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ABSTRACT 

 

Redbanded stink bug (RBSB), (Piezodorus guildinii Westwood) has recently 

emerged as an economic pest of soybean, Glycine max (L.) Merrill in the southern US. 

Having only recently emerged as a pest in the US, little information exists on RBSB in 

this country. Information on RBSB life history is needed to provide the basis for 

development of an effective management plan for this Neotropical pentatomid. This 

dissertation research was undertaken to gather information which will help achieve the 

long term goal of developing an integrated pest management (IPM) program for RBSB.  

Soybean field surveys conducted over three years across the Upper Gulf Coast of 

Texas showed that RBSB has become the most abundant stink bug species attacking 

soybean in this region, accounting for 65% of the entire population of the stink bug pest 

complex. Field cage experiments showed that highest yield losses from RBSB occurred 

when soybeans at R5-R6 stages were infested.  Our data also showed that a relatively 

high RBSB density (8 RBSB adults/0.3 m) during R4-R5 stage soybean triggered 

development of delayed maturity indicated by green leaf retention.  In addition, field 

experiments conducted to determine if reduced pod load or alteration of sink-source ratio 

is involved in delayed maturity showed no relationship between reduced pod load and 

occurrence of soybean delayed maturity. However, RBSB density was found to have a 

significant positive correlation to the occurrence of soybean delayed maturity. These 

findings suggest that RBSB-induced soybean delayed maturity may not be solely due to 

reduced pod load or altered sink-source ratio, but additional mechanisms also may be 
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involved. Finally, results from an insecticide field trial and laboratory bioassays showed 

that RBSBs are more susceptible to neonicotinic and pyrethroid insecticides than to the 

widely used organophosphate, acephate. This dissertation research has provided valuable 

information in regard to RBSB and soybean, which will help develop, and establish an 

IPM program for this emergent pest of US soybean. Development of an IPM program 

will reduce dependence on chemical insecticides for RBSB management. Reductions in 

insecticide use will eventually benefit the environment and human health.  
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CHAPTER I  

INTRODUCTION 

 

Soybean (Glycine max (L.)) Merrill, is an important crop globally due to its 

multipurpose uses. Soybeans are processed for its oil and protein and are used to produce 

soy milk, soy flour and used as ingredients of many processed food products. It emerged 

as a domesticated crop around the 11
th

 century BC in China (Hymowitz 1970). During 

the first three decades of the twentieth century soybean production was mainly confined 

to the Far East. China, Indonesia, Japan, and Korea were the major soybean producing 

countries in the 1930s (Burtis 1950). In the late 1940's and early 1950's, the US 

surpassed soybean production in China and eventually surpassed the entire soybean 

production of the Far East. From 1960 to 1973 soybean production in the US doubled 

with the greatest rate of increase occurring in southern states (ASA 1975). With the 

establishment of soybean as a major food source and due to its multiple uses, its 

continuous and rapid expansion was expected, particularly in tropical and subtropical 

latitudes (ASA 1972). Reduction in production cost and consistent improvements in 

average yields have steadily improved the competitive position of soybeans among 

arable crops. Soybean is the world's leading provider of protein and oil. It accounts for 

35% of worldwide harvested areas dedicated to oil crops and for 44% of global oil crop 

production (FAO 2009). Currently, only five countries- US, Brazil, Argentina, China, 

and India contribute to over 90% of world soybean production (FAO 2011). US and 

Brazil contribute around 41 and 26 % of global soybean production, respectively (FAO 
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2011).  In US agriculture, soybean has great importance. Farmers in more than 30 states 

grow soybean, making it the US’ second largest crop in cash sales and the number 1 

value export crop (http://soystats.com).  In 2012, soybeans were planted on 77.2 million 

acres in the US, producing 82 million metric tons of soybeans (http://soystats.com/). The 

total value of the US soybean crop in 2012 was more than $43 billion. In the same year, 

soybeans accounted for 57% of world oilseed production of which 35% was produced in 

the US. In 2012, the US exported 38.4 million metric tons of soybeans, which accounted 

for 37% of the world's soybean trade, making the US the second largest soybean 

exporter in the world.  

There are two types of soybean cultivars produced in the US viz. indeterminate 

and determinate. Indeterminate type cultivars are grown in northern states in which 

terminal buds continuously produce vegetative growth during most of the growing 

season. In these cultivars, inflorescences are on axillary racemes giving even distribution 

of pods on all branches. Determinate type cultivars are grown in southern states. In these 

cultivars, vegetative growth of terminal buds stop when they begins to flower. 

Determinate cultivars have both axillary and terminal racemes and are identified by a 

dense cluster of pods at terminals (Teare and Hodges 1994).  

Soybean flowering and maturity during the growing season is controlled 

primarily by day length (Teare and Hodges 1994). As northern latitudes have longer day 

lengths, the period between seed emergence to flowering is longer. Soybean plant 

breeding efforts have developed cultivars suitable for different day lengths. These 

cultivars fall into 12 maturity groups ranging from 00 to X. The 00 cultivars require 
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longer days to bloom and develop seed, therefore they are grown in southern Canada and 

northern US while Group X cultivars mature in tropical latitudes (Teare and Hodges 

1994). 

Soybean response to insect pest injury depends upon the crop developmental 

stage during which injury occurs (Teare and Hodges 1994). Therefore, considering 

soybean developmental stages is essential in describing the potential impact of insect 

pests. A letter designates soybean growth stages: V for vegetative and R for 

reproductive, followed by a number (Fehr and Caviness 1977). Nodes on the main stem 

are counted to designate the vegetative growth stages (V stages). A V1 stage is when the 

plant develops a first node with a trifoliate leaf; V2 is when a second node is present and 

so on for V3, V4, V5, etc. Reproductive stages of soybeans (R stages) are based on 

flowering, pod development, seed development, and plant maturation (Fehr and 

Caviness 1977). R1 is the beginning bloom; R2 is the full bloom stage; R3 includes 

plants at the beginning of pod development; R4 comprises plants at the full pod stage 

with no seeds present; R5 expands from the beginning of the seed stage, when pods are 

filling with seeds, to the full seed stage where pods are filled with the final number of 

seeds yet not fully developed; R6 includes plants in which pods are filled with full-sized 

seeds; the maturity stage R7 (beginning maturity), is characterized by the presence of at 

least one pod on the main stem reaching its mature color (tan or brown), and the R8 

stage (full maturity) includes plant in which 95% of their pods have reached their mature 

color (Fehr and Caviness 1977).   
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During different developmental stages such as from germination to maturity, 

soybeans are attacked by a diverse community of arthropods seeking nourishment. 

