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ABSTRACT 

 
Estimating Production and Cost for Clamshell Mechanical Dredges. 

 
(December 2004) 

 
Robert Fletcher Adair, B.S., Texas A&M University 

 
Chair of Advisory Committee: Dr. Robert Randall 

 
 
 
Clamshell dredges are used around the United States for both navigational and 

environmental dredging projects.  Clamshell dredges are extremely mobile and can 

excavate sediment over a wide range of depths.  The object of this thesis is to develop a 

methodology for production and cost estimation for clamshell dredge projects.  There are 

current methods of predicting clamshell dredge production which rely on production 

curves and constant cycle times.  This thesis calculates production estimation by 

predicting cycle time which is the time required to complete one dredge cycle.  By 

varying the cycle time according to site characteristics production can be predicted.  A 

second important component to predicting clamshell dredge production is bucket fill 

factor.  This is the percent of the bucket that will fill with sediment depending on the 

type of soil being excavated. 

 

Using cycle time as the basis for production calculation a spreadsheet has been created 

to simplify the calculation of production and project cost.  The production calculation 

also factors in soil type and region of the United States.  The spreadsheet is capable of 

operating with basic site characteristics, or with details about the dredge, bucket size, 
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and region.  Once the production is calculated the project cost can be determined.  First 

the project length is found by dividing the total amount of sediment that is to be 

excavated by the production rate.  Once the project length is calculated the remainder of 

the project cost can be found. 

 
The methods discussed in this thesis were used to calculate project cost for 5 different 

projects.  The results were then compared to estimates by the government and the actual 

cost of the project.  The government estimates were an average of 39% higher than the 

actual project cost.  The method discussed in this thesis was only 6% higher than the 

actual cost. 
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INTRODUCTION 

Purpose 

The overall purpose of this thesis is to develop a method to predict production for 

mechanical clamshell dredges using cycle time.  There are currently methods to predict 

production for cutter suction and hopper dredges.  The object of this thesis is to develop 

a working method for mechanical clamshell dredges.  The emphasis is on using an 

adjustable cycle time factor and bucket fill factor to determine production.  The cycle 

time is the period of time required to complete one dredging cycle.  The method also 

allows for a variance in production due to the ability of the material being dredged to fill 

the total volume of the bucket (fill factor).  Once the production is successfully estimated 

the output is used to predict the dredging total cost and duration.   

Background 

The earliest dredges were mechanical dredges.  A few thousand years ago, people began 

using “Spoon and Bag Dredge” (Huston, 1970).  This simple device consisted of a barge 

with at least one pole extending from the side of the vessel.  This pole had a bucket on 

the end which was used to remove sediment or debris from the bottom.  The sediment is 

then placed inside the barge.  Once the barge was full, it was emptied at the shore and 

the process continued.  Until the advent of the steam engine, dredges were powered by 

wind, animals or humans.  An example of a wind powered dredge is the Krabbelaar 

 
________ 
This thesis follows the style of the WEDA Journal of Dredging Engineering. 
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scraper (Herbich, 2000).  This was a wind powered, wooden hulled, scraper dredge.  

Once the steam engine and then the diesel engine were invented mechanical dredges 

began to resemble the ones used today.  

 

There are several types of dredges used in the United States and around the world today.  

There are mechanical dustpan, hopper, cutter head, and other special types.  Mechanical 

dredges are clamshell, backhoe, and bucket type dredges.  A dustpan dredge uses a 

suction line to excavate sediment.  Hopper dredges use a suction line and transport the 

excavated sediment on board the dredge.  Cutter head dredges also called cutter suction 

or pipeline dredges use a rotating cutter head to loosen the sediment before it is 

excavated through a suction line.  The breakdowns of the types of dredges in Figure 1 

are from the Navigational Dredging Center (NDC, 2003).  The pie graphs in Figure 1 

show both the breakdown of types of dredges and the amount of dredging from the 

relative graph size.  From Figure 1 the largest amount of dredging by volume is in the 

central United States, in the Mississippi river.  The majority of the dredging in this 

region is done by hopper and cutter suction dredges.  Mechanical dredging is prominent 

in North West, North East, Ohio River Valley, Alaska, and Hawaii.  There is also 

noticeable mechanical dredge use in the South East and West Coast. 
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Figure 1-Breakdown of Dredge Type Used Based on USACE District 

 
 
 
There are many classifications of mechanical dredges (Bray, 1997).  A backhoe dredge 

is literally a backhoe used in a marine environment.  It is either used off the shore, from 

a barge, or fixed to a vessel. A dipper dredge uses a rigid arm with a bucket on the end.  

It swings up as it cuts through the sediment.  A bucket ladder dredge uses a chain of 

buckets on a belt to excavate sediment.  The dragline dredge places its bucket away from 

the vessel in the sediment and then drags the bucket back towards the vessel.  Finally the 

clamshell dredge or grabber dredged uses a bottom opening bucket at the end of a crane 

(Figure 2).  The bucket is dropped or lowered directly down into the sediment, closed, 

and then raised to the surface.  Mechanical dredges can be used for building new 
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channels, deepening existing waterways, removing contaminated sediment, or for 

harvesting clams (Gaspar et al., 2003). 

 
An important characteristic of mechanical dredges is bucket size.  Figure 2 shows the 

distribution of bucket sizes for mechanical dredges for the United States in 2003 (IDR, 

2003).  From Figure 2 it is apparent that the majority of buckets are smaller than 15 yd3.  

There are several buckets between 15 and 30 yd3 (11 and 23 m3).  After 30 yd3 (23 m3) 

there are just a few buckets.  The largest bucket found is 50 yd3.  Hayes (2000) uses 

sizes from 1-100 m3 (1-131 yd3) because these are the limits of crane capacity.  This 

paper limits the range to 0-38 m3 (0-50 yd3) due to the availability of buckets in the 

United States.   
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Figure 3 shows a mechanical clamshell dredge working just offshore on the west coast 

of Japan in the town of Sakata.  The dredge is working near a public beach in late 

summer 2003.  This picture shows the main components on a mechanical dredge.  The 

dredge itself is the crane-like structure on the left side of the barge.  The crane positions 

the bucket above a desired location and then lowers it to the bottom of the waterway.  

The bucket picks up the sediment as it closes.  The closed bucket is raised out of the 

water and positioned over the barge.  Finally the bucket is opened over the barge and the 

dredged material is placed in the barge.  The cycle is then repeated for a new position 

until the desired depth is reached over the entire area.  Figure 3 also shows a work boat 

and the barge which is supporting the dredge.  The purpose of the barge is to support the 

weight of the dredging equipment and to position the clamshell bucket over the desired 

location. 
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Figure 3-Mechanical Dredge in Sakata, Yamagata, Japan, 2003 

 
 
 
Figure 4 shows the different parts on a clamshell bucket.  The hoist wire supports the 

weight of the clamshell and the sediment when it is full.  The arm is what the actual 

bucket pivots around.  During operation the bucket is dropped or lowered into the 

sediment and then closed.  The cutting edge penetrates and cuts the sediment.  The 

bucket then closes and is lifted to the surface.  There are some differences in clamshell 

buckets.  The middle clamshell in Figure 4 is a simple open bucket.  Some buckets are 

closed with gaskets to prevent water from escaping.  There are level cut clamshells such 
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as the ones described by Bergeron (2000).  These buckets are more useful for 

environmental dredging.  There are also other special buckets that are used for 

harvesting clams, these are made of a mesh that allows sediment to escape.  Figure 4 

displays the parts of a clamshell bucket as well as the bucket in the open and closed 

position.  The bucket is lowered directly into the sediment in the open position.  Once in 

the sediment, the clamshell is closed.  Once the bucket is closed, the bucket is lifted out 

off the sea floor of the waterway, and the sediment is then transported and placed in a 

barge.  The right side of Figure 4 shows the clamshell in the closed position.  According 

to Tsinker (2004), clamshell dredges are best suited for soft sediments and difficult to 

access locations.  Due to being on a barge the clamshell dredge is capable of being 

positioned in hard to reach locations.  Also, since the dredge uses a mechanical cable to 

control the bucket, the clamshell is limited in depth of operation only by the length of its 

cable. 
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Figure 4- Operation of a Clamshell Bucket (Key Components, Open Position, Closed Position) 

 

 

 

Literature Review of Clamshell Bucket Production and Cost Estimation 

Production for dredges is determined in various ways depending on the type of dredge.  

There are currently publicly available methods for estimating production for both hopper 

and cutter suction dredges (Miertschin 1997; Miertschin and Randall, 1998; Belisimo, 

2000). These methods use dredge pump and sediment characteristics to estimate 

production.  The specific gravity that can be carried is determined and used with other 

dredge specific properties to determine the time to dredge a given amount of material.  

