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ABSTRACT

In this dissertation we study cluster value problems for Banach algebras H(B)

of analytic functions on the open unit ball B of a Banach space X that contain X∗

and 1. Solving cluster value problems requires understanding the cluster set of a

function f ∈ H(B). For the Banach spaces X we focus on, such as those with a

shrinking reverse monotone Finite Dimensional Decomposition and C(K), we prove

cluster value theorems for a Banach algebra H(B) and a point x∗∗ ∈ B̄∗∗. In doing

so, we apply standard methods and results in functional analysis; in particular we

use the facts that projections from X onto a finite-codimensional subspace equal IX

minus a finite rank operator and that C(K)∗ = `1(K) when K is compact, Hausdorff

and dispersed.

We also prove that for any separable Banach space Y , a cluster value problem for

H(BY ) (H = H∞ or H = Au) can be reduced to a cluster value problem for H(BX)

for some Banach space X that is an `1-sum of a sequence of finite-dimensional spaces.

The proof relies on the construction of an isometric quotient map from a suitable X

to Y that induces an isometric algebra homomorphism from H(BY ) to H(BX) with

norm one left inverse. The left inverse is built using ultrafilter techniques. Other

tools include the infinite-dimensional version of the Schwarz lemma and familiar one

complex variable results such as Cauchy’s inequality and Montel’s theorem.

We conclude this work by describing the related ∂̄ problem and defining strong

pseudoconvexity as well as uniform strong pseudoconvexity in the context of Banach

spaces. Our last result is that 2-uniformly PL-convex Banach spaces have a uniformly

strictly pseudoconvex unit ball. In future research we will study the ∂̄ problem

in uniformly strictly pseudoconvex unit balls and in the open unit ball of finite-
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dimensional Banach spaces such as the ball of `n1 .
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1. INTRODUCTION: MAIN CONCEPTS

1.1 Some particular Banach algebras

The research I present in this thesis is focused on some problems in Functional

Analysis combined with Complex Analysis. To be specific, I study certain Banach

algebras of bounded analytic functions on the open unit ball B of a complex Banach

space X that contain X∗ (the continuous linear functionals on X) and 1. Indeed,

every element of X∗ acts linearly and continuously on B, thus each element of X∗ is

a bounded analytic function on B (the definition of an analytic function is discussed

in detail later on).

From here on, H(B) will denote any such algebra. One example is the algebra

H∞(B) of all bounded analytic functions on B. The study of H∞(B) is widely spread

in mathematics, as in H∞ control theory, H∞ functional calculus, etc. Another well

known example is the disk algebra, the analytic functions on the ball B of Cn that

extend continuously to B̄. There are two generalizations of the disk algebra to the

infinite-dimensional case: Au(B), the uniformly continuous, bounded and analytic

functions on B, and A(B), the uniform limits on B of polynomials in the functions

in X∗. These algebras satisfy the inclusions A(B) ⊂ Au(B) ⊂ H∞(B). In particular

A(B) = Au(B) when X is finite-dimensional (because each f ∈ Au(B) is the uniform

limit of polynomials and every polynomial on a finite-dimensional space is in A(B)),

while Au(B) ( H∞(B) for every Banach space X (See [6, 90-92], or check that

B ◦ x∗ ∈ H∞(B) \ Au(B) for x∗ ∈ X∗ of norm one with x∗(x1) = ‖x1‖ = 1 and

B a Blaschke product with zeros dense in ∂∆). Examples of infinite-dimensional

spaces with A(B) = Au(B) include the C(K) spaces for K compact, Hausdorff

and dispersed (see section 3 in [27]), while examples of spaces with A(B) ( Au(B)
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include `1, L1, C(K) spaces for K compact, Hausdorff and not dispersed like `∞,

L∞ (see Proposition 2.36 in [13] and the Main Theorem in [35]), and `p, Lp for

1 < p < ∞ (because for a fixed integer n ≥ p and (ek)k the canonical basis of `p,

f(
∑
akek) =

∑
ank is uniformly continuous on B`p and analytic on complex lines, so

f ∈ Au(B`p); moreover f(ek) = 1 for each k ∈ N, while g(ek) → 0 when g ∈ A(B),

implying that f /∈ A(B). Then f◦P ∈ Au(BLp)\A(BLp), for P a norm one projection

of Lp onto a subspace that is isometric to `p).

One of the most important topics in the study of Banach algebras H(B) is the

study of its set of characters, the nonzero homomorphisms from H(B) to C, called

the spectrum of H(B), and denoted by MH(B). Since our Banach algebras H(B)

are commutative and have an identity, the spectrum MH(B) is a compact Hausdorff

space ([21, Theorem 2.5]). The study of the spectrum is simplified by fibering it

over B̄∗∗ (the closed unit ball of X∗∗) via the surjective mapping π : MH(B) → B̄∗∗

given by π(τ) = τ |X∗ . Indeed, π is well-defined because every τ ∈ MH(B) is linear,

continuous and of norm one; and π is surjective because π(δx) = x for every x ∈ B

( where δx : H(B) → C is defined by f 7→ f(x)), and since MH(B) is compact,

B̄∗∗ = B̄w∗ ⊂ π(MH(B)).

Another related topic of interest is the Gelfand Transform: Given f ∈ H(B), the

Gelfand Transform of f is the continuous map f̂ : MH(B) → C given by τ 7→ τ(f).

The Gefand Transform is a generalization of the Fourier Transform for L1(R) under

convolution.

1.2 The Corona problem

One of the big open problems in the study of algebras H(B) is the Corona problem

on the ball, which asks whether the open unit ball of a Banach spaceX is dense (in the

weak-star topology) in MH(B). Note that B can be seen as a subset of MH(B) via the
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mapping δ : B →MH(B) such that x 7→ δx. An example of a character in MH(B) \B

can be found in Example 2.1 later on. An equivalent formulation of the Corona

problem (see [24, p. 163]) is that whenever f1, · · · , fn ∈ H(B) satisfy |f1|+· · ·+|fn| ≥

ε > 0 on B, there exist g1, · · · , gn ∈ H(B) such that f1g1 + · · ·+ fngn = 1.

Carleson solved the Corona problem positively for the unit disk in C in 1962 [9].

In 1970 Gamelin [17] discussed the corona problem for other planar domains, solving

it in cases that include finitely connected planar domains, while in 1985 Garnett and

Jones [23] solved positively the Corona problem for connected open subsets of the

extended complex plane whose complement is a subset of the real axis. Garnett poses

corona problems for other interesting planar domains in [22]. In higher dimensions,

around 1970 Cole constructed an open Riemann surface which is a counterexample

to a Corona theorem [20]. Even more, Sibony produced counterexamples in 1987

in [37] and in 1993 in [16] to Corona theorems in C3, and then in C2, of domains

that are pseudoconvex, and strictly pseudoconvex except at one point (for example,

convex sets are pseudoconvex).

As Krantz summarizes in [31], there is no domain known in the plane C for which

the corona problem is known to fail, and there is no domain known in Cn, for n ≥ 2,

on which the corona problem is known to hold true. In particular, it is a challenging

open problem to determine whether the Corona problem holds true for the unit ball

or polydisk in Cn for n ≥ 2.

1.3 Cluster value problems

This thesis work deals mainly with another set of big open problems: cluster

value problems. Cluster value problems are related to the Corona problem (a positive

answer to a Corona problem gives a positive answer to the corresponding cluster value

problem, or equivalently, a negative answer to a cluster value problem would yield
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a counterexample to a Corona theorem). Roughly speaking, cluster value problems

involve the understanding of the cluster sets of a function f ∈ H(B), that is, the

limits of f over weak∗ convergent nets in B, when B is seen as a subset of X∗∗ with

the weak-star topology. They also involve comparing such limits with the spectrum

of H(B) evaluated at f .

Kakutani [29] was among the first ones to consider cluster value problems in 1955

for domains in the complex plane, followed by I. J. Schark [26] in 1961 for the unit

disk ∆ of the complex plane. I. J. Schark gave an explicit identification of the cluster

values of a function f at a point x in the boundary of ∆ with the fiber over x of the

spectrum evaluated at f :

Theorem 1.1. Let f ∈ H∞(∆) and x ∈ ∂∆. If Mx = {τ ∈ MH∞(∆) : τ(id) = x},

then the range of f̂ on Mx consists of those complex numbers ζ for which there is a

sequence {λn} in ∆ with λn → x and f(λn)→ ζ.

In 1973 Gamelin [18] proved a cluster value theorem for the polydisk in Cn.

Moreover, he proved it for finite products of open sets in C. Then McDonald proved

in 1979 in [33] a cluster value theorem for the Euclidean unit ball in Cn, and actually

for any strongly pseudoconvex domain in Cn with smooth boundary. His proof relied

on a solution by Kerzman from 1971 in [30, 342-345] to a ∂̄ problem in a strongly

pseudoconvex domain.

Being precise, we say a finite-dimensional cluster value theorem for B ⊂ Cn

holds when the following occurs: Suppose f ∈ H∞(B), x ∈ ∂B and α ∈ C. Let

Mx = {τ ∈ MH∞(B) : τ |A(B) = δx}. There exists m ∈ Mx such that m(f) = α if and

only if there is a sequence {xk}k in B converging to x such that f(xk) tends to α.

Before discussing cluster value theorems for the unit ball of an infinite-dimensional

Banach space, let us overview the basic theory of holomorphic functions on arbitrary
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Banach spaces.

1.4 Complex analysis on Banach spaces

Given U an open subset of a complex Banach space X, following Mujica [34], we

say that f : U ⊂ X → C is an analytic (or holomorphic) function on U if for every x ∈

U there exists r > 0 and continuous polynomials on X, (Pmf(x))∞m=0, where Pmf(x)

is m-homogeneous, such that, if ‖y− x‖ < r then f(y) =
∑∞

m=0 P
mf(x)(y− x), and

the convergence is uniform on the ball of radius r around x. The radius of convergence

of f at x, rcf(x), is the supremum of the radius of balls for which the power series

around x converges uniformly. Similarly, the radius of boundedness of f at x, rbf(x),

is the supremum of the radius of balls centered at x and contained in U on which f

is bounded.

An m-homogeneous polynomial L̂ on X, for m ∈ N, is the restriction to the

diagonal of a m-linear mapping L : Xm → C, i.e. L̂(x) = L(x, x, · · · , x) (and it is a

constant function for m = 0).

The following two formulas are very useful (Theorems 4.3 and 7.13 in [34]).

Proposition 1.1. [Cauchy-Hadamard Formula] Let U be an open subset of a complex

Banach space X. If f : U ⊂ X → C is analytic then for each x ∈ U , 1/rcf(x) =

lim supm→∞ ‖Pmf(x)‖1/m.

Proof. Let x ∈ U . We will first show that 1/rcf(x) ≥ lim supm→∞ ‖Pmf(x)‖1/m.

Let r ∈ (0, rcf(x)). Then f(y) =
∑∞

m=0 P
mf(x)(y − x), and the convergence is

uniform for y ∈ B(x, r). Hence we can choose m0 ∈ N such that

‖
m∑
j=0

P jf(x)(y − x)− f(y)‖ ≤ 1, ∀m ≥ m0 and y ∈ B(x, r).
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Thus ‖Pmf(x)(t)‖ ≤ 2 for all m > m0 and t ∈ B(0, r). Consequently ‖Pmf(x)‖ ≤

2r−m for all m > m0 and therefore lim supm→∞ ‖Pmf(x)‖1/m ≤ 1/r.

Letting r → rcf(x) we get that 1/rcf(x) ≥ lim supm→∞ ‖Pmf(x)‖1/m.

Let us now show that 1/rcf(x) ≤ lim supm→∞ ‖Pmf(x)‖1/m.

Let R = lim supm→∞ ‖Pmf(x)‖1/m and assume that R < ∞. Choose r ∈

(0, 1/R), s ∈ (r, 1/R) and m0 ∈ N such that ‖Pmf(x)‖1/m < 1/s for all m ≥ m0.

Then ‖Pmf(x)(y − x)‖ ≤ (r/s)m for all m ≥ m0 and y ∈ B(x, r), so the series∑∞
m=0 P

mf(x)(y−x) converges uniformly for y ∈ B(x, r). Thus rcf(x) ≥ r. Letting

r → 1/R we obtain that rcf(x) ≥ 1/R, i.e. 1/rcf(x) ≤ R = lim supm→∞ ‖Pmf(x)‖1/m.

Proposition 1.2. Let U be an open subset of a complex Banach space X. If f : U ⊂

X → C is analytic then for each x ∈ U , rbf(x) = min{rcf(x), dU(x)} (where dU(x)

denotes the distance from x to the boundary of U).

Proof. Let x ∈ U . Clearly dU(x) = sup{r > 0 : B(x, r) ⊂ U}, so rbf(x) ≤ dU(x).

