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ABSTRACT 

 

Noise radiated from high speed centrifugal compressors is becoming a significant 

design factor.  The dominant noise components of a centrifugal compressor can be 

identified at its blade passing frequencies (BPFs), of which each is a strong tonal noise.  

Popular noise control methods of a centrifugal compressor includes building of sound 

insulation enclosure, wrapping of noise insulation materials, mounting of vibration 

absorbers, and etc.  These noise control methods are more effective for broadband noise 

reduction.  Thus, they are generally ineffective to reduce a tonal noise such as the BPF 

components of the centrifugal compressor.  In this thesis, a quarter-wavelength resonator 

array installed at the outlet pipe of a single-stage centrifugal compressor is studied, 

which is aimed to reduce the tonal noise of the compressor.   

In order to optimally design the quarter-wavelength resonators, numerical 

simulations are performed by using a commercial software package, COMSOL 

Multiphysics – Acoustics Module.  The optimization procedure is to optimally select 

geometric design parameters of the quarter-wavelength resonator array such as the 

diameter and depth of each resonator, and the spacing between the resonators in the axial 

and circumferential directions.  The next procedure is to investigate the effect of four 

different configurations (i.e., staggered and slanted resonators and the resonators 

mounted on an expansion pipe and a curved pipe) on the noise reduction performance.  

Then, the analyses of flow effects on the noise reduction performance of the resonator 

array are conducted both numerically and experimentally.  The high speed air flow 

induced by the compressor results in wavenumber shifts of noise waves, thus influencing 

the tonal noise reduction performance of the resonator array.  The numerical flow effect 

analyses are conducted by using commercial software packages, ANSYS FLUENT and 

ACTRAN.   In particular, these software package are used to conduct hybrid 

aeroacoustic simulations, in which fluid flow and aeroacoustic noise analyses are 

conducted separately, based on the theory of the Lighthill’s aeroacoustic analogy.   
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The numerical and experimental results show that the optimally designed 

quarter-wavelength resonator array can be used to achieve nearly 10 dB noise reduction.  

From these results, it is also shown that a relation between the Mach number of the 

airflow and the maximum performance frequency shift is represented as a quadratic 

curve of Δf = 1918M2 - 24.21M where M is the Mach number and Δf is the frequency 

shift.   
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CHAPTER I  

INTRODUCTION 

 

1.1 OVERVIEW 

As the rotational speed of centrifugal compressors increases, it has gained 

significant interest to reduce noise radiated from the high-speed centrifugal compressors.  

In particular, it has been known that the Blade Passing Frequencies (BPFs) of 

compressor’s impellers contribute dominantly to the total noise [1].  Most common noise 

control methods to reduce the noise of a centrifugal compressor include installation of 

sound insulation enclosure, wrapping of the compressor with noise insulation materials, 

mounting of vibration absorbers [2], and etc.  All of these noise control methods are 

more effective in reducing broadband noise than tonal noise such as BPF components.  

As an effective tonal noise control method, the Helmholtz resonators have been widely 

used to attenuate the tonal noise components [3].  However, they are generally difficulty 

to be manufactured due to the geometric complexities, bulky to be installed in a compact 

volume, and ineffective to reduce high frequency components.  In this thesis, a tonal 

BPF noise control method based on the mounting of a quarter-wavelength resonator 

array at the downstream outlet pipe of a single-stage Samsung Techwin centrifugal 

compressor is presented to reduce the noise radiated from the compressor effective.   

In order to optimally design the quarter-wavelength resonators, the numerical 

analyses are performed by using a commercial software package, COMSOL 

Multiphysics – Acoustics Module [4].  This optimal design procedure is used to 

determine optimal geometric parameters, of the quarter-wavelength resonator array, i.e., 

the diameter and depth of a single resonator and the spacing between two adjacent 

resonators in the axial and circumferential directions.  The next procedure is to 

investigate the noise reduction performance of the quarter-wavelength resonator array in 

various configurations, (e.g., in staggered and slanted distributions and mounted on an 

expansion pipe and a curved pipe).   
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Due to the airflow inside of the compressors at a Mach number of 0.1 or higher, 

the targeted design frequencies of the resonators are shifted [5] due to changes of 

acoustic impedance [6].  In addition, the noise generated from the turbulent airflow 

around the resonators, referred to as aeroacoustic noise [7], can negatively affect the 

acoustic performance of the resonators.  Therefore, both the frequency shift and the 

aeroacoustic noise need to be considered in the design of the resonators.  The analyses of 

the flow effects on noise reduction performance of the resonator array are conducted 

both numerically and experimentally.  The flow effects are analyzed numerically by 

conducting hybrid aeroacoustic simulations.  Two commercial software packages, 

ANSYS FLUENT and ACTRAN are mainly used for the hybrid aeroacoustic 

simulations [8,9], based on the theory of the Lighthill’s aeroacoustic analogy.   

 

1.2 QUARTER WAVELENGTH RESONATOR 

1.2.1 Introduction 

The quarter-wavelength resonator array that can be used to reduce the tonal BPF 

noise components [10] of the centrifugal compressor is usually installed into a duct 

system as shown in Figure 1.1.  In Figure 1.1, each quarter-wavelength resonator is 

illustrated as a circular cylindrical hole drilled on the inner wall of the duct.  It has an 

open end at the inlet of the resonator and a rigid termination at the other end.  An 

acoustic resonance occurs when the depth of the resonator, l is one quarter of the 

wavelength at the excitation frequency, f: i.e.,   

 0 / 4f c l   (1.1) 

where c0 is the speed of sound.  

The incident acoustic wave to the resonator is reflected from the rigid end of the 

resonator, generating a standing wave, of which the phase is 180 degree out of phase to 

the incident acoustic wave.  This quarter wavelength is thus changing the acoustic 

impedance to reduce the amplitude of the transmitted wave [10].  In a real resonator, due 
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to the air mass at the open end, the depth of the resonator is slightly shorter than the 

analytical quarter wavelength as shown in Figure 1.1. 

 

 

 

Figure 1.1 Configuration of quarter-wavelength resonator holes flush mounted on inner 
duct wall. 

 

 

1.2.2 End Correction Effect 

The one end of the resonator where the air blows in and out across the resonator 

inlet is open to the duct where the acoustic particle velocity is at its maximum.  The 

acoustic pressure at this location becomes the minimum, but not equal to zero due to the 

air mass closed to the open end.  This air mass leads to the length of the cylindrical 

resonator appears to be acoustically longer than its physical length [11].  This depth 

increase l is referred to as the end correction.  In order to compute the resonance 

frequency of the resonator, the equivalent overall depth (leq) is equivalent to the sum of 

the physical depth (lhole) and the additional depth (l) due to the end correction. 
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Figure 1.2 End effect of quarter wavelength resonator. 

 

 

The equivalent acoustic depth (leq) is then given as 

 
0.6

0.34
eq hole hole

hole

l l l l r

l A

   

 
 (1.2) 

where r is the equivalent tube radius (r = (A/π)0.5), A is the cross-sectional area of the 

open end, and the equivalent overall acoustic depth leq is one quarter the wavelength of 

the incident wave (leq = /4).  Hence, the hole depth can be expressed as 

 / 4 0.34holel A   (1.3) 

 

1.3 COMPUTATIONAL AEROACOUSTICS 

1.3.1 Introduction 

Computational aeroacoustics (CAA) refers to numerical methods investigating 

noise generation from either fluid motion or aerodynamic forces [12].  The solution 

methods to CAA problems are generally categorized into 1) Direct Numerical 

Simulation (DNS) method [13], 2) Hybrid method [8], and 3) Semi-empirical method 

[14].   

The (DNS) method is the most general approach to solve aeroacoustic problems, 

analyzing the compressible Navier-Stokes equation directly.  In DNS, variables of all 
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scales are solved [13], from the larger acoustic wavelength scales up to the smallest 

viscous scale.  Although this solution method includes noise generation and propagation 

explicitly and directly, it requires extremely high numerical resolutions due to the large 

dimensional scale differences between acoustic domain variables and flow domain 

variables.  The computational cost of the DNS method is proportional to Re3/M4 (Re is 

the Reynolds number and M is the Mach number) [13].  Then, the DNS is practically 

limited to low Reynolds number flows.  Combining the requirements of the high 

resolution and the high computation cost for a high Reynolds number flow, the DNS is 

unsuitable for any commercial uses.   

