
 

DYNAMIC MODELING FOR DESIGN AND ANALYSIS OF MEMRISTIVE  

AND STATIC RANDOM ACCESS MEMORIES 

 

A Dissertation 

by 

YENPO HO  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Garng M. Huang 
Committee Members, Peng Li 
 Jose Silva-Martinez 
 Guergana Petrova 
Head of Department, Chanan Singh 

 

August 2014 

 

Major Subject: Electrical Engineering 

 

Copyright 2014 Yenpo Ho



 

ii 
 

 

ABSTRACT 

 

 Nowadays, the trend of modern memory technology is going towards the 

following directions: (1) look for new nonvolatile devices; (2) keep scaling down the 

existing volatile devices. Although nonvolatile devices enable to switch off its power 

supply to further suppress standby power, the down sides are the low switching speed 

and the complicated dynamic cell characteristics. On the other hand, researchers are 

looking to scale down SRAM since it is the most reliable and fast. However, the SRAM 

suffers read and write failure due to lack of good stability optimizing metric. To tackle 

the above mentioned problems, this work first introduces a promising nonvolatile device 

called Memristor, which is said to be possible to replace our memory devices now. By 

starting from basic memristor device equations, this work aims to develop a 

comprehensive set of properties and design equations for memristor based memory. The 

introduced schemes are specifically targeting key device properties relevant to memory 

operations. Using the discovered properties, a simple design of read/write circuits is 

investigated. In the second part of this work, SRAM stability analysis is focused. SRAM 

verification and stability analysis has become an essential task to investigate soft-errors. 

This work aims to extend the SNM to a new era. Based on the introduced Region-

Analysis in this work, SRAM stability can be explained using bifurcation theory, and 

closed form expression can be derived. The derived expression provides physical 

characterization of SRAM noise tolerance property; thus has potential to provide needed 

design insights. Overall, dynamics of memristor and SRAM are strongly emphasized. 
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The derived memristor properties reveals that the memristor state change requires some 

time; it indicates that the memristor-based memory needs some “critical time” to flip the 

logic. Similarly to the SRAM, the SRAM write operation not only needs the injected 

current over a “critical current” but also need to maintain for some “critical time”. In 

short, both memristor-based memory and SRAM show the timely manner for read/write 

operation. Furthermore, the developed analytical formulae are able to reveal the dynamic 

aspect on memory read/write operations which address the key concern for modern 

memory technology. 
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CHAPTER I 

INTRODUCTION 
 

1.1. Literature Review 

1.1.1. The Existing Works on Memristor Cell 

Very recently, a new device with pinched hysteresis was demonstrated [1-3], 

which was recognized as the first real-life realization of the so-called missing fourth 

circuit element, memristor. As a new nanometer device, memristor has drawn a 

significant interest from the research community [4-11]. Memristor was first 

theoretically predicted by L. Chua in 1971 [12]. The concept of memristor gained a 

broader scope in a series of works such as those of L. Chua and S. M. Kang [13-17]. In 

late 2008, S. Williams, et al. unveiled a two-terminal titanium dioxide nanoscale device 

that exhibited memristive characteristics, thus igniting renewed interest in memristors 

[18].  

Recent research has showcased a number of promising applications of memristor 

devices. It has been shown by S. Williams and coworkers that solid-state memristors can 

be used to realize crossbar latches, which could replace transistors in future computers, 

while taking up a much smaller area [19-22]. There exists a great interest in searching 

for the next generation of universal memories, which are able to ubiquitously replace 

traditional DRAM, SRAM. The nonvolatile nature of memristors makes them an 

attractive candidate for the next-generation memory technology. Memristor memories 

may have greater data density than hard drives with access times potentially similar to 
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SRAMs. It has been shown that memristor devices can be scaled down to 10nm or below 

and memristor memories can achieve an integration density of 100Gbits/cm2, a few 

times higher than today’s advanced flash memory technologies [23-24]. More broadly, 

research has been done aiming at employing memristors in programmable logics [25-

31], and analog circuit applications [32-38]. In the mean time, researchers have found 

that LC electronic networks with memristors can model adaptive behavior of unicellular 

organisms. Results have indicated that electronic circuits with memristors subjected to a 

train of periodic pulses behave like brain functions, which are able to learn and 

anticipate. Such a learning circuit may find its valuable applications in a variety of areas, 

e.g., neural networks and artificial intelligences [39-46]. 

 

1.1.2. Existing Works on Static Random Access Memory (SRAM)  

 SRAM provides indispensable on-chip data storage for an extremely wide variety 

of electronic applications including microprocessor, ASICs, FPGAs, and DSPs. In 

today’s chip designs, the silicon area occupied by SRAM-based caches dominates over 

other logic devices, which may constitute more than 70% of chip area. In the past 

decades, aggressive scaling of transistor feature size has been a primary force driving 

higher SRAM integration density [47] [48]. On the other hand, the supply voltage is 

scaled down to meet device reliability constraints and to reduce power consumption. 

However, the stability margin of SRAM has been significantly degraded by such 

aggressive scaling. As a result, nanometer SRAM designs are getting increasingly 

susceptible to various noise problems and there is a growing concern on read-ability and 
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write-ability. Increasing process variation also has a dramatic impact on the stability of 

highly scaled SRAM designs. 

The traditional static noise margin (SNM) analysis is widely used to characterize 

the robustness of an SRAM cell. It measure the largest differential voltage noise that can 

be tolerated at the two storage nodes [49] [50]. More specifically, the SNM is 

determined as the side of largest square that can be inscribed between the mirrored DC 

voltage transfer curves (VTCs) of the cross-coupled inverters. However, such a measure 

is intrinsically unable to characterize the dynamic process that leads to state flips, which 

is critical for understanding the complete stability picture.  

In 2006, the work done by Zhang [51] investigates the SRAM dynamics stability 

noise margin in linear gate model. Compare to this work, the SRAM dynamic noise 

margin is derived in Shichman Hodges model (Level-1), which is more complicated 

model and thus provide more design insights.  

 

1.2. Research Contribution in This Work 

1.2.1. Contribution on the Memristor-Based Memory 

In this work, by extending the preliminary work in [52], we systematically 

develop a rather complete set of properties and design equations for guiding the 

development of memristor based memories. We show important dynamical behaviors of 

memristor devices and how these characteristics will influence all aspects of analysis 

and design of memristor memories. Our analyses are much more general than what is 

presented in [52] and no longer assume a zero on-resistance value to simplify the derived 
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closed-form equations. We refine the derived equations in more details including, but 

not limited to, the above relaxed condition, and conclude them by useful properties. 

Utilizing these memristor properties as design guidance, we then investigate the design 

of memory read/write schemes and peripheral circuits. Important data integrity and 

parameter mismatch issues are discussed in depth. Finally, we use extensive simulations 

to verify the derived properties and demonstrate their usage in memory circuit design. 

 

1.2.2. Contribution on the Static Random Access Memory 

In this work, we extend the traditional static noise margin concept to a broader 

view.  Stability will be defined by examining both the magnitude and duration of the 

injected current noise required to flip the SRAM state. As such, our new stability margin 

concepts fundamentally capture the temporal aspects of the state flip and provide 

immediate design insights for enhancing dynamic stability. The concepts of critical 

current and critical time, based on theoretically rigorous stability analysis of the dynamic 

behaviors of SRAM cells, provide physical characterizations of SRAM stability. Lastly, 

we explore an analytical approach to the evaluation of dynamic stability analysis for 

SRAMs.  

 

1.3. Dissertation Organization 

In this dissertation, beginning from Chapter II, the fundamental theory of 

memristor and the basic concept will be introduced. Most of the research works in the 

memristor area use the models proposed by HP research group. The proposed HP 
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memristor models can be categorized in linear and nonlinear drift model. Some of the 

commonly seen memristor models will be covered.  

Chapter III introduces the dynamic behavior of memristor device will influence 

all aspect of design of memristor memories. The design flow has three basic steps: (1) 

Systematically develop a rather complete set of properties and design equations for 

guiding the development of memristor based memories, and show important dynamical 

behaviors of memristor devices and how these characteristics will influence all aspects 

of analysis and design of memristor memories. (2) Define logic one/zero region on a 

memristor cell. (3) Investigate the design of memory read/write schemes.  

Beginning with Chapter IV, we first start with the background on SRAM 

operations and stability issues. Next in Chapter V, modified nodal analysis will be 

discussed, and we introduce the SRAM circuit and the corresponding nonlinear 

differential equations based on Shichman-Hodges model.  

In Chapter VI, we discuss the bifurcation study to demonstrate the SRAM 

stability issues. We show that three equilibria are located in three different regions.  

Then we show the equilibria are two stable equilibria and a saddle (or meta-stable point). 

From there, we show that the saddle-node bifurcation will happen at a certain injected 

current magnitude called critical current or IC. From the phase portrait analysis, when 

injected current amplitude reaches IC, we observed that two equilibria collide and result 

in a saddle-node bifurcation. The collision location is called the bifurcation point. When 

this happens, the two colliding equilibria disappear, and only the other remaining stable 
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equilibrium point will survive.  The cell state will traverse to that equilibrium point and 

causes state flip.  

Next, in Chapter VII, we introduce region analysis to derive the stability margin 

analytically for an SRAM. We partition the state space into regions. The equilibrium 

point locations in terms of a noise injection and system parameters are derived. 

Furthermore, focus on the region of bifurcation; we derive the bifurcation point and IC 

analytically. However, the outcome of analytical solution on bifurcation point and IC is 

very complicate. For that, we observe on the numerical property and propose a new 

method to derive analytical solution for IC and that can greatly simplifies the equation 

but keep the accuracy. 

In Chapter VIII, we further derive the analytical formula for critical time (TC). 

We show that a perturbed transient state trajectory will pass the stability boundary 

(called separatrix) resulting the state flip when the injected current has higher magnitude 

than IC. For a perfectly symmetric SRAM, the stability boundary is a 45 degree line that 

passes through the origin. However, the injected current greater than IC does not 

necessarily implies that the cell will flip its state [51] [53].  The current must be greater 

than Ic for a certain period of time (defined as critical time or TC) to cross the separatrix. 

Once the state of the cell crosses the separatrix, the state will flip even the noise 

disappears. However, it is still not clear how the SRAM parameters physically 

influenced the phenomena observed from phase portrait analysis. Accordingly, we resort 

to analytical form solutions to find the relations. Lastly, in Chapter IX, we conclude the 

IC and TC dependency on technology parameters for design insights. 
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CHAPTER II 

REALIZATION OF MEMRISTOR DEVICE 
 

2.1 The Memristor Theory Background 

The fundamental basic circuit elements are resistor, capacitor, and inductor. 

Resistor relates voltage and current (dv=R.di), capacitor relates charge and voltage 

(dq=C.dv), and inductor relates flux and current (dφ=L.di), respectively. The relation 

between flux and charge is evidently missing. As shown in Fig. 2.1, Chua argued that 

there is a missing link between flux and charge, which he called memristance M. [12] 

 

 
 

By definition, a linear (constant) memristor acts like resistance. However, if φ-q 

relation is non-linear, the device behavior is more complex. The memristor 

characteristics, also referred to as memristance, can be described as: 

 dqdM  . (2. 1) 

Similarly, the inverse of the q-φ relation is called memductance:    

 ddqW  . (2. 2) 

 
Fig. 2. 1 Four fundamental circuit elements: Resistance (dv=R.di), capacitance 

(dq=C.dv), inductance (dφ=L.di), and memristance (dφ=M.dq) which is the missing 
link that Chua argued. 
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From (2.1) and (2.2), it can be also seen: 

 iMv  , (2. 3) 

 vWi  . (2. 4) 

The memristance M in (2.3) is equal to voltage over current which is also known as the 

resistance in the linear case. Therefore, memristance has the same unit (Ohm) as 

resistance. Similarly in (2.4), the memductance has the unit of conductance. The inverse 

of memductance would be memristance, so 

 WM /1 . (2. 5) 

 

2.2 The Memristor Device Models 

Hewlett Packard demonstrated the first fabricated physical structure of a 

memristor device in 2008 also known as Titanium dioxide memristor. The HP 

researcher, R.S. Williams, claims that the device is an electrically switchable 

semiconductor thin film sandwiched between two metal contacts [18]. The 

semiconductor thin film has a certain length D, and consists of a doped and un-doped 

region as shown in Fig. 2.2(a). The internal state variable w represents the length of the 

doped region. The doped region has low resistance while that of the un-doped region is 

much higher. As an external voltage bias v(t) is applied across the device, the length w 

will change due to charged dopant drifting.  Hence, the device’s total resistivity changes. 

Fig. 2.2(b) shows its equivalent circuit model, and Fig. 2.2(c) shows the memristor 

symbol used in a circuit schematic. If the doped region extends to the full length D, that 

is w/D=1.0, the total resistivity of the device would be dominated by the low resistivity 
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region, with a value measured to be Ron. Likewise, when the un-doped region extends to 

the full length D, i.e. w/D=0, the total resistance is denoted as Roff. Thus, the 

mathematical model for memristive device resistance can be described as [18]: 

  )1()( DwRDwRwR offon  , (2. 6) 

or it can be written as: 

   DwRRRwR onoffoff )( . (2. 7) 

Because of physical constraint 0≤w≤D, Property 1 is concluded. 

 

 

 

 
Fig. 2.2(c) shows the memristor symbol used in a circuit schematic. The 

orientation of the symbol follows the equivalent circuit in Fig. 2.2(b), where Ron is at the 

left and Roff is at the right. The polarity matters in memristor circuits. If a bias condition 

excites the memristance to increase, the reverse connection of memristor would decrease 

the memristance, which is also equivalent to reverse the polarity of the biasing source. 

Using this resistive viewpoint, we have  

Property 1: Ron corresponds to memristor state w=D. Roff corresponds to memristor 
state w=0. The device resistance is bounded between: 

offon RwRR  )(  

 
Fig. 2. 2 (a) Memristor device structure; (b) equivalent circuit model and (c) 

symbol for memristor. 
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 iwRv  )( . (2. 8) 

Referring to Fig. 2.1, equation (2.8) presents the relation of voltage and current. 

According to the recent research results, there are two types of memristor models: linear 

drift model, and nonlinear drift model.  

 

2.2.1 Linear Drift Model 

The linear dopant drift model assumes a uniform electric field across the device. 

The net electric field induced a current flow through the memristor device is found to be 

linearly proportional to the drift-diffusion velocity. Since the drift-diffusion velocity 

corresponds to the speed of doped region (dw/dt), the following equation established 

[18]:  

 iD
R

dt

dw
on

v    (2. 9) 

where µv is the average ion mobility. 

 

2.2.2 Nonlinear Drift Model 

According to the actual memristor device manufactured in HP’s lab, the small 

voltage can yield enormous electric field in nano-scale devices, which produce 

significant highly nonlinear ionic transport. These nonlinearities appear to slow down 

the drift velocity at the thin film edges, where the speed of the state transition around the 

boundary gradually decreases to zero. This nonlinear dopant-drifting phenomenon is so 

called the boundary effect [6] [54-56]. The nonlinear effect and its modeling are still not 
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fully understood and an ongoing research which has been pointed out by Kavehei [56].  

Nevertheless, one approach to model the boundary effect is by applying window function 

f(w) to the drift velocity equation. That is  

 )( DwfiDRdtdw onv   . (2. 10) 

A widely proposed window function introduced by [6] and [54] is the following: 

 Pxxf  2)12(1)(  (2. 11) 

where P is the control parameter that needs to be matched to the manufactured 

memristor data. The control parameter can only be positive integers.  

However, the theoretical models can go much deeper than just window functions. 

In late 2008, the research group at Hewlett-Packard further announces the memristive 

switch mechanism of a flux-controlled memristor can be described as follows [57]:  

 )1))(exp()sinh(  VVwI n   (2. 12) 

where w is memristor state, V is the applied voltage to memristor, I is the current through 

memristor, and all others are fitting parameters. When the memristor is around Ron, Yang 

et al. (2008) referred to as ON state, the following approximation valid [57]:  

 )sinh( VI   . (2. 13) 

A more detail descriptions on the dynamics of internal ionic transport involved quantum 

mechanics. Due to that reason, the suggested expression for the drift velocity becomes 

very non-linear at strong applied fields: [57] 

 ]||)(expexp[)sinh(
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w
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i
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











  (2. 14) 

and 
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
  (2. 15) 

where ion, ioff are the minimum on and off magnitude, wc, b and aoff are constants 

acquired by parameter fitting, and i is the applied current through memristor. Equation 

(2.14) is applicable when i<0, and (2.15) is applicable otherwise.  

Based on the provided memristor model from HP, the minimum current for 

memristor state switching is not clear by the given simple linear drift formula. As we can 

see from the more completed memristor model, if the injected current i is less than the 

on or off magnitude (ion or ioff), the value out of hyperbolic sine would be very small, 

thus the positive or negative drifting velocity would also be small. Therefore, the on and 

off currents work as a critical current for the memristor state to move, where the linear 

drift model does not indicate such on or off current phenomenon. However, the more 

completed model is more complicated than window function and difficult to work with. 