Both of these methods then use their output to estimate project cost and duration. 
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Currently the Center for Dredging Studies (CDS) at Texas A&M University does not 

have a method for estimating production and project cost for mechanical clamshell 

dredges using cycle time.  Cycle time is the amount of time required for the dredge to 

complete one cycle.  This is usually in units of time. Once cycle time is known, delay 

factors, such as the time to change hopper barges, can be applied and the total length of a 

project can be determined.  Many cost estimation methods assume a constant value for 

cycle time.  This constant value is usually about 60 seconds (Bergeron, 2000; Hayes, 

2000).   One of the foci of this thesis is to determine the sensitivity of production rate to 

cycle time.    

 

Emmons (2001) used cycle time determined by depth and swing angle.  This is an 

improvement over using a constant cycle time, but did not allow for factors such as the 

rate a bucket is raised or lowered, swing rate, as well as bucket opening and closing 

time.  It is important to be able to vary the individual components of the dredge cycle in 

mechanical clamshell dredging.  In these projects it is common to limit the velocity that 

the clamshell is allowed to travel through the water column.  Slowing the bucket velocity 

reduces re-suspension, and reduces the sediment from re-suspension when the bucket 

strikes the bottom.    Besides bucket velocity in the water column, the other parameters 

in cycle time are swing angle, swing velocity, time to open the bucket, time to close the 

bucket, and water depth.  The combined time to complete all of these tasks is the cycle 

time, which is combined with bucket volume to define production (m3/h, yd3/h).     

 



 

 

10 

An additional factor to be considered in evaluating production is the bucket fill factor.  

The fill factor is the percentage of the bucket that is filled with sediment during a given 

dredge cycle.  Depending on the sediment type, bucket velocity, and fall velocity, this 

value can vary considerably.  Dense or hard sediments make it difficult for the clamshell 

to close, and the sediment may contain large voids.  Clays are difficult for a bucket to 

cut.  Due to the increased difficulty of excavating the dense clays, the bucket does not 

always reach its maximum possible depth into the sediment.  If the bucket does not reach 

its maximum depth, it can not fill completely.  Another reason a bucket may not be 

completely filled is due to voids between large particles such as rocks.  A clamshell 

bucket uses its own weight and some mechanical advantage to cut the sediment and fill 

the bucket, so rocks can also keep the bucket from closing.  A method of estimating the 

fill factor has been developed by Bray (1997).    This method works well, but was 

developed for small buckets.  It uses the bucket size and sediment type to provide a 

reduction factor.  This reduction factor is multiplied by the size of the bucket and then is 

used to determine the estimated amount of sediment that is removed each cycle.  

However, it is necessary to determine the fill factor for buckets of any size.    This is 

accomplished by fitting data from Bray (1997) and Emmons (2001) over the full range 

of bucket sizes. 

 

Cycle time and fill factor are thus the dominant parameters in mechanical dredge 

production.  The cycle time provides the time required for each dredge cycle and the fill 
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factor determines the amount of sediment removed each time.  These factors are 

combined to estimate the maximum production rate for a clamshell dredge.   

Clamshell Dredge Production Estimation Procedure 

The procedure for estimating mechanical dredge production is divided into 4 stages.  

The first stage is developing a method of estimating cycle time.  First, the parameters 

that determine cycle time must be determined.  These parameters are water depth, bucket 

fall velocity, bucket close time, bucket open time, bucket lift velocity, swing angle, and 

swing velocity.  Second, default or normal values for each of these parameters are 

determined.  For example for most projects the average swing angle is 120 degrees 

(Emmons, 2001). The method must also allow the user to alter each parameter to match 

a specific dredge, or project requirements.  This lets the method account for special cases 

such as environmental dredging, or special buckets.  For an environmental project, a 

bucket may only be allowed to ascend at one third of its normal rate, and this increases 

the cycle time while decreasing the production rate.  The goal is to obtain the average 

values from industry or the NDC (2003) for normal projects, and to have a method to 

vary these parameters for a specific project or dredge.  This provides a cycle time that 

works for both normal and special cases. 

 

The second stage for the mechanical dredge production estimation method is to 

determine the bucket fill factor.  The fill factor is the percentage of the total volume of 

the bucket that is filled with sediment.  For certain materials the bucket is not completely 

full. Bray (1997) provides limited data for fill factor for small dredges that are less than 
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8 m3 (10 yd3).  The fill factor for this method comes from curve fitting these data points 

with limited data points for larger dredges.  This provides the method for estimating 

production for a large range of mechanical clamshell dredges. 

 

The third stage is to develop a cost estimating method that uses the output from the 

production calculations to determine project cost.  For this stage it is necessary to obtain 

contract information from the NDC (2003).  Factors such as dredge cost, crew size, wage 

rates, mobilization costs, and disposal costs are considered.  These data must be obtained 

from various regions to account for cost differences between the Pacific, Atlantic, and 

Gulf coasts.  The U.S. Institute for Water Resources Navigational Data Center (NDC) 

provides information about the total cost of all dredging contracts awarded by the United 

States Army Corps of Engineers (USACE).  This information is used to find the 

relationships between project costs around the United States.   

 

The final stage of the mechanical clamshell dredge program is to verify its results 

against known projects and do a sensitivity analysis for the production estimation 

program.  The sensitivity analysis is done to determine how production varies when 

either cycle time or fill factor are varied.  The cost estimation is checked against actual 

projects from the NDC (2003).  The projects used need to vary in both location and size 

to show the program is valid over a wide range of dredges.  Once the production and 

cost estimation methods were verified, then the method was incorporated into an easy to 
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use spreadsheet form that allows the user to quickly estimate production and cost for a 

clamshell dredging project.    

 

It is beneficial to have a method for predicting production of mechanical dredges based 

on cycle time.  By basing the calculations on cycle time the production rates are accurate 

for a wide range of dredges and projects.  The method is adjustable for the requirements 

of a specific project and still provides accurate results. 
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CLAMSHELL BUCKET PRODUCTION THEORY 

Cycle Time (Tcycle) 

The cycle time is the total time required for the dredge to empty, move to the desired 

location, fill the bucket and empty it.  As the cycle time increases, so does the project 

length, and therefore cost.  The terms are defined as swing angle ( )swθ , swing angulare 

velocity ( )swω , bucket fall velocity ( )
fu , the time to close the bucket ( )

gt , the bucket lift 

velocity ( )lu , the time to empty the bucket ( )et , the water depth ( )d , and the freeboard 

height of the barge ( )bh . 

( ) ( ) ( )blbfegswswcycle hduhduttT ++++++= ωθ2                                    (1) 

Swing Angle (θsw) 

The first parameter is swing angle ( )swθ .  The swing angle is the difference between the 

location where sediment is dropped into the hopper barge and the location where the 

sediment is excavated.  Swing angle is expressed in degrees for these calculations.  An 

average value for swing angle is 120 degrees.  This value is doubled when the total cycle 

time is calculated to account for swinging to and from the excavation site. 
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Swing Speed (ωsw) 

Swing speed ( )swω  is the rate that the mechanical clamshell dredge rotates to and from 

the excavation site and the barge.  This is consistent with the swing speed of large 

cranes, and a default value is 21 degrees per second. 

Fall Velocity (uf) 

The rate or speed at which the bucket is lowered to the bottom is the fall velocity ( )
fu .  

The bucket can be dropped in freefall, or lowered at a controlled rate.   

Grab Time (tg) 

The grab time ( )
gt  is the time required to close the clamshell on the sediment and is 

given in seconds.  A common grab time value is 1 second, and it can be adjusted for 

buckets of various sizes. 

Lift Velocity (uf) 

The velocity that the bucket is raised through the water column is the lift velocity ( )lu .  

During environmental dredging the fall velocity is decreased to control re-suspension.  

Re-suspension occurs when sediment leaves the bucket.  This is when sediment enters 

the water column due to flow over the top of the bucket, sediment leaking out of the 

bucket, the impact of the clamshell of the bottom.  This is a problem in environmental 

dredging where contaminated sediments are being excavated.  A common value for lift 
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velocity is about 0.3 m/s (1 ft/s) during environmental dredging or 1 m/s (3.3 ft/s) during 

normal dredging. 

Empty Time (te) 

The empty time ( )et  is the time required for the sediment to leave the bucket after 

opening.  An average value is 2.6 seconds, which is the suggested default value. 

Depth (d) 

For cycle time the average depth ( )d  is used.  This is the average excavation depth for 

the project.  The depth is multiplied by the lift and fall velocity to determine the amount 

of time the bucket is in the water column. 