Regarding to the semi-empirical method, it requires thorough understandings of 

the problem needed to be solved.  Although solutions can be obtained directly in the 

frequency domain, the accuracy of the solutions from the semi-empirical method are 

always not satisfactory enough to be applied to real-world applications.   

The aeroacoustic analogy, proposed by Sir M.J. Lighthill in the 1950s at the 

University of Manchester, enables analyses of many aeroacoustic problems.  The 

Lighthill’s theory is a foundation of another well-known analogy method proposed by 

Ffowcs Williams and Hawkings (FWH).  The commercial software, ANSYS FLUENT 

has incorporated a FWH module for CAA computations [15].  This FWH’s analogy is 

based on the assumption that there is no obstacle between sound sources and receivers 

[15].  Therefore, it is not applicable for solving in-pipe aeroacoustic problems.  In the 

Lighthill’s analogy, the interactions from acoustic domain to flow domain is negligible 

due to a large energy difference [7].  By rearranging the compressible Navier-Stokes 

equation, Lighthill obtained the aeroacoustic sources tensor [16].  Then, the CAA 

problems can be solved separately in both the fluid dynamic domain and acoustic 

domain.  

1.3.2 Hybrid CAA Simulations 

In Figure 1.3, it is shown the general steps for the hybrid CAA modeling 

analyses based on the Lighthill’s analogy.  For the analyses of the mean airflow effects, 

which account for the frequency shift, the flow domain solution data are first obtained 
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from CFD simulations conducted by using ANSYS FLUENT and then they are imported 

into acoustic meshes built in ACTRAN.  For the analyses of the turbulent noise, the 

aeroacoustic noise source information will be extracted from unsteady CFD simulation 

data.  Such a hybrid analysis method is theoretically based on the Lighthill’s 

aeroacoustic analogy [8 16] which is introduced in Chapter III.   

 

 

 

Figure 1.3 ACTRAN process for the computation of aeroacoustic sources from unsteady 
CFD results.   

 

 

1.3.3 Aeroacoustic Noise Extraction 

The total pressure obtained from a CFD simulation after applying a turbulence 

model, e.g., k-ε, k-ω, LES and etc., can be separated into two parts, the static flow 

pressure, p0 and the acoustic fluctuation pressure p, i.e., 
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 0 'p p p    (1.4) 

where p0 is assumed to be weakly depending on time and p is extremely small.  In 

general, the magnitude ratio of the acoustic pressure to the static pressure is much 

smaller than numerical computation errors.  Thus, the acoustic pressure extracted 

directly from the CFD-predicted pressure data is erroneous.  For example, assume the 

acoustic pressure of 90 dB in a compressed air with a static pressure of 5 bars 

(approximately, 500 kPa).  Then, the magnitude ratio is 1.210-6.  This means that the 

CFD simulation should have less than a computational error of 1.210-4 % in predicting 

the total pressure, which is extremely challenging even with modern computational 

resources. 

The most commonly used way for aeroacoustic noise source extractions is the 

hybrid simulation method based on the Lighthill’s aeroacoustic analogy, the governing 

equation describing the analogy concept is shown as below:  

 

2
0

iji

i j

Tv
a

t x x

   
  

    (1.5) 

where Tij is the Lighthill’s stress tensor.  Since the Lighthill’s stress tensor, Tij can be 

represented in terms of fluid flow velocities, this hybrid approach is not relying on the 

small acoustic variables.  Thus, it can be used to obtain relative accurate acoustic 

information from CFD solutions that include even small numerical errors.  This hybrid 

simulation method is mainly taken into application in this research.  
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CHAPTER II 

OPTIMAL DESIGN OF RESONATOR ARRAY 

 

2.1 OPTIMAL DESIGN 

2.1.1 General Procedure 

The geometric shape of a quarter-wavelength resonator array decides the 

frequency of the tonal noise reduction.  Thus, an optimal design of resonators’ geometric 

parameters is required to maximize the noise reduction performance.  As shown in 

Figure 2.1, the geometric design parameters of a single quarter-wavelength resonator 

include the diameter (d) and the depth (l).  The design parameters of the resonator array 

include the axial spacing (L), the circumferential angular spacing (), and the number 

of axial layers (N).  Here, it is proposed to determine these design parameters by 

conducting the numerical analyses described below. 

 

 

 

Figure 2.1 Design parameters of quarter wavelength resonators. 
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In order to obtain the optimal design parameters, a 3-D finite element model is 

built in a commercial software package, COMSOL Multiphysics - Acoustics Module.  

Although this software package cannot be used to analyze aeroacoustic fields generated 

by the airflow inside the duct, the static acoustic fields inside the pipe with the quarter-

wavelength resonators can be simulated computationally efficiently when compared to 

other software packages.  This computational efficiency is critical when the geometric 

parameters need to be varied frequently for the identification of the optimal design.    

In order to build the COMSOL model, a CAD model, such as in Figure 2.1, is 

imported into COMSOL Multiphysics.  Then, the entire domain is set as air of which the 

static pressure and density are corresponding to a specific operation condition to be 

analyzed.  At the inlet boundary shown in Figure 2.2, a plane wave excitation is applied 

at the fundamental BPF.  The excitation pressure amplitude is set to 1 Pa for the 

convenient calculation of incident sound intensity (i.e., Izai = 1/2ρc0).  A plane wave 

radiation boundary, that is equivalent to the non-reflecting boundary condition, is set at 

the outlet boundary (see Figure 2.2).  However, regarding to flow effect analyses 

discussed in Chapter III, random incident waves having higher acoustic modes in both 

the circumferential and radial directions are used for the analysis of the airflow effects.  

The random incident excitation represent real excitation cases in a way much closer than 

the plane wave excitation, even though it requires higher computational cost.  The plane 

wave excitation is functional enough for the present optimal design procedure.  The 

performance of the optimal design obtained by using the plane wave excitation will then 

be validated for the case of the random incident excitation.   
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Figure 2.2 Inlet and outlet surfaces of simulation model. 

 

 

As for the post-processing of the resulting numerical data, sound transmission 

loss (TL) is calculated to represent the noise performance of the resonators that is 

defined as the ratio of the spatially-averaged, incident to transmitted sound intensities 

expressed as, 

 10log10( / )inc transTL I I  (2.1) 

For the spatially-averaged incident sound intensity in the upstream of the 

resonator array, it is already calculated as 1/2ρc0, which only depends on the air density 

and speed of sound in the air, for the plane wave excitation.  For the calculation of the 

spatially-averaged sound intensity in the downstream pipe, three axial cross-sectional 

planes are selected at the downstream area.  The summation of the sound intensities on 

all nodes on each cross-sectional plane is calculated first and it is then divided by the 

total areas to calculate the spatially-averaged sound intensity (Izat).  Then, the three 

intensities on the three planes are averaged again to obtain the spatially-averaged, 

transmitted sound intensity.   
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Since the aforementioned numerical model will be built for a single set of the 

geometric design parameters, a method for analyzing the model with different sets of 

geometric design parameters is needed to obtain the optimal design parameters.  In this 

case, the “Parameter Sweep” function built in COMSOL Multiphysics is employed 

along with the automatic control of the “LiveLink for Matlab” module [17].  During this 

process, the numerical model is first analyzed in COMSOL.  Then, the solution data are 

exported into Matlab for calculating the TL and storing the TL results. For the next 

geometric case, the cached data in COMSOL is cleaned and the model with different 

geometric design parameters is loaded by using the Parameter Sweep.  This process is 

iterated automatically until all the geometric cases are analyzed to obtain the optimal 

design parameters.   

2.1.2 Periodic Condition and Mesh Sizes  

In order to reduce the computational cost, one part of the model as shown in 

Figure 2.3 is taken into simulation instead of the entire 3D model.  Before simulation, a 

periodic condition is added at the axial cut plane surface.  Since the geometry is 

axisymmetric, it is possible to perform simulation with respect to only partial CAD 

model.  In this way, the computational cost and time is reduced largely due to the large 

amount of reduction of degree of freedoms (DOF).   
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Figure 2.3 Geometric model with periodic conditions. 

