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ABSTRACT

Nowadays, the trend of modern memory technology is going towards the
following directions: (1) look for new nonvolatile devices; (2) keep scaling down the
existing volatile devices. Although nonvolatile devices enable to switch off its power
supply to further suppress standby power, the down sides are the low switching speed
and the complicated dynamic cell characteristics. On the other hand, researchers are
looking to scale down SRAM since it is the most reliable and fast. However, the SRAM
suffers read and write failure due to lack of good stability optimizing metric. To tackle
the above mentioned problems, this work first introduces a promising nonvolatile device
called Memristor, which is said to be possible to replace our memory devices now. By
starting from basic memristor device equations, this work aims to develop a
comprehensive set of properties and design equations for memristor based memory. The
introduced schemes are specifically targeting key device properties relevant to memory
operations. Using the discovered properties, a simple design of read/write circuits is
investigated. In the second part of this work, SRAM stability analysis is focused. SRAM
verification and stability analysis has become an essential task to investigate soft-errors.
This work aims to extend the SNM to a new era. Based on the introduced Region-
Analysis in this work, SRAM stability can be explained using bifurcation theory, and
closed form expression can be derived. The derived expression provides physical
characterization of SRAM noise tolerance property; thus has potential to provide needed

design insights. Overall, dynamics of memristor and SRAM are strongly emphasized.

il



The derived memristor properties reveals that the memristor state change requires some
time; it indicates that the memristor-based memory needs some “critical time” to flip the
logic. Similarly to the SRAM, the SRAM write operation not only needs the injected
current over a “critical current” but also need to maintain for some “critical time”. In
short, both memristor-based memory and SRAM show the timely manner for read/write
operation. Furthermore, the developed analytical formulae are able to reveal the dynamic
aspect on memory read/write operations which address the key concern for modern

memory technology.
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CHAPTER I

INTRODUCTION

1.1.  Literature Review
1.1.1. The Existing Works on Memristor Cell

Very recently, a new device with pinched hysteresis was demonstrated [1-3],
which was recognized as the first real-life realization of the so-called missing fourth
circuit element, memristor. As a new nanometer device, memristor has drawn a
significant interest from the research community [4-11]. Memristor was first
theoretically predicted by L. Chua in 1971 [12]. The concept of memristor gained a
broader scope in a series of works such as those of L. Chua and S. M. Kang [13-17]. In
late 2008, S. Williams, et al. unveiled a two-terminal titanium dioxide nanoscale device
that exhibited memristive characteristics, thus igniting renewed interest in memristors
[18].

Recent research has showcased a number of promising applications of memristor
devices. It has been shown by S. Williams and coworkers that solid-state memristors can
be used to realize crossbar latches, which could replace transistors in future computers,
while taking up a much smaller area [19-22]. There exists a great interest in searching
for the next generation of universal memories, which are able to ubiquitously replace
traditional DRAM, SRAM. The nonvolatile nature of memristors makes them an
attractive candidate for the next-generation memory technology. Memristor memories

may have greater data density than hard drives with access times potentially similar to



SRAMs. It has been shown that memristor devices can be scaled down to 10nm or below
and memristor memories can achieve an integration density of 100Gbits/cm? a few
times higher than today’s advanced flash memory technologies [23-24]. More broadly,
research has been done aiming at employing memristors in programmable logics [25-
31], and analog circuit applications [32-38]. In the mean time, researchers have found
that LC electronic networks with memristors can model adaptive behavior of unicellular
organisms. Results have indicated that electronic circuits with memristors subjected to a
train of periodic pulses behave like brain functions, which are able to learn and
anticipate. Such a learning circuit may find its valuable applications in a variety of areas,

e.g., neural networks and artificial intelligences [39-46].

1.1.2. Existing Works on Static Random Access Memory (SRAM)

SRAM provides indispensable on-chip data storage for an extremely wide variety
of electronic applications including microprocessor, ASICs, FPGAs, and DSPs. In
today’s chip designs, the silicon area occupied by SRAM-based caches dominates over
other logic devices, which may constitute more than 70% of chip area. In the past
decades, aggressive scaling of transistor feature size has been a primary force driving
higher SRAM integration density [47] [48]. On the other hand, the supply voltage is
scaled down to meet device reliability constraints and to reduce power consumption.
However, the stability margin of SRAM has been significantly degraded by such
aggressive scaling. As a result, nanometer SRAM designs are getting increasingly

susceptible to various noise problems and there is a growing concern on read-ability and



write-ability. Increasing process variation also has a dramatic impact on the stability of
highly scaled SRAM designs.

The traditional static noise margin (SNM) analysis is widely used to characterize
the robustness of an SRAM cell. It measure the largest differential voltage noise that can
be tolerated at the two storage nodes [49] [50]. More specifically, the SNM is
determined as the side of largest square that can be inscribed between the mirrored DC
voltage transfer curves (VTCs) of the cross-coupled inverters. However, such a measure
is intrinsically unable to characterize the dynamic process that leads to state flips, which
is critical for understanding the complete stability picture.

In 2006, the work done by Zhang [51] investigates the SRAM dynamics stability
noise margin in linear gate model. Compare to this work, the SRAM dynamic noise
margin is derived in Shichman Hodges model (Level-1), which is more complicated

model and thus provide more design insights.

1.2.  Research Contribution in This Work
1.2.1. Contribution on the Memristor-Based Memory

In this work, by extending the preliminary work in [52], we systematically
develop a rather complete set of properties and design equations for guiding the
development of memristor based memories. We show important dynamical behaviors of
memristor devices and how these characteristics will influence all aspects of analysis
and design of memristor memories. Our analyses are much more general than what is

presented in [52] and no longer assume a zero on-resistance value to simplify the derived



closed-form equations. We refine the derived equations in more details including, but
not limited to, the above relaxed condition, and conclude them by useful properties.
Utilizing these memristor properties as design guidance, we then investigate the design
of memory read/write schemes and peripheral circuits. Important data integrity and
parameter mismatch issues are discussed in depth. Finally, we use extensive simulations

to verify the derived properties and demonstrate their usage in memory circuit design.

1.2.2. Contribution on the Static Random Access Memory

In this work, we extend the traditional static noise margin concept to a broader
view. Stability will be defined by examining both the magnitude and duration of the
injected current noise required to flip the SRAM state. As such, our new stability margin
concepts fundamentally capture the temporal aspects of the state flip and provide
immediate design insights for enhancing dynamic stability. The concepts of critical
current and critical time, based on theoretically rigorous stability analysis of the dynamic
behaviors of SRAM cells, provide physical characterizations of SRAM stability. Lastly,
we explore an analytical approach to the evaluation of dynamic stability analysis for

SRAMs.

1.3.  Dissertation Organization
In this dissertation, beginning from Chapter II, the fundamental theory of
memristor and the basic concept will be introduced. Most of the research works in the

memristor area use the models proposed by HP research group. The proposed HP



memristor models can be categorized in linear and nonlinear drift model. Some of the
commonly seen memristor models will be covered.

Chapter III introduces the dynamic behavior of memristor device will influence
all aspect of design of memristor memories. The design flow has three basic steps: (1)
Systematically develop a rather complete set of properties and design equations for
guiding the development of memristor based memories, and show important dynamical
behaviors of memristor devices and how these characteristics will influence all aspects
of analysis and design of memristor memories. (2) Define logic one/zero region on a
memristor cell. (3) Investigate the design of memory read/write schemes.

Beginning with Chapter IV, we first start with the background on SRAM
operations and stability issues. Next in Chapter V, modified nodal analysis will be
discussed, and we introduce the SRAM circuit and the corresponding nonlinear
differential equations based on Shichman-Hodges model.

In Chapter VI, we discuss the bifurcation study to demonstrate the SRAM
stability issues. We show that three equilibria are located in three different regions.
Then we show the equilibria are two stable equilibria and a saddle (or meta-stable point).
From there, we show that the saddle-node bifurcation will happen at a certain injected
current magnitude called critical current or lc. From the phase portrait analysis, when
injected current amplitude reaches Ic, we observed that two equilibria collide and result
in a saddle-node bifurcation. The collision location is called the bifurcation point. When

this happens, the two colliding equilibria disappear, and only the other remaining stable



equilibrium point will survive. The cell state will traverse to that equilibrium point and
causes state flip.

Next, in Chapter VII, we introduce region analysis to derive the stability margin
analytically for an SRAM. We partition the state space into regions. The equilibrium
point locations in terms of a noise injection and system parameters are derived.
Furthermore, focus on the region of bifurcation; we derive the bifurcation point and Ic
analytically. However, the outcome of analytical solution on bifurcation point and Ic is
very complicate. For that, we observe on the numerical property and propose a new
method to derive analytical solution for Ic and that can greatly simplifies the equation
but keep the accuracy.

In Chapter VIII, we further derive the analytical formula for critical time (Tc).
We show that a perturbed transient state trajectory will pass the stability boundary
(called separatrix) resulting the state flip when the injected current has higher magnitude
than Ic. For a perfectly symmetric SRAM, the stability boundary is a 45 degree line that
passes through the origin. However, the injected current greater than Ic does not
necessarily implies that the cell will flip its state [51] [53]. The current must be greater
than Ic for a certain period of time (defined as critical time or Tc) to cross the separatrix.
Once the state of the cell crosses the separatrix, the state will flip even the noise
disappears. However, it is still not clear how the SRAM parameters physically
influenced the phenomena observed from phase portrait analysis. Accordingly, we resort
to analytical form solutions to find the relations. Lastly, in Chapter IX, we conclude the

Ic and Tc dependency on technology parameters for design insights.



CHAPTER I

REALIZATION OF MEMRISTOR DEVICE

2.1 The Memristor Theory Background

The fundamental basic circuit elements are resistor, capacitor, and inductor.
Resistor relates voltage and current (dv=R.di), capacitor relates charge and voltage
(dg=C.dv), and inductor relates flux and current (dp=L.di), respectively. The relation
between flux and charge is evidently missing. As shown in Fig. 2.1, Chua argued that

there is a missing link between flux and charge, which he called memristance M. [12]

dqg=idt
Capacitor Resistor Inductor
q o—”—o v |=VW\—e| | || ¢
| I do=vdt |
|I\ﬁsigg_link_ . _Memristor o ]

Fig. 2. 1 Four fundamental circuit elements: Resistance (dv=R'di), capacitance
(dg=C"dv), inductance (dp=L-di), and memristance (dp=Mdq) which is the missing
link that Chua argued.

By definition, a linear (constant) memristor acts like resistance. However, if ¢-¢
relation is non-linear, the device behavior is more complex. The memristor

characteristics, also referred to as memristance, can be described as:

M =dp/dq . 2. 1)

Similarly, the inverse of the g-¢ relation is called memductance:

W=dq/dp. (2.2)



From (2.1) and (2.2), it can be also seen:
v=M-i, (2.3)
i=W-v. (2.4)
The memristance M in (2.3) is equal to voltage over current which is also known as the
resistance in the linear case. Therefore, memristance has the same unit (Ohm) as
resistance. Similarly in (2.4), the memductance has the unit of conductance. The inverse

of memductance would be memristance, so

M=1/W. 2. 5)

2.2 The Memristor Device Models

Hewlett Packard demonstrated the first fabricated physical structure of a
memristor device in 2008 also known as Titanium dioxide memristor. The HP
researcher, R.S. Williams, claims that the device is an electrically switchable
semiconductor thin film sandwiched between two metal contacts [18]. The
semiconductor thin film has a certain length D, and consists of a doped and un-doped
region as shown in Fig. 2.2(a). The internal state variable w represents the length of the
doped region. The doped region has low resistance while that of the un-doped region is
much higher. As an external voltage bias v(?) is applied across the device, the length w
will change due to charged dopant drifting. Hence, the device’s total resistivity changes.
Fig. 2.2(b) shows its equivalent circuit model, and Fig. 2.2(c) shows the memristor
symbol used in a circuit schematic. If the doped region extends to the full length D, that

is w/D=1.0, the total resistivity of the device would be dominated by the low resistivity



region, with a value measured to be Ron. Likewise, when the un-doped region extends to
the full length D, ie. w/D=0, the total resistance is denoted as Ros Thus, the

mathematical model for memristive device resistance can be described as [18]:

Rw) =(R,, -w/D+R,; -(1-w/D)), (2. 6)

or it can be written as:
Rw) =R, —(R, —R,,)-w/D. (2.7)

Because of physical constraint 0<w<D, Property I is concluded.

Property 1: Ron corresponds to memristor state w=D. Roy corresponds to memristor
state w=0. The device resistance is bounded between: R, <R(w)<R,,

Device Structure Equivalent Circuit Symbol
Det——»
o—Doped| Undoped M +UldF
Ron Roff
W 4—p
(a) (b) (c)
Fig. 2.2 (a) Memristor device structure; (b) equivalent circuit model and (c)

symbol for memristor.

Fig. 2.2(c) shows the memristor symbol used in a circuit schematic. The
orientation of the symbol follows the equivalent circuit in Fig. 2.2(b), where Rox is at the
left and Roy is at the right. The polarity matters in memristor circuits. If a bias condition
excites the memristance to increase, the reverse connection of memristor would decrease
the memristance, which is also equivalent to reverse the polarity of the biasing source.

Using this resistive viewpoint, we have




v=R(w)-i. (2.98)
Referring to Fig. 2.1, equation (2.8) presents the relation of voltage and current.
According to the recent research results, there are two types of memristor models: linear

drift model, and nonlinear drift model.

2.2.1 Linear Drift Model

The linear dopant drift model assumes a uniform electric field across the device.
The net electric field induced a current flow through the memristor device is found to be
linearly proportional to the drift-diffusion velocity. Since the drift-diffusion velocity
corresponds to the speed of doped region (dw/df), the following equation established

[18]:

dw R/ :
=y o/ 2.9
dt v D ( )

where uy is the average ion mobility.

2.2.2 Nonlinear Drift Model

According to the actual memristor device manufactured in HP’s lab, the small
voltage can yield enormous electric field in nano-scale devices, which produce
significant highly nonlinear ionic transport. These nonlinearities appear to slow down
the drift velocity at the thin film edges, where the speed of the state transition around the
boundary gradually decreases to zero. This nonlinear dopant-drifting phenomenon is so

called the boundary effect [6] [54-56]. The nonlinear effect and its modeling are still not
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fully understood and an ongoing research which has been pointed out by Kavehei [56].
Nevertheless, one approach to model the boundary effect is by applying window function
f(w) to the drift velocity equation. That is
dwldt=p,-R,,[/D-i- f(w/D). (2. 10)
A widely proposed window function introduced by [6] and [54] is the following:
f(x)=1-2-x-1)*" (2. 11)
where P is the control parameter that needs to be matched to the manufactured
memristor data. The control parameter can only be positive integers.
However, the theoretical models can go much deeper than just window functions.
In late 2008, the research group at Hewlett-Packard further announces the memristive
switch mechanism of a flux-controlled memristor can be described as follows [57]:

I =w'B-sinh(a-V)+ y-(exp(y-V))-1) (2.12)
where w is memristor state, V' is the applied voltage to memristor, / is the current through
memristor, and all others are fitting parameters. When the memristor is around Ron, Yang
et al. (2008) referred to as ON state, the following approximation valid [57]:

I~ f-sinh(x-V). (2. 13)
A more detail descriptions on the dynamics of internal ionic transport involved quantum
mechanics. Due to that reason, the suggested expression for the drift velocity becomes

very non-linear at strong applied fields: [57]

% =1 sinh(_i) -exp[— exp[(m) - mj . (2.14)
t i w, W

on c

and
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dw ) I w-—a, ] w
Rt Slnh(i—) - exp[— exp((w—"f) - |b—|j - W—] (2. 15)
off

c c

where ion, iof are the minimum on and off magnitude, we, b and aoy are constants
acquired by parameter fitting, and 7 is the applied current through memristor. Equation
(2.14) is applicable when i<0, and (2.15) is applicable otherwise.

Based on the provided memristor model from HP, the minimum current for
memristor state switching is not clear by the given simple linear drift formula. As we can
see from the more completed memristor model, if the injected current i is less than the
on or off magnitude (ion Or iof), the value out of hyperbolic sine would be very small,
thus the positive or negative drifting velocity would also be small. Therefore, the on and
off currents work as a critical current for the memristor state to move, where the linear
drift model does not indicate such on or off current phenomenon. However, the more
completed model is more complicated than window function and difficult to work with.

Nowadays scientists are still looking for other reasonable models.
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CHAPTER III

DYNAMIC BEHAVIOR OF MEMRISTOR DEVICE AND ITS PROPERTIES FOR

MEMORY USE *

In this Chapter, the characterization on the fundamental memristor device are
heavily emphasized. From the basic memristor device model, systematically develop a
rather complete set of properties and design equations for guiding the development of
memristor based memories. Next, it’s assigning memristor area into logic regions. A
single memristor cell is to partition to disjointed regions: Logic one and logic zero
regions. A safety margin is in between the regions to account for possible noise injection.
Finally, a brief demonstration on memristor-based memory is provided. The derived
memristor properties will be utilized to illustrate the memristor-based memory
read/write operations. The derived designed formulae shown in (3.34) and (3.35)
indicate the amount of minimum required time to switch the logic state. The write signal
must be sustained longer than the minimum time for a successful write. Similar to
devices like SRAM, the SRAM write operation also requires a minimum write time
called “critical time”. For the SRAM state to flip, the write signal must sustain long than

the critical time for a successful write.

*©O[2012] IEEE. Reprinted, with permission, from “Dynamical Properties and Design
Analysis for Nonvolatile Memristor Memories,” by Y. Ho, G. M. Huang, P. Li., [EEE
Trans. Circuits and Systems-1: Regular Paper, vol. 58, no. 4, April 2011.
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Moreover, the proposed read/write scheme used the derived properties as
guidance. The design analysis is specifically targeting key electrical memristor device

characteristics relevant to, but not limited to, memory operations.