Freeboard Height of the Barge (hb) 

The barge freeboard height ( )bh  is the height above the free surface elevation that the 

bucket must be lifted.  The freeboard height includes the height of the side of the barge 

plus any additional height necessary to clear the deck of the barge and any sediment.  

This freeboard height is then added to the depth to find the total distance that the bucket 

must travel vertically.   
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Bucket Fill Factor 

The bucket fill factor is calculated by combining data from (Emmons, 2001) and (Bray, 

1997).  These data sets are then fit to an exponential curve and forced to stay below 1 for 

values up to 50 m3 (65 yd3).  If the fill factor value becomes greater than 1 the program 

calculates that the bucket is picking up a volume of sediment greater than its capacity.  

For the remainder of the paper the dredged sediment is classified into 6 categories.  

These categories are used to calculate bucket fill factor and bulking factor.  The 

classifications are mud, loose sand, compact sand, sand and clay, stones, and broken 

rock.  Mud consists of sediments such as loose silts, clays, and other fine grained 

sediment.  Loose sand is sand that is not compacted.  Compacted sand is dense sand that 

has been loaded or compacted.  Sand and clay is a mixture of sands and clays.  Stones 

consist of small rocks from gravel to cobbles.  Broken rock is any sediment larger than 

cobbles. 

 

Equation 2 is the bucket fill factor (fm) related to the bucket size (C) for mud: 

 

mf = 0.0474 Ln(C) + 0.7255                    (2) 

 

With small buckets the fill factor is commonly between 75 and 85 percent.  Once the 

bucket is 40 m3 (52 yd3) or larger the fill factor is greater than 90 percent.  The curve 

also fits the criteria that the fill factor is never greater than 1.  It is also apparent from 

Figure 5 that it is important to be very accurate with bucket size below 10 m3 (13 yd3).  
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The fill factor varies rapidly in this zone and can cause large errors in the production 

estimation program if an incorrect bucket size is used. 

 
 

fm = 0.0474Ln(C) + 0.7255
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Figure 5-Fill Factor for Mud (Multiply by 1.3 to Convert to yd

3
) 

 
 
 
Figure 6 is the fill factor curve for loose sand.  Equation 3 is the bucket fill factor curve 

for loose sand:  

 

mf = 0.0614 Ln(C) + 0.6607                        (3) 

 

The curve begins at 0.65 and reaches 0.9 for 50 m3 (65yd3)buckets.  One point is used at 

50 m3 (65 yd3) to keep the function below 1.  It follows the same trend as the fill factor 

for mud with a very steep slope in the range with small buckets.   
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Figure 6-Fill Factor for Loose Sand (Multiply by 1.3 to Convert to yd

3
) 

 
 
 
The fill factor curve for compact sand is displayed in Figure 7.  Two additional points 

were used at 40 m3 (52 yd3) and 50 m3 (65 yd3)to keep the function below 1.  The reason 

for this is that the initial slope is greater than the first two cases.  With the two points the 

fill factor reaches 0.9 at 50 m3 (65 yd3).  The slope is relatively small once the bucket is 

larger than 20 m3 (26 yd3). Equation 4 is the expression for compact sand:  

 

mf = 0.0933 Ln(C) + 0.5517                         (4) 
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fm = 0.0933Ln(C) + 0.5517
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Figure 7-Fill Factor for Compact Sand (Multiply by 1.3 to Convert to yd

3
) 

 
 
 
For sand and clay the fill factor reaches 0.9 in Figure 8.  There is one point placed at 50 

m3 (65 yd3)to keep the curve below 1.  The fill factor reaches 0.8 by 20 m3.  Between 20 

m3 (26 yd3) and 50 m3 (65 yd3) the slope is nearly linear.    The sand/clay mixture 

continues the trend of rapid change between 0 and 20 m3 (26 yd3). Equation 5 is the 

curve for sand and clay. 

mf = 0.1228Ln(C)+0.4214                         (5)
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fm = 0.1228Ln(C) + 0.4214
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Figure 8-Fill Factor for Sand and Clay (Multiply by 1.3 to Convert to yd

3
) 

 
 
 
The stone curve in Figure 9 is the first to not require an additional data point.  When 

fitted to a natural log the fill factor stays below 1 from 0 to 50 m3 (65 yd3) with the 

initial value as 0.25.  Stones normally have a small fill factor for small buckets.  The 

reason is that it is difficult for small light buckets to penetrate stones.  The fill factor has 

a range from 0.25 at 0 to 0.81 at 50 m3(65 yd3)  The expression for the stone fill factor 

curve is Equation 6: 

mf  = 0.1443 Ln(C) + 0.25                  (6) 

 



 

 

22 

 

fm = 0.1443Ln(C) + 0.25
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Figure 9-Fill Factor for Stones (Multiply by 1.3 to Convert to yd

3
) 

 
 
 
Broken rock is the most difficult sediment type to excavate, and it is very irregularly 

shaped.  This sediment type also contains the largest variation in sediment sizes.  The 

third reason broken rock has a low fill factor is that large voids can form between rocks.  

Figure 10 shows the fill factor curve for broken rock.  The initial value for broken rock 

is 0.1 and at 50 m3 (65 yd3) the fill factor approaches 0.7.  Similar to the stone curve it is 

not necessary to force the curve below 1.  The equation for the broken rock bucket factor 

is Equation 7. 

 

mf  = 0.1443 Ln(C) + 0.1                (7) 
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fm = 0.1443Ln(C) + 0.1
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Figure 10-Fill Factor for Broken Rock (Multiply by 1.3 to Convert to yd

3
) 

 
 
 
The bucket fill factors allow the amount of sediment removed each dredge cycle to be 

determined.  These equations are integrated into the production and cost estimation 

spreadsheet and function in the background.   

 

Comparison of Methods for Estimating Bucket Fill Factor 

 

For this thesis three methods of determining bucket fill factor are compared.  Method 1 

uses data provided by Bray (1997).  These data provide two values for fill factor for each 

sediment type.  These values are for relatively small buckets (<10 m3, <13 yd3).  In the 

comparisons the fill factors are found by linearly interpolating between the two given 

values.  Method 2 utilizes equations developed by Emmons (2001).  Bucket size and 



 

 

24 

sediment type are input into the equation, and it provides a fill factor value.  The third 

method (method 3) uses the equations discussed in the previous section to calculate fill 

factor.  Though methods 1 and 3 use the same sediment classifications, method 2 uses 

slightly different classifications.  All three methods included sand, and therefore the 

direct comparison is performed using sand.  

 

Figure 11 is a direct comparison between bucket fill factor and bucket size.  The range is 

from 0 to 50 m3 (65 yd3).  Method 2 begins above 1 and then drops below 1 at 

approximately 5 m3 (7 yd3).  The curve stays near 1 until 40 m3 (52 yd3), and then at 40 

m 3 (52 yd3) the curve begins to decrease.  The curve for method 3 begins near 0.7 and 

gradually increases to 0.9 by 50 m3 (65 yd3).  Method 1 uses a linear curve fit to predict 

values past the provided data points (Method 1b).  Method 1 is very effective for small 

buckets (<10 m3) (<13 yd3), but it is not designed to work past that point.     
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Figure 11-Comparison of Bucket Fill Factors (Multiply by 1.3 to Convert to yd

3
) 

 
 
 
Figure 12 is the relationship between the three fill factor methods.  The purpose of the 

graph is to display the relationship between the size of the bucket, and the predicted 

amount of sediment the methods predict is excavated.  The graph is over a full range of 

bucket sizes from 0 to 50 m3 (65 yd3). The predicted amount of sediment excavated (Pe) 

is the fill factor (fm) for a specific method multiplied by the actual size (C).  Equation 8 

is the relationship between the predicted amount of sediment excavated and the fill 

factor. 