Thus to show rbf(x) ≤ min{rcf(x), dU(x)} it is enough to show rbf(x) ≤ rcf(x).

Let r ∈ (0, rbf(x)). Then B̄(x, r) ⊂ U and f is bounded on B̄(x, r), say by

C. It follows from Proposition 1.8 below (Cauchy Inequality) that ‖Pmf(x)‖ ≤

Cr−m for all m ∈ N0, so by the Cauchy-Hadamard Formula we get that rcf(x) =

1/ lim supm→∞ ‖Pmf(x)‖1/m ≥ r. Letting r → rbf(x) we obtain rcf(x) ≥ rbf(x).

Let us now show that rbf(x) ≥ min{rcf(x), dU(x)}. Choose 0 < r < s <

min{rcf(x), dU(x)}. Then B(x, s) ⊂ U and
∑∞

m=0 P
mf(x)(y − x) converges for

every y ∈ B(x, s). Thus, by Proposition 1.3 below (Identity Principle) we get that

f(y) =
∑∞

m=0 P
mf(x)(y − x), for all y ∈ B(x, s). Moreover, from the Cauchy-

Hadamard Formula, lim supm→∞ ‖Pmf(x)‖1/m = 1
rcf(x)

< 1
s
, so there exists C > 1
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such that ‖Pmf(x)‖ ≤ C
sm

for all m ∈ N0. Thus ‖f(y)‖ ≤ C
∑∞

m=0( r
s
)m for all

y ∈ B(x, r). Hence rbf(x) ≥ r, and letting r → min{rcf(x), dU(x)} we get that

rbf(x) ≥ min{rcf(x), dU(x)}.

Gamelin defines an analytic function in [19] differently. However, Proposition

8.6 and Theorem 8.7 in [34] prove that these definitions are equivalent. Moreover,

Theorem 13.16 in [34] proves that analyticity is equivalent to C-differentiability. Let

us summarize these results in the following theorem.

Theorem 1.2. Given an open subset U of a Banach space X and f : U ⊂ X → C,

the following are equivalent:

(i) f is analytic,

(ii) f is continuous and its restriction to every complex one-dimensional affine

subspace of X is analytic, i.e. for every x0 ∈ U and direction x ∈ X, the

function λ→ f(x0 + λx) depends analytically on λ for λ ∈ {ζ : x0 + ζx ∈ U},

(iii) f is locally bounded and its restriction to every complex one-dimensional affine

subspace of X is analytic,

(iv) f is continuous and f |U∩M is analytic for each finite-dimensional subspace M

of X,

(v) f is Fréchet C-differentiable, i.e. for each point x ∈ U there exists a C-linear

mapping L ∈ X∗ such that limy→x
‖f(y)−f(x)−L(y−x)‖

‖y−x‖ = 0.

Proof. (ii)⇒ (iii) Continuity clearly implies local boundedness.

(iii) ⇒ (ii) Let us first note that Proposition 1.9 below (Schwarz’ Lemma) still

holds under our condition that the restriction of f to every complex one-dimensional

affine subspace of X is analytic.
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Now let x ∈ U . Since f is locally bounded, there exists r > 0 such that f is

bounded in B(x, r), say by C. Then, by Schwarz’ Lemma,

‖f(y)− f(x)‖ ≤ 2C‖y − x‖, ∀y ∈ B(x, r).

This proves that f is continuous at the point x.

(i) ⇒ (v) Let x ∈ U and choose r ∈ (0, rbf(x)). Then f is bounded on B̄(x, r),

say by C. Moreover, since rbf(x) ≤ rcf(x), we have that for all y ∈ B(x, r),

f(y) = f(x) + P 1f(x)(y − x) +
∞∑
m=2

Pmf(x)(y − x),

and so

lim sup
m→∞

‖f(y)− f(x)− P 1f(x)(y − x)‖
‖y − x‖

≤ lim sup
m→∞

∞∑
m=2

‖Pmf(x)(
y − x
‖y − x‖

)‖‖y−x‖m−1.

And by Proposition 1.8 below (Cauchy Inequality), we have that for all m ≥ 2 and

y ∈ B(x, r) \ {x},

‖Pmf(x)(
y − x
‖y − x‖

)‖ ≤ r−m sup
|ζ|=r
‖f(x+ ζ(

y − x
‖y − x‖

)‖ ≤ Cr−m,

so

lim sup
m→∞

∞∑
m=2

‖Pmf(x)(
y − x
‖y − x‖

)‖‖y − x‖m−1 ≤ lim sup
m→∞

∞∑
m=2

C/‖y − x‖(‖y − x‖
r

)m

= lim sup
m→∞

C

r2
‖y − x‖( 1

1− ‖y−x‖
r

) = 0.

Hence f is Fréchet C-differentiable.

(v) ⇒ (ii) Let x0 ∈ U and x 6= 0 ∈ X. Since f is Fréchet C-differentiable, by
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the Chain Rule also g(λ) = f(x0 + λx) is C-differentiable on Ω = {ζ : x0 + ζx ∈ U}.

Thus g is analytic, by the corresponding one complex variable result.

Hence the restriction of f to every complex one-dimensional affine subspace of

X is analytic. And the Fréchet C-differentiability of f clearly implies that f is

continuous.

(ii)⇒ (iv) Let M be a finite-dimensional subspace of X. Let x0 ∈ U ∩M and let

{x1, · · · , xn} be a basis for M . Then, following the proof of Proposition 1.7 (applied

n times as in Corollary 7.8 in [34]) under our condition that f is continuous and its

restriction to each complex line is analytic, we obtain that

f(x0 + λ1x1 + · · ·λnxn) =
∑
α

cαλ
α1
1 · · ·λαnn ,

and the series converges absolutely and uniformly on some polydisk ∆n(0, r).

Then, for each m ∈ N0 define Pm : M → C by

Pm(λ1x1 + · · ·λnxn) =
∑
|α|=m

cαλ
α1
1 · · ·λn,αn

so clearly Pm is an m-homogeneous polynomial and

f(x0 + λ1x1 + · · ·λnxn) =
∞∑
m=0

Pm(λ1x1 + · · ·λnxn),

where the series converges uniformly on ∆n(0, r).

Thus f |U∩M is analytic.

(iv) ⇒ (i) Let x0 ∈ U and r > 0 such that B(x0, r) ⊂ U . Then, if M is a
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finite-dimensional subspace of X containing x0, by Proposition 1.2 applied to f |U∩M ,

f(x) =
∞∑
m=0

PM
m (x− x0), ∀x ∈M ∩B(x0, r)

where each PM
m is an m-homogeneous polynomial.

Hence, if M and N are two finite-dimensional subspaces of X containing x0 then

PM
m (t) = PN

m (t) ∀t ∈ M ∩ N,m ∈ N0 (by an induction argument similar to the one

given after Lemma 4.5 in [34]).

Thus, defining Pm : X → C by Pm(t) = PM
m (t), where M is any finite-dimensional

subspace of X containing x0 and t, we get that Pm is an m-homogeneous polynomial

(after using a Polarization Formula as the one in Theorem 1.10 in [34]) and

f(x) =
∞∑
m=0

Pm(x− x0), ∀x ∈ B(x0, r).

Now since f is continuous at x0 there exists s < r such that f is bounded on B̄(x0, s),

say by C. Thus, by Proposition 1.8 below (Cauchy Inequality) applied to f |U∩M for

some finite-dimensional subspace M of X containing x0 and t ∈ BX ,

‖Pm(t)‖ ≤ Cs−m, ∀m ∈ N0.

Hence each Pm is continuous and the power series
∑∞

m=0 Pm(x− x0) converges uni-

formly for x ∈ B(x0, s), for all s0 < s.

Some examples [34, Section 5] of analytic functions are the following:

(i) Polynomials (finite sums of n-homogeneous polynomials),

(ii) Power series
∑∞

m=0 Pm(x) with infinite radius of convergence.
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(iii) Power series of the form
∑∞

m=0(x∗m)m, where {x∗m} ⊂ X∗ and x∗m
w∗−→ 0.

Also, [34, Sections 5,7] extends the following classical properties to the infinite-

dimensional setting.

Proposition 1.3. [Identity Principle] If f is analytic on a connected open set U and

identically zero on a nonvoid open set V ⊂ U , then f is identically zero on all of U .

Proof. (a) First assume U is an open ball in X.

Let x ∈ U and y ∈ V , and let Ω = {λ ∈ C : y + λ(x − y) ∈ U}. Clearly Ω is a

convex open set that contains 0 and 1, and in particular it is connected. Hence

g : Ω→ C given by g(λ) = f(y+λ(x−y)) is holomorphic and identically zero on

a neighborhood of zero. Thus g is identically zero on all of Ω by the one complex

variable Identity Principle. In particular f(x) = g(1) = 0. Thus f is identically

zero on all of U .

(b) In the general case consider A = {a ∈ U : ∃r > 0 s.t. f |B(a,r) ≡ 0}. A is clearly

an open set, and it turns out to be closed in U as well, because if (an)n ⊂ A

satisfies an → a ∈ U then, after choosing r > 0 such that B(a, r) ⊂ U , we

obtain n ∈ N such that an ∈ B(a, r), and since there further exists rn small

enough such that B(an, rn) ⊂ B(a, r) and f |B(an,rn) ≡ 0, then part (a) implies

that f |B(a,r) ≡ 0, i.e. a ∈ A. Thus A = U , i.e. f is identically zero on all of U .

Proposition 1.4. [Open Mapping Principle] If f is analytic and non-constant on a

connected open set U , then f is an open mapping.

Proof. It is enough to show that f(B(a, r)) contains a neighborhood of f(a) for each

B(a, r) ⊂ U . So let a ∈ U and r > 0 such that B(a, r) ⊂ U . By the Identity Principle
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we have that f |B(a,r) is non-constant, so there exists b ∈ B(a, r) such that f(b) 6= f(a).

Now, Ω = {λ ∈ C : a+λ(b−a) ∈ B(a, r)} is a connected open set that contains 0 and

1. Hence g : Ω→ C given by g(λ) = f(a+λ(b− a)) is an holomorphic function that

satisfies g(0) = f(a) 6= f(b) = g(1), so by the one complex variable Open Mapping

Principle we get that g(Ω) is open, where f(a) = g(0) ∈ g(Ω) ⊂ f(B(a, r)). Thus f

maps open sets into open sets.

Proposition 1.5. [Maximum Principle] If f is analytic on a connected open set U

and |f | attains its supremum there, then f is constant.

Proof. Assume f is not constant. Then, by the Open Mapping Principle, for each

a ∈ U there exists r > 0 such that B(f(a), r) ⊂ f(U), so |f(a)| is not the supremum

of |f |. Hence |f | does not attain its supremum on U .

Proposition 1.6. [Liouville’s theorem] If f is analytic and bounded on all X, then

f is constant.

Proof. Let x ∈ X. Since the function g : C→ C given by g(λ) = f(λx) is holomor-

phic and bounded, then the one complex variable Liouville’s theorem implies that g

is constant. In particular f(x) = g(1) = g(0) = f(0). So f is constant.

Proposition 1.7. [Cauchy Integral Formula] Suppose that f : U → C is holomor-

phic. Let a ∈ U , t ∈ X and r > 0 such that a+ζt ∈ U ∀ζ ∈ ∆̄(0, r). Then ∀m ∈ N0:

Pmf(a)(t) = 1
2πi

∫
|ζ|=r

f(a+ζt)
ζm+1 dζ.

Proof. Let Ω = {ζ ∈ C : a + ζt ∈ U}. Then g : Ω→ Ω given by g(ζ) = f(a + ζt) is

holomorphic on a neighborhood of ∆̄(0, r), so by the one complex variable Cauchy

Integral Formula, ∀λ ∈ ∆(0, r),

f(a+ λt) = g(λ) =
1

2πi

∫
|ζ|=r

g(ζ)

ζ − λ
dζ =

1

2πi

∫
|ζ|=r

f(a+ ζt)

ζ − λ
dζ.

12



Now, whenever |ζ| = r and |λ| < r we have

f(a+ ζt)

ζ − λ
=
f(a+ ζt)/ζ

1− (λ/ζ)
=

∞∑
m=0

λm
f(a+ ζt)

ζm+1
,

and the series converges absolutely and uniformly for |ζ| = r and |λ| ≤ s < r, for

all s < r, because f is bounded on {a + ζt : |ζ| = r}. Then, from the Dominated

Convergence Theorem,

f(a+ λt) =
1

2πi

∫
|ζ|=r

f(a+ ζt)

ζ − λ
dζ =

∞∑
m=0

λm(
1

2πi

∫
|ζ|=r

f(a+ ζt)

ζm+1
dζ),

and the convergence is uniform for |λ| ≤ s, for all s < r.