 

 

Regarding to mesh generation, the maximum mesh size is set as 1/8 of the 

wavelength, which means that there are at least 8 nodes per wavelength in finite element 

computations.  In Figure 2.4, it is shown the unstructured meshing of resonator model.  

The linear tetrahedral element is used in meshing.  Inside the resonators and around the 

places with sharp geometry changes, there are more elements and the mesh size is much 

smaller.  Since the geometry parameters (e.g., depth, diameter, axial spacing and etc.) 

are dominant factors deciding the noise reduction performance of the mechanism, it is of 

much importance to guarantee that the resonator shape is accurately modeled by the 

meshes.  
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Figure 2.4 Meshing of geometry model in optimal design.  

 

 

2.2 OPTIMIZATION RESULTS  

2.2.1 Resonator Depth and Diameter 

The first step of optimization procedure involves obtaining the optimal 

combination of the resonator’s depth and diameter.  From the aforementioned analytical 

solution, it is know that the depth of the resonators should be close to the effective quarter 

wavelength when considering the end correction effect discussed in Chap. 1.2.2.   
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Figure 2.5 Transmission loss with respect to variation of depths and diameters of 
resonators, and selected data point on analytical effective quarter wavelength.* 

 

 

Figure 2.5 shows the predicted transmission loss (TL) values as a function of the 

resonator’s depth and diameter.  In order to generate this plot, the model with single layer 

of resonators is used, with circumferential spacing of 30 degree.  Throughout the 

numerical simulation procedure, the operation conditions are set as sound speed c0 equals 

340 m/s, air density ρ = 1.225 kg/m3 and ambient pressure P = 1atm, which are same as 

the environment for the experiment. 

It can be seen that the analytical solution with the effective quarter wavelength 

curve (shown as the black line with the arrow in Figure 2.5 is on the red area where the 

TL value are maximized.  Therefore, it also can be concluded that the numerical method 

                                                 
* All dimensional parameters for recreation of designed model are removed due to confidentiality 
agreement of research sponsor, Samsung Techwin Co.  Detailed geometric information are shown in 
Appendix B, which are deleted in the final publishable version.  
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is validated against the analytical solution, indicating the optimal length and diameter can 

be identified by using both the analytical and numerical methods.    

Here, the optimal resonator depth and diameter are chosen as the value at the black 

point in Figure 2.5.  The criteria of this selection is to obtain a TL value up to 22 dB, and 

at the same time, the diameter of resonators is not too large, so that it is guaranteed that 

the airflow inside of a pipe will not be affected after installation of resonators.  The 

selection is also based on the shape of the red area in Figure 2.5 where the range of the 

optimal depth is getting narrower with a smaller diameter.  Thus, the diameter should not 

be too small to avoid the acoustic performance degradation induced by any small 

machining errors in the hole dimensions.   

2.2.2 Circumferential Spacing 

After the selection of the optimal resonator depth and diameter, the circumferential 

spacing (Δθ) shown in Figure 2.6 is optimally determined by varying the circumferential 

spacing in the COMSOL model with a single layer of the holes (N = 1).  In this procedure, 

the depth and diameter is fixed at the optimal values obtained from the previous procedure.  

The discrete angles at 18⁰, 22.5⁰, 36⁰ … etc. in the following optimization result of Figure 

2.6 are to guarantee that the holes are distributed evenly along the circumference of the 

inner pipe surface.  Then the TL value is evaluated at each circumferential angle.  
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Figure 2.6 Transmission loss with respect to circumferential spacing.  

 

 

2.2.3 Axial Spacing and Number of Layers 

Under the three numbers of layers (N) (e.g., 4 layers, 5 layers and 6 layers), the 

optimal axial spacing (ΔL) is obtained where the resulting TL is maximized.  The TL 

performance is investigated with respect to the axial spacing ranges from 20 mm to 50 

mm as shown in Figure 2.7.   
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Figure 2.7 Transmission loss with respect to axial spacing at various number of layers.  

 

 

2.2.4 Frequency Response 

After optimizations, all the parameters related to the configurations of the quarter 

wavelength resonators are determined.  Applying all these geometric parameters on the 

model for simulation, the frequency response of transmission loss result is obtained.  As 

shown in Figure 2.8, there is one maximum resonance peak at the frequency of 3600 Hz, 

which is the target frequency before the design of resonators.  From numerical results, it 

is predicted that TL of 31 dB can be obtained by using the optimal design of the 

resonators.  But the result is needed to be validated by experiment further.   
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Figure 2.8 Frequency response of transmission loss of resonators after optimal design.  

 

 

2.3 SENSITIVITY ANALYSIS 

This TL sensitivity analysis procedure is to investigate how much noise reduction 

performance is changed when the design parameters are slightly varied from their 

optimal values.  Here, the maximum deviation of the diameter and depth from their 

optimal values is set to ± 5%.  The sensitivity analysis results are shown in Table 2.1.   

 

 

Table 2.1 TL [dB] with variations of resonator depth and diameter. 

Dim. Error - 5.00 % - 2.50 % - 1.25 % 
Optimal 

Diameter 
+ 1.25 % + 2.50 % + 5.00 % 

- 5.00 % 2.453 3.709 5.725 9.489 17.24 19.45 10.56 

- 2.50 % 2.892 4.409 6.986 11.68 22.70 15.22 8.810 

-1.25 % 3.400 5.255 8.427 14.48 23.20 12.19 7.438 

- 1.00 % 4.022 6.280 10.28 18.87 18.27 10.11 6.313 

- 0.25 % 4.756 7.534 12.65 24.00 14.21 8.509 5.400 

Optimal Depth 5.180 8.269 14.09 24.05 12.91 7.937 4.979 
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Table 2.1 Continued 

Dim. Error - 5.00 % - 2.50 % - 1.25 % 
Optimal 

Diameter 
+ 1.25 % + 2.50 % + 5.00 % 

+ 0.25 % 5.644 9.062 15.83 21.71 11.67 7.316 4.604 

+ 1.00 % 6.612 10.98 20.41 17.014 9.778 6.176 3.977 

+ 1.25 % 7.905 13.44 24.32 13.64 8.289 5.286 3.386 

+ 2.50 % 9.561 16.51 20.44 11.27 7.060 4.551 2.872 

+ 5.00 % 11.41 20.83 16.63 9.603 6.131 3.951 2.466 

 

 

For a better presentation of the TL sensitivity results, the TL sensitivity results in 

Table 2.1 are normalized with that of the optimal point, resulting in the TL value to be 

zero at the optimal point.  The normalized TL results are shown in Table 2.2 and Figure 

2.9.   In Figure 2.9, it is shown that the normalized TL value variations in the vertical 

direction (i.e., the resonator diameter) are smaller than those in the horizontal direction 

(i.e., the resonator’s depth).  Therefore, it can be concluded that the noise reduction 

performance is less sensitive to the variation of the diameter (d) than the depth (l) when 

the same percentage variation is present in both the design parameters, indicating that 

the resonator hole depth should be more precisely machined than the diameter.  

 

 

Table 2.2 Normalized TL [dB] with variations of resonator depth and diameter. 

Dim. error - 5.00 % - 2.50 % - 1.25 % 
Optimal 

diameter 
+ 1.25 % + 2.50 % + 5.00 % 

- 5.00 % 21.60 20.34 18.32 14.56 6.810 4.596 13.49 

- 2.50 % 21.16 19.64 17.06 12.37 1.345 8.825 15.24 

-1.25 % 20.65 18.79 15.62 9.565 0.845 11.86 16.61 

- 1.00 % 20.03 17.77 13.77 5.178 5.782 13.94 17.74 

- 0.25 % 19.29 16.52 11.40 0.048 9.841 15.54 18.65 

Optimal depth 18.87 15.78 9.959 0.000 11.14 16.11 19.07 

+ 0.25 % 18.41 14.99 8.213 2.344 12.38 16.73 19.45 
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Table 2.2 Continued 

Dim. error - 5.00 % - 2.50 % - 1.25 % 
Optimal 

diameter 
+ 1.25 % + 2.50 % + 5.00 % 

+ 1.00 % 17.44 13.07 3.637 7.041 14.27 17.87 20.07 

+ 1.25 % 16.14 10.61 -0.273 10.41 15.76 18.76 20.66 

+ 2.50 % 14.49 7.540 3.606 12.78 16.99 19.50 21.18 

+ 5.00 % 12.64 3.217 7.422 14.44 17.92 20.10 21.58 

 

 

 

Figure 2.9 Normalized TL with variations of resonator depth and diameter. 

