−1/2).

By the Central Limit Theorem QTε/
√
N →d W = Normal(0,Σ). Following the

same argument as the proofs of Theorem 2 in Zou (2006), if ωj 6= 0, then t̂j →p

|ωj|−γ and
√
N(|ωj + uj/

√
N | − |ωj|) → ujsgn(ωj). By Slutsky’ theorem, one has
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λN/
√
N
∑J

j=1 t̂j
√
N(|ωj +uj/

√
N |− |ωj|)→p 0. If ωj = 0, then

√
N(|ωj +uj/

√
N |−

|ωj|) = |uj| and λN t̂j/
√
N = (λN/

√
N)Nγ/2(|

√
Nω̂j,0|)−γ → ∞ with probability

approaching 1, since
√
Nω̂j,0 = Op(1) and λNN

(γ−1)/2 →∞.

Therefore by Slutsky’s theorem, one has ΨN(v, s,u)−ΨN(0)→d Ψ(v, s,u) where

Ψ(v, s,u) = (vT, sT,uT
A)Σ11(vT, sT,uT

A)T−2(vT, sT,uT
A)WA if uj = 0 for all j /∈ A

and Ψ(v, s,u) = ∞ otherwise, and where WA = Normal(0,Σ11). The unique

minimum of Ψ(v, s,u) is {(Σ−111 WA)T,0T
A}T, and thus ûA →d Σ−1

11 WA and ûAC →d

0.

Next we prove i) of Theorem 6. For all j ∈ A, by the weak law of convergence,

ω̂j → ωj in probability and thus P (j ∈ A∗n) → 1. Then it suffices to show that for

all j′ /∈ A, P (j′ ∈ A∗n)→ 0. Let Q = {(Qα)N×(
∑
Kl), (Qθ)N×(

∑
dkl), (Qω)N×J}, where

Qω = (Qω,1, · · · , Qω,J). For j′ ∈ AC and j′ ∈ A∗n, one has 2QT
ω,j′(Y − p̂) = λN t̂j′ ,

where p̂ = {p̂ikl : 1 ≤ i ≤ n`, 1 ≤ k ≤ KL, 1 ≤ l ≤ L}T and

p̂ik` = H{α̂k` + βk`
∑J

j=1Xij`ω̂j + ZT
ik`θ̂k`}.

By the above results in the proof of part ii), 2QT
ω,j′(Y − p̂)/

√
N = Op(1), and

λN t̂j′/
√
N →p ∞. Thus for all j′ ∈ AC , P (j′ ∈ A∗N) ≤ P (2QT

ω,j′(Y−p̂) = λN t̂j′)→ 0.

C.2 Figures of Cross Validation Results for Colorectal Cancer Data
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Figure C.1: Prediction error of cross-validation method in the adaptive lasso for the
logistic regression of the colorectal cancer on HEI component scores of men (293615
with 2151 cases) and women together (198245 with 959 cases), where β11 = -1,

β̂12 = −0.7411 and γ = 1.5.
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Figure C.2: Prediction error of cross-validation method in the adaptive lasso for the
logistic regression of the colorectal cancer on HEI component scores of men (293615
with 2151 cases) and women together (198245 with 959 cases), where β11 = -1,

β̂12 = −0.7411 and γ = 1.5.
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APPENDIX D

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

D.1 Expression of I-splines basis function with specifications

Based on the specifications in Section 5.2.2, expressions of Im(x|p, t) for p = 2 in

[tjm, tjm+1) are as follows.

• when m = 2 (tm = cRj),

Is(x|p = 2, t) = 0 for s > m,

Im(x|p = 2, t) = (x− tm)2/(2d2
j),

Im−1(x|p = 2, t) = 1− (tm+1 − x)2/d2
j .

• when 3 ≤ m ≤ e+ p− 1, or which written as 3 ≤ m ≤ e+ 1,

Is(x|p = 2, t) = 0 for s > m,

Im(x|p = 2, t) = (x− tm)2/(2d2
j),

Im−1(x|p = 2, t) = 1− (tm+1 − x)2/(2d2
j),

Is(x|p = 2, t) = 1 for s < m− 1.
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• when m = e+ p = e+ 2,

Is(x|p = 2, t) = 0 for s > m,

Im(x|p = 2, t) = (x− tm)2/d2
j ,

Im−1(x|p = 2, t) = 1− (tm+1 − x)2/(2d2
j),

Is(x|p = 2, t) = 1 for s < m− 1.