On the other hand, since f is holomorphic we have a power series expansion

f(a+ λt) =
∞∑
m=0

Pmf(a)(λt) =
∞∑
m=0

λmPmf(a)(t),

which converges uniformly for |λ| ≤ s0, for some s0 > 0. Hence, after an induction

argument (such as the one given in Lemma 4.5 in [34]), we get that ∀m ∈ N0,

Pmf(a)(t) =
1

2πi

∫
|ζ|=r

f(a+ ζt)

ζm+1
dζ.

Proposition 1.8. [Cauchy Inequality] Suppose that f : U → C is holomorphic. Let

a ∈ U , t ∈ X and r > 0 such that a + ζt ∈ U ∀ζ ∈ ∆̄(0, r). Then ∀m ∈ N0:

‖Pmf(a)(t)‖ ≤ r−m sup|ζ|=r ‖f(a+ ζt)‖.
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Proof. From the Cauchy Integral Formula we have that ∀m ∈ N0,

Pmf(a)(t) =
1

2πi

∫
|ζ|=r

f(a+ ζt)

ζm+1
dζ.

Hence,

||Pmf(a)(t)|| ≤ 1

2π

∫
|ζ|=r

|f(a+ ζt)|
rm+1

≤ r−m sup
|ζ|=r
||f(a+ ζt)||.

Proposition 1.9. [The Schwarz Lemma] Suppose that f : U → C is holomorphic.

Let a ∈ U and r > 0 such that B(a, r) ⊂ U , and suppose that f is bounded on B(a, r)

by C. Then ∀x ∈ B(a, r):

‖f(x)− f(a)‖ ≤ 2C ‖x−a‖
r

.

Proof. Fix x ∈ B(a, r)\{a}. Since rbf(a) = min{rcf(a), dU(a)} (proven above), and

we have that rbf(a) ≥ r, then rcf(a) ≥ r too, so

f(a+ λ(x− a)) =
∞∑
m=0

Pmf(a)(x− a)λm, ∀λ ∈ ∆(0, r/‖x− a‖).

Thus, if we define g : ∆(0, r/‖x − a‖) → C by g(λ) = f(a+λ(x−a))−f(a)
λ

for λ 6= 0

and g(0) = P 1f(a)(x− a), we get that actually

g(λ) =
∞∑
m=1

λm−1Pmf(a)(x− a), ∀λ ∈ ∆(0, r/‖x− a‖),

so g is in particular holomorphic.

14



Now, if s ∈ (1, r/‖x− a‖) and |λ| = s, then

|g(λ)| ≤ |f(a+ λ(x− a))|+ |f(a)|
|λ|

≤ 2C

s
,

so by the Maximum Principle, if |λ| ≤ s also |g(λ)| ≤ 2C
s

. Since λ = 1 satisfies

|λ| ≤ s then

||f(x)− f(a)|| = |g(1)| ≤ 2C

s
.

Since this is true for all s < r/‖x− a‖ then also

||f(x)− f(a)|| ≤ 2C
‖x− a‖

r
.

Since rbf(a) = min{rcf(a), dU(a)} whenever a ∈ U and f : U → C is holomor-

phic, there is a classical property that does not extend to the infinite dimensional

setting: The following example [34, p. 54] exhibits that the radius of convergence of

the power series of a holomorphic function around a point is not at least the distance

of the point to the boundary of U .

Proposition 1.10. Suppose that (x∗m)m ⊂ X∗ is a sequence such that ‖x∗m‖ = 1 ∀m

and x∗m
w∗−→ 0. Then f =

∑∞
m=0(x∗m)m is holomorphic on all of X but has radius of

convergence at 0 equal to 1.

WhenX is infinite-dimensional, such a sequence always exists due to the Josefson-

Nissenzweig Theorem [12, 219-225].

Remark 1.1. If X and Y are complex Banach spaces, and U ⊂ X is open, we say

that f : U → Y is holomorphic if y∗ ◦ f is holomorphic for all y∗ ∈ Y ∗. One can

check that Theorem 1.2 can be extended to this setting (see [34] for the details).
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We now have enough tools to discuss the cluster value problem in arbitrary Ba-

nach spaces.

1.5 Cluster value problems for infinite-dimensional Banach spaces

For arbitrary Banach spaces X, the cluster value theorem for H(B) asserts that,

for a given x∗∗ ∈ B̄∗∗, the sets of cluster values

ClB(f, x∗∗) := {λ : f(xα)→ λ, xα
w∗−→ x∗∗}

coincides with the evaluation of the fiber Mx∗∗(B) := π−1(x∗∗) at f ,

f̂(Mx∗∗(B)) = {τ(f) : τ ∈Mx∗∗},

for all f ∈ H(B).

Aron, Carando, Gamelin, Lasalle and Maestre observed in [5] that for every

x∗∗ ∈ B̄∗∗ we have the inclusion

ClB(f, x∗∗) ⊂ f̂(Mx∗∗(B)), ∀f ∈ H(B), (1.1)

thus to prove the cluster value theorem for H(B) it is enough to show f̂(Mx∗∗(B)) ⊂

ClB(f, x∗∗), ∀f ∈ H(B).

Aron, Carando, Gamelin, Lasalle and Maestre also showed in [5] that the cluster

value theorem holds at every x∗∗ ∈ B̄∗∗ if and only if whenever f1, · · · , fn−1 ∈ A(B)

and fn ∈ H(B) satisfy |f1|+ · · ·+ |fn| ≥ ε > 0 on B, there exist g1, · · · , gn ∈ H(B)

such that f1g1 + · · · fngn = 1.

When B is the unit ball of an infinite-dimensional Banach space, there are no

known solutions to the Corona problem. However, Aron, Carando, Gamelin, Lasalle
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and Maestre proved in 2012 in [5] a cluster value theorem at the origin for the algebra

Au(B) when X has a shrinking 1-unconditional basis. Examples of such spaces X

include `p for 1 < p <∞ and c0, but not `1, `∞, Lp(0, 1) for 1 ≤ p 6= 2 ≤ ∞.

Theorem 1.3. If X is a Banach space with a shrinking 1-unconditional basis, then

the cluster value theorem holds for Au(B) at x = 0,

ClB(f, 0) = f̂(M0), f ∈ Au(B).

Aron, Carando, Gamelin, Lasalle and Maestre [5] also proved a cluster value the-

orem at all points of the closed unit ball of X for the algebra Au(B) when X is a

Hilbert space. The main idea is to translate the problem to 0 via certain automor-

phisms of B, then to use the cluster value theorem at 0 for Banach spaces with a

shrinking 1-unconditional basis, and to apply certain peak functions for points in

∂B.

Theorem 1.4. If X is a Hilbert space, then the cluster value theorem holds for

Au(B) at every x ∈ B̄,

ClB(f, x) = f̂(Mx), f ∈ Au(BX), x ∈ B̄.

Corollary 1.1. Let B be the open unit ball of a Hilbert space. If f1, · · · , fn−1 ∈ A(B)

and fn ∈ Au(B) satisfy |f1| + · · · + |fn| ≥ ε > 0 on B, then there exist g1, · · · , gn ∈

Au(B) such that f1g1 + · · ·+ fngn = 1.

The same authors [5] proved a cluster value theorem at all points of the closed

unit ball of X∗∗ for the algebra of bounded analytic functions, denoted by H∞(B),

when X is c0 (the space of null sequences). The proof repeatedly uses a lemma based

on a solution to a ∂̄ equation.
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Theorem 1.5. If X is the Banach space c0 of null sequences, then the cluster value

theorem holds for H∞(B) at every x ∈ B̄∗∗,

ClB(f, x) = f̂(Mx), f ∈ H∞(B), x ∈ B̄∗∗.

Corollary 1.2. Let B be the open unit ball of the Banach space c0 of null sequences.

If f1, · · · fn−1 ∈ A(B) and fn ∈ H∞(B) satisfy |f1| + · · · + |fn| ≥ ε > 0 on B, then

there exist g1, · · · , gn ∈ H∞(B) such that f1g1 + · · ·+ fngn = 1.

Note that Hilbert space and c0 are infinite-dimensional analogues of the unit ball

and the polydisk of Euclidean space, respectively.

It is open whether Lp satisfies the cluster value problem, for Au(BLp) or H∞(BLp),

at any point of BLp , 1 ≤ p 6= 2 ≤ ∞. Nevertheless, Lemma 4.4 in [15] implies a

cluster value theorem for each point in ∂B and the algebra Au(B), when B is the

unit ball of a uniformly convex Banach space, like `p and Lp, for 1 < p < ∞. Also,

by [1, Theorem 2.6] and [5, Corollary 2.5], there is a cluster value theorem for the

algebra Au(B`1) and each point in ∂B`1 , because for each boundary point there is a

function in A(B`1) peaking at it. I would like to investigate what happens at interior

points.
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2. OUR CLUSTER VALUE THEOREMS*

2.1 A look at finite-dimensional subspaces of a Banach space

Generalizing the ideas and techniques in [5], W. B. Johnson and I proved the

following cluster value theorem in [27]:

Theorem 2.1. Suppose that for each finite-dimensional subspace E of X∗ and ε > 0

there exists a finite rank operator S on X so that ‖(I −S∗)|E‖ < ε and ‖I −S‖ = 1.

Then the cluster value theorem holds for Au(B) at 0.

Proof. Suppose that 0 /∈ ClB(f, 0). We must show that 0 /∈ f̂(M0). Since 0 /∈

ClB(f, 0), there exists δ > 0 and a weak neighborhood U of 0 in X such that |f | ≥ δ

on U ∩ B. Without loss of generality we may assume U = ∩ni=1{x ∈ X : |x∗i | < ε0}

for some x∗1, · · · , x∗n ∈ BX∗ and ε0 > 0. Let E = span{x∗1, · · · , x∗n} and let S be as in

the statement for ε = ε0. Then |f ◦ (I − S)| ≥ δ on B, because for every x ∈ B we

have that (I − S)x ∈ U, indeed:

| < x∗i , (I − S)x > | = | < (I − S∗)x∗i , x > | < ε0, for i = 1, · · · , n.

Consequently f ◦ (I − S) is invertible in Au(B). Hence ̂f ◦ (I − S) 6= 0 on the fiber

of the spectrum of Au(B) over 0. From Proposition 2.1 below, we then obtain f̂ 6= 0

on M0, that is 0 /∈ f̂(M0).

For example, Banach spaces with a shrinking reverse monotone Finite Dimen-

sional Decomposition (FDD) satisfy the conditions of the previous theorem. Recall

that such Banach spaces X are the union of finite-dimensional spaces (En)n such that

*Part of this chapter is reprinted with permission from W. B. Johnson, S. Ortega Castillo, The
cluster value problem in spaces of continuous functions, to appear in Proc. Amer. Math. Soc.
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∀x ∈ X, ∃! (xn)n with xn ∈ En and x =
∑
xn; also the functions Qn(x) =

∑∞
i=n xi

satisfy ‖Qn‖ = 1 ∀n, and ∀x∗ ∈ X∗, limn→∞ ‖x∗|span(∪∞j=nEj)‖ = 0.

The proof of Theorem 2.1 relies on the following proposition in [27] (a general-

ization of Lemma 3.4 in [5]):

Proposition 2.1. Let S be a finite rank operator on X such that P = I − S has

norm one. If φ ∈M0(B) = {τ ∈ Au(B) : τ |A(B) = δ0}, then f̂(φ) = f̂ ◦ P (φ), for all

f ∈ Au(B).

We note that the previous proposition, however, does not hold for H∞(B), as

exhibited in the following example by Aron [27, Example 1]:

Example 2.1. There exists a finite rank operator S on `2 so that P = I − S has

norm one, and there exist φ ∈ M0(B`2) = {τ ∈ H∞(B) : τ |A(B) = δ0} as well as

f ∈ H∞(B`2) so that f̂(φ) 6= f̂ ◦ P (φ).

Proof. Let S : `2 → `2 be given by S(x) = (x1, 0, 0, · · · ).

Clearly S is a finite rank operator and P = I − S has norm one.

Let (rj) and (sj) be sequences of positive real numbers, such that (rj) ↓ 0 and

(sj) ↑ 1 in such a way that each r2
j +s2

j < 1 and r2
j +s2

j → 1−. For each j = 1, 2, 3, · · · ,

let δrje1+sjej be the usual point evaluation homomorphism from H∞(B`2) → C.