Nowadays scientists are still looking for other reasonable models.  
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CHAPTER III 

DYNAMIC BEHAVIOR OF MEMRISTOR DEVICE AND ITS PROPERTIES FOR 

MEMORY USE * 

 

In this Chapter, the characterization on the fundamental memristor device are 

heavily emphasized. From the basic memristor device model, systematically develop a 

rather complete set of properties and design equations for guiding the development of 

memristor based memories. Next, it’s assigning memristor area into logic regions. A 

single memristor cell is to partition to disjointed regions: Logic one and logic zero 

regions. A safety margin is in between the regions to account for possible noise injection. 

Finally, a brief demonstration on memristor-based memory is provided. The derived 

memristor properties will be utilized to illustrate the memristor-based memory 

read/write operations. The derived designed formulae shown in (3.34) and (3.35) 

indicate the amount of minimum required time to switch the logic state. The write signal 

must be sustained longer than the minimum time for a successful write. Similar to 

devices like SRAM, the SRAM write operation also requires a minimum write time 

called “critical time”. For the SRAM state to flip, the write signal must sustain long than 

the critical time for a successful write.  

 

 
_______________________ 
*©[2012] IEEE. Reprinted, with permission, from “Dynamical Properties and Design 
Analysis for Nonvolatile Memristor Memories,” by Y. Ho, G. M. Huang, P. Li., IEEE 
Trans. Circuits and Systems-I: Regular Paper, vol. 58, no. 4, April 2011. 
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Moreover, the proposed read/write scheme used the derived properties as 

guidance. The design analysis is specifically targeting key electrical memristor device 

characteristics relevant to, but not limited to, memory operations. 

 

3.1. Characterize The Fundamental Memristor Device 

The purpose of characterize the memristor device is to transform the basic 

memristor device models and derive a set of closed-form design equations. The results 

succinctly capture the memristor behaviors in a way relevant to memory operations and 

provide clear design insights by re-derive the model equations.  

 

3.1.1. Characteristics in Linear Drift Model 

Memristors can be charge-controlled or flux-controlled depending on the biasing 

condition [12]. More specifically, when a memristor is connected to a current source, the 

current source will inject charges through the memristor cell. It is convenient to treat 

such a memristor as charge controlled because the state of the memristor changes 

according to the amount of charge injection, and the state causes memristance to change. 

On the other hand, when a voltage source is added across a memristor, it is natural to 

consider the memristor as flux controlled. In this case, the state of the memristor changes 

according to the amount of flux injection, and the state causes memristance to change. 
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3.1.1.1. Charge-Controlled Memristance 

For a charge-controlled memristance, the memristor state controlled by the 

charge through the cell, and the state of memristor determines memristance. Figure 3.1 

shows a memristor biased using a current source Iin, and Iin can be any waveform. 

Integrating (2.9) yields the instantaneous w(t):  

 qD
Rwtw on

v  0)(  (3. 1) 

where w0 is the initial state for state variable w. The state of memristor moves from w0 

according to the charge going to the memristor cell. If there is a positive charge 

injection, the state will move to a higher position, w>w0. If negative charge is injected, 

memristor state will move to lower position, w<w0. However, memristor state has a 

physical constraint: the state is bounded in between zero and total length D, namely 

0  w  D. Due to the physical constraint, we show that the internal memristor state 

corresponds to the following effective q range:  

 )/()()/( 00 onvonv RDwDqRDw   . (3. 2) 

Property 2 describes the actual behavior of memristor state. 

 

 

 

Fig. 3. 1 A memristor biased using current source Iin. 
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Mathematically, when actual charge injection is more than the upper limit of 

effective charge injection, the state will not go further after it reaches w=D. Likewise, 

the lowest state is at zero even if charge injection is lower than the bottom limit of 

effective charge injection.  

 

As (3.3) indicates, the memristance works as a charge driven resistance. Equation 

(3.3) together with (2.7), implies: 

 )()( qMwR  . (3. 4) 

The resistance becomes charge dependent; hence, the charge-controlled memristace is 

concluded in Property 3.  

 

Property 2: The state (length of the doped region) is charge-controlled and can be 
described as follows: 
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20  , (3. 3) 

)/()( 0 onvUP RDwDQ    and  )/(0 onvLOW RDwQ   

where w0 is the initial state, D is the memristor length, µv is the average ion mobility 
and q is injected charges. QUP is the upper limit of effective charge injection, and 
QLOW is the lower limit of effective charge injection. 

Property 3: Charge-controlled memristance can be described as follows: 

 





  q

D

R

D

w
RRRqM onv

onoffoff 2
0)()(


. (3. 5) 

The equation is valid in the range: QLOW ≤q≤QUP. 



 

17 
 

 

As a special case where w0=0 and Ron is small enough such that (Roff –Ron)≈Roff, 

charge-controlled memristance can be simplified to:  

 





  )(1)(

2
tq

D

R
RqM onv

off


. (3. 6) 

Suppose a memristor Ma is biased using current sources Ia and a memristor Mb is biased 

using Ib, in which Ia and Ib have different waveform patterns. Source Ia is a sinusoidal 

waveform and Ib has a square-wave pattern. Based on (3.3) from Property 2, change of 

the state is controlled by the charges through the memristor. Since the charge is integral 

of the current with respect to time, the state change caused by Ia would be the same to 

that by Ib if both have the same integrated charges. This result is summarized in Property 

4. 

 

One unique property of the memristor has been observed is that the internal state 

w always comes back to the initial place if  the integral of current is zero over a time 

period. Figure 3.2 is a brief demonstration. The current source Iin has positive and 

negative pulse with equal amplitude and width. Starting from initial state w0 at t0, the 

state rises due to the positive pulse from t0 to t1, letting the state rest at w1. Based on 

(3.3), the value for w1 is: 

 )(/ 201 tI
D

RDwDw A
on

v    (3. 7) 

Property 4:  The state change of a memristor biased using a current source is only a 
function of the integrated bias charge regardless of the waveform shape of the bias 
current. 
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where (IA
.∆t) is the charge injection by the positive pulse. From t1 to t2, the negative 

pulse follows, which moves the state from w1 to w2, and w2 can be expressed in terms of 

w1 as: 

 )(/ 212 tI
D

RDwDw A
on

v    (3. 8) 

where (-IA
.∆t) is the charge injected by the negative pulse. The state w2 can be rewritten 

in terms of w0 by substituting (3.7) to (3.8), which gives w2=w0. This indicates that the 

final state w2 will be the same as initial state w0. This type of input waveforms in Fig. 

3.2(a) are referred to as zero net-charge injection inputs because the integral of the 

current over the corresponding time period is zero. Zero net-charge injection waveforms 

do not have to be square waveform; it can be sinusoidal or any other waveforms as long 

as the integral over a period is zero. Zero net-charge inputs can bring the state back to 

original level regardless the initial state. However, the state comes back only when the 

charge exerts onto memristor is within the effective q range described in (3.2). 

Otherwise, the state will not come back to the original level. This concludes Property 5. 

As will be demonstrated in the following sections, this property plays an essential role in 

design of memristor memories.  

 

Property 5: If charge injection exerted onto a memristor is a zero net-charge 
injection, memristor state will move back to its original position if the exerted charge 
is within the effective q range: QLOW ≤q≤QUP. 
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3.1.1.2. Voltage-Controlled Memristance 

 

 

 
For a flux-controlled memristance, the memristor state is controlled by the flux 

across the cell, and the state of the memristor drives memristance. When a voltage 

source biases a memristor, the memristor can be considered as flux-controlled. Fig. 3.3 

shows a memristor biased using a voltage source Vin, and Vin can be any waveform. 

Denote β the off/on ratio (Roff=Ron β). Equation (2.9) can be rewritten as: 

 v
wDdt

dw v 



)1(


. (3. 9) 

After certain manipulations using differential calculus, we get 

 
 (a) (b) 

Fig. 3. 2 A square-waveform current source Iin has amplitude IA and –IA with 
equal width ∆t (a) causes the memristor state (b) transition from w0 to w3. 

 

Fig. 3. 3 A memristor biased using voltage source Vin. 
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where 

 
2

00 2)1( wwDC   . (3. 11) 

Since the integration of the voltage is the flux, denoted by φ, directly relates w with flux 

φ in a nonlinear fashion. Solving the quadratic equation of (3.10) and picking up the 

physically meaningful root leads to:  
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where w(t=0)=w0 is the initial condition. Equation (3.12) shows an explicit dependency 

of the internal variable w(t) on the applied flux. Note that this formula clearly indicates 

that w(t) is a function of the flux applied; it is indirectly dependent on the voltage across 

the memristor. The input voltage waveform with the same flux leads to the same 

memristor state.  

Due to the finite length D of the thin film, the internal memristor state is 

constrained as: 0≤w(t)/D≤1, which corresponds to the following effective flux range:   

    22
02

2
0

2

2
)()()( on

off

D
off

off

D RwR
R

twRR
R







  . (3. 13) 

As a result, the more complete set of the state equations are shown in Property 6. 
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Because of the memristor physical constraint, 0≤w(t)/D≤1, memristor state w 

would not be more than D  when the applied flux across memristor is over the upper 

bound, and it would not be lower than zero when the applied flux is smaller than the 

lower bound. Thus, the derived equation (3.14) works only when the applied flux is 

within the effective range. In other words, for a particular memristor, if the applied flux 

is larger than the upper limit of the effective range, φ would be the upper limit of 

effective injection. Likewise, φ would be the lower limit of effective injection if the 

applied flux is lower than the effective range.  

As Property 6 indicates, the memristance works as a flux driven resistance, thus 

it implies: 

 )()( MwR  . (3. 15) 

By substituting (3.14) into (2.7), the resistance becomes charge dependent, hence, the 

Property 6: The state (length of the doped region) is flux-controlled and can be 
described as follows: 
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where β denoted the off/on ratio (Roff=Ron β), w0 is the initial state, D is the 
memristor length, µv is the average ion mobility and φ is injected flux. ΦUP is the 
upper limit of effective flux injection; ΦLOW is the lower limit of effective flux 
injection, and 
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charge-controlled memristace is concluded in Property 7. The corollary 7.1 also follows. 

 

 

When a single voltage source biases a memristor cell, it generates flux across the 

memristor and also pushes charges through the memristor. The state of the memristor 

supposes to move regards to the charge through memristor based on Property 2. The 

applied flux to the memristor cell would also change the state based on Property 6. Thus, 

the memristance change by charge or by flux should be identical, which implies: 

 )()( MqM  . (3. 17) 

Therefore, the q-φ relationship can be expressed as: 
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According to the definition of memductance, the memductance is derived to be: 
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Based on (2.5), the inverse of memductance gives memristance. Since 

memductance has flux as the control variable, the inverse of that gives flux-controlled 

memristance, which is the same as (3.16).  

Property 7: Flux-controlled memristance can be described as follows: 
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The equation is valid in the flux range: ΦLOW ≤φ≤ΦUP. 

Corollary 7.1: Ron ≤ M(φ )≤ Roff  as seen from (3.16) and Property 1. 
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Compared to the properties on charge-controlled case, similar properties can be 

developed. Suppose a memristor Ma is biased using voltage sources Va and a memristor 

Mb is biased using Vb, in which Va and Vb have different waveform patterns. The change 

to the memristor states would be the same regardless their waveform shapes as long as 

the flux injections (integration of their voltages) remain the same, as summarized in 

Property 8.  

 

In addition, a zero net-flux injection input, one whose integrated voltage over the 

time is zero, pushes state of the memristor back to the initial level provided that the flux 

exerted onto the memristor is within the effective φ range described in Property 7. 

Property 9 summarizes this phenomenon. 

 

 

Property 10 addresses how much time is needed to move memristor state from an 

initial w0 to any state w. Assume memristor state be initially at state w0. Based on 

Property 6, suppose the state of memristor is desired to move to an arbitrary state w, the 

Property 8:  The state change of a memristor biased using a voltage source is only a 
function of the integrated bias voltage regardless of the waveform shape of the bias 
voltage. 

Property 9: If the flux injection exerted onto a memristor is a zero net-flux injection, 
memristor state will move back to its original position if the exerted charge is within 
the effective φ range: ΦLOW ≤φ≤ΦUP. 

Property 10: The memristor state is initially at w0. Suppose the state of memristor is 
desired to move to a feasible state w by a square-wave voltage pulse that has 
amplitude VA and width Tw, the required width Tw is: 
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applied flux needed across the memristor to do this job is: 

     22
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 . (3. 21) 

Let the applied voltage be a square-wave pulse with amplitude VA and width Tw, the flux 

across the memristor is described as follows: 

 







 
wwA

wA
t

TtifTV

TtiftV
vt

0

)()(  . (3. 22) 

When time is in between zero and Tw, the voltage magnitude is VA and flux is 

accumulating in this time range. When time goes beyond Tw, the voltage magnitude is 

zero, so no more flux increment beyond time Tw. Hence, the total flux injection for a 

square-wave pulse is the amplitude times the width, which is VA
.Tw in this case. The total 

flux injection determines the change of memristor state. The required width needed to 

move memristor state from w0 to w is concluded in Property 10. As a special case, the 

required time needed to move memristor state from w=0 to w=D is the same as to move 

from w=D to w=0. This leads to Corollary 10.1. 

 

 

Corollary 10.1: Suppose a voltage square-wave pulse has amplitude VA and width Tw 
is applied to a memristor. The duration needed for memristor state to move from 
w=0 to w=D is the same as what is required to move the state from w=D to w=0, 
and the required duration Tw is: 
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Furthermore, consider a series connection of a constant resistor Rx and a 

memristor, biased using a voltage source, as shown in Fig. 3.4. Using the notion of 

voltage division, which will prove shortly, we show the voltage response at node x in 

Property 11. 

 

To prove Property 11, we derive the input-output relationship of the divider 

circuit by solving φx in terms of φin analytically. Note that φin is the input flux injection, 

φx is the flux accumulated at node x, and φin-φx is the flux across memristor M. Based on 

Kirchhoff’s Current Law, the KCL equation at node x implies that all the net charges 

into node x would be zero. Hence, the charges (integral of current) went through the 

memristor, qx, should be the same charges went through the resistor, so qx=φx/Rx. 

Accordingly, the flux across memristor is φin-φx, and replacing φ by φin-φx and q by qx in 

(3.18) yields the charges went through the memristor: 

 

Fig. 3. 4 A voltage divider consisting of a constant resistor Rx in series with a 
flux-controlled memristor M(φ). 

Property 11: In the voltage divider shown in Fig. 3.4, the node voltage response at 
node x is given by  
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  (3. 24) 

where Vx is the voltage at node x, φin is the input flux injection, φx is the flux 
accumulated at node x, and φin-φx is the flux across memristor M. 



 

26 
 

 

 
x

x

D

xin

offoffoff

D

RR

wR

R

wR

R












































2

00 )()(2  (3. 25) 

 in which φx has an unique solution as shown below: 
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Since voltage Vx is the total derivative of φx, Vx is derived to be: 
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Therefore, the memristance M(φin-φx) has become:  

 )()( offxXoffxin RRRM   (3. 28) 

where 

 
D

in

off

x
X R

wRR







20 )
)(

( . (3. 29) 

Finally, substituting (3.28) back to (3.24) shows that is exactly equal to (3.27). 

Therefore, that memristor series-connect resistor circuit in Fig. 3.4 indeed behaves as a 

voltage divider. 

 
 

Property 12 specifies the time needed to move the memristor state from an initial 

w0 to w for the divider circuit shown in Fig. 3.4. Note that the flux across memristor is 

Property 12: For the circuit in Fig. 3.4, assume the voltage source Vin is a square-
wave pulse with an amplitude VA and a width Tw. To move the state of the memristor 
from w0 to w, the required width Tw is: 
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φin-φx, and φx is already derived in (3.26). Substituting φ=φin-φx into (3.21) and yield the 

following analytical form: 

  22
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Equation (3.31) reveals the amount of flux injection needed to move the memristor state 

from w0 to w. For a supply voltage given in (3.22), as a special case, to move the state 

from w0=0 to w=D requires the same Tw as what is needed to move from state w=0 to 

w=D. This leads to Corollary 12.1. 

 

A memristor has an effective flux restriction due to finite length D. Property 6 

demonstrates the effective φ range for a single memristor case. Thus, the total input flux-

injection φin across memristor and a resistor should have a range as well. The upper 

bound of such effective range is the amount of flux that pulls initial state w0 to D. Thus, 

substituting w=0 and w=D into (3.31) gives the lower and upper bound. This result is 

summarized in Property 13.   