 

Pe = (C)( fm)                  (8) 
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Whenever the curve for a method is less than the actual size curve the fill factor is less 

than 1, and when the curve for a fill factor is greater than the actual size the fill factor is 

greater than 1.  From 0 to 20 m3 (26 yd3) all three methods appear to be collinear.  At 

about 20 m3 (26 yd3) method 1 begins to diverge from the actual bucket size, and it 

becomes unusable because the predicted amount of sediment excavated becomes larger 

than the actual size of the bucket.  The other two methods function well to 50 m3. 
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Figure 12-Comparison of Predicted Amount of Sediment Excavated as Predicted Using the Different 

Bucket Fill Factor Methods 

 
 
 
Figure 13 displays the relationships between the 3 methods and the actual size for 

buckets from 0 to 10 m3 (13 yd3).  Method 2 is nearly collinear with the actual size 

between 6 m3 (8 yd3) and 10 m3 (13 yd3).  Between 0 and 6 m3 (8 yd3) method 2 predicts 
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the factored size to be greater than the actual size.  From 0 to 5 m3   (7 yd3) method 1 and 

method 3 are similar.  Both methods stay well below the actual size in this range.  At 5 

m3 (7 yd3), method 1 begins to approach the actual size curve.  Method 3 stays 

significantly less than the actual size curve until after 10 m3(13 yd3).  Method 3, 

developed in this thesis, provides the best results for both large and small buckets. 
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Figure 13-Fill Factor Comparison for Small Buckets (Multiply by 1.3 to Convert to yd

3
) 

 
 

Production Estimation and Delay Factors 

Once cycle time ( cycleT ) and bucket fill factor ( mf ) are calculated, they are used to 

evaluate the nominal production (Pnom).  Bray (1997) defines nominal production as: 
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m

cycle

nom Cf
T

P
3600

=                                      (9) 

 

Equation 9 is the nominal production in either yd3 or m3 per hour.   This depends on the 

units of the bucket size (C).  Nominal production Pnom is one hour (3600 seconds) 

divided by the cycle time ( cycleT ) and then multiplied by the bucket capacity (C) and the 

bucket fill factor ( mf ).  However, nominal production can be delayed for several 

reasons, for example the time required to change hoppers or advance the dredge.  The 

first delay factor ( af ) to consider is the time required to advance the dredge.  Bray 

(1997) defines this as:  








 +
=
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a

1

1
                       (10) 

 

In equation 10, ta is the time required to advance the dredge, B is the bulking factor that 

is dependent on the sediment type and water content, A is the average area dredged, and 

z is the average thickness of the material.    The second major delay is the time for 

changing hopper barge ( hf ).  
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                       (11) 

All of the variables in Equation 11 are the same as in Equation 10 with the addition of 

the hopper capacity H in meters, and th is the time required to change the hopper.  Once 
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the delay factors are calculated, the actual production (Pact) can be calculated using the 

nominal production (Pnom) and the delay factors ( ha ff ). 

  nomhaact PffP =               (12) 

 

Pact is the actual production rate of the dredge (m
3/h or yd3/h), and all of the variables in 

Equation 12 have been defined previously in Equations 10 and 11.  The actual 

production is the production rate at which the dredge can operate and is the value used to 

calculate project cost.  The actual production rate does not include delays due to bad 

weather or equipment malfunction.   
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CLAMSHELL COST ESTIMATION 

Introduction to Clamshell Cost Estimation  

Once the production rate is determined the project cost can be estimated.  Two things 

must be considered to determine the cost of the project.  First, all of the individual costs 

must be calculated.  Secondly, the length of the project must be calculated.  The project 

length is determined by dividing the total sediment to be excavated by the maximum 

production rate.  This value is then used to determine the length of time equipment is 

rented, and how long workers must be paid.  The cost data has be taken from 3 sources.  

Means (2004) provides cost data on labor and some rental equipment and also provides 

methods to convert cost data from past years to current year values.  The second source 

of cost data is the Institute of Water Resources Navigational Data Center’s Report 

(NDC, 2003).  NDC (2003) data provides overall project costs for around the country, 

and these data are used to create regional cost factors.  These factors adjust project costs 

for various regions in the country.   The final source of cost data is from previous work 

done by Emmons (2001).  The method for estimating cost is discussed in more detail in 

the program architecture section. 

Regional Cost Factors 

The estimated cost for the project comes from average cost data for the United States.  

There is a substantial difference between project costs in different regions of the country.  

This is due to labor rates, equipment costs, and other regional cost differences.  For this 

reason it is necessary to adjust the total project cost depending on the area it takes place.  
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The cost estimation portion of the program is based on a national average.  Therefore it 

is necessary to modify the results to find the project cost for the specific regions.  The 

main regions in the United States are Alaska/Hawaii, Pacific Coast, Gulf Coast, Atlantic 

Coast, and the Great Lakes.  The NDC provides the total cost of all contracts awarded.  

The first step in determining a cost factor is to sort all of the contracts by region.  Then, 

all of the projects are plotted based on cost per m3 (yd3).   Then the plots are visually 

inspected so that outliers can be removed.  These outliers are projects that have a 

considerable larger average cost per volume than the rest of the data set.  After all of the 

outliers have been removed, the average cost per volume for that region is calculated.  

The cost per volume for a specific region is then divided by the average cost per volume 

for the entire country.  The ratio that results is the regional cost factor.  This factor is 

then multiplied by the total cost of the project from the program.  Figure 14 through 

Figure 23 display the range in project costs for specific regions.  The data used came 

from the NDC (2003) and include all USACE mechanical clamshell dredging projects 

between 1990 and 2002.  The data have been adjusted to 2004 dollars by using inflation 

factors from (Means, 2004).  The cost per volume is determined from the actual total 

project cost divided by the total amount of sediment removed.  The number of projects is 

on the x-axis, and the average cost per volume is on the y-axis.  

 

Figure 14 is a graphical representation of all of the mechanical dredging projects in 

Alaska and Hawaii from 1990-2002.  The projects range from $6.50 per m3 ($5 per yd3) 

to almost $182 m3 ($140 per yd3).  There are also only 11 projects in this region over the 



 

 

32 

12 year period.  To determine the average cost per yd3 the two projects above $52 per m3 

($40 per yd3) were removed.  The projects above $52 per m3 ($40 per yd3) do not 

represent normal projects and just increase the average cost. 

 

Once the projects above $52 per m3 ($40 per yd3) are removed there are 9 projects for 

the Alaska Hawaii region.  From Figure 15 it is shown that the projects range from a 

little less than $6.50 per m3 ($5 per yd3) to $45.50 per m3 ($35 per yd3).  The average 

cost for the region is $18 per m3 ($13.84 per yd3).  The Alaska and Hawaii region has the 

highest average cost because of increased transportation costs, labor rates, and large 

parts of the Alaskan coast freeze during the winter. 
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Figure 14-All Alaska and Hawaii Projects (1990-2002) (Multiply by 1.3 to Convert Cost to 

Dollars/m
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Figure 15-Alaska and Hawaiian Projects without Outliers (1990-2002) (Multiply by 1.3 to Convert 

Cost to Dollars/m
3
) 

 
 
 
Figure 16 shows all the projects for the Pacific coast, and there were over 50 projects 

from 1990-2002.  The range of cost per cubic yard is from less than $3.90 per m3 ($3 per 

yd3) to almost $156 per m3 ($120 per yd3).  The majority of the projects are below $26 

per m3 ($20 per yd3).  There are also several projects between $26 per m3 ($20 per yd3) 

and $52 per m3 ($40 per yd3).  To find the average the four projects above $52 per m3 

($40 per yd3) were removed. 

 

With the 4 outliers removed there were 50 projects.  This is a significant improvement in 

total number of projects from the Alaska/Hawaii region.  The range is from less than 

$3.90 per m3 ($3 per yd3) to almost $45.50 per m3 ($35 per yd3).  The average is $10.09 
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per m3 ($7.76 per yd3) and is visually consistent with Figure 17 where the majority of the 

projects are between $2.6 per m3 ($2 per yd3) to $13 per m3 ($10 per yd3).  
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Figure 16-All Pacific Clamshell Dredging Projects (1990-2002) (Multiply by 1.3 to Convert Cost to 

Dollars/m
3
) 
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Figure 17-Pacific Projects without Outliers (1990-2002) (Multiply by 1.3 to Convert Cost to 

Dollars/m
3
) 

 
 
 
The Gulf coast presents a problem in predicting mechanical clamshell dredging projects 

because there are very few clamshell dredging projects completed in this region.  

Between 1990 and 2002 there were only 7 mechanical dredging projects contracted by 

the USACE, and these projects are shown in Figure 18.  The majority of dredging on the 

Gulf coast is accomplished with hopper or cutter suction dredges.  In every region all 

projects above $52 per m3 ($40 per yd3)were removed.  An exception has been made for 

the Gulf coast.  The project at $49.40 per m3 ($38 per yd3) is removed.  Since there were 

only 7 data points, then the $49.40 per m3 ($38 per yd3) point skewed the results. 
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With the outlier removed Figure 19 shows the 6 projects on the Gulf Coast between 

1990 and 2002.  The projects all fall between $2.60 per m3 ($2 per yd3) and $18.20 per 

m3 ($14 per yd3).  The Gulf Coast has the second lowest costs of any region in the 

country after the Atlantic coast with a regional average of $9.26 per m3 ($7.12 per yd3).   
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Figure 18-All Gulf Clamshell Dredging Projects (1990-2002) (Multiply by 1.3 to Convert Cost to 

Dollars/m
3
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Figure 19-Gulf Projects without Outliers (1990-2002) (Multiply by 1.3 to Convert Cost to 

Dollars/m
3
) 

 
 
 
Figure 20 displays all clamshell dredging projects on the Atlantic coast between 1990 

and 2002.  The majority of the projects are below the $26 per m3 ($20 per yd3) mark.  

