RELATIVE RISKS ANALYSIS IN NUTRITIONAL EPIDEMIOLOGY

A Dissertation
by
YANQING WANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Raymond Carroll

Co-Chair of Committee, Bani Mallick

Committee Members, Veera Baladandayuthapani
Ulisses Braga-Neto

Head of Department, Simon Sheather

August 2014

Major Subject: Statistics

Copyright 2014 Yanqing Wang



ABSTRACT

Motivated by a logistic regression problem involving diet and cancer, we reconsid-
er the problem of forming a confidence interval for the ratio of two location param-
eters. We develop a new methodology, which we call the Direct Integral Method for
Ratios (DIMER). In simulations, we compare this method to many others; includ-
ing Wald’s method, Fieller’s interval, Hayya’s method, the nonparametric bootstrap
and the parametric bootstrap. These simulations show that, generally, DIMER more
closely achieves the nominal confidence level, and in those cases that the other meth-
ods achieve the nominal levels, DIMER generally has smaller confidence interval
lengths. We also show that DIMER eliminates the probability of infinite length or
enormous length confidence intervals, something that can occur in Fieller’s interval.

Furthermore, we study the real Healthy Eating Index-2005 (HEI-2005) data set
from the NIH-AARP Study of Diet and Health, consider a weighted logistic regres-
sion model in which there are multiple subpopulations, and multiple diseases within
each subpopulation. Based on this model, we present six different approaches to
form the confidence intervals for the relative risks of different diseases in different
subpopulations, including DIMER. The asymptotic distributions of the estimates for
the log(relative risks) by the maximum likelihood and the nonparametric bootstrap
method are provided. Next, the algorithms are presented to perform hypothesis tests
and likelihood ratio tests to check there are significant differences between our pro-
posed model and the other three logistic regression models or not. In addition, the
adaptive lasso and an estimator with bounded constrains are described for variable
selection and a novel algorithm to solve the nonlinear regression model with L; norm

penalty is proposed. The application of all those methods to the HEI-2005 data are

i



illustrated.

Additionally, we expand the linear function of nutrition components inside the
logistic regression model to a nonlinear case. More than that, we consider there
are some limitations from the knowledge of biology and nutrition and propose a
logistic regression model involving I-spline basis functions and an algorithm to solve
it. Application to the real HEI-200d data set and comparison to a logistic model

with total HEI scores are also presented.
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1. INTRODUCTION

This dissertation focuses on study of the real Healthy Eating Index-2005 (HEI-
2005) data set from the NIH-AARP Study of Diet and Health. One of the US
Department of Agriculture’s (USDA’s) strategic objectives is ‘to promote healthy
diets” and it has developed an associated performance measure, the Healthy Eating
Index-2005 (HEI-2005, see Guenther et al., 2008a,b). The HEI-2005 is based on
the key recommendations of the 2005 Dietary Guidelines for Americans. The index
includes ratios of interrelated dietary components to energy. The HEI-2005 comprises
12 distinct component scores and a total summary score. See Chapter 3 for a list of
these components and the standards for scoring, and see Guenther et al. (2008a,b)
for details. Intakes of each food or nutrient, represented by one of the 12 components,
are expressed as a ratio to energy intake, assessed, and ascribed a score.

The total score defined as the sum of these 12 nutrition components, has been
widely used to analyze the relationship between diseases, mortality and individual
food intake. Reedy, et al. (2008) show that in a Cox regression for colorectal cancer
in the NIH-AARP Study of Diet and Health, with diet assessed by a food frequen-
cy questionnaire (FFQ), higher HEI-2005 total scores are statistically significantly
associated with lower risk, with a relative risk of 0.72 for men and 0.80 for women.

In my research work, firstly I expand Reedy’s work to a weighted logistic re-
gression model. In the other words, we assume each diet component has various
weight in regression, although they are the same in Reedy’s model. Details for the
weighted model are given in Chapter 3. Based on it, one of our key goals to analyze
this data set is determining relative risk for each disease in different subpopulations,

which is closely related to the lengths of confidence intervals for some parameters in



the regression model. Therefore, the question arises to form the confidence intervals
of these parameters with reasonable lengths. Two usual approaches, the sandwich
method and nonparametric bootstrap, have been performed in simulation study of
the data set but both coverages are not favorable when compare with the nominal
coverage. In our simulations, estimated values from maximum likelihood estimator
(MLE) of these weight parameters have heavily tailed distributions which are not
close to normal distributions.

To have more accurate distribution approximation of the estimates, an model
transformation is performed. After completion of the transformation, the MLE es-
timates of these weight parameters, in turn, can be approximately considered as
ratios of the two means in some bivariate normal distributions. An usual technique
to build these intervals is introduced by Fieller (1932, 1954). In contrast to most
other methods, Fieller’s interval avoids the distribution approximation of the ratio
directly. Instead of it, it uses the distribution character of a new latent variable. This
gives widely application area than Hinkley’s method (1969) since their approxima-
tion needs the probability of positive denominator converge to 1. However, there are
several limitations of Fieller’s algorithm, which are described detailedly in Appendix
A.1. Our simulation results with the real HEI-2005 data set show while Fiellers in-
terval has correct nominal coverage probability in certain cases, it achieves this at
of cost of sometimes resulting in confidence intervals of enormous or even infinite
length, or even intervals that are the union of disjoint sets. Besides of that, under
come circumstances, it is invalid at all.

Consequently, there are many other existing methods in this area and most based
on the distribution of the ratio of the estimates of the two location parameters (Geary,
1930; Marsaglia, 1965; Hinkley, 1969; Deaton and Kamerud, 1978; Brody et al., 2002;
Cedilnik et al., 2004; Beyene and Moineddin, 2005; Qiao et al., 2006; Pham-Gia et al.,



2006; Sherman et al., 2011). Most often, a normal approximation to the distribution
is used, with subsequent intervals formed by Wald’s method. Hayya et al. (1975)
showed that, under certain conditions, the distribution of ratio can be treated as a
normal distribution with a second order Taylor expansion. In addition, parametric
and nonparametric bootstrap methods are also used.

After we investigating many other existing methods in this area, we came into
the conclusion that, for the problem of building a confidence interval for ratio with
our data set, except Fieller’s interval, the coverages of existing methods all are not
sufficiently close to the nominal values. And we have described the shortcomings
of the Fieller’s interval. Motivated by such a problem, a new methodology named
as the Direct Integral Method for Ratios (DIMER) is constructed, and details are
provided in Chapter 2.

After solving the problem of how to accurately estimate the confidence interval
for the ratio, based on the weighted model previously mentioned, I turned to analysis
the relative risks for different diseases in different subpopulations. For HEI-2005 da-
ta, besides Reedy’s work, George, et al. (2010) illustrate that higher HEI-2005 total
scores are associated with lower levels of chronic inammation among breast cancer
survivors. Chiuve, et al. (2012) show that the HEI-2005 total score and the Alterna-
tive Healthy Eating Index (AHEI) are significant predictors of chronic diseases such
as coronary heart disease, diabetes, stroke and cancer, and that closer adherence to
the 2005 Dietary Guidelines may lower the risk of major chronic diseases. The AHEI
is also associated with all cause mortality (Akbaraly, et al., 2011). Additionally,
there are some other works related to the HEI-2005 data sets (Fungwe et al., 2009;
Kipnis et al., 2009; Kipnis et al., 2009; Kott et al., 2009; Sinha et al., 2010; Tooze
et al., 2002; Tooze et al., 2006; Zhang et al., 2011).

As mentioned previously, for the HEI-2005 data, one of our main purposes is



to study the relative risk of different diseases in various subpopulations. In this
dissertation, I propose six different algorithm to analyze it. Details for the various
approaches and asymptotic distributions are provided in Section 3. Additionally,
hypothesis tests and likelihood ratio tests are performed to compare our proposed
weighted model with the other three, including the one used in Reedy’s work.
Furthermore, I propose two different methods, the adaptive lasso (Zou, 2006)
and an estimator with bounded constrains, for variable selection upon the weighted
regression model. One of the most famous methods to solve the lasso problem is
the Least Angle Regression (LARS) which was presented by Efron et al., (2004).
An efficient package lars in R has been widely used. By the coordinate descent
algorithm, Friedman et al., (2007, 2010) proposed solutions for regressions with L;
norm penalty, which resulting in significant time saving when compared to solutions
by LARS. Additionally, Wang and Leng (2007) introduced a method of least squares
approximation (LSA) for unified lasso estimation method. The basis of LSA was to
approximate a nonlinear regression model with L; norm penalty to a least squares
minimization problem with the same penalty, while there are numerous efficient
solutions for the latter one. Additionally, Wang and Leng (2007) suggested to use
the R package lars directly after obtaining the approximation least square expression.
Since there are quadratic terms for parameters in our nonlinear regression model,
even after the least square approximation, we could not use the lars package directly.
Therefore, we propose a novel algorithm to solve the nonlinear regression model with
Ly norm penalty and apply it to the real HEI-2005 data set with the weighted model.
Next, in order to study the influences of food intake amount on disease, I expand
the weighted model to a logistic regression model containing a nonlinear equation
about the diet intake amount. Some constrains from the nutriology and biology are

also involved here. Details of these constrains are described in Chapter 5. Combining



all these factors, I apply I-spline basis function (Ramsay, 1988) for the nonlinear
equation fitting in the logistic regression since it is always monotone increasing and
non-negative. In Ramsay’s work, the exact expressions of the I-spline basis functions
for the second order were provided and I expand them to the third order. And then
the application and analysis results in the HEI-2005 data are illustrated.

The arrangement for this dissertation is described as follows: In Chapter 2, I pro-
pose a new method named as the Direct Integral Method for Ratios (DIMER), which
has been used to calculate the confidence intervals for the two location parameters,
and the comparisons to some existing methods have been carried out through sim-
ulations. In Chapter 3, the structure of the Healthy Eating Index-2005 (HEI-2005)
is firstly described. Then a weighted logistic regression model is built and various
methods are proposed to calculate the relative risks for different diseases in HEI-2005
data set, including DIMER. Next, the applications in the nutrition data are illustrat-
ed. In order to compare the different models for the relationship between diseases
and nutrition diets, I apple Hypothesis test and likelihood ratio test in the Chap-
ter 4 to compare four different logistic regression models, and propose two different
methods for variable selection: positive bounded constrains and the adaptive lasso
method. Furthermore, I develop a novel algorithm to solve the nonlinear regression
model with L; norm penalty. Finally in Chapter 5, the weighted logistic model p-
resented in Chapter 3 is expanded to nonlinear equations for nutrition components
in a logistic regression, which combines some constrains from nutrition and biology.
Results of applications to real HEI-2005 data set are also illustrated. Conclusions

are summarized in Chapter 6.



2. THE DIRECT INTEGRAL METHOD FOR CONFIDENCE INTERVALS
FOR THE RATIO OF TWO LOCATION PARAMETERS

2.1 Introduction

The work in this Chapter is partially motivated by an analysis of the Healthy
Eating Index-2005 (HEI-2005, see Guenther et al., 2008a,b) data set from the NIH-
AARP Study of Diet and Health (Reedy et al., 2008). In that study, there are two
independent subpopulations for different multiple diseases, and we wish to estimate
and form confidence intervals for ratios of their relative risks. As shown in Chapter
3, after a model transformation method, this problem reduces to the well-known
problem of computing a confidence interval for the ratio of two location parameters.

As described in Chapter 1, performances of existing methods to form the confi-
dence interval of ratio are not favorable. Motivated by such kind of problem, we de-
velope a new methodology named as the Direct Integral Method for Ratios (DIMER).
This methodology is also based on the distribution of the ratio of the estimates of
the two location parameters, which we show can be computed easily by numerical
integration, in contrast to many other methods, followed by simulation to compute
a 100(1 — a)% confidence interval. In our simulation studies, we show that DIMER
closely achieves nominal coverage, unlike the Wald methods and the method of Hayya
et al. (1975). DIMER is also much faster computationally than the bootstrap meth-
ods, which is important in examples such as ours, where the model is a nonlinear
logistic regression based on samples of huge sizes (in tens of thousands or more).

In Section 2.2 we describe the methodology, while Section 2.3 compares various
methods via simulation studies. Simulations based on the actual data reinforce the

conclusions of the simulations in Section 2.3. Technical details and additional results



are given in the Appendix A.
2.2 Methodology
2.2.1 Qutline

Consider two random variables 77 and 75 which have density functions fi{(t; —
up)/v1} and fo{ (t2—u2)/va}, respectively, with means p; and po and standard devia-
tions vy and vy. In other words, f; and f, are the density functions of the standardized
version 717 and Ty, respectively. Let Fi(-) and Fy(-) denote the corresponding dis-
tribution functions. We are interested in making inference for the ratio p;/ps. We
will outline a series of cases where it is possible to compute easily the cumulative

distribution function of 7= T} /T5.
2.2.2 Independent Case

Suppose that 77 and T, are independent. We show the following result in Ap-
pendix A.2.

Lemma 1 Define

(1 = Fi[{z(pz + voz) — m}/oi)) fo(2)eap(z?)  if 2 < —pa/va,
9(z|z, pur, po, v1,v9) =

Fi[{z(pz + v22) — ua}/v1] fo(2) exp(2?) if 2> —pa/vo.

Then the cumulative distribution function of T =Ty /T5 is given by

[e.e]

pr(r < x) :/ g(z|z, p, po, vy, v2) exp(—22)dz,

—00
a quantity that is easily computed by Gauss-Hermite quadrature.

Variable = at here is defined as a possible value of 7, and then we define a partial

part inside the integral as g(z) for simplicity, which is a function of x and parameters
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(1, pr2, v1,v2). In Sections 2.2.3 and 2.2.4, the definitions for all z and ¢(z) are similar

as here.

Remark 1 If the parameters v; and v, are unknown, we can apply Lemma 3 using
their estimated values. However, we have found that a much more efficient approx-
imation can be developed in the case of normally distributed 77 and T5. Suppose
their estimated variances are 07 and 05 which are independent of each other, and in-
dependent of T7 and T, and have degrees of freedom d; and ds, respectively. Then,
both (T} — 1) /01 and (1o — pg) /v, follow the t-distribution with d; and dy degrees of
freedom, respectively. As an approzimation, from these t-distributions, we fix v and
02, and by making a change of variables, we get an approximation to the distribution
of (T1, Ty) which better reflects the estimation of (v%,735). We then apply Lemma 3.

Thus, g(z|x, p1, po, 02,03) is approximated by

oy (1 = Fyay[{z(p2 + 022) — pu }/01]) fran (2)exp(z?)  if 2 < —pa /0,
g<Z|ZE, M1, 2, Vg, UQ) ~

Fra, [{2(pe +022) — pa } /01 fray (2)exp(2?) if 2> —py /03,

where f; 4(-) and Fy4(-) are the t-density with d degrees of freedom and the corre-

sponding cumulative distribution function, respectively.

2.2.3 Dependent Case of Two Normally Distributed Variables with Known
Covariance Matrix
Suppose now that (77,7s) are jointly normally distributed with means (pu1, y2),
variances (v}, v3), covariance v1o and that (v?,v3,v12) are known. Let ¢(+) and ®(-)

denote the standard normal density and distribution function. We show the following

result in Appendix A.2.



Lemma 2 Define g(z|z, ju1, 12, v3, 03, v12) as follows. If 2 < —ps /vy, then

g(zla, 2, 07, 03, 012) = (2m) 21 = O[{a(pa + v22)

— (1 + 2v12/02) }ua [\ /303 — v},]) exp(2?/2).

If z > —ps /vy, then

g(z\:v,,ul,ug,v%,v%, Ul?) = (271—)71/2(1)[{'%(“2 + UZZ)

— (1 + zv12/v2) Yvo/ 4/ VIV5 — V7] eXP(ZQ/Q)-

Then the distribution function of T is

o0

pr(7 < :v)z/ 92|, g, pa, 07, v3, v12) exp(—2%)dz,

(e 9]

which again can be computed by Gauss-Hermite quadrature.

Of course, when vy, = 0, Lemma 2 is a special case of Lemma 1.

2.2.4  Dependent Case of Two Normally Distributed Variables with Estimated

Covariance Matrix

In this section, we discuss the cumulative distribution of the ratio 7 = Ty /T3
when T} and 75 are jointly normally distributed with jointly estimated variance and
covariance which have the same number of degrees of freedom d, and these estimates
are independent of T} and T,. These are the same assumptions noted in Fieller
(1954). Define the estimates of the variances and covariance of T and Ty as 0%, 03
and v1p. Let 7 = vyp/v3. For fixed n, write W = Ty — Ty, Then W and Ty are
independent. In addition, if v, 93 and U5 are computed from the sample covariance

matrix of normal random variables from a sample of size d + 1, then we also have
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that Ty — nT, and T; are independent of their estimated variances 03 — 21015 + n*03

and 92, which are independent of each other and also have d degrees of freedom.

We use the following algorithm, based on the approximation used in Section 2.2.2.

Under our assumptions, the variables Z; = {(T1—nTy)— (1 —np2) }/ /03 — 21019 + 1203
and Zy = (Ty — j12) /0y are independent and both have ¢-distributions with d degrees
of freedom As in Remark 1, we then make the approximation that the density of

(Ty,T,), having fixed the estimated covariance matrix, is approximately

Uy (0 = 20012+ 7°03) "2 fral{(t = mt2) — (1 — np2) }\J0F — 20012 + 0205 fr.af (t2 — pz) [0}

If 2 < —p9/vs, define

g(z|$7ﬂlaﬂ2a6%,@\§a612a77)

= (1= Fua [ (o = Mo+ 122) = G = m)}/ 5 = 202+ 758 ) w2,

while if z > — 9 /Uy, define

g(Z’lfL’, M1, M%i)\%?@\%?al% 77)

= Fa [{(a: )2+ 022) = (i — )}/ — 20re + m%} Fra2)exp(2?).

Then, using the same devise as in Remark 1 we have that

pr(?ﬁ 33) %/ Q(fo,m,uzﬁ%;@g:ﬁw,U)exp(_ZQ)dZ- (2-1)

o0

In practice, n is unknown, so we use 7] = 012/03 to estimate it.
2.2.5 Algorithm for Computing the Confidence Interval of Ratios

In the cases in Sections 2.2.2-2.2.4, the distribution function of 7 is expressed

as F(z;r) = pr(r < ;7 = pi/pus) when ps # 0. The ratio fiy/fis is an estimate
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of 7 = pi/ug, so that we can view F(z;1/1i2) as an estimate of the population
distribution function F'(x;r). Efron (1981) and Benton and Krishnamoorthy (2002)
pointed out that if we generate values 7, i = 1, ..., m, from F(x; i1 /1i2), we can make
inference about the parameter r using the distribution of the generated 7;’s.

The main difference between our approach and that of Benton and Krishnamoor-
thy is that instead of generating a larger number of 7;’s and then obtaining its per-
centiles, we compute the percentile of 7; directly. Consequently, our method is much
faster computationally. Specifically, our simulation results indicate that DIMER
usually needs less than 30 iteration steps to obtain the quantile of a distribution,
but in Benton and Krishnamoorthy (2002), they used m = 100,000 7;’s to get the
quantiles.