Let φ : H∞(B`2) → C be an accumulation point of {δrje1+sjej} in the spectrum of

H∞(B`2). Let f : B`2 → C be the H∞ function given by

f(x) =
x1√

1−
∑∞

j=2 x
2
j

,

where the square root is taken with respect to the branch of logarithm determined

by the bounded and simply connected set U = {1 −
∑∞

j=2 x
2
j : x ∈ B`2} that does

not contain 0.
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Since f is clearly continuous, it is analytic because it is analytic on complex lines:

Given x0 = (x0
n)n ∈ B`2 and y0 = (y0

n)n ∈ `2, if λ ∈ Ω = {ζ ∈ C : x0 + ζy0 ∈ B`2},

f(x0 + λy0) =
x0

1 + λy0
1√

1−
∑∞

n=2(x0
n + λy0

n)2

=
x0

1 + λy0
1√

1−
∑∞

n=2(x0
n)2 − 2λ

∑∞
n=2 x

0
ny

0
n + λ2

∑∞
n=2(y0

n)2

=
a+ λb√

c− 2λd+ λ2e
,

which is a holomorphic expression because Ω is simply connected and bounded, and

0 /∈ {c− 2λd+ λ2e : λ ∈ Ω}.

f is bounded because for all x ∈ B`2 ,

| x1√
1−

∑∞
j=2 x

2
j

|2 =
|x1|2

|1−
∑∞

j=2 x
2
j |
≤ |x1|2

1−
∑∞

n=2 |xn|2
≤ 1.

Finally, φ(f) = 1, however φ(f ◦ P ) = 0 because f ◦ P ≡ 0.

We observe that Theorem 2.1 and Proposition 2.1 suggest a relationship between

the cluster value problem in a Banach space and its finite-codimensional subspaces.

Johnson and I [27] established the following relationship with the help of Aron and

Maestre:

Proposition 2.2. If Y is a closed finite-codimensional subspace of X and f ∈ Au(B),

then ClB(f, 0) = ClBY (f |Y , 0), where BY is the unit ball of Y.

Proof. Au(B) coincides with the uniform limits on B̄ of continuous polynomials on

X (see Theorem 7.13 in [34] and p. 56 in [6]), where polynomials are finite linear

combinations of symmetric m-linear mappings restricted to the diagonal. Thus, by
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passing to the uniform limit on B̄, we may assume f is an m-homogeneous polyno-

mial, with associated symmetric m-linear functional F. Let (xα) be a weakly null net

in B such that f(xα)→ λ.

Each xα can be written uniquely as yα +uα, where yα ∈ Y and uα is from a fixed

finite dimensional complement of Y in X. Then

f(xα) = F (xα, · · · , xα)

= f(yα) +mF (yα, · · · , yα, uα) +
m(m− 1)

2
F (yα, · · · , yα, uα, uα) + · · ·+ f(uα).

Now, since (xα) is weakly null, the same holds for (yα) and (uα). However, since (uα)

belongs to a finite dimensional space, it follows that ||uα|| → 0. Thus F (yα · · · , yα, uα),

F (yα, · · · , yα, uα, uα), · · · , f(uα) all go to 0. Thus f(yα) → λ. Finally, since each

||yα|| ≤ ||xα|| + || − uα|| < 1 + ||uα||, then by defining tα = 1
1+||uα|| we get that

||tαyα|| < 1 for all α and tα → 1, and consequently, lim f(tαyα) = lim tmα f(yα) = λ.

Hence λ ∈ ClBY (f |Y , 0).

As a consequence we obtain that the cluster sets of an element f of Au(B) at

0 can be described in terms of the Gelfand transforms of f |BY as Y ranges over

finite-codimensional subspaces of X:

Proposition 2.3. For every Banach space X,

ClB(f, 0) =
⋂

Y⊂X,dim(X/Y )<∞

f̂ |BY (M0(BY )), ∀f ∈ Au(B).

Proof. From Proposition 2.2, for every finite-codimensional subspace Y of X,

ClB(f, 0) = ClBY (f |BY , 0) ⊂ f̂ |BY (M0(BY )).
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For the reverse inclusion, suppose 0 /∈ ClB(f, 0). Then there are ε > 0 and a

weak neighborhood U of 0 such that |f | > ε on U ∩ B. U contains a closed finite-

codimensional subspace Y0 of X, so |f |BY0 | > ε. Hence f̂ |BY0 is invertible, which

implies that 0 /∈ f̂ |BY0 (M0(BY0)).

Since c0 satisfies a cluster value theorem for Au(B) and c0 is 1-codimensional

in c then Proposition 2.2 suggests that c satisfies a cluster value theorem, but [27,

Example 2] shows that c does not satisfy the hypothesis of Theorem 2.1:

Example 2.2. Let L ∈ Bc∗ be given by

L((cn)n) = lim
n→∞

cn.

If S : c→ c is a finite rank operator with ||(S∗ − Ic∗)L|| < ε, then ||S − Ic|| ≥ 2− ε.

Proof. For each k ∈ N, consider Lk ∈ Bc∗ given by

Lk((cn)n) = ( lim
n→∞

cn − ck)/2.

Let us show that ||S∗(Lk)|| → 0 as k → ∞. For every x ∈ Bc, S
∗(Lk)x =

Lk(Sx) → 0 as k → ∞. Moreover, since S has finite rank, {Sx : x ∈ Bc} is pre-

compact. Thus S∗Lk = Lk ◦ S converges to zero uniformly on Bc, i.e. ||S∗Lk|| → 0

as k →∞.

Now note that ||L− 2Lk|| = 1 for each k, so

||S∗ − Ic∗|| ≥ ||(S∗ − Ic∗)(L− 2Lk)|| ≥ ||2Lk − 2 · S∗(Lk)|| − ε ≥ 2− ε− 2||S∗(Lk)||.

Since S∗(Lk)→ 0, then ||S − Ic|| = ||S∗ − Ic∗|| ≥ 2− ε.
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As we mentioned before, since c0 is one-codimensional in c, Proposition 2.2 implies

that for all f ∈ Au(Bc),

ClBc(f, 0) = ClBc0 (f |Bc0 , 0).

Also, Propositions 1.59 and 2.8 of [13] imply that all functions in Au(Bc0) can be

uniformly approximated on B by polynomials in the functions in X∗, which in turn

implies that each fiber at x∗∗ ∈ B̄∗∗ consists only of x∗∗, so the cluster value theorem

for Au(Bc0) holds, and in particular

ClBc0 (f |Bc0 , 0) = f̂ |Bc0 (M0(Bc0)), ∀f ∈ Au(Bc).

Hence we are left to compare f̂ |Bc0 (M0(Bc0)) with f̂(M0(Bc)) for f ∈ Au(Bc).

Note that an inclusion is evident:

Proposition 2.4. For a Banach space X and Y a subspace of X,

f̂ |BY (M0(BY )) ⊂ f̂(M0(B)), ∀f ∈ Au(B).

Proof. Let f ∈ Au(B) and τ ∈ M0(BY ). Since φ1 : Au(B) → Au(BY ) given by

φ(g) = g|Y for all g ∈ Au(B) is a continuous homomorphism that maps A(B) into

A(BY ), the mapping τ̃ : Au(B) → C given by τ̃(g) = τ(g|Y ) for all g ∈ Au(B) is in

the fiber M0(B). Moreover,

f̂ |Y (τ) = f̂(τ̃).

The reverse inclusion is unclear. Nonetheless, c is isomorphic to c0 and Au(Bc0) =

A(Bc0), so by [27, Lemma 1], Au(Bc) = A(Bc), so c satisfies a cluster value theorem
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for Au(Bc):

Lemma 2.1. Let X be a Banach space so that Au(BX) = A(BX). If the Banach

space Y is isomorphic to X, then also Au(BY ) = A(BY ).

Proof. Let T : Y → X be the Banach space isomorphism between Y and X.

Let P (X) and P (Y ) denote the continuous polynomials on X and Y respectively,

and denote by Pf (X) and Pf (Y ) the polynomials in the functions of X∗ and Y ∗

respectively (known as finite type polynomials).

Let f ∈ Au(BY ). Then there exists a sequence of polynomials Pn ∈ P(Y ) such

that ||Pn − f ||BY ≤ 1
n
, ∀n ∈ N.

For each n ∈ N, Pn ◦T−1 ∈ P(X), so there exists a polynomial Qn ∈ Pf (X) such

that ||Pn ◦ T−1 − Qn||BX < 1
n·||T || , and consequently ||Pn − Qn ◦ T ||BY < 1

n
, where

Qn ◦ T ∈ Pf (Y ).

Consequently, the sequence of polynomials Qn ◦ T ∈ Pf (Y ) converges to f uni-

formly on BY , so f ∈ A(BY ).

Corollary 2.1. The Banach space c satisfies the cluster value theorem for Au(Bc)

at all points in Bc
∗∗
.

Proof. Since every f ∈ Au(Bc) can be uniformly approximated on Bc by polynomials

in the functions in X∗, then each fiber at x∗∗ ∈ B̄∗∗ consists only of x∗∗, and since

ClB(f, x∗∗) ⊂ f̂(Mx∗∗(B)) = {f̂(x∗∗)} ∀f ∈ Au(Bc), where every ClB(f, x∗∗) 6= ∅

(see [19, p. 200] or [5, p. 2]), then the cluster value theorem for Au(Bc) holds.

Bessaga and Pe lczyński proved in [7] that, when α ≥ ωω is a countable ordinal,

C(α) is not isomorphic to c = C(ω). Therefore we no longer can use Lemma 2.1 to

obtain a cluster value theorem on such spaces of continuous functions.
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Nevertheless, for α a countable ordinal, the intervals [1, α] are always compact,

Hausdorff and dispersed (they contain no perfect non-void subset). The compact,

Hausdorff and dispersed sets K satisfy, from [35, Main Theorem], that X = C(K)

contains no isomorphic copy of l1. Moreover, from [3, Theorem 5.4.5], X = C(K) has

the Dunford-Pettis property. Therefore, for dispersed K, the continuous polynomials

on X = C(K) are weakly (uniformly) continuous on bounded sets by [13, Corollary

2.37].

Moreover, since X∗ = l1(K) has the approximation property, [13, Proposition 2.8]

now yields that all continuous polynomials on X can be uniformly approximated, on

bounded sets, by polynomials of finite type. Thus the elements of Au(B) can be

approximated, uniformly on B, by polynomials of finite type. Hence Au(B) = A(B),

so each fiber at x∗∗ ∈ B̄∗∗ is the singleton {x∗∗}, and then X satisfies the cluster

value theorem for the algebra Au(B).

We now consider the cluster value problem on X for the algebra of all bounded

analytic functions H∞(B).

2.2 A cluster value theorem for spaces of continuous functions

Following the line of proof of Theorem 5.1 in [5], and using that C(K)∗ = `1(K)

when K is compact, Hausdorff and dispersed, we obtain a cluster value theorem for

H∞(B) when X = C(K), and K is compact, Hausdorff and dispersed.

Theorem 2.2. If X is the Banach space C(K), for K compact, Hausdorff and

dispersed, then the cluster value theorem holds for H∞(B) at every x ∈ B̄∗∗.

Proof. Fix f ∈ H∞(B) and w = (wt)t∈K ∈ B̄∗∗ (where C(K)∗∗ = l∞(K)). Suppose

0 /∈ ClB(f, w). It suffices to show that 0 /∈ f̂(Mw).
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Since 0 is not a cluster value of f at w, there exists a weak-star neighborhood U

of w such that 0 /∈ f(U ∩B), where

U ∩B ⊃ ∩ni=1{z ∈ B : | < (z − w), x∗i > | < ε},

for some ε > 0 and x∗1, · · · , x∗n ∈ X∗ = l1(K).

We have that x∗i = (x∗i (t))t∈K has countably many nonzero coordinates {x∗i (t)}t∈Fi

for i = 1, · · · , n. Thus,

U ∩B ⊃ ∩ni=1{z ∈ B : |
∑
t∈K

(zt − wt)x∗i (t)| < ε},

and there is a finite set F ⊂ ∪ni=1Fi so that
∑

t/∈F |x∗i (t)| < ε/4, for i = 1, · · · , n.

Then,

U ∩B ⊃ ∩t∈F{z ∈ B : |zt − wt| < δ},

where

δ = min
1≤i≤n,t∈F

ε

(2|F |)|x∗i (t)|
.

In summary, there exist c > 0, δ > 0 and a finite set F ⊂ K such that if z ∈ B

satisfies |zt−wt| < δ for t ∈ F then |f(z)| ≥ c. Relabel the indices in F as t1, · · · , tm,

where m = |F |. Then proceed as in the proof of Theorem 5.1 in [5]:

For 0 ≤ k ≤ m− 1, define Uk = {z ∈ B : |ztj −wtj | < δ, k + 1 ≤ j ≤ m}, and set

Um = B. Note that 1/f is bounded and analytic on U0.

We claim that for each k, 1 ≤ k ≤ m, there are functions gk and hk,j, 1 ≤ j ≤ k,

in H∞(Uk) that satisfy

f(z)gk(z) = 1 + (zt1 − wt1)hk1(z) + · · ·+ (ztk − wtk)hkk(z), z ∈ Uk. (2.1)
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Once this claim is established, the proof is easily completed as follows. The

functions gm and hmj belong to H∞(B) and satisfy

f̂ ĝm = 1̂ +
m∑
j=1

̂(ztj − wtj)ĥmj.