3.1.  Characterize The Fundamental Memristor Device

The purpose of characterize the memristor device is to transform the basic
memristor device models and derive a set of closed-form design equations. The results
succinctly capture the memristor behaviors in a way relevant to memory operations and

provide clear design insights by re-derive the model equations.

3.1.1. Characteristics in Linear Drift Model

Memristors can be charge-controlled or flux-controlled depending on the biasing
condition [12]. More specifically, when a memristor is connected to a current source, the
current source will inject charges through the memristor cell. It is convenient to treat
such a memristor as charge controlled because the state of the memristor changes
according to the amount of charge injection, and the state causes memristance to change.
On the other hand, when a voltage source is added across a memristor, it is natural to
consider the memristor as flux controlled. In this case, the state of the memristor changes

according to the amount of flux injection, and the state causes memristance to change.
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3.1.1.1. Charge-Controlled Memristance

For a charge-controlled memristance, the memristor state controlled by the
charge through the cell, and the state of memristor determines memristance. Figure 3.1
shows a memristor biased using a current source /i», and Ii» can be any waveform.

Integrating (2.9) yields the instantaneous w(?):

w(e)=w, +u, - R/ g (3.1)
where wy is the initial state for state variable w. The state of memristor moves from wo
according to the charge going to the memristor cell. If there is a positive charge
injection, the state will move to a higher position, w>wo. If negative charge is injected,
memristor state will move to lower position, w<wy. However, memristor state has a
physical constraint: the state is bounded in between zero and total length D, namely
0<w<D. Due to the physical constraint, we show that the internal memristor state

corresponds to the following effective ¢g range:
—w,D/(u,R,)<qg<(D-wy)D/(u,R,,). (3.2)

Property 2 describes the actual behavior of memristor state.

—O AR

Fig. 3.1 A memristor biased using current source /.
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Property 2: The state (length of the doped region) is charge-controlled and can be
described as follows:

1 q>Oup
w R
B: Wy ! D+, - %)2’% QLOW<q<QUP, (3.3)
0 q<Qow
QUP = (D - WO )D /(luvRon) and QLOW = _WOD/(/uvRon)

where wo is the initial state, D is the memristor length, uv is the average ion mobility
and q is injected charges. Qup is the upper limit of effective charge injection, and
Qrow is the lower limit of effective charge injection.

Mathematically, when actual charge injection is more than the upper limit of
effective charge injection, the state will not go further after it reaches w=D. Likewise,
the lowest state is at zero even if charge injection is lower than the bottom limit of

effective charge injection.

As (3.3) indicates, the memristance works as a charge driven resistance. Equation

(3.3) together with (2.7), implies:
R(w)y=M(q). (3.4
The resistance becomes charge dependent; hence, the charge-controlled memristace is

concluded in Property 3.

Property 3: Charge-controlled memristance can be described as follows:

w, MR
M(g)=R, —(R,-R )| —>+"22-q]. 3.5
(q) off ( off on) (D D2 qj ( )

The equation is valid in the range: Qrow <q<Qur.
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As a special case where wo=0 and Ron is small enough such that (Roy—Ron)=Rof;

charge-controlled memristance can be simplified to:

M(q)=R,; (l . q(z)j . (3.6)
Suppose a memristor M, is biased using current sources /. and a memristor M5 is biased
using /», in which /. and I» have different waveform patterns. Source /s is a sinusoidal
waveform and /» has a square-wave pattern. Based on (3.3) from Property 2, change of
the state is controlled by the charges through the memristor. Since the charge is integral
of the current with respect to time, the state change caused by /. would be the same to

that by /» if both have the same integrated charges. This result is summarized in Property

4.

Property 4: The state change of a memristor biased using a current source is only a
function of the integrated bias charge regardless of the waveform shape of the bias
current.

One unique property of the memristor has been observed is that the internal state
w always comes back to the initial place if the integral of current is zero over a time
period. Figure 3.2 is a brief demonstration. The current source /i» has positive and
negative pulse with equal amplitude and width. Starting from initial state wo at fo, the
state rises due to the positive pulse from # to ¢, letting the state rest at w;. Based on

(3.3), the value for wy is:

wl/D:wo/D+yv-R%2-(1A-At) (.7)
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where (Lr+At) is the charge injection by the positive pulse. From ¢ to t2, the negative
pulse follows, which moves the state from w; to w2, and w2 can be expressed in terms of

Wi as:
R
w,/D=w,/D+u,- O"/Dz-(—IA-At) (3.8)

where (-11+At) is the charge injected by the negative pulse. The state w2 can be rewritten
in terms of wo by substituting (3.7) to (3.8), which gives w2=wy. This indicates that the
final state w2 will be the same as initial state wo. This type of input waveforms in Fig.
3.2(a) are referred to as zero net-charge injection inputs because the integral of the
current over the corresponding time period is zero. Zero net-charge injection waveforms
do not have to be square waveform; it can be sinusoidal or any other waveforms as long
as the integral over a period is zero. Zero net-charge inputs can bring the state back to
original level regardless the initial state. However, the state comes back only when the
charge exerts onto memristor is within the effective ¢ range described in (3.2).
Otherwise, the state will not come back to the original level. This concludes Property 5.
As will be demonstrated in the following sections, this property plays an essential role in

design of memristor memories.

Property 5. If charge injection exerted onto a memristor is a zero net-charge
injection, memristor state will move back to its original position if the exerted charge
is within the effective q range: Qrow <qg<Qur.
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Fig. 3.2 A square-waveform current source /i» has amplitude /4 and —/4 with

equal width Az (a) causes the memristor state (b) transition from wo to w3.

3.1.1.2. Voltage-Controlled Memristance

.||_®V"”__r|_|m

.._||.

Fig. 3.3 A memristor biased using voltage source Vin.

For a flux-controlled memristance, the memristor state is controlled by the flux

across the cell, and the state of the memristor drives memristance. When a voltage

source biases a memristor, the memristor can be considered as flux-controlled. Fig. 3.3

shows a memristor biased using a voltage source Vin, and Vi» can be any waveform.

Denote £ the off/on ratio (Rogy=Ron f). Equation (2.9) can be rewritten as:

dw _ H,

(3.9)

it Dp-w- (-1

After certain manipulations using differential calculus, we get
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2_2'Dﬂ 2

. 0+C)=0 3.10
VROV G40

where

C=Df-w,—(f-1)/2-w,". 3.11)

Since the integration of the voltage is the flux, denoted by ¢, directly relates w with flux
@ in a nonlinear fashion. Solving the quadratic equation of (3.10) and picking up the

physically meaningful root leads to:

DB 1—\/(1—'3_1%] PV (3.12)
B0 Dp (D)

where w(?=0)=wy is the initial condition. Equation (3.12) shows an explicit dependency
of the internal variable w(?) on the applied flux. Note that this formula clearly indicates
that w(?) is a function of the flux applied; it is indirectly dependent on the voltage across
the memristor. The input voltage waveform with the same flux leads to the same
memristor state.

Due to the finite length D of the thin film, the internal memristor state is

constrained as: 0<w(?)/D<I, which corresponds to the following effective flux range:

® ®
2 (R,,* = R(wy)? )< o) < —2(R(wy)? — R, 2). (3. 13)
Roff' off

As a result, the more complete set of the state equations are shown in Property 6.
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Property 6: The state (length of the doped region) is flux-controlled and can be
described as follows:

1 2Dy
2
LIS VZE PR (G777 [ (3. 14)
D L1 RQ[f D,
0 <D oy
D D 2
D, =—D2(R(w0)2 —Ronz) and @, =—R £ (Roff —R(wo)z)
off of

where [ denoted the off/fon ratio (Roy=Ron p), wo is the initial state, D is the
memristor length, v is the average ion mobility and ¢ is injected flux. ®up is the
upper limit of effective flux injection; ®row is the lower limit of effective flux
injection, and
_ (SD)’*
Y 2u(B-1)

Because of the memristor physical constraint, 0<w(?)/D<I, memristor state w
would not be more than D when the applied flux across memristor is over the upper
bound, and it would not be lower than zero when the applied flux is smaller than the
lower bound. Thus, the derived equation (3.14) works only when the applied flux is
within the effective range. In other words, for a particular memristor, if the applied flux
is larger than the upper limit of the effective range, ¢ would be the upper limit of
effective injection. Likewise, ¢ would be the lower limit of effective injection if the
applied flux is lower than the effective range.

As Property 6 indicates, the memristance works as a flux driven resistance, thus
it implies:

R(w)=M(p). (3. 15)

By substituting (3.14) into (2.7), the resistance becomes charge dependent, hence, the
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charge-controlled memristace is concluded in Property 7. The corollary 7.1 also follows.

Property 7: Flux-controlled memristance can be described as follows:

M(go)Roﬁ.\/(%J L 3. 16)

The equation is valid in the flux range: ®Low <p<Dup.

Corollary 7.1: Ron < M(p )< Rof as seen from (3.16) and Property 1.

When a single voltage source biases a memristor cell, it generates flux across the
memristor and also pushes charges through the memristor. The state of the memristor
supposes to move regards to the charge through memristor based on Property 2. The
applied flux to the memristor cell would also change the state based on Property 6. Thus,

the memristance change by charge or by flux should be identical, which implies:

M(q)=M(p). (3.17)
Therefore, the g-¢ relationship can be expressed as:
20, |(Rwy))  [(ROwy)Y
w, w
q(¢)=R_D (R—OJ_\/(R—O} _q)i . (3.18)
off off off D

According to the definition of memductance, the memductance is derived to be:

W(p)=1/ R, [R;WO)J _qf . 3. 19)
off D

Based on (2.5), the inverse of memductance gives memristance. Since
memductance has flux as the control variable, the inverse of that gives flux-controlled

memristance, which is the same as (3.16).
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Compared to the properties on charge-controlled case, similar properties can be
developed. Suppose a memristor M, is biased using voltage sources V, and a memristor
My 1s biased using V5, in which V, and V5 have different waveform patterns. The change
to the memristor states would be the same regardless their waveform shapes as long as
the flux injections (integration of their voltages) remain the same, as summarized in

Property 8.

Property 8: The state change of a memristor biased using a voltage source is only a
function of the integrated bias voltage regardless of the waveform shape of the bias
voltage.

In addition, a zero net-flux injection input, one whose integrated voltage over the
time is zero, pushes state of the memristor back to the initial level provided that the flux
exerted onto the memristor is within the effective ¢ range described in Property 7.

Property 9 summarizes this phenomenon.

Property 9: If the flux injection exerted onto a memristor is a zero net-flux injection,
memristor state will move back to its original position if the exerted charge is within
the effective ¢ range: ®Low <p<®up.

Property 10: The memristor state is initially at wo. Suppose the state of memristor is
desired to move to a feasible state w by a square-wave voltage pulse that has
amplitude Va and width Tw, the required width Tw is:

(DD

T, = Rowy)) - (RO |- (3. 20)

VA Ratf i

Property 10 addresses how much time is needed to move memristor state from an
initial wo to any state w. Assume memristor state be initially at state wo. Based on

Property 6, suppose the state of memristor is desired to move to an arbitrary state w, the
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applied flux needed across the memristor to do this job is:

o(0) =%[(R(wo))2 ~(ROw(e))]. (3.21)

off

Let the applied voltage be a square-wave pulse with amplitude V4 and width T, the flux

across the memristor is described as follows:

f V,-t if t<T
{A i<t (3.22)

o(t) = [W(r)or = VT st

0

When time is in between zero and 7w, the voltage magnitude is V4 and flux is
accumulating in this time range. When time goes beyond 7., the voltage magnitude is
zero, so no more flux increment beyond time 7w. Hence, the total flux injection for a
square-wave pulse is the amplitude times the width, which is V4 T in this case. The total
flux injection determines the change of memristor state. The required width needed to
move memristor state from wo to w is concluded in Property 10. As a special case, the
required time needed to move memristor state from w=0 to w=D is the same as to move

from w=D to w=0. This leads to Corollary 10.1.

Corollary 10.1: Suppose a voltage square-wave pulse has amplitude V4 and width Ty
is applied to a memristor. The duration needed for memristor state to move from
w=0 to w=D is the same as what is required to move the state from w=D to w=0),
and the required duration Ty is:

(3.23)
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Fig. 3.4 A voltage divider consisting of a constant resistor Ry in series with a
flux-controlled memristor M(p).

Furthermore, consider a series connection of a constant resistor Rr and a
memristor, biased using a voltage source, as shown in Fig. 3.4. Using the notion of
voltage division, which will prove shortly, we show the voltage response at node x in

Property 11.

Property 11: In the voltage divider shown in Fig. 3.4, the node voltage response at
node x is given by
V.=V R, (3.24)
© "R A+M(p, —9,) '
where Vx is the voltage at node x, @in is the input flux injection, ¢x is the flux
accumulated at node x, and Qin-@x is the flux across memristor M.

To prove Property 11, we derive the input-output relationship of the divider
circuit by solving ¢x in terms of @i» analytically. Note that ¢i» is the input flux injection,
@x 1s the flux accumulated at node x, and gir-¢x is the flux across memristor M. Based on
Kirchhoff’s Current Law, the KCL equation at node x implies that all the net charges
into node x would be zero. Hence, the charges (integral of current) went through the
memristor, gx, should be the same charges went through the resistor, so gx=@./Rx.
Accordingly, the flux across memristor is @in-@x, and replacing ¢ by @in-¢x and g by gx in

(3.18) yields the charges went through the memristor:
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20, |{ Rwy) | || ROwy) 2_¢in—¢x _9 (3.25)
quf‘ R . R . D, R

off off x

in which ¢ has an unique solution as shown below:

o (1= 220k [R +R(w,) \/(Rx RO 0, (r)], (3. 26)

R R R D,

off off off

Since voltage Vx is the total derivative of ¢x, Vx is derived to be:

V.=V, -R/ [%J(W)z —q‘f} (3.27)

off

Therefore, the memristance M(pin-¢x) has become:

M(p, —9.) =R, (®x —R /R,;) (3.28)
where
T, = \/(—Rx Y RO)y2  Oa (3.29)
Rnff q)D

Finally, substituting (3.28) back to (3.24) shows that is exactly equal to (3.27).
Therefore, that memristor series-connect resistor circuit in Fig. 3.4 indeed behaves as a

voltage divider.

Property 12: For the circuit in Fig. 3.4, assume the voltage source Vin is a square-
wave pulse with an amplitude V4 and a width Tw. To move the state of the memristor
from wo to w, the required width T is:

(DD

T, = RO + R = ROV + R (3.30)

w 2
VA Ra[f

Property 12 specifies the time needed to move the memristor state from an initial

wo to w for the divider circuit shown in Fig. 3.4. Note that the flux across memristor is
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@in-@x, and @ 1s already derived in (3.26). Substituting p=gin-¢x into (3.21) and yield the

following analytical form:

@, (W) = ;)Dz -[(R(wg)+Rx)2 —(R(w)+Rx)2]. (3.31)
off

Equation (3.31) reveals the amount of flux injection needed to move the memristor state
from wo to w. For a supply voltage given in (3.22), as a special case, to move the state
from wo=0 to w=D requires the same 7w as what is needed to move from state w=0 to

w=D. This leads to Corollary 12.1.

Corollary 12.1: For the circuit in Fig. 3.4, assume the voltage source Vinis a square-
wave pulse with an amplitude Va4 and a width Tw. The duration needed for the
memristor state to move from w=0 to w=D is the same as what is needed to move the
state from w=D to w=0, and the required duration T is:

()]
T, =—2_[R, +R) -(R, +R)] (3.32)
A" off

A memristor has an effective flux restriction due to finite length D. Property 6
demonstrates the effective ¢ range for a single memristor case. Thus, the total input flux-
injection @i» across memristor and a resistor should have a range as well. The upper
bound of such effective range is the amount of flux that pulls initial state wo to D. Thus,
substituting w=0 and w=D into (3.31) gives the lower and upper bound. This result is

summarized in Property 13.
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Property 13: When a memristor is connected in series with a resistor as shown in
Fig. 3.4, the effective range for gin across both memristor and resistor is:

6LOW S, < 6UP (3.33)
where @in is integral of Vin and,

— D
(DLOW = __Dz ((R
off

s+ RO —(R(w,)+R.)?)

B, =22 (Rw,)+ R ~ (R, + R.)’)

- 2
off

on

Property 14: Consider the circuit in Fig. 3.4 and assume the voltage source Vin has a
zero-net-flux injection pattern. The memristor state will move back to the initial level
provided that the applied input flux is within the effective range in (3.33).

Finally, Property 14 shows that a zero net-flux input voltage pattern will insure
that the state of the memristor comes back to the initial position for the circuit shown in
Fig. 3.4. It provides important design guidance for ensuring read stability as discussed in
detail in later sections. To prove Property 14, simply set pin equal to zero in (3.31) and
solve for possible solutions for R(w), two possible numerical solutions exist: one is
w=wy, and the other solution is outside of the memristor physical range. Therefore, the
state will be back to the initial level as w=wo. However, Property 14 is true only when

the effective flux range condition as in Property 13 is satisfied.

3.1.2. Characteristics in Nonlinear Drift Model

In nonlinear drift model, the window function reflects the following fact: as the
memristor state moves toward the boundary (w=0 or w=D), the dopant drift velocity
drastically decreases. However, the state equation behaves close to the linear drift

assumption in the region between, in which the properties in the linear drift model are
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preserved. As shown in Fig. 3.5, the linear drift operation region is 0.1<w<0.9.
Accordingly, it is desirable to operate in a smaller linear range, say, W/<w<W?" for faster
switches and easier design. When approaching the boundaries, the constant average
mobility used in the linear model, wv, is the upper bound of the nonlinear average

mobility used in the nonlinear models.

0.

0.

0.

0. W’ <w<w’

0.