 

 

In order to better understand the effects of the design parameter variations on the 

TL performance, Figure 2.10 shows the resonance frequency shifts when the resonator 

depth and diameter are varied.  The black dashed lines in these figures represent the 

design target frequency of 3600 Hz.  From the center plot, it can be seen that at the 

optimal design parameters, the maximum noise reduction location of the resonators is in 

coincidence with the target frequency.  When the geometry parameters are varied from 
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their optimal values, the maximum performance peak shifts either to the left or to the 

right, resulting in the lower noise reduction performance at the design target frequency.   

In the TL plots in Figure 2.10, in addition to the peaks around the target 

frequency of  3600 Hz, there is another peaks at the lower frequencies around 3470 Hz.  

These peaks are not present with a single layer of the resonators.  Thus, these additional 

peaks are generated by the multiple layers of the resonators: i.e., the total axial length of 

the resonator array is in control of the additional peak location.  This effect can be taken 

advantage of in the near future when some additional frequency components need to be 

reduced in addition to the noise components at the main target frequency.  

 

 

   

   

   

Figure 2.10 Shift of TL peaks with variations of resonator diameter and depth. 
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2.4 EFFECTS OF RESONATOR DISTRIBUTIONS 

2.4.1 Staggered Distribution 

The performance of the staggered resonators shown in Figure 2.11 is 

investigated.  The twisted angle (α) between two adjacent layers of the resonators is set 

to 15°.  In this procedure, the entire 3-D model is used in numerical simulation instead of 

the partial model with periodic conditions, since there is no long symmetric 

characteristics with twisted resonator array.  

 

 

 

Figure 2.11 Staggered distribution of resonators with twisted angle of 15 degree.  
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Figure 2.12 Simulated TL results of staggered resonators. 

  
 

From the simulation results shown in Figure 2.12, it can be seen that there is no 

appreciable difference between the performance of the staggered and original resonator 

distributions.  Considering the manufacturing of the staggered distribution of resonators 

is harder than the original distribution, the cost and efficiency issues, the staggered 

distribution of resonators is not recommended.   

2.4.2 Slanted Resonators 

Slanted resonators disturb the airflow inside the pipe less than the upright 

resonators.  Here, the performance of the slanted resonators with a slanted angle of β = 

45° is investigated as shown in Figure 2.13.  
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Figure 2.13 Slanted resonator array with angle of 45 degree. 

 

 

In order to obtain the optimal design of slanted resonators, an optimization procedure 

similar as that for the original distribution of resonators is performed.   

 

 

 

Figure 2.14 TLs versus resonator depth and diameter, slanted distribution. 
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Figure 2.15 TL versus circumferential spacing of slanted resonators. 

 

 

 

Figure 2.16 TL versus axial spacing of slanted resonators at various number of layers. 
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Figure 2.17 TLs of original upright and slanted resonators. 

 

 

In Figure 2.14 to Figure 2.16, the optimization results of the slanted resonators 

are shown.  From these optimization results, the optimal design parameter are 

determined.   

Then, the performance of the optimally designed, slanted resonators are 

compared with that of the original upright resonators.  Figure 2.17 shows the TL 

performance comparison between the slanted resonators and the original straight 

resonators.  From this figure, it can be seen that the slanted resonators performs 

equivalently to the original resonators at the main target frequency of 3600 Hz, although 

the additional performance peak of the slanted resonators around 3570 Hz is 

approximately 10 dB smaller than that of the original resonators.   It should be also noted 

that the performance frequency bands of the slanted resonators are smaller than those of 

the original ones.  Thus, the slanted resonators may be preferred in terms of aerodynamic 

performance.  However, fine frequency tuning is required for the slanted resonators to 

achieve equivalent acoustic performance to the original upright resonators.  

Frequency [Hz]

T
ra

n
sm

is
si

o
n

 l
o

ss
 [

d
B

]

 

 

Original

Slanted



 

27 

 

2.4.3 Pipe Curvature Effects 

For the resonators installed on a curved pipe as shown in Figure 2.18, the noise 

reduction performance of the resonators is investigated in this section.  Here, the 

curvature of the curved pipe is set to 2 m.  The simulation results of the resonators install 

in the curved pipe are compared with those in the straight pipe as shown in Figure 2.19.  

From this figure, it can be seen that the TL performance of the curved pipe case is 

reduced when compared with the straight pipe case.  Thus, it is recommended that the 

designed resonators are installed in a straight pipe section in order to maximize their 

noise reduction performance. 

 

 

 

Figure 2.18 Model of resonators in pipe with curvature of 2 m.  
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Figure 2.19 TLs of original pipe and curved pipe. 

 

 

2.4.4 Effects of Pipe Expansion 

In addition to the above configurations of the resonators, the effect of an 

expanded pipe model is investigated.  The shape of the expanded pipe model is shown in 

Figure 2.20.  The expansion slope of the pipe wall is set to 5°.   

 

 

 

Figure 2.20 Sketch of expanded pipe model.  
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Similar to the previous optimization procedure, an optimization procedure is also 

applied to obtain the optimal design parameters of the resonators in the expanded pipe.  

In Figure 2.21, the optimization results for the determination of the design parameters 

are shown.  Figure 2.22 shows the TL results of the expansion case after the optimization 

on top of the original TL results with the straight pipe.  As shown in Figure 2.22, the 

maximum TL of the expanded pipe case is approximately 24 dB and the TL band around 

the maximum performance frequency is much wider than that of the straight pipe case, 

which indicates that the noise reduction performance is less sensitive to the design 

parameter variation than the original straight pipe configuration.  Once the performance 

of the optimally designed resonators installed on the expanded pipe is experimentally 

validated, these resonators can be used to reduce higher noise levels than ones in the 

straight pipe.  Physically, the expansion results in gradual acoustic impedance 

mismatching, increasing the magnitude of reflected noise waves.  Then, the magnitude 

of transmitted waves can be reduced to improve the noise reduction performance.    
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(a) 

 
 

(b) 

 
Figure 2.21 TLs of resonators installed on expanded pipe with variations of design 

parameters: (a) Effects of resonator depth and diameter, (b) Effects of circumferential 

spacing, and (c) Effects of axial spacing and number of layers 
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(c) 

 

Figure 2.21 Continued 

 

 

 

Figure 2.22 TLs of resonators installed on straight and expanded pipes.   

Frequency [Hz]

T
ra

n
sm

is
si

o
n

 l
o

ss
 [

d
B

]

 

 

Original

Expanded



 

32 

 

CHAPTER III 

FLOW EFFECT ANALYSES 

 

3.1 INTRODUCTION 

In practical operation process of a centrifugal compressor, the air flow coming 

out of the compressor are always of temperature higher above room temperature, and of 

pressures higher than the atmosphere pressure.  Also, the Mach number of the air flow at 

the downstream area can reach to 0.1, or even larger.  Thus, from basic thermodynamic 

theories, it is easy to realize that the speed of sound at the downstream area is changing 

and is no longer a constant, which results in the non-linearity in the wave equation 

describing the sound wave propagation [18].  Due to this reason, the performance of the 

quarter wavelength resonators optimally designed as in the previous chapter may not 

behave that well as numerical predictions.   

In general, there are two aspects needed to be analyzed.  First, the working 

frequency of the resonators may shift away from the target frequency, which is the BPF 

component of the compressor.  The reason of this is due to the non-linearity in the sound 

speed.  In the previous optimal design procedure, it is assumed that the sound speed is a 

constant of 340 m/s within the finite element domain.  Thus, the effective quarter 

wavelength is no longer exactly the same as expressed in the analytical model as well as 

the numerical model.  From the sensitivity analyses, the performance of the resonators 

has relatively strict requirement on the geometric dimensions.  Hence, even though 

based on empirical estimations, there will not be large frequency shifts on the resonance 

frequency, it is still of much importance to investigate the flow effect on the resonator.  

Besides the above aspect, another potential factor that will influence the 

resonators’ performance is the aeroacoustic noise coming from turbulent flow.  