During reproductive stages, soybean is primarily attacked by a complex of pod-attacking 

stink bugs (Way 1994). Stink bugs are the primary pests of soybeans in the southern US 

(Drees and Rice 1990, Baur et al. 2000). The southern green stink bug (SGSB), Nezara 

viridula (L.), the green stink bug (GSB) Chinavia hilaris (Say), and the brown stink bug 

(BSB) Euschistus servus (Say), were the most damaging members of the stink bug 

complex (McPherson et al. 1993) across the southern US up until 2000. Since, 2000, the 

redbanded stink bug (RBSB), Piezodorus guildinii (Westwood) has increased its 

numbers and currently has become a major soybean stink bug pest in Louisiana (Temple 

et al. 2009) and Texas (Vyavhare and Way 2013).  

Stink bugs cause damage by feeding on young, tender growth and developing 

seeds (McPherson et al. 1994). They inject salivary secretions into seeds to form a 

slurry, which they ingest. Damaged seeds exhibit decreased germination, reduced 

emergence and low survival (Todd and Turnipseed 1974). The RBSB causes more 

damage per insect than other stink bug species on soybean (Correa-Ferreira and de 

Azevedo 2002), as the deleterious action of salivary enzymes is greater for this stink bug 

compared to others (Depieri and Panizzi 2011). Despite the fact that RBSB causes more 

damage than other stink bug species, action thresholds for this pest have been defined 

based on other stink bugs species (i.e., SGSB, GSB, and BSB). Further, even though it is 

known that vulnerability of soybeans to stink bug damage varies across soybean lifespan 
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(Musser et al. 2011), current action thresholds for stink bugs are constant throughout 

soybean reproductive development. 

RBSB is also associated with the delayed maturity syndrome in soybean. 

Soybeans grown in Texas and Louisiana commonly exhibit this disorder. In this 

disorder, pods mature and get ready to harvest normally, but stems fail to mature 

(Schwenk and Nickell 1980). The presence of green stems makes operating harvesters 

difficult and cause seed loss by pod shattering. Although RBSB is known to cause 

delayed maturity in soybean, it is not clear which stink bug density triggers it nor it is 

known if it occurs due to changes in plant hormonal balance, due to alterations in the 

sink/source dynamics within the plant and/or due to microbial pathogens. 

One of the major concerns in RBSB management is reduced susceptibility to 

labeled insecticides (Davis et al. 2011). Thus, the occurrence of the RBSB in Louisiana 

and Texas soybeans has significantly increased the number of insecticide applications in 

these states, therefore, increasing the potential for this insect to develop insecticide 

resistance (Davis et al. 2011, Vyavhare and Way 2013). Currently, multiple insecticide 

applications for stink bugs are common in Louisiana and Texas where soybean is an 

important crop accounting for 457,000 and 51,000hectares, respectively. Until recently, 

RBSB management was dependent upon a single insecticide i.e. acephate. Its repeated 

applications targeting mainly RBSB has resulted in reduced susceptibility to this 

organophosphate (http://www.tsusinvasives.org/database/Red_Banded_Stink_Bug.html). 

However, little or no information exists on RBSB susceptibility to insecticides.  

http://www.tsusinvasives.org/database/Red_Banded_Stink_Bug.html
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RBSB has emerged as the most serious soybean pest throughout Louisiana and 

Texas, but no information is available to provide the basis for its effective management. 

Therefore, the overall goal of this dissertation was to provide basic information aimed to 

aid in the development and implementation of economical, effective, and sustainable 

management strategies against RBSB in soybean. My specific objectives were: 

1. To determine the relative abundance of major stink bug species (SGSB, GSB, BSB, 

and RBSB) across different soybean growth stages on the Upper Gulf Coast of Texas 

2. To determine the growth stage specific response of soybean to varying densities of 

RBSB 

3. To determine RBSB threshold that triggers delayed maturity and if delayed maturity 

is due to reduced pod load  

4. To generate baseline data on insecticide susceptibility of RBSB field population and 

evaluate efficacy of commonly used insecticides against RBSB 

Stink bug relative abundance  

In addressing the first objective, it was hypothesized that relative abundance of 

SGSB, BSB, GSB, and RBSB varies across soybean reproductive stages. To study this 

hypothesis, commercial soybean fields across the Upper Gulf Coast of Texas were 

sampled weekly during reproductive crop growth stages (R2-R7) over the period of three 

years (2010-2013) using a sweep net (Chapter II) and numbers of individuals of each 

species were recorded.  
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Growth stage specific response of soybean to RBSB 

 In order to determine the growth stage specific response of soybean to RBSB 

infestation, field grown soybeans were infested with varying densities of field collected 

RBSB adults using field cages. The plant response to RBSB feeding was measured in 

terms of numbers of flat pods, seed yield, and test weight (weight of 100 seeds) (chapter 

III).  

RBSB and soybean delayed maturity 

In order to determine what RBSB threshold triggers delayed maturity and if 

soybean delayed maturity is due to altered sink-source ratio (reduced pod load), two 

experiments were conducted on field grown soybeans. One with different levels of 

RBSB infestation and another with different levels of mechanical pod removal. Plant 

response to RBSB feeding and mechanical pod removal during R4 stage was recorded in 

terms of yield, leaf chlorophyll content, rate of photosynthesis, and green leaf retention 

at maturity (chapter IV).   

Insecticide susceptibility 

Chemical insecticides are currently the major line of defense against stink bug 

pests. In order to generate baseline data on insecticide susceptibility of RBSB field 

population, glass vial bioassays were conducted using technical grade insecticides. 

RBSB adults collected from commercial soybean fields were used in glass vial bioassays 

to determine LC50 values for pyrethroids (bifenthrin and cyfluthrin), neonicotinoids 
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(thiamethoxam and imidacloprid), and an organophosphate (acephate). The efficacy of 

commonly used organophosphate, pyrethroid, and mixtures of pyrethroid and 

neonicotinoid insecticides against RBSB was also evaluated using a field trial (chapter 

V). 