For I-spline with p = 3 and x is in [tjm, tjm+1),

• when m = 3 (tmcRj),

Is(x|p = 3, t) = 0 for s > m,

Im(x|p = 3, t) = (x− tm)3/(6d3
j ),

Im−2(x|p = 3, t) = 1− (tm+1 − x)3/d3
j ,

Im−1(x|p = 3, t) = a1/(2d
3
j ) + a2/(4d

3
j ).

where

a1 = 3/2(2tm + d)(x2 − t2m)− 3tm(tm + dj)(x− tm)− (x3 − t3m),

a2 = 3(tm + dj)(x
2 − t2m)− 3tm(tm + 2dj)(x− tm)− (x3 − t3m).
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• when m = 4,

Is(x|p = 3, t) = 0 for s > m,

Im(x|p = 3, t) = (x− tm)3/(6d3
j ),

Im−2(x|p = 3, t) = 1− (tm+1 − x)3/(4d3
j ),

Im−1(x|p = 3, t) = 1/6 + a1/(6d
3
j ) + a2/(6d

3
j ),

Is(x|p = 3, t) = 1 for s < m− 2.

where

a1 = 3tm(x2 − t2m)− 3(tm − dj)(tm + dj)(x− tm)− (x3 − t3m),

a2 = 3(tm + dj)(x
2 − t2m)− 3tm(tm + 2dj)(x− tm)− (x3 − t3m).

• when 5 ≤ m ≤ e+ p− 2, or expressed as 5 ≤ m ≤ e+ 1,

Is(x|p = 3, t) = 0 for s > m,

Im(x|p = 3, t) = (x− tm)3/(6d3
j ),

Im−2(x|p = 3, t) = 1− (tm+1 − x)3/(6d3
j ),

Im−1(x|p = 3, t) = 1/6 + a1/(6d
3
j ) + a2/(6d

3
j ),

Is(x|p = 3, t) = 1 for s < m− 2.

where

a1 = 3tm(x2 − t2m)− 3(tm − dj)(tm + dj)(x− tm)− (x3 − t3m),

a2 = 3(tm + dj)(x
2 − t2m)− 3tm(tm + 2dj)(x− tm)− (x3 − t3m).
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• when m = e+ p− 1 = e+ 2,

Is(x|p = 3, t) = 0 for s > m,

Im(x|p = 3, t) = (x− tm)3/(4d3
j ),

Im−2(x|p = 3, t) = 1− (tm+1 − x)3/(6d3
j ),

Im−1(x|p = 3, t) = 1/6 + a1/(6d
3
j ) + a2/(6d

3
j ),

Is(x|p = 3, t) = 1 for s < m− 2.

where

a1 = 3tm(x2 − t2m)− 3(tm − dj)(tm + dj)(x− tm)− (x3 − t3m),

a2 = 3(tm + dj)(x
2 − t2m)− 3tm(tm + 2dj)(x− tm)− (x3 − t3m).

• when m = e+ p = e+ 3,

Is(x|p = 3, t) = 0 for s > m,

Im(x|p = 3, t) = (x− tm)3/d3
j ,

Im−2(x|p = 3, t) = 1− (tm+1 − x)3/(6d3
j ),

Im−1(x|p = 3, t) = 1/4 + a1/(4d
3
j ) + a2/(2d

3
j ),

Is(x|p = 3, t) = 1 for s < m− 2.

where

a1 = 3tm(x2 − t2m)− 3(tm − dj)(tm + dj)(x− tm)− (x3 − t3m),

a2 = 3/2(2tm + dj)(x
2 − t2m)− 3tm(tm + dj)(x− tm)− (x3 − t3m).

After these specifications, the I-spline functions are now much easier to be applied

into our model.

D.2 Figures for I-spline Analysis in HEI-2005
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Figure D.1: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where β11 = −1.
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Figure D.2: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where β11 = −1.
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Figure D.3: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on modified HEI component scores of men (219612 with 3348 and 4187
cases, respectively ) and the breast, colorectal and lung cancers on women (169480
with 6647, 1846 and 2933 cases, respectively) together, where β11 = −1.
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Figure D.4: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on modified HEI component scores of men (219612 with 3348 and 4187
cases, respectively ) and the breast, colorectal and lung cancers on women (169480
with 6647, 1846 and 2933 cases, respectively) together, where β11 = −1.