Define the «/2 quantile for F(x;jii/12) as Tajom/a,- Then an approximate
100(1 — )% confidence interval for r is (7o 25, /fis> T1—a/2f /7). Here we give the

steps of our iterative algorithm to obtain the quantiles.

e Step 1. Give two initial values of 74 /o, /i, 88 T, < 0 < 7, and both have suf-

ficiently large absolute values to make sure that 7, /oy, /5, is inside the interval

~ o~

(ral Y raQ ) ‘

e Step 2. Apply Gauss-Hermit quadrature to the cumulative distribution func-
tion of 7 to obtain cajo = pr{r < (7o, + Tay)/2}. If caje < /2, let 7, =
(Tay + Tay)/25 if oo > /2, let 7o, = (Pa, + Tay)/2; if caj2 = /2, stop the

iteration and let 7 /25, /5, = (Tay + Tas)/2.

e Step 3. Repeat Step 2 until c,/7 is close to o/2 and/or the difference |7, — 70,

is sufficiently small. Then we have 7o /93, /5, = (Tay + Tas)/2-

e Step 4. Repeat Steps 1-3 to obtain 71_q /9, /-

11



In summary, two different original points are given for the estimate of r,/9z, /.,
then with repeating Steps (1~2), the distance between these two points gradually
becomes smaller and smaller until converges to a single point, which is our expected
result. After obtaining the lower limit r, /o5, /5, of the confidence interval, then we
repeat steps 1~3 to obtain the upper limit estimate 7 _q /23, /5, Furthermore, since
this is a bisection method, it is absolutely non-sensitive to the starting values, and
the true value of /25, /3, OF T1—a/2[, /5, 1S certainly be included as long as the range

between the two original points are set large enough.
2.3 Simulations

In this section, we report simulation results on two simple linear regression mod-
els. The first part (Section 2.3.1) is to illustrate an application of the formulas in
Section 2.2.2 where the two variables are independent. The second part (Section
2.3.2) is an example to demonstrate the performance of our method developed in
Section 2.2.4 when the two variables are dependent with estimated variance and
covariance which are independent of the two variables and have same degrees of free-
dom. In both simulations, some other possible methods are outlined and compared
with our method. Since dependence case relies on normality assumption, it would be
important to evaluate how DIMER would perform if such an assumption is violated.
Therefore, in the second simulation, we also consider a case when 7T and 75 do not
have normal distributions. Furthermore, the confidence intervals’ coverage, which is
corresponding to the hypothesis test by the likelihood ratio test, is also compared at

here. More details of the simulations are available in the Appendix A.

12



2.3.1 Linear Model When the Two Estimates are Independent
2.3.1.1 Setup

Consider a linear regression model as,

Yy = Bio+ X1ifu + et =1, ...,nq;

Yo; = Bao + Xojfo1 + 25,7 = 1,...,ng,

" response and Xj; denotes the i predictor; in

where in group 1, Yj; denotes it
group 2, Ys; denotes the j response and X»; denotes the j predictor. And £1; and
g9 are independently normally distributed with mean zero and variance v? and v3,

respectively. Our interest is in the ratio of the two slopes, which is 91 /f511.

The model could be rewritten as follows for simple expression of the ratio

Yii = /810 + Bllez’w + 51727Z. - 17 ey 115

Yo = Bao + P Xojw + €25, 5 = 1,...,na, (22)

where we set #;; = 1 for identifiability, and then the ratio of slopes now is fB5; and
where w could be considered as the slope in the regression model for the first group
data or the interaction between two slopes when 11 set to 1.

Now our interest is to construct a confidence interval for S5;. The loglikelihood

function of the data is

L o —nilog(vy) — (207) 72320 (Vi — Bio + Xpw)?

—nzlog(vz) - (2@%)71/22;21(}/2] — 620 — ﬁQlXQj(.U)Q.
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The maximum likelihood estimates are

D o= —{XMYiu(Xu - X)X - X0}

Bor = {3002 Yay(Xay — Xo) } B2, X2, — naXs )}

First, define A = fyw and its estimate \ = {2202 Y0( Xy — E)}/{(Zyil)@] -
ngzz)}. Both (A — \)/?) and (& — w)/%,, follow independent standard ¢ distribu-
tions with degrees of freedom ny — 2 and ny — 2, respectively, where 03 = {(ny —
2)71 S0 (Vg — Bao — Xoj )2}/ (52, X3, —na Xy ) and 92 = {(m —2) 7 1, (Vi —
Bro+ X007} /(S2, X i Xy).

By the development in Section 2.2.2, the estimated cumulative distribution func-

tion of (o1 is

o0

pr(B\m <) z/ g(z|x,w,A,ﬁ?\,i}\f})exp(—f)dz,

—0o0

where

(1= Frny—2l{(w + 602) = AH/5A]) frms —2(2)exp(22) if 2 < —w /G,

g(zlx,w, A, %\/2\, i)\i)

Fyony—o[{z(w +5wz) — A}/GA] ft.n,—2(2)exp(2?) if 2 > —w/a,.

Applying the algorithm in Section 2.2.5, we obtain a confidence interval by
DIMER. To compare DIMER with other possible methods, in Section 2.3.1.2, we
outline an application of the Wald interval by inverting the Fisher score matrix,

Fieller’s interval and Hayya’s method in our linear regression model.
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2.3.1.2  Comparison with Other Possible Methods

To form a confidence interval for 51, one common method in practice for esti-
mating the variance of the estimates is the inverse Fisher score information matrix,

which is estimated as

ny /o 0 0 — >0 X1 [0}
e T o -~ J e
0 ny /05 DY i1 X003 Bo1d 5 X2;/03
~J ~ ~ J A~ ~7A J P
0 W2j=1X2j/U% W2Zj:1X22j/v§ Wﬁ?le:1X22j/”§

2 J ~2  ~7D J PN -~ ey J o
> Xlz/ BQle:lXQQj/U% W5212j:1X22j/U% Z?:llX%i/U%+B%IZj:1X22j/U%

Denote the standard error of 521 by this method as sez so that a (1 —a)100%

Bi2,Fisher
confidence interval for S is (521 — 20/25€3, Fisher’ 521 + Za/256E12,Fisher)v where 242
denotes the 1 — /2 quantile of the standard normal distribution.

In this linear regression setting, Fieller’s interval cannot be applied directly since
0% and i)\g are estimated independently. In this case, by the Welch-Satterthwaite
equation (Satterthwaite, 1946; Welch, 1947), the degrees of freedom of (@\2 + B3,02)
is approximately given by dp = (9% + 3,03)%/{(33)?/(n2 — 2) + (83,93)*/(m1 — 2)}-
We may use Zi’\gl instead of 51 in the expression to obtain the estimated degrees of
freedom dj = (95 + B202)2/{(% 2)?/(n2 —2) + (B%,92)2/(ny — 2)}. Then we have
a=w*— tfz* )20, b = —26\ and ¢ = A2 — ti};,a/28§ used in Appendix A.1. Here

p = 0 since & and \ are independent.

Remark 2 Fieller’s interval has a peculiarity in that sometimes it leads to an imag-
inary interval. Looking at the detailed description of Fieller’'s method given in Ap-
pendix A.1, we see that if b> — 4ac < 0, then there is no real solution to Fieller’s
method. Since this actually occurs in our simulations, we will say that when it does,

Fieller’s interval is “invalid’.
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Another method was proposed by Hayya et al. (1975) in a not very well-known
article. They suggested a normal approximation to the true cumulative distribution
function of the ratio 7 = T /T, obtained by a second order Taylor expansion. By
Monte Carlo simulations, they concluded that if the absolute value of the correlation
between T; and T5 is less or equal to 0.5, the coefficient of variation of T, is less
or equal to 0.09 and the coefficient of variation of 7} is larger than 0.19, the ratio

r =T, /T, is approximately normally distributed with

E(?) ~ (:uTl /NTQ) + U%QMTI /Mg)“z — PURUTy /:u%“gv

var(t) & v, uh /1y, + U Wy — 200007 iy [ 1,

where p is the correlation between 77 and Ty and 7 is corresponding to B\gl in the

model (2.2).
In our context, p = 0 since W and \ are independent. The conditions of Hayya

et al. (1975) thus reduce to only two: cv(@) < 0.09 and cv(A) > 0.19. This can be
thought of as

B /oy I (S X2 — m X0} < 0.00, 5o/ B/ {na(D, X3, — naXaD)}] > 0.19,

where 57 = (ny —2)"' Y01, (Vi — Bro + X1,@)? and 0% = (np — 2) 13212, (Ya; — B —
XgiA)2.
Assuming that the two conditions are satisfied, the distribution of 321 can be

approximated as a normal distribution with mean and variance

~ A~ ~ n 2 =
By Hayys = (L0 (C1, XT — X0 ) B,

~ PR ~ J —2 PO ~ n —2
0?5217Hayya ~ U%/{WQ(Z]‘:rXSj —na Xy )} + U%ﬂgl/{WQ(Zii1X12¢ —mXi )}
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A confidence interval with coverage probability 1 — « is constructed as ﬂﬁzl,Hayya +
za/ﬁ@l Hayya- In addition, we have applied the nonparametric bootstrap and the

parametric bootstrap; see the details in Appendix A.4.
2.3.1.8 Simulation Results

We conducted simulation studies to assess the performance of the six algorithms
in the linear regression model (2.2): the inverse Fisher score, Hayya’s method, the
nonparametric bootstrap, the parametric bootstrap, Fieller’s interval and our pro-
posed DIMER. For simplicity, in all settings, we fixed the variance of €1, and e3; to
be 1, and without loss of generality, let the intercepts 819 and f59 be 0. We generated
Xi; and Xy; independently from the standard normal distribution.

We considered two parameter configurations: (19, 820, 821, w)=(0,0,1,1) and
(0,0,1,0.75). For each parameter setting, we performed simulations for (ny,ns) =
(18,18), (25,25), (50,50). In each case, we generated 2000 data sets. Depends on
Efron and Tibshirani (1994), B = 400 was applied as the number of replications for
both nonparametric bootstrap and parametric bootstrap methods, and for the rest
part of this article, all bootstrap computations were adopt this value for B.

The results for the first parameter configuration (519, 520, 21, w) = (0,0, -1, —1)
with (ny,n9) = (18,18), (25,25), (50,50) are given in Table 2.1. Table 2.2 presents
the results for setting (50, B0, fo1,w) = (0,0,1,0.75) with (ny,ny) = (18,18),
(25,25), (50,50). QQ plots (not shown here) comparing the quantiles of Bay to the
quantiles of the standard normal distribution in the two parameter configurations
with n; = ny = 18 clearly show that for small to moderate sample sizes, normal
approximations are not appropriate.

In Table 2.2, when n; = ny = 18, the averaged estimation for (o1 is —2.85, while

the true value is —1.00. The reason for this difference is because beta follows a
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Cauchy likely distribution, and one of characteristics for this distribution is that it
has severely heavy tails. For example, the maximum estimation for the absolute value
of 321 has reached 3138 in this case, compared to its true value 1.00. Therefore, the
outlier is dramatically large. But even in such circumstance, the median estimation
for it is still 1.00, which is the same as the true value.

The inverse Fisher information matrix algorithm has the lowest coverage prob-
abilities. Hayya’s method has behavior somewhat intermediate between the inverse
Fisher score and the other methods, and it also has very low coverage probabilities
when the sample sizes are small.

The performance of two bootstrap methods is acceptable when the sample sizes
are relatively large. When the sample sizes are small to moderate, the coverage
rate of the bootstrap methods for the 90% confidence intervals are higher than the
nominal coverage probability but the coverage rate of the 99% confidence intervals
are lower than the nominal values.

Fieller’s interval has good performance overall in coverage. However, when the
sample sizes are small and moderate (n; = ny = 18 and ny = ny = 25), Fieller’s
interval can be invalid in the sense described in Remark 2. Even if it is valid, it
also has substantial probability to produce infinite confidence interval lengths. The
inverse Fisher information method produced the shortest confidence interval lengths,
but it is not a good method to apply here since the coverage rates are far below the
nominal values. Hayya’s method remains stable but has a low coverage when the
sample sizes are small. Compared with the two bootstrap methods, our method
obviously has markedly shorter lengths in the 90% and 95% confidence intervals

when the sample sizes are small and moderate, especially when (ny,ns) = (18, 18).
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Mean of Mean of Median of 90% Quantile of

Coverage Length Length Length
Method 90% 9%  99%  90%  95%  99% 90% 95% 99% 90%  95%  99%
cI cI cI c1 c1 cI o) S e) e c1 @) cI
n1 = ng = 18, cv(@) = 0.260, cv(A) = 0.265.

mean(B10, B20, B21,@) = (0.01,0.01, 1.10, 1.00), median(B10, B20, B21,®) = (0.01,0.01, 1.00, 1.00)
IF 84.05 89.40 94.60 1.63 1.95 256 1.09 130 1.71 2.83 338 444
HM 88.50 92.90 96.70 1.74 208 273 1.15 137 1.80 231 275 3.6l
NB 92.15 94.50 97.75 20.66 24.62 3235 1.67 1.98 2.61 31.39 37.40 49.15
PB 92.00 9420 97.35 38.84 46.28 60.83 1.49 1.78 234 2275 27.10 35.62
FI 89.85 95.05 99.35 oo 00 oo 139 1.80 3.08 428 825 00
DIMER 91.45 9590 99.50 2.69 492 63.53 143 1.88 3.35 3.74 6.12  37.32
b> —4ac<0 0.00 0.05 045
a<0 290 565 14.47

n1 = ng = 25, (B10,cv(@) = 0.211, cv(X) = 0.210.

mean(B10, B20, B21,®) = (0.00,0.00, 1.05, 1.00), median(Bio, B0, B21,®) = (0.00,0.00, 1.00, 1.00).
IF 86.15 92.15 96.50 1.35 1.60 211 095 1.13 149 217 259 3.4l
HM 90.15 9475 9820 1.12 133 175 097 1.6 152 1.65 197 259
NB 92,55 95.30 98.45 10.25 1221 16.05 1.17 140 183 7.55 899  11.82
PB 9255 95.45 9840 7.23 861 11.31 1.13 135 1.77 3.84 457  6.01
FI 90.15 95.90 99.60 oo 00 o 110 1.38 212 217 302  6.92
DIMER 91.15 96.30 99.70 1.78 275 10.96 1.12 142 223 220 3.06 6.74
b> —4ac<0 0.00 0.00 0.05
a<0 0.50 1.00 4.45

n1 = ng = 50, cv(@) = 0.144, cv(A) = 0.148.

mean(B10, B20, B21,®) = (0.00,0.00, 1.02, 1.00), median(B10, Bz0, B21,@) = (0.00,0.00, 1.00, 1.00).
IF 90.00 93.10 97.25 094 1.12 147 067 079 1.04 138 164 215
HM 90.65 95.50 98.65 0.71 0.84 111 067 0.79 104 095 1.13  1.48
NB 92.15 95.40 9855 084 1.00 132 070 0.84 1.0 1.10 131  1.72
PB 92.15 96.10 98.65 0.80 095 125 071 0.84 111 1.09 129 1.70
FI 91.20 9575 99.00 0.76 093 135 070 0.86 1.19 1.04 129 1.90
DIMER 91.50 95.80 99.10 0.77 094 136 071 087 121 1.05 131 1.94
b2 —4ac<0 0.00 0.00  0.00
a<0 0.00 0.00  0.00

Table 2.1: Confidence intervals for (5 in a simulation study with 2000 replications
and true parameter values (519, 520, 521,w) = (0.00,0.00,1.00,1.00) for the linear
regression model Yy; = B9 — Xyjw + €143 Ys; = Bao + ParXojw + 25. Values for
b? —4ac < 0 indicate percents in simulation that Fieller’s interval is invalid and values
for a < 0 represent percents of infinite lengths obtained by Fieller’s interval. IF-—
Inverse Fisher Score method, HM—Hayya’s method, NB-Nonparametric Bootstrap,
PB—-Parametric Bootstrap, FI-Fieller’s Interval and DIMER-Direct Integral Method

for Ratios.
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Mean of Mean of Median of 90% Quantile of

Coverage Length Length Length
Method 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%
CI CI CI CI CI CI CI CI CI CI CI CI

ni = no = 18, (B10, cv(@) = 0.346, cv(A) = 0.353.
mean(B10, Bao, Ba1, @) = (0.01,0.01, 2.85, 0.75), median(B10, B20, B21, &) = (0.01,0.01, 1.00, 0.75).
46 1.74

IF 83.60 88.60 94.15 4.51 5.38 7.07 1. 2.29 4.59 5.47 7.19
HM 86.45 91.65 95.55 2074.62  3544.48  4658.24 1.54 1.83  2.41 4.06 4.84 6.36
NB 93.35  95.10  97.75 74.05 88.24 115.97  4.54 5.41 7.11  105.09 125.22  164.57
PB 93.05 94.55 97.35  1634.42  1947.53  2559.48  3.55 4.23  5.56  94.25  112.31  147.60
FI 91.44  96.04  99.35 o oo o 2,13 2,97 7.75 oo ) o
DIMER 92.80 96.55  99.55 7.57 15.87 56.16 2.15 3.05 8.28  10.03 25.88  105.14
b2 —4ac <0  0.65 1.60 7.05

a <0 11.17  16.92  34.64

ni = ng = 25, cv(@) = 0.281, cv(A\) = 0.280.
mean(B10, B20, B21, @) = (0.00,0.00, 1.17, 0.75), median(B10, B20, B21, @) = (0.00,0.00, 1.00, 0.75).

IF 85.65 91.40  96.30 2.02 2.40 3.16 1.27 151 1.99 3.20 3.81 5.01
HM 89.45  94.15  97.75 5.06 6.03 7.92 1.30  1.55  2.03 2.69 3.20 4.21
NB 93.40  95.55  98.25 42.36 50.47 66.33 2.07 247 3.24  45.18 53.84 70.75
PB 93.10  95.50  98.30 53.39 63.62 83.61 1.91 228 2,99  35.70 42.54 55.90
FI 91.05 96.49  99.65 o oo o 1.59  2.11  3.90 5.72 15.03 oo
DIMER 92.40  96.95  99.75 4.53 9.82 35.54 1.62 216 4.15 4.64 7.96 61.76
b2 —4ac <0  0.05 0.15 1.10

a <0 4.20 6.96  19.26

ni1 = ny = 50,cv(@) = 0.192,cv(A) = 0.197.
mean(B10, B20, B21,®) = (0.00,0.00,1.04, 0.75), median(B10, B20, P21, @) = (0.00,0.01, 1.00,0.75)
9 1.0

IF 89.20  93.00  97.25 1.19 1.41 1.86 0.8 7 1.40 2.00 2.38 3.13
HM 90.80  95.30  98.45 0.99 1.17 1.54 0.89 1.06  1.39 1.43 1.70 2.23
NB 93.00 95.60  98.35 2.57 3.06 4.02 1.01  1.20 1.58 2.33 2.77 3.64
PB 92.75  96.10  98.65 3.79 4.52 5.93 1.00  1.19  1.57 2.19 2.61 3.43
FI 91.30 95.80  99.10 o oo 0 0.97 1.21  1.77 1.73 2.28 4.13
DIMER 91.55  96.05  99.10 1.16 1.52 3.70 0.98 1.22 1.81 1.75 2.31 4.23
b2 —4ac <0  0.00 0.00 0.00

a <0 0.05 0.25 1.30

Table 2.2: Confidence intervals for (5 in a simulation study with 2000 replications
and true parameter values (519, 520, 521,w) = (0.00,0.00,1.00,0.75) for the linear
regression model Yy; = B9 — Xyw + €143 Ys; = Bao + ParXojw + 25. Values for
b? —4ac < 0 indicate percents in simulation that Fieller’s interval is invalid and values
for a < 0 represent percents of infinite lengths obtained by Fieller’s interval. IF-—
Inverse Fisher Score method, HM—Hayya’s method, NB-Nonparametric Bootstrap,
PB—-Parametric Bootstrap, FI-Fieller’s Interval and DIMER-Direct Integral Method
for Ratios.
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This is true whether length is measured by mean length, medial length, the in-
terquartile range of length, or the 90" percentile of length, the interquartile range of
length shown in Tables A.1 and A.2 in the Appendix A. In the length comparison
for the mean, median, interquartile range and 90% quantile of the 99% confidence
intervals, the results from our method are occasionally higher than those of the non-
parametric bootstrap and parametric bootstrap, because the interval coverage rates
of the latter two methods are somewhat lower than the nominal coverage probability.
When the sample sizes are small, DIMER and Fieller’s interval have similar median
and interquartile ranges of lengths, but our method is much shorter in terms of mean

length and the 90" percentile of length.
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2.3.2  Linear Model with Two Dependent Estimates
2.3.2.1 Setup

Consider another simple linear regression model:
}/; = /B(XZ - M) + Eiai = 17 ey 1,

where the parameter of interest p is —1 multiplied by the ratio between the intercept
— B and the slope (, and ¢; is independent and identically normally distributed with
mean zero. If one wants to obtain the confidence interval for the intercept /slope ratio,
they can simply calculate the inverse value for limits the 3’s confidence intervals and
multiply by —1.