0.

0. |

0. |

0. |

04 06 08 00 1
Fig.3.5 The window function vs. w/D plot.

3.2.  Define Logic Regions

For simplicity, a memristor is at logic zero when 0<w/D<(.5 and logic one when
0.5<w/D<1.0. The corresponding ideal output low and high levels are w/D=0 and
w/D=1.0, respectively. In reality, to account for possible noise injections, a safety
margin is specified for each logic output: 0<w/D<O., (Or=W./D < 0.5) for logic zero,
and Ou<w/D<1.0 (Ou=Wr/D > 0.5) for logic one. The region in between OL<w/D<Om is
an unsafe region that should be avoided for read/write data integrity. Fig. 3.6(a)

1llustrates the situation where Or=0.4 and Or=0.6.
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On the other hand, the logic zero/one region needs to be defined before the
memristor cell used as memory. With the consideration of the boundary effect, the
memristor state is to keep off the boundary. For that, let W’ be the lower limit and W’ the
upper limit, the ideal linear memristor state will only transition between W/<w<W’.
Moreover, W? and W separate the nonlinear boundaries and the linear region, which are

dependent on the fabrication. Fig. 3.6(b) shows an illustration of the defined output

levels.
T 0.0.5 0
Logic 1 _LLogic 1: Wy <w<D 0 LA {
Or=WwD=0.6 | |Safety margin: i / : i
i i Logic i Logic |
0,=W,/D=0.4 W, swshy, i ~O5E ; S
, : : Zero / i One ;
Logic? ol [ogic 0: 0 <w<W, : : : :
0D w'/D w'/D
() (b)
Fig. 3.6 Memristor output levels. (a) The output low margin is at 0.4 and
output high margin is at 0.6 in linear drift model; (b) output levels in nonlinear drift

model.

3.3.  Memory Cell Read/Write Operations

3.3.1. Write Operation Scheme
To write a logic value to a memristor cell, the proposed way is to have a structure
in Fig. 3.7, where the memristor state will alter by the flux injection. Let the applied

voltage be a square-wave pulse with amplitude V4 and width 7.
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Write One Write Zero
0 OL 0.5 OH 1 7 OH 0.5 OL 7}

/

Logic 0 // Logic 1 Logic 1 / / Logic 0|
, s .
i i t
VA 0 ' ) v -
< > =
- 7 -V, - T
wl w0
Fig. 3.7 Write signals (bottom) and corresponding memristor states (top).

Assume initially the state wo is initial rest at ideal logic zero state, and it is
desirable to write logic one to the cell. For the write process, input voltage Vi» generates
a square-wave pulse that has magnitude +V4 and width 7.; as shown in Fig. 3.7. Pulse
width T must be longer than the minimum required time 7" to insure the state rest
inside the logic one region after write. The minimum required time 7:;°" is derived to

be:

Oy — @ D
wl 2
|VA Rnff’

&, - ROV, *). (3. 34)

where Rwo is the resistance at logic zero state. If the initial state wo but somewhere inside
the logic 0 region, a successful write can be guaranteed as long as Tw/>Tw%". Similarly
to write a logic zero, the input voltage Vi is a negative square-wave pulse (—V4) with

duration Tywo. The minimum required time T0°" would be:
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()
Ty =|—02[R(WL)2 —wa]. (3.35)
A" off

where Rwl is the resistance at ideal logic one state. The write zero process would be
successful if pulse width Two is at least greater than TwoF. Thus, a write signal that has
duration equal or larger than the derived minimum required time can insure a successful
write. Similar to devices like SRAM, the SRAM write operation also requires a
minimum write time called “critical time”. For the SRAM state to flip, the write signal
must sustain long than the critical time for a successful write.

Moreover, the memristor state w=0 and w=D are as ideal logic zero and one
states in linear drift model. The equation from Corollary 10.1 specifies the required
pulse widths to move a state from wo=0 fo w=D or move from wo=D fo w=0. Therefore,
the write pulse is highly recommended to have the width in Corollary 10.1 so the state
reaches the ideal logic zero/one state.

Suppose the memristor behavior follows nonlinear drift model. The state W? and
W' are the ideal logic zero and one state. The goal of write operation is to precisely
move the state to W’ for logic zero and W’ for logic one. They are done by write zero
and one process. The proposed write scheme is briefly shown in Fig. 3.8, and Fig. 3.9
illustrates the corresponding pulses for write one/zero process.

Suppose the cell is desirable to write to ideal logic one state, the write one
process is performed. Because positive flux injection raises the state, as shown in Fig.
3.9, the state increases due to constant magnitude pulse V4. The reference voltage V" .ris

set to:
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V" =V, R J(R, +ROV")). (3.36)

The reference voltage Vs would come to the same as Vx after some time. When that
happens, the memristor state reached the desire state, and the comparator sends a

feedback signal to switch off the write pulse.

Comparator

|
I
I
|
|
\

- o o\________= P S U ———
Fig. 3.8 Write operation structure.
I/in V'n
A A ;
VA E -
< T wl »E TwO
. 1 — Vi :
Logic 0 Logic 1 Logic 1 Logic 0
' state ‘ state '
i I/iVI L - J
Write One Write Zero
Fig. 3.9 Write pulses (top) and corresponding memristor states (bottom).
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The write zero operation is very similar. A constant magnitude —V is applied to
the memristor if the memristor does not initially stores a logic zero. The reference

voltage is set according to the equation below for write zero process:

V" ==V,-R.J(R +ROV")). (3.37)

In other words, the write process sets Vi to a constant V4 or -V4 magnitude pulse

depends on whether writing logic one or zero, and V",.ris set accordingly.

3.3.2 Read Operation Scheme

The proposed memristor based memory cell structure is in Fig. 3.10; such read
scheme works for both linear and nonlinear models. A read is performed in two stages:
convert stage and amplifier stage. In convert stage, the memristor state information
converts into a voltage signal, Vx, which reflects the memristor state information. The
sense amplifier stage determines the logic based on Vx and output full-swing digital
scale.

The designed read signal pattern has a negative pulse followed by a positive
pulse with equal magnitude and duration as shown in Fig. 3.10(b). This read pattern will
enforce zero net flux injection over one period to avoid altering memristor state after a
read access.

In order to extract the information of the internal state, a voltage excitation is
applied, which will perturb the memristor state. Due to the memristor property
mentioned above, zero net flux injection read pattern avoids altering the memristor state

after read cycles. The negative pulse cycle decreases the state and the positive cycle

34



brings the state back up. The read pulse 7 reflects the amount of perturbation to the
memristor state. Large perturbation would lead to data integrity issues. If ideal one state
(at W) is stored, the read pulse would be constrained by the Wy margin so the state
would not travel to unsafe region. If ideal zero state (at W?) is initially stored, the
negative pulse drags the state to nonlinear region. The design on read process is
motivated by the insights that nonlinear drift will slow down the drift process of the
dopants, thus the designed read flux is a conservative bound based on the linear drift
model that will not trap the dopants to the boundary. Accordingly, we constrain the read

pulse based on our linear model, that is
(R + R ~(ROV,)+ R, )|

- min 2 2 (3. 38)
‘(R(WL) +R ) —(RW)+R,) ‘

q)D
V,R

T <

r

2
off

which is taking the minimum flux injection to move the state from W’ to W or W’ to
WwE.

The resistor in series with the memristor is to convert the memristor state into a
voltage signal since the current through the memristor carries the memristor state
information, thus the voltage at node x (Vx) would reflect the memristor state
information. Use the simplified resistance model, V'x can be expressed as:

V.=V, R /(R +R(w)). (3. 39)

Let the reference voltage set to:

VR (t)=V,12 (3. 40)

which V4 is the pulse magnitude shown in Fig. 3.10(b). The negative pulse comes at the

first cycle makes Vi negative, and V', would be zero out of the comparator. At the second
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cycle of read pattern, ¥ is compared with V. to determine the logic. If the state is
below half of D, V» would be below 7., and logic zero is read. Similarly, V: higher
than V%..r indicates the memristor state is in upper half of its length D, and logic one is

read. For that, the corresponding Ry is the following:

R, =(R, +R,;)/2. (3. 41)

on

This way, we can distinguish logic zero and logic one.

—_—_————— s _——————————— \
I
: Convert Stage | : VR : I/ln‘k v,
| W7 re~—" | T
I % I I v, o
Lo S + |
I | Comparator t
I Rx I | : AZWI';
| )
I I Sense Amplifier : -V
= | = || Stage |

(a) (b)

Fig. 3. 10 (a) Operation stages; (b) read pattern.

Figure 3.11 and Fig. 3.12 illustrate the read operation. When the memristor state
is initially at logic zero, the input negative pulse (first-half cycle) would decrease the
memristor state and the coming positive pulse (second-half cycle) increases the state.
Since the read signal has a zero net flux injection pattern, the state is back to the initial
level after read. Because the state remains under half of D for all the time, the memristor
cell has a high resistance value. Due to the high resistance, the magnitude of Vx remains

lower than V2. throughout the read operation period, thus logic zero is successfully
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read. Similarly to the logic one case illustrated in Fig. 3.11, the state travels within the
logic one region as designed due to zero net-flux injection input pattern. Since the
memristance is low in logic-one region, the magnitude of Vx is high. The output V5 rise
high at the second-half of read cycle since Vx is higher than the reference voltage during
that period. Therefore, the detector should read the second-half cycle since it reflects the

correct logic state stored in the memristor.

3.4. Memristor Memory Array and Peripheral Circuitry

Figure 3.13 illustrates the overall block diagram view of the memristor-based
memory array with peripheral circuits in a way similar to SRAMs. The proposed
topology is aiming to fit both linear and nonlinear models. Typical memory arrays have
far more words than bits in each word, which would lead to a very skinny shape that is
hard to fit into the chip floor plan. Therefore, the array is often folded into fewer rows of
more columns. Figure 3.13 is an example of folding design. Each row of the memory
contains 2% words, and the array is physically organized as 2" by 2" The array has a
row decoder, sense amplifiers and a column decoder. In addition, there is a pulse
generator and selector units. The pulse generator generates read or write pattern signals.
When a read operation is performed, read enable signal would go high and trigger the
pulse generator to produce the read pattern signal. When the write operation is
performed, the pulse generator will signal the write-one pulse or write-zero pulse
depending on the incoming data stored in the input buffer (Data-in). On the other hand,

the selector units switch the memristor cells to the ground for a write operation and Rx
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for a read operation. R/W Enable (R/W) signal controls the selector to switch properly
depending on whether it is a read or a write operation.

For write operations, the pulse generator produces write pulses to the memory
array according to the data value sitting in the data-in buffer. In the meantime, the
selectors will select the corresponding column lines to ground. The other unselected
lines would be floating, so there will be no stage change for these unselected cells.

For read operations, the pulse generator is triggered to produce read pattern
signals. Then the selectors switch each selected column to a resistor (Rx). The resulting
voltage drop across Rx will be amplified by the sense amplifier to full voltage swing.
Lastly, the data-out buffer will be triggered at the second half period of the read cycle to
capture the readout data.

The procedure to access the memristor based memory is quite similar to the
standard SRAM we have today. Data will be read or written to cells by the proposed
read or write scheme. It is suggested to perform a write back (refresh) signal for better

data retention since pulse mismatch and noise issues are often existed.
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Fig. 3. 11 Read operation (logic zero case).

Image was adapted with permission [58].
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Fig. 3. 12 Read operation (logic one case).

Image was adapted with permission [58].
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Fig. 3. 13 Proposed memristor-based memory array structure.
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CHAPTER IV

BACKGROUND ON THE STATIC RANDOM ACCESS MEMORY

4.1. How Does SRAM Work?

The Static Random Access Memory cell (SRAM) is often constructed by two
cross-coupled inverters (labeled M1 M2 M3 and M4) and two access transistors, labeled
M5 and M6 from Fig. 4-1 [59]. The access transistor acts as transmission gate allowing
bidirectional current flow between the coupled inverters and bit-lines. The access
transistors are turned on when the word line is selected. In particular, the SRAM can
hold their stored data indefinitely as long as the power supply provided [60]. Figure 4-2
is another way to show a 6-T SRAM cell graphically, where the main SRAM cell (M; to

My) is replaced by two cross-coupled inverter symbols.

Wordline

Von

L |

M 1O/ —Q| M
1 v,
l l VI[ L 4 ® j Mg

M;
M2 M4
Bitline |_ —| Bitline
v
Fig. 4.1 A 6-T SRAM cell.
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Fig. 4.2 A simplified graphical representation of 6-T SRAM cell.

4.1.1. The Read Operation

The goal of read operation is to retrieve the information stored in V7 and V> node
onto the two bit-lines. Assume the cell is initially stored a logic zero, meaning V;=Vbp
and V>=0. Before the read operation begins, the bit lines are pre-charged to Vpp, namely
Vbitline=Vbitline-bar=Vpp. When the word line is high, M5 and M6 are turned-on. Because
the bitline voltage (Vainine=Vpp) and the stored node V> form a potential difference, here
will be current flow through Ms. The current direction is from the pre-charged bitline
through M6 and M4 then onto ground. Thus, lower the pre-charged voltage at bitline. On
the other side of circuit, no current will flow through Ms since the pre-charged bitline-

bar voltage (Vbitiine-bar) and stored node V: are both Vpp. Fig. 4-3 summarized the read

operation.

Can be
modeled as:
—_—)
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Careful choice of transistor driving strength is necessary for correct operation.
While the bitline is discharging through M6, it would raise V2. If V2 has accidently been
raised high to certain threshold, it might flip the stored states. To avoid this, the pull
down NMOS strength should design to be stronger than the access transistors, so it
quickly drains out the rising voltage at /2. This constraint will insure a stable read. In
short, the read operation can be treated as a current source attached to the SRAM main
cell as shown in Fig. 4-2(b). The read stability maintained if /z> does not cause the state-
flip.
4.1.2. The Write Operation

The goal of write operation is to send the information on bit line into the cross-
coupled inverters’ stored nodes. In another word, write operation is making node V; and
V> to store the information on bitline and bitline-bar. Assume initially V;=Vpp and
V>=0, and the objective is to write V=0 and V>=Vpp. To do that, the Viitine-bar Will be
discharged to zero, and the Vpinine would be pre-charged to Vop. Once the write line goes
high, both M5 and M6 conduct drain currents, and the write operation can be treated as
attaching two current sources onto SRAM main cell. Fig. 4-4 summarized the write

operation.

Dc _I_‘ Canbe [y, (t) Do— Twa(t)
Vet oy fQ T modeled ag g@.vﬁnl ,,,,, v—@l
sl L s =

(@) (b)

Fig. 4.4 (a) Noise injection during a write operation, and (b) its equivalent
model.
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Since M4 has strong pull down strength over M6 to satisfy stable read constraint,
the access M6 transistor is unable to pull up V> because M4 has greater pull down
strength. Hence, the cell must be written by forcing V7 low. Originally V7 stored Vpp, so
the job of pulling V' down relies on the access transistor MS5. Transistor M1 is opposing
this operation because M1 is supplying current to node V;. Thus, the strength of M1
must be weaker than M5, so M5 is able to pull 7 down for successful write.

Therefore, for SRAM to have correct operation and maintain sufficient read-
ability and write-ability, the strength of MOS should be designed in this order:
NMOS>ACCESS>PMOS. The driving strength depends on transistor sizing. For
greater driving strength, designers tend to size up a transistor, and size down a transistor
for low driving strength. The K values we will introduce later contain the transistor
sizing factor. Therefore, for correct operation, the SRAMs often design to have K» > Kp.

[61]

4.1.3. The Standby Mode

In the standby mode, the two access transistors are off, and the stored
information contained in the SRAM cell. The SRAM state flips may occur if
certain coupling noise, in the form of a noisy current, strikes one of the bit-
lines. This noise injection process is illustrated in Fig. 4.5, where it is
assumed that nodal voltages V: and V2 correspond to logic “1” and “07,
respectively. The same process has been analyzed to study the SRAM’s

immunity to single even upsets (SEU) [62-66]. During an SEU event, when
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an ion particle strikes the diffusion region of a transistor, it deposits charge,
which results in voltage spike on the affected node. The current pulse that
results from such a particle strike is traditionally modeled as a double

exponential function [53]. The expression for this pulse can be modeled as:
[noiseL,noiseR (t) = L (eit/Tfl - ei[/Tﬂ ) (4 1)

where Q is the amount of charge deposited as a result of the ion strike, while 7x is the
collection time constant for the junction and 73 is the ion track establishment constant.
For the purpose of characterization, the following scenarios can cause the
SRAM state flip: a noise current going away from the high voltage node (Fig.

4.5a), a noise current going into a low voltage node (Fig. 4.5b) or both.

InniseL(t) > >
g-\/ V1=”1 ” “f) 19— V2 Vl=”l 9 “r— V2 /\_@
InaiseR(t)

(a) (b)
Fig. 4.5 An SRAM state flip caused by (a) a current going away; (b) a current
injection in standby mode.
4.2.  Traditional Static Noise Margin
The traditional static noise margin analysis characterizes the
robustness of an SRAM cell by using two voltage sources as shown in Fig

2(a).Conventional SNMs measure the largest differential voltage noise that

can be tolerated at the two storage nodes [67-68]. In standby, as shown in
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Fig. 2(b), the SNM is determined as the side of largest square that can be
inscribed between the mirrored DC voltage transfer curves (VTCs) of the
cross-coupled inverters. The SNM in read can be defined similarly by
including the two access transistors as part of the inverter pair VI'Cs. The
SNM in read represents the largest DC voltage perturbation that can be
tolerated without a state flip. During write, the SNM 1is found by inscribing
the largest square in between the two VI'Cs as shown in Fig. 2(c).