Corollary 12.1: For the circuit in Fig. 3.4, assume the voltage source Vin is a square-
wave pulse with an amplitude VA and a width Tw. The duration needed for the 
memristor state to move from w=0 to w=D is the same as what is needed to move the 
state from w=D to w=0, and the required duration Tw is: 

  22
2

)()( xonxoff

offA

D
w RRRR

RV
T 


 . (3. 32) 
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Finally, Property 14 shows that a zero net-flux input voltage pattern will insure 

that the state of the memristor comes back to the initial position for the circuit shown in 

Fig. 3.4. It provides important design guidance for ensuring read stability as discussed in 

detail in later sections. To prove Property 14, simply set φin equal to zero in (3.31) and 

solve for possible solutions for R(w); two possible numerical solutions exist:  one is 

w=w0, and the other solution is outside of the memristor physical range. Therefore, the 

state will be back to the initial level as w=w0. However, Property 14 is true only when 

the effective flux range condition as in Property 13 is satisfied. 

 

3.1.2. Characteristics in Nonlinear Drift Model 

In nonlinear drift model, the window function reflects the following fact: as the 

memristor state moves toward the boundary (w=0 or w=D), the dopant drift velocity 

drastically decreases. However, the state equation behaves close to the linear drift 

assumption in the region between, in which the properties in the linear drift model are 

Property 13: When a memristor is connected in series with a resistor as shown in 
Fig. 3.4, the effective range for φin across both memristor and resistor is: 

 UPinLOW    (3. 33) 

where φin is integral of Vin and, 

 22
2 ))(()( xoxoff

off

D
LOW RwRRR

R





  22

2
)())(( xonxo

off

D
UP RRRwR

R



  

Property 14: Consider the circuit in Fig. 3.4 and assume the voltage source Vin has a 
zero-net-flux injection pattern. The memristor state will move back to the initial level 
provided that the applied input flux is within the effective range in (3.33). 
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preserved. As shown in Fig. 3.5, the linear drift operation region is 0.1<w<0.9. 

Accordingly, it is desirable to operate in a smaller linear range, say, W0≤w≤W1, for faster 

switches and easier design. When approaching the boundaries, the constant average 

mobility used in the linear model, μv, is the upper bound of the nonlinear average 

mobility used in the nonlinear models. 

 

 

 
3.2. Define Logic Regions 

For simplicity, a memristor is at logic zero when 0<w/D<0.5 and logic one when 

0.5<w/D<1.0. The corresponding ideal output low and high levels are w/D=0 and 

w/D=1.0, respectively. In reality, to account for possible noise injections, a safety 

margin is specified for each logic output: 0≤w/D≤OL, (OL=WL/D < 0.5) for logic zero, 

and OH≤w/D≤1.0 (OH=WH/D > 0.5) for logic one. The region in between OL≤w/D≤OH is 

an unsafe region that should be avoided for read/write data integrity. Fig. 3.6(a) 

illustrates the situation where OL=0.4 and OH=0.6. 

 

Fig. 3. 5 The window function vs. w/D plot. 
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On the other hand, the logic zero/one region needs to be defined before the 

memristor cell used as memory. With the consideration of the boundary effect, the 

memristor state is to keep off the boundary. For that, let W0 be the lower limit and W1 the 

upper limit, the ideal linear memristor state will only transition between W0≤w≤W1. 

Moreover, W0 and W1 separate the nonlinear boundaries and the linear region, which are 

dependent on the fabrication. Fig. 3.6(b) shows an illustration of the defined output 

levels. 

 

3.3. Memory Cell Read/Write Operations 

 
3.3.1. Write Operation Scheme 

To write a logic value to a memristor cell, the proposed way is to have a structure 

in Fig. 3.7, where the memristor state will alter by the flux injection. Let the applied 

voltage be a square-wave pulse with amplitude VA and width Tw. 

  
(a)         (b) 

Fig. 3. 6 Memristor output levels. (a) The output low margin is at 0.4 and 
output high margin is at 0.6 in linear drift model; (b) output levels in nonlinear drift 

model. 
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Assume initially the state w0 is initial rest at ideal logic zero state, and it is 

desirable to write logic one to the cell. For the write process, input voltage Vin generates 

a square-wave pulse that has magnitude +VA and width Tw1 as shown in Fig. 3.7. Pulse 

width Tw1 must be longer than the minimum required time Tw1
Ow to insure the state rest 

inside the logic one region after write. The minimum required time Tw1
Ow is derived to 

be:  

  22
021 )( Hw

offA

DO
w WRR

RV
T W 


 , (3. 34) 

where Rw0 is the resistance at logic zero state. If the initial state w0 but somewhere inside 

the logic 0 region, a successful write can be guaranteed as long as Tw1≥Tw1
Ow. Similarly 

to write a logic zero, the input voltage Vin is a negative square-wave pulse (–VA) with 

duration Tw0. The minimum required time Tw0
OL would be:  

HO
wT 1

LO
wT 0

1wT 0wT
 

Fig. 3. 7  Write signals (bottom) and corresponding memristor states (top). 
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
 . (3. 35) 

where Rw1 is the resistance at ideal logic one state. The write zero process would be 

successful if pulse width Tw0 is at least greater than Tw0
OL. Thus, a write signal that has 

duration equal or larger than the derived minimum required time can insure a successful 

write. Similar to devices like SRAM, the SRAM write operation also requires a 

minimum write time called “critical time”. For the SRAM state to flip, the write signal 

must sustain long than the critical time for a successful write.  

Moreover, the memristor state w=0 and w=D are as ideal logic zero and one 

states in linear drift model. The equation from Corollary 10.1 specifies the required 

pulse widths to move a state from w0=0 to w=D or move from w0=D to w=0. Therefore, 

the write pulse is highly recommended to have the width in Corollary 10.1 so the state 

reaches the ideal logic zero/one state.  

Suppose the memristor behavior follows nonlinear drift model. The state W0 and 

W1 are the ideal logic zero and one state. The goal of write operation is to precisely 

move the state to W0 for logic zero and W1 for logic one. They are done by write zero 

and one process. The proposed write scheme is briefly shown in Fig. 3.8, and Fig. 3.9 

illustrates the corresponding pulses for write one/zero process. 

Suppose the cell is desirable to write to ideal logic one state, the write one 

process is performed. Because positive flux injection raises the state, as shown in Fig. 

3.9, the state increases due to constant magnitude pulse VA. The reference voltage VW
ref is 

set to: 
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  )( 1WRRRVV xxAref
W  . (3. 36) 

The reference voltage VW
ref would come to the same as Vx after some time. When that 

happens, the memristor state reached the desire state, and the comparator sends a 

feedback signal to switch off the write pulse.   

 

 

 

 
 

1wT 0wT

 

Fig. 3. 9 Write pulses (top) and corresponding memristor states (bottom). 

 

Fig. 3. 8 Write operation structure. 
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The write zero operation is very similar. A constant magnitude –VA is applied to 

the memristor if the memristor does not initially stores a logic zero. The reference 

voltage is set according to the equation below for write zero process: 

  )( 0WRRRVV xxAref
W  . (3. 37) 

In other words, the write process sets Vin to a constant VA or -VA magnitude pulse 

depends on whether writing logic one or zero, and VW
ref is set accordingly. 

 

3.3.2 Read Operation Scheme 

The proposed memristor based memory cell structure is in Fig. 3.10; such read 

scheme works for both linear and nonlinear models. A read is performed in two stages: 

convert stage and amplifier stage. In convert stage, the memristor state information 

converts into a voltage signal, Vx, which reflects the memristor state information. The 

sense amplifier stage determines the logic based on Vx and output full-swing digital 

scale. 

The designed read signal pattern has a negative pulse followed by a positive 

pulse with equal magnitude and duration as shown in Fig. 3.10(b). This read pattern will 

enforce zero net flux injection over one period to avoid altering memristor state after a 

read access. 

In order to extract the information of the internal state, a voltage excitation is 

applied, which will perturb the memristor state. Due to the memristor property 

mentioned above, zero net flux injection read pattern avoids altering the memristor state 

after read cycles. The negative pulse cycle decreases the state and the positive cycle 
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brings the state back up. The read pulse Tr reflects the amount of perturbation to the 

memristor state. Large perturbation would lead to data integrity issues. If ideal one state 

(at W1) is stored, the read pulse would be constrained by the WH margin so the state 

would not travel to unsafe region. If ideal zero state (at W0) is initially stored, the 

negative pulse drags the state to nonlinear region. The design on read process is 

motivated by the insights that nonlinear drift will slow down the drift process of the 

dopants, thus the designed read flux is a conservative bound based on the linear drift 

model that will not trap the dopants to the boundary. Accordingly, we constrain the read 

pulse based on our linear model, that is 
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which is taking the minimum flux injection to move the state from W1 to WH or W0 to 

WL.  

The resistor in series with the memristor is to convert the memristor state into a 

voltage signal since the current through the memristor carries the memristor state 

information, thus the voltage at node x (Vx) would reflect the memristor state 

information. Use the simplified resistance model, Vx can be expressed as: 

  )(wRRRVV xxinx  . (3. 39) 

Let the reference voltage set to: 

 2/)( Aref
R VtV   (3. 40) 

which VA is the pulse magnitude shown in Fig. 3.10(b). The negative pulse comes at the 

first cycle makes Vx negative, and Vo would be zero out of the comparator. At the second 
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cycle of read pattern, Vx is compared with VR
ref to determine the logic. If the state is 

below half of D, Vx would be below VR
ref, and logic zero is read. Similarly, Vx higher 

than VR
ref indicates the memristor state is in upper half of its length D, and logic one is 

read. For that, the corresponding Rx is the following: 

 2/)( offonx RRR  . (3. 41) 

This way, we can distinguish logic zero and logic one. 

 

 

 

Figure 3.11 and Fig. 3.12 illustrate the read operation. When the memristor state 

is initially at logic zero, the input negative pulse (first-half cycle) would decrease the 

memristor state and the coming positive pulse (second-half cycle) increases the state. 

Since the read signal has a zero net flux injection pattern, the state is back to the initial 

level after read. Because the state remains under half of D for all the time, the memristor 

cell has a high resistance value. Due to the high resistance, the magnitude of Vx remains 

lower than VR
ref throughout the read operation period, thus logic zero is successfully 

 

Fig. 3. 10 (a) Operation stages; (b) read pattern. 
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read. Similarly to the logic one case illustrated in Fig. 3.11, the state travels within the 

logic one region as designed due to zero net-flux injection input pattern. Since the 

memristance is low in logic-one region, the magnitude of Vx is high. The output Vo rise 

high at the second-half of read cycle since Vx is higher than the reference voltage during 

that period. Therefore, the detector should read the second-half cycle since it reflects the 

correct logic state stored in the memristor.  

 

3.4. Memristor Memory Array and Peripheral Circuitry 

Figure 3.13 illustrates the overall block diagram view of the memristor-based 

memory array with peripheral circuits in a way similar to SRAMs. The proposed 

topology is aiming to fit both linear and nonlinear models. Typical memory arrays have 

far more words than bits in each word, which would lead to a very skinny shape that is 

hard to fit into the chip floor plan. Therefore, the array is often folded into fewer rows of 

more columns. Figure 3.13 is an example of folding design. Each row of the memory 

contains 2k words, and the array is physically organized as 2n-k by 2m+k. The array has a 

row decoder, sense amplifiers and a column decoder. In addition, there is a pulse 

generator and selector units. The pulse generator generates read or write pattern signals. 

When a read operation is performed, read enable signal would go high and trigger the 

pulse generator to produce the read pattern signal. When the write operation is 

performed, the pulse generator will signal the write-one pulse or write-zero pulse 

depending on the incoming data stored in the input buffer (Data-in). On the other hand, 

the selector units switch the memristor cells to the ground for a write operation and Rx 
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for a read operation. R/W Enable (R/W) signal controls the selector to switch properly 

depending on whether it is a read or a write operation.   

For write operations, the pulse generator produces write pulses to the memory 

array according to the data value sitting in the data-in buffer. In the meantime, the 

selectors will select the corresponding column lines to ground. The other unselected 

lines would be floating, so there will be no stage change for these unselected cells.  

For read operations, the pulse generator is triggered to produce read pattern 

signals. Then the selectors switch each selected column to a resistor (Rx). The resulting 

voltage drop across Rx will be amplified by the sense amplifier to full voltage swing. 

Lastly, the data-out buffer will be triggered at the second half period of the read cycle to 

capture the readout data. 

The procedure to access the memristor based memory is quite similar to the 

standard SRAM we have today. Data will be read or written to cells by the proposed 

read or write scheme. It is suggested to perform a write back (refresh) signal for better 

data retention since pulse mismatch and noise issues are often existed. 
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Fig. 3. 11 Read operation (logic zero case).  

Image was adapted with permission [58]. 

 

Fig. 3. 12 Read operation (logic one case).  

Image was adapted with permission [58].  
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Fig. 3. 13 Proposed memristor-based memory array structure. 
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CHAPTER IV 

BACKGROUND ON THE STATIC RANDOM ACCESS MEMORY 
 

4.1. How Does SRAM Work? 
 

The Static Random Access Memory cell (SRAM) is often constructed by two 

cross-coupled inverters (labeled M1 M2 M3 and M4) and two access transistors, labeled 

M5 and M6 from Fig. 4-1 [59]. The access transistor acts as transmission gate allowing 

bidirectional current flow between the coupled inverters and bit-lines. The access 

transistors are turned on when the word line is selected. In particular, the SRAM can 

hold their stored data indefinitely as long as the power supply provided [60]. Figure 4-2 

is another way to show a 6-T SRAM cell graphically, where the main SRAM cell (M1 to 

M4) is replaced by two cross-coupled inverter symbols.  

 

 

Bitline Bitline

Wordline

 
Fig. 4.1 A 6-T SRAM cell. 
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4.1.1. The Read Operation  

The goal of read operation is to retrieve the information stored in V1 and V2 node 

onto the two bit-lines.  Assume the cell is initially stored a logic zero, meaning V1=VDD 

and V2=0. Before the read operation begins, the bit lines are pre-charged to VDD, namely 

Vbitline=Vbitline-bar=VDD. When the word line is high, M5 and M6 are turned-on. Because 

the bitline voltage (VBitline=VDD) and the stored node V2 form a potential difference, here 

will be current flow through M6. The current direction is from the pre-charged bitline 

through M6 and M4 then onto ground. Thus, lower the pre-charged voltage at bitline. On 

the other side of circuit, no current will flow through M5 since the pre-charged bitline-

bar voltage (Vbitline-bar) and stored node V1 are both VDD.  Fig. 4-3 summarized the read 

operation. 

 

 

BitlineBitline
 

Fig. 4.2 A simplified graphical representation of 6-T SRAM cell. 

(a) (b)

V2V1=”1” “0”=
M5 M6

=”1”Bt Bt”1”=

V1=”1” “0”=V2

IR2(t)Can be 
modeled as:

 
Fig. 4.3 (a) Noise injection during a read operation, and (b) its equivalent model.
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Careful choice of transistor driving strength is necessary for correct operation. 

While the bitline is discharging through M6, it would raise V2.  If V2 has accidently been 

raised high to certain threshold, it might flip the stored states. To avoid this, the pull 

down NMOS strength should design to be stronger than the access transistors, so it 

quickly drains out the rising voltage at V2.  This constraint will insure a stable read. In 

short, the read operation can be treated as a current source attached to the SRAM main 

cell as shown in Fig. 4-2(b). The read stability maintained if IR2 does not cause the state-

flip. 

4.1.2. The Write Operation 

The goal of write operation is to send the information on bit line into the cross-

coupled inverters’ stored nodes.  In another word, write operation is making node V1 and 

V2 to store the information on bitline and bitline-bar. Assume initially V1=VDD and 

V2=0, and the objective is to write V1=0 and V2=VDD.  To do that, the Vbitline-bar will be 

discharged to zero, and the Vbitline would be pre-charged to VDD. Once the write line goes 

high, both M5 and M6 conduct drain currents, and the write operation can be treated as 

attaching two current sources onto SRAM main cell. Fig. 4-4 summarized the write 

operation. 

 

 

V2V1=”1” “0”=
M5 M6

=”0”Bt Bt”1”=

V1=”1” “0”=V2

IW2(t)IW1(t)

(a) (b)

Can be 
modeled as:

Fig. 4.4 (a) Noise injection during a write operation, and (b) its equivalent 
model. 
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Since M4 has strong pull down strength over M6 to satisfy stable read constraint, 

the access M6 transistor is unable to pull up V2 because M4 has greater pull down 

strength. Hence, the cell must be written by forcing V1 low. Originally V1 stored VDD, so 

the job of pulling V1 down relies on the access transistor M5. Transistor M1 is opposing 

this operation because M1 is supplying current to node V1.  Thus, the strength of M1 

must be weaker than M5, so M5 is able to pull V1 down for successful write.   

Therefore, for SRAM to have correct operation and maintain sufficient read-

ability and write-ability, the strength of MOS should be designed in this order: 

NMOS>ACCESS>PMOS.  The driving strength depends on transistor sizing.  For 

greater driving strength, designers tend to size up a transistor, and size down a transistor 

for low driving strength.  The K values we will introduce later contain the transistor 

sizing factor.  Therefore, for correct operation, the SRAMs often design to have Kn > Kp. 