The information gathered from this dissertation will help develop improved 

management strategies against RBSB. These improved strategies aim to reduce 

insecticide applications and diminish insecticide-related risks to human health and the 

environment. Results from this research will be fundamental in the establishment of a 

RBSB specific action threshold for monitoring RBSB in soybean fields. A revised action 

threshold will help soybean producers by allowing them to fine-tune decision making on 

the proper use of management tactics. Furthermore, reduced insecticide applications will 

allow conservation of natural enemies and avoid further destabilization of the soybean 

agro-ecosystem due to insecticides. All the soybean-producing states in the southern 

region are in dire need of effective management strategies for RBSB. Results of this 

research will have direct and immediate impact throughout the southern region where 

sustainable and profitable soybean production is threatened by RBSB. 

 

 

 

 

 

 



 

9 

 

CHAPTER II 

ABUNDANCE OF REDBANDED STINK BUG (HEMIPTERA: 

PENTATOMIDAE) IN SOYBEAN ON THE UPPER GULF COAST OF TEXAS 

Synopsis 

Stink bugs are the primary arthropod soybean pests in the southern United States. 

They mainly feed on young, tender growth and developing seeds with their piercing-

sucking mouthparts. Historically, important stink bug species damaging soybeans in the 

southern United States included the southern green stink bug (SGSB) Nezara viridula 

(L.), the green stink bug (GSB) Chinavia hilaris (Say), and the brown stink bug (BSB) 

Euschistus servus (Say) (Hemiptera: Pentatomidae). The redbanded stink bug (RBSB), 

Piezodorus guildinii (Westwood), has recently become an economic pest of soybean in 

the southern region of the Unites States, especially in Louisiana and Texas. Little is 

known about the relative abundance of stink bug species in the soybean agro-ecosystems 

of Texas. To fill this gap, commercial soybean fields in the Upper Gulf Coast of Texas 

were sampled weekly during the growing season using a sweep net from R2 (full 

flowering) to R7 (beginning maturity) from 2011 to 2013. Adults and nymphs (3
rd

, 4
th

 

and 5
th

 instars) of RBSB, SGSB, GSB, and BSB were counted in each sample (25 

sweeps). The relative proportion of RBSB was significantly higher than any other stink 

bug species from R5 toR7.  Over 65% of the total stink bugs collected during this period 

were RBSB and about 19% were SGSB. The highest RBSB densities and the highest 

ratio of RBSB nymphs to adults were recorded at R7. Results from this study show that 
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RBSB has become the most abundant species in soybean across the Upper Gulf Coast of 

Texas.  

Introduction 

Stink bugs are polyphagous pests that feed on a wide range of cultivated crops 

including cotton (Gossypium hirsutum L.), soybean (Glycine max L. Merr.), and corn 

(Zea mays L.) (Panizzi 1997). They also subsist on a variety of wild and non-agronomic 

hosts (Panizzi 1997).  Stink bugs have recently become primary pests of soybean in the 

southern United States (Drees and Rice 1990, Baur et al. 2000). The upsurge in stink bug 

populations in the southern United States is believed to be due to the advent of Bt crops 

combined with the boll weevil eradication program that reduced the number of 

insecticide sprays in cotton, which in the past, provided indirect control of stink bug 

populations in soybean (Greene and Herzog 1999). Also, a shift in soybean production 

from May-planted maturity group (MG) V and VI in conventional soybean production 

systems to April-planted MG III and IV in early season soybean production, may have 

contributed to stink bug population growth in recent years (Heatherly 2005). The 

increased pressure of stink bugs on early planted soybeans may be due to the early 

availability of pods (Baur et al. 2000). After colonizing early-planted soybeans, stink 

bugs successively move to later planted soybeans as the developing pods become 

available.  

In the southern United States, three key stink bug species viz. the southern green 

stink bug (SGSB), Nezara viridula L.; the green stink bug (GSB), Chinavia hilaris Say; 
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and the brown stink bug (BSB), Euschistus servus Say, have historically been considered 

as of substantial economic importance (McPherson et al. 1993). In the past, SGSB, the 

most cosmopolitan of the pentatomids attacking soybean, has represented the highest 

proportion of all stink bug species in soybean fields from Texas in the west through 

southern Arkansas to Virginia in the east (Turnipseed and Kogan 1976). However, 

during the past decade, a new Neotropical pentatomid, the redbanded stink bug (RBSB), 

Piezodorus guildinii Westwood, has become more common than any other stink bug 

species in Louisiana (Temple et al. 2011) threatening soybean production in other 

southern states.      

RBSB was first reported on the island of St. Vincent (Stoner 1922) and has been 

a serious pest of soybean in the Neotropics since the 1960s (Panizzi et al. 2000). In the 

late 1970s, RBSB began replacing SGSB on Brazilian soybeans (Turnipseed and Kogan 

1976, Kogan and Turnipseed 1987). The expansion of soybean cultivation in South 

America during the 1960s and 1970s could be the principal reason for the increase in 

RBSB populations (Panizzi and Slansky 1985a). Consequently, most of the information 

available about RBSB impact on soybean comes from Brazil (Panizzi et al. 1980, 

Panizzi and Slansky 1985c, a, b). In the United States, RBSB was first reported in the 

1960s (Genung et al. 1964), but it was never considered an economic pest of soybeans 

until the late 1990s. It was frequently observed in low numbers in Florida and Georgia in 

the1980s (Panizzi and Slansky 1985c). Since its first report in the United States, RBSB 

has expanded its distribution from Florida (Menezes 1981) to South Carolina (Jones and 
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Sullivan 1982), Georgia (McPherson et al. 1993), Arkansas (Smith et al. 2009), 

Louisiana (Temple et al. 2009), and Missouri (Tindall and Fothergill 2011).  

Identification and characterization of the species involved in the stink bug 

complex is important to determine effective economic thresholds in soybean. This is 

because different species within the stink bug complex have different damage potentials. 

For example, RBSB in soybean causes more damage per insect than any other stink bug 

species (Correa-Ferreira and de Azevedo 2002) while SGSB and GSB cause similar 

damage, and BSB cause comparatively less damage (Miner 1966, McPherson et al. 