Originally, the air coming out of the compressor is flowing smoothly inside the 

downstream pipe.  But when applying the resonators on the side wall, there are sudden 

changes in the cross sections of the axial direction.  Then the boundary layers are 
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becoming larger after flow passing above the resonator area, and there are vortex 

generated inside the chamber of the resonator.  All of them are the sources of 

aerodynamic noise.  If the design of the resonators bring even more noise that are not 

negligible, it still cannot be taken into practical applications.   

 

3.2 ACOUSTIC PROPAGATION IN MOVING FLUIDS  

Various Industrial problems involve the generation and propagation of acoustic 

disturbances within a flow.  Vehicle pass-by-noise, turbofan noise and exhaust systems 

are common practical examples.  Problem’s complexity requires therefore the selection 

of a set of acceptable assumptions and simplifications.  Assuming that the considered 

fluid is non-viscous and that the flow is adiabatic and irrotational, allows for deriving a 

continuous potential model.  Further decomposition of this velocity potential into a 

steady-state (mean) flow component and a small acoustic perturbation leads to a 

convected wave.  

3.2.1 Derivation of the flow acoustic model 

Based on commonly accepted assumptions, fundamental equations (mass and 

momentum conservation, and thermodynamic relations) are introduced which, in the 

context of irrotational flows, reduce to a scalar wave equation involving a velocity 

potential.  The study of acoustic perturbations within a flow [19] is examined through a 

decomposition of this potential into two components, one related to the ambient flow 

and the other one related to the acoustic perturbation.  The wave equation related to the 

acoustic perturbation is set up by further linearization of the equation, assuming that 

acoustic perturbations are small with respect to mean flow quantities.   

Assumptions  

The flow acoustic problem to be solved refers to the propagation of acoustic 

sources within a flow.  It is assumed that:  

1) No heat production due to viscous dissipation occurs in the flow.  

2) The fluid is non heat-conducting.  No heat transfer occurs in the flow, which is 

consequently adiabatic.   
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3) The flow is stationary.   

4) Gravity forces are neglected.   

5) Fluid elements are in local thermodynamic equilibrium.   

The above assumptions also imply that the flow is locally isentropic, that is 

entropy does not vary locally in time but can vary in space.   

 

3.2.2 Acoustic wave propagation 

The acoustic wave correspond to pressure fluctuations which propagate in a non-

uniform mean flow.  The acoustic solution satisfies the compressible Navier-Stokes 

equation.  In this section, it is introduced a scalar equation for acoustic wave propagation 

in a non-uniform mean flow.   

Continuity equation:  

   (3.1) 

where ρ is the density and v is the flow velocity.  

Momentum equations in Eq. (3.2) 

   
v

B T s v v
t

    


       


 (3.2) 

where B denotes the total enthalpy, h is the fluid enthalpy, τ is the viscous stress tensor 

and s is the entropy.  

Energy equation:  

    
DB p

v T
Dt t

  


    


  (3.3) 

where T is the temperature, and  is the material’s conductivity.  Neglecting the power 

dissipated by viscous stresses and heat conduction leads to  

 1DB p

Dt t





 (3.4) 
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which relates the pressure to enthalpy.  Combing continuity Eq.(3.1) and simplified 

energy Eq.(3.4):  

 2 2
1 p s DB s

v
t c t s t c Dt s t

   


     
     

     
  (3.5) 

By substituting v

t




 with  v v

t






 , the momentum equation is equivalent to :  

 2 ( v)v v DB s
v B T s v

t c Dt s t

  
   

  
         

  
  (3.6) 

To generalize this formula, two parameters cT and ρT which are the total sound speed and 

total density fields are introduced, and define a scaled enthalpy b by equation:  

 T

Db DB

Dt Dt
   (3.7) 

This allows to define a parametric momentum equation similar to Eq.(3.6):  

 

  

2 2 2
1 1

1
T T T T

T

v v Db s
v b

t c Dt s t

T s v v

   

   

  


  
   

  

     

 (3.8)  

Up to this point, only the power of viscous stresses and heat released by conduction have 

been neglected.  Combining   Eq.(3.8) and 
1

Tt 




 Eq.(3.6) leads to the following 

equation:  

 2 2 2 2
T T T

Db v Db
b R

t c Dt Dt

  

  

   
      

    
  (3.9) 
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  1

1

1 1

T

T

T T

R v v

s
v T s

s t

s
v

t s t

 










 

 
     

 

   
    

   

   
  
   

  (3.10) 

This equation is directly derived from the compressible Navier-Stokes equations and is 

valid for the flow and the acoustic part.  The acoustic quantities are generally well 

defined by a harmonic expansion (Fourier transform):  

       , , ,i t i tq x t q x e q x t e 

 

  F  (3.11)  

Applying the Fourier transform to Eq.(3.9) leads to  
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
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

 


 

 

 
        

 



 
 (3.12)  

The harmonic functions 
i te

 represent a set of orthogonal functions, which means that 

the sum of equations will be satisfied only if each equation is satisfied:  

   

2
0 0 0 0 0 0 0

0 02 2 2 2 2 2 2 2
0

1

1 1

T T T T T

T

T T

i i v v
b v b b v b b R

c c c c

R v v

s s
v T s i v

s t s t

     

    

 


 
  

 

 
         

 

    

     
       

      

F

F F

 (3.13) 

The left hand side of Eq.(3.13) corresponds to the acoustic wave operator in a non-

uniform mean flow for the acoustics field represented by enthalpy fluctuations b.  A 

strategy originally proposed by Lighthill [8], Möhring [20] shows that the right hand 

side R corresponds to flow fluctuations which are considered as acoustic sources.  The 
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right hand side can be computed using unsteady CFD results.  This corresponds to the 

analogies described in the introduction section.   

 

3.2.3 Acoustic propagation in a medium at rest  

This section corresponds to the case where v0 = 0.  In this case, the material 

derivative D/Dt is similar to time derivative D/Dt = /t and Eq. (3.13)becomes:  

 
2

0 0
2 2 2
T T

b b R
c

  

 

 
    

 
  (3.14) 

Using Eq. (3.4) which related pressure to total enthalpy, and using the fact that ρT =ρ0 

when v0 = 0, the above equation becomes:  

 
2

2
0 0

1
p p R

c



 

 
    

 
  (3.15) 

which is the Fourier transform of the following equation which is valid for acoustic 

waves propagation in a inhomogeneous medium at rest:  

 2
0 0

1 1 0p
p

t c t 

    
     

    
  (3.16) 

3.2.4 Acoustic propagation in a potential flow  

If it is assumed the flow is entropic, irrotational and neglect viscous stresses, Eq. 

(3.2) reduce to: 

 
v

B
t

 


  


  (3.17) 

The Fourier transform equivalent is  

 0 0i v B      (3.18) 

the enthalpy fluctuations are similar to a velocity potential ϕ:  

 i B   (3.19)  
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Introducing Eq. (3.19) into Eq. (3.14) and using the fact that ρT is constant through space 

in an isentropic flow, it is obtained:  

    
2

0 0 0 0
0 02 2 2 2 2 0

T T T

v
i v i i v

c c

   
     

  

  
            

  
  (3.20) 

Integrating with respect to time, it is derived:  

 
   0 0 0 0

0 02 2 2 2
2

0.
T T T

i v
i v i v

c c

  
    

  

 
        

    (3.21) 

which is the classical convected acoustic equation for velocity potential.   

 

3.3 LIGHTHILL’S ACOUSTIC ANALOGY 

In this section, the fundamental equation describing the Lighthill’s acoustics 

analogy is introduced.  The Lighthill’s analogy [8] is the theoretical basis for the 

application of hybrid method in this study.  

For a compressible fluid, the mass conservation (continuity) equation can be 

written, using index notation, as:  

 
0i

i

v

t x

 
 

   (3.22) 

where ρ is the fluid density and vi is the fluid velocity vector.  The momentum 

conservation equation can be written:  

 

i j iji

j j

v v pv

t x x

  
  

    (3.23) 

where pij is the compressive stress tensor.  This last equation is rewritten by adding a 

new term to both sides, a0 being a constant which can be chosen arbitrarily at this stage:  
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where the tensor Tij is defined by:  

 
2
0ij i j ij ijT v v p a     (3.25) 

For a Stokesian perfect gas such as air, the compressive stress tensor pij can be 

reformulated as:  

 ij ij ijp p    (3.26) 

where p is the pressure and τij is the viscous stress tensor.  The expression of Tij then 

becomes:  

 
2
0( )ij i j ij ijT v v p a        (3.27) 

Now a0 is chosen to be the speed of sound in a uniform medium at rest a0 = c.  For a 

Stokesian perfect gas such as air c is given by the following relation:  

 

2 2
0

s

p p
a c



 

 
   

    (3.28) 

where γ is the ratio of specific heats.   