The most expensive case had a cost of almost $130 per m3 ($100 per yd3), but all 

projects above $52 per m3 ($40 per yd3) were removed to find the average.   

 

With the 2 outliers removed from Figure 21 there were 88 projects remaining. 18 of 

these projects have a cost of over $13 per m3 ($10 per yd3).  The average for the Atlantic 

coast is $9.15 per m3 ($7.04 per yd3) which is the lowest in the United States.  This is 

slightly less than the Pacific coast and $0.10 per m3 ($0.08 per yd3) lower than the Gulf 

coasts cost.  
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Figure 20-All Atlantic Coast Clamshell Dredging Projects (1990-2002) (Multiply by 1.3 to Convert 

Cost to Dollars/m
3
) 
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Figure 21-Atlantic Projects without Outliers (1990-2002) (Multiply by 1.3 to Convert Cost to 

Dollars/m
3
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There were more mechanical clamshell dredging projects in the Great Lakes than any 

other region between 1990 and 2002.  In Figure 22 it is apparent that all of the projects 

but one are under $39 per m3 ($30 per yd3).  The remainder of the projects are between 

$3.9 per m3 ($3 per yd3) and $35.10 per m3 ($27 per yd3).  Therefore the project with a 

cost of $84.50 per m3 ($65 per yd3) is removed and the remainder of the projects are 

used to calculate the average.  This is consistent with removing all projects over $52 per 

m3 ($40 per yd3). 

 

With the one outlier removed the Great Lakes projects range from $0 to almost $33.80 

per m3 ($26 per yd3).  This can be seen in Figure 23.  The average for this region is 

$10.45 per m3 ($8.04 per yd3).  This is a full dollar more than the Pacific coast.  The 

Great Lakes region is the second most expensive region after Alaska/Hawaii.   
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Figure 22-All Great Lakes Clamshell Dredging Projects (1990-2002) (Multiply by 1.3 to Convert 

Cost to Dollars/m
3
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Figure 23-Great Lakes Projects without Outliers (1990-2002) (Multiply by 1.3 to Convert Cost to 

Dollars/m
3
) 

 
 
 
Table 1 shows the average cost per volume for each region.  The average cost per 

volume at the bottom is the overall average.  The regional cost factor is the ratio of the 

regional average divided by the overall average.  The Alaska/Hawaii region has the 

largest average cost per volume and almost doubles the overall average cost per volume.  

The Atlantic Coast region has the lowest regional cost factor.  The ratios between the 

national averages matches the expected values, with Alaska/Hawaii being the highest, 

and the Gulf and Atlantic Coasts being the lowest.  Once the total cost of a project is 

calculated, it is multiplied by the regional cost factor to determine the total project cost.  

For example, a project with all of the same inputs costs is almost twice as much in 

Anchorage, Alaska, as it would in Boston Harbor. 
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Table 1-Regional Cost Factor 

Region   Average Cost/yd3 Average Cost/m3 Regional Cost Factor 

Alaska/Hawaii  $13.84   $18.10    1.71 
Atlantic  $7.04   $9.21    0.87 
Gulf   $7.12   $9.31    0.88 
Great Lakes  $8.04   $10.52    0.99 
Pacific   $7.76   $10.15    0.96 

Average  $8.11   $13.28 
 
 
 
The regional cost factor is necessary to provide accurate cost estimation.  Though 

production rates should be consistent anywhere in the United States given the same 

sediment and ocean conditions, project cost varies significantly between the 

Alaska/Hawaii region and the rest of the United States.  The other four regions are 

within 10% of each other.   
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SOFTWARE FOR CLAMSHELL DREDGE COST ESTIMATION 

Program Architecture 

The cycle time, bucket fill factor, cost estimation, regional cost factor, and delay factors 

have been combined into an Excel spreadsheet to calculate production and total project 

cost.  The main inputs for the spreadsheet are shown in Table 2, and all of the input units 

are in metric.  The first column shows the variables for each term.  The cells in the 

second column are the main inputs for the program.  The cells in yellow are calculated 

by the spreadsheet and should not be changed.  The third column contains recommended 

default values if the site specific value is not known.  The fourth column shows the units 

for each variable, and the fifth column contains a brief definition of each variable.   

 

Table 2-Program Input 

Parameter Value Defaults Units Definition 

Sediment type 2 2   See Table 3  

R 3 3   Region 

A 1142.7 1142.7 m^2 Average area dredged 

z 2 2 m  thickness of material dredged 

H 3440 3440 m^3 Hopper capacity 

C 18.3 18.3 m^3 Capacity of the bucket 

V 1000000   m^3 volume to be dredged 

d 50   m depth 

h 2 2 m freeboard height of the barge 

ta 0.33 0.33 Hrs Time to advance the dredge 

sa 120 120 deg Average swing angle 

th 0.25 0.25 Hrs Time to change hoppers 

B 1.1     Bulking factor 

fa 0.96     delay factor for dredge advance 

fh 0.98     delay factor for barge change 

fm 0.84     modification factor 

Volume Dredged 15.36   m^3 volume in-situ dredged 

Pnom 232.19   m^3/hr Nominal Production  

Pmax 184.61   m^3/hr Maximum Production  

CT 238.11   seconds Cycle time 
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Table 3 is the key for the various sediment types, and the appropriate sediment type.  

The sediment type effects the bucket fill factor calculation as well as the bulking factor.  

The bulking factor is used to calculate how long it takes for a hopper barge to fill.  

 

The second input is the region, and Table 3 also shows the appropriate number to input 

for each region.  The third input is A, the average area dredged.  This is the area that the 

dredge can excavate before it has to move.  The next inputs are the average thickness (z) 

of the material to be dredged, the capacity of the hopper barge in m3 (H), the capacity of 

the bucket (C), and the total volume (V) of sediment to be removed in the project.  The 

water depth  at the site(d), and the freeboard height of the hopper barge (h), are needed 

to calculate the total vertical distance the bucket moves.  The total distance the bucket 

moves is used in the cycle time calculation.  The time to advance the dredge (ta), and the 

average swing angle of the dredge (θsa) denoted by “ta” in the spreadsheet.   The swing 

angle (θsa) is multiplied by the swing rate (ωsw) to determine a portion of the cycle time.  

The final input is the time required to change hopper barges (th). 

 

Table 3-Sediment Type Key and Region Key 

Soil Type   Number  Region   Number 

Mud  1  Alaska/Hawaii 1 

Loose Sand  2  East Coast  2 

Compact Sand  3  Gulf Coast  3 

Sand and Clay  4  Great Lakes 4 

Stones  5  West Coast 5 

Broken Rock  6     
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Table 4 is the second page of the spreadsheet, which contains calculations of the cycle 

time and the other factors that are used to sum all of components of the dredge cycle.  

The first column is the different components of the dredge cycle.  The second column is 

the values that the program is currently using.  Each value can be adjusted for a specific 

dredge or location.  The depth value and freeboard height of the barge come straight 

from the input phase and should not be manually adjusted on this page.  The third 

column contains all of the default values.  Components such as lift velocity can be 

adjusted to simulate environmental dredging projects.   

 

Table 4-Cycle Time Calculation 

Cycle time     

     

Factor Time Default 

Average Swing Angle (degrees) 120 120 

Swing speed (deg/sec) 21 21 

Average Depth (m) 12.2   

Lift velocity (m/s) 0.30 0.3 

Grab time (s) 1 1 

Fall Velocity (m/s) 1 1 

Time to empty clamshell (s) 2.6 2.6 

Freeboard height of barge (m) 2   

     

Cycle time 75.9 seconds 

 
 
 
The bulking factor is the amount the sediment is expected to swell (bulk) when it is 

excavated.  This value is used to predict how often a hopper is filled, and therefore how 

often the hopper needs to be replaced.  The program reads the sediment type from the 

input page and then picks the correct bulking factor from Table 5. 
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Table 5-Bulking Factor (Bray, 1997) 

Bulking Factor Calculation   

    

Sediment Type 
Bulking 
Factor (B) 

Mud 1.15 

Loose Sand 1.1 

Compact Sand 1.3 

Sand and Clay 1.25 

Stones 1.3 

Broken Rock 1.5 

 
 
 
Table 6 displays the bucket fill factor calculation table.  The spreadsheet uses the bucket 

size and calculates the fill factor for each type of sediment.  Then the last cell checks the 

input page and uses the appropriate sediment type for the problem.   