1979b). Nevertheless, the economic threshold level is the same for all these species in 

many of the soybean-producing states in United States including Texas, where RBSB 

populations have recently reached damaging levels (Vyavhare and Way 2013). No 

extensive field surveys have been conducted to understand the current composition of 

stink bug species in Texas soybean. In Texas, an economic threshold of 8 stink bugs/25 

sweeps (38.1 cm diameter sweep net) is used for the stink bug pest complex throughout 

all reproductive stages of soybean (https://insects.tamu.edu/extension/bulletins/b-

1501.html#Soybean). Although it is common to find multiple stink bug species in the 

field, little is known about how to incorporate species composition into considerations 

aimed to determine economic thresholds to justify use of chemical control against this 

pest complex. Also, it is important to understand the relative proportion of stink bug 

nymphs versus adults across different crop growth stages because the amount of injury 

per individual varies from nymphs to adults and the vulnerability of soybean to stink bug 

damage vary with plant growth stages. For example, both quality and yield loss are most 
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affected when soybeans are exposed to stink bug feeding during R5-R6 (Fehr and 

Caviness 1977) while damage at R7 is much less than at earlier stages (McPherson et al. 

1979b).  

Currently, stink bug control in soybean is solely dependent upon chemical 

applications. Susceptibility to insecticides has been reported to vary among stink bug 

species and life stages (McPherson et al. 1979a). Therefore, knowledge of stink bug 

species involved, their relative abundance, and relative proportion of stink bug 

developmental stages across crop growth stages is needed. For example, pyrethroids are 

more effective against SGSB and GSB than for BSB (Willrich et al. 2003). Also, LD50s 

of methyl parathion for fifth instar nymphs of SGSB, GSB, and BSB are higher than for 

their corresponding adults (McPherson et al. 1979a).  

The occurrence of RBSB populations in Texas has been responsible for a 

significant increase in the amount of insecticides applied to soybean. This increase in 

chemical control threatens beneficial organisms in the soybean agro-ecosystem and 

could result in the development of insecticide resistance. This study was conducted to 

determine the relative abundance of stink bug species and their developmental stages 

across R2-R7 soybeans in the Upper Gulf Coast of Texas.  

Materials and methods 

Stink bug collection 

  Densities of stink bug species were monitored from 2011 to 2013 in commercial 

soybean fields across the Upper Gulf Coast of Texas. Each year five soybean fields were 
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chosen for the study. In 2011, study fields were located in Jefferson, Matagorda, 

Colorado, and Liberty Counties. In 2012, all fields were in Jefferson County. While in 

2013 soybean fields in Jefferson, Liberty, and Wharton counties were sampled. Fields 

were kept insecticide-free and sampled at weekly intervals from R2 (full flowering) to 

R7 (beginning maturity) soybean growth stages (Fehr and Caviness 1977). Sampling 

began in mid-June and continued weekly through early October with 5 sets of 25 sweeps 

(38.1 cm diameter sweep net) taken at random locations in each soybean field on each 

sample date. Insect sampling was done by swinging the sweep net with as much force as 

possible through the top of the canopy so that the top of the net passed through the 

uppermost leaves (Rudd and Jensen 1977). Each sample consisted of sting bugs 

collected in 25 consecutive sweeps taken in a row while walking forward. After 

collection, stink bugs were separated from foliage and placed in plastic zip-lock bags 

along with a label (label showed location, crop growth stage, and sampling date) and 

brought to the laboratory. Plastic bags containing insects were stored at 3
0
 C for further 

processing. Laboratory processing included identification of stink bug species and 

counting of nymphs (3
rd

, 4
th

, and 5
th 

instars only) and adults of each stink bug species 

found per sample.  First and 2
nd

 nymphal instars were not included in counts because 

their impact on soybean damage is negligible (Simmons and Yeargan 1988).   

Data analysis 

Analysis of variance was used to determine variation in stink bug numbers 

(ANOVA) (SAS-Institute 2010). Stink bug species (i.e., RBSB, SGSB, GSB and BSB), 

stink bug developmental stage (i.e., adults and nymphs), soybean growth stage (i.e., R2-
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R7), and their interactions were considered as fixed effects while year and location were 

considered as random effects. LS-means for number of stink bugs per 25 sweeps were 

computed and multiple comparisons were made using the Bonferroni correction (SAS-

Institute 2010). The ratio of RBSB nymphs to adults, and percentage of samples that 

reached economic threshold during respective crop growth stages were calculated using 

MS Excel spreadsheets.  

Results 

There was a significant effect of crop growth stage, stink bug species, stink bug 

developmental stage, and their interactions, on stink bug mean abundance (Table 1). The 

relative abundance of stink bug species was significantly different depending upon 

soybean growth stage (Fig. 1). The mean abundance of RBSB, SGSB, GSB and BSB did 

not differ from R2-R4. However, after R4 there was a significant increase in mean 

abundance of RBSB for each soybean growth stage. Mean abundance of RBSB at R7 

(13.4 RBSBs/25 sweeps) was significantly higher than at any other soybean growth 

stage. During R5-R7, mean abundances of RBSB were significantly higher than that of 

all other stink bug species. Mean abundances of SGSB increased significantly from R5 

to R6 and R6 to R7. Mean abundance of SGSB was significantly higher than that of 

GSB and BSB during R6 and R7. There was no significant difference in mean 

abundance between GSB and BSB at any soybean growth stage. Also, the mean 

abundance of GSB and BSB did not vary significantly from R2-R7.   
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Table 1. Analysis of variance indicating the significance of crop growth stage, stink bug 

species, stink bug development stage, and interaction among them on mean number of 

stink bugs/25 sweeps. 2011-2013.   

 

Source DF F Value Pr > F 

Crop growth stage  5 306.55 <.0001 

Stink bug species 3 614.53 <.0001 

Stink bug developmental stage 1 4.15 0.0418 

Crop growth stage X stink bug species 15 127.24 <.0001 

Crop growth stage X stink bug 

developmental stage 

5 15.69 <.0001 

Stink bug species X stink bug 

developmental stage 

3 9.14 <.0001 

Crop growth stage X stink bug species X 

stink bug developmental stage 

15 5.53 <.0001 
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Figure 1. Relative abundance of stink bug species across R2-R7 soybean growth stages on the Upper Gulf Coast of Texas. * 

above line =significant difference among growth stages.  * below line =significant difference among species at a particular 

crop growth stage (alpha = 0.05). RBSB= redbanded stink bug, SGSB= southern green stink bug, BSB= brown stink bug, 

GSB= green stink bug. 2011-2013. 
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Number of RBSB adults and nymphs was not significantly different during R2-

R4 (Fig. 2). However, from R4 onwards, both RBSB adults and nymphs showed a 

significant increase in mean abundances. Highest abundance of RBSB adults (6.5/25 

sweeps) was recorded at R6 while highest mean abundance of RBSB nymphs (7.8/25 

sweeps) was recorded at R7. Mean adult and nymph abundance of SGSB did not vary 

significantly from R2 to R5. However, after R5, both adults and nymphs increased in 

number peaking at R7. At R7, mean abundance of SGSB nymphs was significantly 

higher than that of adults. BSB and GSB nymph and adult mean abundances remained 

constant from R2 to R7. No significant differences in mean abundance were observed 

between adults and nymphs for BSB and GSB at any of the soybean growth stages.  