Let A = Bu and define X, = (—1,X) , where X = (X1,...,X,,)T. Then the

o~ o~

maximum likelihood estimates are (), )T = (X Xpew) XE Y, where (XT Xiew)™

new new new

is a generalized inverse of X X, ., and Y = (Y},...,Y,)T. The estimated covari-

A~ A~

ance matrix of (A, 8)" is 6%(X 1 Xpew) ", where 6% = (n —2)7' 5" (V; — A— B\Xi)Q.
Write the estimated variances as ﬁ% and @%, and write the estimated covariance as
@Xﬁ. Then 7&%, @% and 8&5 are independent of X and B and jointly estimated with the
same degrees of freedom n — 2.

Under these conditions, this case is particularly suitable for the application of
Fieller’s interval. Our intention here is to illustrate that a confidence interval con-
structed by our DIMER performs at least equally or even better than Fieller’s interval

in terms of coverage rates, but without Fieller’s method’s limitations on confidence

interval length.
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Using the results in Section 2.2.4, the estimated cumulative distribution of 1 is

pr(ﬂ < :L‘) ~ / 9(2|m7M/\»M/Bai)\?\ai)\éaﬁx,ﬂaﬁ)eXp(_ZQ)dZa

where 77 = i)\,\ﬁ/i)%, and g(z|x, py, uﬁ,@i,ﬁé,ﬁ,\ﬂ,ﬁ) is defined as follows.

If 2 < —pug/vs, define

g('zlx7ﬂ)\7/fb,375§7a[237@\)\,ﬁ7ﬁ)

= (1= Pun-a [{(@ = D)s + v32) = (o = ) }/[3R — 2000 + 203 ) Frn—2(2)exn(=),

while if z > —pu,, /v, define

g(z|xa;u'1a;u’2aﬁ%76§7612»n)

= Fin2 [{(x — ) (s +vp2) — (ux — M) }/\/ 03 — 2005 + 7203 | Jrin—2(2)exp(2?).

Accordingly, in order to compare the results, the other five methodologies, the
inverse Fisher score, Hayya’s method, the nonparametric bootstrap, the parametric
bootstrap and Fieller’s interval are also performed and the corresponding results are

presented in Section 2.3.2.2.
2.8.2.2 Simulation Results

We performed simulations on two test cases to compare the performance of
the six methods of forming confidence intervals: the inverse Fisher score, Hayya’'s
method, the nonparametric bootstrap, the parametric bootstrap, Fieller’s interval
and DIMER.

We generated ¢; and X; from independently standard normal distribution. The
number of simulations was 2000 and there were 400 bootstrap replications for each
simulation. Two cases were set as follows: Case 1, (8, 1) = (1.00,1.00). That is to

say, in the circumstance of intercept equals to 1.00, we established the confidence
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intervals for the ratio between intercept multiplied by —1 and slope. In Case 2,
(B, ) = (2.00,1.00). In the settings, we defined 8 = 2, that is ratio= 2. In order
to investigate DIMER’s performance under the non-normal condition, at here we
defined ¢; in response follows a skew normal distribution with zero mean, variance of
1 and skewness of 0.78. Under such circumstance, both Bﬁ and [ are not normally
distributed.And we also compared the coverage from likelihood ratio tests in this case,
although we did not obtain the lower and upper limits for the confidence intervals
from this method. Both cases were performed with sample sizes n = 10, 25, 50.

In the first case (Table 2.3), DIMER is always competitive with Fieller’s interval
in coverage and gives reasonable lengths of confidence intervals. More importantly,
it will never be invalid. In contrast, Fieller’s interval has a positive probability to be
invalid, especially if the sample sizes are small (n = 10). When n = 10, DIMER has
shorter lengths for the mean of 90% and 95% confidence intervals while it has a higher
mean value of 99% confidence intervals than the Hayya’s method since the coverage of
the latter approach is much lower than the nominal value. The median, interquartile
range and 90% percentile of the confidence intervals by the inverse Fisher information
and Hayya’s method are lower than DIMER, but they behave poorly in coverage,
where the interquartile range of length is shown in Table A.3 in the Appendix A. The
nonparametric bootstrap and the parametric bootstrap have much longer lengths
than the inverse Fisher score and Hayya’s method. However, their coverage rates
are still not very favorable. Fieller’s interval and our DIMER have good behavior in
coverage overall. A QQ plot (not given here) showing the quantiles of i when n = 10
over the quantiles of the standard normal distribution indicates that the distribution
of i1 has much longer tails than the normal distribution.

When the sample size is small (n = 10), DIMER and Fieller’e interval perform

better than the other four methods in coverage while when the sample size is large
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(n = 50), they are still the best in coverage. The values of the mean, median, in-
terquartile range and 90% quantile by DIMER are rather stable. It has longer lengths
of 99% confidence intervals than the other methods except Fieller’s interval because
their coverage rates are lower than the nominal value. Performances of the inverse
Fisher information and Hayya’s method are improved when the sample size increases
to 50, and DIMER and Fieller’s interval still perform the best. Interval lengths by
all method are quite close. We changed parameter values to (5, 1) = (2.00,1.00) and
¢; had a skew normal distribution with skewness of 0.78 in Case 2. The simulation
results are given in Table 2.4. Theoretically, DIMER relies on normality assumption
in case of dependent. However, even when this normal assumption was not satisfied,
the simulation results show that the performance of all the methods are fairly close
to that in Case 1 and DIMER still has the best performance compared to all other
method, especially when the sample size was small (n=10). The coverage from the
likelihood ratio test is the best among all methods except DIMER and the Fieller’s
interval, but in practical applications, generally speaking, it is not easy and straight-
forward to compute the confidence interval for parameters by using the fact that
twice the difference in these log-likelihoods follows a chi-square distribution. Details
of interquartile range of lengths are shown in Tables A.2 in the Appendix A.
Combining all these factors together, along with the much longer computational
time for the bootstrap methods, this simulation suggests that our DIMER is at least
competitive with and often superior to the other methods proposed in the literature.
Based on these simulations in this section, we recommend DIMER, as it is easy to
compute and it performs stably and reliably. Overall, it behaves the best in terms

of both coverage probability and confidence interval length.
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Mean of Mean of Median of 90% Quantile of

Coverage Length Length Length
Method 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

CI CI CI CI CI CI CI CI CI CI CI CI
n = 10, (B, u) = (1.00, 1.00), cv(B) = 0.385, cv(BA) = 0.343, p(B, BA) = —0.008.
mean(3, i) = (0.99, 1.06), median(8, x) = (1.01,0.98).

IF 89.70 93.05 97.05 77.28 92.09 121.02 1.51 1.80 2.37 5.13 6.11 8.03
HM 78.55 84.90 90.70 51.90 61.84 81.27 1.45 1.73 2.27 4.63 5.52 7.25
NB 93.00 94.55 96.70 236.37 281.65 370.15 6.96 8.29 10.89 132.71 158.14 207.83
PB 90.95 93.15 95.90 193.31 230.35 302.73 3.80 4.53 5.95 129.34 154.12 202.55
FI 91.39 95.74 99.30 o oo ¢S] 2.35 3.76 57.35 oo ] oo
DIMER 92.70 95.95 99.15 11.29 23.58 96.24 2.25 3.36 12.71 15.18 36.78 124.01
b2 —4ac <0 240 5.00  21.15
a <0 18.44 27.37 48.57

n = 25,(8,pn) = LLDO, 1.00),cv(B) = 0.214, cv(ﬂ//\’i) = 0.205, p(B, Br) = 0.005.

mean(3, g) = (0.99, 1.08), median = (3, u) = (0.99, 1.01).

IF 91.70 94.95 97.90 1.72 2.05 2.70 0.95 1.13 1.49 1.68 2.00 2.63
HM 87.70 93.10 97.40 1.53 1.82 2.40 0.94 1.12 1.47 1.60 1.91 2.50
NB 91.80 94.85 97.85 9.57 11.40 14.98 1.09 1.30 1.71 7.37 8.78 11.53
PB 91.75 95.00 98.20 8.63 10.28 13.51 1.09 1.30 1.71 4.34 5.17 6.80
FI 89.90 95.05 99.20 o oo &S] 1.08 1.38 2.19 2.28 3.29 10.03
DIMER 90.35 94.95 99.10 1.92 2.71 17.66 1.08 1.37 2.15 2.24 3.17 7.57
b2 —4ac <0  0.00 0.00 0.10
a <0 0.60 1.20 5.41

n = 50, (8, 1) = (1.00, 1.00), cv(B) = 0.141, cv(BR) = 0.144, p(B, Bf) = —0.011.

mean (B, i) = (1.00, 1.02), median(3, &) = (0.99, 1.00).

IF 91.90 95.60 98.25 0.70 0.84 1.10 0.66 0.79 1.04 0.93 1.11 1.46
HM 90.45 95.10 98.15 0.70 0.83 1.09 0.66 0.79 1.03 0.95 1.13 1.49
NB 92.10 95.30 98.10 0.91 1.08 1.42 0.69 0.82 1.08 1.14 1.35 1.78
PB 93.00 95.55 98.30 0.78 0.93 1.22 0.70 0.83 1.10 1.09 1.30 1.71
FI 90.60 95.05 99.50 0.76 0.94 1.38 0.70 0.86 1.21 1.07 1.33 1.98
DIMER 90.65 95.00 99.40 0.76 0.94 1.36 0.70 0.85 1.20 1.07 1.33 1.97
b2 —4ac<0  0.00 0.00 0.00
a <0 0.00 0.00 0.00

Table 2.3: Confidence intervals for p in a simulation study with 2000 replications for
linear regression model Y; = B(X;—pu)+e; with Setting I: (5, 1) = (1.00, 1.00). Values
for b? — 4ac < 0 indicate percents in simulation that Fieller’s interval is invalid and
values for a < 0 represent percents of infinite lengths obtained by Fieller’s interval.
[F-Inverse Fisher Score method, HM-Hayya’s method, NB—Nonparametric Boot-
strap, PB-Parametric Bootstrap, FI-Fieller’s Interval and DIMER-Direct Integral

Method for Ratios.
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Mean of Mean of Median of 90% Quantile of
Coverage Length Length Length
Method 90%  95%  99% 90% 95% 99% 90% 95% 99% 90% 95%  99%
CI CI CI CI  CI CI I CI  CI CI CI CI
n =10, (8, 1)=(2.00,1.00), cv(@)=0.190, cv(X)=0.174, p(&, A\)=0.021.
mean(B, )=(2.01,1.03), median(B, fi)=(2.00,0.99).
IF 91.05 93.60 97.65 090 1.07 141 077 0.92 121 135 161  2.12
HM 81.75 88.60 9475 080 096 126 071 084 1.11 1.26 150  1.97
NB 91.00 94.15 97.35 818 9.75 1282 094 112 1.48 881 1050 13.80
PB 88.30 93.15 97.00 5.10 6.08 7.99 0.79 094 124 239 285 3.74
FI 89.64 94.98 98.84 oo 00 co 089 1.15 1.94 205 3.08 19.86
DIMER 90.15 94.95 98.80 1.54 236 7.16 089 1.14 186 198 287  8.15
LR 91.95 95.95 99.35
b2 —dac<0 0.05 040  1.05
a<0 090 1.86  7.93
n =25, (8, 1)=(2.00,1.00), cv(@)=0.107, cv(X)=0.105, p(@, A\)=-0.013.
mean(B, 1)=(2.01,1.01), median(B, fi)=(2.01,1.00).
IF 90.20 94.75 97.85 0.50 0.59 0.78 047 056 0.74 063 0.76  0.99
HM 87.80 9235 97.45 048 057 0.75 046 054 072 063 075  0.99
NB 88.20 93.35 97.75 0.51 0.60 0.79 047 056 0.74 070 0.83  1.09
PB 89.65 93.95 97.75 0.51 0.61 0.80 048 057 0.74 070 083  1.09
FI 89.75 94.30 98.90 052 0.64 091 049 0.60 084 0.72 089  1.28
DIMER 89.80 94.30 98.80 0.53 0.64 090 049 060 083 072 088 1.26
LR 90.70 95.80 99.20
b2 —4ac<0 0.00 000  0.00
a<0 0.00  0.00  0.00
n =50, (8, 1)=(2.00,1.00), cv(@)=0.072, cv(X)=0.072, p(&, A\)=-0.021.
mean(B, 1)=(2.00,1.01), median(B, fi)=(2.00,1.00).
IF 89.90 9435 9885 0.34 040 053 033 040 052 041 048  0.64
HM 88.90 93.95 98.65 0.33 040 052 033 039 051 041 049  0.64
NB 88.35 93.40 98.25 0.33 040 052 033 039 051 041 049  0.65
PB 89.75 9440 98.90 0.34 041 053 033 040 052 043 051  0.67
FI 89.50 94.60 98.75 0.35 042 056 0.34 041 055 043 052 0.71
DIMER 89.55 94.55 98.65 0.35 042 056 0.34 041 055 043 052  0.70
LR 89.90 95.15 99.30
b2 —4ac<0 0.00 0.00  0.00
a<0 0.00  0.00  0.00

Table 2.4: Confidence intervals for p in a simulation study with 2000 replications for
linear regression model Y; = B(X; — ) +¢; with (5, 1) = (2.00, 1.00), where ¢; follows
a skew normal distribution with mean 0, variance 1 and skewness 0.78. Values for
b? —4ac < 0 indicate percents in simulation that Fieller’s interval is invalid and values
for a < 0 represent percents of infinite lengths obtained by Fieller’s interval. IF-
Inverse Fisher Score method, HM—Hayya’s method, NB-Nonparametric Bootstrap,
PB-Parametric Bootstrap, FI-Fieller’s Interval, DIMER-Direct Integral Method for

Ratios and LR-Likelihood ratio test.
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2.4 Discussion

I have developed the Direct Integral Method for Ratios (DIMER) for forming con-
fidence intervals for the ratio of two means. The method, based on analytical results
and further approximations to account for nuisance parameters, is computationally
efficient. Compared to other methods in the literature, our simulations indicated
that DIMER more nearly achieves nominal coverage levels while at the same time
resulting in shorter confidence interval lengths. The most important reason why
our DIMER method is better than the other compared methods is that there are
severely heavy tail in the distribution of the ratio, our DIMER method avoid this by
direct probability computation, while other methods are badly hindered at this part,
especially for those methods which based on the assumption that use the normal
distribution to approximate the Cauchy likely distribution.

Due to the this reason, the performances of the nonparametric bootstrap method
and the parametric bootstrap method are not favorable, although they are usually
used as benchmarks to compare with other methods. Firstly, they are still based on
the assumption that the ratio approximately follows a normal distribution. Second-
ly, when calculating the estimated standard deviation for this normal distribution,
few outliers due to heavy tails will severely affect the estimation for the standard
deviation by bootstraps, and consequently influence on the coverage and lengths of

the confidence intervals.
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3. RELATIVE RISKS ANALYSIS AND MODEL COMPARISON IN DIETARY
INDEX MODELING FOR HEI-2005

3.1 Introduction

Our goal is to expand the Reedy’s model to a weighted regression model, which
is described in Chapter 1 and then apply it to the relative risk computation for
diseases. Therefore, the structure of this Chapter is outlined as follows. In Section
3.2 we describe details the data structure, a weighted logistic model and methodol-
ogy to obtain estimates and their estimated variance. Section 3.3 compares various
methods to form the confidence intervals for relative risks of different diseases in
different subpopulations and provides the asymptotic theories for the estimates for
the log(relative risks) by the maximum likelihood and the nonparametric bootstrap
method. Discussion is shown in 3.4.

Details of the 12 nutrition components are listed in Table 3.1.
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Component Units HEI-2005 score calculation

Total Fruit cups min (5,5 x (density/.8))
Whole Fruit cups min (5,5 x (density/.4))
Total Vegetables cups min (5,5 x (density/1.1))
DOL cups min (5,5 x (density/.4))
Total Grains ounces min (5,5 x (density/3))
Whole Grains ounces min (5,5 x (density/1.5))
Milk cups min (10, 10 x (density/1.3))
Meat and Beans ounces min (10, 10 x (density/2.5))
0il grams min (10, 10 x (density/12))
Saturated Fat % of if density > 15 score = 0
energy else if density < 7 score = 10

else if density > 10 score = 8 — (8 x (density — 10)/5)

else, score = 10 — (2 x (density — 7)/3)
Sodium milligrams  if density > 2000 score=0

else if density < 700 score=10

else if density > 1100

score = 8 — {8 x (density — 1100)/(2000 — 1100)}

else score = 10 — {2 x (density — 700)/(1100 — 700)}

SoFAAS % of if density > 50 score = 0
energy else if density < 20 score=20
else score = 20 — {20 x (density — 20)/(50 — 20)}

Table 3.1: Description of the HEI-2005 scoring system. Except for saturated fat and
SoFAAS, density is obtained by multiplying usual intake by 1000 and dividing by
usual intake of kilo-calories. For saturated fat, density is 9 x 100 usual saturated fat
(grams) divided by usual calories, i.e., the percentage of usual calories coming from
usual saturated fat intake. For SOFAAS, the density is the percentage of usual intake
that comes from usual intake of calories, i.e., the division of usual intake of SOFAAS
by usual intake of calories. Here, “DOL” is dark green and orange vegetables and
legumes. Also, “SoFAAS” is calories from solid fats, alcoholic beverages and added
sugars. The total HEI-2005 score is the sum of the individual component scores.
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3.2 Basic Model
3.2.1 Data Structure and Setting

Although in this Chapter we only apply our methodologies on the experimental
data of cohort cancer on two subpopulations: male and female, all our notations and
formulas are for the general case which has multiple subpopulations with different
multiple diseases. Therefore, all equations and algorithms in this work allow the
general data sets enter into the models directly.