 

Table 6-Bucket Fill Factor 

Fill Factor   

    

Sediment type   

Mud 0.86 

Loose Sand 0.84 

Compact Sand 0.82 

Sand and Clay 0.78 

Stones 0.67 

Broken Rock 0.52 

  

 
 
 
The average regional cost factors are tabulated in Table 7.    The spreadsheet checks the 

input page and selects the appropriate regional cost factor.  Then, the regional cost factor 

is multiplied by the total project cost to determine the project cost for that region. 
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Table 7-Regional Cost Factor 

  
average 
cost factor 

Alaska $13.84 1.71 

East $7.04 0.87 

Gulf $7.12 0.88 

Great Lakes $8.04 0.99 

West $7.76 0.96 

     

Factor Used   0.87 

 
 
 
Table 8 contains the factors used to adjust a projects cost for a specific past year (Means, 

2004).  The total project cost is multiplied by the index for 2004 and then divided by the 

index for the appropriate year.  

  

Table 8-Yearly Project Cost Transformation Factor 

Current Cost Index 

Year Index 

2004 100 

2003 99.2 

2002 96.8 

2001 94.1 

2000 90.9 

1999 88.4 

1998 86.5 

1997 84.8 

1996 82.9 

1995 80.9 

1994 78.5 

1993 76.5 

1992 74.8 

1991 72.8 

1990 70.9 

 
 
 
The production calculations are located at the bottom of the input page.  The first row is 

the bulking factor which comes from the bulking factor calculation chart.  The next 
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calculation is the delay factor for advancing the dredge.  The delay factor for changing 

the hopper (fh) is the third row.  The fourth row is the modification factor which comes 

from Table 9.  The next value is the volume dredged, which is (fm) multiplied by the 

bucket size.  Pnom is the nominal production rate that comes from the cycle time and the 

modified bucket size.  Pact, the actual production rate is Pnom multiplied by (fa) and (fh).  

Pact is used for calculating project length and for the other project cost calculations.  The 

final row is the cycle time that the program calculated. 

 

Table 9-Production Calculation 

B 1.1   Bulking factor 

fa 0.90   delay factor for advancing the dredge 

fh 0.95   delay factor for changing hoppers 

fm 0.84   modification factor 
Volume 
Dredged 15.36 m^3 volume of sediment actually dredged 

Pnom 727.95 m^3/hr Nominal Production (Adair method) 

Pmax 620.16 m^3/hr Maximum Production (Adair Method) 

CT 75.95 seconds Cycle time 

 
 
 
Some of the cost data used for the program are based on costs from the year 2000.  Table 

10 is the chart used to find the difference in prices between 2000 and 2004.    The ratio 

between the 2000 and 2004 cost factors is multiplied by all cost values that could not be 

found for 2004. 

 

Table 10-Cost Factor Transform from 2000 to 2004 (Means, 2004) 

2000 Cost Factor 120.9 

2004 Cost Factor 133 

Cost Factor Ratio 1.1 
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Table 11 contains several intermediate values used to calculate the project cost.  The first 

column is the input values and the second column is the cost values converted from 2000 

dollars to 2004 dollars.  The third column is the description of each input.  The size of 

the clamshell and hopper capacity are both from the input sheet.  The third row is the 

dollar value of a hopper.  The next two rows are the depth and cycle time from the 

production portion of the program, and the following three rows are used in fuel 

calculation where the fuel cost is for diesel fuel.   

 

The subsequent five rows are cost values that have been transformend from 2000 to 

2004 values.  The final rows are the depreciation period, average number of working 

days, mobilization/demobilization cost, yearly insurance, and finally the bonding rate.  

All of these values are used to calculate the total project cost, and all of the cost 

transformations use the cost factor ratio in Table 10. 
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Table 11-Cost Calculation Inputs 

Input 2004 Description 

23.9355   Size of Clamshell (yd3) 

4499.35   Hopper Capacity  (yd3) 

600000 $660,049.63 Average Value per Hopper (dollars) 

26   Dredging Depth (ft) 

57.6   Cycle Time (seconds) 

18   Hourly fuel usage for Dredge Engine (Gallon)  

150   Daily fuel usage for House Power (Gallon) 

100   Daily fuel usage for Winch House (Gallon) 

1.3 1.65 Cost per Gallon for Fuel (Dollars) 

150414   Required Dredging Volume (yd3) 

5   Expected Overdredging (Percent) 

4550000 $5,005,376 Capital Cost of Dredge (Dollars) 

1137.50 $1,251.34 
Average Daily Cost of Major Repairs and Overhauling for Dredge 
(Dollars) 

591.50 $650.70 
Average Daily Cost for Routine Repairs and Maintenance for Dredge 
(Dollars) 

60 $66.00 
Average Daily Cost of Major Repairs and Overhauling for Hoppers 
(Dollars) 

30 $33.00 
Average Daily Cost for Routine Repairs and Maintenance for Hoppers 
(Dollars) 

25   Depreciation Period (Years) 

320   Average number of working days per year for dredge 

250000 $275,020.68 Mobilization/Demobilization Costs (Dollars) 

113750 $125,134.41 Yearly Insurance Cost (Dollars) 

5   Bonding Rate (Percent) 

 
 
 
The cost transformation between 2000 and 2004 costs for equipment and food is shown 

in Table 12.  All of the values are then transferred into the equipment calculation portion 

of the program.  The extra rows can be used to calculate cost for other equipment used 

and are automatically transferred into the equipment cost portion of the spreadsheet. 
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Table 12-Equipment and Food Cost 

  Units Days    

      2000 2004 

Crew Lodging 1 6867 $75 $82.51 

Temporary Office Space 1 359.7 $150 $165.01 

Tugboat contracted or in-house 1 327 $1000 $1,100.08 

Crew boat 1 327 $750 $825.06 

Barge 3 327 $1000 $1,100.08 

Bulldozer 0 327 $400 $440.03 

Marsh Buggy 0 327 $350 $385.03 

  0 327 0 $0.00 

  0 327 0 $0.00 

  0 327 0 $0.00 

  0 327 0 $0.00 

  0 327 0 $0.00 

  0 327 0 $0.00 

         

Food Cost      $15 $16.50 

 
 
 
The crew cost calculation is shown in Table 13.  Means (2004) is used to evaluate the 

crew size and labor rates.  The daily food cost comes from Table 13. The crew cost 

calculation assumes three shifts working 8 hours in calculating daily totals.  The final 

row in the table is the total daily crew cost which is the wage rate multiplied by 24 hours 

and the number of workers. 
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Table 13-Crew Cost 

  Number Rate 
Daily 
Total 

Labor Foreman 1  $28.00   $672.00  

Laborer 2  $26.00   $1,248.00  

Equipment Operator 2  $33.65   $1,615.20  

Equipment Operator Oiler 1  $29.20  $700.80  

        

        

        

8 hour shifts  3     

Total Crew 18     

Daily Food Cost/person $16.50 total $297.02 

        

 Total Daily Crew Cost      $4,236.00  

 
 
 
Table 14 is the overall cost summary and the first column is the label for each item.  The 

first section is the production values.  Next are the fuel and lubricant costs.  The section 

after that is the individual cost totals.  The second to last cell is the total project cost.  

The cost per volume is the total cost divided by the total volume of sediment excavated.   
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Table 14-Cost Summary 

Production Summary     

Production Rate yd3/hr 1021  

Required Volume to be dredged yd3 150414  

Gross Volume (includes overdredging) yd3 157935  

Estimated Daily Run Time hours 24  

Required Dredging Time hours 155  

Required Dredging Days days 23  

      

Fuel and Lubricant Cost     

      

House Power   4,485 

Dredge Engine Fuel (90% of total hours)   3,257 

Winches   2,990 

Lubricants (10% of Fuel Cost)   1,073 

      

Repair and Maintenance   $46,024 

Depreciation   $14,390 

Mobilization-Demobilization Cost   $275,020 

Insurance   $8,994 

Crew   $97,428 

Rentals   $110,442 

10% Overhead (Profit)   $56,410 

      

Total Job Cost    $614,909 

Price per Cubic Yard   $3.89 

 
 
 
The bottom of the main page (Table 15) contains the overall output with the production 

is given in yd3/hr and m3/hr.  The third row of Table 15 is the total cost of the project, 

and the final rows are the cost per cubic yard, and cost per cubic meter.  These outputs 

are located on the first page so that they can be quickly checked as the inputs are 

changed.   
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Table 15-Final Output 

Output     

     

Production 620 m^3/hr 

  811 yd^3/hr 

Total Cost $2,622,174   

Cost/m^3 $3.53   

Cost/yd^3 $2.57   

 
 
 
Table 16 is the calculations to compare current projects to past projects.  The desired 

project is entered in the first cell.  The cost transformation factor is then retrieved from 

Table 8.  The factor is then used to calculate the project cost for any year between 1990 

and 2004.   