[61] 

4.1.3. The Standby Mode 

In the standby mode, the two access transistors are off, and the stored 

information contained in the SRAM cell. The SRAM state flips may occur if 

certain coupling noise, in the form of a noisy current, strikes one of the bit-

lines. This noise injection process is illustrated in Fig. 4.5, where it is 

assumed that nodal voltages V1 and V2 correspond to logic “1” and “0”, 

respectively. The same process has been analyzed to study the SRAM’s 

immunity to single even upsets (SEU) [62-66]. During an SEU event, when 
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an ion particle strikes the diffusion region of a transistor, it deposits charge, 

which results in voltage spike on the affected node. The current pulse that 

results from such a particle strike is traditionally modeled as a double 

exponential function [53]. The expression for this pulse can be modeled as: 

  



TtTt
noiseRnoiseL ee

TT

Q
tI //

, )(  


  (4. 1) 

where Q is the amount of charge deposited as a result of the ion strike, while Tα is the 

collection time constant for the junction and Tβ is the ion track establishment constant. 

For the purpose of characterization, the following scenarios can cause the 

SRAM state flip: a noise current going away from the high voltage node (Fig. 

4.5a), a noise current going into a low voltage node (Fig. 4.5b) or both. 

 

 

 
4.2. Traditional Static Noise Margin 

The traditional static noise margin analysis characterizes the 

robustness of an SRAM cell by using two voltage sources as shown in Fig 

2(a).Conventional SNMs measure the largest differential voltage noise that 

can be tolerated at the two storage nodes [67-68]. In standby, as shown in 

 
Fig. 4.5 An SRAM state flip caused by (a) a current going away; (b) a current 

injection in standby mode. 



 

46 
 

 

Fig. 2(b), the SNM is determined as the side of largest square that can be 

inscribed between the mirrored DC voltage transfer curves (VTCs) of the 

cross-coupled inverters. The SNM in read can be defined similarly by 

including the two access transistors as part of the inverter pair VTCs. The 

SNM in read represents the largest DC voltage perturbation that can be 

tolerated without a state flip. During write, the SNM is found by inscribing 

the largest square in between the two VTCs as shown in Fig. 2(c).  

 An SNM metric describes the maximum voltage (or current) 

perturbation the SRAM circuit can tolerate without resulting a state flip.  

However, such a measure is intrinsically unable to characterize the dynamic 

process that leads to state flips, which is critical for understanding the 

complete stability picture. In the paper, stability will be defined by 

examining both the magnitude and duration of the injected current noise 

required to flip the SRAM state.  As such, our new stability margin concepts 

fundamentally capture the temporal aspects of the state flip and provide 

immediate design insights for enhancing dynamic stability. 

 Clearly, as SNMs are characterized by finding the largest static 

voltage noise that can be tolerated in standby, read or write, they are not 

positioned in capturing the essential dynamic properties of these operations, 

as further discussed in the following chapter. 
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Fig. 4. 6 (a) characterization of the traditional SNMs, (b) SNM in standby, (c) 

SNM in write. 
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CHAPTER V 

THE DYNAMIC MODEL FOR SRAM CELL 

 

Before deriving the proposed models for dynamic stability, we first discuss the 

basic transistor-level models and how a cell can be modeled as a dynamic system. 

5.1. The MOSFET Transistor model 

5.1.1 Shichman-Hodges Representation (Level-1 Model)  

The modeling method is based on the most commonly known model. The level-1 

MOSFET spice model consists with three regions: cut-off, linear, and saturate region. 

Table 5.1 summarizes the conditions for each region, and drain current equations for 

NMOS and PMOS [60].  One thing to notice is that threshold voltage of PMOS from 

Table 5.1 is taken absolute value for simplicity later on. 

 

 

 
The term VDS can be written as: 

  SDDS VVV    (5. 1)  

From KVL, VD can be represented as: 

Table 5.1. Basic Transistor Drain Current Equations 
 NMOS PMOS 
Cut-off VGS <VTHN 

IDS = 0 
VSG < |VTHP| 
ISD = 0 

Linear VGS >VTHN 
VDS <VGS-VTHN 

IDS =KN (2(VGS-VTHN)VDS-VDS
2) 

VSG > |VTHP| 
VSD <VSG-|VTHP| 
ISD =KP (2(VSG-|VTHP|)VSD-VSD

2) 
Saturate VGS >VTHN 

VDS >VGS-VTHN 

IDS = KN (VGS-VTHN)2 

VSG > |VTHP| 
VSD >VSG-|VTHP| 
ISD = KP(VSG-|VTHP|)2 
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 SGSDGD VVVV    (5. 2) 

After substitute (5.2) to (5.1), the other way to write VDS in NMOS is below: 

  GDGSDS VVV     (5. 3) 

Similarly, the VSD in PMOS can be written in a similar manner as (2.4). 

 DGSGSD VVV   (5. 4) 

    By substituting (5.3) for the NMOS equations, and (5.4) for PMOS equations, the 

Level-1 current equations can be rewritten into the form shown in Table 5.2. [69] [70] 

 

 

 
The advantage of writing in the form in Table 5.2 is keeping variable inside the 

square term. Using NMOS as example, notice that VGS is less than VTHN when in cut-off 

mode, and VGS is higher than VTHN if not in cut-off mode. In another word, VGS-VTHN is 

less than zero for cut-off mode and has zero current. That’s the same as treating 

saturation equation with VGS-VTHN equal to zero.  If not in cut-off mode, VGS-VTHN is 

higher than zero and the term VGS-VTHN survive as shown in linear and saturation mode.  

One of the key difficulties in deriving analytical dynamic stability models lies in 

the fact that different equations for typically used for determining drain currents in the 

cut-off, linear and saturation regions. To resolve this problem, we adopt the equivalent 

Table 5.2. Shichman-Hodges Representation 
 NMOS PMOS 
Cutoff IDS = 0 ISD= 0 
Linear IDS =KN ((VGS-VTHN)2

            -(VGD-VTHN)2) 
ISD=KP ((VSG -|VTHP|)2 

          -(VDG -|VTHP|))2 
Saturate IDS =KN (VGS –VTHN)2 ISD=KP (VSG-|VTHP|)2 

 



 

50 
 

 

Shichman-Hodges representation of the drain currents shown in Table 5.2 [71] with the 

following S-function:  

 








0
00

XX

X
S(x)  (5. 5) 

Using S(x) and Table 5.2, the drain currents for NMOS and PMOS transistors can be 

written as follows: 

 ))()((),( 22
THNGDTHNGSNGDGSDSN VVSVVSKVVI  , (5. 6) 

 |))|(|)|((),( 22
THPDGTHPSGPDGSGSDP VVSVVSKVVI  . (5. 7) 

The parameters K1 to K4 are the MOS device parameters of transistor M1 to M4: 

 4,3,2,14,3,2,1,4,3,2,1 2
1

LWCK OXpn    (5. 8) 

where μn,p is the carrier mobility (μn or μp), COX is the per unit area gate capacitance, 

W1,2,3,4 and L1,2,3,4 are the effective channel width and length of the transistor, 

respectively.  

Note (5.7) and (5.7) are valid for all regions of operation. The function S(x) is 

used to combine the three drain current equations of NMOS and PMOS transistors into 

one equation. This constitutes an important step towards deriving the proposed analytical 

dynamic stability models. Furthermore, note that the threshold voltage of typical 

enhancement mode PMOS transistors is negative. For simplicity of presentation, with 

some abuse of notation, throughout the rest of the paper we use a variable such as VTHP 

to indicate the absolute value of the threshold voltage of a PMOS transistor, which is 

positive.  
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For continuously differentiable property, the following smooth version of S(x) 

function can be used:   

  AexS XA /)1log()(    (5. 9) 

where A is a constant.  The suggested value for A is 100 for CMOS.  The higher the A 

number is, the closer the log function approach to true S(x) function.  Fig. 5.1 shows the 

plot of smooth version of S(x) function with A=100 and A=50.  The transition is sharper 

for higher A. When use this smooth version of S(x) function, be aware of the digit of 

precision that machine need to handle to implement this type of function. When 

choosing a big A number like 100, assume VGS-VTHN is 1, exponential of 100 is about ten 

to the power of 43.  If VGS-VTHN is zero, exponent of zero is one.  That means this 

function deals numbers varying from one to ten to the power of 43, and not every 

compiler can deal this kind of precision. The modified sets of current equations with 

smooth version of S(x) functions are shown as follows: 

  ))1(log)1((log )(2)(2
2

THNGDTHNGS VVAVVAN
DSN ee

A

K
I     (5. 10) 

 ))1(log)1((log |)|(2|)|(2
2

THPDGTHPSG VVAVVAP
SDP ee

A

K
I     (5. 11) 

 

5.1.2 The Berkeley Simulation IGFET Model (BSIM) 

Accurate transistor models are needed for electronic circuit simulation, which in 

turn is needed for integrated circuit design. As the semiconductor devices gets into deep 

sub-micron process generations, a new model is needed to be developed to reflect the 

transistor's behavior for that technology node. Because the earlier models may become 
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inaccurate, the commercial and industrial analog simulators (such as CADENCE) have 

added many other device models as technology advanced. An industry working group so 

called the Compact Model Council was formed to standardize the models for industrial 

use, and BSIM (Berkeley Short-channel IGFET Model), developed by the Department of 

Electrical Engineering and Computer Sciences (EECS) at the University of California at 

Berkeley CA, is one of these standardized models [72]. The BSIM family includes 

BSIM3, BSIM4, BSIM6, BSIM-SOI and BSIM-CMG, BSIM-IMG.  

 

 
 
 
5.2. The Dynamic Model for SRAM 

A circuit may be described using a modified nodal analysis formulation in the 

time domain: 

 NIvFvQ  )()(  (5. 12) 

where N
N RI   is the input, NRv  is the state variables, F describes the resistive 

devices of the circuit, Q is the capacitive devices of the circuit, and IN is an arbitrary 

current. For the SRAM cell in Fig. 5.2, for simplicity, we only consider two state 
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Fig. 5. 1  The plot of smooth version of S(x) with A=100 (Left) and A=50 (Right)
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variables, voltage (V1) and its complement (V2).  The circuit equations for the SRAM 

cell are: 

 

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 (5. 13) 

 

 
 
where the Cs are the capacitances associated with the two storage nodes, f1 and f2 

represent the currents of the transistors in the two cross-coupled inverters,  IN1 and IN2 

represent additional currents injected to the two storage nodes. We assume the coupling 

effect between V1 and V2 is small, thus C12 and C21 are neglected. Note that physically 

C11 and C22 are mostly contributed by gate and drain parasitic capacitances at V1 and V2 

nodes. For simplicity, we use circuit simulation to extract averaged small-signal 

capacitance values C1 and C2 by averaging C11 and C22 over a range of operating points, 

and finally arrive at:  
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Fig. 5. 2 The SRAM cell with internal lumped capacitors drawn. 
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where IN1 and IN2 represent as the injected DC currents. For instance, they can be used to 

describe the noise injected current in standby mode, or the read/write current through the 

access transistors. 

In (5.14), f1 and f2 are determined by the drain currents of the transistors, which 

can be modeled using the Level-1 device equations in Table 5.2. As such, the following 

f1 and f2 complete the dynamic equations for SRAM: 
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where (I1, I2, I3, I4) are the drain current for transistor (M1, M2, M3, M4), 

and their expressions are as follows: 
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 (5. 16) 

 

 
 

For traditional Static Noise Margin study, one can insert cross-coupled voltage 

sources in the SRAM main cell. The dynamic equations with cross-coupled voltage 

sources incorporated would be: 
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Fig. 5. 3 The SRAM cell with cross-coupled voltage sources inserted. 
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In addition, the cross-coupled voltage sources can also model the voltage loss on the 
metal lines.  
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CHAPTER VI 

  SRAM STABILITY AND ITS MATHEMATICAL EQUIVALENCE 

 

This chapter will discuss SRAM instability and the bifurcation study. We will 

first introduce the concept of voltage transfer curves (or called nullclines), equilibrium 

point and separatrix mathematically for clarity. We show that SRAM has three 

equilibria. Two of the equilibrium points are stable and the other one is saddle (or meta-

stable point).  

SRAM state flip happens under perturbations. In general, one can model the 

perturbations using voltages and current sources. The noise injections are typically in 

current form. Noise pattern like SEU is a cosmic type current waveform striking the 

stored nodes. Thus, it can be modeled as a current sources attached to V1 and V2 nodes. 

On the other hand, traditional static noise margin studies SRAM instability by 

introducing voltage perturbations. It introduces cross-coupled voltage sources across two 

stored nodes. The cross-coupled voltage sources can also model the voltage drop on 

metal routings.  

The dynamic modeling for both cases have been discussed in Chapter II. In this 

chapter, we will show how the voltage transfer curve and SRAM equilibrium points 

change with different injected voltage or current magnitude. With this, we can see that 

the SRAM instability happens when two voltage transfer curves tangent to each other at 

a point; this phenomenon is called saddle-node bifurcation, and the tangent point is 
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called the bifurcation point. The injected voltage or current magnitude causes the 

bifurcation to happen will be called the critical voltage or current, namely VC or IC.  

When the injected noise magnitude goes higher than the critical magnitude, the 

SRAM state will start to traverse to stability boundary (or called Separatrix) and onto the 

other equilibrium point and cause state flip. Thus, the stat flip does not happen 

immediately. We name the time to the stability boundary the critical time, TC. In 

summary, the injected noise magnitude (either in voltage or current) has to be higher 

than the critical magnitude (VC or IC) for a duration longer than critical time to result 

state-flip.  

 

 

 
6.1. Voltage Transfer Curves (VTCs)  

In a general second order autonomous system, all the points satisfied dV1/dt=0 is 

the V1-nullcline and all the points satisfied dV2/dt=0 is V2-nullcline. The voltage transfer 
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Fig. 6. 1. An example of voltage transfer curves on a 65nm technology SRAM. 
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curves are basically the concept of nullclines. Figure 6.1 shows the voltage transfer 

curves. The SRAM voltage transfer curves consist of V1-nullcline and V2-nullcline, 

where the nullcline of V1 or V1-nullcline is the set of points satisfied: 

 0),( 121111  NIVVfVC  , (6. 1) 

and the nullcline of V2 or V2-nullcline is the set of points satisfied: 

 0),( 221222  NIVVfVC  . (6. 2) 

The voltage transfer curves are also called the “butterfly curves” in some literatures. [70-

74] 

 
 
6.2. The SRAM Equilibrium Points 

According to nonlinear theory, equilibrium points are found by solving function 

dV1/dt=0 and dV2/dt=0. In other words, the points of intersection onV1-nullcline and V2-

nullcline are exactly the equilibrium points. As shown in Fig. 6.1, the point#1, point#2 

and point#3 are the equilibrium points. The point#1 and point#3 are the stable 

equilibrium points, and point#2 is a saddle [75] [76].  

 

6.3. Stability Boundary of an SRAM  

The stability boundary, or called separatrix, separates the regions of attractions of 

the two stable equilibria as shown in the dot line in Fig. 6.1. Starting from any initial 

state above the separatrix, the SRAM state will eventually go to the stable equilibrium 

“1”. Similarly, the state will be driven towards to the other stable equilibrium “3”, if 

starting from a point below the separatrix.   
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In other words, an SRAM state starting anywhere within the stability 

region would converge to its equilibrium state. And, the stability boundary is 

a border that separate stable regions. For example, a point starts in the stable 

region of point#1 will gradually converge to equilibrium point #1. 

During the SRAM operations, a state flipping would occur if the state 

is perturbed across the stability boundary. In a symmetrical case, the 

stability boundary is simply a 45 degree line passing through the origin on 

the phase portrait [51] [76].  The stability boundary for a given SRAM is also 

called separatrix because the stability boundary separates two stability 

regions [76]. In the case of SRAM cell, if the injected noise is higher than the 

stability margin, the state of the cell can deviate from the initial stable 

equilibrium and cross the separatrix after certain time period. If this 

happens, the cell state will fall into the stability region of the other stable 

equilibrium state and result in a state flip. The sections below discuss some 

of the concept in nonlinear theory point of view.  

 

6.3.1. The Stability Boundary Theory 

For a given dynamic equation )(xfx  with x in an N dimensional space, the 

equilibrium points are all the xe’s that satisfy f(xe)=0.  Its stable manifold and stability 

region can be described as below: [76] 
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6.3.1.1. General Theorems 

The stable manifold of an equilibrium point xe is defined as: [59][77-78] 

   },lim|{)( e
t

N
e

s xxtRxxW 

  (6. 3) 

where  xt, is the trajectory that starts from x and eventually converges to xe.  The 

stability region or region of attraction )( s
exA  of a stable equilibrium point s

ex  is the 

stable manifold of stable equilibrium point, s
ex . 

Definition of hyperbolic equilibria: [59]  

An equilibrium is called hyperbolic if there are no eigenvalues on the imaginary 

axis. 