In the HEI-2005 data set, let j = 1,...,J denote the dietary component, where
J = 12. Let there be £ = 1,..., K, types of disease in subpopulation ¢, where
¢ =1,..., L denotes different subpopulation and there are ¢ = 1, ..., ns, individuals
with available data on disease k and gender /. In practice, we have ngy = ny.

The data observed are as follows.
e Let Y, denote a health binary outcome for person i, disease k and gender /.

o Let (X, ..., Xiye) be the FFQ values for person i either of density for the j*

dietary component or the HEI score for that component, j =1,..., J = 12.

e For each disease/gender, there may be different covariates/confounders, which
always include the FFQ for energy, and other possible terms like age, ethnic-
ity, education, body mass index, smoking, physical activity and etc. These

covariates/confounders are denoted as Zjyy.

To weight the component scores in a way that better captures disease risk, we

assume the following model

pr(Yiee = 1 Xij0, Zige) = H(age + 5kéz;']:1Xij€Wj + ZiOre). (3.1)
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where (517 = —1 for identifiability.
3.2.2  Scoring Method

Define © = (aq1, 611, 12, ... ,w) and based on the model (3.1), the the loglikeli-
hood scores functions are computed as follows.

For (0511, 911) with ¢ = 1, N
fi(©) = (1, Z,-Tll)T{Y;n — H(ony + 511237:1)(1‘3‘1% + ZiT11911)}.

For (e, Bre, Oke) when (k, £) # (1,1) with i =1,...,ngk=1,... K5l =1,...,L

Fire2(©) = (1,327 Xijows, Zigee) " {Yane — H (e + Bred_ iy Xijew; + Zigbre) }-

For w;

fikzsj(@) = 5keX¢je{Y2ke - H(Oéke + ﬁkujleiijj + chﬂke)}-

Suppose that there are totally ) parameters in ©. Define the @ x 1 vector of
scores as S(©), and the Fisher scoring Hessian @ x @ as F(©), which is defined as
the expectation of the derivatives of the loglikelihood scores. Then, if Oy, is the

current value of © in the iteration, the update is
@new = @curr - F71<@curr>s(@curr)-

Therefore, after updating Oy, gradually, all unknown parameters in the regression

model (3.1) can be solved.
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3.2.3 Sandwich Method
Rewrite the estimating functions in a more convenient as follows. Let W, =
(Winer ™, Wangs™, Wines™) . Here define Wiy = fir if (k,¢) = (1,1), and is equal to
0 otherwise. Define Wiy = (Vireon ™. Winear") ', where Wy = (Vyppmop s
" \I]ikaé/Z/T)T for ¢ = 1 and W, = (\I[ik@lé/T?‘"J\IIikae/Z'T)T for ¢ #
Ly Uy = finee if (K, 0) = (K',0), and 0 otherwise. Also we have W3 =

T
(fikes1, fikes2, - - -, fikess) -

Asymptotically

1/226 121 1 k ‘) Uire(©) ~ Normal(0,Vy(0)),

Ve(©) = N7 ngcov{d 1 Wa(©)},

if ny,...,n, — oo and max(ny,...,ny)/min(ny,...,n;) = ¢ < oo, and where N =

Z?ZlKgng.

Define i, = n; 'Y ¢ >0 1\Ifikg((:)), so that an estimate for Vg (©) is given by

Vo (0) = N1 S0 {300 Ware(©) — B, Wire(B) — i} ™ = Var(©) + 0, (1).

The asymptotic limit distribution of ) by the sandwich method (see Carroll,

Ruppert and Stefanski, 2006) is as follow.
N'2(© — ©) « Normal{0, A~ (0)V4(0)A~T(0)},

where A(©) = —N~1327_ 578 S E{0W;,(0)/00T} and a consistent estimate of
it is A(@) = _N_lzeﬂZk:Zl ?i1E{a\I’zk€<©)/a@T}
We use A7L(0)Vy(0)AL(0) to estimate A~1(0)Viy(©)A~T(O) and obtain the

estimated variance of MLE @
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3.3 Relative Risks Analysis

To be notice here, the asymptotic distributions of the relative risks are directly
related to the structure of the covariates X;,, where X;p = (X4, -, XiJg)T. Suppose
X,'s are regarded as random variables following some parametric model which may
be unknown, we define Ay = (B, wT)T, its estimate Ay = (B, @7)T, and the
random variable Si¢(Bre,w) = Sine(Are) = BreXtw. Let S, pe(Bre,w) be the o’
population percentile of the Six(Ake), 1.e., @ = pr{Sixe(Are) < Sare(Aie)}-

We are interested in estimating the relative risk for moving from the 10" to
the 90" population percentile of the Sike(Are), ie., we wish to estimate Ry, =
exp{S0.90 ke(Ake) — So.10.ke(Ake) }, and form a confidence interval for it. This problem
can be reduced to construct a confidence interval for Vs = So.90 ke (Ake) — So.10.ke(Are),
which we would then exponentiate.

If we assume that the observed X;,’s are regarded as a sequence of known fixed
constants, then this question transfers to estimate the relative risk for moving from
the 10 to the 90" sample percentile of the Sike(Age). Let §a7kg<Akg) be the ot"
sample percentile of the Sire(Ae), ie., @ = ny YO I Sike(Age) < :9\0(7“(/\“)}. In the
other words, the interested term changes to Ry, = exp{§0,907k5(/\k¢) — §0,107k4(Au)}
and again we need to form a confidence interval for it. Similarly, this question can
be reduced to construct a confidence interval for Vi, = 3\0,90,;6@(/\;{4) - §0.10,k€(Ak€)-

For simplicity, we use the second assumption in this article because if we assume
the X,,’s are regarded as random variables, the parametric models of X;’s need
to be built and estimated unknown parameters and might involve misspecification
problem.

In Section 3.3.1, we present the asymptotic theories of MLE for the log(relative

risks) and estimate by using the nonparametric bootstrap method.
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3.3.1 Asymptotic Distributions
3.8.1.1 Asymptotic Distribution of 17;%
Our estimate for Vy, is lA)kg = §0.907M(K1€g) — §0_107k5(7\k5). We show the following

result in the Appendix B.1.
Lemma 3 Define
Dy = {3§0.90,ke(/\u)/3Agg}va7"(/A\kﬁ){3§0.90,u(/\k£)/3Au}

+{08010,00(Are) JONT, Yvar(Are) {050 10,60 (Ake) /0N e}

—2{050 90.k¢(Ane) [ONE Y var(Rie) {050 10,46 (Ake) [ ONe}-
The asymptotic limit distribution of 9}% 15 given by
Nl/Q(ﬁkg — Vo) ~ Normal(0, Dyy)

3.3.1.2  Asymptotic Distribution of ]7,:;‘4

For the given paired data (Yjxs, Xir, Zire), we resample them with replacements
to a new data set named as (Y}, X5, Z5,) with b= 1, ..., B, and then compute the
V2, based on this sampled data set (Y2, X%, Z%,). In Appendix B.1.1, we prove the

following result.

—~ —~ ~ ~ —~ 2
Lemma 4 Define Vi, = B30V, and D}, = (B —1)"' 300 (V,ﬁg -~ V;;g) .

The asymptotic limit distribution of i)\,;} s given by

Bl/z(ﬁzg)_lm()//\;e — Vke) «~ Normal(0,1).
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In further work, we not only use this asymptotic distribution to construct the
confidence intervals for Vy,, but also run the hypothesis test to verify whether the
relative risks are statistically significantly different in four models.

In Section 3.3.2, we describe six methods to form the confidence intervals of Vj so
that the corresponding confidence intervals for the relative risks Ry, could be easily

constructed.
3.3.2  Confidence Interval Construction
3.3.2.1 The Sandwich Method and the Inverse Fisher Score Method

As a benchmark, a first way to form the confidence intervals of V, is using the
asymptotic distribution of ﬁkg in Section 3.3.1.1, where the estimated variance of ﬁkg
is achieved by the partial {05, xe(Age) /OAke} and the estimated variance of Ay from
the sandwich method. Accordingly, the confidence intervals of Ry, are formed.

Instead of the sandwich method, another common method to estimate the vari-
ance of ]A\M is the inverse Fisher score information matrix. After obtaining the
estimated variance, similarly, one can construct the confidence intervals of Ry, with
combining the partial {9S, xe(Ake)/ONke}

Depends on the results presented in Chapter 2, for the estimated variance of
B\k[, if calculated by the sandwich method, then the results’ accuracy is far from
satisfactory. And in that paper, we pointed out that B\M in model (3.1) can be
approximately written as a ratio of two normally distributed variables, which would
follow a Cauchy-like distribution. So that the normal distribution approximation for
Ekg by the sandwich method is not appropriate for the data set used in our study.
Furthermore, this will inevitably influence the accuracy of the estimated variance for
the estimates of the other parameters, since they are jointly estimated by using the

sandwich method or the inverse Fisher score matrix. For example, refers to other
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results from our study which is not presented here, we found the estimated variance
for aje is not accurate if the sandwich method or the inverse Fisher matrix was
applied, even though it is an intercept parameter instead of the weight parameter
such as B\kg.

However, if the targeted estimate is W,the estimated variance from the sandwich
method or the inverse Fisher matrix is very reliable and stable. This had been proved
by the results from the nonparametric bootstrap method. Therefore, we present the

process in Section 3.3.2.2 to estimate the confidence intervals of the relative risks.
3.3.2.2  the Direct Integral Method for Ratios

In that paper, for given similar logistic regression model, we proposed an algo-
rithm to compute the confidence interval of (., reliably and stably which can be

summarized as follows.
Define a new latent variable I'y; = frew and rewrite the model (3.1) as

H(apm + Bpm Y]y XijeUke i/ Bre + ZhOpm),  if (p,m) # (K, 0);

pr(Y;me = 1|X2]m7Z1pm) = { (32)

H(age + Z;’ZlXijeFu,j + Z7F 0ke), if (p, m) = (k,£),

with 811 = —1.

Define O = (aqy,011, 019, ..., Tke). We write the log-likelihood function with
latent variable I'y, but without w. Then it is easy to obtain the estimate Ok for
parameter ©* by the scoring method and the estimated variance by the sandwich
method. And in that paper, we also provided the algorithm to estimate the covari-
ance of (@, Tje).

Since we have fkg = Ek@, with a J x 1 dimensional constant vector e, B\kg can
be thought of as the ratio of two variables eTT, and €@, which follow a bivariate
normal distribution. For simplicity, we set e = 1. After setting Bkl is distributed as

ratio of two normal variables, we could apply the direct integral method presented in
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that paper to form the confidence intervals of By, which gives rise to the approaches
in Appendix B.1.2.1 to build the confidence intervals for V,, and get the according
confidence intervals of the relative risks Ry,.

In Section 3.3.2.3, we introduce a technology to avoid computing the confidence

interval of (3, for comparison.
3.3.2.3 Model Transformation Method

Since in model (3.3.2.2) we had defined I'y;, = Srew, and considered the estimated
variance of it is as reliable as the estimated variance of &, one might naturally ask
the question: why not to replace the direct integral method by the following one to
get the confidence intervals of the relative risks since it is more straightforward after
all? For this question, we will answer it detailedly in Section 3.4. First, we describe
the algorithm as follows.

Same as the definition §a7kg(Akg>, let S\a’kg(rkg) be the a'" sample percentile of
the Sige(Tie), ie., @ =y 'S T{Sike(Tre) < Sovie(Tie) }-

The relative risk moving from the 10" to the 90" sample percentile of the
§W(Fu) is expressed as Ry = exp{§0.907u(f‘k@) - §0_10M(1"kg)}, and oue purpose
is to construct a confidence interval for it, which can be reduced to form a confidence
interval of Qe = So.00,ke(Cke) — So10.ke(Tre).

Define the estimate for €, is ﬁke = §0_907kg<fkg) — §0.10,M(sz)- Similarly as

Lemma 3, we can write the following result.

Lemma 5 Define

Dq,, = {8§o.9o,ke(m)/8ng}var(fu) {a§0.90,k8(rk€)/arké}
+{8§0.10,k£(sz)/argz}var(fkl) {350‘10,1%(“4)/3“4}

_2{a§0.90,k£(Fk£)/ang}W”"(fke){ago.lo,ké(rkz)/arkzz}-

38



The asymptotic limit distribution of ka 1S given by
1/2/8
n, (QM — ng) ~ NOdel(O, DQM).

If (k,0) = (1,1), T} is equivalent to —&. For cases (k,0) # (1,1), we use the
model (3.3.2.2) to obtain the estimate of T’y and its estimated variance.
Therefore, a confidence interval of 2, is formed by the asymptotic distribution

of (AZM and this algorithm avoids to compute the confidence intervals of ;.
3.3.8 The Nonparametric Bootstrap Method

In Lemma 4, we have already described the asymptotic distribution of the esti-
mate of log(relative risk) by the nonparametric bootstrap method. As a matter of
course, the procedure in Appendix B.1.2.2 is applied to calculate the estimation of
the log(relative risk) and its distribution.

This procedure is then applied to the male and female cohort cancer 2005-HEI
data set. In this data set, we have only one disease, the cohort cancer, in two sub-
populations, male and female, where n; = 293616 (male), ny = 198246 (female) and
there are 3110 incident colorectal cancer cases (2151 in male and 959 in female). For
the covariates Z;is, there are 24 components for male, for one individual on disease
k = 1 and gender ¢ = 1; and for female, there are two more terms, so that 26
components for one individual on disease k = 1 when gender ¢ = 2.

However, refers to the other work of us mentioned previously, the presented sim-
ulation results show that, for the logistic regression of HEI-2005 case-control data
set (in which the control/case ratio is 3), if computed by the nonparametric boot-
strap method, the resulted coverage of confidence intervals for (i, is not even close
to the nominal value. We checked but did report in the paper that when we per-

formed the nonparametric bootstrap method to the whole data set, the coverage is
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as bad as in the case-control data set. Therefore, a further investigation on why the
nonparametric bootstrap method is not feasible in such circumstance is necessary.

The following content summarizes the process: firstly, transfer the model into
model (3.3.2.2). This allows us to estimate (i, ), based on which the corre-
sponding W = /F\M / Bkg can be back calculated. Usually, the results from this proce-
dure should be the same as the results obtained by applied this data set to model
(3.1). However, in some circumstances, the results from model (3.3.2.2) might be
diverged while model (3.1)’s results are converged, or different with model (3.1)’s
results even if both obtain converged results. Intuitively, we think the reason for this
might due to the very low incidence of cohort cancer among females in this data set.
In addition, the data applied in the nonparametric bootstrap method requires resam-
pling with replacement, which will cause even in this low incidence, there are still
duplicated patients data exists. Also, as Reedy, et al. (2008) pointed out that there
might be inherent differences between how men and women complete the AARP food
frequency questionnaire, giving rise to increased measurement error. These conclude
the possible reasons for the diverged results of model (3.3.2.2). On the other hand,
in model (3.1), we directly set the value for 3;; as —1, and since the male data is
more reliable and under this model it mainly dominates the whole simulated data
set, so the probability of estimation getting diverged results would be much smaller,
although the female data still have large influences on the estimated values.

Based on the above analysis, a modified methodology is put forward. For the
same set of simulated nonparametric bootstrap data, both model (3.1) and model
(3.3.2.2) were applied to compute the estimation of © = (a1, 011, 12, ..., w). If the
two results both converged and are the same, then this simulated data set will be
kept. Otherwise, they will be abandoned. We call this process as ‘ the modified

nonparametric bootstrap method’.
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3.4 Results and Discussions

The results in the cohort cancer HEI-2005 data set for the six different method-
ologies are presented and compared in Table 3.2. The six methodologies are listed as
below: the inverse Fisher method, the sandwich method, the direct integral method,
the model transformation method, the nonparametric bootstrap method and the
modified nonparametric bootstrap method.

There are two methods, the inverse Fisher score method and the sandwich method,
need to compute the derivative terms {8§0.907M(Au)/8AM} and {6’3\0‘107;{@(/\;%)/8/&“}.
Define Xiq) ke as :S”\QM(AM) = X[g]MAM. Since we assumed that X;,’s are regarded

as a sequence of known fixed constants, we have
OSake(Mre) Ok = (Xia e, X1y reBre)

where o = (0.10, 0.90).
Due to Xk is a 12—dimensional vector, one might concern the stability of
(Xﬁ],kgW,Xﬁ]7kgﬁk4)T~ An alternative way to compute the term aﬁa,kg(AM)/aAM

which in purpose decreases the stability is to involve more points in the computation

~

OSake(Mre)/Are = 2P+ 1) HY 3 SOV L X(ajsaues

where I is the 12 x 12 dimensional identity matrix and H, g, = (w,IfBk), and
Xiaj+ake is defined as follows. Rewrite the sample percentile §a,k5<Ak4> as npa =
S Y Sie(Are) < Sare(Are)} , and define nga+d = S0 H{Sie(Are) < Siajrane(Are)}-
Then let §[a]+d,u(/\ke) = X£]+d,szk€' It is obvious that totally there are 2P+1 points
involved in the derivative computation.

Accordingly, the derivative 8§a7kg(1“kg) /Ol'ke could also be obtained in this way.
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Therefore, for the computation of the relative risk 95% confidence intervals including
terms 8§a,ke(/\kg) JOAy or (9§a,u(f’k4) JOT ke, sensitivity studies were carried out for
the three presented methods’ performances, on the influences caused by different
number of points used in the derivative calculation. From Figure B.1 to Figure B.3
in the Appendix B.2 we can see, the confidence intervals have the widest range when
there is only one point involved in the derivative computation, and it strictly follows
the rule that, as the number of points increases, the range’s upper limit goes lower
while the lower limit rises higher. In other words, as the number of points increases,
the range of confidence intervals rapidly converged to narrow-band. Especially, P =5
is a critical value. In the results which is not reported here, we investigated all the
cases with various number of points included in derivative calculation, in the range of
1 to 201. As results show, when the number of points increased beyond 11 (P = 5),
the range becomes steady and the results do not have significant changes. Therefore,
we choose 11 points in the derivative computations for all the three methods.

Furthermore, our data set size is rather large (n; = 293616, ny = 198246) compar-
ing to 11, therefore, all 11 points are quite near the o' percentile and it is reasonable
to use the average of them to compute the derivatives.

Next, it is clear that both the sandwich method and the model transformation
method obtain exactly the same estimation of Ry, and it’s 95% confidence interval.
The reason is explained as following: since w and 'y, are from the same logistic
model up to a parameter transformation, there is potential relationship between the
estimated variances of & and /F\kg. The following formula can be proved by the delta
method

Hwngkevar(ﬂkg)HT’ﬁu = V&I‘(fkg) .

w

42



Furthermore, in the calculations for the derivative 8§a’k4(/\kg) JOAe and
8§a,ke(er) /OT ke, both use the same points of Xy, for given the same number of
points involved in the process. This is because for fixed X;s, its corresponding
Sike(Are) and Sire(I'ye) have the same order in their sequences. Define Xp o am =

(2P -+ 1)_125:7PX[Q}+C[7M, then we have 8§Q7M(Au)/8AM = HT

w,Bre XP, [a]+d, ke and

8§a7k4(1“kg) JOUke = Xpaj+ake- Therefore, these two methods result the identical es-
timated variance of )714@ and ﬁkg through analyses, and this consequently causes their
estimations on the confidence interval are exactly the same as each other.