 

Table 16-Final Output Adjusted for a Year Other Than 2004 

Output for Historic Project     

Project year 1994 2004  Use a Project year (1990-2004) 

Factor used 78.5     

Total Cost $2,037,587     

Cost/m^3 $2.75     

Cost/yd^3 $2.00     

 

Sensitivity 

Once the production and cost estimating program is functioning it is necessary to 

determine if it is functioning properly, and to see if the results are accurate.  The first 

step is to test the sensitivity.  This is done by observing how the total project cost 

responds to varying inputs. 
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The initial conditions for the first sensitivity test on bucket size are shown in Table 17.  

The sediment type used is loose sand, and the region is the Gulf Coast.  All of the other 

defaults are left constant.  The depth is set at 10 meters, and the volume to be removed is 

1,000,000 m3.  The spreadsheet is then run keeping everything constant except bucket 

size that is changed from 1, 5, 10, 15…50 m3.   

 
 
Table 17-Initial Conditions for Bucket Size Sensitivity Test 

Parameter Value Defaults Units 

Sediment type 2 2   

R 3 3   

A 1142.7 1142.7 m^2 

z 2 2 m  

H 3440 3440 m^3 

C 18.3 18.3 m^3 

V 1000000   m^3 

d 10   m 

h 2 2 m 

ta 0.33 0.33 Hrs 

sa 120 120 deg 

th 0.25 0.25 Hrs 

B 1.1     

fa 0.88     

fh 0.94     

fm 0.84     
Volume 
Dredged 15.36   m^3 

Pnom 831.25   m^3/hr 

Pmax 582.05   m^3/hr 

CT 66.51   seconds 

 
 
 
The results from the first sensitivity test are shown in Figure 24.  It is apparent from 

Figure 24 that overall project cost is very sensitive to bucket size.  This is especially true 

in the range from 0 to 20 m3.  Once the bucket size reaches 20 m3, variations in project 

cost are very small.  This is consistent with the bucket modification factors.  From the 
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region of 0 to 20 m3 the bucket fill factors increase at a large rate.  After 20 m3 the slope 

flattens.  From Figure 24 it is apparent that it is necessary to have accurate information 

on bucket size when dealing with buckets smaller than 20 m3 (26.2 yd3).  It is also 

apparent that increasing bucket size is a method of effectively reducing project cost.   
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Figure 24-Project Cost Sensitivity from Bucket Size (Multiply by 1.3 for yd

3
) 

 
 
 
Table 18 contains the initial conditions for the sensitivity test for varying depth.  All of 

the initial conditions are identical to the sensitivity test for varying bucket size.  The test 

is conducted by holding all variables constant and changing the depth.  The project cost 

is recorded at depths of 1, 5, 10, 15…50 meters.  At each data point the project cost and 
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cycle time is recorded.  Then the relationship between depth and project cost, or cycle 

time is plotted on two graphs. 

 

Table 18-Initial Conditions for Depth Sensitivity Test 

 

 
 
 
Figure 25 displays the relationship between project cost and depth.  The projects range 

from $1,000,000 at 1 m (1.1 yd) depth to $5,500,000 at 50 m (55 yd) of depth.  The 

relationship between project cost and depth is linear.  This is the result that is expected.  

The depth is entered into a linear equation to calculate cycle time.  Cycle time is 

proportional to project cost, and therefore, the project cost should be linearly related to 

depth.   

Parameter Value Defaults Units 

Sediment type 2 2  

R 3 3  

A 1142.7 1142.7 m^2 

z 2 2 m 

H 3440 3440 m^3 

C 18.3 18.3 m^3 

V 1000000  m^3 

d 10  m 

h 2 2 m 

ta 0.33 0.33 Hrs 

sa 120 120 deg 

th 0.25 0.25 Hrs 

B 1.1   

fa 0.88   

fh 0.94   

fm 0.84   
Volume 
Dredged 15.36  m^3 

Pnom 831.25  m^3/hr 

Pmax 582.05  m^3/hr 

CT 66.51  seconds 
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Figure 25-Sensitivity of Project Cost Due to Change of Depth (Multiply by 1.1 for yd) 

 
 
 
The relationship between change of depth and cycle time is shown in Figure 26.  Cycle 

time changes linearly as depth is varied.  This is expected since depth is a linear term in 

the cycle time equation.  From this relationship and the relationship in Figure 26 it is 

apparent that cycle time is an important factor when determining project cost.  While an 

estimate of 60 seconds may provide an accurate result in depths less than two meters, the 

cycle time doubles between 10 and 20 meters.  This would in turn double a projects total 

time and greatly increase the project cost.  Since a large number of ports and waterways 

in the United States are at a depth between 10 and 20 meters it is important to include 

cycle time in production estimates.   
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Figure 26-Sensitivity of Cycle Time from Depth Change 

 

Project Cost Comparison 

 
The second step in confirming the validity of the production and cost estimation program 

is to compare it to actual results.  The cost estimation method developed in this thesis is 

compared with the government (NDC, 2003) estimate, the Emmons (2001) estimate, and 

the winning bid (NDC, 2003) and the actual project cost (NDC, 2003) for five different 

projects.  The winning bid is the amount the winning contractor bid for the project, and 

the actual cost is the amount the project finally cost the sponsor. 
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The comparisons of project costs for the 5 projects are shown in Figure 27.  Table 19 

displays the relationship between the numbers on the graph and each project.  It also 

shows the values for each bar in Figure 27. 

 

The first project comparison is the Erie, PA project.   The calculated project cost is 32% 

higher than the actual cost.  Emmons (2001), predicts a project cost that is 15% above 

the actual cost while the government estimate (NDC, 2003) is 1% below the actual cost.  

The Erie project is also the smallest of the projects compared for this thesis.  The second 

project in Figure 27 is from Coos Bay, OR in 1995.   This thesis provided better results 

being only 22% above the actual project cost.  The government estimate (NDC, 2003) is 

24% above the actual cost.   

 

The third comparison is Coos Bay, OR in 1997, which is the first project that this thesis 

predicted a cost under the actual cost.  Also, with an actual cost of 2.5 million dollars US 

this is the largest project compared in this thesis.  The Fernandina, FL project is the 

fourth project compared in Figure 27.  In this comparison this thesis it 6% is below the 

actual cost and within $110,000. The other estimates are within 20% of the actual cost 

with the exception of the government estimate that is 48% above actual cost.   The fifth 

comparison is for Wando, NC harbor.  In this comparison the estimates broke into two 

groups.  The winning bid, this thesis and the actual cost were within $400,000.  The 

government and Emmons (2001) method were over $1,600,000 above the actual cost.  

Figure 27 gives a graphical representation of the relationship between the different 
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estimation methods and the actual cost for each project.  The data for Figure 27 is 

tabulated in Table 19. 
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Figure 27-Project Cost Comparisons (1-Erie, 2-Coos 95, 3-Coos 97, 4-Fernandina, 5-Wando) 

 
 
 
Table 19-Cost Comparison (Thousands of Dollars US) 

Region Government Winner Emmons (2001) Thesis  Actual 

1-Erie  $357  $324 $416 $476           $360 
2-Coos 95 $1,692  $1,490 $1,226 $1,667 $1,366 
3-Coos 97 $3,615 $2,939 $3,296 $2,244  $2,480 
4-Fernandina $2,502 $1,480 $2,003 $1,590 $1,169 
5-Wando $3,908 $2,360 $3,870   $2,038  $2,169 

 



 

 

61 

The project comparisons show that the method developed in this thesis is useful for 

estimating costs for mechanical dredge projects.  It is more accurate in estimating large 

projects.  There are some discrepancies in smaller projects.  These are most likely due to 

assumptions being made in the cost calculation about crew size and other project costs.  

Also, the production rate is more sensitive for small projects using smaller buckets than 

it is for large projects.   From Table 19 the mean difference and standard deviation 

between each method and the actual cost have been calculated for these 5 projects and 

tabulated in Table 20.  