Stable Manifold Theorem For a Fix Point: [76]  

Suppose that )(xfx  has a hyperbolic fix point x .  Then there exist local 

stable and unstable manifold )(xW s
loc  )(xW u

loc of the same dimension ns, nu as 

those of the eigenspace Es, Eu of the linearized system and tangent to Es, Eu at 

x .  )(xW s
loc )(xW u

loc  are as smooth as the function f. 

The stability boundary of the stability region is denoted by )( s
exA .  Based on some 

generic assumptions, we have the stability boundary theorem [79]: 

Assumptions for Stability Boundary Theorem: 

 All equilibria in )( e
sxA  are hyperbolic. 

 Every trajectory in )( e
sxA  converges to an equilibrium point. 

 The stable and unstable manifold of the equilibria in )( e
sxA  intersect 
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transversely. 

Stability Boundary Theorem: [79] 

The stability boundary )()( m
s

m
s
e xWUxA   where xm, m=1,2, …, are all 

equilibria of any order in )( s
exA . 

 

 

 
Fig. 6. 2 Example of phase portrait for an SRAM. 
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6.3.1.2. The Stable Manifold and Stability Boundary Theorem for SRAM 

In particular case, from Fig. 6.2, P1 and P2 are two stable equilibrium points, s
ex . 

The stability region of equilibrium point P1 is the region of all initial states whose 

trajectories will converge to P1.  Accordingly, the stable region of P1 is the bottom right 

region in the phase portrait.  Likewise, the stability region of P2 is the top left region of 

the phase portrait.  The question remains on how to describe the stability region in a 

precise mathematical sense.  From the same figure, we can see the stability boundary 

(the manifold passing through P3) naturally divides the state space into two stability 

regions.  Accordingly, the stability boundary becomes one of the key components that 

decide the stability margin. 

In SRAM case, stable equilibria are hyperbolic, every trajectory in )( e
sxA  

converges to P3 and the stable and unstable manifold of P3 satisfies transversality.  

Thus, stability boundary theorem can be applied since SRAM satisfies the generic 

conditions.  For the case of SRAM, saddle (P3) is the only one equilibrium on )( s
exA , 

so the stability boundary is the stable manifold of saddle.  Therefore, the stability 

boundary for SRAM can be described as: 

 )()( u
e

ss
e xWxA   (6. 4) 

where u
ex  is the unstable equilibrium point P3 on the boundary of A.  Accordingly, to 

find the stability boundary, first is to identify the unstable equilibria on the stability 

boundary and find their stable manifolds.  According to the Stable Manifold Theory 

[76], the stable eigenvectors of the linearized system around the equilibrium point will 
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be tangent to its corresponding stable manifold. Thus, we can start in a small 

neighborhood of u
ex  along the directions of stable eigenvector to integrate reverse in time 

to find the stable manifolds.  We need to reverse in time to bypass the stability nature of 

the trajectories that will converge to u
ex in a short distance. 

As an example, Fig. 6.2 illustrates the above theorem.  In Fig. 6.2, the trajectory 

pass through P3 is the separatrix that separate the state space into two stability regions.  

Points initially starts on the Separatrix will converge to P3, and the tangent vector on the 

Separatrix is the stable eigenvector with the stable Eigen-value of the linearized system 

around P3.  

 

6.3.2. Algorithm on Finding the Two Dimentional Stability Boundary 

Based on the stability boundary theorem and the stable manifold theorem, we can 

see for a two dimensional nonlinear systems such as SRAM, the stability boundary can 

be found by the following procedure: 

1. Find all the u
ex  and s

ex . 

2. Focus on the interested s
ex . 

3. Check if u
ex  are on stability boundary. 

4. Find the stable eigenvectors, Vs, of the equilibrium point u
ex , where the stable 

eigenvector is the eigenvector corresponding to the stable eigenvalue. 

5. Choose initial condition as s
u
e Vxx  0 , where ε is a small positive number. 
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6. Integrated backward by )(xfx  . 
 

In practice, we can bypass procedures 4 and 5 as long as the initial conditions are 

nearby the unstable equilibria since the unstable components will dissipate fast as we 

integrate reverse in time. In 65nm technology SRAM as example, the unstable 

equilibrium point is (0.57, 0.57) and stable equilibrium points are (1,0) and (0,1).  In 

order to find the stable and unstable eigenvectors of unstable equilibrium point, one way 

is finding out the Jacobian matrix addressed previously and evaluated at (0.57,0.57).  

This Jacobian matrix gives eigenvalues of (1x10-11) and (-1x10-11); the corresponding 

eigenvector are (0.707,-0.707) and (0.707,0.707).  As mention before, the eigenvalue 

(1x10-11) is positive, so it’s unstable eigenvalue and the corresponding eigenvector 

(0.707,-0.707) is unstable eigenvalue; for the eigenvalue (-1x10-11), its stable eigenvalue 

and the eigenvector (0707,0.707) would be stable eigenvector.  This stable eigenvector 

would be the Vs described in step 4.  By following the procedures, integrating backward 

from the unstable equilibrium point as described in step 6, the Separatrix can be traced 

out as shown in Fig. 6.3. 
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Fig. 6. 3 Separatrix of a 65nm SRAM cell 
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6.3.3. Higher Order Effect On the Curvature of Separatrix 

The higher order effect regards to curvature of separatrix occurs often appears 

when the SRAM parameters are largely asymmetrically deviated. Using Level-1 model 

for demonstration, it appears to be that the separatrix would start to show nonlinearity if 

more than 50% deviation on a single threshold voltage or more than 15% on a K value. 

Since nonlinearity of separatrix is not showing so clear under varying a single parameter, 

we show a clear nonlinearity of separatrix in Fig. 6.4 by varying the  thresholds in the 

manner of Vth1=Vth1nominal*(1+n%), Vth2=Vth2nominal*(1+n%), Vth3=Vth3nominal*(1-n%), 

Vth4=Vth4nominal*(1-n%), and Fig. 3-20 is varying K values in this manner, 

K1=K1nominal*(1+n%), K2=K2nominal*(1+n%), Vth3=K3nominal*(1-n%), K4=K4nominal*(1-n%).   

 

 

 
By comparing those figures, variation of thresholds larger seems to give the separatrix 

an “S” shape, and large variation of K values gives the separatrix in a “C” curve shape.  

Depends on the combination of thresholds and K values, the separatrix can be “S” or 

mirrored “S” shape and “C” or mirrored “C” shape. If put together with the 
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(a)                                                                  (b) 

Fig. 6. 4 The plot of separatrix varying only Vth values when n is (a) 60; (b) 80. 
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combinations from Fig. 6.4 and Fig. 6.5, the separatrix remains “C” shape for n=70 as 

shown in Fig. 6.6.   
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(c)                                                                (d) 

Fig. 6. 5 The plot of separatrix varying only K values when n is (a) 20; (b) 40; (c) 
60; (d) 80. 

 
 

6.3.4. The Mathematical Expression for The Separatrix 

From the dynamic modeling equations of an SRAM, the slope of separatrix can 

be expressed by: 
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where f1 and f2 are from (5.14). The mathematical expression of Separatrix can be 

acquired by solving (6.5). Assuming the points on Separatrix have all the four SRAM 

transistors in Saturation region, the Separatrix is solvable in Level-1 model [71]: 
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Fig. 6. 6 The plot of separatrix varying Vth and K Values at n=70. 
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For the special case, suppose the SRAM is symmetrical, meaning that K1=K2=K3=K4, 

C1=C2, Vthp=Vth1=Vth3 and Vthn=Vth2=Vth4, the separatrix becomes: 

 12 VV  , (6. 8) 

which is 45o line passing through the origin on the phase portrait.  

 

6.4. Noise Induced Bifurcation and SRAM Instability Study 

As mentioned previously, SRAM state-flip can occur by introducing voltage or 

current perturbations. We use current sources and cross-coupled voltage sources to 

account all the different kind of noise perturbations, and SRAM instability can be 

observed by attaching them as shown in Fig. 6.7. It is also equivalent to Fig. 5.3.  

The perturbation by either current or voltage sources can cause SRAM state-flip 

once the noise magnitude goes over the critical magnitude. When the injected noise 

amplitude changes, the equilibrium points will change accordingly. Stable equilibrium 

points remain in their relative positions while the saddle point moves closer to one of the 

equilibrium point, depending on the direction of the noise current. At certain critical 

magnitude, the saddle point will collide with a stable equilibrium point, resulting in a 

saddle-node bifurcation.  The location that bifurcation occurs is called the bifurcation 

point. When this happens, the two colliding equilibrium points disappear, and only the 

other remaining stable equilibrium point will survive. The sections below discuss SRAM 

noise induced bifurcation by voltage and current perturbation separately. 
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6.4.1. SRAM Instability Via Voltage Perturbation 

The traditional static noise margin (SNM) introduces cross-coupled voltage 

sources and measures the maximum voltage magnitude an SRAM can handle at stored 

nodes. That is only considering the voltage sources VN1 and VN2 in Fig. 6.7. As discussed 

in Chapter V, the dynamic equations for SRAM with cross-coupled voltage sources are: 
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where VN=VN1=VN2.  
 

Figure 6.8 shows the voltage transfer curves and equilibrium points at different 

VN. At VN=0, the equilibria are labeled as “1”, “2” and “3”. Among these, “1” and “3” 

are stable equilibria and “2” the saddle. The dynamic property of the cell will change 

with injected voltages. As the magnitude of VN increases to 0.14 volt, the three equilibra 

change their location as shown in Fig. 6.8(b). The saddle (marked as “2”) and the stable 

equilibrium point (marked as “3”) come closer to each other.  In Fig. 6.8(c), the saddle 

VN2

VN1

V1 V2

IN1 IN2

 
 

Fig. 6. 7 The SRAM topology with voltage and current noise sources 
incorporated (simplified view).  
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collapses with the stable equilibrium. The collapse results in saddle-node bifurcation 

[59]. The location where the bifurcation happens is called the bifurcation point, denoted 

by (VV
1B, VV

2B). In Fig. 6.8(d), the injected voltage magnitude increases to VN=0.35 volt, 

yielding only one equilibrium point (marked as “1”) in the entire state space. Starting 

from any point in the state space, the SRAM state will eventually go to this remaining 

stable equilibrium. 
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Fig. 6. 8 Illustration of saddle node bifurcation. The voltage transfer curves when 
(a) VN is zero; (b) VN is 0.15 volt; (c) VN=0.29 volt; (c) VN=0.35 volt. 
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As shown in Fig. 6.8(c), the occurrence of saddle-node bifurcation marks a 

critical structural change of the dynamic property of the SRAM cell. When the injected 

voltage VN is above 0.29 volt, there is only one stable equilibrium. When the injected 

voltage VN is less than 0.29 volt, there are still two stable equilibria. To flip the state, the 

injected DC (constant) voltage must be above 0.29 volt such that the starting stable 

equilibrium collapses with the saddle and hence disappears, and then the state anywhere 

on the phase portrait is attracted by the remaining stable equilibrium. We call SNM=0.29 

volt the critical voltage.  

The voltage transfer curves shit exactly by the amount of voltage injection. It can 

be seen from (6.9). Since the V1-nullcine is all the points satisfied f1=0, the new V2 

would be the old V2 subtracts VN and resulting the transfer curve shits down. Similarly, 

since the V1-nullcine is all the points satisfied f2=0, the new V1 would be the old V1 plus 

VN and resulting the transfer curve shits to the right. There, that is why that SNM is 

determined as the side of largest square that can be inscribed between the 

mirrored DC voltage transfer curves (VTCs) of the cross-coupled inverters.  

 

6.4.2. SRAM Instability Via Current Perturbation 

Consider a constant noise input at the V2 node, a representation of the system 

equations is given below: 

 


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
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
. (6. 10) 

Similar to the voltage case, saddle-note bifurcation will happen as the noise current, IN, 
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increases. Figure 6.9 illustrates an example on the occurrence of noise induced 

bifurcation using current perturbation on V2 node. As the injected current amplitude 

increased, the saddle node will gradually approach to the stable equilibrium state on the 

right side of the separatrix. When the noise amplitude reach the critical amplitude, the 

saddle point collides with the stable node, and the saddle node and the stable node along 

with separatrix disappear and result in a saddle-node bifurcation. In Fig. 6.9, the critical 

amplitude (IC) is 192uA and equilibria colliding point (bifurcation point) is located at 

(1.7, 0.6). Once the noise magnitude goes larger than IC, meaning IN>IC, the only 

equilibrium point left is the equilibrium point originally on the left side of separatrix. 

Without losing the generality, the current perturbation can be classified into two 

categories: Single-sided and double-sided. The SRAM state flip by single-sided current 

injection has the following 4 scenarios:  

- Four scenarios for single-sided current perturbation 

Initial condition: (V1=’high’, V2=’low’) 

1. State-flip caused by current injection to the V2 node, and its critical 

magnitude is denoted by IC2
IN. It stands for critical current for going into V2 

node.  

2. State-flip caused by current leak out from the V1 node, and its critical 

magnitude is denoted by IC1
OUT. It stands for critical current for going out of 

V1 node.  

Initial condition: (V1=’low’, V2=’high’) 
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3. State-flip caused by current injection into the V1 node, and its critical 

magnitude is denoted by IC1
IN. It stands for critical current for going into the 

V1 node.  

4. State-flip caused by current extraction from the V2 node, and its critical 

magnitude is denoted by IC2
OUT. It stands for critical current for going out of 

V1 node.  

The first scenario is already demonstrated in Fig. 6.9. For the other three scenarios, the 

transfer curves shift in different directions. On the other hand, the SRAM state flip by 

double-sided current injection has the following 4 scenarios: 

- Four scenarios for double-sided current perturbation 

Initial condition: (V1=’high’, V2=’low’) 

5. SRAM state-flip occur caused by current injection to the V2 node and leak out 

from the V1 node.  

6. SRAM state-flip occur caused by current injection to or leak out from to both 

V1 and V2 node.  

Initial condition: (V1=’low’, V2=’high’) 

7. SRAM state-flip occur caused by current injection to the V1 node and leak out 

at V2 node.  

8. SRAM state-flip occur caused by current injection to or leak out from to both 

V1 and V2 node.  

By the observation from the above eight scenarios, the SRAM state flip will NOT 

happen if current injected to a ‘high’ node or extract from a ‘low’ node.  
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In conclusion, this chapter studies the voltage and current perturbation induced 

bifurcation. In either case, voltage transfer curves of the two inverters in the cell become 

tangent to each other at bifurcation point. Evidently, two curves that are tangent to each 

other also have the same slope at that tangent point. It can be shown that the Jacobian 

matrix corresponding to the differential equation of the SRAM cell becomes singular at 

this point. This theoretical result is leveraged to develop analytical formulation. 

Starting from Chapter VII, the process of analytical derivation for the critical 

current will be discussed. Critical current study has several benefits over critical voltage 

study: (1) the physical noise event is typically in current form (ex. SEU); (2) the SRAM 

operation is done by current biasing since transistors are voltage controlled current 

sources. Due to the above mentioned reasons, the noise margin metric in current 

representation has more advantage to work with in that sense.  
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Fig. 6. 9  (a) Illustration of saddle node bifurcation as In2 increases from zero to 
200uA, (b) SRAM Butterfly curvewhen In2=150uA, (c) SRAM Butterfly curve when 

In2=192uA, (d) SRAM Butterfly curve  when In2=200uA. 
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CHAPTER VII 

THE ANALYTICAL SOLUTION FOR STATIC NOISE MARGIN VIA THE 

CONCEPT OF CRITICAL CURRENT * 

 

To accurately account for transistor behaviors, sophisticated device models, e.g. 

BSIM3/4 models [80-84], are usually adopted. These device models, however, make it 

impossible to derive closed-form design models and prevent development of useful 

design insights. Instead, we adopt the popular simple Shichman-Hodges (Level-1) 

transistor models [69] [70] for developing the targeted dynamic stability models. This 

choice, nevertheless, allows us to rather accurately predict the trends of SRAM stability. 

In order to derive analytical solution for critical current, the SRAM transistors’ 

state at the point of instability must be known first. In this chapter, we newly introduce 

analysis by regions (also called region analysis) to know the region of bifurcation. Then, 

the transistors’ state at the point of instability can also be known. Focus on the region of 

bifurcation; we derive the bifurcation point and IC analytically. Furthermore, we extend 

the single-sided current injection to double-sided. Finally, we establish the static noise 

margin metric in current representation.  

 

 

 
_____________________ 
*©[2012] IEEE. Reprinted, with permission, from “Understanding SRAM Stability via 
Bifurcation Analysis,” by Y. Ho, G. M. Huang, P. Li., ACM Trans. Design Automation 
of Electronics and Systems, accepted on May 19, 2014. 
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7.1. The Point of Instability for an SRAM 

As mentioned in the previous chapter, voltage transfer curves shift by noise 

perturbation. The point of instability is when voltage transfer curves of the two inverters 

in the cell become tangent to each other at bifurcation point. Evidently, two curves that 

are tangent to each other have the same slope at that tangent point. It can be shown that 

the Jacobian matrix corresponding to the differential equation of the SRAM cell 

becomes singular at this point [85-86]. This theoretical result is leveraged to develop 

analytical formulation. Below summarizes this important theorem. 