An SNM metric describes the maximum voltage (or current)
perturbation the SRAM circuit can tolerate without resulting a state flip.
However, such a measure is intrinsically unable to characterize the dynamic
process that leads to state flips, which is critical for understanding the
complete stability picture. In the paper, stability will be defined by
examining both the magnitude and duration of the injected current noise
required to flip the SRAM state. As such, our new stability margin concepts
fundamentally capture the temporal aspects of the state flip and provide
immediate design insights for enhancing dynamic stability.

Clearly, as SNMs are characterized by finding the largest static
voltage noise that can be tolerated in standby, read or write, they are not
positioned in capturing the essential dynamic properties of these operations,

as further discussed in the following chapter.
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Fig. 4.6 (a) characterization of the traditional SNMs, (b) SNM in standby, (c)
SNM in write.
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CHAPTER V

THE DYNAMIC MODEL FOR SRAM CELL

Before deriving the proposed models for dynamic stability, we first discuss the

basic transistor-level models and how a cell can be modeled as a dynamic system.

5.1. The MOSFET Transistor model

5.1.1 Shichman-Hodges Representation (Level-1 Model)

The modeling method is based on the most commonly known model. The level-1

MOSFET spice model consists with three regions: cut-off, linear, and saturate region.

Table 5.1 summarizes the conditions for each region, and drain current equations for

NMOS and PMOS [60]. One thing to notice is that threshold voltage of PMOS from

Table 5.1 is taken absolute value for simplicity later on.

Table 5.1. Basic Transistor Drain Current Equations

NMOS PMOS
Cut-off | Vos<Vrun Vs < |Vrup|

Ips= 0 Isp = 0
Linear Vas>Vrun VsG> |Vrup|

Vps <VaGs-Vrun Vsp <Vsc-| Vrup|

Ips =Kn (2(Vas-Viun)Vs-Vps’)  sp =Kp (2(Vsc-|Vrup|)Vsp-Vsp?®)
Saturate | Vas>Vrun VsG> |Vrup|

Vps>Vas-Vrun Vsp >Vsg-|Vrrp|

Ips = Kn (Vas-Vrun)? Isp = Kp(Vsc-|Vrup|)?

The term Vbs can be written as:

Vs =Vp =V (5.1

From KVL, Vb can be represented as:
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Vy=Vpe +Ves +V (5.2)
After substitute (5.2) to (5.1), the other way to write Vps in NMOS is below:
Vs =Vas =V (5.3)
Similarly, the Vsp in PMOS can be written in a similar manner as (2.4).
Vio =Vs¢ =V (5.4)
By substituting (5.3) for the NMOS equations, and (5.4) for PMOS equations, the

Level-1 current equations can be rewritten into the form shown in Table 5.2. [69] [70]

Table 5.2. Shichman-Hodges Representation

NMOS PMOS
Cutoff Ips=0 Isp=0
Linear Ips =Kn ((Vis-Vran)? Isp=Kp (Vs -|Vrup|)?
-(Vap-Vrun)?) -(VpG -|Vrup|))?
Saturate Ips =Kn (Vos—Vran)? Isp=Kp (Vsc-|Vrap|)?

The advantage of writing in the form in Table 5.2 is keeping variable inside the
square term. Using NMOS as example, notice that Vesis less than Vrzuy when in cut-off
mode, and Vs is higher than V7uw if not in cut-off mode. In another word, Vas-Vrun is
less than zero for cut-off mode and has zero current. That’s the same as treating
saturation equation with Vas-Vrunv equal to zero. If not in cut-off mode, Vas-Vruy is
higher than zero and the term Ves-V7un survive as shown in linear and saturation mode.

One of the key difficulties in deriving analytical dynamic stability models lies in
the fact that different equations for typically used for determining drain currents in the

cut-off, linear and saturation regions. To resolve this problem, we adopt the equivalent
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Shichman-Hodges representation of the drain currents shown in Table 5.2 [71] with the
following S-function:

0 X<0
X X>0

S(x) ={ (5.5)

Using S(x) and Table 5.2, the drain currents for NMOS and PMOS transistors can be

written as follows:
Lpsy(Vos s Vop) =Ky - (S2 Vs = Vi) — S? Voo =V ), (5.6)
Lspp Vg Vpe) =Kp - (52 Vs =1 Vimp ) — S? Vo =1 Veue D) - (5.7
The parameters K to K+ are the MOS device parameters of transistor M to My:

1

My Cox 'VVl,z,3,4 /L1,2,3,4 (5.8)

K =
1,2,3,4
2

where unp is the carrier mobility (un or up), Cox is the per unit area gate capacitance,
Wiz3a and L1234 are the effective channel width and length of the transistor,
respectively.

Note (5.7) and (5.7) are valid for all regions of operation. The function S(x) is
used to combine the three drain current equations of NMOS and PMOS transistors into
one equation. This constitutes an important step towards deriving the proposed analytical
dynamic stability models. Furthermore, note that the threshold voltage of typical
enhancement mode PMOS transistors is negative. For simplicity of presentation, with
some abuse of notation, throughout the rest of the paper we use a variable such as Vrup
to indicate the absolute value of the threshold voltage of a PMOS transistor, which is

positive.
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For continuously differentiable property, the following smooth version of S(x)
function can be used:
S(x)=log(1+e**)/ 4 (5.9)
where A is a constant. The suggested value for 4 is 100 for CMOS. The higher the 4
number is, the closer the log function approach to true S(x) function. Fig. 5.1 shows the
plot of smooth version of S(x) function with /=100 and 4=50. The transition is sharper
for higher 4. When use this smooth version of S(x) function, be aware of the digit of
precision that machine need to handle to implement this type of function. When
choosing a big 4 number like 100, assume Ves-Vran is 1, exponential of 100 is about ten
to the power of 43. If Ves-Vruv is zero, exponent of zero is one. That means this
function deals numbers varying from one to ten to the power of 43, and not every
compiler can deal this kind of precision. The modified sets of current equations with
smooth version of S(x) functions are shown as follows:

K
]DSN = A_];[ . (10g2(1 + eA'(VGS_VTHN))_IOgZ(l + eA'(VGD_VTHN))) (5 10)

K
ISDP :A_;)_(10g2(1+eA'(VSG*\VT//P|))_10g2 (1+eA'(VDG*‘VT1/PD)) (5 11)

5.1.2  The Berkeley Simulation IGFET Model (BSIM)

Accurate transistor models are needed for electronic circuit simulation, which in
turn is needed for integrated circuit design. As the semiconductor devices gets into deep
sub-micron process generations, a new model is needed to be developed to reflect the

transistor's behavior for that technology node. Because the earlier models may become
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inaccurate, the commercial and industrial analog simulators (such as CADENCE) have
added many other device models as technology advanced. An industry working group so
called the Compact Model Council was formed to standardize the models for industrial
use, and BSIM (Berkeley Short-channel IGFET Model), developed by the Department of
Electrical Engineering and Computer Sciences (EECS) at the University of California at
Berkeley CA, is one of these standardized models [72]. The BSIM family includes

BSIM3, BSIM4, BSIM6, BSIM-SOI and BSIM-CMG, BSIM-IMG.

Smooth version of S(x) where A=100 Smooth version of S(x) where A=50
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Fig. 5.1 The plot of smooth version of S(x) with A=100 (Left) and A=50 (Right)

5.2. The Dynamic Model for SRAM
A circuit may be described using a modified nodal analysis formulation in the

time domain:

O()=F(W)+1, (5.12)

where 7, eR" is the input, ve R" is the state variables, F describes the resistive

devices of the circuit, Q is the capacitive devices of the circuit, and /vy is an arbitrary

current. For the SRAM cell in Fig. 5.2, for simplicity, we only consider two state
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variables, voltage (V) and its complement (}2). The circuit equations for the SRAM

cell are:
{Cn(VlaVz)'Vl+C12(V1aV2)'V2:fl(Vl’Vz)"'INl (5. 13)
Cr(V, ) N+ Cy (V1) V= L,V V) + 1y,
/I_ Voo
~
g P
e T P Q[ My,
V. . V2
* <
[\, Mo\
=+ +
J
v < v
Fig. 5.2 The SRAM cell with internal lumped capacitors drawn.

where the Cs are the capacitances associated with the two storage nodes, f; and f>
represent the currents of the transistors in the two cross-coupled inverters, In;and In2
represent additional currents injected to the two storage nodes. We assume the coupling
effect between V7 and V2 is small, thus Ci2 and C:s are neglected. Note that physically
C11 and C22 are mostly contributed by gate and drain parasitic capacitances at V'; and V>
nodes. For simplicity, we use circuit simulation to extract averaged small-signal
capacitance values C; and C>by averaging C;; and C22 over a range of operating points,

and finally arrive at:

C, -V, = fi(V,Vy)+1
{ A= A0+ Ly 5.1

Cz 'Vz :fz(VlaI/2)+IN2
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where Iy; and In2 represent as the injected DC currents. For instance, they can be used to
describe the noise injected current in standby mode, or the read/write current through the
access transistors.

In (5.14), f1 and f> are determined by the drain currents of the transistors, which
can be modeled using the Level-1 device equations in Table 5.2. As such, the following

f1 and f2 complete the dynamic equations for SRAM:

{fl(VlaVz):11(V1’V2)_]2(V13V2)

(5. 15)
LWV =L, V) -1, V,)

where (I1, 12, 13, I4) are the drain current for transistor (M1, M2, M3, M4),

and their expressions are as follows:

L=K\[S*Vop =Vs =Viy) = S* V', =Vy = V)]
L =K,[S*(Vy = Vi) = S*(Vy =V, = V)]
L =K[S* Vo =V =Vis) = S*(Vy =V, = Vi)
Ly =K,[S*(V, = Vi) = S*(V, =V, = V)]

(5.16)

L |

INl Ml_ O_ Vll_C
U
N\

V2

v

Fig.5.3 The SRAM cell with cross-coupled voltage sources inserted.

For traditional Static Noise Margin study, one can insert cross-coupled voltage

sources in the SRAM main cell. The dynamic equations with cross-coupled voltage

sources incorporated would be:
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{Cl'Vlzfl(Van"'Vm)"‘lNl (5.17)

C, V= fo(V,=Vy,, Vo) +1,

In addition, the cross-coupled voltage sources can also model the voltage loss on the
metal lines.
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CHAPTER VI

SRAM STABILITY AND ITS MATHEMATICAL EQUIVALENCE

This chapter will discuss SRAM instability and the bifurcation study. We will
first introduce the concept of voltage transfer curves (or called nullclines), equilibrium
point and separatrix mathematically for clarity. We show that SRAM has three
equilibria. Two of the equilibrium points are stable and the other one is saddle (or meta-
stable point).

SRAM state flip happens under perturbations. In general, one can model the
perturbations using voltages and current sources. The noise injections are typically in
current form. Noise pattern like SEU is a cosmic type current waveform striking the
stored nodes. Thus, it can be modeled as a current sources attached to V; and V> nodes.
On the other hand, traditional static noise margin studies SRAM instability by
introducing voltage perturbations. It introduces cross-coupled voltage sources across two
stored nodes. The cross-coupled voltage sources can also model the voltage drop on
metal routings.

The dynamic modeling for both cases have been discussed in Chapter II. In this
chapter, we will show how the voltage transfer curve and SRAM equilibrium points
change with different injected voltage or current magnitude. With this, we can see that
the SRAM instability happens when two voltage transfer curves tangent to each other at

a point; this phenomenon is called saddle-node bifurcation, and the tangent point is
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called the bifurcation point. The injected voltage or current magnitude causes the
bifurcation to happen will be called the critical voltage or current, namely V¢ or Ic.
When the injected noise magnitude goes higher than the critical magnitude, the
SRAM state will start to traverse to stability boundary (or called Separatrix) and onto the
other equilibrium point and cause state flip. Thus, the stat flip does not happen
immediately. We name the time to the stability boundary the critical time, Tc. In
summary, the injected noise magnitude (either in voltage or current) has to be higher

than the critical magnitude (Vc or Ic) for a duration longer than critical time to result

state-flip.
SeparatriX
= Vl-nullcline
= = V2-nullcline
S 3
1 1.2 14 1.6 ,8
Vi

Fig. 6. 1. An example of voltage transfer curves on a 65nm technology SRAM.

6.1.  Voltage Transfer Curves (VTCs)

In a general second order autonomous system, all the points satisfied dVi/dt=0 is

the V;-nullcline and all the points satisfied dV2/dt=0 is V>-nullcline. The voltage transfer

57



curves are basically the concept of nullclines. Figure 6.1 shows the voltage transfer
curves. The SRAM voltage transfer curves consist of Vi-nullcline and V2-nullcline,
where the nullcline of V7 or Vi-nullcline is the set of points satisfied:
Cl'Vl:f1(VlsVz)+1N1:Oa 6.1
and the nullcline of V2 or V>-nullcline is the set of points satisfied:
C, -V, = f,(7.V,)+ 1y, =0. (6.2)
The voltage transfer curves are also called the “butterfly curves” in some literatures. [70-

74]

6.2. The SRAM Equilibrium Points

According to nonlinear theory, equilibrium points are found by solving function
dV1/dt=0 and dV>/dt=0. In other words, the points of intersection onV;-nullcline and V>-
nullcline are exactly the equilibrium points. As shown in Fig. 6.1, the point#1, point#2
and point#3 are the equilibrium points. The point#1 and point#3 are the stable

equilibrium points, and point#2 is a saddle [75] [76].

6.3.  Stability Boundary of an SRAM

The stability boundary, or called separatrix, separates the regions of attractions of
the two stable equilibria as shown in the dot line in Fig. 6.1. Starting from any initial
state above the separatrix, the SRAM state will eventually go to the stable equilibrium
“1”. Similarly, the state will be driven towards to the other stable equilibrium “3”, if

starting from a point below the separatrix.
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In other words, an SRAM state starting anywhere within the stability
region would converge to its equilibrium state. And, the stability boundary is
a border that separate stable regions. For example, a point starts in the stable
region of point#1 will gradually converge to equilibrium point #1.

During the SRAM operations, a state flipping would occur if the state
1s perturbed across the stability boundary. In a symmetrical case, the
stability boundary i1s simply a 45 degree line passing through the origin on
the phase portrait [51] [76]. The stability boundary for a given SRAM is also
called separatrix because the stability boundary separates two stability
regions [76]. In the case of SRAM cell, if the injected noise is higher than the
stability margin, the state of the cell can deviate from the initial stable
equilibrium and cross the separatrix after certain time period. If this
happens, the cell state will fall into the stability region of the other stable
equilibrium state and result in a state flip. The sections below discuss some

of the concept in nonlinear theory point of view.

6.3.1. The Stability Boundary Theory

For a given dynamic equation X = f(x)with x in an N dimensional space, the

equilibrium points are all the x.’s that satisfy f(x.)=0. Its stable manifold and stability

region can be described as below: [76]
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6.3.1.1. General Theorems

The stable manifold of an equilibrium point x. is defined as: [59][77-78]
We(x,)={xeR" |limg(t,x)=x,} (6.3)
t—o
where ¢(t,x)is the trajectory that starts from x and eventually converges to x.. The

stability region or region of attraction A(x)) of a stable equilibrium point x is the

stable manifold of stable equilibrium point, X .

Definition of hyperbolic equilibria: [59]
An equilibrium is called hyperbolic if there are no eigenvalues on the imaginary

axis.

Stable Manifold Theorem For a Fix Point: [76]
Suppose that X = f(x) has a hyperbolic fix point X . Then there exist local

stable and unstable manifold W, .(x) W,

loc

(x) of the same dimension ns, nu as

those of the eigenspace E*, E" of the linearized system and tangent to Ef, E" at

vy K
x' I/I/loc

(x) W,

oc

(x) are as smooth as the function f.

The stability boundary of the stability region is denoted by 0A(x]). Based on some

generic assumptions, we have the stability boundary theorem [79]:

Assumptions for Stability Boundary Theorem:

e All equilibria in A(x{) are hyperbolic.

e Every trajectory in A(x;) converges to an equilibrium point.

e The stable and unstable manifold of the equilibria in A(x{) intersect
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transversely.

Stability Boundary Theorem: [79]

The stability boundary 0A(x))=U, W?*(x, ) where xm m=1,2, ..., are all

equilibria of any order in 0A(x)).

Fig. 6.2 Example of phase portrait for an SRAM.
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6.3.1.2. The Stable Manifold and Stability Boundary Theorem for SRAM
In particular case, from Fig. 6.2, P1 and P2 are two stable equilibrium points, x; .

The stability region of equilibrium point P1 is the region of all initial states whose
trajectories will converge to P1. Accordingly, the stable region of P1 is the bottom right
region in the phase portrait. Likewise, the stability region of P2 is the top left region of
the phase portrait. The question remains on how to describe the stability region in a
precise mathematical sense. From the same figure, we can see the stability boundary
(the manifold passing through P3) naturally divides the state space into two stability
regions. Accordingly, the stability boundary becomes one of the key components that

decide the stability margin.

In SRAM case, stable equilibria are hyperbolic, every trajectory in A(x;)
converges to P3 and the stable and unstable manifold of P3 satisfies transversality.
Thus, stability boundary theorem can be applied since SRAM satisfies the generic
conditions. For the case of SRAM, saddle (P3) is the only one equilibrium on 0A(x)),
so the stability boundary is the stable manifold of saddle. Therefore, the stability
boundary for SRAM can be described as:

QA ) =W* (x") (6. 4)
where x!' is the unstable equilibrium point P3 on the boundary of 4. Accordingly, to
find the stability boundary, first is to identify the unstable equilibria on the stability

boundary and find their stable manifolds. According to the Stable Manifold Theory

[76], the stable eigenvectors of the linearized system around the equilibrium point will
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be tangent to its corresponding stable manifold. Thus, we can start in a small

neighborhood of x! along the directions of stable eigenvector to integrate reverse in time

to find the stable manifolds. We need to reverse in time to bypass the stability nature of

the trajectories that will converge to x! in a short distance.