The ratio of RBSB nymphs to adults was the least at R2 (Table 2). However, as 

the crop progressed from R2 to older growth stages, numbers of RBSB nymphs in 

proportion to adults increased. During R2-R5, the ratio of RBSB nymphs to adults 

remained less than one. However, at R7, the ratio of RBSB nymphs to adults was greater 

than one (1.41).  
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Figure 2. Nymph and adult mean abundances of four stink bug species across R2-R7 soybean growth stages in the Upper Gulf 

Coast of Texas. * indicates significant differences between nymph and adult mean density (alpha = 0.05). RBSB= redbanded 

stink bug, SGSB= southern green stink bug, BSB= brown stink bug, GSB= green stink bug. 2011-2013. 
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Table 2. Ratio of redbanded stink bug (RBSB) nymphs to adults across soybean growth 

stages. 2011-2013 

 

Crop stage Ratio of nymphs to adults 

R2 0.26 

R3 0.45 

R4 0.55 

R5 0.93 

R6 0.77 

R7 1.41 
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Compared to other insects, stink bugs were relatively abundant on R2-R7 

soybeans. For three years, 86% of our field samples (each sample = 25 sweeps) 

contained at least one stink bug. Out of all the stink bugs collected over our three year 

field survey, 65% were RBSB, followed by SGSB (19%), BSBS (9%), and GSB (6%) 

(Fig. 3). 

Although mean abundance of stink bugs was found to vary significantly across 

soybean growth stages, very few samples reached the economic threshold (i.e., 8 stink 

bugs/25 sweeps; including RBSB, SGSB, BSB, and GSB) during R2 – R4 (Table 3). 

However, during later growth stages (R5-R7) the majority of samples were found to 

have stink bug densities at or above the economic threshold. The highest number of 

samples with stink bug populations at or above the economic threshold occurred during 

R7. In 2011, 2012, and 2013, 75, 100 and 85% of our samples collected at R7 contained 

stink bug numbers at or above the economic threshold, respectively. At R6, 45, 100, and 

50% of our samples contained stink bug numbers at or above the economic threshold 

during the same years. Overall, RBSB density reached the economic threshold in 21% of 

samples, while SGSB reached the economic threshold in only 3% of our samples. BSB 

and GSB never reached threshold levels.  
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Figure 3. Stink bug species composition in soybean fields across the Upper Gulf Coast 

of Texas during 2011-2013. RBSB= redbanded stink bug, SGSB= southern green stink 

bug, BSB= brown stink bug, GSB= green stink bug. 
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Table 3. Percentage of samples in which stink bug counts reached economic threshold 

(ET). Percentages include nymphs and adults of RBSB, SGSB, BSB and GSB. 

 

  Percentage of samples at or above ET (8 stink bugs/25 sweeps) 

Crop stage 2011 2012 2013 

R2 0 0 0 

R3 0 2.50 1.82 

R4 0 5.00 0 

R5 40 60 10 

R6 45 100 50 

R7 75 100 85 

RBSB= redbanded stink bug, SGSB= southern green stink bug, BSB= brown stink bug, 

GSB= green stink bug 
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Discussion 

The RBSB has become the most dominant stink bug species in Texas and 

Louisiana soybeans. The shift in the composition and relative abundance of the stink bug 

complex in these states calls for a revised economic threshold for the stink bug complex 

(McPherson et al. 1994). The currently used economic threshold for the soybean stink 

bug complex has limitations since it is based on outdated data excluding RBSB. The 

currently used economic threshold was determined when the stink bug complex was 

mainly composed by SGSB, GSB, and BSB (McPherson et al. 1994). Our study shows 

that RBSB alone represented more than 65% of the stink bugs found in our samples from 

2011 to 2013, while SGSB, BSB and GSB altogether accounted for less than 35% (Fig. 

3). Therefore, taking into account the upsurge in densities of RBSB and its higher 

damage potential compared to other common stink bug species (Correa-Ferreira and de 

Azevedo 2002), we believe a revised economic threshold for the soybean stink bug 

complex is needed. 

The RBSB is known to be less susceptible to products available for stink bug 

control on soybeans (Davis et al. 2011), as a result, insecticide applications have 

significantly increased in regions where RBSB has become a soybean pest. For example, 

because the RBSB has become more prevalent in Louisiana soybeans, the average 

number of insecticide applications has increased from one or two per season during the 

late 1990s to three to five per season in 2013, with the bulk of those targeting RBSB 

(Temple et al. 2011). Similarly, in Texas, predominance of RBSB has been responsible 

for a significant increase in the amount of insecticides applied in soybean. Under these 



 

25 

 

circumstances, insecticide resistance is possible. Increased insecticide use may also have 

negative impacts on natural enemies and increase soybean production costs.  

The co-occurrence of multiple developmental stages and species of 

phytophagous stink bugs with different damage potentials and insecticide susceptibilities 

makes difficult to determine accurate economic thresholds and selection of the proper 

insecticide. Information about stink bug species composition and abundance relative to 

soybean growth stages, such as provided in this study, call for the need to design revised 

economic thresholds. Also, because susceptibility to insecticides varies with stink bug 

developmental stages, knowing the relative proportion of less mobile immatures and 

more mobile adult stink bugs across soybean growth stages may increase the efficiency 

in timing of insecticide applications.  