D.3 I-Spline Analysis Results for Modified HEI-2005 Components
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Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Whole Fruit Estimate 0.006 0.014 0.048 0.056 0.056

s.e (vs quintile 1) 0.079 0.071 0.084 0.064
p-value (vs quintile 1) 0.864 0.498 0.503 0.380

Total Fruit - Whole Fruit Estimate 0.901 0.000 0.006 0.031 0.038
s.e (vs quintile 1) 0.113 0.096 0.103 0.242

p-value (vs quintile 1) 1.000 0.948 0.760 0.877
Whole Grains Estimate 0.231 0.025 0.031 0.031 0.031

s.e (vs quintile 1) 0.050 0.057 0.093 0.187
p-value (vs quintile 1) 0.614 0.583 0.736 0.867

Total Grains - Whole Grains Estimate 0.098 0.000 0.000 0.000 46.629
s.e (vs quintile 1) 0.050 0.061 0.347 57.045

p-value (vs quintile 1) 1.000 1.000 1.000 0.414
DOL Estimate 0.002 0.014 0.035 0.039 0.039

s.e (vs quintile 1) 0.052 0.051 0.072 0.088
p-value (vs quintile 1) 0.782 0.497 0.586 0.658

Total Vegetables - DOL Estimate 0.133 0.005 0.037 0.083 0.093
s.e (vs quintile 1) 0.054 0.062 0.165 2.118

p-value (vs quintile 1) 0.922 0.556 0.614 0.965

Table D.1: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on modified HEI component scores of men (219612 with 3348 and 4187
cases, respectively ) and the breast, colorectal and lung cancers on women (169480
with 6647, 1846 and 2933 cases, respectively) together, where β11 = −1.

116



Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Milk Estimate 0.114 0.101 0.125 0.139 0.243

s.e (vs quintile 1) 0.048 0.044 0.060 0.056
p-value (vs quintile 1) 0.037 0.005 0.020 0.000

Meats and Beans Estimate 0.141 0.008 0.040 0.051 0.052
s.e (vs quintile 1) 0.166 0.156 0.161 0.158

p-value (vs quintile 1) 0.962 0.797 0.752 0.744
Oil Estimate 0.069 0.147 0.189 0.190 0.190

s.e (vs quintile 1) 0.065 0.059 0.067 0.063
p-value (vs quintile 1) 0.024 0.001 0.004 0.002

Saturated Fat Estimate 0.050 0.039 0.051 0.052 0.094
s.e (vs quintile 1) 0.049 0.049 0.074 0.162

p-value (vs quintile 1) 0.431 0.302 0.483 0.562
Sodium Estimate 0.000 0.006 0.048 0.133 0.206

s.e (vs quintile 1) 0.080 0.067 0.070 0.074
p-value (vs quintile 1) 0.942 0.469 0.059 0.005

SoFAAS Estimate 0.244 0.047 0.066 0.068 0.102
s.e (vs quintile 1) 0.065 0.058 0.069 0.075

p-value (vs quintile 1) 0.468 0.253 0.324 0.174

Table D.2: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on modified HEI component scores of men (219612 with 3348 and 4187
cases, respectively ) and the breast, colorectal and lung cancers on women (169480
with 6647, 1846 and 2933 cases, respectively) together, where β11 = −1.
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Unweighted Model Weighted Model Model Comparison

Gender Disease β̂k` s.e p-value β̂k` s.e p-value LR p-value
Male Colorectal Cancer -0.021 0.003 0.000 -48.156 4.158 0.000 63.746 0.000
Male Lung Cancer -0.015 0.002 0.000 -22.022 3.686 0.000 -2.762 1.000

Female Breast Cancer -0.001 0.002 0.737 -0.534 2.875 0.853 -0.078 1.000
Female Colorectal Cancer -0.015 0.004 0.000 -42.585 6.225 0.000 27.174 0.000
Female Lung Cancer -0.008 0.003 0.003 -18.845 4.785 0.000 6.736 0.009

Table D.3: I-spine analysis results of β̂k` for the logistic regression of the col-
orectal and lung cancers on modified HEI component scores of men (219612 with
3348 and 4187 cases, respectively ) and the breast, colorectal and lung can-
cers on women (169480 with 6647, 1846 and 2933 cases, respectively) togeth-
er, where β11 = −1, γ = 1.5. Unweighted Model–pr(Yik` = 1|Xij`, Zik`) =

H(αk` + βk`
∑J

j=1Xij` + ZT
ik`θk`), Weighted Model–pr(Yik` = 1|Xi1`, ..., XiJ`, Zik`) =

H[αk`+βk`
∑J

j=1{
∑Q

q=1Ijq(Xij`)ω̂jq}+ZT
ik`θk`] with constrain ωjq ≥ 0. LR–Likelihood

ratio test statistic.
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