As an example, Fig. 6.2 illustrates the above theorem. In Fig. 6.2, the trajectory
pass through P3 is the separatrix that separate the state space into two stability regions.
Points initially starts on the Separatrix will converge to P3, and the tangent vector on the
Separatrix is the stable eigenvector with the stable Eigen-value of the linearized system

around P3.

6.3.2. Algorithm on Finding the Two Dimentional Stability Boundary

Based on the stability boundary theorem and the stable manifold theorem, we can
see for a two dimensional nonlinear systems such as SRAM, the stability boundary can

be found by the following procedure:

1. Find all the x! and x. .
2. Focus on the interested x; .
3. Check if x are on stability boundary.

4. Find the stable eigenvectors, Vs, of the equilibrium point x., where the stable

eigenvector is the eigenvector corresponding to the stable eigenvalue.

5. Choose initial condition as x, =x! +&-V,, where ¢ is a small positive number.
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6. Integrated backward by x =—f(x).

In practice, we can bypass procedures 4 and 5 as long as the initial conditions are
nearby the unstable equilibria since the unstable components will dissipate fast as we
integrate reverse in time. In 65nm technology SRAM as example, the unstable
equilibrium point is (0.57, 0.57) and stable equilibrium points are (1,0) and (0,1). In
order to find the stable and unstable eigenvectors of unstable equilibrium point, one way
is finding out the Jacobian matrix addressed previously and evaluated at (0.57,0.57).
This Jacobian matrix gives eigenvalues of (1x107'!) and (-1x107'!); the corresponding
eigenvector are (0.707,-0.707) and (0.707,0.707). As mention before, the eigenvalue
(1x10'Y) is positive, so it’s unstable eigenvalue and the corresponding eigenvector
(0.707,-0.707) is unstable eigenvalue; for the eigenvalue (-1x10!), its stable eigenvalue
and the eigenvector (0707,0.707) would be stable eigenvector. This stable eigenvector
would be the Vs described in step 4. By following the procedures, integrating backward
from the unstable equilibrium point as described in step 6, the Separatrix can be traced

out as shown in Fig. 6.3.
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Fig. 6.3 Separatrix of a 65nm SRAM cell
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6.3.3. Higher Order Effect On the Curvature of Separatrix

The higher order effect regards to curvature of separatrix occurs often appears
when the SRAM parameters are largely asymmetrically deviated. Using Level-1 model
for demonstration, it appears to be that the separatrix would start to show nonlinearity if
more than 50% deviation on a single threshold voltage or more than 15% on a K value.
Since nonlinearity of separatrix is not showing so clear under varying a single parameter,
we show a clear nonlinearity of separatrix in Fig. 6.4 by varying the thresholds in the
manner of Vini=Vininominat*(1+n%), Vin2=Vinznominat™(1+n%), Vin3=Vin3nominar*(1-n%),
Vina=Vihanomina*(1-n%), and Fig. 3-20 is varying K values in this manner,

Ki1=Kinominal *(] +n %), K2=K2nominal *(1 +n %), Vin3=K3nominal *(] -n %), K4=Knominal *(1 -n %)
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Fig. 6.4 The plot of separatrix varying only Vi values when n is (a) 60; (b) 80.

By comparing those figures, variation of thresholds larger seems to give the separatrix
an “S” shape, and large variation of K values gives the separatrix in a “C” curve shape.
Depends on the combination of thresholds and K values, the separatrix can be “S” or

mirrored “S” shape and “C” or mirrored “C” shape. If put together with the
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combinations from Fig. 6.4 and Fig. 6.5, the separatrix remains “C” shape for n=70 as

shown in Fig. 6.6.
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Fig. 6.5

6.3.4. The Mathematical Expression for The Separatrix

From the dynamic modeling equations of an SRAM, the slope of separatrix can
66

be expressed by:



C,-dVy _ f,(V1)
Cl'dVl fl(Vl’Vz)

(6. 5)

or

de — Cl 'fz(Van)

(6. 6)

dVl Cz.fl(VlaVZ)

1

0.9

0.8

0.7

0.6

x2

0.5

0.4

0.3

0.2

0.1

0

Fig. 6.6 The plot of separatrix varying Vi and K Values at n=70.

where f; and f> are from (5.14). The mathematical expression of Separatrix can be
acquired by solving (6.5). Assuming the points on Separatrix have all the four SRAM

transistors in Saturation region, the Separatrix is solvable in Level-1 model [71]:

CK Vi =V, = Vth3)3 +C K, (V- Vth4)3
—GK V=V, - Vth1)3 -Gk, (1, - Vth2)3
(Vg —Vthy =Vth,) ,
) . 6.7)
(\/Kz. T K,)
Vg =Vithy =Vith, ).

= C1 (K3K43/2 + K4K33/2) (

- Cz (K1K23/2 +K2K13/2) (
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For the special case, suppose the SRAM is symmetrical, meaning that K;=K>=K3=Kj,
C1=C2, Vinp=Vin1=Vms and Vimn="Vim2="V14, the separatrix becomes:
v, =V, (6. 8)

which is 45° line passing through the origin on the phase portrait.

6.4. Noise Induced Bifurcation and SRAM Instability Study

As mentioned previously, SRAM state-flip can occur by introducing voltage or
current perturbations. We use current sources and cross-coupled voltage sources to
account all the different kind of noise perturbations, and SRAM instability can be
observed by attaching them as shown in Fig. 6.7. It is also equivalent to Fig. 5.3.

The perturbation by either current or voltage sources can cause SRAM state-flip
once the noise magnitude goes over the critical magnitude. When the injected noise
amplitude changes, the equilibrium points will change accordingly. Stable equilibrium
points remain in their relative positions while the saddle point moves closer to one of the
equilibrium point, depending on the direction of the noise current. At certain critical
magnitude, the saddle point will collide with a stable equilibrium point, resulting in a
saddle-node bifurcation. The location that bifurcation occurs is called the bifurcation
point. When this happens, the two colliding equilibrium points disappear, and only the
other remaining stable equilibrium point will survive. The sections below discuss SRAM

noise induced bifurcation by voltage and current perturbation separately.
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Fig. 6.7 The SRAM topology with voltage and current noise sources
incorporated (simplified view).

6.4.1. SRAM Instability Via Voltage Perturbation

The traditional static noise margin (SNM) introduces cross-coupled voltage
sources and measures the maximum voltage magnitude an SRAM can handle at stored
nodes. That is only considering the voltage sources V'n; and Va2 in Fig. 6.7. As discussed

in Chapter V, the dynamic equations for SRAM with cross-coupled voltage sources are:

{CI'V-IZJFI(VI’Vz-FVN) (6. 9)

C, -V, =00, =Vy.Vs)

where Vn=Vni=Vn2.
Figure 6.8 shows the voltage transfer curves and equilibrium points at different
Vn. At Va=0, the equilibria are labeled as “1”, “2” and “3”. Among these, “1” and “3”
are stable equilibria and “2” the saddle. The dynamic property of the cell will change
with injected voltages. As the magnitude of /'y increases to 0.14 volt, the three equilibra
change their location as shown in Fig. 6.8(b). The saddle (marked as “2”’) and the stable

equilibrium point (marked as “3”’) come closer to each other. In Fig. 6.8(c), the saddle

69



collapses with the stable equilibrium. The collapse results in saddle-node bifurcation
[59]. The location where the bifurcation happens is called the bifurcation point, denoted
by (Vis, V"28). In Fig. 6.8(d), the injected voltage magnitude increases to Va=0.35 vollt,
yielding only one equilibrium point (marked as “1”) in the entire state space. Starting
from any point in the state space, the SRAM state will eventually go to this remaining

stable equilibrium.
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Fig. 6. 8 [Nlustration of saddle node bifurcation. The voltage transfer curves when

(a) Vnis zero; (b) Vais 0.15 volt; (¢) Va=0.29 volt; (¢) V'n=0.35 volt.
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As shown in Fig. 6.8(c), the occurrence of saddle-node bifurcation marks a
critical structural change of the dynamic property of the SRAM cell. When the injected
voltage Vnis above 0.29 volt, there is only one stable equilibrium. When the injected
voltage V' is less than 0.29 volt, there are still two stable equilibria. To flip the state, the
injected DC (constant) voltage must be above 0.29 volt such that the starting stable
equilibrium collapses with the saddle and hence disappears, and then the state anywhere
on the phase portrait is attracted by the remaining stable equilibrium. We call SNM=0.29
volt the critical voltage.

The voltage transfer curves shit exactly by the amount of voltage injection. It can
be seen from (6.9). Since the Vi-nullcine is all the points satisfied f;=0, the new >
would be the old V2 subtracts Vv and resulting the transfer curve shits down. Similarly,
since the V;-nullcine is all the points satisfied f2=0, the new V; would be the old V7 plus
Vn and resulting the transfer curve shits to the right. There, that is why that SNM 1is
determined as the side of largest square that can be inscribed between the

mirrored DC voltage transfer curves (VT Cs) of the cross-coupled inverters.

6.4.2. SRAM Instability Via Current Perturbation

Consider a constant noise input at the /> node, a representation of the system

equations is given below:

{ RAIND .10

Cz 'Vz :fz(Vsz)‘*‘]N'

Similar to the voltage case, saddle-note bifurcation will happen as the noise current, Iy,
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increases. Figure 6.9 illustrates an example on the occurrence of noise induced
bifurcation using current perturbation on »2 node. As the injected current amplitude
increased, the saddle node will gradually approach to the stable equilibrium state on the
right side of the separatrix. When the noise amplitude reach the critical amplitude, the
saddle point collides with the stable node, and the saddle node and the stable node along
with separatrix disappear and result in a saddle-node bifurcation. In Fig. 6.9, the critical
amplitude (Ic) is 192uA and equilibria colliding point (bifurcation point) is located at
(1.7, 0.6). Once the noise magnitude goes larger than /c, meaning In>Ic, the only
equilibrium point left is the equilibrium point originally on the left side of separatrix.

Without losing the generality, the current perturbation can be classified into two

categories: Single-sided and double-sided. The SRAM state flip by single-sided current
injection has the following 4 scenarios:
- Four scenarios for single-sided current perturbation

Initial condition: (V1="high’, V>="low’)

1. State-flip caused by current injection to the V> node, and its critical
magnitude is denoted by Ic2'™. It stands for critical current for going into V2
node.

2. State-flip caused by current leak out from the V; node, and its critical

OUT 1t stands for critical current for going out of

magnitude is denoted by lc1
Vinode.

Initial condition: (V1="low’, V>="high’)
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3. State-flip caused by current injection into the V7 node, and its critical
magnitude is denoted by Ic1'™. It stands for critical current for going into the
Vi node.

4. State-flip caused by current extraction from the 7> node, and its critical

magnitude is denoted by 1c.°Y7

. It stands for critical current for going out of
Vi node.
The first scenario is already demonstrated in Fig. 6.9. For the other three scenarios, the
transfer curves shift in different directions. On the other hand, the SRAM state flip by
double-sided current injection has the following 4 scenarios:
- Four scenarios for double-sided current perturbation
Initial condition: (V1="high’, V.="low’)
5. SRAM state-flip occur caused by current injection to the /2 node and leak out
from the V7 node.
6. SRAM state-flip occur caused by current injection to or leak out from to both
Viand V2 node.
Initial condition: (V1="low’, V>="high’)
7. SRAM state-flip occur caused by current injection to the V7 node and leak out
at V2 node.
8. SRAM state-flip occur caused by current injection to or leak out from to both
Viand V2 node.

By the observation from the above eight scenarios, the SRAM state flip will NOT

happen if current injected to a ‘high’ node or extract from a ‘low’ node.
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In conclusion, this chapter studies the voltage and current perturbation induced
bifurcation. In either case, voltage transfer curves of the two inverters in the cell become
tangent to each other at bifurcation point. Evidently, two curves that are tangent to each
other also have the same slope at that tangent point. It can be shown that the Jacobian
matrix corresponding to the differential equation of the SRAM cell becomes singular at
this point. This theoretical result is leveraged to develop analytical formulation.

Starting from Chapter VII, the process of analytical derivation for the critical
current will be discussed. Critical current study has several benefits over critical voltage
study: (1) the physical noise event is typically in current form (ex. SEU); (2) the SRAM
operation is done by current biasing since transistors are voltage controlled current
sources. Due to the above mentioned reasons, the noise margin metric in current

representation has more advantage to work with in that sense.
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CHAPTER VII

THE ANALYTICAL SOLUTION FOR STATIC NOISE MARGIN VIA THE

CONCEPT OF CRITICAL CURRENT *

To accurately account for transistor behaviors, sophisticated device models, e.g.
BSIM3/4 models [80-84], are usually adopted. These device models, however, make it
impossible to derive closed-form design models and prevent development of useful
design insights. Instead, we adopt the popular simple Shichman-Hodges (Level-1)
transistor models [69] [70] for developing the targeted dynamic stability models. This
choice, nevertheless, allows us to rather accurately predict the trends of SRAM stability.

In order to derive analytical solution for critical current, the SRAM transistors’
state at the point of instability must be known first. In this chapter, we newly introduce
analysis by regions (also called region analysis) to know the region of bifurcation. Then,
the transistors’ state at the point of instability can also be known. Focus on the region of
bifurcation; we derive the bifurcation point and lc analytically. Furthermore, we extend
the single-sided current injection to double-sided. Finally, we establish the static noise

margin metric in current representation.

*©[2012] IEEE. Reprinted, with permission, from “Understanding SRAM Stability via
Bifurcation Analysis,” by Y. Ho, G. M. Huang, P. Li., ACM Trans. Design Automation
of Electronics and Systems, accepted on May 19, 2014.
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7.1.  The Point of Instability for an SRAM
As mentioned in the previous chapter, voltage transfer curves shift by noise
perturbation. The point of instability is when voltage transfer curves of the two inverters
in the cell become tangent to each other at bifurcation point. Evidently, two curves that
are tangent to each other have the same slope at that tangent point. It can be shown that
the Jacobian matrix corresponding to the differential equation of the SRAM cell
becomes singular at this point [85-86]. This theoretical result is leveraged to develop
analytical formulation. Below summarizes this important theorem.
Theorem for the Point of SRAM Instability: [85-86]
For cross-coupled inverters like SRAM, the point of instability is when its
Jacobian matrix becomes a singular matrix.
Proof:
Consider cross-coupled inverters with V1 and V2 variables as shown in Fig. 7.1(a). The
static solutions for the cross-coupled inverters are the same as solving for nullclines as

mentioned in (6.1) and (6.2). The following expressions established:

{sz f(v) (7. 1)
V1 = g(Vz)
and
Clvl =V, -9g(V,)=0 ) (7.2)
szz =V, - f(V,)=0
The Jacobian matrix would be:
s [ —ag/ov, ] 7.3)
—of JoV, 1
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If the Jacobian matrix is a singular matrix, its determinant would be zero as shown in the

following:
of dg
det(J)=1-——=-=0 7.4
D=5, 74
Or
o NV, (7.5)
o, og

Equation (7.5) indicates the tangential point of two transfer curves have the same slope

as shown in Fig. 7.1(b).
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Fig. 7. 1 (a) Symbol for two cross-coupled inverters where functions f and g are
for the top and bottom inverter; (b) Phase portrait plot showing two transfer curves
tangent at bifurcation have the slope indicated.

7.2.  The Region Analysis

The critical current is highly related to the bifurcation point since it causes
equilibra to collapse. That is, the critical current can be found once the bifurcation point
is known. In order to have analytical form expression for the bifurcation point and
critical current, we introduce region analysis [71]. Each region in this analysis

corresponds to one particular combination of transistor regions of operation (states) (e.g.
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M1: Linear; M2: Cutoff; M3: Cutoff; M4: Linear). Through the region analysis, the
transistor states at the bifurcation can be determined, and critical current can therefore be
expressed in terms of system parameters.
7.2.1. The Defined Regions

The Vi and V2 voltages physically swing between zero to Vdd. This creates a
state-space. The entire state space can partition into many small disjoint small areas.
Figure shows the defined regions. In Fig. 7.2, each small area is a region. The lines
separating the state space is based on the Shichman Hodges representation. In other
words, every region has its corresponding dynamic equations, and certain S(*) terms are
on or off in that particular region. Using Region 7 as an example, the transistor state
combination [L,C;S,L] reads M1=Linear, M2=Saturation, M3=Cutoff, and M4=Linear.
Every point in this region has such state combination, and the corresponding dynamic

equations are:

Clvl = fl(Vl ’Vz)‘m - INl (7 6)
szz = fz(vl avz)‘m +1\,
where
fl(Vl,VZ)‘R7 = ISdplLIN - IdSnZSAT (7 7)
fl(vl ’Vz )‘R7 = IsdeCUT - Idsn4LIN
and
IsdplLIN =K, [Vpp =V, _VTHl)2 -V, -V, _VTHI)Z];
IdsnzSAT =K, (V, _VTH2)2 . (7. 8)

CuT
I sdp3 - O’

Idsn4uN = K4[(V1 _VTH4)2 _(\/1 _Vz _VTH4)2]

79



Changing the threshold voltages or Vdad would shift the region lines and change
the number of regions. As an example shown in Fig. 7.3, the state space would change
from (a) to (b) by decreasing Vdd. As we can see that Regions 2A, 2B, 2C and 2D no
longer exist. That means, the transistor combinations, which corresponds to those region,
cannot happen under low Vad. Further decrease of Vad can make Region 2 disappear.

When that happens, the output of one of the inverters will be floating.

) L) L) )

= * [CL] feL] VA
i 1 [LC] 5[Ls] g R _[MZ M4]

Sl A = [M1, M3; M2, M{]
dE e
N “\

V2
IS
>
Or / -
0 Vina V; Vaa-Vins Vi
Fig. 7.2 The nullclines and region formation of an SRAM. The Vig-20 is all the

possible range for V1 to have bifurcation in Region 2D. [C= Cutoff; L= Linear; S=
Saturation.]