It is not clear why RBSB geographic range has expanded since the first report of 

this insect in the United States in the 1960s (Panizzi and Slansky 1985c). It is also 

unclear what has caused the rise in RBSB populations resulting in this insect becoming 

the most serious pest of soybean in Louisiana and Texas in recent years. We observed 

during early reproductive stages of soybean (R2 to R4), populations of RBSB, SGSB, 

BSB, and GSB were not significantly different (Fig. 1). However, during later 

reproductive stages (R5 to R7), number of RBSBs significantly increased compared to 

other insect species. This was in part due to the relatively greater increase in RBSB 

nymphs vs adults compared to other stink bug species as the crop progresses towards 

maturity (Fig. 2). This suggests RBSB possesses a higher reproductive rate of increase 

than the other stink bug species found in Texas soybean. Also, the greater insecticide 
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susceptibility of SGSB, BSB and GSB may make it difficult for them to compete with 

RBSB, which might displace them from the crop. More research needs to be conducted 

to fully understand the geographic expansion and increased abundance of RBSB and its 

interactions with other stink bug species in soybean.  
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CHAPTER III 

DETERMINATION OF GROWTH STAGE-SPECIFIC RESPONSE OF 

SOYBEANS TO VARYING DENSITIES OF REDBANDED STINK BUG, 

Piezodorus guildinii WESTWOOD, (HEMIPTERA: PENTATOMIDAE)   

Synopsis 

The redbanded stink bug (RBSB), Piezodorus guildinii Westwood, (Hemiptera: 

Pentatomidae) is an emerging pest of soybeans in the southern states of the US.  It has 

become the most abundant stink bug species in Texas soybeans. Field cage studies were 

conducted to determine the damage potential of RBSB during R2 to R6 growth stages of 

soybeans. Soybeans at respective growth stages were infested with varying densities (0, 

1, 2 and 4 RBSB adults/cage) of field collected RBSB adults. At each growth stage four 

adjacent plants were randomly selected and cylindrical wire mesh cages were installed to 

confine RBSBs on the plants. RBSB infestation was maintained for 10 days after which 

cages were removed and plants were repeatedly sprayed with acephate. Plant response 

was measured in terms of number of flat pods, seed yield, 100 seed weight, and number 

of seeds per pod. RBSB infestation during R5-R6 growth stages significantly decreased 

soybean yield. Decrease in soybean yield in response to RBSB infestation was mainly 

due to reduced seed weight and increased numbers of flat pods.  

In addition, a field experiment was conducted to determine if flat pods are 

localized only to the regions of RBSB feeding. RBSB adults were confined to certain 

portions of the plants (bottom, top, and both) using specially designed cages isolating 
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these portions of the plants. Results from this experiment showed significantly higher 

numbers of flat pods on plant portions infested with RBSBs than those kept free of 

RBSB infestation indicating that flat pods are result of direct RBSB damage and are 

localized only to the area of RBSB feeding.  

Introduction 

  Stink bugs are the primary arthropod pests of soybeans in the southern US (Drees 

and Rice 1990, McPherson et al. 1994). Historically, important stink bug species 

damaging soybeans in this region include the southern green stink bug (SGSB) Nezara 

viridula (L.), the green stink bug (GSB) Chinavia hilaris (Say), and the brown stink bug 

(BSB) Euschistus servus (Say) (Hemiptera: Pentatomidae) (Miner 1966, McPherson et 

al. 1993). The redbanded stink bug (RBSB), Piezodorus guildinii (Westwood), has 

recently emerged as an economic pest of soybean in the southern US.   

RBSB was first reported on the island of St. Vincent (Stoner 1922). It’s been 

known to cause serious damage to soybeans in the Neotropics since the 1960s (Panizzi et 

al. 2000). In the late 1970s, RBSB began replacing SGSB on soybeans in Brazil 

(Turnipseed and Kogan 1976, Kogan and Turnipseed 1987). Consequently, most of the 

information available about its impact on soybean comes from Brazil (Panizzi et al. 

1980, Panizzi and Slansky 1985c, a, b). The expansion of soybean cultivation in South 

America during the 1960s and 1970s could be the principal reason for the increase in 

RBSB populations in this region (Panizzi and Slansky 1985a).  



 

29 

 

In the US, RBSB was first reported in the 1960s in Florida (Genung et al. 1964), 

but it was never reported to cause economic damage to US soybeans until the late 1990s. 

Since its first report, RBSB has expanded its distribution from Florida (Menezes 1981) 

to South Carolina (Jones and Sullivan 1982), Georgia (McPherson et al. 1993), Arkansas 

(Smith et al. 2009), Louisiana (Temple et al. 2009), Missouri (Tindall and Fothergill 

2011) and Texas (Vyavhare and Way 2013). In the late 1990s, RBSB was recognized as 

an economic pest of soybean in Louisiana. Currently, RBSB has become the most 

abundant stink bug species in soybean in Louisiana and Texas (see Chapter 1) and poses 

a substantial threat to soybean production in the US.   

Stink bugs mainly feed on young, tender growth and developing seeds with their 

piercing-sucking mouth parts (McPherson et al. 1994). They inject salivary secretions 

into seeds to form a slurry, which they ingest. Damaged seeds exhibit decreased 

germination, reduced emergence and low survival (Todd and Turnipseed 1974). Damage 

by stink bugs is caused not only by direct mechanical damage but also by the 

transmission of disease agents. For example, stink bugs are vectors of yeast spot disease 

in soybeans (Daugherty 1967) and they have also been reported to be associated with 

soybean delayed maturity syndrome (Daugherty et al. 1964, Duncan 1968, Panizzi et al. 

1979). 

The damage potential of stink bugs in soybean varies with the species of stink 

bug. For example, the rate of damage per insect in soybeans is equivalent for the 

southern green stink bug and green stink bug, while the brown stink bug is slightly less 

damaging (McPherson et al. 1979b). The RBSB causes more damage per insect than 
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southern green, green and brown stink bug on soybean (Correa-Ferreira and de Azevedo 

2002) because of the greater deleterious action of its salivary enzymes (Depieri and 

Panizzi 2011). Similarly, the extent of feeding damage by RBSB could vary with the 

phenological (crop growth) stages of soybean. Little is known about the impact of RBSB 

injury on soybean yield during specific crop growth stages.  