Based on comparisons in Table 3.2 we can easily see: for the male relative risk
confidence intervals, the six presented methods obtain rather close results. The
reason is that, for the model’s identifiability, 8;; value had been set to be —1, so
Sekt = —Xﬁw. Therefore, the only variable considered at here is w. As we previous
stated, we could obtain the reliable estimated variance of its estimate & by using the
sandwich method or the inverse Fisher score matrix.

However, for the confidence intervals of the female relative risk, the results from
the direct integral method and the modified nonparametric bootstrap method are well
matched with each other. For the rest of methods, results of the inverse Fisher score
method and the sandwich method are lower than the ones from the direct integral
method and the modified nonparametric bootstrap method, while the nonparametric
bootstrap method’s results are higher than them. This observation is just same as
the one presented in the other paper of us. In that paper, the confidence interval’s
coverages for (B, from the inverse Fisher and the sandwich method are always lower
than the nominal value, while the coverage from the usual nonparametric bootstrap
method is too high on the contrary.

In Table 3.3, details of the comparison between the results from the nonpara-

metric bootstrap and the modified nonparametric bootstrap methods. Based on our
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screening rules, there are 2320 effective data sets among the total of 2500 nonpara-
metric bootstrap data sets. Therefore, the B value is set to be equal to 2320 in the
modified nonparametric bootstrap. Both of them obtain similar results for male,
while the results for female are different. In addition, the two methods have sig-
nificant difference when estimated the variable BM, but for the relative risk, their
estimations are close to each other.

For the aspect of computation time, due to the extremely large data amount, the
time consumption ratio between the modified nonparametric bootstrap method and
the direct integral method is around 7000, and this is a special case in which the
data set only considers single disease and two subpopulations. In the future, if these
formulas were applied to more complicated cases such as several different multiple
diseases in multiple subpopulations, the time consumption ratio will consequently
become even higher. In conclusion, regardless of reliability, accuracy and computa-
tion efficiency, the direct integral method is obviously the best among all the method

presented in this paper to compute the relative risks and their confidence intervals.
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Male Female

Relative Risk 95% CI Relative Risk 95% CI
IF 0.662 (0.585,0.750) 0.752 (0.654,0.866)
SM 0.662 (0.584,0.751) 0.752 (0.654,0.865)
DIMER 0.662 (0.593,0.740) 0.752 (0.584,0.912)
MT 0.662 (0.584,0.751) 0.752 (0.654,0.865)
NB 0.646 (0.573,0.742) 0.753 (0.562,1.046)
MNB 0.646 (0.572,0.740) 0.732 (0.560,0.925)

Table 3.2: Relative Risks and their 95% Confidence intervals for colorecta(u}l cancer on
HEI component scores with model pr(Yige = 1| X0, Zike) = H (e + ﬁkezjleijgwj +

chﬂkg), where ([, = —1.

sets.
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IF—the inverse Fisher method, SM-the sandwich
method, DIMER-the direct integral method for ratios, MT—the model transfor-
mation method, NB—-the nonparametric bootstrap method and MNB—the modified
nonparametric bootstrap method. The nonparametric bootstrap method has 2500
simulated data sets and the modified bootstrap method has 2320 simulated data




Nonparametric Bootstrap Modified Nonparametric Bootstrap
Male Female Male Female
10th perc Ty 0.268 0.340 0.275 0.347
95% CI for 10th perc T;;  (-0.195,0.707)  (-0.128,0.785  (-0.170,0.708) (-0.103,0.787)
90th perc Tj; 0.707 0.751 0.714 0.759
95% CI for 90th perc Tj; (0.211,1.180) (0.257,1.234) (0.229,1.180) (0.271,1.234)
Bke -0.996 -0.774 -1.000 -0.818
Relative Risk 0.646 0.753 0.646 0.732
95% CI for RR (method I) (0.573,0.742) (0.562,1.046) (0.572,0.740) (0.560,0.925)
95% CI for RR (Method II) (0.566,0.735) (0.546,1.012) (0.566,0.733) (0.565,0.932)

Table 3.3: Bootstrap results of Relative Risks for colorectal cancer on HEI component
scores. RR-relative risks. Method I—lzy percentile of relative risk from bootstrap.
Method I1-the exponent of V}, 4-1.96(Dj,)*/? based on the normal approximation of
log(Relative Risk). The nonparametric bootstrap method has 2500 simulated data

sets and the modified bootstrap method has 2320 simulated data sets.
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4. MODEL COMPARISON AND VARIABLE SELECTION IN DIETARY
INDEX MODELING FOR HEI-2005

4.1 Introduction

To verify there are statistical significant difference between our logistic model
(3.1) and the Reedy’s model or not, as well as other simple models, four different
models are compared in Section 4.2 by using the hypothesis test and the likelihood
ratio test. Furthermore, a simple technology of bounded constrains estimator in
Section 4.3 and the adaptive lasso method in Section 4.4 are interpreted to identify
which components in HEI components are more important to cancers. Additionally,
a novel solution algorithm for solving the L; norm penalty for nonlinear regression

model is proposed and we show applications in real HEI-2005 data set.

4.2 Model Comparison in HEI-2005

The definitions of these four models are listed as below

Model I pr(Yige = 1|Xy50) = H(ae + Bred -1 Xije),
Model II: pr(Yire = 1| Xi50) = H(age + ﬁkeZ;}:lejewj) with 11 = —1,
Model I11: pI‘(YiM = 1|Xz'jg, Zikg) = H(Oékf + 5]452;121)(@'][ + chg@kg)),

Model IVZ pI‘(Y;‘M = 1|X¢jg, Zikg) = H(CYM + ,BMZ;:IXW% -+ ZiTMHM) with ,811 = —1.

In which, Model IIT represents Reedy’s model, and Model IV refers to the model
we presented in Section 3.2.1. Hypothesis tests are carried out for the comparisons
between Model I and II, Model II and IV, Model III and IV, respectively. For
each pair, differences between the relative risks and the log value are then obtained.

The 95% confidence intervals are also presented for the difference and ratio of the
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corresponding relative risks.

The modified nonparametric bootstrap method, which was introduced in Section
3.3.3, is applied to compute the needed values for the hypothesis test. The details
are described in Section 4.2.1 and Section 4.2.2. As for the original data set, since
the relatives risk’s values from the different models are not independent,therefor,
all models are using the same simulated bootstrap data set. In Section 4.2.3, we
discuss how to compute the 95% confidence intervals of the difference and ratio for
the relative risks in the compared models, as well as how to perform the likelihood

ratio test for compared models in Section 4.2.4.
4.2.1 Hypothesis Test for Log Relative Risk

If we define two models required for comparison as Model.; and Model.,. For
both compared models Model,; and Model.,, the same b*" effective simulated non-
parametric bootstrap data set (Yixep, Xijop, Zikep) for £ = 1,..., L, k = 1,..., K,
and ¢ = 1,...,n, is taken into analysis, from which the log(relative risks) for the
disease k in the ¢ subpopulation for this data set can be obtained as 9};&01 and 171212@
, respectively. Based on the asymptotic normal distribution of log(relative risk), the
hypothesis test for these two models with equal log (relative risk) can be expressed

as
Ho : Vet = Viec2,

where Vi is the true log(relative risk) in Model.;, and Vi o is the true log(relative
risk) for Model,s.

As we proved in Appendix B.1.1, the requirement for the modified nonparametric
bootstrap method to satisfy asymptotic distribution condition is n,/B — oco. It is

clear that our data sets met this requirement, since they have n; = 293616(male),
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ny = 198246(female) and B is in the range [2000,2500]. Therefore, two samples

paired t-test can be applied. The test statistic can be written as

—

_ -1 7b
TS = (Udkf,cl,c2> dk;é,cl,cQ’

2

b _ b ) b _ Rp-1IyB o — 2
where dke,cl,cz = Vké,cl - Vke,cw du,d,cz =B dkzﬁ,cl,c2 and Odpoere2 — (B -

DS @~ Ty

In the hypothesis test, the test statistic obviously follows the standard student
t-distribution which has B — 1 degree of freedom. Its number of degree of freedom is
so large that we can approximately assume the test statistic has a standard normal
distribution.

In the following Section 4.2.2, the direct hypothesis test for the relative risks is

presented.
4.2.2  Models Comparison for Relative Risk

In the previous Section 4.2.1, the hypothesis test for log(relative risk) had been
discussed. Although the conclusion on the log(relative risk) test can be directly
transferred to the relationships of the according relative risk, we still present the
hypothesis test’s procedure which are straightly applied to the relative risk as follows.

According to the asymptotic distribution of log(relative risk), under the same
condition ny,/B — oo, the relative risk can be expressed asymptotically using the

delta theorem
B1/2{exp(i}\,§£) — exp(Vie) } « Normal|0, {8exp(ng)/8V,;fg}ﬁ,:e{aexp(vkg)/8ng}].

Furthermore, the null hypothesis which results the equal relative risks for both
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Model,; and Model.; can be written as

Hoy : exp(Viee1) = exp(Vie,e2),

where exp(Vis1) is the true relative risk in Model.;, and exp(Vic2) is the true
relative risk for Model,,.

Correspondingly, the statistics for this test is

_ _ (-1
TS - TS - (O-dkﬂ,cl,c?) dkf,cl,c27 )

b _ 15b 13 b _p-1\xB 2
where dké,cl,cQ = eXp(Vké,d) - eXp(Vké,d)’ dkz,c1,c2 =B >, de,cl,cQ and og,, ., ., =

1B ™
(B - 1) ! szl(dzé,cl,d - d2£,01,02)2'

As same as in Section 4.2.2, the modified nonparametric bootstrap method is
utilized to compute the test statistic. Similarly, with the large value of B, the test

statistic T'S approximately normally distributed.
4.2.8  Confidence Interval of Difference and Ratio of Relative Risk

Another approach to the comparison for the relative risks’ statistical difference
between two various models, is to construct the confidence intervals for their differ-
ence and ratio.

After obtained the relative risks from the modified nonparametric bootstrap
method, define their difference and ratio as k%, = exp(ﬁfc’g’d) - exp(ﬁ,ﬁaﬁ) and
Ae, = exp(ﬁk@, cl’ — 912@,(:2)’ the ratio of relative risks, respectively.

Repeat the above procedure for b = 1, ..., B, the resulted 95% confidence interval
for the difference and ratio of the relative risks are (k%, & 1.96se, ) and (v, £

1.9636%2[), respectively.
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4.2.4  Likelihood Ratio Test

We also applied the likelihood ratio test to examine whether statistical differences
were existing in the four different models. The test statistic equals to two times the
negative difference between the log-likelihood functions for the null model and the
alternative model. Furthermore, it has a chi-distribution, and its degree of freedom
equals to the difference between the numbers of variables for the alternative model

and the null model.
4.2.5 Results

The comparisons of relative risks between models are tabulated in Table 4.1,
and the results of likelihood ratio tests are presented in Table 4.2. In this study,
the modified nonparametric bootstrap method is applied. In total, there are 2500
simulated nonparametric bootstrap data sets being analyzed, in which effect data
sets are B = 2316. The results in Table 4.1 show that, for the three pairs of models
in comparison (model I vs model II, model 1T vs model IV and model III vs model
IV), the relative risks of cohort cancer for female do not have statistical significant
difference. A reasonable guess for this, is that, in the questionnaire survey on daily
diet, the answers from females are not as accurate as the answers from males (in
other word, women usually incline to conceal their true diet information). Turn
to the males’ relative risks for cohort cancer, when covariates Z are not taken into
consideration, the relative risk computed from the overall data set of HEI-2005,
has statistical significant difference compared to the relative risk which is obtained
from the total score of the HEI-2005 components. If covariates Z were included, in
other words, when the FFQ for energy, age, ethnicity, education, body mass index,
smoking, physical activity....etc. were taken into consideration, we also come to the

same conclusion.
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Model I vs Model IT Model IT vs Model IV Model III vs Model IV
Male Female Male Female Male Female

Ay, 0.09 0.14 0.01 -0.04 0.12 0.15
TSAV“ 2.11 1.50 0.19 -0.67 2.43 1.27
p—valueAvk[ 0.03 0.13 0.85 0.50 0.02 0.20
ACXP(VM) 0.06 0.10 0.00 -0.03 0.08 0.11
TSAVM 2.10 1.51 0.17 -0.66 2.39 1.27
p—valueAexpww) 0.04 0.13 0.86 0.51 0.02 0.20

95 % CI of DRR  (0.00,0.11) (-0.03,0.23)  (-0.03,0.04) (-0.11,0.06)  (0.02,0.15) (-0.06,0.28)

95 % CI of RRR  (1.00,1.18) (0.94,1.36) (0.95,1.06) (0.86,1.07) (1.02,1.25) (0.90,1.43)

Table 4.1: Relative risks comparisons between four different models by the modi-
fied nonparametric bootstrap method with B=2316. A,, ,—mean of the difference of
log(relative risks). TSa,, —test statistic of log(relative risks). p-value Ay, P-value of
the hypothesis test for log(relative risks). Aexp,,)-mean of the difference of rel-
ative risks. TSAeXp (Vke)ftest statistics of relative risks. p-valuey, eXp(ka)fp—value of

the hypothesis test for relative risks. DRR-Difference of relative risks. RRR-Ratio
of relative risks.
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Model I vs Model II  Model III vs Model IV Model II vs Model IV
Test Statistics 26.573 33.037 769.691
Degree of freedom 11 11 50
p-value 0.005 0.001 0.000

Table 4.2: Likelihood Ratio tests between four different models, where the test s-
tatistics follow chi-square distributions.
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On the other hand, when weight factor is assigned to each component of HEI-
2005, no matter the computation is based on p-value or on the confidence intervals
of difference and ratio, it is clear that the resulted relative risks for male have no
statistical significant differences, regardless whether the covariates Z are included or
not.

However, if the likelihood ratio tests were performed, all the three pairs of models
in comparison (model I vs model I, model IT vs model IV and model III vs model
IV), show that there are statistical significant differences. The detailed results of the

likelihood ratio tests are given in Table 4.2.
4.3 Variable Selection by the Bounded Constrains

The following method is applied to bound all w; (j =1,...,J) as positive.
1. Run the analysis in the original model.

2. Fix «, 3,6, then update w with constrain that they must be positive.

3. Fix w, update «, 3, 0.

4. Repeat steps 1-3 until it converge

We performed this bounded constrain algorithm by using the Matlab function
‘fmincon’, and results are given in Table 4.3. The estimates from the original data
set, their standard errors, and p-values for individual components are also provided
for comparison. We see that three components in HEI-2005 were adjusted to zeroes
with constrains that w; > 0, they are ‘“Total Fruit’ with original estimate 0.120 and
p-value 0.958, ‘Meats and Beans’ and ‘Saturated Fat’ with original negative estimates
—1.646 and —0.706, p-value 0.217 and 0.360, respectively. The other terms are rather

near the original estimates and only have trivial changes.
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4.4 The Adaptive Lasso Method

We assume that model (3.1) contains both significant and insignificant dietary
components and then propose the adaptive lasso for variable selection (Zou, 2006).
Let A = {j : w; # 0} and further assume that |A| = Jy < J. Without loss of
generality, we assume that A = {1,2,...,Jy} and a two-step estimating procedure
for w; is described as follows.

Step I Let @ = (age : 1 <k < Kp, 1 <0< L)Y 0=(0,: 1 <k<K,1</(<
L)t and w = (wy,...,ws)T. By assuming that B, are known, denote the negative
log-likelihood function as £(a, 8, w) = —logP(Y|X, Z) = =37 315 S (YVirdog(pire)
+(1 — Yire)log(l — pire)}, where pie = H(ap + 51@62;7:1)%4% + ZjOre).  Let
©o = (@10,...,050)" be the unpenalized estimate of w minimizing the negative
likelihood function. Then @ is a root-n consistent estimate of w (i.e., VN (@ — w)
converges to a Normal distribution.). As given in Zou (2006), we pick a v > 0
and define the weight vector t = (f,...,t;)T with t; = 1/|@;0|". The estimates of
(cr,0,w) are given by

(@,0,0) = arg min){?ﬁ(a, 0,w) + Ao e}

a,0,w

where \y is a regularization parameter controlling the amount of shrinkage, and @ is
the adaptive lasso estimates of w. Let Ay = {j : ©; # 0}. Then & = (@} , @LA%)T,
where @y = (@)1 j € Ay) and Dajay, = (@51 j € A/AY).

Step II. We refit the model by using the subset A% of (1,..., J) selected from Step
I Let w}, = (wj : j € Ay). Then the estimates of (a, 0, w. ) denoted as (, 0, Wis )

are obtained by minimizing £(«, f3, Q,w;*N) subject to w; > 0 for all j € A}, where
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B=Bre:1<k<K,1<l<L)" and

L(a, 5,0, WZ;*V) = _22:1215:@1 i1 {Yirdog(pie) + (1 — Yire)log(1 — o)},

Pie = H(owe + Bred_ jeas, Xijow; + ZiOxe).

An iteration algorithm to obtain the estimates for the adaptive lasso method is

shown in Section 4.4.2.
4.4.1 Oracle Properties of the Adaptive Lasso Estimator

Let Ty be the 377, K-dimensional vector with the ( ﬁl_:ll K, +k)™ element being
1 and others being 0, and Zj;, = {(0j ,... 70dT(k,1)5)7 Zk, (Og(k“)@a . ,OZlFKLL)}T,
where dj, is the dimension of Z;;,. Let d = Z?:lKé‘l‘Zk,gdkﬁ‘J- Define (Qixt) 41 =
XL, Z2,", B X ), Vi = pi(1 — pirg), Quxa = {Qir : 1 <i <y, 1 <k < K; 1<
¢ < L}, and Vis a N x N diagonal matrix with Vj;; as its diagonal elements, where

9 T Y Y
N =3, Kmy. Assume that Q" VQ/N — X, and let ¥ = , where

Y91 Mg
Y11 is a dy X dy matrix and dy = Z?ZlKg + Zk,ﬁdkl + Jp.

Lemma 6 Suppose that Ay/vV/N — 0 and \yNO=D/2 — oo, Then the adaptive

lasso estimates satisfy:

i) Tim P(Ay = A) = 1,

i) VN{@", 0", 0" = (",6%, )"} = Normal(0, $7}1),

where Wy = (W;:j € A) and wa = (w; : j € A).

Proof details of Lemma 6 are provided in Appendix C.1.
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4.4.2  Algorithm for Ly Norm Penalty in Non-linear Regression

Generally, assume our target is to minimum the function with L; norm as
argmin{®(0) + 7\l ), (4.1)

where © contains all unknown parameters, w; denotes parameter with penalty for
Jj=1,...,J, and }; is the tuning parameter for w;.