Since each ẑtj −wtj vanishes on Mw (by the definition of Mw), we obtain f̂ ĝm = 1

on Mw, and consequently f̂ does not vanish on Mw, as required.

Just as in [5], the claim is established by induction on k. The first step, the

construction of g1 and h11, is as follows. We regard 1/f((zt)t∈K) as a bounded

analytic function of zt1 for |zt1| < 1 and |zt1 − wt1| < δ, with zt, t ∈ K − {t1}, as

analytic parameters in the range |zt| < 1 for t ∈ K − {t1}, and |ztj − wtj | < δ for

2 ≤ j ≤ m. According to lemma 5.3 in [5], we can express

1

f(z)
= g1(z) + (zt1 − wt1)h(z), z ∈ U0,

where g1 ∈ H∞(U1) and h ∈ H∞(U0). We set

h11(z) = [f(z)g1(z)− 1]/(zt1 − wt1), z ∈ U1,

so that (2.1) is valid for k = 1. Note that h11 = −hf on U0. Consequently h11 is

bounded and analytic on U0. The defining formula then shows that h11 is analytic

on all of U1, and since |zt1 − wt1| ≥ δ on U1 − U0, h11 is bounded on U1.

Now suppose that 2 ≤ k ≤ m, and that there are functions gk−1 and hk−1,j (1 ≤

j ≤ k−1) that satisfy (2.1) and are appropriately analytic. We apply lemma 5.3 in [5]

to these as functions of ztk , with the other variables regarded as analytic parameters,
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to obtain decompositions

gk−1(z) = gk(z) + (ztk − wtk)Gk(z)

and

hk−1,j(z) = hk,j(z) + (ztk − wtk)Hk,j(z), 1 ≤ j ≤ m− 1,

where gk and the hkj’s are in H∞(Uk), and Gk and the Hkj’s are in H∞(Uk−1). From

the identity (2.1), with k replaced with k − 1, we obtain

fgk = 1 +
k−1∑
j=1

(ztj − wtj)hkj + (ztk − wtk)[−fGk +
k−1∑
j=1

(ztj − wtj)Hkj]

on Uk−1. We define

hkk = [fgk − 1−
k−1∑
j=1

(ztj − wtj)hkj]/(ztk − wtk), z ∈ Uk.

Then (2.1) is valid. On Uk−1 we have

hkk = −fGk +
k−1∑
j=1

(ztj − wtj)Hkj,

so that hkk is bounded and analytic on Uk−1. Since |ztk − wtk | ≥ δ on Uk − Uk−1,

we see from the defining formula that hkk ∈ H∞(Uk). This establishes the induction

step, and the proof is complete.

We do not know the answer to the cluster value problem for other spaces C(K),

however, we can give a partial answer to the following modification of the cluster

value problem.
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2.3 The cluster value problem for H∞(B) over Au(B)

In [27] we consider the following cluster value problem: Given f ∗∗0 ∈ B
∗∗
, the

cluster value problem for H∞(B) over Au(B) at f ∗∗0 asks whether for all ψ ∈ H∞(B)

and τ ∈Mf∗∗0
(B) (Mf∗∗0

is π−1(δf∗∗0 ) for the restriction map π : MH∞(B) →MAu(B)),

can we find a net (fα) ⊂ B such that ψ(fα) → τ(ψ) and fα converges to f ∗∗0 in the

polynomial-star topology, i.e. the smallest topology that makes every extension of

a polynomial on X to X∗∗ continuous (that we denote by τ(ψ) ∈ ClB(ψ, f ∗∗0 ))? As

before, clearly ClB(ψ, f ∗∗0 ) ⊂ ψ̂(Mf∗∗0
(B)), ∀ψ ∈ H∞(B).

The previous problem seems to be highly nontrivial. For example, for every

infinite compact Hausdorff space K, C(K) contains a subspace Y isometric to c0

(Proposition 4.3.11 in [3]), so the fiberM0(BC(K)) is huge (and from Proposition 2.6

below, so is each fiber Mf0(BC(K)) for f0 ∈ BC(K)). Indeed, according to Theorem

6.6 in [10], there is a family of distinct characters {τα}α∈B`∞ , such that each τα :

H∞(BY ) → C satisfies δ0 = τα|A(BY ) = τα|Au(BY ) (because Y is isometric to c0, so

A(BY ) = Au(BY )). Hence {τα}α∈B`∞ ⊂ M0(BY ) and therefore {τα ◦ R}α∈B`∞ ⊂

M0(BC(K)), where R is the restriction mapping R : H∞(BC(K))→ H∞(BY ), which

is clearly a homomorphism. Note that the characters {τα ◦ R}α∈B`∞ are all distinct

due to Theorem 1.1 in [4] (also [19, Theorem 2.1.3]), because `∞ is an isometrically

injective space (Proposition 2.5.2 in [3]), so there exists a norm-one linear map S :

C(K)→ `∞ such that S|c0 = Ic0 .

The cluster value problem for H∞(B) over Au(B) coincides with the cluster value

problem for H∞(B) when Au(B) = A(B). Thus when K is compact, Hausdorff and

dispersed, we have a positive answer to the previous cluster value problem for the

C(K) spaces.

To study the cluster value problem for H∞(B) over Au(B) when B = BC(K) of
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an arbitrary C(K) space, in [27] we describe the following family of automorphisms

(Tf0)f0∈B:

Proposition 2.5. Let f0 ∈ B = BC(K). Tf0 : B → B given by

Tf0(f) =
f − f0

1− f0 · f
∀f ∈ B,

is biholomorphic.

This is a folklore result mentioned e.g. in [39] and [8], but inasmuch there seems

to be no proof in the literature we sketch the proof.

Proof. Set δ0 = ||f0||.

Let us start by showing that T := Tf0 is well defined, i.e. ||Tf || < 1 when

||f || < 1.

Let f ∈ B. We can find δ ∈ (δ0, 1) such that ||f || ≤ δ.

For every t0 ∈ K, let z = f(t0) and c = f0(t0), so that T (f)(t0) = z−c
1−cz .

Let ∆ denote the open unit disk in the complex plane C.

Since σ : (δ · ∆) × (δ0 · ∆) → ∆ given by σ(z, c) = z−c
1−cz is continuous, then

σ((δ · ∆) × (δ0 · ∆)) is a compact subset of ∆, so there exists δ1 < 1 so that σ((δ ·

∆)× (δ0 ·∆)) ⊂ δ1∆.

Thus ||Tf || ≤ δ1 < 1.

Let us now show that T is also holomorphic, or equivalently, Fréchet C-differentiable.

For f ∈ B fixed, the linear mapping L : C(K) → C(K) given by L(h) = 1−|f0|2
(1−f0f)2

h

satisfies that, for h 6= 0 small enough,
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T (f + h)− T (f)− L(h)

||h||
= (

f + h− f0

1− f0(f + h)
− f − f0

1− f0f
− 1− |f0|2

(1− f0f)2
h)/||h||

= (
1− |f0|2

1− f0f
· h

1− f0(f + h)
− 1− |f0|2

(1− f0f)2
h)/||h||

=
f0h

(1− f0f)2(1− f0(f + h))
(1− |f0|2)h/||h||,

which goes to zero as h→ 0. Thus T is holomorphic.

Since T clearly has a necessarily holomorphic inverse (S(f) = f+f0
1+f0·f

), we have

that T is a biholomorphic function on B that sends f0 to the function identically

zero.

Alternative proof of analyticity. It suffices to check that T is continuous and its

restriction to each complex line is holomorphic.

To prove T is continuous, let f1 ∈ B and ε > 0.

For any f ∈ B,

||T (f)− T (f1)|| = || f − f0

1− f0 · f
− f1 − f0

1− f0 · f1

|| = || (1− |f0|2)(f − f1)

(1− f0 · f)(1− f0 · f1)
||,

where ||1−f0 ·f ||, ||1−f0 ·f1|| ≥ 1−||f0|| = α > 0. Thus, when ||f−f1|| < ε ·α2,

||T (f)− T (f1)|| < 1 · ε · α2

α2
= ε,

so T is continuous.
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To prove that T is holomorphic on each line, let f1 ∈ B, and g1 6= 0 ∈ B. Then,

for λ ∈ A = {a ∈ C : f1 + ag1 ∈ B},

ψ(λ) = T (f1 + λg1) =
f1 + λg1 − f0

1− f0(f1 + λg1)
=

λg1 + (f1 − f0)

−λf0g1 + (1− f0f1)
.

Let λ0 ∈ A. Set F = λ0g1 + (f1 − f0) and G = 1 − f0(f1 + λ0g1). Clearly G has

modulus uniformly bounded below by 1− ||f0|| = β > 0, so 1/G ∈ C(K). Whenever

|λ− λ0| < β, we have

ψ(λ) =
(λ− λ0)g1 + λ0g1 + (f1 − f0)

−(λ− λ0)g1f0 − λ0g1f0 + (1− f0f1)

=
(λ− λ0)g1 + F

−(λ− λ0)g1f0 +G

=
(λ− λ0)g1 + F

G

1

1− (λ− λ0)(g1f0/G)

= (
(λ− λ0)g1 + F

G
)
∞∑
n=0

(λ− λ0)n(
g1f0

G
)n,

which converges uniformly in λ when |λ− λ0| ≤ β0 < β.

Hence ψ is holomorphic, and consequently so is T.

Let us note as a side remark that we can extend the previous conclusion to the

open unit ball of the second dual of C(K) : Rewrite f−f0
1−f0·f

as (f − f0)
∑∞

n=0(f0f)n.

Since it is known that C(K)∗∗ is a commutative C∗−algebra that extends the C∗

structure of C(K) (see [14, 310-311] and [36, p. 43]), then Proposition 2.5 extends

in the following manner.
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Proposition 2.6. Given f ∗∗0 ∈ BC(K)∗∗ , let Tf∗∗0 : BC(K)∗∗ → BC(K)∗∗ be given by

Tf∗∗0 (f ∗∗) = (f ∗∗ − f ∗∗0 )
∞∑
n=0

(f ∗∗0 f ∗∗)n ,∀f ∗∗ ∈ BC(K)∗∗ .

Then Tf∗∗0 is biholomorphic.

Imitating Lemmas 4.3 and 4.4 in [5], we prove in [27] that for an arbitrary C(K)

space, the family of automorphisms (Tf0)f0∈B of B, given by Tf0 : f → f−f0
1−f̄0f

satisfies

the following proposition:

Proposition 2.7. For each f0 ∈ B, the biholomorphic function Tf0 induces a

homeomorphism T̂f0 on the spectrum MH(B), where H denotes either the algebra

Au or the algebra H∞, that maps Mf0(B) homeomorphically onto M0(B) (where

Mf0(B) = {τ ∈MH∞(B) : τ |Au(B) = f0}).

Proof. Note that T := Tf0 is a Lipschitz function. Indeed, if f, g ∈ B,

||T (f)− T (g)|| = || (1− |f0|2)(f − g)

(1− f0f)(1− f0g)
|| ≤ 1

(1− ||f0||)2
||f − g||.

Thus for every ψ ∈ H(B), ψ ◦ T ∈ H(B). So T̂ : MH(B) →MH(B), given by

T̂ (τ)(ψ) = τ(ψ ◦ T ), ∀τ ∈MH(B), ψ ∈ H(B),

is well defined. Moreover, given τ ∈Mf0(B) and ψ ∈ Au(B),

T̂ (τ)(ψ) = τ(ψ ◦ T ) = (ψ ◦ T )(f0) = ψ(0),

i.e. T̂ (τ) ∈M0(B), for every τ ∈Mf0(B).
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Now, given τ ∈M0(B) it is clear that τ̂ : H(B)→ C given by

τ̂(ψ) = τ(ψ ◦ T−1), ∀ψ ∈ H(B),

is in MH(B), actually in Mf0(B), and ∀ ψ ∈ H(B),

T̂ (τ̂)(ψ) = τ̂(ψ ◦ T ) = τ(ψ),

i.e. T̂ (τ̂) = τ.

The reader can easily check that the previous mapping T̂ is actually a homeo-

morphism.

As a consequence of Proposition 2.7, we obtain that the cluster value theorem of

H∞(B) over Au(B) at 0 is equivalent to the cluster value theorem of H∞(B) over

Au(B) at every f0 ∈ B, when X = C(K).

Corollary 2.2. If X is a Banach space C(K), then the cluster value theorem of

H∞(B) over Au(B) at 0 is equivalent to the cluster value theorem of H∞(B) over

Au(B) at every f0 ∈ B.