The highest densities of stink bug populations generally occur from mid to late 

pod fill (R5-R7) (McPherson et al. 1993, Baur et al. 2000, Smith et al. 2009, Vyavhare 

and Way 2013). Stink bug feeding during full pod to early seed development stages (R4 

to R5) can cause large numbers of flat pods i.e. pods without seeds. Although occurrence 

of flat pods in soybean fields infested with stink bugs is very common, no study has been 

done to understand the relationship between stink bug feeding and development of flat 

pods. Flat pods can be observed throughout the plant, but stink bug feeding signs are 

present only on certain pods (Fig. 4). This observation suggests that localized RBSB 

feeding could trigger development of flat pods throughout the plant possibly through 

translocation of deleterious insect enzymes injected while feeding.  
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Figure 4. Flat pods on soybean plant (red circle shows stink bug feeding site) 
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The objectives of this study were: 1) to determine the yield response of soybean 

to RBSB infestation during different growth stages: from full bloom to full seed (R2 to 

R6) and 2) to determine if flat pods are localized only to the regions of RBSB feeding or 

if RBSB triggers flat pod development throughout the plant. This study is the first to 

investigate damage potential of RBSB and its relationship with the occurrence of flat 

pods in TX soybeans. Understanding the growth stage specific response of soybean to 

RBSB is necessary to determine the most vulnerable soybean growth stages to this pest. 

Also, this information is critical to develop action thresholds specific to crop growth 

stages rather than having a constant action threshold throughout the soybean 

reproductive development.  

Materials and methods 

Field cage studies were conducted at the Texas A&M AgriLife Research and 

Extension Center, Beaumont.  

RBSB source 

  Field collected RBSB adults were used in the study. The day before each 

infestation, RBSB adults were collected using a standard 15 inch diameter sweep net 

from commercial soybean fields in Jefferson County, TX. Upon collection, RBSBs were 

held in the laboratory and provided with fresh soybean pods for 24 hours before 

infestation. This allowed exclusion of RBSBs which could have been injured when 

collected from the field and selection of healthy, robust adults for infestation.  
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Growth stage specific response of soybean to RBSB 

Soybeans, AG 6732 (Asgrow, St. Louis, MO) were planted in the field on May 

20, 2012 and May 30, 2013. Fields were irrigated regularly, so soil moisture was not a 

limiting factor that could potentially mask treatment effects by RBSBs. Agronomic 

practices used were those recommended for soybean production in Louisiana by the 

Louisiana Agricultural Experiment Station and Louisiana Cooperative Extension Service 

(Levy 2012). Soybeans were planted at ~6-7 seeds/row-foot with one ft spacing between 

rows. However, in order to maintain a uniform plant density throughout the treatments, 

plants were thinned after emergence to keep 4 plants/row-foot at randomly selected spots 

in the field. In order to protect treatment plants from any kind of insect damage other 

than confined RBSBs, plants were sprayed with methyl parathion at 0.75 lb AI/ac 

whenever insect activity was observed using a hand sprayer. Methyl parathion has a 

relatively short half-life on foliage. Two weeks before the experimental infestation with 

RBSBs, plants were kept free of any insecticide application to diminish residual effects 

of pesticides on RBSBs. Because RBSB mainly feed on reproductive structures, 

soybeans in the reproductive stages R2 (full flowering) to R6 (full seed) were infested 

with RBSBs. R1 was not used because this stage is characterized by the appearance of a 

single flower at one of the top internodes. The presence of only one flower at this stage 

may reduce the opportunities to visualize differences in RBSBs among our different 

treatments. To determine response of R2-R6 soybeans to RBSB damage, we used a 

range of RBSB densities (0, 1, 2 and 4 RBSB adults/cage) at soybean growth stages R2, 

R3, R4, R5, and R6. When soybeans approached R2 (full flowering), cylindrical, wire 
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mesh cages (1ft X 5ft) were placed over plants at randomly selected spots in the field. 

Prior to caging, selected plants were visually checked and made insect free. RBSB were 

kept in cages for 10 days. Plants were inspected daily and dead RBSBs were replaced to 

keep herbivore pressure constant. There were four and six replications for each treatment 

in 2012 and 2013 studies, respectively. The different soybean growth stages were 

considered as treatments and the different RBSB densities were considered as sub-

treatments. After 10 days of infestation, cages and insects were removed and plants were 

sprayed with acephate (Orthene 75% SP, Arysta NC) at 1 lb. AI/ac to eliminate further 

insect activity that could mask treatment effects. The control was caged and maintained 

without any infestation during any of the plant growth stages and was also treated with 

insecticides.  At maturity, plants were threshed and yield parameters, such as number of 

flat pods, 100 seed weight, total seed yield, and number of seeds per pod, were recorded. 

Data were analyzed using PROC GLM (SAS-Institute 2003). Contrasts among specific 

treatments were determined using Bonferroni test.  

RBSB and flat pods 

Soybean variety AG 6730 was planted in the field under irrigated conditions on 

May 12, 2011. Weeds were controlled by hand and Round-up spray at 1% concentration 

by volume. Plants were sprayed with lambda-cyhalothrin at 0.03 lb ai/ac and methyl 

parathion at 20 gm/gal of water alternatively in order to protect plants from any kind of 

insect damage. About 10 days before the infestation of bugs, plants were kept free of any 

insecticide application to avoid residual effects of pesticides. When soybeans 

approached R4-R5, plants of uniform height were selected and field collected RBSB 
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were confined to certain portions of the plants (bottom, top, and both) using specially 

designed cages isolating these portions of the plants. The top two internodes of the plants 

were considered as the top portion and the rest of the plant as the bottom portion.  

Overall, there were 4 treatments: infestation of only the top portion, infestation of only 

the bottom portion, infestation of both portions, and a control without infestation. Two 

field collected RBSB adults were put into each cage. Infestations were maintained for 3 

days after which cages were removed and plants were repeatedly sprayed with acephate 

to avoid further insect damage. At maturity, pods were harvested separately from each 

plant portion and the number of flat pods was counted. Data were analyzed using PROC 

GLM (SAS-Institute 1999). Differences in numbers of flat pods on top and bottom 

portions of plants under each treatment were determined using Tukey test.  