Theorem for the Point of SRAM Instability: [85-86] 

For cross-coupled inverters like SRAM, the point of instability is when its 

Jacobian matrix becomes a singular matrix. 

Proof: 

Consider cross-coupled inverters with V1 and V2 variables as shown in Fig. 7.1(a). The 

static solutions for the cross-coupled inverters are the same as solving for nullclines as 

mentioned in (6.1) and (6.2). The following expressions established: 
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The Jacobian matrix would be: 
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If the Jacobian matrix is a singular matrix, its determinant would be zero as shown in the 

following: 

 01)det(
21









V

g
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f
J  (7. 4) 

Or  
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



 V

V

f
. (7. 5) 

Equation (7.5) indicates the tangential point of two transfer curves have the same slope 

as shown in Fig. 7.1(b).  

 

 

 
7.2. The Region Analysis 

The critical current is highly related to the bifurcation point since it causes 

equilibra to collapse. That is, the critical current can be found once the bifurcation point 

is known. In order to have analytical form expression for the bifurcation point and 

critical current, we introduce region analysis [71]. Each region in this analysis 

corresponds to one particular combination of transistor regions of operation (states) (e.g. 

g

V

V

f






 2

1

 
 (a) (b) 

Fig. 7. 1 (a) Symbol for two cross-coupled inverters where functions f and g are 
for the top and bottom inverter; (b) Phase portrait plot showing two transfer curves 

tangent at bifurcation have the slope indicated.  
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M1: Linear; M2: Cutoff; M3: Cutoff; M4: Linear). Through the region analysis, the 

transistor states at the bifurcation can be determined, and critical current can therefore be 

expressed in terms of system parameters.  

7.2.1. The Defined Regions 

The V1 and V2 voltages physically swing between zero to Vdd. This creates a 

state-space. The entire state space can partition into many small disjoint small areas. 

Figure shows the defined regions. In Fig. 7.2, each small area is a region. The lines 

separating the state space is based on the Shichman Hodges representation. In other 

words, every region has its corresponding dynamic equations, and certain S(.) terms are 

on or off in that particular region. Using Region 7 as an example, the transistor state 

combination [L,C;S,L] reads M1=Linear, M2=Saturation, M3=Cutoff, and M4=Linear. 

Every point in this region has such state combination, and the corresponding dynamic 

equations are: 
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where 
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Changing the threshold voltages or Vdd would shift the region lines and change 

the number of regions. As an example shown in Fig. 7.3, the state space would change 

from (a) to (b) by decreasing Vdd. As we can see that Regions 2A, 2B, 2C and 2D no 

longer exist. That means, the transistor combinations, which corresponds to those region, 

cannot happen under low Vdd. Further decrease of Vdd can make Region 2 disappear. 

When that happens, the output of one of the inverters will be floating. 

 

 

 
The equilibria of an SRAM cell, denoted as (V1e, V2e), are the solutions found by 

solving dV1/dt=0 and dV2/dt=0. When In1=In2=0, Region 1 and Region 3 each have a 

stable equilibrium strictly at (Vdd, 0) and (0, Vdd), and the saddle can fall onto one of the 

regions: 2A, 2B, 2, 2C, or 2D. For a symmetrical SRAM design, it can be shown that the 

 
Fig. 7. 2  The nullclines and region formation of an SRAM. The V1B-2D is all the 

possible range for V1 to have bifurcation in Region 2D. [C= Cutoff; L= Linear; S= 
Saturation.] 
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saddle is strictly located in Region 2. For convenience, we assume that the SRAM cell is 

symmetric, i.e. the two inverters in the cell are identical. The location of the saddle 

denoted by (V1saddle, V2saddle) can be found to be: 

 )
)(

,
)(

(
21

2211

43

4433

KK

VKVVK

KK

VKVVK ththddththdd







 . (7. 9) 

 
 

 
 

7.2.2. The Regions of Bifurcation 

The region of bifurcation is the region where bifurcation happens, in other words, 

the region of bifurcation contains the bifurcation point. The bifurcation point may 

happen in different region for different parameter sets. Figure 7.4 shows an example of 

region of bifurcation for two different parameter sets. Parameter set #1 has the 

bifurcation point in Region 7, but the parameter set #2 has it in Region 2D.  

 
(a)            (b) 

Fig. 7. 3 (a) An example of assigned regions for an SRAM; (b) the assigned 
regions when Vdd is reduced. 
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Not all the regions in the phase portrait can happen to have bifurcation point. 

Majority of regions can never have bifurcation point for all possible parameter set. 

Exclude the regions cannot happen bifurcation are the regions able to find bifurcation for 

certain parameter sets. Those regions can have bifurcation are called the candidate 

regions for bifurcation, and only one region in the candidate regions is the region of 

bifurcation.  

 

 

 
7.2.3. The Candidate Regions for Bifurcation 

Every region can be classified of having 2, 1 or 0 equilibrium points (e.p.). For 

those regions can only have 0 e.p., the mathematical equations in that region cannot have 

any equilibrium solutions. For those regions can only have 1 e.p., the mathematical 

equations can be expressed in the first order form. The equilibrium solution can 

therefore be examined symbolically. Those regions can have more than one equilibrium 

point are the candidate regions of bifurcation; they are in the category of having 2 

(a)                  (b) 
Fig. 7. 4. The phase portrait for (a) parameter set#1 and (b) parameter set#2. 
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equilibrium points. The equation complexity reaches 4th order polynomial form for the 

candidate regions of bifurcation. 

After examining all the regions for all possible parameter set, the candidate 

regions of bifurcation is summarized in Table 7.1. Based on the result, it shows that the 

region of bifurcation would not happen in the “strap-regions”, meaning Regions 2, 2B, 

2C, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8, 9, 9A and 9B combined in Fig. 7.2. 

 

 
 
 
7.2.4. Choose the Region of Bifurcation in the Candidate Regions 

The region analysis eliminates all the impossible regions for bifurcation. 

However, it does not give the specific one region of bifurcation. Judgment based on 

transistor knowledge needs to be made to pick the region of bifurcation from the 

candidate regions. Using the first case as an example, we select Region 7 instead of 

Region 2D. Since transistor M3 is can only conduct negligible drain current in Region 

2D, we assume it is in cutoff. By selecting Region 7 the region of bifurcation, we are 

taking the chances that M3 is in cutoff when bifurcation happens. In addition, this 

assumption is valid because bifurcation point is likely to be at the most curvy point of 

Table 7. 1 Summary of Region of Bifurcation 

 
INJECTION 
CONDITION 

THE CANDIDATE 
REGIONS FOR 
BIFURCATION  

THE REGION OF BIFURCATION 
BASED ON SYMMETRICAL 

DESIGN 
Single-Side  IN1=0, IN2>0  

IN1=0, IN2<0  
IN1>0, IN2=0  
IN1<0, IN2=0  

2D and 7 
2A and 4 
2D and 6 
2A and 5 

7 
4 
6 
5 

Double-Side  IN1>0, IN2>0  
IN1<0, IN2<0  
IN1<0, IN2>0  
IN1>0, IN2<0  

2D, 3, 6, and 7 
1, 2A, 4 and 5 
2A, 2D, 5 and7 
2A, 2D, 4 and6 

2D 
2A 

5(|IN1|>|IN2|), 7 (|IN1|<|IN2|) 
4(|IN1|<|IN2|), 6 (|IN1|>|IN2|) 
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the transfer curve and the curviest point is usually in Region 7. Here we complete the 

column for region of bifurcation assuming the SRAM is symmetrical designed.  

 

7.3. The Analytical Solution for Critical Current 

This section will show the complete derivation for analytical formula for critical 

currents. It has two main subsections: single-sided current injection and double-sided 

current injection cases.  

The last chapter discussed total of eight scenarios, four on the initial condition of 

(V1=’high’, V2=’low’) and four on (V1=’low’, V2=’high’), on current injection induced 

bifurcation. Once we get the analytical analysis for either one of the initial condition, we 

can flip the labels on the SRAM for the other initial condition without modified the 

analysis. In this work, we will work with the initial condition (V1=’high’, V2=’low’) 

only.  

Assuming the initial condition (V1o=VDD, V2o=0), SRAM state flip can happen if 

a noise current injects to V2 node. The single-sided current injection has the dynamic 

equations in (6.10). We show the equations below for the readers:   
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where IN is the injected noise current amplitude. The critical current for (7.10) is the 

magnitude of IN at the point of instability. This critical current is labeled IC2
IN, stands for 

current critical magnitude for injecting into V2 node. In addition, the state flip can also 
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happen if there is a noise current going out of V1 node, lowering the voltage V1. Its 

dynamic equation is: 
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Similarly, the critical current for (7.11) would be the magnitude of IN in (7.11) at the 

point of instability; it is labeled IC1
OUT for critical current magnitude going out of V1 

node.  

 On the other hand, the double-sided current injection has the dynamic equations 

in (5.14). We copy the equations here for readers:   
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The critical current in double-sided case would be combinations of critical currents at V1 

and V2 node, which are denoted by IC1 and IC2. In this case, SRAM instability can be 

described by a line composed by combinations of IC1 and IC2.  

 

7.3.1. Single-Sided Current Injection 

7.3.1.1. The Case When Current Injects to V2 Node  

The analytical expression of critical current involves solving for the bifurcation 

point in the region of bifurcation. Let the notation f and g be: f=dV1/dt and g=dV2/dt. As 

illustrated previously, the system instability happens when the equilibria collapsed. It is 

proven that the Jacobian matrix becomes a singular matrix at bifurcation point. [85] 

Therefore, the following formulae can be established: 
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where subscript “IN2” is added to the notation to indicate the case of current injected to 

V2 node. The determinant of Jacobian matrix would be: 

          0122222122  VgVfVgVfh INININININ . (7. 14) 

Let (V1B
IN2, V2B

IN2, IC2
IN) be the solution of (V1, V2, IN) satisfied the above f, g and h 

functions, where (V1B
IN2, V2B

 IN2) is the bifurcation point for IC2
IN. The problem becomes 

solving the three equations below for three variables (V1B
IN2, V2B

IN2, IC2
IN): 
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Below are the summarized steps to solve (V1B
IN2,V2B

IN2,IC2
IN): 

1. Determine the transistor states at bifurcation point.  
2. Formulate continuous fIN2, gIN2 and hIN2 function based on the transistor states from 

step 1, where fIN2 and gIN2 are the differential equations for the region of 
bifurcation and hIN2 as given by the singular Jacobian matrix.  

3. Solve fIN2=0 and hIN2=0 for (V1B
IN2,V2B

IN2) since fIN2 and hIN2 are independent of IC2
IN. 

4. Once the analytical form of (V1B
IN2,V2B

IN2) is known, solve gIN2=0 for IC2
IN.     

 
The above steps are applicable to any transistor models includes BSIM4 model. 

However, obtaining an analytical solution with complex transistor models is quite 

difficult. Hence, we use the simple Level-1 model to demonstrate.  

Solving for (V1B
IN2, V2B

IN2) and IC
IN symbolically in the Level-1 model is 

involved. The simplest analytical formula for IC2
IN without any approximation is the 

following: 
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where V1B and V2B are the bifurcation point can be expressed as follows:  
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As can be seen, V1B

IN2 and V2B
IN2 are cross-coupled. Solving them would involve a 4th 

order polynomial, with polynomial roots having more than 10 symbolic terms.  

Because the bifurcation point is always found in between V2saddle and Vth2 as 

illustrated in Fig. 7.5(a), we simplified the expression for V2B
IN2 by approximating V2B

IN2 

as a weighted sum of V2saddle and Vth2 as: w.(Vsaddle-Vth2). The weighting factor w is 

chosen by averaging over more than 30 different parameter settings. It was observed that 

 
(a)                  (b) 

Fig. 7. 5 (a) The plot of SRAM equilibrium points as In2 changes. Increasing the 
magnitude of In2 will make the saddle (in region 2 when In2=0) collapsed with the stable 

node (in region 3 when In2=0) and resulting saddle node bifurcation in region 7; (b) 
Illustration showing that the bifurcation point is approximately 2/3 of the height between 

V2saddle and Vth2 on the same phase portrait. 
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the weight factor for the exact value of V2B is within 8% of w=2/3 as illustrated in Fig. 

7.5(b). With that, we have 

 3/2)( 222
2

2  wVVVwV THTHsaddle
IN
B  (7. 19) 

where V2saddle is 
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2211
2

)(

KK

VKVVK
V THTHDD

saddle



 . (7. 20) 

Therefore, the critical current, IC2
IN, can be expressed in terms of system parameters by 

plugging the V1B
IN2 and V2B

IN2 expression given in (7.19) and (7.17) into (7.16).  

 

7.3.1.2. The Case When Current Leaves at V1 Node 

This case deals with the dynamic equation in the form of (7.11). Increasing the 

magnitude of IN would lower the stored voltage V1, and SRAM state flip can happen if 

the magnitude of IN is larger than the critical current, IC1
OUT. Similar to the previous case, 

the bifurcation point and critical current can be acquired by solving:  

        














0),,(

0),(),,(

0),(),,(

1
2

1
1 ,12211

1
2

1
11

1
2

1
121

1
2

1
11

1
1

2
1

111
1

2
1

11

OUT
B

OUT
B VV

OUT
C

OUT
B

OUT
BOUT

OUT
B

OUT
B

OUT
C

OUT
B

OUT
BOUT

OUT
C

OUT
B

OUT
B

OUT
C

OUT
B

OUT
BOUT

VgVfVgVfIVVh

VVfIVVg

IVVfIVVf

 (7. 21) 

 
Below are the summarized steps to solve (V1B

OUT1,V2B
OUT1,IC1

OUT): 
1. Determine the transistor states at bifurcation point.  
2. Formulate continuous fOUT1, gOUT1 and hOUT1 function based on the transistor states 

from step 1, where fOUT1 and gOUT1 are the differential equations for the region of 
bifurcation and hOUT1 as given by the singular Jacobian matrix.  

3. Solve gOUT1=0 and hOUT1=0 for (V1B
OUT1,V2B

OUT1) since gOUT1 and hOUT1 are 
independent of IC1

OUT1. 
4. Once the analytical form of (V1B

OUT1,V2B
OUT1) is known, solve fOUT1=0 for IC1

OUT1.     
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Similar to the previous case, step 3 also runs into complicated expression and 

requires solving 4th order polynomial. We again use the idea of weighting factor w=2/3 

to simplify the expression for V1B
OUT1 by approximating V1B

OUT1 as a weighted sum of 

V1saddle and VDD –VTH3. With that, we get: 

     3/2,313
1

1  wVVVwVVV THsaddleDDTHDD
OUT
B , (7. 22) 

and the expression for the critical current would be: 
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where 
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7.3.2. Double-Sided Current Injection 

For the case of double-sided current injection, the following formulae can be 

established:   
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Let (V1B, V2B, IC1, IC2) be the solution of (V1, V2, IN1, IN2) satisfied the above f, g and h 

functions, where (V1B, V2B) is the bifurcation point and (IC1, IC2) are the critical currents. 

In the case, there can be many set of (V1B, V2B, IC1, IC2) for one system parameter, but 

one (IC1, IC2) set will only correspond to one bifurcation point (V1B, V2B) and vice-versa. 

The problem becomes solving the following three equations for four variables (V1B, V2B, 

IC1, IC2): 
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Since there can be many sets of (IC1, IC2) satisfied the above three questions, we call the 

solutions the combinations of critical currents.  

 

7.3.2.1. The Combinations of Critical Currents 

Table 7.2 shows the combinations of critical currents in a 65nm technology 

process symmetrical designed SRAM, and Fig 7.6 shows their location graphically. The 

combinations of IC is a continuous curve close to a straight line in a symmetrical SRAM. 

When the SRAM is asymmetrical, some nonlinearity can be observed on the line of 

combinations of IC.  

Evidently, (0, IC2
IN) and (IC1

OUT, 0) from single-sided case are the cross point of 

the line of combinations of IC and y-axis and x-axis. Because IC2
(7)=71uA is measured at 

zero IN1, IC2
(7) in this example is the same as IC2

IN and its analytical formula is already 

derived. Similarly, IC1
(7)=18.2uA is the same as IC1

OUT. We also have the analytical 

solution for that. However, the analytical formula for other points on the combinations of 

IC plot are unknown.  