Proof. Let f0 ∈ B and set T (f) = f−f0
1−f̄0f

for f ∈ B. Then, ∀ ψ ∈ H∞(B),

ψ̂(M0(B)) = ψ̂ ◦ T̂ (Mf0(B)) = ψ̂ ◦ T (Mf0(B)),

ClB(ψ, 0) = ClB(ψ ◦ T, f0),

because ψ ◦ T ∈ H∞(B) too, and T−1(f) = (f + f0)
∑∞

n=0(−f0f)n for f ∈ BC(K)

is polynomially-star continuous, because sums and norm limits of polynomially-star

continuous maps are polynomially-star continuous, as well as multiplication by a

fixed element of C(K).
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Let us note that, from the Gelfand Representation Theorem, this corollary holds

for any nonzero unital commutative C∗-algebra.

The previous result is a reduction of a cluster value problem at any point in

the ball of C(K) to the origin. In the next section we explain a reduction of a

cluster value problem for any separable Banach space to a space with a more specific

structure.

2.4 The cluster value problem for separable spaces

In [28] we prove that for any separable Banach space Y , a cluster value problem for

H(BY ) (H = H∞ or H = Au) can be reduced to a cluster value problem for H(BX)

for some Banach space X that is an `1-sum of a sequence of finite-dimensional spaces.

The proof relies on the construction of an isometric quotient map from a suitable

X to Y that induces an isometric algebra homomorphism from H(BY ) to H(BX)

with 1-complemented range, where the projection mapping is built using ultrafilter

techniques. Other tools include the infinite-dimensional version of Schwarz’ Lemma,

as well as such familiar one complex variable results as Cauchy’s inequality and

Montel’s theorem. This is done in the following two lemmas:

Lemma 2.2. Let Y be a separable Banach space and Y1 ⊂ Y2 ⊂ Y3 ⊂ . . . an

increasing sequence of finite dimensional subspaces whose union is dense in Y . Set

X = (
∑
Yn)1. Then the isometric quotient map Q : X → Y defined by

Q(zn)n :=
∞∑
n=1

zn

induces an isometric algebra homomorphism Q# : H(BY ) → H(BX), where H de-

notes either the algebra Au or the algebra H∞.

The idea behind is to use the little open mapping theorem to get Q(BX) = BY .
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Proof. Note that for all (zn)n ∈ X,

‖Q(zn)n‖ = ‖
∞∑
n=1

zn‖ ≤
∞∑
n=1

‖zn‖ = ‖(zn)n‖1. (2.2)

Let Ỹn = {(zn)n ∈ X : zk = 0 ∀ k 6= n}. Since Q(BỸn
) = BYn for all n ∈ N, we

now have that Q(BX) is dense in BY and hence Q is an isometric quotient map.

Then the function Q# : H(BY )→ H(BX) given by Q#(f) = f ◦Q is an isometric

homomorphism because Q# is clearly linear and for all f, g ∈ H(BY ),

‖Q#(f)‖ = sup
x∈BX

|f ◦Q(x)| = sup
y∈BY

|f(y)| = ‖f‖.

Moreover,

Q#(f · g) = (f · g) ◦Q = (f ◦Q) · (g ◦Q) = Q#(f)Q#(g),

so Q# is an algebra homomorphism.

Now we find a left inverse to Q#, that allows us to go back to H(BY ).

Lemma 2.3. Under the assumptions of the previous lemma, there is a norm one

algebra homomorphism T : H(BX) → H(BY ) so that T (X∗) ⊂ Y ∗ and T ◦ Q# =

IH(BY ).

Proof. The first part of the proof consists of constructing T and verifying that

TH(BX) ⊂ H(BY ).

For every y ∈ (∪Yn) and n ∈ N, let Sn(y) = (zi)i ∈ X be given by
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zi =

 y if i = n and y ∈ Yn

0 otherwise

Let U be a free ultrafilter on N. For each g ∈ H(BX) set

Sg(y) = lim
n∈U

g(Sny) for every y ∈ B(∪Yn),

which is well defined because g is bounded. Next we prove that Sg is continuous:

Let 0 < r < 1. Since g ∈ H∞(BX) then Schwarz’ Lemma (Thm. 7.19, [34])

and the convexity of BX imply that g ∈ Au(rBX). Let ε > 0. Since g is uniformly

continuous on rBX there exists δ > 0 such that, if a, b ∈ rBX and ‖a− b‖ < δ, then

‖g(a)− g(b)‖ < ε. Thus, given y1, y2 ∈ rB(∪Yn) such that ‖y1 − y2‖ < δ, we can find

N ∈ N such that y1, y2 ∈ Yn ∀ n ≥ N, and then ‖Sn(y1)− Sn(y2)‖ = ‖y1 − y2‖ < δ

eventually for n, so

‖Sg(y1)− Sg(y2)‖ = lim
n∈U
‖g(Sn(y1))− g(Sn(y2))‖ ≤ ε.

Each Sg : B(∪Yn) → C is uniformly continuous on rB(∪Yn) for 0 < r < 1, thus we

can continuously extend each Sg to Tg : BY → C. Moreover, it is evident that Tg

is uniformly continuous on BX when g ∈ Au(BX). It is left to show that each Tg is

analytic by checking that every Tg is analytic in each complex line (Thm. 8.7, [34]).

We do this in two parts.

Step 1 Let us check that each Sg is analytic on complex lines:

Let y1 ∈ B(∪Yn) and y2 6= 0 ∈ (∪Yn). Since B(∪Yn) is open we can find R > 0 such

that, if ‖y − y1‖ < R, then y ∈ B(∪Yn). Choose r > 0 such that r‖y2‖ < R. Thus, if

|λ| ≤ r we have that λ ∈ Λ = {ζ ∈ C : y1 + ζy2 ∈ B(∪Yn)}.
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For each n ∈ N, let un = Sn(y1) and wn = Sn(y2).

Using the notation at the beginning of Section 1.4, we claim that

Sg(y1 + λy2) =
∞∑
m=0

(lim
n∈U

Pmg(un)(wn))λm,

uniformly on λ, for |λ| ≤ r. Let us start by showing that for each m ∈ N and

λ ∈ ∆̄(0, r), limn∈U P
mg(un)(λwn) exists.

We can find s > 1 such that also sr‖y2‖ < R. Then, when |t| ≤ s and |λ| ≤ r,

we have that y1 + tλy2 ∈ B(∪Yn), because

‖(y1 + tλy2)− y1‖ = |t‖λ|‖y2‖ ≤ sr‖y2‖ < R,

so un + tλwn ∈ BX eventually for n, and from Cauchy’s Inequality (Cor. 7.4,

[34]), for each m ∈ N

‖Pmg(un)(λwn)‖ ≤ 1

sm
‖g‖,

eventually for n, and then limn∈U P
mg(un)(λwn) exists.

Moreover, given M ∈ N and λ such that |λ| ≤ r,

‖Sg(y1 + λy2)−
M∑
m=0

(lim
n∈U

Pmg(un)(wn))λm‖

= ‖ lim
n∈U

(g(un + λwn)−
M∑
m=0

Pmg(un)(λwn))‖

= ‖ lim
n∈U

∞∑
m=M+1

Pmg(un)(λwn)‖

≤
∞∑

m=M+1

1
sm
‖g‖ = ‖g‖

s−1
1
sM
,

which goes to zero as M →∞.

39



Thus Sg is analytic on complex lines.

Alternative proof of Step 1. Let y1 ∈ B(∪Yn) and y2 6= 0 ∈ (∪Yn). We want to show

that Sg(y1 + λy2) is an analytic function of λ. It is enough to find a power series

expansion.

Let d = dB(∪Yn)
(y1) and let r ∈ (0, d/‖y2‖). Then y1 + λy2 ∈ B(∪Yn) if |λ| ≤ r.

For each n ∈ N, let un = Sn(y1) and wn = Sn(y2). Note that

Sg(y1 + λy2) = lim
n∈U

g(un + λwn) for |λ| ≤ r.

Let gn(λ) = g(un + λwn) for |λ| ≤ r. Since g is analytic on complex lines then

gn(λ) =
∞∑
m=0

g
(m)
n (0)λm

m!
uniformly on λ, for |λ| ≤ r,

because ‖(un + λwn)− un‖ ≤ r‖y2‖ < dB(∪Yn)
(y1) ≤ dBX (un).

Now we claim that

Sg(y1 + λy2) =
∞∑
m=0

(lim
n∈U

g(m)
n (0)/m!)λm

uniformly on λ, for |λ| ≤ r. Let us first show that limn∈U g
(m)
n (0)/m! exists ∀m ∈ N0:

Let r2 ∈ (0, r). Since

g(m)
n (0) =

m!

2πi

∫
|ζ|=r2

gn(ζ)

ζm+1
dζ

then ‖g(m)
n (0)/m!‖ ≤ 1

rm2
‖g‖, so limn∈U g

(m)
n (0)/m! exists.
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Moreover, for all M ∈ N0 and |λ| ≤ r1 < r2,

‖Sg(y1 + λy2)−
M∑
m=0

(lim
n∈U

g(m)
n (0)/m!)λm‖

= ‖ lim
n∈U

(gn(λ)−
M∑
m=0

g(m)
n (0)/m!λm)‖

= ‖ lim
n∈U

∞∑
m=M+1

g(m)
n (0)/m!λm‖

≤
∞∑

m=M+1

( r1
r2

)m‖g‖ = ‖g‖
1−r1/r2 (r1/r2)M+1,

which goes to zero as M →∞.

Step 2 The following general lemma should be known, but we could not find a

reference.

Lemma 2.4. If φ : BY → C is bounded and uniformly continuous on sBY for each

0 < s < 1, and there is a dense subspace Z of Y such that φ|BZ is analytic on complex

lines, then φ is analytic on complex lines in BY (and hence analytic).

Proof. Let y1 ∈ BY and y2 6= 0 ∈ Y. Let s ∈ (‖y1‖, 1). Since sBY is open and contains

y1, we can find R > 0 such that, if ‖y − y1‖ < R then y ∈ sBY . Choose r > 0 such

that r‖y2‖ ≤ R. Thus, if |λ| < r we have that λ ∈ Λ = {ζ ∈ C : y1 + ζy2 ∈ sBY }.

Let f : λ→ φ(y1 + λy2), a function defined for |λ| < r. We want to show that f

is analytic.

Let {y1
k}k ⊂ BZ and {y2

k}k ⊂ Z be sequences such that ‖y1
k − y1‖ ≤ 1

2k
and

‖y2
k − y2‖ ≤ 1

2k
. Choose K1 ∈ N such that 1+r

2K1
≤ R − r‖y2‖. Then for k ≥ K1 and
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|λ| < r we have that

‖(y1
k + λy2

k)− y1‖ ≤ ‖y1
k − y1‖+ |λ‖|y2

k − y2‖+ |λ|‖y2‖

< 1+r
2K1

+ r‖y2‖

≤ R,

so y1
k + λy2

k ∈ sBZ .

For each k ≥ K1, let fk : λ → φ(y1
k + λy2

k), which is an analytic function for

|λ| < r by assumption.

Since φ is bounded, clearly {fk}k≥K1 is uniformly bounded. Let us now show that

{fk}k≥K1 converges uniformly to f . Let ε > 0. Since φ is uniformly continuous on

sBZ , we can find δ > 0 such that,

a, b ∈ sBZ , ||a− b|| < δ =⇒ ||φ(a)− φ(b)|| < ε.

Choose K ≥ K1 such that 1+r
2K

< δ. Then ∀k ≥ K and λ with |λ| < r ,

‖(y1
k + λy2

k)− (y1 + λy2)‖ ≤ ‖y1
k − y1‖+ |λ|‖y2

k − y2‖

≤ 1 + r

2k

< δ,

so ‖fk(λ)− f(λ)‖ = ‖φ(y1
k + λy2

k)− φ(y1 + λy2)‖ < ε.

Then, by the lemma on p. 226 in [2], f is analytic.

Alternative proof. Let y1 ∈ BY and y2 6= 0 ∈ Y. Let s ∈ (‖y1‖, 1). Since sBY is open
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and contains y1, we can find R > 0 such that, if ‖y − y1‖ < R then y ∈ sBY .

Choose r > 0 such that r‖y2‖ < R. Thus, if |λ| ≤ r we have that

λ ∈ Λ = {ζ ∈ C : y1 + ζy2 ∈ sBY }.

Let {y1
k}k ⊂ BZ and {y2

k}k ⊂ Z be sequences such that ‖y1
k − y1‖ ≤ 1

2k
and

‖y2
k − y2‖ ≤ 1

2k
. Choose K1 ∈ N such that 1+r

2K1
< R − r‖y2‖. Then for k ≥ K1 and

|λ| ≤ r we have that

‖(y1
k + λy2

k)− y1‖ ≤ ‖y1
k − y1‖+ |λ‖|y2

k − y2‖+ |λ|‖y2‖

≤ 1+r
2K1

+ r‖y2‖

< R,

so y1
k + λy2

k ∈ sBZ .