For a Stokesian perfect gas like air, in an isentropic, high Reynolds number and 

low Mach number flow, Lighthill’s tensor [16] Tij is often approximated by:  

 ij i jT v v   (3.29) 

This also shows that if the aeroacoustic sources are computed from incompressible CFD 

results (density is constant in time), only flow velocity results are needed.   

 

3.4 COMPUTATION FLUID DYNAMIC SIMULATION  

 3.4.1 Introduction 

It has been a long time since the establishment of the science of computation 

fluid dynamics and the practical application of that science.  The governing equation for 

Newtonian fluid dynamic is the unsteady Navier-Stokes equations, which has been 
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known for 150 years or more.  In order to solve these equations and analyze fluid 

dynamic problems, scientists and engineers have developed many reduced form of these 

equations, and its development is still an active area of research nowadays.   

Traditionally, in solving fluid dynamics problems, engineers took advantages of 

experimental ways a lot, of which one widely known example is the wind tunnel.  Wind 

tunnel experiment has been an effective ways for simulating real flows.  It provides a 

cost-effective alternative to the full-scale measurement.  However, for large scale 

measurement like in the design of aircraft, experimental fluid dynamics still has 

limitations.  

As the rapid development of computer technologies and memory sizes since the 

1950s, computational fluid dynamics (CFD) techniques [21] has been brought into 

academic as well as industrial uses.  Due to the cheap cost of CFD compared to 

experimental fluid dynamics methods, it is becoming a more and more popular technique 

in solving fluid dynamics problems.  Also, those problems with high Reynolds numbers, 

which cannot be solved by using experimental fluid dynamics methods, can be easily 

simulated with the application of CFD.  

 

3.4.2 Discretization Method 

One of the most important issues during the process of applying CFD in solving 

fluid dynamics problems is the discretization of partial differential equations (PDE).  

There are a number of methods to discretize PDEs, e.g, finite difference method, finite 

volume method and finite element method.  The choice of discretization methods 

depends on whether time derivative or only spatial derivative are considered.  In other 

words, it is needed to specify whether or not the PDE is time dependent.  In time 

dependent problems, the discretization method is exclusively the finite difference 

methods.  In problems with only spatial derivatives, the methods of finite volume as well 

as finite element can be used.  Besides that, the stability and consistency of the different 

methods are needed to be considered in the choice of discretization methods.  
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Finite Volume Method 

Finite volume method is the most commonly used method in spatial 

discretization in CFD.  ‘Finite volume’ is the volume space around each node on a mesh 

element.  The method is realized by taking the integrals along the element boundaries.  

Then the flux going through the element is evaluated.  And the flux entering the element 

is identical to that leaving the adjacent element.  Another advantage of finite volume 

method is that it can be easily used for the construction of unstructured mesh.  

Finite Difference Method 

Finite difference method is used in the discretization in spatial domain as well as 

in time domain.  It is realized by using the Taylor series expansion on each term of the 

PDEs.  There are numbers of schemes of applying finite difference method in the 

discretization in space and time domains, e.g., FTCS (Forward time centered space) 

scheme, DuFort-Frankel scheme, Crank-Nicolson scheme and etc [21].  For each 

scheme, the stability and accuracy requirements are different.  Both the time step size 

and the element size in space domain determine the accuracy and the stability of the 

results by using each of the schemes.  

Finite Element Method 

Finite element method is the most widely used method in structural mechanics.  

However, in solving CFD problems, finite element method can still be taken into 

application in the discretization of space domain.  When using finite element method, it 

is required special cares on the formulation of finite element, so that the solutions can be 

conservative.  Besides that, finite element method is more stable than the finite volume 

approach [21].   

3.4.3 Turbulence Models 

Another important issue in CFD simulation is the choice of turbulence models.  

In order to solve problems with different kinds of turbulence flows, it is of much 

important to choose the most proper turbulence model, so that the accuracy of the 

simulation results is guaranteed and the computation time is minimized.  
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k- ε Model  

The k- ε model is the most widely used method for industrial applications due to 

its better convergence rate and lower memory requirements.  The k- ε turbulence model 

was first introduced by Kolmogorov in 1942 [22].  In general, it solves for two variables: 

the turbulent kinetic energy, k, and the rate of dissipation of kinetic energy, ε.  k- ε model 

is working well for simulating external flow problems around complex geometries.  

However, it is not capable of computing very accurately for flow fields that exhibit 

adverse pressure gradients or jet flow.  

k- ω Model 

The k- ω model is another semi-empirical method similar to k- ε.  In k- ω 

turbulence model, besides the turbulent kinetic energy k, it solves for the specific rate of 

dissipation of kinetic energy, ω.  It also uses wall functions and therefore it does not 

have big memory requirements.  It is more difficult to converge and is very sensitive to 

solution initialization.  Hence, the k- ε model is often used as an initial condition for 

solving the k- ω model.  The k- ω model is more powerful in the situations where the k- 

ε model cannot obtain accurate solutions, such as internal flows, separated flows, and 

jets [22]. 

LES Model 

Large eddy simulation (LES) is another popular technique for turbulence flow 

simulations.  The principal operation in large eddy simulation is low-pass filtering.  It is 

applied to the Navier-Stokes equation by directly solving large scale motions and 

approximating small scales of motions.  LES is a computationally efficient method 

widely used in academia field, including combustion, acoustics, and simulations of the 

atmospheric boundary layer. 

One limitation of the LES method is that it requires extremely fine mesh near the 

boundary wall region.  In other words, LES method is not recommended for flow with 

large wall boundary layers.  Another limitation is that LES has relatively higher stability 

requirements.  Therefore, it requires long computational time to reach a stable state for 

running LES model.   
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3.5 CFD SIMULATION 

3.5.1 Pre-Processing 

The CFD simulations are performed by using commercial software ANSYS 

FLUENT, which is one of the most widely used packages for solving CFD problems.  In 

the pre-processing steps, a CAD model is built by using commercial software (i.e., 

Solidworks) with the geometric parameters obtained from the optimal design procedures.  

The CAD model is then imported into ANSYS for CFD computations.  Regarding to 

meshes, it is generated automatically using the built-in module in ANSYS.  The 

unstructured meshes are generated, and the linear tetrahedron element is used.  The 

maximum element size is as 5 mm with prism layers near the wall boundaries where 

there are more turbulences.  By doing so, the Courant-Friedrichs-Lewy (CFL) stability 

condition requirement in CFD can be satisfied.  The Courant number is defined as  

 
t

c u
x





  (3.30) 

where u is the flow speed, Δt is the time step size and Δx is the element size. The 

schematic of the mesh is shown in Figure 3.1, 
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(a) 

 
(b) 

 

Figure 3.1 (a) Overall mesh and (b) boundary mesh with prism layers.   
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3.5.2 Steady-State Simulation 

A steady-state simulation is performed first to obtain the flow domain solution 

for mean flow effect analyses in aeroacoustic simulations.  Besides that, the steady-state 

results can be used for the initialization of the transient state simulation.  It is well 

known that it takes a long time form the transient state simulation to converge.  

However, since the steady-state solution is already converged, it will largely decrease 

the iteration numbers in each time step in transient simulations.  

In steady-state simulation, the realizable k-epsilon turbulence model is used.  The 

term "realizable'' means that the model satisfies certain mathematical constraints on the 

Reynolds stresses.  For near-wall treatment, the non-equilibrium wall functions is 

selected.  The inlet boundary is set as velocity inlet, with flow speed of 21 m/s and 

0.01% turbulent intensity.  The outlet boundary is set as pressure outlet, with 0 Pa gauge 

pressure, which means that the outlet pressure is equivalent to atmosphere pressure.  

Regarding to pressure-velocity coupling, the SIMPLE (semi-implicit method for 

pressure-linked equations) method is selected.  The least squares cell based gradient 

method is chosen for its better performance with unstructured meshes.  Besides that, the 

second-order upwind scheme is used in the spatial discretization.  The simulation is 

initialized from the inlet.   