The combinations of IC also include negative IC1 and IC2 as long as f, g and h are 

satisfied, so the IC line in Fig. 7.6(a) can be extended to quadrant II and quadrant IV. If 

IC1 is negative, that means current is injecting into V1 node and raise the stability at V1 

node. Thus, IC2 goes to a higher value than IC2
IN when IC1 is negative. 
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7.3.2.2. The Analytical Solution to the Combinations of Critical Currents 

The straight forward way is to write IC2 in terms of IC1 in (7.26), and IC2 can be 

traced by sweeping IC1. Or, write IC1 in terms of IC2 and sweeping IC2 can also get the 

same result. However, the drawback is that f1 and f2 functions need to be updated to a 

different region equations as the bifurcation point get into another region. As shown in 

Fig. 7.6(b), the bifurcation points are not all in one region; the region equations need to 

be changed accordingly.  
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 (a)  (b) 
Fig. 7. 6 The plot of (a) combinations of combinations of critical currents, and its 

(b) corresponding bifurcation point locations. 

Table 7.2.  The BSIM4 Data on a 65nm Technology SRAM (unit is µA) 
[IC1(0)= 0 , IC2(7)= 71 ] [V1B(0,7)= 0.86 , V2B(0,7)= 0.26 ]
[IC1(1)= 3.242 , IC2(6)= 60 ] [V1B(1,6)= 0.8 , V2B(0,7)= 0.233 ]
[IC1(2)= 5.857 , IC2(5)= 50 ] [V1B(2,5)= 0.751 , V2B(0,7)= 0.202 ]
[IC1(3)= 8.305 , IC2(4)= 40 ] [V1B(0,7)= 0.7 , V2B(0,7)= 0.168 ]
[IC1(4)= 10.699 , IC2(3)= 30 ] [V1B(0,7)= 0.651 , V2B(0,7)= 0.132 ]
[IC1(5)= 13.108 , IC2(2)= 20 ] [V1B(0,7)= 0.6 , V2B(0,7)= 0.097 ]
[IC1(6)= 15.607 , IC2(1)= 10 ] [V1B(0,7)= 0.546 , V2B(0,7)= 0.0627 ]
[IC1(7)= 18.22 , IC2(0)= 0 ] [V1B(0,7)= 0.48 , V2B(0,7)= 0.0274 ]
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7.3.2.3. The Linear Approximation on the Combinations of Critical Currents  

One simple way to acquire the analytical formula for the line of combinations of 

critical current is using the linear approximation. Although the line of IC combinations 

can have higher order effect, the line remains as a continuous curve close to a “straight 

line” in most of parameter sets as shown in Fig. 7.6(a).  

We already know two points on the IC line; they are (0, IC2
IN) and (IC1

OUT, 0). 

Their analytical formula was derived previously. A linear line passes these two points 

can be described by the following equation:  

 IN
CCOUT

C

IN
C

C II
I

I
I 21

1

2
2   (7. 27) 

where IC1
OUT and IC2

IN are expressed in (7.23) and (7.16).  

 

7.4. Static Noise Margin Metric in Current Representation 

Based on the results from single-sided and double-sided current injection case, 

one important phenomenon can be concluded, the combination of IC works as a stability 

boundary. SRAM state would flip if the injected noise combination, (IN1
0, IN2

0), is above 

the line of combination of ICs, and state flip cannot happen if the noise combination is 

below the line.  
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 The traditional static noise margin uses an inscribable largest square fitted inside 

the “eye” of transfer curves to describe the stability of an SRAM state. The better the 

stability means the larger the square is. On the other hand, the concept of critical current 

can also provide the same useful noise margin metric. The noise margin in current 

representation is defined as follows: 

The Definition of SNM
 
Read Margin in Current Representation:  

- Suppose the injected noise combination (I
N1

, I
N2

) is below the critical current 

combination line. The shortest distance from (I
N1

0, I
N2

0) to the critical current 

combination is the read margin. 
 

The Definition of SNM
 
Write Margin in Current Representation:  

- Suppose the noise combination (I
N1

, I
N2

) is above the critical current 

combination line. The shortest distance from (I
N1

, I
N2

) to the critical current 

combination is the write margin. 
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Fig. 7. 7 Illustration of read/write noise margin 



 

94 
 

 

Figure 7.7 demonstrates the definition above graphically. The shortest distance away 

from the boundary gives designer an idea of how far away the perturbed SRAM state to 

the state of instability. The longer the distance is, the better the stability it has. Figure 7.8 

summarized the SRAM read/write margin in voltage and current representation. This 

newly defined metric can work as a design guidance and provide physical insights. The 

noise margin in current presentation can have a few advantages over the voltage 

representation: 

1. The device noises are often described in current form. 

In electronics, noise is a random fluctuation in an electrical signal. There are 

various type of noise in electronics circuits. The common one in memory devices 

is call Single-Event-Upset (SEU). A SEU noise changes the state by ions or 

electro-magnetic radiation striking a sensitive node in a microelectronics device. 

In other words, the state change is a result of the free charge created by 

ionization, and its mathematical model is a current waveform which has been 

discussed in (4.1).  

2.  The SRAM access transistors are current driving sources 

Transistors are voltage controlled current source. The SRAM operations rely on 

pass-gates driving currents. Therefore, the SNM in current representation is 

better associated with SRAM read/write stability.  
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7.5. The Analytical Solution for Read/Write Noise Margin In Current Representation 

The definition of noise margin in current representation is the shortest distance to 

the line of combination of critical current. The shortest distance would be in the direction 

perpendicular to the line of combination of IC in linear assumption. And, the analytical 

formula for the length of the shortest distance can be acquired. The mathematical 

expression for the linear approximated IC combination line is given in (7.27), and its 

perpendicular line equation passing through the injected noise current combination (IN1
0, 

IN2
0) would be: 

 211
2

1
2 )( NNCIN

C

OUT
C

C III
I

I
I  . (7. 28) 

The shortest distance point on the line of combination of IC is denoted as (IC1
SNM, 

IC2
SNM); its mathematical expression is derived to be: 

(IC1
SNM, IC2

SNM)

(IC1
SNM, IC2

SNM)

(IN1, IN2)

(IN1, IN2)

Fig. 7. 8 The summary of static noise margin in voltage representation and in 
current representation. 
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Finally, the analytical solution for the SNM in current representation is: 
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CHAPTER VIII 

THE ANLAYTICAL SOLUTION FOR DYNAMIC NOISE MARGIN VIA THE 

CONCEPT OF CRITICAL TIME * 

 

As discussed previously, if the injected noise (IN1, IN2) is below the line of 

combinations of IC, the states will never cross the separatrix, so when the noise 

disappears, the states of the cell will always return to its stable equilibrium point.  

However, the static noise margin is not good enough to characterize the noise tolerance 

of this cell. The noise current above the line not necessarily implies that the cell will flip 

its state [59] [71] [76]. It must be above the line for a certain period of time (defined as 

critical time or TC). Once the state of the cell crosses the separatrix, the cell will flip 

states even though the noise disappears. For state flip to occur, the state of SRAM must 

cross the separatrix.  The critical time or Tcritial defined to be the time it takes from initial 

state to the separatrix. If the present of noise current with amplitude Icritial has shorter 

duration than Tcritial, the state has not yet crossed the separatrix, and it will come back 

when the noise disappear. On the other hand, the presence of noise has greater duration 

over Tcritial, the state of SRAM would cross the separatrix, and state flip is inevitable 

even though disturbance is gone.  

 

 
_____________________ 
*©[2012] IEEE. Reprinted, with permission, from “Understanding SRAM Stability via 
Bifurcation Analysis,” by Y. Ho, G. M. Huang, P. Li., ACM Trans. Design Automation 
of Electronics and Systems, accepted on May 19, 2014. 
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In this chapter, the definition of dynamic noise margin will be clearly stated. The 

analytical solution for the dynamic noise margin will be provided.  

 

8.1. The Definition of Dynamic Noise Margin (DNM) 

The definition of dynamic noise margin is clearly stated in [53]. Using the 

concept of stability boundary, the dynamic noise margin can be defined in read, write 

and hold.  

 

 

 
8.1.1. Dynamic Noise Margin in Read 

When the read operation starts, the word-line goes high, the SRAM state would 

be pushed away from its initial state towards the separatrix of the cell. After the word-

line goes off, the read operation ends and the cell returns to hold. If the trajectory does 

indeed go across the separatrix, a state flip will be generated after the access transistors 

are turned off in hold. 
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Fig. 8. 1 The definition of dynamic noise margin: (a) dynamic read margin and (b) 

dynamic write margin. 
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The read DNM is defined for a given wordline pulse width TR. As shown in Fig. 

8.1 (a), the read DNM is defined as 

  RCREAD TTDNM    (8. 1) 

where TC is the time it takes for the trajectory to reach the separatrix and TR is a give 

word-line pulse width. The defined read DNM specifies the amount of read operation 

time margin before read instability takes place. That is, when TC > TR, there exists a 

positive margin; when TC = TR, the cell is on the verge of read instability; when TC < TR, 

state-flip happens and the cell loses read stability.  

 

8.1.2. Dynamic Noise Margin in Write 

The write DNM can be defined in a way analogous to that of the read DNM, but 

by noting that a successful write overwrites the SRAM state, hence producing a state flip. 

Similar to the previous case, as shown in Fig. 8.1 (b), TC is the time when the state 

trajectory crosses the separatrix. For a given word-line pulse width, TW, the write DNM 

is defined 

  CWWRITE TTDNM  .  (8. 2) 

The static noise margin (SNM) may provide an optimistic estimate for dynamic write-

ability. That is, even if the SNM predicts a successful write, in the reality, the write can 

actually fail. For the state-of-the-art SRAM designs with short access cycles and 

advanced read/write timing control circuitry, the distinctions between the SNMs and 

DNMs in read and write reveal the important role of cell nonlinear dynamics in 

determining dynamic SRAM stability. 
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8.1.3. Dynamic Noise Margin in Hold 

The DNM in hold characterizes the data retention property of the cell under 

SEUs and noisy operating condition. DNM may be examined by injecting a current 

disturbance into the cell. Compared with the use of noise voltage disturbance in the 

SNM [84-85], modeling the disturbance as an injected current more physically reflects 

the nonlinear dynamic nature of the cell. The DNM shall be evaluated by considering 

both the amplitude and duration of the current disturbance. Depending on these two 

factors, the state trajectory in hold may cross the separatrix, leading to instability. It 

would be the same as the read scenario, with TR replace by the disturbance duration.  

 

8.2. The SRAM Cell Dynamics and Analytical Solution For Dynamic Noise Margin 

Previous chapters discussed the SRAM cell in static point of view. The SRAM cell 

reaches its point of instability when the magnitude of external perturbation (such as 

noise currents and noise voltages) reaches the critical state. In this chapter, we will 

discuss the dynamic point of view. We will show how the stored state flip over. When 

under constant current (IN1, IN2) biasing, an initial state (VDD, 0) will traverse across the 

stability boundary (separatrix) and reach another equilibrium state (0, VDD).  

 

8.2.1. The SRAM Cell Trajectory on Phase Portrait 

Figure 8.2(a) shows an example of stored state switching mechanism if consider 

only a current injection at V2 node, its differential equations are described in (7.10). 

Assume this noise acts as a step input to V2 node, which holds constant without 
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switching off. On the phase portrait, a trajectory starts from (1, 0) and gradually 

converge to the equilibrium point on (0, 1.4).  From simulation result, the saddle-node 

bifurcation happens at approximately IN of 496 µA, so IC would be 496 µA.  Because in 

this case IN is 500 µA which is slightly larger than IC, there is only one equilibrium point 

located at (0, 1.4) on the entire phase portrait.  So, if the cell’s states initially start at (1, 

0), the state of the cell will be converging to (0, 1.4).  When plotting V1 and V2 in time 

diagram as shown in Fig. 8.2(b), one can see that it takes approximately 0.48 ns for the 

cell to reach the equilibrium point (0, 1.4) which results a state flip. Since it is 

symmetrical designed, the separatrix is simply the linear line V1 = V2 [59] [71] [76] 

across the origin. It will take the cell about 0.45 ns to reach the separatrix.  After the 

state of the cell crosses over the separatrix, the cell will not be able to come back to its 

original state.  This means that a noise current pulse of constant amplitude 500 µA 

applied for less than 0.45 ns may not make the cell flip its state.  However, when the 

noise duration is longer than 0.45 ns, the cell will flip its state.  Therefore, 0.45ns is the 

TC in this case. In addition, note that the transition time from the separatrix to the other 

equilibrium is only 0.03ns, which is only 1/15 fraction of the total transition time 

(.45ns), but the traveled distance is relatively long within such a short period of time.  

Consider a type of square pulse noise that has constant amplitude of 500 µA and 

its duration is only last 0.43ns.  The cell state will not flip because the duration is less 

than TC.  From Fig. 3-11(b), the cell state is (0.7,0.582) at 0.43ns.  Since the separatrix in 

this example is a straight line V1=V2 passing through the origin, after the noise is gone, 

the cell state (0.7, 0.582) is in the bottom right region of attraction of the equilibrium 
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point (Vdd,0).  The cell state will go back to (Vdd,0) gradually as shown in Fig. 8.3. 

 

 

 

 
If double-sided current injection (IN1, IN2) is considered, once the noise current 

(IN1, IN2) is at right hand side of combination of critical currents, the SRAM state will 

reach the separatrix. The time for the state to reach the separatrix is the critical time. As 

long as the injected noise magnitude keeps at right hand side of combination of critical 

currents, state-flip will occur. Next section will discuss the analytical formula of critical 

time (TC) derivation.  

 
 (a) (b) 
Fig. 8. 2 (a) Phase portrait of SRAM when IN is 500 µA; (b) the timing diagram of 

this cell. 

 (a) (b) 
Fig. 8. 3 (a) Phase portrait and (b) time diagram for a square pulse noise of 500µA 

amplitude and 0.43ns duration. 
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8.2.2. The Analytical Solution For Critical Time 

The SRAM cell will flip if the cell state crosses the stability boundary.  During 

the operation of the SRAM cell, if a stable state is perturbed across that boundary, a state 

flipping will be resulted. For a perfectly symmetric SRAM cell, the stability boundary 

can be simply defined by passing a 45 degree line through the origin on the phase 

portrait of the SRAM cell. The stability boundary of the SRAM is also called separatrix 

because the stability boundary separates two stability regions [59] [71] [87-89]. If the 

injected noise current is higher than the critical current, the state of the cell will drive 

from the initial stable and go across the separatrix eventually. The time it takes from the 

initial state to the separatrix is called critical time (TC). After the trajectory across the 

separatrix, the cell state will fall into the stability region of the other stable equilibrium 

and result in a state flip. 
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(a)       (b) 

Fig. 8. 4 (a) The simulated phase portrait of a 65nm SRAM based on the S-H 
model. It shows a cell state crosses separatrix (45o line through origin) and flips to the 

other side; (b) the timing diagram of the cell state. 
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An example is demonstrated in Fig. 8.4. Since it is symmetrical designed; the 

separatrix is the 45 degree line passing through the origin. In Fig. 8.4 (a), the cell state 

initially starts at (0.9, 0) in Region 3 (R3) at time 0. It enters Region 7 (R7) at time t1 and 

enters Region 7A (R7A) at time t2.The state will eventually reach the separatrix in 

Region 7B (R7B) at time t4. Once the state passes the separatrix, the state can never be 

recovered even if the noise injections disappear. The total time taken for a state to reach 

the separatrix is the critical time, which is t4 in this case. 

Figure 8.4 (b) shows the timing diagram for that cell state. The state transits 

through many regions to flip the state. The rigorous way to find the critical time is to 

separately find the time spent in each region then sum each together. However, this 

results into symbolic expressions which is very cumbersome. The way we simplify the 

analytical formula is based on the observation that vector field strength around 

bifurcation point is weak so that the trajectory takes up more time in the region of 

bifurcation. In this regard, it is efficient to focus on the time spent in the region of 

bifurcation to arrive at a simple but physically meaningful expression for the critical 

time. In other words, we find the expression of the time spend in the region of 

bifurcation to be the critical time analytical formula. As demonstrated in Fig. 8.4(b), the 

trajectory spend most of the time in region of bifurcation, region 7 (R7), than any other 

regions. The analytical formula for TC is to solve the nonlinear ODE corresponding to 

the transistor combination in Region 7 (R7), which mentioned in (5.14). 

However, solving the cross-coupled nonlinear ODE in (5.14) is cumbersome. 

Mathematically, there is no good technique to directly solve this type of ODE. The way 
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we by-pass the nonlinearity is to linearize the ODE at the bifurcation point. In this 

regard, we preserve the characteristics of the cell state trajectory around bifurcation point 

and simplify the complexity of the equation at the same time. By doing that, the system 

can be modeled using two cross-coupled linear ODE as shown below:  
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and 
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The coefficients (g11, g12 …etc) are functions of system parameters. Since the Jacobian 

matrix (8.5) is singular at bifurcation point, the eigenvalues will be 0 and λ, and λ is a 

negative value. The singular Jacobian matrix means zero determine, namely:  

 01221  baba .  (8. 9) 

Solving (8.4) yields the following general solution using Laplace Transform:  
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where  

 21 ba  .  (8. 11) 

The (V1(0),V2(0)) is the initial condition and (*) is the convolution integral. In our case, 

we treat the injected current constant. Thus, the expression becomes:  
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))0(),0(( 21 VV  is acquired by evaluating (25) at t=0. The trajectory in (33) will cross the 

separatrix at  

 )()( 21 CC TVTV   (8. 15) 

since the separatrix is a 45º line through the origin.  