For k ≥ K1, Let ϕk be the restriction of φ to {y1
k + λy2

k : |λ| ≤ r}. Then for

k ≥ K1,

ϕk(y
1
k + λy2

k) =
∞∑
m=0

(Pmϕk(y
1
k)(y

2
k))λ

m,

uniformly on λ, whenever |λ| ≤ r.

We claim that

φ(y1 + λy2) =
∞∑
m=0

lim
k→∞

(Pmϕk(y
1
k)(y

2
k))λ

m,

uniformly on λ, whenever |λ| ≤ r. Let us start by showing that we can take the limit

when k goes to ∞.

Let ε > 0 and choose δ > 0 such that, if a, b ∈ sBY and ‖a − b‖ < δ, then

‖φ(a) − φ(b)‖ < ε. Let K ≥ K1 be such that 1+r
2K

< δ. If k1, k2 ≥ K, |λ| ≤ r and
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|ζ| = 1 then

‖(y1
k1

+ ζλy2
k1

)− (y1
k2

+ ζλy2
k2

)‖ ≤ ‖y1
k1
− y1

k2
‖+ |ζ||λ|‖y2

k1
− y2

k2
‖ ≤ 1+r

2K
< δ,

so

‖φ(y1
k1

+ ζλy2
k1

)− φ(y1
k2

+ ζλy2
k2

)‖ < ε,

i.e.

‖ϕk1(y1
k1

+ ζλy2
k1

)− ϕk2(y1
k2

+ ζλy2
k2

)‖ < ε.

Hence, from the Cauchy Integral Formula, for every m ∈ N

‖Pmϕk1(y
1
k1

)(λy2
k1

)− Pmϕk2(y
1
k2

)(λy2
k2

)‖

= ‖ 1
2πi

∫
|ζ|=1

ϕk1(y
1
k1

+ ζλy2
k1

)− ϕk2(y1
k2

+ ζλy2
k2

)

ζm+1
dζ‖

< ε.

Now, since 1+r
2K1

< R−r‖y2‖ we can find s1 > 1 such that s1r(
1

2K1
+‖y2‖) < R− 1

2K1
.

Then, when |t| ≤ s1, k ≥ K1 and |λ| ≤ r we have that y1
k + tλy2

k ∈ BZ , because

‖(y1
k + tλy2

k)− y1‖ ≤ ‖y1
k − y1‖+ |t‖λ|‖y2

k‖

≤ 1
2K1

+ s1r(
1

2K1
+ ‖y2‖)

< R,

so from Cauchy’s Inequality, for each m ∈ N

‖Pmϕk(y
1
k)(λy

2
k)‖ ≤

1

sm1
‖φ‖.

44



Thus, given M ∈ N and λ such that |λ| ≤ r,

‖φ(y1 + λy2)−
M∑
m=0

lim
k→∞

(Pmϕk(y
1
k)(y

2
k))λ

m‖

= ‖ lim
k→∞

(ϕk(y
1
k + λy2

k)−
M∑
m=0

(Pmϕk(y
1
k)(y

2
k))λ

m)‖

= ‖ lim
k→∞

∞∑
m=M+1

(Pmϕk(y
1
k)(y

2
k))λ

m‖

≤
∞∑

m=M+1

1
sm1
‖φ‖ = ‖φ‖

s1−1
1
sM1
,

which goes to zero as M →∞.

Thus φ is analytic on complex lines in BY .

From the previous two steps, we obtain that T is a well defined mapping from

H(BX) into H(BY ). Now, given x∗ ∈ X∗, y1, y2 ∈ BY and λ ∈ C such that y1 +λy2 ∈

BY , we can find {y1
k}k ⊂ B(∪Yn) converging to y1 and {y2

k}k ⊂ B(∪Yn) converging to

y2, and then

Tx∗(y1 + λy2) = lim
k→∞

lim
n∈U

x∗(Sn(y1
k + λy2

k))

= lim
k→∞

lim
n∈U

(x∗(Sn(y1
k)) + λx∗(Sn(y2

k)))

= Tx∗(y1) + λTx∗(y2),

i.e. Tx∗ ∈ Y ∗. This shows that TBX∗ = BY ∗ .

Moreover, for every f ∈ H(BY ) and y ∈ BY , we can find {yk}k ⊂ B(∪Yn) converg-
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ing to y, and thus

T ◦Q#(f)(y) = T (f ◦Q)(y)

= lim
k→∞

lim
n∈U

f ◦Q(Sn(yk))

= lim
k→∞

f(yk)

= f(y),

so T ◦Q# = IH(BY ).

Also, T is a homomorphism because T is clearly linear and for all f, g ∈ H(BX),

y ∈ BY , we can find {yk}k ⊂ B(∪Yn) converging to y, so

T (f · g)(y) = lim
k→∞

lim
n∈U

f · g(Sn(yk))

= lim
k→∞

lim
n∈U

f(Sn(yk)) · g(Sn(yk))

= Tf(y) · Tg(y)

= (Tf · Tg)(y).

Finally, for every f ∈ H(BX),

‖Tf‖ = sup
y∈BY

|Tf(y)| = sup
y∈B(∪Yn)

| lim
n∈U

f(Sn(y))| ≤ sup
x∈BX

|f(x)| = ‖f‖,

and ‖T‖ = ‖T‖‖Q#‖ ≥ ‖T ◦Q#‖ = 1. So ‖T‖ = 1.

Theorem 2.3. Let Y be a separable Banach space and Y1 ⊂ Y2 ⊂ Y3 ⊂ . . . an

increasing sequence of finite dimensional subspaces whose union is dense in Y . Set

X = (
∑
Yn)1. Let H denote either the algebra Au or the algebra H∞. If H(BX)
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satisfies the cluster value theorem at every x∗∗ ∈ BX
∗∗

then H(BY ) satisfies the

cluster value theorem at every y∗∗ ∈ BY
∗∗

.

Proof. We know that f̂(Mx∗∗(BX)) ⊂ ClBX (f, x∗∗), for all f ∈ H(BX) and x∗∗ ∈

BX
∗∗
. Let us show that ĝ(My∗∗(BY )) ⊂ ClBY (g, y∗∗) for all g ∈ H(BY ) and y∗∗ ∈

BY
∗∗
.

Let y∗∗ ∈ BY
∗∗
, τ ∈ My∗∗(BY ) and g ∈ H(BY ). Let T be the algebra homomor-

phism from H(BX) to H(BY ) constructed in Lemma 2.3. Then x∗∗ = y∗∗◦T ∈ BX
∗∗
,

Q#(g) ∈ H(BX) and defining τ̃ = τ ◦ T, we see that τ̃ ∈ Mx∗∗(BX) because for all

x∗ ∈ X∗,

τ̃(x∗) = τ(Tx∗) =< y∗∗, Tx∗ >=< x∗∗, x∗ > .

Moreover,

Q̂#(g)(τ̃) = τ̃(Q#(g)) = τ(T ◦Q#(g)) = τ(g) = ĝ(τ)

and

ClBX (Q#(g), x∗∗) = ClBX (g ◦Q, x∗∗) ⊂ ClBY (g,Q∗∗x∗∗) = ClBY (g, y∗∗),

so the theorem is established.

Remark 2.1. A very special case of Theorem 2.3 is that if `1 satisfies the cluster

value theorem, then so does L1. We do not know for 1 < p 6= 2 < ∞ whether the

cluster value theorem for `p implies the cluster value theorem for Lp. Incidentally, in

[5] it was proved that `p for p in this range satisfies the cluster value theorem at 0,

but it is open whether Lp satisfies the cluster value theorem at any point of BLp .
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Remark 2.2. The analogue of Theorem 2.3 for non separable spaces, which is proved

by a non essential modification of the proof of Theorem 2.3, can be stated as follows.

Let Y be a Banach space and (Yα)α∈A a family of finite dimensional subspaces of Y

that is directed by inclusion and whose union is dense in Y . If (
∑

α∈A Yα)1 satisfies

the cluster value theorem, then so does Y .

Remark 2.3. There is a slight strengthening of Theorem 2.3. Let Y , (Yn)n, and H

be as in the statement of Theorem 2.3 and suppose that (Xn)n is a sequence so that

Xn is 1 + εn-isomorphic to Yn and εn → 0. If (
∑

nXn)1 satisfies the cluster value

theorem for the algebra H, then so does Y . Now let (Zn) be a sequence of finite

dimensional spaces so that for every finite dimensional space Z and every ε > 0,

the space Z is 1 + ε-isomorphic to one (and hence infinitely many) of the spaces

Zn. Set C1 = (
∑

n Zn)1. As an immediate consequence of this slight improvement

of Theorem 2.3 we get If C1 satisfies the cluster value theorem for H, then so does

every separable Banach space.

The proof of the improved Theorem 2.3 is essentially the same as the proof of the

theorem itself. One just needs to define in Lemma 2.2 the mapping Q so that the

conclusion of Lemma 2.2 remains true: For each n take an isomorphism Jn : Xn → Yn

so that for x ∈ Xn the inequality (1 + εn)−1‖x‖ ≤ ‖Jnx‖ ≤ ‖x‖ is valid, and define

Q(xn)n =
∑

n Jnxn for (xn)n in (
∑

nXn)1.
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3. CONCLUSION: OPEN CLUSTER VALUE PROBLEMS

3.1 Cluster value problems for `1 and uniformly convex and uniformly smooth

Banach spaces

There are plenty of open cluster value problems. The ideas of McDonald in [33]

suggest that a solution to a ∂̄ problem for the unit ball B of a uniformly convex space

or `1 may help us solve a cluster value problem if the solution is weakly continuous.

The ∂̄ problem for the ball of a uniformly convex Banach space has not been solved

yet, while the ∂̄ problem for the unit ball of `1 has been solved positively by Lempert

in [32] under certain conditions. Let us describe the ∂̄ problem in open subsets of

Banach spaces:

Let X and Y denote complex Banach spaces, and XR and YR denote the respective

previous spaces seen as real Banach spaces. For every m ∈ N, L(mXR, YR) denotes

the continuous m-linear mappings A : Xm
R → YR, while La(mXR, YR) denotes the

continuous m-linear mappings A : Xm
R → YR that are alternating, i.e.

A(xσ(1), · · · , xσ(m)) = (−1)σA(x1, · · · , xm), ∀σ ∈ Sm and x1, · · · , xm ∈ X.

Also, given m ∈ N and p, q ∈ N0 such that p+ q = m, La(p,qXR, YR) is the subspace

of A ∈ La(mXR, YR) such that

A(λx1, · · · , λxm) = λpλ̄qA(x1, · · · , xm), ∀λ ∈ C and x1, · · · , xm ∈ X;

while Lapq(mXR, YR) denotes the subspace of all A ∈ L(mXR, YR) which are alternat-

ing in the first p variables and are alternating in the last q variables.
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The following definition can be found in [34, p.107].

Definition 3.1. Let U be an open subset of the complex Banach space X and let

f : U → Y be an R-differentiable mapping. Let Df(a) denote the real differential of

f at a. Define D′f(a) and D′′f(a) by

D′f(a)(t) = 1/2[Df(a)(t)− iDf(a)(it)],

D′′f(a)(t) = 1/2[Df(a)(t) + iDf(a)(it)],

for every t ∈ X. Note that D′f(a) is C-linear while D′′f(a) is C-antilinear.

Given A ∈ L(mXR, YR), define Aa ∈ La(mXR, YR) by

Aa(x1, · · · , xm) =
1

m!

∑
σ∈Sm

(−1)σA(xσ(1), · · · , xσ(m)), ∀x1, · · · , xm ∈ X.

Given U an open subset ofX and p, q ∈ N0, let C∞p,q(U, Y ) := C∞(U,La(p,qXR, YR)).

Then for each f ∈ C∞p,q(U, Y ), ∂̄f ∈ C∞p,q+1(U, Y ) is given by

∂̄f(x) = (m+ 1)[D′′f(x)]a, ∀x ∈ U.

Remark 3.1. Since D′′f(x) ∈ L(XR, L
a(mXR, YR)) = La1m(m+1XR, YR), then Propo-

sition 18.6 in [34] implies that ∀t1, · · · , tm+1 ∈ X,

∂̄f(x)(t1, · · · , tm+1) = (m+ 1)[D′′f(x)]a1m(t1, · · · , tm+1)

=
m+ 1

m+ 1

∑
σ∈S1m

(−1)σD′′f(x)(tσ(1), · · · , tσ(m+1))

where S1m denotes the set of all permutations σ ∈ Sm+1 such that σ(1) < · · · < σ(m),
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so

∂̄f(x)(t1, · · · , tm+1) =
m+1∑
j=1

(−1)j−1D′′f(x)(tj)(t1, · · · , tj−1, tj+1, · · · , tm+1).