The equilibria of an SRAM cell, denoted as (Vie, V2e), are the solutions found by
solving dV1/dt=0 and dV2/dt=0. When In1=In2=0, Region 1 and Region 3 each have a
stable equilibrium strictly at (Vdg, 0) and (0, Vdd), and the saddle can fall onto one of the

regions: 2A, 2B, 2, 2C, or 2D. For a symmetrical SRAM design, it can be shown that the
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saddle is strictly located in Region 2. For convenience, we assume that the SRAM cell is
symmetric, i.e. the two inverters in the cell are identical. The location of the saddle
denoted by (Visaddle, V2saddie) can be found to be:

(\/Kia,(vdd _Vth3)+\/K74Vth4 , \/K(Vdd _Vtm)"'\/Kithhz ) . (7. 9)

Vad

VaaVin1

_ Vinz Vag-Vint

A
3yl

4
= 6 -
8! %% 1 I6 1 1 I3 1 N N A I I I
Vina v, Vaa-Vins  Vaa tha “//dd' Vins Vad
1
(@) (b)
Fig. 7.3 (a) An example of assigned regions for an SRAM; (b) the assigned

regions when Vdd is reduced.

7.2.2. The Regions of Bifurcation

The region of bifurcation is the region where bifurcation happens, in other words,
the region of bifurcation contains the bifurcation point. The bifurcation point may
happen in different region for different parameter sets. Figure 7.4 shows an example of
region of bifurcation for two different parameter sets. Parameter set #1 has the

bifurcation point in Region 7, but the parameter set #2 has it in Region 2D.
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Not all the regions in the phase portrait can happen to have bifurcation point.
Majority of regions can never have bifurcation point for all possible parameter set.
Exclude the regions cannot happen bifurcation are the regions able to find bifurcation for
certain parameter sets. Those regions can have bifurcation are called the candidate
regions for bifurcation, and only one region in the candidate regions is the region of

bifurcation.

0 ™ l““- = e = s i ' .4“". - - - - - = L]
0 020406081 121416 00 02040608 1 1214186
T (volt} ¥; ivelt)
(a) (b)
Fig. 7. 4. The phase portrait for (a) parameter set#1 and (b) parameter set#2.

7.2.3. The Candidate Regions for Bifurcation

Every region can be classified of having 2, 1 or 0 equilibrium points (e.p.). For
those regions can only have 0 e.p., the mathematical equations in that region cannot have
any equilibrium solutions. For those regions can only have 1 e.p., the mathematical
equations can be expressed in the first order form. The equilibrium solution can
therefore be examined symbolically. Those regions can have more than one equilibrium

point are the candidate regions of bifurcation; they are in the category of having 2
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equilibrium points. The equation complexity reaches 4™ order polynomial form for the
candidate regions of bifurcation.

After examining all the regions for all possible parameter set, the candidate
regions of bifurcation is summarized in Table 7.1. Based on the result, it shows that the
region of bifurcation would not happen in the “strap-regions”, meaning Regions 2, 2B,

2C, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8, 9, 9A and 9B combined in Fig. 7.2.

Table 7. 1 Summary of Region of Bifurcation

INJECTION THE CANDIDATE |[THE REGION OF BIFURCATION
CONDITION REGIONS FOR BASED ON SYMMETRICAL
BIFURCATION DESIGN
Single-Side Ini=0, In2>0 2D and 7 7
Ini=0, In2<0 2Aand 4 4
Ini>0, In2=0 2D and 6 6
Int<O, In2=0 2A and 5 5
Double-Side In>0, Ino>0 2D, 3,6,and 7 2D
In1<<0, In2<O 1,2A,4and 5 2A
Int<O, In2>0 2A, 2D, 5 and7 5 Ina|=]In2l)s 7 ([Ina|<|Inzl)
In>0, In2<0 2A, 2D, 4 and6 4(||N1|<||N2|), 6 (||N1|>||N2|)

7.2.4. Choose the Region of Bifurcation in the Candidate Regions

The region analysis eliminates all the impossible regions for bifurcation.
However, it does not give the specific one region of bifurcation. Judgment based on
transistor knowledge needs to be made to pick the region of bifurcation from the
candidate regions. Using the first case as an example, we select Region 7 instead of
Region 2D. Since transistor M3 is can only conduct negligible drain current in Region
2D, we assume it is in cutoff. By selecting Region 7 the region of bifurcation, we are
taking the chances that M3 is in cutoff when bifurcation happens. In addition, this

assumption is valid because bifurcation point is likely to be at the most curvy point of
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the transfer curve and the curviest point is usually in Region 7. Here we complete the

column for region of bifurcation assuming the SRAM is symmetrical designed.

7.3.  The Analytical Solution for Critical Current

This section will show the complete derivation for analytical formula for critical
currents. It has two main subsections: single-sided current injection and double-sided
current injection cases.

The last chapter discussed total of eight scenarios, four on the initial condition of
(V1i="high’, V2="low’) and four on (Vi="low’, V2="high’), on current injection induced
bifurcation. Once we get the analytical analysis for either one of the initial condition, we
can flip the labels on the SRAM for the other initial condition without modified the
analysis. In this work, we will work with the initial condition (Vi="high’, V2="low”)
only.

Assuming the initial condition (V1o=Vbp, V20=0), SRAM state flip can happen if
a noise current injects to V2 node. The single-sided current injection has the dynamic

equations in (6.10). We show the equations below for the readers:

{ C, 'vl =f,V,.V,) (7. 10)

C, 'vz =f,V.Vy) + 1
where In is the injected noise current amplitude. The critical current for (7.10) is the

magnitude of I at the point of instability. This critical current is labeled Ic2'N, stands for

current critical magnitude for injecting into V2 node. In addition, the state flip can also
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happen if there is a noise current going out of Vi node, lowering the voltage Vi. Its

dynamic equation is:

{Cl V= fi(VLV,) =1y . (7.11)

C,-V, =f,\V,,V,)

Similarly, the critical current for (7.11) would be the magnitude of In in (7.11) at the

point of instability; it is labeled 1c1®VT for critical current magnitude going out of V1
node.

On the other hand, the double-sided current injection has the dynamic equations

in (5.14). We copy the equations here for readers:

{Cl 'vl = f1(V1»V2)+ IN1 (7.12)

Cz 'Vz = fz(\/lavz)"' |N2
The critical current in double-sided case would be combinations of critical currents at V1

and V2 node, which are denoted by lc1 and Ic2. In this case, SRAM instability can be

described by a line composed by combinations of lc1 and Ic2.

7.3.1. Single-Sided Current Injection
7.3.1.1.  The Case When Current Injects to V2 Node

The analytical expression of critical current involves solving for the bifurcation
point in the region of bifurcation. Let the notation f and g be: f=dV1/dt and g=dV2/dt. As
illustrated previously, the system instability happens when the equilibria collapsed. It is
proven that the Jacobian matrix becomes a singular matrix at bifurcation point. [85]

Therefore, the following formulae can be established:
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{lez = f1(V1aV2):O (7.13)

O, = FL, VLV + 1 =0
where subscript “iN2” is added to the notation to indicate the case of current injected to

V2 node. The determinant of Jacobian matrix would be:

s = ((0F 2 /Y, ) (0910, /O, ) — (OF 2 /Y, ) (B9 s /OV, )= 0. (7. 14)
Let (V182 V282, Ic2'N) be the solution of (V1, V2, In) satisfied the above f, g and h
functions, where (V18'N?, V28 'N?) is the bifurcation point for Ic2'N. The problem becomes
solving the three equations below for three variables (V18'?, V282, Ic2'N):
fnaVig 5Voa s le) = (Vg ",Vog ") =0

IiwaVig 5Vie s ley) = T, (Vig Vg )+ 1y =0 . (7.19)
hia Vg 2> Vap 25 16y) = ((af /avl)’(ag/avz)_(af /avz)'(ag/avl ))vl'é“,vz'gz =0

Below are the summarized steps to solve (V1g'™2,V25"N?,1c,'N):

1. Determine the transistor states at bifurcation point.

2. Formulate continuous finz, ginz and hinz function based on the transistor states from
step 1, where finz and gin2 are the differential equations for the region of
bifurcation and hinz as given by the singular Jacobian matrix.

3. Solve fin=0 and hi;=0 for (V18?2 V28"N?) since fin, and hi, are independent of Ic2'N.

4. Once the analytical form of (V18'™?,V28'N?) is known, solve g,=0 for Ic2'N.

The above steps are applicable to any transistor models includes BSIM4 model.
However, obtaining an analytical solution with complex transistor models is quite
difficult. Hence, we use the simple Level-1 model to demonstrate.

Solving for (Vis™?, V28'N2) and IcN symbolically in the Level-1 model is
involved. The simplest analytical formula for lc2'N without any approximation is the

following:

Icl:’\i = K4[ 1:3N2 _VTH4)2 - 1IE;N2 _Vzlglz _VTH4)2] (7. 16)
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where Vi and V2g are the bifurcation point can be expressed as follows:

K
V1:3N2 :Vzllla\lz +VTH1 +\/NDD _Vzllla\u _VTH1)2 _?zwzlglz _VTH2)2 (7.17)
1

2
[Kl(\/DD +V1:3N2 Vi Vi) — K, 'VTHzJ
VAL KI(VDD +V1IBN2 _VTHI _VTH4)_ Kz 'VTHz _ 2(K1 - Kz) . (7. 18)
28
2(K1 B KZ) _ Kl(vl:aNz — THI)(VI:BNZ — TH4)
KI - Kz
> 1 // (0,Vaa) IAssumption:
= Bifur-point is
>|° /] approximately 2/3
S / of the height betw.
Vsadate and V.
V, 2 @ (Visaddies V2sadare)
G P ey 7 s N ]
/ Bifurcation >c\ v \t\
N point 42
0 , , 3 (0.0) , , (Vaa, 0) 1
vthl VI vdd' vth3 Vdd
(@) (b)
Fig. 7.5 (a) The plot of SRAM equilibrium points as In2 changes. Increasing the

magnitude of In2 will make the saddle (in region 2 when 1n2=0) collapsed with the stable
node (in region 3 when In2=0) and resulting saddle node bifurcation in region 7; (b)
[lustration showing that the bifurcation point is approximately 2/3 of the height between
Vasaddie and Vin2 on the same phase portrait.

As can be seen, V1g™? and V282 are cross-coupled. Solving them would involve a 4"
order polynomial, with polynomial roots having more than 10 symbolic terms.

Because the bifurcation point is always found in between Vasaddle and Vinz2 as
illustrated in Fig. 7.5(a), we simplified the expression for V28'N2 by approximating V2g'?

as a weighted sum of Vasagdle and Vinz as: W(Vsaddle-Vin2). The weighting factor w is

chosen by averaging over more than 30 different parameter settings. It was observed that
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the weight factor for the exact value of Vzs is within 8% of w=2/3 as illustrated in Fig.

7.5(b). With that, we have
VZIBN2 :W'(staddle _VTH2)+VTH2 w=2/3 (7- 19)

where Vasaddle is
V _\/Kl(VDD _VTH1)+\/K2VTH2 (7 20)
2saddle — ' :
JK, +4K,

Therefore, the critical current, Ic2'N, can be expressed in terms of system parameters by

plugging the V18'? and V28'N? expression given in (7.19) and (7.17) into (7.16).

7.3.1.2.  The Case When Current Leaves at V1 Node

This case deals with the dynamic equation in the form of (7.11). Increasing the
magnitude of In would lower the stored voltage Vi, and SRAM state flip can happen if
the magnitude of In is larger than the critical current, 1c1°VT. Similar to the previous case,

the bifurcation point and critical current can be acquired by solving:

fOUTl(VlgUTlavzcé;UTla I((:D1UT )= f1(VlgUTl:V2%UT1) - Iglm =0
Qour (Vlcs)UTl =V2%UT1 ) I&UT )=1, (Vlcs)UTl avzcéUTl) =0 (7.21)
hour (Vi ™. Vag 187 = ((0f /av, )- (g /oV, ) - (of /o, )- (6 /V, ) o yom =0

Below are the summarized steps to solve (V1g°Y T}, V259U, 1c19YT):

1. Determine the transistor states at bifurcation point.

2. Formulate continuous fout1, goutt and hout: function based on the transistor states
from step 1, where fout1 and gour: are the differential equations for the region of
bifurcation and hour1 as given by the singular Jacobian matrix.

3. Solve goun:O and hoUT1:O for (VlBOUTl,VZBOUTl) since Jout1 and hOUTl are
independent of 1c1°YT?,

4. Once the analytical form of (V18°Y™,V28°Y™) is known, solve fouri=0 for 1c1%YT™.
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Similar to the previous case, step 3 also runs into complicated expression and
requires solving 4™ order polynomial. We again use the idea of weighting factor w=2/3

OuUT1

to simplify the expression for Vig®Y™ by approximating V1s®Y™ as a weighted sum of

Visaddle and Vop —VTH3. With that, we get:
Vlgun = (VDD —Vius )_ W- (VDD —Visadie _VTH3)» w=2/3, (7.22)
and the expression for the critical current would be:
19U = K, -[(VDD Y AV i (VS VES —vTHl)ZJ (7.23)

where

K
K_3'(VDD _VlgUTl _VTH3)2 . (7.24)

4

OUT! __yyOUTI ouTI 2
st _VIB _VTH4_\/(VIB _VTH4) -

7.3.2. Double-Sided Current Injection

For the case of double-sided current injection, the following formulae can be

established:

f=f(V.V,)-1,=0
g="1,(V,.Vy) + 1y, =0 - (7.25)
h=(5f/8V|)-(69/8V2)—(6f/8V2)-(89/8V1)=0

Let (Vis, V28, lc1, Ic2) be the solution of (V1, V2, In1, In2) satisfied the above f, g and h
functions, where (Vis, V2g) is the bifurcation point and (lci1, Ic2) are the critical currents.
In the case, there can be many set of (Vis, Vs, Ic1, lc2) for one system parameter, but
one (lc1, Ic2) set will only correspond to one bifurcation point (Vis, V2g) and vice-versa.
The problem becomes solving the following three equations for four variables (V1is, Vzs,

Ic1, lc2):
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f(Vls’st’Icnlcz): fl(VlB’VZB)_ le, =0
IVie:Vass e le) = F,(Vig,Vig) + 1, =0 : (7.26)
h(\/,B,VZB,lm,|C2)=((5f/5V1)-(ag/ﬁvz)—(ﬁ/ﬁvz)-(ﬁg/avl )XVIBNZB =0

Since there can be many sets of (Ic1, Ic2) satistied the above three questions, we call the

solutions the combinations of critical currents.

7.3.2.1.  The Combinations of Critical Currents

Table 7.2 shows the combinations of critical currents in a 65nm technology
process symmetrical designed SRAM, and Fig 7.6 shows their location graphically. The
combinations of Ic is a continuous curve close to a straight line in a symmetrical SRAM.
When the SRAM is asymmetrical, some nonlinearity can be observed on the line of
combinations of IC.

Evidently, (0, Ic2'™) and (I1c1°V7, 0) from single-sided case are the cross point of
the line of combinations of IC and y-axis and x-axis. Because Ic2()=71uA is measured at
zero In1, lc2(” in this example is the same as Ic2'N and its analytical formula is already
derived. Similarly, lc1"=18.2uA is the same as Ici®VT. We also have the analytical
solution for that. However, the analytical formula for other points on the combinations of
IC plot are unknown.

The combinations of IC also include negative Ic1 and Ic2 as long as f, g and h are
satisfied, so the IC line in Fig. 7.6(a) can be extended to quadrant II and quadrant IV. If
Ic1 is negative, that means current is injecting into V1 node and raise the stability at V1

node. Thus, Ic2 goes to a higher value than Ic2'N when lc1 is negative.

90



Table 7.2. The BSIM4 Data on a 65nm Technology SRAM (unit is pA)

[1c1(0)= 0 ()= 71 ] [Vis(0,7)= 0.86 ,Vs(0,7)= 026 ]
[lca(l)= 3.242 ,lc2(6)= 60 ] [Vis(1,6)= 08 ,Vzs(0,7)= 0.233 ]
[lca(2)= 5.857 ,lc2(5)= 50 ] [Vis(2,5)= 0.751 ,V2p(0,7)= 0.202 ]
[lca(3)= 8.305 ,lc2(4)= 40 ] [Vi8(0,7)= 0.7 ,V28(0,7)= 0.168 ]
[lca(4)= 10.699 ,lc2(3)= 30 ] [Vis(0,7)= 0.651 ,V2p(0,7)= 0.132 ]
[lca(B)= 13.108 ,lc2(2)= 20 ] [Vis(0,7)= 0.6 ,Vs(0,7)= 0.097 ]
[lca(6)= 15.607 ,lc2(l)= 10 ] [Vie(0,7)= 0.546 ,V2(0,7)= 0.0627 ]
[leca(7)= 1822 ,lc2(0)= 0 ] [Vis(0,7)= 0.48 ,V25(0,7)= 0.0274 ]
Critical Current Combinations The Bifurcation points of Combinations of ICs
T T T T T T T T r 0.9 T T T T T T T
(|01(0):0, I(:2(7):71) | =B~ ssivasim. |
o (|Cl(l): |C2(6)) 1 odt
o (|01(2)y |C2(5)) o.6f
340- (1, 1) 1 SNO'S'
= @ .0 Zodt 0.7) \/,.(O7) |
30) (ICl , |c2 ) (VlB ' yVZB ’ )
(1, 162?) (i) V') |
o (119, 1D) > i
) (1c:0=18.2, 1,%9= o v B(7,0)' V23(7'0))
0 2 4 6 8 10 12 14 16 18 20 0 L L L L L !
IN]_ (UA) 0 0.1 0.2 0.3 0.4 Vl (0\;) 0.6 0.7 0.8 0.9
@ (b)
Fig. 7.6 The plot of (a) combinations of combinations of critical currents, and its

(b) corresponding bifurcation point locations.