Let ©* be the minimizer to function ®(O), as
0 = argming {®(0)}.
By Taylor expansion of ®(0) at ©*, we have

®(O) = B(O)+{09(6%)/96}T(0 — 6*) +1/2(6 — 6%)T{5*®(6*)/00%}(6 — &)

~

)+ (0 -67)V(er)(© - 6),

@

= O

where C(0%) = ®(0*) and V(0*) = 1/2{0®(67)/86?}, both are constants for

unknown parameters ©; and V' (©*) is symmetric and non-negative defined.

Therefore, Eq(4.1) can be written as

argmin{(© — ")V (6")(0 — 0") + 7 Ajlwj|}. (4.2)

Separate © into two parts ©_,, and w, where w = (wy,...,ws)T are parameters

with penalty and ©_, contains all other parameters except w which do not have
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penalty. Without loss of generality, Eq(4.2) can be re-written as

~ V V "
argmin({(0_, — @*—w)T7 (w— @*)T} (S O_.,

Vw7®,w Vw
(O — 6" ) (w=3"}" + 57 Ajlwj])
— argmin[(©_, —0* ) Vo__(0_u — 0" ) +2(0_, —0" ) Vo__ wl(w—a*)

+(w — (:J*)TVW(M — (:1*) + ijl)‘ﬂwj”'

Consequently, based on the current estimate @ for w, we update ©_,, by
0., =0, — (Vo) We ,ul@—o. (4.3)

For updating parameter w;, assume current estimates for other parameters ©_,
and w, with p # j are O_, and Wy, respectively. Define w; is corresponding to the

hjth element in ©, hence, for fix current estimates of ©_,, and w,, we minimize the

following equation

argmin{2(w; — &7)3_,, ., Viym (O — 0:) + (wj = @) Vi, + Ajlw;l}.

Assume w; > 0, the partial of above function to w; is
2Zm¢thhjm(@m — @:n) + 2(&)]' — @;)thhj + )‘j'
Thus, the solution of w; with w; > 0 is

05 = 3 in, Viym (Om — ©5)/Vin, — Aj/(2Vin, )
if A/ (2Visn,) < O = X s, Vingm (O = ©3)/ Vi

, otherwise.
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Similarly, we obtain the solution of w; with w; <0

éjn - Zm;éhj thm(Gm - (:):n)/vhjhj + Aj/(2vhjh.7) )
if A/ (2Vi;n,) < ~(6;, - 2 mth, Vijm(Om — é;kn)/vhjhj);

0 , otherwise.

In practice since the sign of w; is unknown, a reasonable estimate is the sign of
or — Zm#jvhjm(ém - (:);‘n)/thhj because ©F — Zm;éhj‘/h].m(ém - (:);‘n)/thh]. is
the estimate of w; to minimize function ®(©) based on current estimates of all other
parameters.

We use ©F as the initial guess of ©, update w; one by one for j = 1,...,J, and

then update ©_,,. Repeat the updating process until it converges.
4.4.3 Details of Procedure

Details of variable selection by the adaptive Lasso are as follows.

1. Run the analysis in the original model.

2. Run the adaptive Lasso only the w’s to update the estimates of the all unknown
parameters.
(a) Separate the data in 10-folds.

(b) For fixed Ay, by the modified scoring method, use 9 folds are training

data, and 1 fold as test data, to calculate the prediction errors.

(c) Repeat it until all folds has be treated as test data, add all prediction

errors together for this Ay.

(d) Repeat all interested values of Ay, and find out the value of Ay which

minimize the prediction errors, define as Aq.
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3. For \g, use all data set to calculate all unknown parameter except (¢, and

remove any component score in HEI 2005 whose w; = 0.

4. Refit the original model (3.1) subject to w; > 0 with all parameters except the

removed components in w by using the procedure described in Section 4.3.

4.5 Result of the Adaptive Lasso

During the procedure of cross validation, our calculations for the colorectal can-
cer data in which 293615 men with 2151 cases and 198245 women with 959 cases,
show that this model apparently has the smallest prediction error with tuning pa-
rameter Ay = 0.5. Figures C.1 and C.2 in Appendix C.2 show the prediction error
versus tuning parameter \y. For better understanding the relationship between tun-
ing parameter value and performance of the adaptive lasso algorithm, we compared
analysis results by using procedure in Section (4.4.3) with six different values of Ay
at (0.100, 0.250, 0.500, 1.000, 2.000, 5.000) with v = 1.5.

Table 4.4 gives the results of the colorectal cancer on HEI component scores of
men and women together. If one of the terms in w is removed by the 3 step of the
methodology introduced in Section 4.4.3, then its position in the table will be empty.
While, if this term is kept through the 3** step, but equals to 0 after the bounded
constrain in the 4" step, then its value is written as 0.000 in the corresponding
position. As Ay value increases, more and more terms in w will be removed or
written as 0.000. Furthermore, terms in w with negative MLE and large p-values
usually are kept by the adaptive lasso with small Ay and adjusted to 0.000 by the
positive constrain, and then often been removed by the adaptive lasso as A\ increases.
It is clear that whether one component will be removed or not is depending on the
value of Ay, the individual p-value of this component and the sign of its MLE.

Next, we introduce an algorithm to compute Wy gr as follows.
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e Obtain @ by the score method.
e Apply the the adaptive lasso method to get Wurs.
e Remove j HEI component if ©az5; = 0.

e Obtain Wy, by refitting model with residual components and constrain that

@New Z 0
® Unpr = Wnew X /(X;;ax@New)-

e Use the delta method to get the estimated variance for Wy g;.

Table 4.5 gives the result of Wyp; for the colorectal cancer data set, in which
there are 293615 men with 2151 cases and 198245 women with 959 cases. Table
4.6 shows the result for the colorectal and lung cancers on HEI component scores
of men (219612 with 3348 and 4187 cases, respectively ) and the breast, colorectal
and lung cancers on women (169480 with 6647, 1846 and 2933 cases, respectively)
together, in which both genders have 38 covariates on smoking except HEI scores.
For eliminating the multicollinearity between Total Fruit and Whole Fruit, Total
Grains and Whole Total Grains, and Total Vegetables and DOL, Table 4.7 displays
the Wy gy for the later data set on ‘Whole Fruit’, ‘Total Fruit - Whole Fruit’, ‘Whole
Grains’, ‘Total Grains - Whole Grains’, ‘DOL’ and ‘Total Vegetables - DOL’, where
other HEI score components are kept the same.

It is clear that in the regression of colorectal cancer data, ‘Milk’, ‘Whole Grains’
and ‘Oil” are three key factors of nutrition components and have significant effects on
the disease. Table 4.6 show that in the regression of the colorectal and lung cancers on
HEI component scores of men and the breast, colorectal and lung cancers on women

together, key factor of nutrition elements are ‘Milk’, “Total Grains’, ‘Sodium’, ‘Oil’,
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‘SoFAAS’ and ‘DOL’ and they have significant effects on the diseases. If we change
components of ‘Total Fruit’, ‘“Total Grains’ and ‘Total Vegetables’ to ‘Total Fruit -
Whole Fruit’, ‘Total Grains - Whole Grains” and ‘Total Vegetables - DOL’, Table 4.7
shows that ‘Whole Grains’, ‘Total Grains - Whole Grains’, ‘Milk’, ‘Sodium’, ‘Oil’,
‘Whole Fruit’ and ‘SoFAAS’ have significant effects in the regression of the latter
data set.

Table 4.8 gives the result of Bkg, their standard error and p-values for the un-
weighted model and weighted model, respectively. The Unweighted Model is ex-
pressed as pr(Yige = 1|Xij0, Zike) = H(Oékf‘f“ﬂkgz;-]:lXijg+ng€kg), and the weighted
Model is pr(Yiee = 1| Xije, Zine) = H(age + 5k£2}-]:1Xijg@j + Z.3.40ke), where ©; the
MLE. The likelihood ratio test is performed for model comparison. Among these
five disease, only the colorectal cancer of female has significant difference between

the unweighted model and weighted model.
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Component Estimate Estimate s.e p-value
bounded constrain  Original by Sandwich

Total Fruit 0.000 0.120 2.266 0.958
Whole Fruit 3.072 3.189 2.129 0.134
Total Grains 3.264 3.375 2.529 0.182
Whole Grains 6.069 6.059 2.020 0.003
Total Vegetables 0.074 0.185 2.581 0.943
DOL 2.285 2.458 1.801 0.172
Milk 3.011 2.785 0.766 0.000
Meats and Beans 0.000 -1.646 1.334 0.217
Oil 1.697 1.748 0.797 0.028
Saturated Fat 0.000 -0.706 0.772 0.360
Sodium 0.310 0.007 1.288 0.996
SoFAAS 0.016 0.077 0.482 0.873

Table 4.3: Variable selection results by the bounded constrain algorithm for the
logistic regression of the colorectal cancer on HEI component scores of men and

women together, where #;; = —1, 312 = —0.7411.
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W W W W W W MLE  p-value
Ay 0.100 0.250 0.500 1.000 2.000 5.000

Total Fruit 0.120  0.958
Whole Fruit 3.182 3.170 3.160 3.174 3.158 3.156 3.189  0.134
Total Grains 3.034 3.005 3.014 3.017 2.999 2994 3.375 0.182
Whole Grains 6.109 6.106 6.100 6.115 6.112 6.107 6.059  0.003
Total Vegetables 0.185  0.943
DOL 2.187 2.185 2.188 2.187 2.188 2.187 2458  0.172
Milk 2988 2.990 2.990 2.990 2990 2.986 2.785  0.000

Meats and Beans 0.000 0.000 0.000 0.000 0.000 -1.646  0.217
Oil 1.701 1.687 1.682 1.704 1.689 1.682 1.748 0.028

Saturated Fat 0.000 0.000 0.000 0.000 -0.706  0.360
Sodium 0.007  0.996

SoFAAS 0.077  0.873

Table 4.4: Variable selection results by using the adaptive lasso method and positive
constrain for the logistic regression of the colorectal cancer on HEI component scores

of men and women together, where 3;; = —1,312 = —0.7411 and v = 1.5. MLE-
maximum likelihood estimator.
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Oupr Wupr @Wppr ©Wper Oger Wgepr MLE  p-value
Ay 0.100 0.250 0.500 1.000 2.000 5.000

Total Fruit 0.120 0.958
Whole Fruit 2.658 2.657 2.656 2.656 2.652 2.654 3.189 0.134
Total Grains 2.536 2.522 2.531 2.523 2.518 2518 3.375 0.182
Whole Grains 5.123 5.132 5.129 5.125 5.133 5.136 6.059 0.003
Total Vegetables 0.185  0.943
DOL 1.836 1.838 1.837 1.834 1.838 1.839 2.458 0.172
Milk 2.510 2.510 2.508 2.506 2.511 2.512 2.785 0.000

Meats and Beans 0.000 0.000 0.000 0.000 0.000 -1.646  0.217
Oil 1.414 1.415 1.415 1.425 1.418 1.415 1.748 0.028

Saturated Fat 0.000 0.000 0.000 0.000 -0.706  0.360
Sodium 0.007  0.996

SoFAAS 0.077  0.873

Table 4.5: Analysis results of Oyg; by the adaptive lasso method for the logistic
regression of the colorectal cancer on HEI component scores of men (293615 with 2151

cases) and women (198245 with 959 cases) together, where 8;; = —1, 512 = —0.7411
and v = 1.5. wygr—algorithm is in Section 4.5. MLE-maximum likelihood estimator.
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Wupr Wxpr Wger Wppr Wuppr Wgepr MLE  p-value
Ay 0.100 0.250 0.500 1.000 2.000 5.000

Total Fruit 0.314 0.551 0.716
Whole Fruit 1.440 1.613 1.613 1.610 1.657 1.855 2477 0.081
Total Grains 3.918 3.851 3.854 4.047 4.118 3.822 6.772  0.000
Whole Grains 0.497 0.480 0.483 0.870 0.531
Total Vegetables 0.097  0.956
DOL 1.581 1.545 1.552 1.524 1.555 1.334 2.707 0.034
Milk 1.962 1.938 1.934 1.926 1.937 2.047 3.384 0.000

Meats and Beans 0.504 0.497 0.490 0.445 0.876 0.323
Oil 0.965 0.938 0.939 0.912 0.962 0.967 1.668 0.004
Saturated Fat 0.792 0.804 0.808 0.787 0.654 1.390 0.128

Sodium 0.937 0.939 0.931 0.938 0.906 1.048 1.621 0.003
SoFAAS 0483 0.493 0.496 0.505 0.515 0.436 0.831 0.015

Table 4.6: Analysis results for the logistic regression of the colorectal and lung cancers
on HEI component scores of men (219612 with 3348 and 4187 cases, respectively )
and the breast, colorectal and lung cancers on women (169480 with 6647, 1846 and
2933 cases, respectively) together, where 8, = —1,v = 1.5. @ypr—algorithm is in
Section 4.5. MLE-maximum likelihood estimator.
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Wgpr WHEr WHEr Wger ©gepr Wgpr MLE  p-value
AN 0.100 0.250 0.500 1.000 2.000 5.000
‘Whole Fruit 2.004 2.007 1.991 2.048 2.122 2.130 3.029 0.013
Total Fruit - Whole Fruit 0.000 -0.551 0.716
‘Whole Grains 1.907 1.902 1.903 1.917 1.886 1.878 7.642 0.000
Total Grains - Whole Grains 0.000 0.000 0.000 0.000 0.000 0.000 -6.772 0.000
DOL 1.342 1.350 1.343 1.349 1.395 1.365 2.804 0.067

Total Vegetables - DOL -0.097 0.956
Milk 2.130 2.118 2.109 2.166 2.181 2.200 3.384 0.000

Meats and Beans  0.608 0.624 0.648 0.548 0.876 0.323

Oil 1.048 1.045 1.040 1.065 1.129 1.123 1.668 0.004

Saturated Fat 0.251 0.254 0.266 0.211 0.044 1.390 0.128

Sodium  1.106 1.110 1.107 1.114 1.091 1.095 1.621 0.003
SoFAAS  0.704  0.698 0.694 0.708 0.736 0.735 0.831 0.015

Table 4.7: Analysis results for the logistic regression of the colorectal and lung cancers
on HEI component scores of men (219612 with 3348 and 4187 cases, respectively )
and the breast, colorectal and lung cancers on women (169480 with 6647, 1846 and
2933 cases, respectively) together, where 81 = —1,7 = 1.5. wyp;—algorithm is in
Section 4.5. MLE-maximum likelihood estimator.
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Unweighted Model Weighted Model Model Comparison

Gender Disease Bre s.e p-value Bre s.e p-value LR p-value
Male Colorectal Cancer -1.413  0.153 0.000 -1.734 0.163 0.000 26.620 0.000
Male Lung Cancer -0.862 0.138 0.000 -0.721  0.147 0.000 -14.908 1.000
Female Breast Cancer -0.003 0.122 0.979 -0.025 0.128 0.847 0.036 0.850
Female  Colorectal Cancer -1.034 0.219 0.000 -1.330 0.231 0.000 10.616 0.001
Female Lung Cancer -0.523  0.169 0.002 -0.607  0.179 0.001 1.858 0.173

Table 4.8: Analysis results of §i, for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where f1; = —1,7 = 1.5. Un-

Weighted MOdelfpl“O/ikg = 1|Xijg, Zikg) = H(Oékg + BkZijlXijE + ng@kg), Weighted
Model-pr(Yike = 1| Xije, Zire) = H(ozkg—l—@ngj:lXijg@j+Z},;ZQM). LR-Likelihood ra-
tio test statistic, log-likelihood(weighted model)—log-likelihood (unweighted model),
which follows a chi-squared distribution with degree freedom 1.
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5. VARIABLE SELECTION IN DIETARY INDEX MODELING FOR HEI-2005

5.1 Introduction

Naturally, the next thing we are interested is what the function would be if the
nutrition component related part in the logistic regression turns out to be nonlinear.
More than that, one should also note there are limitations from the knowledge of
biology and nutrition. In this Chapter, we establish a logistic regression model to
satisfy all these requirements, and apply it to the real HEI-2005 data set.

Since our interests focus on the effects of increasing nutrition component values

on various diseases across different subpopulations, a logistic regression is built as
J
pr(Yire = 1| Xire, -y Xige, Zine) = H{age + Bred_j—ymi(Xije) + Z Bt}

where m;(+) for j = 1,..., J are modeled to satisfy some crucial constrains coming

from the biology and nutrition, which are listed as follows.

e Monotonicity: The dietary components are chosen so that larger values are
meant to denote a lower chance of disease, so that the functions m4(+), ..., my(+)
are all required to be monotone nondecreasing. It makes sense to reorder the

components so that increasing the score does not increase risk.

e Positivity: The functions my(+),...,m (+) are all required to be nonnegative, to

mimic the HEI-2005 and other dietary pattern scores.

e Upper Bounds: The nutritionists believe that above a certain level, no extra

benefit to health occurs by exceeding that level. Call the level for dietary

component j as cpj, where the P stands for protective. This means that for
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xT > Cpj, m](:v) = mj(ij).

e Lower Bounds: The nutritionists also believe that below a certain level, no

extra harm to health occurs by being below that level. Call the level for dietary

component j as cgj, where the R stands for risk. This means that for = < cg;,

m; (ZL’) = mj(ch).

e Bad Diets: To mimic the HEI-2005 score, there is the constraint that m;(cg;) =

0.

In Section 5.2, we describe an expression of m;(z) with I-spline basis functions
to satisfy these constraints, also the identifiability of the regression model; and then
present methodology to obtain estimates and their estimated variance. Applications

of these methodologies and discussions are illustrated in Section 5.3.
5.2 I-spline Basis Function and Regression Model
5.2.1 I-spline Basis Function

I-splines is defined as the integration of M-splines, which is always nonnegative
and the full field integration is 1. Therefore, I-splines is always nonnegative and
monotonic. Assume the p!* order I-splines is define in an interval with e interior

knots, then totally there are 2p + e knots defined as

t]_ - tz — ... = tpatp-‘re-i-l — tp+6+2 — ... = t2p+€7

b < Ty for all m,

where t’s are values of knots.

In the work of Ramsay (1988), expressions of I-spline basis functions for p = 2
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are provided for = € [t,,,t,, + 1) with t,, < t,,41, and they are piecewise quadratic

functions as

Ln(zlp=2,t) = (v —tn)*/{(tms1 — tm) (tms2 — tm)},

Ina(zlp=2,t) = 1= (tmrr — )"/ {{tms1 = tm) (trs1 — tm1)}-

Based on that, I derive the basis functions for the 3** order I-splines for z €

[tm, tm + 1) as follows, which are piecewise cubic

Ln(zlp=3,t) = (2 —tw)*/{{tms1 — tw) (tmrz = tw) (bmas — t) },
Im-a(@lp=3,t) = 1= (tm1 = 2)°{(tms1 — tm2) (b1 — tm—1) (tms1 — tm) },
Ina(zlp=3,1) = (tm —tm-1)*/{(tms1 — tm—1)(tms2 — tm1)} + a1 /b1 + az/bs.

where
ar = 3/2(tmi1 +tm1)(@® —12) = 3t it (T —t) — (20 — 1),
ay = 3/2(tmia +tm)(@® —12) — Stotmia(z — ty) — (2° —12),
bi = (tmyr = tm) s — tme1) (fny2 — 1),

b2 = (tm—l—l - tm)(tm+2 - tm)(tm-l—Q - tm—l)'

5.2.2  Regression Model

Assume we have the same number of interior points for all nutrition components,
named as e. And the interior knots on the interval [cg;, cp;] are equally spaced.
Consequently, the distance of the interior points for j* component is d; = (cp; —
cr;)/(e +1). With these specifications, the special expression of I-splines functions
are given in Appendix D.1 detailedly.