The ∂̄ problem for g ∈ C∞p,q+1(U, Y ) asks whether the equation ∂̄g = 0 implies

the existence of f ∈ C∞p,q(U, Y ) such that ∂̄f = g.

Following the ideas of Lempert in [32] and of Kerzman in [30, pp.342-345], I aim

to solve a cluster value problem for Banach spaces that are uniformly convex and

uniformly smooth, and in general for those whose unit ball is strongly pseudoconvex.

I will start with giving a definition of a strongly pseudoconvex domain in an infinite-

dimensional Banach space.

3.2 Strong pseudoconvexity in infinite-dimensional Banach spaces

There are certain notions of pseudoconvexity in the literature ([34, p.274], [25,

Theorem 2.6.12]) that hint towards a plausible extension of the definition of a strongly

pseudoconvex domain to an infinite-dimensional Banach space (see [30] and [38]). As

we will see, the following definitions build on the ideas exposed in Chapter VIII of

[34].

Definition 3.2. Let U be an open and bounded subset of a complex Banach space

X. A function f : U → [−∞,∞) is said to be strictly plurisubharmonic if f is upper

semicontinuous and for each a ∈ U there exists C(a) > 0 such that

C(a)‖b‖2/4 ≤ 1

2π

∫ 2π

0

(f(a+ eiθb)− f(a))dθ

for each b 6= 0 ∈ X such that a+ ∆̄b ⊂ U . If moreover C = infa∈U C(a) > 0, we say

that f is uniformly strictly plurisubharmonic.

51



Definition 3.3. An open and bounded subset U of a complex Banach space X is said

to be strictly pseudoconvex if the function − log dU is strictly plurisubharmonic on U

(where dU denotes the distance to the boundary of U); and U is said to be uniformly

strictly pseudoconvex if − log dU is uniformly strictly plurisubharmonic on U .

Proposition 3.1. Let U be an open and bounded subset of a complex Banach space

X, and let f ∈ C2(U,R). Then f is strictly plurisubharmonic if and only if for

each a ∈ U there exists C(a) > 0 such that D′D′′f(a)(b, b) ≥ C(a)‖b‖2, for each

b 6= 0 ∈ X such that a + ∆̄b ⊂ U . And f is uniformly strictly plurisubharmonic if

and only if there exists C > 0 such that D′D′′f(a)(b, b) ≥ C‖b‖2, for each a ∈ U and

b 6= 0 ∈ X such that a+ ∆̄b ⊂ U .

Proof. We will prove the first statement only (the second is proved similarly).

Suppose that f is strictly plurisubharmonic. Then for each a ∈ U there exists

C(a) > 0 such that C(a)‖b‖2/4 ≤ 1
2π

∫ 2π

0
(f(a + eiθb) − f(a))dθ for each b 6= 0 ∈ X

such that a+∆̄b ⊂ U . Fix a ∈ U and b 6= 0 ∈ X such that a+∆̄b ⊂ U , and consider

the function u(ζ) = f(a+ ζb), which is defined on a disk ∆(0, R) ⊃ ∆̄.

Then, by Taylor’s Formula, for all r ∈ (0, R),

u(reiθ)− u(0) = r cos θ
∂u

∂x
(0) + r sin θ

∂u

∂y
(0)

+
r2

2
cos2 θ

∂2u

∂x2
(sr,θe

iθ) +
r2

2
sin2 θ

∂2u

∂y2
(sr,θe

iθ)

+ r2 cos θ sin θ
∂2u

∂x∂y
(sr,θe

iθ), for some srθ ∈ [0, r].
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Thus, for all r ∈ (0, R),

C(a)
r2‖b‖2

4

≤ 1

2π

∫ 2π

0

(f(a+ eiθrb)− f(a))dθ

=
1

2π

∫ 2π

0

(u(reiθ)− u(0))dθ

=
1

2π

∫ 2π

0

(
r2

2
cos2 θ

∂2u

∂x2
(sr,θe

iθ) +
r2

2
sin2 θ

∂2u

∂y2
(sr,θe

iθ) + r2 cos θ sin θ
∂2u

∂x∂y
(sr,θe

iθ))dθ

After dividing by r2/4, by the Dominated Convergence Theorem we get

C(a)‖b‖2 ≤ 1

π
π(
∂2u

∂x2
(0) +

∂2u

∂y2
(0)) =

∂2u

∂ζ∂ζ̄
(0) = D′D′′f(a)(b, b),

where the last equality comes from exercises 35.B and 35.D in [34].

Now suppose that for each a ∈ U there exists C(a) > 0 such thatD′D′′f(a)(b, b) ≥

C(a)‖b‖2, for each b 6= 0 ∈ X such that a+ ∆̄b ⊂ U .

Fix a and b as before, and define M(r) = 1
2π

∫ 2π

0
[f(a + reiθb) − f(a)]dθ, for all

r ∈ (0, 1]. Consider also the function u(ζ) = f(a+ζb) defined on a disk ∆(0, R) ⊃ ∆̄.

Then, for all ζ ∈ ∆(0, R),

∂2u

∂x2
(ζ) +

∂2u

∂y2
(ζ) =

∂2u

∂ζ∂ζ̄
(ζ) = D′D′′f(a+ ζb)(b, b) ≥ C(a)‖b‖2.

Since ∂2u
∂x2

+ ∂2u
∂y2

= ∂2u
∂r2

+ 1
r
∂u
∂r

+ 1
r2

∂u

∂θ2
, then

1

2π

∫ 2π

0

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
)u(reiθ)dθ ≥ C(a)‖b‖2,

i.e. M ′′(r) + 1
r
M ′(r) ≥ C(a)‖b‖2, ∀r ∈ (0, 1).
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Thus (rM ′(r)− C(a)‖b‖2 r2

2
)′ = rM ′′(r) + M ′(r)− C(a)‖b‖2r ≥ 0 ∀r ∈ (0, 1), so

r(M ′(r)−C(a)‖b‖2
2

r) is an increasing function of r. Since clearly r(M ′(r)−C(a)‖b‖2
2

r)→

0 as r → 0 (because M ′ is a bounded function on (0, ε) for some ε > 0), we conclude

that r(M ′(r) − C(a)‖b‖2
2

r) ≥ 0 for every r ∈ (0, 1). Hence (M(r) − C(a)‖b‖2
4

r2)′ ≥ 0

for every r > 0, so M(r) − C(a)‖b‖2
4

r2 is an increasing function of r. Since clearly

M(r)− C(a)‖b‖2
4

r2 → 0 as r → 0 then M(r) ≥ C(a)‖b‖2
4

r2 for each r ∈ (0, 1).

SinceM is continuous on (0, 1], we conclude thatM(1) ≥ C(a)‖b‖2
4

, i.e. 1
2π

∫ 2π

0
[f(a+

eiθb)− f(a)]dθ ≥ C(a)‖b‖2
4

, i.e. f is strictly plurisubharmonic.

Let us now exhibit some Banach spaces whose unit ball is uniformly strictly

pseudoconvex. The following definition can be found in [11].

Definition 3.4. If 0 < q < ∞ and 2 ≤ r < ∞, a continuously quasi-normed space

(X, ‖‖) is r-uniformly PL-convex if and only if there exists λ > 0 such that

(
1

2π

∫ 2π

0

‖a+ eiθb‖qdθ)1/q ≥ (‖a‖r + λ‖b‖r)1/r

for all a and b in X; we shall denote the largest possible value of λ by Ir,q(X).

Davis, Garling and Tomczak-Jaegermann proved in [11, Propositon 3.1] that

I2,1(C) = 1/2. Moreover, a simple modification of [11, Theorem 4.1] gives that

Lp(Σ,Ω, µ) is 2-uniformly PL-convex (for q=1) when p ∈ [1, 2], and actually I2,1(Lp) =

I2,1(C) = 1/2.

The following theorem gives us that Lp(Σ,Ω, µ), for p ∈ [1, 2], has a uniformly

strictly pseudoconvex unit ball.

Theorem 3.1. If X is a 2-uniformly PL-convex Banach space for q = 1 then BX is

uniformly strictly pseudoconvex.
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Proof. Let a ∈ BX and b 6= 0 ∈ X such that a+ ∆̄b ⊂ BX . Since a+ ∆̄b is compact,

there exists r ∈ (0, 1) such that a+ ∆̄b ⊂ rBX . Hence,

(‖a‖2 + I2,1(X)‖b‖2)1/2 ≤ 1

2π

∫ 2π

0

‖a+ eiθb‖dθ ≤ r.

Let λ0 =
√
I2,1(X) + 1−1 > 0. Observe that ‖a‖+λ0‖b‖2 ≤ (‖a‖2+I2,1(X)‖b‖2)1/2

because (‖a‖ + λ0‖b‖2)2 = ‖a‖2 + 2λ0‖a‖‖b‖2 + λ2
0‖b‖4 ≤ ‖a‖2 + (2λ0 + λ2

0)‖b‖2 =

‖a‖2 + ((λ0 + 1)2 − 1)‖b‖2 = ‖a‖2 + I2,1(X)‖b‖2. Thus,

‖a‖+ λ0‖b‖2 ≤ 1

2π

∫ 2π

0

‖a+ eiθb‖dθ ≤ r.

Since x 7→ − log(1−x) is a convex and increasing function on [0, 1), an application

of Jensen’s inequality gives us that

− log(1− (‖a‖+ λ0‖b‖2)) ≤ 1

2π

∫ 2π

0

− log(1− ‖a+ eiθb‖)dθ.

We will finish the proof by showing that C = 2λ0 > 0 satisfies

C‖b‖2/4− log(1− ‖a‖) ≤ − log(1− (‖a‖+ λ0‖b‖2)) (3.1)

given that ‖a‖+ λ0‖b‖2 ≤ r < 1.

Letting t = ‖a‖ and s = ‖b‖2, we can see that (3.1) holds in case

β := inf{log(
1− t

1− t− λ0s
)/s : t ≥ 0, s > 0, t+ λ0s ≤ r < 1} ≥ λ0/2.
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Indeed, first note that for 1 > r > t ≥ 0 and s > 0,

1− t
1− t− λ0s

≥ 1− t+ λ0s

1− t
= 1 +

λ0s

1− t
.

Hence β ≥ inft∈[0,r) infs∈(0, r−t
λ0

] log(1 + λ0s
1−t)/s.

Now, for t ∈ [0, r) fixed, log(1 + λ0s
1−t)/s is decreasing as a function of s ∈ (0, r−t

λ0
]

because

d

ds
{log(1 +

λ0s

1− t
)/s} =

− log(1 + λ0s
1−t)

s2
+

1

s(1 + λ0s
1−t)
· λ0

1− t

where the inequality 1
x+1

< log(1 + 1
x
) for x > 0 gives us

s2 · 1

s(1 + λ0s
1−t)
· λ0

1− t
=

1
1−t
λ0s

+ 1
< log(1 +

λ0s

1− t
)

i.e. d
ds
{log(1 + λ0s

1−t)/s} < 0 for every s ∈ (0, r−t
λ0

].

Consequently β ≥ inft∈[0,r) λ0
log(1+ r−t

1−t )

r−t .

Finally,
log(1+ r−t

1−t )

r−t is increasing as a function of t ∈ [0, r) because

d

dt
{

log(2− 1−r
1−t )

r − t
} =

log(2− 1−r
1−t )

(r − t)2
+

1

r − t
· 1

2− 1−r
1−t
· −(1− r)

(1− t)2

=
1

(r − t)2
· (log(2− 1− r

1− t
)− (1− r)(r − t)

(2− 1−r
1−t )(1− t)2

)

=
1

(r − t)2
· (log(2− 1− r

1− t
)− (1− r)(r − t)

((1− t) + (r − t))(1− t)
)

=
1

(r − t)2
· (log(1 +

1− r
1− t

)− (1− r)
(1− t)

· 1

(1−t
r−t + 1)

)

>
1

(r − t)2
· (log(1 +

1

( 1−t
1−r )

)− 1

(1−t
r−t + 1)

)

> 0,
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because log(1 + 1
x
) > 1

x+1
whenever x > 0.

Therefore β ≥ λ0
log(1+r)

r
≥ λ0

1+r
≥ λ0

2
, as we wanted to show.

3.3 Cluster value problem for H∞(B) and ∂̄ problem for B for dim(X) <∞

I am also interested in the cluster value problem for H∞(B) when B is the ball

of a finite-dimensional Banach space, and in particular for the ball of `n1 . I anticipate

that a solution to the ∂̄ problem for the ball of a finite-dimensional space, such as

B`n1
, interesting in its own light, may hint to a solution of the respective cluster value

problem for `1 and even `1-sums of finite-dimensional spaces. I intend to investigate

whether Lemma 3.1 in [32] can be strengthened to a continuous solution in B̄, as

that would guarantee a solution to the respective cluster value problem for H∞(B).
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