7.3.2.2.  The Analytical Solution to the Combinations of Critical Currents

The straight forward way is to write lc2 in terms of Ic1 in (7.26), and Ic2 can be
traced by sweeping Ici. Or, write Ic1 in terms of Ic2 and sweeping lc2 can also get the
same result. However, the drawback is that f1 and f2 functions need to be updated to a
different region equations as the bifurcation point get into another region. As shown in
Fig. 7.6(b), the bifurcation points are not all in one region; the region equations need to

be changed accordingly.
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7.3.2.3.  The Linear Approximation on the Combinations of Critical Currents

One simple way to acquire the analytical formula for the line of combinations of
critical current is using the linear approximation. Although the line of IC combinations
can have higher order effect, the line remains as a continuous curve close to a “straight
line” in most of parameter sets as shown in Fig. 7.6(a).

We already know two points on the IC line; they are (0, Ic2'N) and (1c1°V7, 0).
Their analytical formula was derived previously. A linear line passes these two points
can be described by the following equation:

I IN

I, = ——S2 |
c2 — IOUT Cl
C1

L1 (7.27)

where 1c1°YT and Ic2'N are expressed in (7.23) and (7.16).

7.4.  Static Noise Margin Metric in Current Representation

Based on the results from single-sided and double-sided current injection case,
one important phenomenon can be concluded, the combination of IC works as a stability
boundary. SRAM state would flip if the injected noise combination, (In1°, In2°), is above
the line of combination of ICs, and state flip cannot happen if the noise combination is

below the line.
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Fig. 7.7 [lustration of read/write noise margin

The traditional static noise margin uses an inscribable largest square fitted inside
the “eye” of transfer curves to describe the stability of an SRAM state. The better the
stability means the larger the square is. On the other hand, the concept of critical current
can also provide the same useful noise margin metric. The noise margin in current
representation is defined as follows:

The Definition of SNM Read Margin in Current Representation:

- Suppose the injected noise combination (INl' INZ) is below the critical current
combination line. The shortest distance from (INlo, INZO) to the critical current
combination is the read margin.

The Definition of SNM Write Margin in Current Representation:
- Suppose the noise combination (INl, INZ) is above the critical current

combination line. The shortest distance from (INl, INZ) to the critical current
combination is the write margin.
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Figure 7.7 demonstrates the definition above graphically. The shortest distance away
from the boundary gives designer an idea of how far away the perturbed SRAM state to
the state of instability. The longer the distance is, the better the stability it has. Figure 7.8
summarized the SRAM read/write margin in voltage and current representation. This
newly defined metric can work as a design guidance and provide physical insights. The
noise margin in current presentation can have a few advantages over the voltage
representation:
1. The device noises are often described in current form.
In electronics, noise is a random fluctuation in an electrical signal. There are
various type of noise in electronics circuits. The common one in memory devices
is call Single-Event-Upset (SEU). A SEU noise changes the state by ions or
electro-magnetic radiation striking a sensitive node in a microelectronics device.
In other words, the state change is a result of the free charge created by
ionization, and its mathematical model is a current waveform which has been
discussed in (4.1).
2. The SRAM access transistors are current driving sources
Transistors are voltage controlled current source. The SRAM operations rely on
pass-gates driving currents. Therefore, the SNM in current representation is

better associated with SRAM read/write stability.
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Read Margin Write Margin
Voltage 35(V)
Representation
- QT ——
SNM=0.29 SNM= -0.06
J\L\? J\L\?
Current P Mo (I, In)
Representation N o (e, 1e™) s
by
. N (1™, 18™)
Ing, In2) \\ \\
(Ingy Inz \:I\Zf N \IA\’I
Fig. 7. 8 The summary of static noise margin in voltage representation and in

current representation.

7.5.  The Analytical Solution for Read/Write Noise Margin In Current Representation
The definition of noise margin in current representation is the shortest distance to
the line of combination of critical current. The shortest distance would be in the direction
perpendicular to the line of combination of IC in linear assumption. And, the analytical
formula for the length of the shortest distance can be acquired. The mathematical
expression for the linear approximated IC combination line is given in (7.27), and its
perpendicular line equation passing through the injected noise current combination (Inz°,

In2°) would be:

IOUT
_ 'ci

Icz_ IN (IC1_|N1)+IN2’ (7~28)
Icz

The shortest distance point on the line of combination of IC is denoted as (Ici>NM,

Ic25NM); its mathematical expression is derived to be:
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out 2 ouUT § IN IN
(ICI )'|N1+|01 Icz'(lcz'_INz)
(| out )2 +(| IN )2 ’
(ERNEE ° o . (7.29)
(||N).|IN_| 19T +(|OUT)2)
c2 c2 N2 c1 'NI1 Cl

(1) +0ay

Finally, the analytical solution for the SNM in current representation is:

2 2
SNM :\/(IM_ISTM) +(IN2_ICS:';M) (7. 30)
or
IIN N
IN2 +|o%’ INl - Icz
SNM = = (7.31)

(1Y

96



CHAPTER VIII

THE ANLAYTICAL SOLUTION FOR DYNAMIC NOISE MARGIN VIA THE

CONCEPT OF CRITICAL TIME *

As discussed previously, if the injected noise (In:z, In2) is below the line of
combinations of /¢, the states will never cross the separatrix, so when the noise
disappears, the states of the cell will always return to its stable equilibrium point.
However, the static noise margin is not good enough to characterize the noise tolerance
of this cell. The noise current above the line not necessarily implies that the cell will flip
its state [59] [71] [76]. It must be above the line for a certain period of time (defined as
critical time or 7¢). Once the state of the cell crosses the separatrix, the cell will flip
states even though the noise disappears. For state flip to occur, the state of SRAM must
cross the separatrix. The critical time or 7ecriiar defined to be the time it takes from initial
state to the separatrix. If the present of noise current with amplitude Icriiai has shorter
duration than Teiniar, the state has not yet crossed the separatrix, and it will come back
when the noise disappear. On the other hand, the presence of noise has greater duration
over Teririal, the state of SRAM would cross the separatrix, and state flip is inevitable

even though disturbance is gone.

*©[2012] IEEE. Reprinted, with permission, from “Understanding SRAM Stability via
Bifurcation Analysis,” by Y. Ho, G. M. Huang, P. Li., ACM Trans. Design Automation
of Electronics and Systems, accepted on May 19, 2014.
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In this chapter, the definition of dynamic noise margin will be clearly stated. The

analytical solution for the dynamic noise margin will be provided.

8.1.  The Definition of Dynamic Noise Margin (DNM)
The definition of dynamic noise margin is clearly stated in [53]. Using the

concept of stability boundary, the dynamic noise margin can be defined in read, write

and hold.
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Fig. 8.1 The definition of dynamic noise margin: (a) dynamic read margin and (b)

dynamic write margin.

8.1.1. Dynamic Noise Margin in Read

When the read operation starts, the word-line goes high, the SRAM state would
be pushed away from its initial state towards the separatrix of the cell. After the word-
line goes off, the read operation ends and the cell returns to hold. If the trajectory does
indeed go across the separatrix, a state flip will be generated after the access transistors

are turned off in hold.
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The read DNM is defined for a given wordline pulse width 7z. As shown in Fig.

8.1 (a), the read DNM is defined as
DNM ., =T, =T, 8. 1)
where Tc is the time it takes for the trajectory to reach the separatrix and 7z is a give
word-line pulse width. The defined read DNM specifies the amount of read operation
time margin before read instability takes place. That is, when Tc > Tk, there exists a
positive margin; when 7c = Tk, the cell is on the verge of read instability; when 7Tc < Tk,

state-flip happens and the cell loses read stability.

8.1.2. Dynamic Noise Margin in Write
The write DNM can be defined in a way analogous to that of the read DNM, but
by noting that a successful write overwrites the SRAM state, hence producing a state flip.
Similar to the previous case, as shown in Fig. 8.1 (b), 7c¢ is the time when the state
trajectory crosses the separatrix. For a given word-line pulse width, 7w, the write DNM
is defined
DNM ypre =T, =T (8.2)
The static noise margin (SNM) may provide an optimistic estimate for dynamic write-
ability. That is, even if the SNM predicts a successful write, in the reality, the write can
actually fail. For the state-of-the-art SRAM designs with short access cycles and
advanced read/write timing control circuitry, the distinctions between the SNMs and
DNMs in read and write reveal the important role of cell nonlinear dynamics in

determining dynamic SRAM stability.
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8.1.3. Dynamic Noise Margin in Hold

The DNM in hold characterizes the data retention property of the cell under
SEUs and noisy operating condition. DNM may be examined by injecting a current
disturbance into the cell. Compared with the use of noise voltage disturbance in the
SNM [84-85], modeling the disturbance as an injected current more physically reflects
the nonlinear dynamic nature of the cell. The DNM shall be evaluated by considering
both the amplitude and duration of the current disturbance. Depending on these two
factors, the state trajectory in hold may cross the separatrix, leading to instability. It

would be the same as the read scenario, with 7z replace by the disturbance duration.

8.2. The SRAM Cell Dynamics and Analytical Solution For Dynamic Noise Margin
Previous chapters discussed the SRAM cell in static point of view. The SRAM cell
reaches its point of instability when the magnitude of external perturbation (such as
noise currents and noise voltages) reaches the critical state. In this chapter, we will
discuss the dynamic point of view. We will show how the stored state flip over. When
under constant current (Ins, In2) biasing, an initial state (Vpp, 0) will traverse across the

stability boundary (separatrix) and reach another equilibrium state (0, Vbp).

8.2.1. The SRAM Cell Trajectory on Phase Portrait
Figure 8.2(a) shows an example of stored state switching mechanism if consider
only a current injection at ¥2 node, its differential equations are described in (7.10).

Assume this noise acts as a step input to /> node, which holds constant without
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switching off. On the phase portrait, a trajectory starts from (1, 0) and gradually
converge to the equilibrium point on (0, 1.4). From simulation result, the saddle-node
bifurcation happens at approximately /v of 496 pA, so Icwould be 496 pA. Because in
this case /v is 500 pA which is slightly larger than /¢, there is only one equilibrium point
located at (0, 1.4) on the entire phase portrait. So, if the cell’s states initially start at (7,
0), the state of the cell will be converging to (0, 1.4). When plotting V'; and 72 in time
diagram as shown in Fig. 8.2(b), one can see that it takes approximately 0.48 ns for the
cell to reach the equilibrium point (0, /.4) which results a state flip. Since it is
symmetrical designed, the separatrix is simply the linear line V; = V2 [59] [71] [76]
across the origin. It will take the cell about 0.45 ns to reach the separatrix. After the
state of the cell crosses over the separatrix, the cell will not be able to come back to its
original state. This means that a noise current pulse of constant amplitude 500 pA
applied for less than 0.45 ns may not make the cell flip its state. However, when the
noise duration is longer than 0.45 ns, the cell will flip its state. Therefore, 0.45ns is the
Tcin this case. In addition, note that the transition time from the separatrix to the other
equilibrium is only 0.03ns, which is only 1/15 fraction of the total transition time
(.45ns), but the traveled distance is relatively long within such a short period of time.
Consider a type of square pulse noise that has constant amplitude of 500 pA and
its duration is only last 0.43ns. The cell state will not flip because the duration is less
than 7c. From Fig. 3-11(b), the cell state is (0.7,0.582) at 0.43ns. Since the separatrix in
this example is a straight line V;=V> passing through the origin, after the noise is gone,

the cell state (0.7, 0.582) is in the bottom right region of attraction of the equilibrium
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point (Vaa,0). The cell state will go back to (Va4,0) gradually as shown in Fig. 8.3.

V1 "
(@) (b)
Fig. 8.2 (a) Phase portrait of SRAM when /Iy is 500 pA; (b) the timing diagram of
this cell.

@ (b)
Fig. 8.3 (a) Phase portrait and (b) time diagram for a square pulse noise of S00pA
amplitude and 0.43ns duration.

If double-sided current injection (Inz, In2) is considered, once the noise current
(In1, IN2) 1s at right hand side of combination of critical currents, the SRAM state will
reach the separatrix. The time for the state to reach the separatrix is the critical time. As
long as the injected noise magnitude keeps at right hand side of combination of critical
currents, state-flip will occur. Next section will discuss the analytical formula of critical

time (7¢) derivation.
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Fig. 8. 4 (a) The simulated phase portrait of a 65nm SRAM based on the S-H
model. It shows a cell state crosses separatrix (45° line through origin) and flips to the
other side; (b) the timing diagram of the cell state.

8.2.2. The Analytical Solution For Critical Time

The SRAM cell will flip if the cell state crosses the stability boundary. During
the operation of the SRAM cell, if a stable state is perturbed across that boundary, a state
flipping will be resulted. For a perfectly symmetric SRAM cell, the stability boundary
can be simply defined by passing a 45 degree line through the origin on the phase
portrait of the SRAM cell. The stability boundary of the SRAM is also called separatrix
because the stability boundary separates two stability regions [59] [71] [87-89]. If the
injected noise current is higher than the critical current, the state of the cell will drive
from the initial stable and go across the separatrix eventually. The time it takes from the
initial state to the separatrix is called critical time (Tc). After the trajectory across the
separatrix, the cell state will fall into the stability region of the other stable equilibrium

and result in a state flip.
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An example is demonstrated in Fig. 8.4. Since it is symmetrical designed; the
separatrix is the 45 degree line passing through the origin. In Fig. 8.4 (a), the cell state
initially starts at (0.9, 0) in Region 3 (R3) at time 0. It enters Region 7 (R7) at time #; and
enters Region 7A (R7A) at time #2.The state will eventually reach the separatrix in
Region 7B (R7B) at time ts. Once the state passes the separatrix, the state can never be
recovered even if the noise injections disappear. The total time taken for a state to reach
the separatrix is the critical time, which is #4 in this case.

Figure 8.4 (b) shows the timing diagram for that cell state. The state transits
through many regions to flip the state. The rigorous way to find the critical time is to
separately find the time spent in each region then sum each together. However, this
results into symbolic expressions which is very cumbersome. The way we simplify the
analytical formula is based on the observation that vector field strength around
bifurcation point is weak so that the trajectory takes up more time in the region of
bifurcation. In this regard, it is efficient to focus on the time spent in the region of
bifurcation to arrive at a simple but physically meaningful expression for the critical
time. In other words, we find the expression of the time spend in the region of
bifurcation to be the critical time analytical formula. As demonstrated in Fig. 8.4(b), the
trajectory spend most of the time in region of bifurcation, region 7 (R7), than any other
regions. The analytical formula for 7¢ is to solve the nonlinear ODE corresponding to
the transistor combination in Region 7 (R7), which mentioned in (5.14).

However, solving the cross-coupled nonlinear ODE in (5.14) is cumbersome.

Mathematically, there is no good technique to directly solve this type of ODE. The way
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we by-pass the nonlinearity is to linearize the ODE at the bifurcation point. In this
regard, we preserve the characteristics of the cell state trajectory around bifurcation point
and simplify the complexity of the equation at the same time. By doing that, the system

can be modeled using two cross-coupled linear ODE as shown below:

{Cl'Vl(t)zgll(Vl_I/IB)+g12(V2_V2B)_(1N1(I)_ﬁ(I/IBﬂVZB)) (8.3)
Cz'Vz(t):gzl(Vl_Vm)"'gzz(Vz_VzB)+(1N2(t)+f2(VlB’V23))
or
{m =a V() +by Va0 + 1,(0) 8.4
Vy()=a, V() +b, - V,() +1,(?)
where
[gu g12:|:|:ajfl/alfl 6]1/61/2} ) (8.5)
&n 8x» o 10V, of, 10V, |ri-ns
|:a1 bl:|:|:C1 0} .|:g11 g12:|, (8. 6)
a, b, 0 G 821 8x
1,(1) _ _(al'V13+b1'sz;)_([nl(t)_la)/cl (8.7)
1,(0) —(ay Vi +b, Vo) +U,,(t)-1,)/C,
and
Iy =fi(Vig:Vas) (8. 8)

Icz :_fz(VlgaVzB).

The coefficients (gi1, gi2 ...etc) are functions of system parameters. Since the Jacobian
matrix (8.5) is singular at bifurcation point, the eigenvalues will be 0 and A, and A is a

negative value. The singular Jacobian matrix means zero determine, namely:
a,b, —a,b =0. (8.9)

Solving (8.4) yields the following general solution using Laplace Transform:
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b, a ,, b b 4,
V1<r>=(;+ie* j-Vl(O){—iﬁe j-Vz(O)

b Ay b b A
a3,

v, (t) =(—%+?e“j-lfl(0)+(i‘+%e’“j.V2(0)

a, a, ,, a b, ,,
-2 +72eﬂ j*ll(t)+(/{+;e‘ J*I2(t)

where
A=a,+b,. (8. 11)
The (V1(0),V2(0)) is the initial condition and (*) is the convolution integral. In our case,

we treat the injected current constant. Thus, the expression becomes:

Vl(t):AP1+BP1’eA;+CP1't (8.12)
Vi(t)=Ap, + Bpy €™ +Cpy -1
where
16Uy =1ey) by =10) n(-C,
CPlz_ﬁ[ éz o4 C, : jo BP1=T/)9AP1=VI(O)_BP1' (8.13)
_ - V,(0)—C
C,, :l[al(l,\/z Icz)+az(1m ICl)} B,, = ,(0)-C, , Ay, =V,(0)=B,,> (8.14)
p) c, C, p)

(V,(0),7,(0)) is acquired by evaluating (25) at =0. The trajectory in (33) will cross the
separatrix at
N(Te)=v,(I¢) (8.15)
since the separatrix is a 45° line through the origin.
We assume the exponential terms in (8.12) become negligible by the time the
state trajectory reaches the separatrix due to the exponential decay, the formula for the

critical time Tc is:
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APl — AP2

T. = )
‘ sz_cm

(8. 16)

And, it leads to:

201 -1,0) + 0 -7,0)-(C,, - C,)
¢ ic, -c,,) '

(8. 17)

We eliminate (¥,(0)-V,(0)) and (Cpri-Cpz) on the numerator because together they are

close to cancel each other and become insignificant. That simplifies the equation to:

_ (C, g, +C -g5) ((0)-7,(0) _ (8. 18)

< (gn +g12)'(1N2 _Icz)+(g21 +gzz)'([Nl _1c1)

Equation (8.18) is the master equation for critical time for a given (Ivs, In2). The set of
(Vis,Va2s,Ic1,Ic2) should be selected at (Vig5"M, VapSVM| [c/SMM [c2SNM), where (IcSVM,
1c2’™) is the closest IC combination to (Ivi, In2) as discussed in (7.29).