 

 

Table 3.1 Steady-state simulation setup in ANSYS FLUENT  

Turbulence Model Realizable k-epsilon model 

Inlet Boundary Velocity inlet,  21m/s 

Outlet Boundary 
Pressure outlet, 

Gauge pressure P = 0 Pa (1 atm) 

Pressure-Velocity Coupling SIMPLE 

Spatial Discretization Second-order Upwind Scheme 

Solution Initialization Compute from Inlet 
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After about 320 iterations, the results are converged.  The plot of the residuals 

are shown in Figure 3.2.  The convergence criteria is set as 110-3 for the variables of 

velocity, continuity and etc.  Figure 3.3 shows the velocity contours results colored by 

velocity magnitude.  From the simulation results, it can be seen that the flow speed 

inside the pipe does not change much, and the flow inside the resonators are of very low 

speed.  Also, after flow going pass the resonator areas, the turbulence boundary layers 

near the wall become larger.   

 

 

 

Figure 3.2 Plot of residuals of steady-state CFD simulation.  
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Figure 3.3 Cut-plane view of velocity contours colored by velocity magnitude.  

 

 

3.5.3 Transient Simulation 

In order to analyze the aerodynamic noise generated from the turbulent flow, a 

transient simulation is needed to be conducted.  The initialization of transient simulation 

can be achieved by using the results from steady-state simulation, so that it spends less 

time for the convergence of the results in each time step.  The time step size, Δt is set as 

110-4 second, and the number of time steps saved, N is 2000.  Then the maximum 

frequency, fmax and the resolution of frequency, Δf after Discrete Fourier Transform 

(DFT) in later aeroacoustic simulation can be calculated by as 5000 Hz from 5 Hz, 

respectively.  The calculation of maximum frequency and frequency resolutions are 

obtained from the following equations,  

 max 1/ 2f t   (3.31) 

  1/f N t     (3.32) 
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Notice that the term 1/Δt equals to the sampling frequency, and the maximum frequency 

is calculated by taking the half of the sampling frequency to satisfy the Nyquist sampling 

criterion.  The simulation setup for transient simulation are shown in Table 3.2.  

 

 

Table 3.2 Transient simulation setup in ANSYS FLUENT  

Turbulence Model Large Eddy Simulation (LES) model 

Inlet Boundary Velocity inlet, U = 21m/s 

Outlet Boundary 
Pressure outlet, 

Gauge pressure P = 0 Pa (1 atm) 

Pressure-Velocity Coupling SIMPLE 

Spatial Discretization Second-order Upwind Scheme 

Time Domain Discretization Second-order Implicity 

Gradient Method Least Squares Cell Based 

Solution Initialization Compute from Steady-state results 

Time step size 0.0001 s 

Number of time step saved 2000 

 

 

 

The result of turbulent intensity is shown in Figure 3.4.  It can be seen that the 

turbulent intensities are larger around the corner of the resonators.  Thus, it can be 

estimated that there will be more aerodynamic noise generated from that area.   



 

49 

 

 

Figure 3.4 Cut-plane view of contours of turbulent intensity (%) at 0.001 seconds.  

 

 

3.6 MEAN FLOW EFFECT 

3.6.1 Transferring CFD Results  

In order to analyze the mean flow effect on the performance of the quarter 

wavelength resonators, the CFD solutions are imported into acoustic FEM software (i.e., 

ACTRAN), and mapped onto the acoustic meshes.  The mapping is realized by 

employing the iCFD utility, which is an interface between CFD codes and ACTRAN.  

Besides that, the iCFD utility can also be used for computation of aeroacoustic sources 

and Fourier transform of time domain quantities.  They are shown in the next section 

analyzing the aerodynamic noise.   

There are two methods provide by the iCFD utility about the mapping from CFD 

solutions to acoustics mesh, (1) linear interpolation and (2) conservative integration.  

The schematics showing the two methods are in Figure 3.5 and Figure 3.6, respectively.   

From that, it can be seen the acoustic meshes can be coarser than the CFD meshes.  

From Figure 3.5, it can be seen that by using linear interpolation method, some of the 

information will be loss due the inconsistency of the meshes.  However, the conservative 
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integration method as shown in Figure 3.6 is capable of preserving all CFD information.  

Thus, the conservative integration method is used when transferring CFD solutions to 

acoustics domain.  

 

 

 

Figure 3.5 Linear interpolation from CFD mesh to acoustic mesh.  

 

 

 

Figure 3.6 Conservative integration from CFD mesh to acoustic mesh.  

 



 

51 

 

3.6.2 Frequency Shifts 

After CFD simulations, the steady-state solutions are first used to analyze the 

mean flow effect on the performance of the quarter wavelength resonators.  In order to 

estimate the relation between how much frequency shifts and the Mach number of flow, 

several cases with different flow speed are simulated.  In the aeroacoustic simulations, 

the boundary conditions are identical to those as previously set in the optimal design 

procedures, a plane wave excitation is given at the inlet boundary.  However, in the 

following chapter of experimental validation, the excitation is set as random waves, with 

higher mode waves in the axial direction as well as the circumferential direction, in order 

to simulate the real experiment condition.  Besides that, the mean flow field obtained 

from CFD simulations is mapped onto the acoustic domain.  The simulation result is 

shown in Figure 3.7.  It can be seen that as the increase of flow speed, the resonance 

peaks are shifted toward lower frequencies.  Also, the magnitude of the TL at the second 

peak is reduced as flow speed becomes faster.   

 

 

 

Figure 3.7 Plot of transmission losses at various flow speed.  
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Figure 3.8 Frequency shift at 2nd resonance peak versus Mach numbers. 

 

 

  

Figure 3.9 Amplitudes of TL at 2nd resonance peak versus Mach numbers. 

 

 

Figure 3.8 shows the relationships between frequency shifts and Mach numbers.  

The second order polynomial is well fitted to the frequency shift, indicating that the 
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frequency shift is proportional to the square of the Mach number (i.e., Δf = 1918.16M2 - 

24.21M).  The relationships between the amplitudes of TLs at the 2nd resonance peak is 

shown in Figure 3.9, also with a second order polynomial fitted curve.  These relations 

can be taken as a reference in the design of the quarter wavelength resonators in the 

future.   

 

3.7 EXPERIMENTAL VALIDATION OF MEAN FLOW EFFECT 

3.7.1 Experimental Setup 

As shown in Figure 3.10, the test rig for experimental validation includes a pipe 

system with the resonators, a loudspeaker system including a power amplifier, reference 

microphones, a hologram microphone array, a National Instruments (NI) data acquisition 

(DAQ) system, a signal generator (not shown in the figure), and an air blower (not 

shown in the figure).  The coaxial, two-way loudspeaker (model: JBL DRVN) is driven 

by a random excitation signal up to 6.4 kHz generated by the signal generator through 

the power amplifier.  The four reference microphones (model: Brüel & Kjær Type 

4954A) are flush mounted on the inner wall of the pipe with the sampling interval of 90o 

in the θ-direction (i.e., circumferential direction) close to the loudspeaker.  The 

loudspeaker input signal is also recorded as a reference signal.  The reference signals 

measured by using the reference microphones are used to reduce the effects of 

background noise using a partial field decomposition technique as well as to synchronize 

two array measurements at the upstream and downstream of the resonators.  The 

hologram microphone array of 8×8 microphones (model: Brüel & Kjær Type 4958) are 

flush mounted inside along the pipe with the sampling spacing of ∆z = 0.025m and ∆θ = 

45o.  The hologram microphone array is placed at either the upstream or the downstream 

of the resonator array to reconstruct the acoustic fields at these two measurement 

locations.   The DAQ system that consists of a NI PXIe-1082 chassis and five NI PXIe-

4496 modules are used to record both the reference and the hologram microphone 

signals.  During measurement, the sampling frequency is set to 16384 Hz so that the 

maximum frequency of the recorded data can be 8192 Hz.  However, since the 
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maximum frequency determined from the sampling interval in the z-direction (i.e., ∆z = 

0.025m) is approximately 6.4 kHz with the sound speed of 340 m/s, the resulting 

maximum frequency should be determined as 6.4 kHz. 