Furthermore, an easy way to satisfy the requirements of ‘Upper Bounds’ and
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‘Lower Bounds’ for function m;(z) is to transfer the HEI density values x by the

following expression

(

crj for x < cpj;

rT—= g for x € [cRrj, cpjl;

cpj for x> cpj,
\

before inputting it into m;(z).

Next, we apply the I-splines into our logistic regression model with p** order and e
interior points, where p is the order of I-splines, e is the number of interior knots and
we assume p and e are the same for all nutrition components. Let the I-splines basis
functions defined on the j** component interval [cg;,cp;] be Lj(+) for ¢ = 1,...,Q,
where Q = p + e. Therefore, after transforming all j** component values into the
interval [cgj, cpj], the m;(x) is defined as m;(z) = Zqul Li,(x) exp(7;q), where we
have Y2, Lig(crs) exp(r5) = 0 and 320, Lig(cry) exp(yje) = Yo, exp(7;) based
on definitions of I-splines.

In consequence, we construct a logistic regression model as

pr(Yiee = UXire, s Xige, Zine) = H o + 5k£Zj:1{Z§:1]jq(Xije) exp(jg)} + Zigl,

with g = —1 for identifiability.
Obviously, this regression model satisfies the requirements of 'Bad Diets’ since
mj(cr;) = Sou_ Liw(cr;) exp(v;4) = 0, ‘Monotonicity’ and ‘Positivity’.
5.2.3 Iteration Algorithm and Variance Estimation
For the regression model in Section 5.2.2, m;(x) could be considered as a linear

function of w;, with positive constrains of w;,, where w;, = exp(7;,). Therefore, the
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domain of wj, is [0, +00) not R. The scoring method does not converge here because
it always tends to make some wj, to the negative domain, which leads to some ;4
go to negative infinity.

Rewrite the previous model as
pr(Yiee = 1 Xo1e, o, Xige: Zine) = Hlowe + Bred {301 Lig(Xij)wiqt + ZiggOrel (5.1)

with 81; = —1 and constrain wj, > 0. Upon that, we introduce the following iteration
algorithm which has good performances in convergence. First, define all unknown
parameters in previous regression model as © with © = (ay1, sy, ..., Bo1, .o, 011, -,
Wit, - wiQ) T, Wi = (W), - wjo)" and w = (w],...,w))T. Let ©_,, denote all pa-
rameters except w;, and ©_, denote all parameters except all w; for j = 1,...,J
as O_, = (11, a1, ..., Bo1, .., 011, ..., O )T, Here we give the steps of our iterative

algorithm to obtain the estimated values for ©.
1. Obtain the initial values of the ©.
2. Define current estimate for w as @, update ©_,, for fixed @©.

3. Define current estimate for ©_, as (:)_wj, update w; for fixed (:)_wj with con-

strain wj, > 0.
4. Repeat Step 3 for j =1,.... J.
5. Repeat Steps 2~4 until it converges.

Matlab program ‘fmincon’ is used in our real data analysis of the above algorithm.
Additionally, we could use the inverse Fisher matrix or the sandwich method to
estimate the variance of ©. Depends on our analysis results, the estimated variance

for the estimates are very close so that in this paper, we only use the previous one.
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5.3 Results and Discussion

We apply the algorithm introduced in Section 5.2.3 to the real HEI-2005 data.
In this data set, there are 219612 males with 3348 individuals have colorectal cancer
and 4187 have lung cancer; and for 169480 females, there are 6647 individuals with
breast cancer, 1846 with colorectal cancer and 2933 with lunch cancer, respectively.
The concerned 12 nutrition components were presented in Table 1. Furthermore,
this data set also included 38 smoking related covariates for both male and female
samples.

The results from I-spline analysis are presented in Tables 5.1~5.2, and Figures
D.1~D.2 in Appendix D.2. From these two tables, we can clearly see, for some
nutrition components, their corresponding p-values will be changed as the intake
amount changes. Such as ‘Milk’, comparing with the first quintile, the p-values for
quintiles 2~5 are (0.030, 0.003, 0.016, 0.000), which indicates this component has
statistical significance on intake amount and suggests people should be better intake
more milk to the recommended amount so that the best results can be achieved.
Another two examples for such significant changes when comparing with quintile 1 is
‘Oil” and ‘Sodium’. Especially for ‘Sodium’, its p-values has significant decreases as
the intake amount increases, and finally reaches the statistically significant influence
level. Comparing quintiles 2-5 to quintile 1, we can still observe trends from some
components, even without obtaining statistical significance. For example, the p-
values of ‘DOL’ and ‘Total Grains’ are obviously decreasing with the increasing
of intake amount, although there are no statistical significances. However, when
compared with quintile 1, the significance in disease related to quintile 5 intake
amount is clearly larger than the quintile 2 intake amount. Also, there are some

components which are not so sensitive to the intake amount, such as “Whole Gain’,
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‘Meats and Bean’, etc.

In order to compare between the results from segmented I-spline with positive
constraint and the results from the following model as in Reedy’s paper, based on
the different subpopulations, we present the likelihood ratio tests’ results for both
two models of each disease. The results are summarized in Table 5.3. Obviously,
for the lung cancer in female, and the colorectal cancer in both male and female,
I-spline model with positive constraint has significant difference to the total score
model. While for the rest two, lung cancer in male and breast cancer in female, there
is no statistical significance between them. A possible reason for this is because the
positive constraints have been applied.

Furthermore, to eliminate the multi-collinearity in the data set, (‘Total Fruit’,
‘Whole Fruit’, ‘Total Grains’, ‘Whole Grains’, ‘Total Vegetables’, ‘DOL’) in the
nutrition components are changed to (‘Whole Fruit’, ‘Total Fruit- Whole Fruit’, ‘W-
hole Grains’ , ‘Total Grains - Whole Grains’, ‘DOL’, ‘Total Vegetables - DOL’) And
then Tables D.1~D.3 and Figures D.3~D.4 summarize and present the correspond-
ing analysis results for them. From which one can easily see, the trends for these

modified components are very similar to the original nutrition components.
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Quintile 1 Quintile 2  Quintile 3  Quintile 4  Quintile 5
Total Fruit Estimate 0.107 0.050 0.055 0.055 0.055
s.e (vs quintile 1) 0.084 0.074 0.084 0.075
p-value (vs quintile 1) 0.557 0.453 0.511 0.463
Whole Fruit Estimate 0.000 0.007 0.035 0.041 0.041
s.e (vs quintile 1) 0.082 0.075 0.086 0.070
p-value (vs quintile 1) 0.933 0.644 0.631 0.556
Total Grains Estimate 0.028 0.002 0.012 0.056 0.116
s.e (vs quintile 1) 0.134 0.131 0.138 0.138
p-value (vs quintile 1) 0.990 0.927 0.682 0.403
Whole Grains Estimate 0.213 0.014 0.018 0.018 0.018
s.e (vs quintile 1) 0.047 0.048 0.073 0.084
p-value (vs quintile 1) 0.762 0.715 0.811 0.834
Total Vegetables Estimate 0.467 0.005 0.024 0.028 0.028
s.e (vs quintile 1) 0.105 0.102 0.111 0.112
p-value (vs quintile 1) 0.964 0.817 0.798 0.799
DOL Estimate 0.000 0.015 0.071 0.086 0.089
s.e (vs quintile 1) 0.051 0.051 0.067 0.058
p-value (vs quintile 1) 0.774 0.162 0.198 0.124

Table 5.1: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where 51; = —1.

76



Quintile 1 Quintile 2 Quintile 3  Quintile 4  Quintile 5
Milk Estimate 0.144 0.104 0.130 0.143 0.270
s.e (vs quintile 1) 0.048 0.044 0.059 0.056
p-value (vs quintile 1) 0.030 0.003 0.016 0.000
Meats and Beans Estimate 0.443 0.005 0.031 0.059 0.074
s.e (vs quintile 1) 0.165 0.155 0.160 0.157
p-value (vs quintile 1) 0.975 0.841 0.714 0.636
Oil Estimate 0.068 0.157 0.208 0.212 0.215
s.e (vs quintile 1) 0.064 0.058 0.066 0.062
p-value (vs quintile 1) 0.015 0.000 0.001 0.001
Saturated Fat Estimate 0.047 0.038 0.082 0.093 0.241
s.e (vs quintile 1) 0.049 0.049 0.074 0.169
p-value (vs quintile 1) 0.440 0.096 0.211 0.153
Sodium Estimate 0.000 0.003 0.031 0.112 0.190
s.e (vs quintile 1) 0.079 0.066 0.070 0.073
p-value (vs quintile 1) 0.975 0.643 0.110 0.010
SoFAAS Estimate 0.198 0.034 0.042 0.042 0.059
s.e (vs quintile 1) 0.065 0.057 0.069 0.075
p-value (vs quintile 1) 0.605 0.465 0.542 0.436

Table 5.2: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where 51; = —1.
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Unweighted Model Weighted Model Model Comparison
Gender Disease Bre s.e p-value Bre s.e p-value LR p-value
Male Colorectal Cancer -0.018  0.002 0.000 -3.050 0.261 0.000 56.114 0.000
Male Lung Cancer -0.012  0.002 0.000 -1.470  0.230 0.000 -4.246 1.000
Female Breast Cancer 0.001 0.002 0.722 0.322 0.227 0.156 1.896 0.169
Female  Colorectal Cancer -0.013  0.003 0.000 -2.516  0.396 0.000 21.184 0.000
Female Lung Cancer -0.007  0.002 0.002 -1.273  0.302 0.000 7.942 0.005

Table 5.3: I-spine analysis results of i, for the logistic regression of the colorectal
and lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where 5;; = —1. LR-Likelihood
ratio test statistic.

78



6. CONCLUSIONS

In this dissertation, first I proposed a method named as Direct Integral Method
for Ratios (DIMER) to construct confidence intervals for the ratio of two location
parameters. The method, based on analytical results and further approximations
to account for nuisance parameters, is computationally efficient. Compared to oth-
er methods in the literature, our simulations indicated that DIMER more nearly
achieves nominal coverage levels while at the same time resulting in shorter confi-
dence interval lengths. The most important reason why our DIMER method is better
than the other compared methods is that there are severely heavy tail in the distribu-
tion of the ratio, our DIMER method avoid this by direct probability computation,
while other methods are badly hindered at this part, especially for those methods
which based on the assumption that use the normal distribution to approximate the
Cauchy likely distribution.

Second, relative risk analysis is performed for the real HEI-2005 data set. The
results from the DIMER and the modified nonparametric bootstrap method are well
matched with each other. For the rest of methods, results of the inverse Fisher score
method and the sandwich method are lower than the ones from the direct integral
method and the modified nonparametric bootstrap method, while the nonparametric
bootstrap method’s results are higher than them.

For the aspect of computation time, due to the extremely large data amount, the
time consumption ratio between the modified nonparametric bootstrap method and
the direct integral method is around 7000, and this is a special case in which the
data set only considers single disease and two subpopulations. In the future, if these

formulas were applied to more complicated cases such as several different multiple
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diseases in multiple subpopulations, the time consumption ratio will consequently
become even higher. In conclusion, regardless of reliability, accuracy and computa-
tion efficiency, DIMER is obviously the best among all the method presented in this
paper to compute the relative risks and their confidence intervals.

Furthermore, variable selection methods are used for identify which nutrition
component is more important for diseases across genders. And models comparison
results are also provided. In addition, a model with I-spline basis function is built
to satisfy some constraints from nutriology and biology. The results from I-spline

analysis show the effect changing of the nutrition components on diseases.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Fieller’s Method

Consider a ratio r = p/p2, where uy and pe are means from two correlated
normal distributions 7} ~ Normal(juy,v?) and Ty ~ Normal(usg, v3). Let p denote the
correlation coefficient between these two distributions. The estimated variance and
covariance 0%, 05 and pv;0, are jointly estimated with the same number of degrees

of freedom d, and are independent of 77 and T5.

Introduce a latent variable W = T} — rTy. Since W/+/03 — 2rp0,0; + r203 fol-

lows a t distribution with d degrees of freedom, a confidence interval with coverage

probability 1 — a is calculated by using —tq/2 < W/ V03 = 2rpu 0y + 1202 < ta,a/2,
where t4,/2 denotes the (1 —a/2)100% quantile for the ¢ distribution with d degree
freedom.

Rewrite the inequality and solve it as
r{T3 = tiapVst — 20 (T Ty — 1g 0 y2p0102) + {11 — tga/001} < 0.

Let a = T3 — 17 ,,05,b = (T2 — 17, ,p0102) and ¢ = 17 — &5 , ,07. Following
the inequality ar® + br + ¢ < 0, two real roots d; = (—b — v/b? — 4ac)/(2a) and
dy = (—b+ Vb? — 4ac)/(2a) are obtained if b* — 4ac > 0.

A confidence interval of r which has coverage probability 1 — « is constructed as
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follows:

(dy,dy) ifa >0,
Confidence Interval = (—00,d1) U(da,00)  if a < 0 and tga/a < teom,

(—OO, OO) if td,a/Q > tcomv

\

where toom = (TE03 — 2T1Ty015 + T307) /(0303 — v%,) and it is certain that a < 0 when
taa/2 > teom as Fieller (1954) showed that 75 /05 < ¢2,,..

There are several limitations of Fieller’s algorithm. First, b —4ac > 0 is required:;
otherwise the inequality function has two complex roots. Second, when a decreases

to 0, the interval range increases rapidly and can become infinite. Finally, if a is

negative, the confidence interval is deterministic to have infinite length.
A.2 Proofs of Lemmas 1-2

Proof of Lemma 1:
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Lemma 1 follows because

pl‘(?< ZE) = pI'(Tl < J]TQ,TQ > 0) + pI'(Tl > JZTQ,TQ < 0)

- /OOO /ZQ(”M)_V H{(t = m) /v } fo{ (t2 — o) v} dtrdty

" /_Ooo /m:(vlvzrlfl{(tl — pa) /vt fol(t2 — pa)/va }dtydls
- /OOO Fi{(aty — pa) fvr Yoy ' fo{ (t2 — pi2) Jva )ty

+ / 0 [1 = Fi{(wta — ) for}]og fol (to — p2) f0a}dts

—00

e /°o Fil{a(ps + v22) — pu} /vl fo(2)dz

p2/ve

—u2/v2
+/_ (1 — Fi[{x(pug + v2z) — u1 }/v1)) fa(2)dz.

o0

For simplicity, define g(z|x, p1, p2,v1,v2) as in Section 2.2.2; then we have the

cumulative distribution function of 7= T7/T5 as

pr(r < x) :/ g(z|z, p1, po, v1, v2)exp(—22)dz,

—00

Proof of Lemma 2:

Similarly, by letting V' = cov(7T1,T) Lemma 2 follows from the fact that

pr(7 < )
o0

xto
= / (27 [vfvs — o7y |V?) texp{—(ts — pa,ta — p2)V "t — pasta — o) " /2 dtdty
0 —o0

0 ')
4 / / (20303 — o[ 2) exp{—(tr — pst — 1)V (b2 — psta — pu2) " /2}derdty
—o0 Jxta
L am ™2 [ affaln + vaz) — (n + 2via/ ) }ua /ool - oyl exp(22/2)dz

—p2/v2

—p2/v2
+(27)_1/2L (1 = ®[{x(p2+v22) — (1 +zv12/v2) Yoo /[ v]v3 — v],]) exp(—22/2)dz.
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Similarly, define g(z|z, 1, po, v3,v3, v12) as in Section 2.2.3. Therefore, the cumula-

tive distribution function for 7 is

pr(7 < :c)z/ 9(z|z, g, p2, 07,03, v12)exp(—2%)dz,

[e.9]

Proof of Algorithm in Section 2.2.4:

Since Z; and Z; are independent and both have ¢ distributions with degree freedom

of d, which are defined as Z; = {(Ty — rTy) — (1 — rp2)}/ /07 — 21012 + 7205 and
Zy = (Ty — p2)/vs in Section 2.2.4, respectively. Therefore, the jointly density

distribution of Z; and Zs is

f(Zla Zz) = ft,d(Zl)ft,d(ZQ)a

where f; 4 is the standard student ¢ density with degree of freedom d.
Based on that, by the density transform method, the jointly distribution of T}, T5,

that is

F(T1, ) = 0, (05 — 2n0ha + 0*03) /2

Frall(ts — dts) — (= mpa2)}/ 0% — 2002 + 12T3) fral (b2 — pi2) /o).

Similarly, let 2z = (t5 — p2) /02, and define g(z|z, 1, p2, 07,03, 012, 1) as in Section

2.2.4, we get the cumulative distribution function of 7= T} /T, as
pr(r <)~ / 9(2|z, p, p2, 0F, 03, D1, m)exp(—2%)dz.

o0

A.3 More Details of Simulation Results in Chapter 2
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A.4 Bootstrapping Details
Here are the general steps we used for the nonparametric bootstrap and para-
metric bootstrap.

e Procedure for the nonparametric bootstrap:

— For given data set (Y1, Ys, X1, X3), obtain the estimates (510, B\Qo, 321, w).

— Generate B = 400 bootstrap data sets with replacement for two subgroups

separately.

— For the b generated data set (Y4, Yap, X4, X2p), obtain (B\lo,b, 320,[),

521,1), wWp). Repeat this process for all resampled data sets.
— Compute the standard error of B\Ql,b as S€8,, nonpara,boot -
— Construct the (1 — «)100% confidence interval:

(521 - Za/2seﬁ21,nonpara,boota ﬁ + Za/QSeﬁm,nonpara,boot)-

e Procedure for the parametric bootstrap:

— For given data set (Y7, Y5, X1, X3), obtain the estimates (310,320,321,@).

— Fix (310,320,321,@) and (X, X3), we generate B = 400 data sets of

(Y1, Y2) using a parametric model.

— For the ™ generated data set (Y}, Ya) with (X, X3), obtain (31071,, 320,1,,

Bgl,b, Wp). Repeat this process for all resampled data sets.
— Compute the estimated standard error of BQLb as S€8,, para,boot -

— Construct the (1 — «)100% confidence interval:

(521 — Za/25€835; ;para,boot B + Za/2seﬁzl,para,boot)-
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1 Proof of Lemma 3

We have
NY2 {80 ke(Ake) = Sake(Are)} = {050 ke(Ae) ONINY? (Age — Ae) + 0(1),
and asymptotically, N/ Q(Ku — Ayy) follows a normal distribution as
NY?(Rge — Age) = Normal(0, Vi, ),

where the estimate of Vj,, can be directly obtained from A=(©)Vy(0)A~T(O) in
Section 3.2.3 which acquired by using the sandwich method.
In consequence, the asymptotic limit distribution of N1/2{§a7kg(//§kg) — §a’kg(Akg)}

is
NY2{8pe(Rre) = Supe(Age)} = Normal (0, {05 ks (Ane) ONE}Vie, A0S pe(Aie) [0} )
And
NY2(Vie — Vie) = NY2[{S0.00,1e(Rie) — So90ke(Are)} — {So.10,0(Are) — So10,0(Are)}]
, therefore asymptotically
N2V = Vig) ~ Normal(0, Dyy),
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where

Die = {05090, (M) JONT yvar(Rye) {0Sp.00,ke(Ake) [ OAre }
+{a§o.1o,ke(/\u)/8Agg}Var(1A\kz) {3§0.10,kz(/\ke)/a/\kz}

—2{a§0.90,ké(/\u)/5/\&}%“(7\%) {830.10,u(/\k4)/3/\u}-

B.1.1  Proof of Lemma 4
—~ —~ —~ ~ —~ 2
We have defined Vi, = B~' 20 Vb, and Dj, = (B —1)"' 30, (V};Z — v,:g) :

Obviously as B — oo, by central limit theorem, we could write
B'2(Dt,) "V}, — Vie) « Normal(0,1).