 

Table 20- Percent Difference between Estimation Methods and Actual Project Cost 

Region   Thesis Government Emmons (2001) Winning 

1-Erie   32%  -1%  15%   -10% 
2-Coos 95  22%  24%  -10%   9%  
3-Coos 97  -10% 46%  33%   19%  
4-Fernandina  -6% 48%  18%   -13%  
5-Wando  -6% 80%  78%   9%  

Mean   6% 39% 27% 3% 

Standard Deviation 19% 30%  33%   14% 

 
 
 
The government estimate (NDC, 2003) is an average of 39% higher than actual cost with 

a standard deviation of 30%.  The results from Emmons (2001) are an average of 27% 

higher than actual cost with a standard deviation of 33%.  The results from this thesis are 

6% higher than the actual cost with a standard deviation of 19%.  The only prediction 

method with better results for these 5 projects is the bid from the winning contractor.  

The winning bids were an average of 3% higher than the actual cost with a standard 

deviation of 14%. 
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CONCLUSION AND RECOMMENDATIONS 

It is possible to effectively estimate production and project cost for mechanical clamshell 

dredges.  Two important components in estimating the production rate are the cycle time 

and the bucket fill factor.  Traditionally the cycle time has been assumed to be about 60 

seconds.  In water depth greater than 10 m (11 yd) the cycle time is greater than 60 

seconds.  As the cycle time increases, the project cost increases as well.  Therefore it is 

necessary to adjust the cycle time for specific projects.   

 

The second important parameter in production rate and project cost is the bucket fill 

factor.  It is necessary to determine how much of the bucket fills to estimate the 

production rate.  The fill factor changes rapidly for bucket sizes between 0 to 20 m3.  If 

the project uses a bucket smaller than 20 m3 it is essential that the size and sediment 

characteristics are known.  Once the predicted amount of sediment excavated is known 

production can be estimated. 

 

There are several things that would be beneficial in predicting production for mechanical 

clamshell dredges.  First the crew size is fixed unless the user knows details of a project.  

It would be beneficial to develop a way to automatically adjust the crew size depending 

on the size of the project.  This would provide more accurate estimates of project costs.  

Since the labor rates are recurring costs, a small change over a long period is a major 

influence on project cost.  If the program could be changed to vary crew size for the size 

of the project it would be beneficial.   
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A second area for improvement is the bucket fill factor.  The factors used in the 

spreadsheet follows the expected trends and are extrapolated from actual data.  

Experiments would help to verify the behavior of the large buckets.  It could also explain 

the rapid change in fill factors for small buckets.  Though the bucket fill factors behave 

as expected, it would help to refine them using experimental testing.   

 

Finally, the delay factors for changing the hopper and advancing the dredge need to be 

improved.  The actual delay factor for changing hopper barges does not include the 

number of hoppers, or the distance they have to travel between the disposal sites and the 

dredge.  This assumes that there is always a hopper barge waiting which may not be true.  

The spreadsheet currently does a good job estimating production and project costs, but 

these improvements would allow for better estimates with less site specific information.  
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APPENDIX 1 

MECHANICAL CLAMSHELL DREDGE PRODUCTION AND 

COST ESTIMATING SOFTWARE USERS MANUAL 

 
The cycle time method of production estimation has been incorporated into a 

spreadsheet so that calculations can be quickly made.  This manual provides the user 

with a brief explanation of each page and how parameters can be modified for specific 

dredges, regions, and years.  The first page of the spreadsheet contains the main input 

parameters, some calculated values, and the output from the program. Table 21 is a 

screen shot of the first page of the program.  The values in green are input values.  The 

grey values on the right are the recommended defaults if the specific value is not known.  

All of the yellow values are calculated by the spreadsheet.  The outputs for the program 

are located at the bottom of the page. 
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Table 21-Main Page 

 
 
 

Table 22 is the internal calculations of the program.  The cycle time (CT) is calculated in 

the top left.  Values of individual parameters can be adjusted to find the cycle time of a 

specific dredge.  The bulking factor calculation is located in the top center of this page.  

This factor is used to determine how long it takes to fill a hopper barge.  The bucket 

modification factor is calculated in the top right of this screen.  The modification factors 

are calculated based on the equations discussed in the modification factor section.  Then 
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the appropriate modification factor is chosen based on the sediment type.  The bottom 

left is the regional cost modification factor.  The spreadsheet picks the appropriate cost 

factor based on the region selected on the input screen.  The cycle time section is the 

only part of this page that should be adjusted. 

 

Table 22-Internal Calculations 

 
 
 
 
The dredging job characteristics page (Table 23) contains inputs used for calculating the 

project cost.  Inputs can be adjusted in the input column.  If any of the cost values are 

adjusted, they should be entered in the column marked 2004.  The description column 

contains details about each input, as well as any relevant units.   
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Table 23-Detailed Data Entry 

 
 
 
 
Table 24 contains the adjustment of rental costs from 2000-2004 values.  The top left 

contains the conversion from 2000 dollars to 2004 dollars.  And for future years, the cost 

data can be updated by entering the new cost factor from Means (2004).  The rest of the 

spreadsheet converts equipment costs from 2000 dollars to 2004 dollars.  This data 

should not be adjusted unless costs are being changed to a new year. 
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Table 24-Rental Cost Adjustment 

 
 
 

The project cost calculations are contained in Table 25.  The top left is the rental cost 

calculation.  The item costs come from the rental cost conversion page.  The amount of 

equipment can be adjusted on this page.  The top right is the crew cost calculation.  The 

crew size used is the basic size from Means (2004).  The bottom left of the page contains 

an itemized breakdown of the total project cost.  At the bottom are the total project cost 

and the cost per yd3.  
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Table 25-Project Cost Calculations 

 
 
 
 
For most projects the program can be run completely from the main page.  The 

additional pages allow the user to adjust for site specific situations.  The user can input 

costs that are specific to a location, adjust the cycle time calculation to a specific dredge, 

or change the cost information to the current year.  
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APPENDIX 2 

NOMENCLATURE 

 
A Average area dredged at one location 

B Bulking factor 

C Capacity of the bucket 

d  Water Depth 

af  Delay factor to advance the dredge 

hf  Delay factor to change hopper barges 

mf  Bucket fill factor 

H Hopper capacity 

bh  Freeboard height of the barge 

nomP  Nominal production rate 

actP  Actual production rate 

cycleT  Cycle time 

at  Time to advance the dredge 

et  Time to empty bucket 

gt  Time to grab for bucket to fill 

ht  Time to change hoppers 

fu  Bucket Fall velocity 
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lu  Bucket Lift velocity 

z Average thickness of material to be excavated 

swθ  Bucket swing angle 

swω  Bucket swing rate 
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APPENDIX 3 

EXAMPLE OF COST ESTIMATION PROGRAM FOR COOS BAY 

1997 

 
The purpose of this example is to allow the user to check if the spreadsheet is 

functioning properly.  If all of the defaults in the spreadsheet are the original values 

these inputs will provide the output for Coos Bay 1997 in the thesis.  Table 26 is the 

inputs used in the example.  The simplest input to find is the volume to be dredged.  This 

can be taken directly from the USACE (NDC, 2003).  The capacity of the bucket and 

water depth comes from Emmons (2001).  Region, depth, and bucket size can usually be 

found from the internet.  The other values used are defaults for the spreadsheet.  More 

site specific values must be obtained from the dredge contractor. 

 

Table 26-Inputs for Coos Bay 1997 Project 

Parameter Value Defaults Units Definition 

Soil type 2 2  
See chart to right for 
numbering system 

R 5 3  Region 

A 1142.7 1142.7m^3 Average area dredged 

z 2 2m  thickness of material dredged 

H 3440 3440m^3 Hopper capacity 

C 18.3 18.3m^3 Capacity of the bucket 

V 609000  m^3 volume to be dredged 

d 14.6  m depth 

h 2 2m height of the barge 

ta 0.33 0.33Hrs Time to advance the dredge 

sa 120 120deg Average swing angle 

th 0.25 0.25Hrs Time to change hoppers 
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Once the inputs have been changed for the Coos Bay 1997 project the production and 

project cost are calculated.  Table 27 displays the results for production, total cost, and 

cost per volume.  These values are consistent with the values from the Table 19.  The 

first set of values in Table 27 is the estimated production in 2004 dollars.  The historic 

values are for 1997 which is the year the project took place.  

  

Table 27-Output for Coos Bay  

Output for 2004 

Total Cost $2,646,596 

Cost/m^3 $4.35 

Cost/yd^3 $3.16 

Output for Historic Project 

Project year 1997

Factor used 84.8

Total Cost $2,244,314

Cost/m^3 $3.69

Cost/yd^3 $2.68
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