 

 

 

Figure 3.10 In-lab test rig for validation of numerical flow effect analyses.  

 

 

In order to experimentally validate the effect of the airflow inside the pipe on the 

performance of the resonators, the spatially averaged airflow speed of 21m/s (i.e., Mach 

Number = 0.06) is generated by the blower and the airflow is then injected into the pipe 

through the slanted Y connector as shown in Figure 3.10. 

 

3.7.2 In-lab Test Results 

Figure 3.11(a) shows the incident and the transmitted acoustic powers measured 

from the experiments by using near-field acoustic holography (NAH) [23] method 

without airflow and Figure 3.11(b) shows the TL obtained from the difference of the 

incident and the transmitted acoustic powers in.  
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(a) 
 

 
 

(b) 

 
Figure 3.11 (a) Measured incident and transmitted acoustic powers and (b) TL 
calculated from measured acoustic powers.  

 

 

(a) 

 

Figure 3.12 Predicted and measured TL (a) without airflow and (b) with airflow.  
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(b) 

 
Figure 3.12 Continued 

 

 

Figure 3.12 shows the comparison between predicted and experimentally 

measured TL with and without airflow.  The measured and predicted TL agree well with 

each other in terms of the maximum peak locations and amplitudes with the maximum 

frequency difference of 10 Hz.   As for the predicted results, there are the frequency 

shifts of 6 Hz due to the airflow inside the pipe, which may be negligibly small.  

However, the frequency shifts in the experimental results are approximately 0 - 5 Hz, 

even though they are not clearly identified due to measurement noises.  On the other 

hand, the slanted connector and the curvature of the resonator end that are not modeled 

in the numerical model may have some effects on the TL results, although they do not 

cause any significant TL discrepancies between the experimental and numerical results.  

In addition, the discrepancies may be caused by the resonator’s machining errors.  The 

background noise in the experimental facility and the wave reflections from the ground 

and the walls of the experimental facility may also contribute to the discrepancies. 
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3.8 AEROACOUSTIC NOISE 

3.8.1 Numerical Prediction 

The simulations of investigating the aeroacoustic noise generated from the 

turbulent flow inside the pipe system with quarter-wavelength resonators are performed 

by using ACTRAN with the unsteady CFD solution data obtained from the previous 

steps.  The time data from CFD solution are transformed into frequency domain by DFT 

using the iCFD module in ACTRAN.   

 

 

 

Figure 3.13 Microphone locations in simulation of aeroacoustic noise.  

 

 

Figure 3.13 shows the microphone locations in aeroacoustic simulations.  In 

total, 9 microphone points are set at the downstream area.  Aeroacoustic noise generated 

from the turbulence flow are evaluated at all of the measuring points.  The noise at 

microphone 1, microphone 3 and microphone 7 are shown in Figure 3.14(a), Figure 

3.14(b) and Figure 3.14(c), respectively.  From that, it can be seen that the maximum 

noise level is less than 60 dB, which can be ignored when compared with the overall 

noise level.  
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(a) 

 
(b) 

 

Figure 3.14 Aeroacoustic noise from (a) microphone 1, (b) microphone 3 and (c) 
microphone 7.  
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(c) 

 
Figure 3.14 Continued 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORKS 

 

In order to reduce the tonal noise generated from a centrifugal compressor, the 

quarter wavelength resonator array is proposed and has been studied in this thesis.  The 

quarter wavelength resonator array is installed at the downstream area of a compressor 

for tonal noise reduction.  The geometrical parameters of the quarter wavelength 

resonators determine the frequency component at which the noise will be reduced.  

Besides that, due to the air flow coming out of the compressor, there is phase shift in the 

wave propagation inside the downstream pipe.  Thus the ‘working frequencies’ of the 

quarter wavelength resonators are moved away.  In order to offset this error in the 

numerical design of resonators, the flow effect analyses are performed by using hybrid 

CAA modeling method.  After this, the relationship between the Mach number of the air 

flow coming out of the compressors and the shifts in the ‘working frequencies’ is 

estimated.  The relation will be considered in the final design of the resonators, so that 

the frequency shifts can be offset.   

 

4.1 NUMERICAL OPTIMAL DESIGN 

In the numerical design section, the geometric parameters of the quarter 

wavelength resonator array, which are the depth (l), the diameter (d) of a single 

resonator, the axial spacing (ΔL), the circumferential spacing (θ) and the number of 

layers (N), are optimized by using commercial software package COMSOL.  The 

parameter sweep function is used in order to obtain the optimal values.  In the first step, 

the optimal values of the depth and diameter of a single resonator are obtained.  Then the 

geometry shapes of the resonators are fixed and the other parameters are optimized one 

by one.   

Afther numerical simulation, the sensitivy analysis reveals that the performance 

of the resonator array is significantly sensitive to its depth and diameter.  When the 
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depth and diameter are changed by 5%, the TL value at the target frequency is 

decreased by 22 to 27 dB.   

After optimal design, some other distributions of resonators (staggered 

distribution, slanted resonator distribution, resonators on expansion pipe and curved pipe 

models) are also taken into investigation of their noise reduction performance.  The 

staggered distribution of resonator array does not influence the noise reduction 

performance.  The curved pipe configuration with the curvature of 2 meter reduce the TL 

amplitudes by 17 dB.  The 45 degree slanted resonators reduce the bandwidth of the 

maximum TL performance peak by 30 Hz while the maximum TL value remains the 

same.  The expansion duct with the resonators increases the bandwidth of the maximum 

TL performance peak by 280 Hz, but reduce the maximum TL value by 6 dB.   

 

4.2 FLOW EFFECT ANALYSES 

The flow effect analyses are performed by hybrid CAA simulations.  The 

simulations are separated into fluid dynamics domain and acoustics domain.  In fluid 

dynamics simulation, it is realized by using commercial CFD code ANSYS FLUENT.  

A steady state simulation is calculated first, and then it is set as initialization of the 

transient simulation.  After fluid dynamics simulations, the results are exported and 

projected onto the acoustic mesh for aeroacoustic computations.  Two aspects of 

problems are studied in this procedure.  One is the phase shift in wave propagation in 

moving fluid.  By simulations with respect to air flow of various speed, the relation 

between phase shift and flow Mach number can be estimated.  On the other hand, the 

aerodynamic noise generated from the turbulent flow can be extracted.  It can be also 

used in the design of the quarter wavelength resonators for noise estimations.   

For the validation of mean flow effect simulation, an in-lab experimental test rig 

is built.  The sound pressures are measured at both the upstream and downstream area.  

Then the acoustic field are reconstructed by performing cylindrical nearfield acoustic 

holography, and the transmission loss are calculated.  For validations, the transmission 

loss of the experimental results and the simulated ones are compared.   
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The flow effect analysis results in the two relations between the frequency shift 

and the flow speed, and between the TL reduction and the flow speed.  From the curve 

fitting results, the relation between the frequency shift and the flow speed can be 

represented by Δf = 1918M2 - 24.21M . The relation between the TL reduction and the 

flow speed can be represented by TL = 4258.6M2 – 734.8M + 53.7. 

The aeroacoustic noise is predicted by using hybrid CAA method with the 

maximum level of less than 60 dB.  This maximum level can be ignored, when 

compared with the overall noise level, 99.3 dB of the Samsung Techwin’s compressor.  

In general, the in-lab experiment shows a good agreement between the experiment and 

numerical results.  The experimental and numerical maximum TL levels match well with 

each other, although the experimental TL peak shows broader bandwidth than the 

numerical one.  Due to the small TL fluctuation in the experimental data, it is difficult to 

identify the frequency shift due to the airflow inside the duct.    

 

4.3 FUTURE DIRECTIONS  

Although the results presented in this thesis shows good agreement between 

experimental and simulated ones, in real engineering practice, the noise reduction effect 

will be easily affected by other factors, for example, the manufacture errors, the 

instability of the surrounding temperatures, and etc.  Regarding to further improvement 

of the design of the quarter wavelength resonators, it is recommended to make more 

effort on expanding the bandwidth of the ‘working frequencies’, so that even when there 

is phase shift in wave propagation, the noise reduction effect of the quarter wavelength 

resonator array can still be guaranteed.   Regarding to aeroacoustic noise prediction, a 

simulation with more time steps will be conducted in the future, in order to guarantee the 

accuracy of simulations.  
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