Let us demonstrate a special case. Consider an injected noise combination (0, /n2),
which is a point on the right hand side of IC combination line as shown in Fig. 7.8. The
critical currents (Ic/S"M, Ic2) marked in Fig. 7.8, which is the closest critical currents
to the noise combination (0, /x2) and its formula is given in (7.29), will be the (Ici, Ic2)
used in (8.18). For that, the critical time formula is derived as follows after evaluated

(8.18) at the initial condition (V1(0)=Vas, V2(0)=0):

. (C, 2, +C g2) Va (8. 19)

“ (gll +g12)'(11v2 _Ig];,M)"'(gzl +g22)'(0_lg]1VM)

where
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g = 2K, '(V1§W _Vzb;BNM V)

gn ="2K -(Vy - KENM )—2K, (VzieNM Vi)
gy =—2K, 'VziévM

gn =—2K, '(VlfeNM - stBNM V)

(8. 20)

The coefficients (g1, g1 ...etc) are acquired from evaluating (8.5) in the region of
bifurcation.

Furthermore, if take the exponential terms in (8.12) into account, the critical time
equation can be simpler if substitute the exponential term (e*) by its Taylor expansion

1+At. The formula becomes nicely as follows:

= (API_AP2)+(BPI_BP2) :V](O)_Vz(o): Vl(O)_Vz(O) , (821)
‘ (CPz_CP1)+/1'(BP2_BP1) V.'](O)—VZ(O) 1N2_[C2+IN1_IC1
Cz Cl
and equivalently
T.-c. Vaa (8.22)

(1 -G+ 187
Equation (8.22) is a good approximation if the injected current magnitude (/n2) is more
than five times of its critical current (/c2). If In2 goes beyond eight times of Ic2, the
formula can be shown as Tc=CVaa/In2, which is the same formula shown in (Zhang,

2006) on p.320 [51].

Below are the summarized steps to solve critical time (T¢) for a given (Ini, In2):

1. Have the line of IC combination known. The given (/n1, In2) has to be on the right
hand side of the line to have critical time. Otherwise, no critical time can be
observed.

2. Find the closest IC combination (Ic/™, Ic25¥™) point on the line that is closest to
(In1,In2), and acquire the corresponding bifurcation point (Vi35VM, V2g5MM).
Formulate the linearized ODE at the bifurcation point.

Solve the general solution and particular solution for the linearized ODE.
5. Find the critical time, 7c, by solving Vi(Tc)=V>(Tc) for symmetrical designs.

W
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In summary, the simplification was made to the dynamic system formulation at the
bifurcation point (linearization) to obtain two linear ODEs, from which an analytic
solution was found for the critical time (the time from initial state to the stability

boundary).
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CHAPTER IX

SUMMARY

9.1.  Summary and Contributions

Overall, dynamics of memristor and SRAM are strongly emphasized. The
derived memristor properties reveals that the memristor state change requires some time;
it indicates that the memristor-based memory needs some “critical time” to flip the
logic. Similarly to the SRAM, the SRAM write operation not only needs the injected
current over a “critical current” but also need to maintain for some “critical time”. In
short, simulation shows that both memristor-based memory and SRAM show the timely
manner for read/write operation. Furthermore, the developed analytical formulae are
able to reveal the dynamic aspect on memory read/write operations which address the

key concern for modern memory technology.

9.1.1. Memristor-based Memory

In this work, we systematically derive a comprehensive set of properties and
analytical solutions for characterizing the fundamental electrical properties of memristor
devices. Our compact closed-form expressions provide valuable design insights and
allow an in-depth understanding of key design implications of memristor-based
memories. Using our derived properties, we investigate the design of read/write circuits
and analyze data integrity and noise-tolerance issues. In addition, we apply our valuable

design insights from the fundamental electrical properties derived from the ideal linear
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drift memristor model to design memristor-based memories that consist of more realistic
nonlinear characteristics. Based on the provided memristor model from HP, the “critical
current” for memristor state switching is not clear by the given simple linear drift
formula. As we can see from the more completed memristor model, if the injected
current I is less than the on or off magnitude (ion or ioff), the value out of hyperbolic sine
would be very small, thus the positive or negative drifting velocity would also be small.
Therefore, the on and off currents work as a critical current for the memristor state to
move, where the linear drift model is too simple that does not indicate such on or off
current phenomenon. However, we demonstrate that linear drift model properties can be
effectively used to resolve the boundary trapping issues faced by realistic nonlinear

memristor models.

9.1.2. Static Random Access Memory
This dissertation has two main contributions on SRAM:
1. Newly established the concept of Static Noise Margin in current representation
and further provided analytical formula for it.
2. Explored an analytical approach to the evaluation of dynamic stability analysis
for SRAMs.
The concepts of critical current and critical time, based on theoretically rigorous
stability analysis of the dynamic behaviors of SRAM cells, provide physical
characterizations of SRAM stability. In summary, the dependencies of critical time and

critical current on several key design and technology parameters are evaluated. We also
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examine the effect of temperature and process variation effect to Ic and Tc. Furthermore,
we studied the Ic and Tc dependencies on the system parameters shown in the equations
in Appendix. The simplification is done by keeping the targeted parameter as a variable
while plugging nominal values of the other parameters into the equation. This provides
us an immediate understanding of the parametric dependency of the targeted parameter.
A short summary and key observation on sensitivity of system parameters with_respect

to global variation are as follows:

1. Both Ic and Tc have very high dependency on Vdd. They grow approximately

quadratically with Vdd.

2. Both Ic and Tc also have high dependency on Kn. Ic tends to increase linearly with

Kn, but Tc increases more rapidly with Kn.
3. Both Ic and Tc have low dependency on the rest of parameters.

4. Both Ic and Tc increase as Kn and Kp increase but decrease as Vi and Vinp

Increase.

5. lc does not depend on C, but Tc is highly depended on the capacitance at stored

nodes.

The critical time is approximately proportional to 1/(In-Ic). Clearly, a current injection
must be greater than Ic in order to flip the state. Intuitively, a larger injection would
make the cell to flip its state faster and the time to flip the state is inversely proportional
to the difference between the amplitude of the current noise and Ic.

Furthermore, we rank the sensitivity of the system parameters (Vdd, Vinn/Vinp and

Kn/Kp) and summarized in Table 9.1 for the single-sided current injection case. Tc and Ic
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both depend on the same sets of device parameters such as transistor threshold voltages,

which create correlation between the two. We combine the collected data from previous

sections.
Table 9.1. Summary on the Sensitivity of the System Parameters
Vad Vihn Vihp KN Kp
Ic Very Strong Weak Very Weak Strong Weak
Tc Very Strong Weak Very Weak Strong Weak

Moreover, the analytic requires less computational power. Compare with the
transistor-level simulation, the derived analytic provides a speedup of 6 order of
magnitude. We use a transistor-level circuit simulator, in this case, Cadence Spectre to
find both Ic and Tc as follows: Ic is found by incrementing the injected current until an
SRAM state flip is resulted; Tc is acquired by doing a transient simulation. On average,
it takes Cadence Spectre simulator 0.777 seconds to compute the critical current with a
nano-amp precision. In addition, the average runtime for the critical time is 48
milliseconds. In comparison, for our C-based analytical models, the average runtime for
Ic is 0.25 microseconds and 0.02 microseconds for Tc. As a result, the overall runtime
speedup of our models over transistor-level circuit simulation is about 6 orders of
magnitude. Lastly, the derived analytical models are also able to provide useful design
insights and aid the designers to perform SRAM design optimization while considering

the key dynamic stability property.
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9.2.  Future Works
9.2.1. Future Works on Memristor

Neuromorphic circuits get many attentions after the memristor device came out.
Recently, there are two types of neuromorphic circuits: the learning circuits and neural
networks [90]. More specifically, learning circuits are broadly the circuits that can
demonstrate self-adaptation or smart operation, and neural network circuits are built
based on biological structure and meant to mimic the learning functionalities in
biological aspect. Neuromophic circuit is a very large area of research, in part because a
large part of the analog science detail has to do with advances in cognitive psychology,
artificial intelligence modeling, machine learning and recent neurology advances. In fact,
scientists and engineers already started the work on neural field in the past decade. The
earliest work traces back to 1960, which is the ADALINE neural network [91]. The
research halted due to difficulties on implement the large size of complexity circuitry on
chip. Due the advance of nanotechnology in the 20" century, such task becomes feasible
to do. Moreover, scientist has shown that the memristor device follows the behavior of
synapse [92]. Thus, the memristor have made the possibility to implement neural
network on chip. In short, many scientists and researchers are exploring innovative
approaches that enable revolutionary advances in devices for memristor-based learning

circuitry and neural-synaptic mimicking.
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9.2.2. Future Works on SRAM

Since the nonvolatile device has disadvantage on the switching speed, the
nonvolatile device can combine with SRAM and benefit by the fast switching speed that
SRAM has. And, SRAM can go off power in standby mode to save power consumption
by storing the logic to nonvolatile memories. In fact, there already have some research
works regards to such a hybrid device very recently. They called the nonvolatile SRAM
or nvSRAM as shown in Fig. 9.1 [93-94]. In Fig. 9.1(a), the SRAM is not isolated from
the nonvolatile device, so the nvSRAM 6T2R has some cell leakage during SRAM
operations. The nvSRAM 8T2R in Fig.9.1 (b) is the newly proposed topology which it
has extra transistors isolating the nonvolatile device and the SRAM to avoid cell
leakage. Regardless Fig. 9.1(a) or (b), the nvSRAM has thses basic modes: (1)
NORMAL; (2) STORE; (3) RESTORE. During NORMAL mode, SRAM is doing the
read/write operation or what it supposed to do. The STORE operation is writing the
stored logic into nonvolatile memory, and RESTORE is the other way around.

As it can be seen, as the SRAM communicates with the nonvolatile device such
as memristor, there can be a lot of dynamics going on. The read/write stability issues
have not been fully discovered yet at this stage. This material in this work is then able to
provide much dynamic detail, and the developed SRAM stability metric would be a

helpful tool to provide needed insights for a hybrid device like nvSRAM.
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APPENDIX A

THE RELATION OF CRITICAL CURRENTS AND CRITICAL VOLTAGE

The traditional static noise margin uses the concept of critical voltage to describe
the SRAM stability, which is somewhat correlated to the critical currents. In order
words, for two given set of system parameters, if the traditional SNM critical voltage for
a particular set is higher than the other, the critical current for that set would also be
higher than the other one.

From the model equation (5.17) in Chapter V, we display here in (A.1) as shown

below:

{Cl'Vlzfl(VlaVz"‘VNl)"'lNl (A1)

Cz'Vz =LV =V Vo) + 1, ’

Mo | (O— Vey

s OE

)
-/
M; Vex
v
(a) (b)
Fig. A.1 The circuit setup for (a) the critical voltage; (b) the critical current.

it can be seen that the Va; and In; appear in dVi/dt equation, and V2 and In2 appear in
dV2/dt equation. We will show that Va: is highly correlated to In; and Va2 is highly

correlated to In2. The idea is that, if somehow we can Taylor expand Va; and Va2 out of
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function f; and /2, then the Iy would be the sum of higher order terms of V. Therefore,
the higher Vs gives higher Ini.
Figure A.1 shows the circuit setup for critical voltage and critical current. The

dynamic equations for critical voltage is as follows:

{C«V} = /15 Viy +Vex) =0 a2

C, 'Vz :fz(VuVa —ch,V;;):O
where (Vi8", V28") is the bifurcation point for a chosen critical voltage (Vvi=Vcx,

Vn2=Vcy) that makes the dynamic equations dVi/dt and dV>/dt equal to zero. Similarly,

the dynamic equations for critical current is the following:

{C1'V1:f1(V1119:V213)_1c1/:0 (A3)

Co Vo = fo(VigsVip) + Iy =0
where (V18!, V28" is the bifurcation point for a chosen critical current (Ivi=Icx, In2=Icy)
that makes the dynamic equations dVi/dt and dV:/dt equal to zero. Notice that the
bifurcation points, (Vis", V28") and (Vis!, V25'), are not the same. In fact, they are
different in most of cases.

The next procedure would be Taylor expand Vex and Vey out of f7 and f2 in (A.2)

and then match with (A.3). Equation (A.2) can be rewritten to:

{ﬁ(m; +AV,, Viy +AV,) =0 "o

L + AV Vi + AV)) =0

where those newly introduced variables are:
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AV =V =V,
AV, = Vziz - Vzls N
. S
AV, = AV, ~V,, (A-3)
AV, =AV, +V,
The Taylor expansion on (A.4) would be:
0
fl(VlB Vs )+6f1 AV + ) AV, +HOT.=0
VIB aV VIB
e & (A.6)
L0 Vo) + == 7, AV, + 9, AV, +HOT.=0
aVl VIBI 2 1/3
VZB VzB

After matching (A.3) and (A.6), it is evident to see that /cx and Icy are sum of all the

higher order terms. The Taylor expansion to the 2" order for /cx and Icy would be:

chzléé; ]2nd
(Ils‘t +Iél;d

(A.7)

where 1t and 2™ denote the expansion to the 1t and 2™ order, and their expressions are :

and
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According to the definition of traditional static noise margin, it treats
Vex=Ver=Ve, and Ve would be the length of the square fits into the eye of voltage
transfer curves. On the other hand, we set Icx=Icy=Ic accordingly. The bifurcation

points (V18", V28") and (Vi8!, V25') can be acquired by solving the following expressions:

f/(VlgsVle’IC):fl(VlgszlB)_[C =0
g Vg Vi d) = (Vg Vo) + 1o =0

(A.10)
WV Vi) =| 28 T %]
ov,ov, oV, oV, ),
VZIB
and
fV(KZaVzl;aVc):ﬁ(K;aVZIB+Vc):O
& Vg VagVe) = oV =Ve,Vyy) =0
(A.11)
hV(K;sVzgaVc): o, %, - 9, %, =
ov, ov, oV, oV, )w,
VZIB

The procedure to solve (A.10) and (A.11) is similar to the procedure discussed in
Chapter VII. They are three equations solving for three unknowns. The analytical
formula solution is not been developed due to the difficulty of solving 4™ order
polynomial. Once it is solved, bifurcation points (Viz", V25") and (Vis', V25") will only be
in terms of system parameters. Then, Vc to Ic conversion can be done using only

equations with system parameters.
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Table A.1. The Critical Voltage and Critical Time on Five Random Design Choices

Using Numerical Method on L-1 Model

Test Ve Ic
Vi V" Vig' |1£7:4 AV AV>  AVx  AVy

Data V) (ud)
1 | 1.5046 0.0607 1.1762 0.2903]0.559]52.4]0.328 -0.229 -0.231 0.3298
2 2.1206 0.1768 1.7106 0.4835(0.705(64.1(0.409 -0.306 -0.295 0.3984
3 0.9040 0.0744 0.7374 0.1978(0.287 (20.7]10.166 -0.12 -0.121 0.1639
4 1.2443 0.0762 1.0272 0.2768(0.421(26.7(0.216 -0.200 -0.204 0.2210
5 1.0219 0.0902 0.8454 0.2471(0.334(25.6]0.175 -0.156 -0.158 0.1773

Table A.2. The Comparison on the Exact Values vs. 2% Order Expansion (Vcx=Vcy)

Test The Exact Iex (uA) Icy (UA)
data Iex = Icy To the To the Icx Error Icy Error
(uA) 2 order 2™ order
1 52.41 52.41 5.2.42 0.000011% 0.021938%
2 64.06 64.06 64.06 0.000004% 0.000004%
3 20.72 20.72 20.72 0.000002% 0.000017%
4 26.67 26.67 26.67 0.000002% 0.000002%
5 25.55 25.55 25.55 0.000003% 0.000005%

Table A.3. The Comparison on the Exact Values vs. 1% Order Expansion (Vcx=Vcy)

Test The Exact Icx (uA) Icy (UA)
Jata Iex =Icy To the To the Icx error Icy error
(uA) 1% order 2™ order
1 52.41 55.44 46.25 5.47% 11.76%
2 64.06 66.68 59.28 3.93% 7.46%
3 20.72 21.52 19.26 3.72% 7.07%
4 26.67 27.07 26.19 1.50% 1.79%
5 25.55 26.06 24.90 1.98% 2.53%
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Furthermore, we use Newton-Raphson on five random design choices shown in
Table A.1. The results in Table A.1 are the exact values. We then compare on the exact
values to the values from 2" order Taylor expansion formula in Table A.2 and 1°* order
expansion in Table A.3. As we can see, the 2" order expansion match the exact value
closely, and the 1% order expansion has error averagely around 6.1%.

In conclusion, the developed critical current concept aligns well with critical
voltage which is used in traditional static noise margin. As it can be seen in Table A.1,
that higher the V¢ would give higher /c. Therefore, the critical voltage and critical

current is correlated.
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