We assume the exponential terms in (8.12) become negligible by the time the 

state trajectory reaches the separatrix due to the exponential decay, the formula for the 

critical time TC is: 
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And, it leads to: 
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We eliminate ))0()0(( 21 VV    and (CP1-CP2) on the numerator because together they are 

close to cancel each other and become insignificant. That simplifies the equation to: 
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Equation (8.18) is the master equation for critical time for a given (IN1, IN2). The set of 

(V1B,V2B,IC1,IC2) should be selected at (V1B
SNM, V2B

SNM, IC1
SNM, IC2

SNM), where (IC1
SNM, 

IC2
SNM) is the closest IC combination to (IN1, IN2) as discussed in (7.29).  

Let us demonstrate a special case. Consider an injected noise combination (0, IN2), 

which is a point on the right hand side of IC combination line as shown in Fig. 7.8. The 

critical currents (IC1
SNM, IC2

SNM) marked in Fig. 7.8, which is the closest critical currents 

to the noise combination (0, IN2) and its formula is given in (7.29), will be the (IC1, IC2) 

used in (8.18). For that, the critical time formula is derived as follows after evaluated 

(8.18) at the initial condition (V1(0)=Vdd, V2(0)=0): 
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where 
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The coefficients (g11, g12 …etc) are acquired from evaluating (8.5) in the region of 

bifurcation.  

 Furthermore, if take the exponential terms in (8.12) into account, the critical time 

equation can be simpler if substitute the exponential term (eλt) by its Taylor expansion 

1+λt. The formula becomes nicely as follows:  
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and equivalently 

 
  SNM

C
SNM
CN

dd
C

III

V
CT

122 
 .  (8. 22) 

Equation (8.22) is a good approximation if the injected current magnitude (IN2) is more 

than five times of its critical current (IC2). If IN2 goes beyond eight times of IC2, the 

formula can be shown as TC=C.Vdd/IN2, which is the same formula shown in (Zhang, 

2006) on p.320 [51].  

Below are the summarized steps to solve critical time (TC) for a given (IN1, IN2): 
1. Have the line of IC combination known. The given (IN1, IN2) has to be on the right 

hand side of the line to have critical time. Otherwise, no critical time can be 
observed. 

2. Find the closest IC combination (IC1
SNM, IC2

SNM) point on the line that is closest to 
(IN1,IN2), and acquire the corresponding bifurcation point (V1B

SNM, V2B
SNM).  

3. Formulate the linearized ODE at the bifurcation point.  
4. Solve the general solution and particular solution for the linearized ODE.  
5. Find the critical time, TC, by solving V1(TC)=V2(TC) for symmetrical designs.  
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In summary, the simplification was made to the dynamic system formulation at the 

bifurcation point (linearization) to obtain two linear ODEs, from which an analytic 

solution was found for the critical time (the time from initial state to the stability 

boundary). 
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CHAPTER IX 

SUMMARY 
 

9.1. Summary and Contributions 

Overall, dynamics of memristor and SRAM are strongly emphasized. The 

derived memristor properties reveals that the memristor state change requires some time; 

it indicates that the memristor-based memory needs some “critical time” to flip the 

logic. Similarly to the SRAM, the SRAM write operation not only needs the injected 

current over a “critical current” but also need to maintain for some “critical time”. In 

short, simulation shows that both memristor-based memory and SRAM show the timely 

manner for read/write operation. Furthermore, the developed analytical formulae are 

able to reveal the dynamic aspect on memory read/write operations which address the 

key concern for modern memory technology. 

 

9.1.1. Memristor-based Memory  

In this work, we systematically derive a comprehensive set of properties and 

analytical solutions for characterizing the fundamental electrical properties of memristor 

devices. Our compact closed-form expressions provide valuable design insights and 

allow an in-depth understanding of key design implications of memristor-based 

memories. Using our derived properties, we investigate the design of read/write circuits 

and analyze data integrity and noise-tolerance issues. In addition, we apply our valuable 

design insights from the fundamental electrical properties derived from the ideal linear 
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drift memristor model to design memristor-based memories that consist of more realistic 

nonlinear characteristics. Based on the provided memristor model from HP, the “critical 

current” for memristor state switching is not clear by the given simple linear drift 

formula. As we can see from the more completed memristor model, if the injected 

current i is less than the on or off magnitude (ion or ioff), the value out of hyperbolic sine 

would be very small, thus the positive or negative drifting velocity would also be small. 

Therefore, the on and off currents work as a critical current for the memristor state to 

move, where the linear drift model is too simple that does not indicate such on or off 

current phenomenon. However, we demonstrate that linear drift model properties can be 

effectively used to resolve the boundary trapping issues faced by realistic nonlinear 

memristor models.  

 

9.1.2. Static Random Access Memory  

This dissertation has two main contributions on SRAM:  

1. Newly established the concept of Static Noise Margin in current representation 

and further provided analytical formula for it.  

2. Explored an analytical approach to the evaluation of dynamic stability analysis 

for SRAMs.  

The concepts of critical current and critical time, based on theoretically rigorous 

stability analysis of the dynamic behaviors of SRAM cells, provide physical 

characterizations of SRAM stability. In summary, the dependencies of critical time and 

critical current on several key design and technology parameters are evaluated. We also 



 

112 
 

 

examine the effect of temperature and process variation effect to IC and TC. Furthermore, 

we studied the IC and TC dependencies on the system parameters shown in the equations 

in Appendix. The simplification is done by keeping the targeted parameter as a variable 

while plugging nominal values of the other parameters into the equation. This provides 

us an immediate understanding of the parametric dependency of the targeted parameter. 

A short summary and key observation on sensitivity of system parameters with respect 

to global variation are as follows: 

1. Both IC and TC have very high dependency on Vdd. They grow approximately 

quadratically with Vdd. 

2. Both IC and TC also have high dependency on Kn. IC tends to increase linearly with 

Kn, but TC increases more rapidly with Kn. 

3. Both IC and TC have low dependency on the rest of parameters.   

4. Both IC and TC increase as Kn and Kp increase but decrease as Vthn and Vthp 

increase.  

5. IC does not depend on C, but TC is highly depended on the capacitance at stored 

nodes. 

The critical time is approximately proportional to 1/(In-IC). Clearly, a current injection 

must be greater than IC in order to flip the state. Intuitively, a larger injection would 

make the cell to flip its state faster and the time to flip the state is inversely proportional 

to the difference between the amplitude of the current noise and IC.  

Furthermore, we rank the sensitivity of the system parameters (Vdd, Vthn/Vthp and 

Kn/Kp) and summarized in Table 9.1 for the single-sided current injection case. TC and IC 
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both depend on the same sets of device parameters such as transistor threshold voltages, 

which create correlation between the two. We combine the collected data from previous 

sections.  

 

 

 
Moreover, the analytic requires less computational power. Compare with the 

transistor-level simulation, the derived analytic provides a speedup of 6 order of 

magnitude. We use a transistor-level circuit simulator, in this case, Cadence Spectre to 

find both IC and TC as follows: IC is found by incrementing the injected current until an 

SRAM state flip is resulted; TC is acquired by doing a transient simulation. On average, 

it takes Cadence Spectre simulator 0.777 seconds to compute the critical current with a 

nano-amp precision. In addition, the average runtime for the critical time is 48 

milliseconds. In comparison, for our C-based analytical models, the average runtime for 

IC is 0.25 microseconds and 0.02 microseconds for TC. As a result, the overall runtime 

speedup of our models over transistor-level circuit simulation is about 6 orders of 

magnitude. Lastly, the derived analytical models are also able to provide useful design 

insights and aid the designers to perform SRAM design optimization while considering 

the key dynamic stability property. 

 

Table 9.1. Summary on the Sensitivity of the System Parameters 
 Vdd Vthn Vthp KN KP 

IC Very Strong Weak Very Weak Strong  Weak 
TC Very Strong Weak Very Weak Strong Weak 
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9.2. Future Works 

9.2.1. Future Works on Memristor 

Neuromorphic circuits get many attentions after the memristor device came out.  

Recently, there are two types of neuromorphic circuits: the learning circuits and neural 

networks [90]. More specifically, learning circuits are broadly the circuits that can 

demonstrate self-adaptation or smart operation, and neural network circuits are built 

based on biological structure and meant to mimic the learning functionalities in 

biological aspect. Neuromophic circuit is a very large area of research, in part because a 

large part of the analog science detail has to do with advances in cognitive psychology, 

artificial intelligence modeling, machine learning and recent neurology advances. In fact, 

scientists and engineers already started the work on neural field in the past decade. The 

earliest work traces back to 1960, which is the ADALINE neural network [91]. The 

research halted due to difficulties on implement the large size of complexity circuitry on 

chip. Due the advance of nanotechnology in the 20th century, such task becomes feasible 

to do. Moreover, scientist has shown that the memristor device follows the behavior of 

synapse [92]. Thus, the memristor have made the possibility to implement neural 

network on chip. In short, many scientists and researchers are exploring innovative 

approaches that enable revolutionary advances in devices for memristor-based learning 

circuitry and neural-synaptic mimicking. 
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9.2.2. Future Works on SRAM 

Since the nonvolatile device has disadvantage on the switching speed, the 

nonvolatile device can combine with SRAM and benefit by the fast switching speed that 

SRAM has. And, SRAM can go off power in standby mode to save power consumption 

by storing the logic to nonvolatile memories. In fact, there already have some research 

works regards to such a hybrid device very recently. They called the nonvolatile SRAM 

or nvSRAM as shown in Fig. 9.1 [93-94]. In Fig. 9.1(a), the SRAM is not isolated from 

the nonvolatile device, so the nvSRAM 6T2R has some cell leakage during SRAM 

operations. The nvSRAM 8T2R in Fig.9.1 (b) is the newly proposed topology which it 

has extra transistors isolating the nonvolatile device and the SRAM to avoid cell 

leakage. Regardless Fig. 9.1(a) or (b), the nvSRAM has thses basic modes: (1) 

NORMAL; (2) STORE; (3) RESTORE. During NORMAL mode, SRAM is doing the 

read/write operation or what it supposed to do. The STORE operation is writing the 

stored logic into nonvolatile memory, and RESTORE is the other way around.  

As it can be seen, as the SRAM communicates with the nonvolatile device such 

as memristor, there can be a lot of dynamics going on. The read/write stability issues 

have not been fully discovered yet at this stage. This material in this work is then able to 

provide much dynamic detail, and the developed SRAM stability metric would be a 

helpful tool to provide needed insights for a hybrid device like nvSRAM.  

 



 

116 
 

 

9.3. Acknowledgement 

This material is based on work supported by the National Science Foundation 

under grant no. 0917204. 

 

 

 (a) (b) 
Fig. 9. 1. An nvSRAM cell schemes of (a) 6T2R and (b) 8T2R.  
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APPENDIX A 

THE RELATION OF CRITICAL CURRENTS AND CRITICAL VOLTAGE 

 

The traditional static noise margin uses the concept of critical voltage to describe 

the SRAM stability, which is somewhat correlated to the critical currents. In order 

words, for two given set of system parameters, if the traditional SNM critical voltage for 

a particular set is higher than the other, the critical current for that set would also be 

higher than the other one.  

From the model equation (5.17) in Chapter V, we display here in (A.1) as shown 

below: 
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it can be seen that the VN1 and IN1 appear in dV1/dt equation, and VN2 and IN2 appear in 

dV2/dt equation. We will show that VN1 is highly correlated to IN1 and VN2 is highly 

correlated to IN2. The idea is that, if somehow we can Taylor expand VN1 and VN2 out of 
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Fig. A.1 The circuit setup for (a) the critical voltage; (b) the critical current.  
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function f1 and f2, then the IN1 would be the sum of higher order terms of VN1. Therefore, 

the higher VN1 gives higher IN1.  

Figure A.1 shows the circuit setup for critical voltage and critical current. The 

dynamic equations for critical voltage is as follows:  
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where (V1B
V, V2B

V) is the bifurcation point for a chosen critical voltage (VN1=VCX, 

VN2=VCY) that makes the dynamic equations dV1/dt and dV2/dt equal to zero. Similarly, 

the dynamic equations for critical current is the following: 

  







0),(
0),(

21222

21111

CX
I
B

I
B

CY
I
B

I
B

IVVfVC

IVVfVC



 (A.3) 

where (V1B
I, V2B

I) is the bifurcation point for a chosen critical current (IN1=ICX, IN2=ICY) 

that makes the dynamic equations dV1/dt and dV2/dt equal to zero. Notice that the 

bifurcation points, (V1B
V, V2B

V) and (V1B
I, V2B

I), are not the same. In fact, they are 

different in most of cases.  

 The next procedure would be Taylor expand VCX and VCY out of f1 and f2 in (A.2) 

and then match with (A.3). Equation (A.2) can be rewritten to: 
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where those newly introduced variables are:  
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The Taylor expansion on (A.4) would be:  
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After matching (A.3) and (A.6), it is evident to see that ICX and ICY are sum of all the 

higher order terms. The Taylor expansion to the 2nd order for ICX and ICY would be:  
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where 1st and 2nd denote the expansion to the 1st and 2nd order, and their expressions are :  
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and  
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According to the definition of traditional static noise margin, it treats 

VCX=VCY=VC, and VC would be the length of the square fits into the eye of voltage 

transfer curves. On the other hand, we set ICX=ICY=IC accordingly. The bifurcation 

points (V1B
V, V2B

V) and (V1B
I, V2B

I) can be acquired by solving the following expressions: 
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and 
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The procedure to solve (A.10) and (A.11) is similar to the procedure discussed in 

Chapter VII. They are three equations solving for three unknowns. The analytical 

formula solution is not been developed due to the difficulty of solving 4th order 

polynomial. Once it is solved, bifurcation points (V1B
V, V2B

V) and (V1B
I, V2B

I) will only be 

in terms of system parameters. Then, VC to IC conversion can be done using only 

equations with system parameters.  



 

132 
 

 

 

 

 

 

 

 

Table A.3. The Comparison on the Exact Values vs. 1st Order Expansion (VCX=VCY) 

Test  
data 

The Exact 
ICX = ICY 

(uA) 

ICX (uA) 
To the 

1st order 

ICY (uA) 
To the 

2nd order 
ICX error ICY error 

1 52.41 55.44 46.25 5.47% 11.76% 
2 64.06 66.68 59.28 3.93% 7.46% 
3 20.72 21.52 19.26 3.72% 7.07% 
4 26.67 27.07 26.19 1.50% 1.79% 
5 25.55 26.06 24.90 1.98% 2.53% 

Table A.2. The Comparison on the Exact Values vs. 2st Order Expansion (VCX=VCY) 

Test 
data 

The Exact 
ICX = ICY 

(uA) 

ICX (uA) 
To the 

2nd order

ICY (uA) 
To the 

2nd order
ICX Error ICY Error 

1 52.41 52.41 5.2.42 0.000011% 0.021938% 
2 64.06 64.06 64.06 0.000004% 0.000004% 
3 20.72 20.72 20.72 0.000002% 0.000017% 
4 26.67 26.67 26.67 0.000002% 0.000002% 
5 25.55 25.55 25.55 0.000003% 0.000005% 

Table A.1. The Critical Voltage and Critical Time on Five Random Design Choices 
Using Numerical Method on L-1 Model 

Test 

Data 
V1B

V V2B
V V1B

I V2B
I 

VC 

(V) 

IC 

(uA)
∆V1 ∆V2 ∆VX ∆VY 

1 1.5046 0.0607 1.1762 0.2903 0.559 52.4 0.328 -0.229 -0.231 0.3298

2 2.1206 0.1768 1.7106 0.4835 0.705 64.1 0.409 -0.306 -0.295 0.3984

3 0.9040 0.0744 0.7374 0.1978 0.287 20.7 0.166 -0.12 -0.121 0.1639

4 1.2443 0.0762 1.0272 0.2768 0.421 26.7 0.216 -0.200 -0.204 0.2210

5 1.0219 0.0902 0.8454 0.2471 0.334 25.6 0.175 -0.156 -0.158 0.1773
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Furthermore, we use Newton-Raphson on five random design choices shown in 

Table A.1. The results in Table A.1 are the exact values. We then compare on the exact 

values to the values from 2nd order Taylor expansion formula in Table A.2 and 1st order 

expansion in Table A.3. As we can see, the 2nd order expansion match the exact value 

closely, and the 1st order expansion has error averagely around 6.1%.  

 In conclusion, the developed critical current concept aligns well with critical 

voltage which is used in traditional static noise margin. As it can be seen in Table A.1, 

that higher the VC would give higher IC. Therefore, the critical voltage and critical 

current is correlated.  
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