And based on previous section, we get ngl/Q(Dkg)*l/z(lA/kg — Vo) ~ Normal(0,1).

Write
BY2(Dj) V2 (Vi — Vie) = BY2(Djs) V2 (Vi — Vie) + BY2(Di) ™2 (Ve — Vo).

Hence if we could prove that BY2(D;,)"Y2(Vi — Vi) weakly converge to 0, by
Slutsky’s theorem it is enough to write BY2(D;,)™Y2(V;, — Vi) « Normal(0,1).

It can be expanded as
B'*(Di) ™ (Ve = Vie) = (B2 /ny"*) {0 (Do) 7> (Vee = Vi) HD3 /(D)3
By Chebyshev’s inequality

P{|Dy, — E(Diy)| < e} > 1 — var(Dy,)/¢".
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As the data from bootstrap are identically and independently distributed, when
B — oo, we have var(ﬁ;;e) — 0 w.p.1 and E(ﬁ,’;z) = Dy, hence lA?;;Z weakly converges
to Dye. Also we have n51/2Dk3_1/2(9]€g — Vi) = Op(1). Therefore, if n, is much larger

than B as n,/B — oo, the asymptotic distribution for )7,’& as follows
BY2(Ds,) (Vi — Vi) «~ Normal(0, 1).

B.1.2  Procedures
B.1.2.1 Procedures for Compute the Relative Risk by the Direct Integral Method

In the model (5.1), after obtaining &; for j =1, ..., J, write T}y = ijlXijg@j. For
the first disease in the first subpopulation (where we set 5;; = —1 for identifiability),

the relative risk and its confidence intervals are given by the following procedures
e Compute 10th and 90th percentile of Tj, as Ty, and 11, , respectively.

e Run logistic regression model as pr(Yi; = 1T, Zin) = H(ofy, + 1Ta +
ZF 0%,), obtain estimate Bﬁ of A7, and its estimated standard deviation Ogs -
e Calculate 100(1—«)% CI for 3, as (Bfl—Za/Qagfl, Bfl—i—Za/zaBﬁ), which defined

as (@1,11,a, @2,11,a) and where Z, ; is the (a/2)™ quantile of the standard normal

distribution.
e The relative risk estimate is exp{gi‘1 (T 000 — 11000}

e The confidence interval of the relative risk is

(exp{alvllvo‘ (T179Oth, - TlrlOth)}’ eXp{CLQ,ll’a (Tl’QOth, - TlrlOth)}) .

For any other [y, which (k,¢) # (1,1), here we give the steps to obtain the

estimate of the relative risk and its confidence intervals.
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Compute 10th and 90th percentile of T, as Ty, and Ty, , respectively.

Calculate 100(1 — a)% CI for B¢ as (@1 geas @2k00) by the direct integral

method.

The relative risk for the k' disease in the " subpopulation is exp{ B (T;

T&wth)}'

90th

The confidence interval of the relative risk is

(exp{alvuva (Té790th o TK?lOth ) }7 eXp{a?yk’&a (vagoth o Tethh ) }) :

B.1.2.2  Bootstrapping Details

Procedure for the nonparametric bootstrap:

. Generate B = 2500 bootstrap data sets with replacement for two subgroups,

male and female, respectively.

For the b generated data set (Yigep, Xijep, Zikep) for€=1,..., Lk =1,..., K,
and ¢ = 1,...,ny, run regression model pr(Yirey, = 1| Xijop, Ziey) = H(oue +

-~

J T . . ~ N ~
Bred 51 Xijepw;j + Ziggyre) With S11 = —1 to obtain (@1, 0116, Q12 - - - Wp)

. Define T}y = Zj:1Xz‘j€,b@j,b: compute 10th and 90th percentile of Tjyp.

Run logistic regression model as pr(Yigey = 1Tiep, Zires) = H gy y + BirgpTic +
nge;;&b) to estimate B\;&b.
Compute log(relative risk) as Viop = B,’;&b(ﬂ&bgmh — Tt b0 )-

Repeat steps (2 ~ 5) for all resampled data sets.

Construct the 95% confidence interval of the relative risk by method I

(eXp{V(k&b)zAsth}v eXp{V(kﬂb)gmm}) .
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8. Construct the 95% confidence interval of the relative risk by method IT
(exp(Viep — 1.96sey,,,), exp(Viep + 1.96sey,,.,)),

where Vi is mean of Vi and sey,,, is its standard error.

B.2 Plots of Confidence Intervals Lengths
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Figure B.1: Relationship between the 95% confidence interval by using the inverse
Fisher matrix and the number of points which involved in computing the derivative
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Figure B.2: Relationship between the 95% confidence interval by using the sand-
wich method and the number of points which involved in computing the derivative
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Figure B.3: Relationship between the 95% confidence interval by using the model
transformation method and the number of points which involved in computing the

derivative 8§0,907k5(AM)/8AE£ and 83\0,107“(/\“)/6/\&.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

C.1 Proof of Lemma 6

We first prove ii) of Lemma 6. Let ay = a+vV/N, Oy = 0+s/v/N and wy = w+
u/v'N, where v = (vi1,...,v5,1)", s = (51, .. Sk, )T and w= (ug,...,us)T. Let
Uy(v,s,u) = 2£(04+V\/N,9+S/\/N,w+u/\/ﬁ)+)\]vz;:£j\wj +u;/VN|. Define
(L, 85, 41)T = argmin Upy(v,s,u), then ay = a + vx/VN, Oy = 0 + 8y /VN
Oy =w+1/yVN, and vy = VN(dy — @), Sy = VN(Oy — ), tiy = VN(@y — w).
Define eip = Yipe — pire and € = {ege: 1 <i < my, 1 <k < K, 1 < < L}T. Then

by Taylor expansion

Uy(v,s,u) - Wy(0)
=2{L(a+vVN,0+
s/VN,w +u/VN) = L(a,0,w)} + A7t (lwj + 45 /VN| = |wj])
= e i o Vike (v T u) Qe Qi (v 8T u") TN
2 i e Qe (v 8T )T VN
AN/ VN GV N (|wj +ui /VN| = |w;]) + O(N /)
= (v",s"uN)(QTVQ/N)(vT, T u") " —2(vT T, u")(QTe/VN)

+)\N/\/NZ;‘]:1%\J'\/N(|WJ- +u;/VN| = |w;|) + O(N~?),

By the Central Limit Theorem Q%¢/v/N —4 W = Normal(0,X). Following the
same argument as the proofs of Theorem 2 in Zou (2006), if w; # 0, then tAj —p

|w;|7” and VN (|w; + uj/VN| — |w;]) — ujsgn(w;). By Slutsky’ theorem, one has
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An/VN T GV N (|wj+ui /VN| = |wj]) =, 0. TEw; = 0, then v/N(jw;+u;/VN| -
w;) = |u| and Ant;/VN = (An/VN)N2(|V/N@j0)™7 — oo with probability
approaching 1, since VN@; = O,(1) and AyNO~D/2 - oo,

Therefore by Slutsky’s theorem, one has Uy (v,s,u)— ¥y (0) —4 ¥(v,s, u) where
U(v,s,u) = (vh, st ul)E (vl st ul) T =2(vl, st ul) )W if u; = 0 for all j ¢ A
and U(v,s,u) = oo otherwise, and where W4 = Normal(0,317). The unique
minimum of ¥(v,s, u) is {(X;7 W4)T,05}7T, and thus G4 —4 377 W4 and Ty —4
0.

Next we prove i) of Theorem 6. For all j € A, by the weak law of convergence,
W; — w; in probability and thus P(j € A%) — 1. Then it suffices to show that for
all j' ¢ A, P(j' € A,) = 0. Let Q = {(Qa)nx(x kp)» (Qo) Nx(2 di)s (Qu) s}, where
Qu = (Qua, -, Quy). For j/ € AY and j' € A, one has 2Q) (Y — p) = Anti,

where p = {pi : 1 <i<ny, 1 <k < Kp,1 <1< L}T and
Pike = H{0ke + 514@2;-]:1)(1']'@@]' + Z 3Ok}

By the above results in the proof of part ii), 2Qg7j/(Y —P)/VN = 0,(1), and

Anty/V/N =, 0o. Thus for all j' € A, P(j' € Ay) < P2QT (Y —D) = Anty) = 0.

C.2 Figures of Cross Validation Results for Colorectal Cancer Data
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Cross Validation Result
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Figure C.1: Prediction error of cross-validation method in the adaptive lasso for the
logistic regression of the colorectal cancer on HEI component scores of men (293615
with 2151 cases) and women together (198245 with 959 cases), where (13 = -1,

By = —0.7411 and v = 1.5.
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Cross VWalidation Result
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Figure C.2: Prediction error of cross-validation method in the adaptive lasso for the
logistic regression of the colorectal cancer on HEI component scores of men (293615
with 2151 cases) and women together (198245 with 959 cases), where (1, = -1,

By = —0.7411 and v = 1.5.
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APPENDIX D

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

D.1 Expression of I-splines basis function with specifications
Based on the specifications in Section 5.2.2, expressions of I,,(z|p,t) for p =2 in

[tjms tjm+1) are as follows.

e when m =2 (t,, = cg;),

I(zlp=2,t) = 0 for s > m,
In(zlp=2,t) = (v —tn)"/(2d),

In-a(zlp=21) = 1—(tm1 — x)z/d?-

e when 3 < m < e+ p—1, or which written as 3 <m <e+ 1,

I(zlp=2,t) = 0 for s > m,
In(zlp=2,t) = (x—tn)*/(2d)),
Im,1($‘p = 27 t) = 1- (tM+1 - x>2/(2d32)7

I(zlp=2,t) = 1 for s <m — 1.
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e whenm=e+p=e+2,

I(zlp=2,t) = 0 for s > m,
In(alp=2,t) = (v —twn)*/d],
Ina(zlp=2,t) = 1= (twr1 —2)*/(2d]),

I(zlp=2,t) = 1 for s <m — 1.

For I-spline with p = 3 and x is in [tm, tjm+1),

e when m =3 (t,.cgj),

Ii(zlp=3,t) = 0 for s > m,
In(zlp=3,t) = (z—tn)’/(6d]),
L—s(zlp=3,1) = 1~ (tmp1 —x)°/dj,

Ij—i(zlp=3,t) = al/(2d§?) + ag/(4d?).

where
a1 = 3/2(2ty +d)(2? —t2) = Btom(tm + dj)(x — tm) — (2° —3),
az = 3(tm +dj) (@ —12,) — 3t (tm + 2dj) (@ — tm) — (23 —2).

109



e when m =4,

Is(xlp = 3,1)
I, (z|p = 3,t)
I—o(x|p = 3,t)
I—1(zlp = 3,t)
Is(zlp = 3,1)
where

ai

a2

0 for s > m,

(z —tm)*/(6d3),

1= (tmr1 — )*/(4d)),
1/6 + a1/ (6d3) + a/(6d3),

1 for s <m — 2.

Btm (% = 7,) = B(tm — dj) (tm + dj) (@ — tm) — (2° = 13,),

3(tm + dj) (@ — 12,) — Bty (bt + 2d;) (@ — tm) — (2° — 3).

e whenb5<m<e+p—2, orexpressed as b <m < e+ 1,

Is(xlp = 3,1)
I, (x|p = 3,t)
Im—2(z|p = 3,1)
Im—1(z|p = 3,1)
Is(zlp = 3,1)
where

ai

a2

0 for s > m,

(& —tm)*/(6d3),

1~ (tmt1 —2)*/(6d),
1/6 + a1/(6d3) + a/(6d3),

1 for s <m — 2.

St (22 —t2) = 3(tm — d;) (tm + dj) (@ — tp) — (2% —12),

3(tm + dj) (= 12)) — 3ty (tm + 2d;) (x — tm) — (2° —3).
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e whenm=e+p—1=c+2,

I(zlp=3,t) = 0 for s > m,
In(zlp=3,t) = (z—tm)’/(4d}),
Im—?(x|p = Sat) = 1- (tm-‘rl - m)g/(ﬁdg)a

Im-1(zlp=3,t) = 1/6+ai/(6d}) + az/(6d3),

Ii(zlp=3,t) = 1 for s <m —2.
where
a1 = 3ty (z® —12) = 3(tm — dj)(tm +dj)(x — t) — (2% — 1),
az = 3(tm + dj) (@ —12,) — 3t (tm + 2d;) (@ — tm) — (2° —3).

e when m=e+p=-e+ 3,

Ii(zxlp=3,t) = 0 for s > m,
Im(:c\p = 37t) = (x - tm)g/d?7

Im—a(zlp=3,t) = 1— (tm1—2)3/(643),

Im—1(zlp=3,t) = 1/4+4a1/(4d3) + az/(2d}),
Ij(zlp=3,t) = 1 for s <m —2.
where
a1 = Bt(a? = £2) = 3(t — d;) (b + )@ — tr) — (2% — £2),

ay = 3/22y + dj) (@ —12,) — 3ty (tm + dj)(x — ty) — (2% —13,).

After these specifications, the I-spline functions are now much easier to be applied

into our model.

D.2 Figures for I-spline Analysis in HEI-2005
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Figure D.1: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where 51; = —1.
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Figure D.2: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on HEI component scores of men (219612 with 3348 and 4187 cases,
respectively ) and the breast, colorectal and lung cancers on women (169480 with
6647, 1846 and 2933 cases, respectively) together, where 51; = —1.
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Figure D.3: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on modified HEI component scores of men (219612 with 3348 and 4187
cases, respectively ) and the breast, colorectal and lung cancers on women (169480
with 6647, 1846 and 2933 cases, respectively) together, where 8;; = —1.
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Figure D.4: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on modified HEI component scores of men (219612 with 3348 and 4187
cases, respectively ) and the breast, colorectal and lung cancers on women (169480
with 6647, 1846 and 2933 cases, respectively) together, where 5;; = —1.

D.3 I-Spline Analysis Results for Modified HEI-2005 Components
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Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Whole Fruit Estimate 0.006 0.014 0.048 0.056 0.056
s.e (vs quintile 1) 0.079 0.071 0.084 0.064
p-value (vs quintile 1) 0.864 0.498 0.503 0.380
Total Fruit - Whole Fruit Estimate 0.901 0.000 0.006 0.031 0.038
s.e (vs quintile 1) 0.113 0.096 0.103 0.242
p-value (vs quintile 1) 1.000 0.948 0.760 0.877
‘Whole Grains Estimate 0.231 0.025 0.031 0.031 0.031
s.e (vs quintile 1) 0.050 0.057 0.093 0.187
p-value (vs quintile 1) 0.614 0.583 0.736 0.867
Total Grains - Whole Grains Estimate 0.098 0.000 0.000 0.000 46.629
s.e (vs quintile 1) 0.050 0.061 0.347 57.045
p-value (vs quintile 1) 1.000 1.000 1.000 0.414
DOL Estimate 0.002 0.014 0.035 0.039 0.039
s.e (vs quintile 1) 0.052 0.051 0.072 0.088
p-value (vs quintile 1) 0.782 0.497 0.586 0.658
Total Vegetables - DOL Estimate 0.133 0.005 0.037 0.083 0.093
s.e (vs quintile 1) 0.054 0.062 0.165 2.118
p-value (vs quintile 1) 0.922 0.556 0.614 0.965

Table D.1: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on modified HEI component scores of men (219612 with 3348 and 4187
cases, respectively ) and the breast, colorectal and lung cancers on women (169480
with 6647, 1846 and 2933 cases, respectively) together, where 8;; = —1.
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Quintile 1 Quintile 2 Quintile 3  Quintile 4  Quintile 5
Milk Estimate 0.114 0.101 0.125 0.139 0.243
s.e (vs quintile 1) 0.048 0.044 0.060 0.056
p-value (vs quintile 1) 0.037 0.005 0.020 0.000
Meats and Beans Estimate 0.141 0.008 0.040 0.051 0.052
s.e (vs quintile 1) 0.166 0.156 0.161 0.158
p-value (vs quintile 1) 0.962 0.797 0.752 0.744
Oil Estimate 0.069 0.147 0.189 0.190 0.190
s.e (vs quintile 1) 0.065 0.059 0.067 0.063
p-value (vs quintile 1) 0.024 0.001 0.004 0.002
Saturated Fat Estimate 0.050 0.039 0.051 0.052 0.094
s.e (vs quintile 1) 0.049 0.049 0.074 0.162
p-value (vs quintile 1) 0.431 0.302 0.483 0.562
Sodium Estimate 0.000 0.006 0.048 0.133 0.206
s.e (vs quintile 1) 0.080 0.067 0.070 0.074
p-value (vs quintile 1) 0.942 0.469 0.059 0.005
SoFAAS Estimate 0.244 0.047 0.066 0.068 0.102
s.e (vs quintile 1) 0.065 0.058 0.069 0.075
p-value (vs quintile 1) 0.468 0.253 0.324 0.174

Table D.2: I-spline analysis results for the logistic regression of the colorectal and
lung cancers on modified HEI component scores of men (219612 with 3348 and 4187
cases, respectively ) and the breast, colorectal and lung cancers on women (169480
with 6647, 1846 and 2933 cases, respectively) together, where 81, = —1.
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Unweighted Model Weighted Model Model Comparison

Gender Disease Bre s.e p-value Bre s.e p-value LR p-value
Male Colorectal Cancer -0.021  0.003 0.000 -48.156  4.158 0.000 63.746 0.000
Male Lung Cancer -0.015  0.002 0.000 -22.022 3.686 0.000 -2.762 1.000

Female Breast Cancer -0.001  0.002 0.737 -0.534 2.875 0.853 -0.078 1.000
Female  Colorectal Cancer -0.015 0.004 0.000 -42.585  6.225 0.000 27.174 0.000
Female Lung Cancer -0.008  0.003 0.003 -18.845  4.785 0.000 6.736 0.009

Table D.3: I-spine analysis results of EM for the logistic regression of the col-
orectal and lung cancers on modified HEI component scores of men (219612 with
3348 and 4187 cases, respectively ) and the breast, colorectal and lung can-
cers on women (169480 with 6647, 1846 and 2933 cases, respectively) togeth-
er, where ;7 = —1,7 = 1.5. Unweighted Model pr(Yixe = 1|Xije, Zike)

H(Oékg -+ BMZ}]:lXin + ng@kg), Weighted Model—pr(Y;M = 1|Xﬂg, ...,XiJg, Zikg) =
Hloe+Bred 1 {3001 i (Xijo)@sq } + Zi5,01e] with constrain wj, > 0. LR-Likelihood

q=1
ratio test statistic.
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