Results 

Development of flat pods was significantly impacted by RBSB density and 

timing of infestation during R2 to R6 stages (Table 4). Further, the interaction between 

RBSB density and infestation timing was significant. Relatively higher numbers of flat 

pods were produced in response to RBSB infestations at R5 and R6 stages than during 

R2 to R4 (Fig. 5). Percent of flat pods was highest when R5 soybeans were infested with 

1 and 4 adult RBSB/0.3m and when R6 soybeans were infested 4 adult RBSB/0.3 m.  
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Table 4. Analysis of variance indicating the significance of infestation timing, RBSB 

density, and interaction between infestation timing and RBSB density on development of 

flat pods 

 

Source DF F Value P value 

Infestation timing (soybean growth stage) 4 8.19 <0.0001 

RBSB density 3 3.53 0.0164 

Infestation timing X RBSB density 12 2.01 0.0261 
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Figure 5. Development of flat pods in response to RBSB infestation in R2-R6 soybeans (RBSB densities: 0, 1, 2, and 4 

adults/0.3 m). Bars with same letters are not significantly different (Bonferroni, alpha = 0.05)  
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Yield response to RBSB density and timing of RBSB infestation during soybean 

reproductive development was significant (Table 5). Soybean yield did not vary 

significantly due to RBSB infestation during R2 and R3 stages. However, RBSB 

infestation during soybean stages R4 to R6 showed significant yield reduction (Fig. 6). 

The least amount of yield was produced when soybeans at R5 and R6 stages were 

infested with RBSB densities of 1, 2, and 4 adults/0.3 m. Yield did not vary significantly 

across RBSB densities 1-4 adults/0.3 m at R5 and R6.  

There was no significant impact of RBSB infestation on numbers of seeds per 

pod (F = 0.68, df = 3, P = 0.5652). As a result, numbers of seeds per pod remained 

constant across all treatments (Fig. 7). 

Seed weight was significantly impacted by RBSB infestation across soybean 

growth stages (Table 6). At R6, there was a significant reduction in mean seed weight in 

response to RBSB infestation at 2 adults/0.3 m (Fig. 8). RBSB infestation during R2-R5 

stages, however, had no effect on seed weight. Also, seed weight did not vary 

significantly among RBSB densities.   

 

 

 

 

 

 

 



 

39 

 

Table 5. Analysis of variance indicating the significance of infestation timing, RBSB 

density, and interaction between infestation timing and RBSB density on soybean yield 

 

Source DF F Value P value 

Infestation timing (soybean growth 

stage) 4 19.18 <0.0001 

RBSB density 3 42.92 <0.0001 

Infestation timing X RBSB density 12 2.56 0.004 
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Figure 6. Growth stage specific response of soybean to varying densities of RBSB (0, 1, 2, and 4 adults/0.3 m). Bars showing 

same letters within each soybean growth stage are not significantly different (Bonferroni, alpha = 0.05) 
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Figure 7. Effect of RBSB infestation during R2-R6 stage soybeans on numbers of seeds per pod.  
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Table 6. Analysis of variance indicating the significance of infestation timing, RBSB 

density, and interaction between infestation timing and RBSB density on seed 

weight/100 seeds 

 

Source DF F Value P value 

Infestation timing (soybean growth 

stage) 4 16.96 <0.0001 

RBSB density 3 0.56 0.6429 

Infestation timing X RBSB density 12 2.7 0.0025 
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Figure 8. Mean seed weight in response to RBSB infestation at varying densities (0, 1, 2, and 4 adults/0.3 m) at R2-R6 stage 

soybeans. Bars showing same letters within each soybean growth stage are not significantly different (Bonferroni, alpha = 

0.05) 
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Figure 9. Number of flat pods in response to RBSB infestation on particular plant parts.  

* indicates significant difference between numbers of flat pods between top and bottom portions in each treatment, NS = not 

significant (alpha = 0.05)
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Numbers of flat pods on different plant sections (i.e., top and bottom) varied 

significantly in response to RBSB infestation. When the top portion of soybean plants 

was infested, significantly higher numbers of flat pods developed on the top portion as 

compared to the bottom portion (F = 35.2, df = 1, P = 0.0019). Similarly, when only the 

bottom portion of the plant was infested, significantly higher numbers of flat pods were 

present on the bottom than on the top portion (F = 17.7, df = 1, P = 0.0085).  When both 

top and bottom portions were infested, similar numbers of flat pods were produced in 

both portions (F = 2.65, df = 1, P = 0.1644). Few flat pods were produced in control 

plants with no significant difference in numbers of flat pods between top and bottom 

portions of the plant (F = 0.54, df = 1, P = 0.494) (Fig. 9).  

Discussion  

The first objective of this study was to determine soybean yield response to 

RBSB infestation across R2 to R6 stages. Results from this study showed significant 

yield reduction across soybean R4 to R6 growth stages in response to RBSB infestation 

(Fig. 6). The highest yield losses occurred at R5 and R6. Most of the yield reduction 

during R5 and R6 was the result of the relative increase in the number of flat pods and 

the reduction in mean seed weight (weight of 100 seeds) as compared to early 

reproductive stages (R2 to R4). Our results support previous studies done on other stink 

bug species (e.g. SGSB and GSB) reporting that yield losses are most affected when 

soybeans are exposed to stink bug feeding during R5to R6 stages. Damage from RBSB 

particularly during R6 can be severe. Our data suggest that RBSB infestation cause 
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substantial yield loss during the same stage (i.e., R6) at which RBSB populations reach 

their peak in soybean fields (Vyavhare and Way 2013) which can lead to severe damage.  

Results from this study stress the need to revise action thresholds for stink bugs 

on soybean. Improved thresholds should consider not only the RBSB density but also the 

variable susceptibility of soybean at different growth stages. Current action thresholds 

for RBSB are constant throughout the soybean reproductive stages. The incorporation of 

soybean growth stage into action threshold calculations will increase their accuracy and 

consequently reduce and optimize the use of insecticides in the agro-ecosystem. 

Results from this study show that flat pods are the result of direct feeding by 

RBSB and that the damage is localized to the region of feeding. Interestingly, the 

presence of flat pods in the control treatment suggests that there might be other factors 

involved in the development of flat pods in addition to stink bug feeding. Because flat 

pods are restricted to the area of feeding by RBSB, the existence of any long-range 

translocation substance transmitted by RBSB saliva seems unlikely.  

Future research needs to be done to examine the extent of damage at different 

growth stages of not only by RBSB but also by SGSB, GSB, and BSB. This information 

will allow the development of a combined action threshold for all the species within the 

stink bug complex. Consideration of both the variable damage potential of different stink 

bug species and the variable vulnerability of soybean growth stages to stink bug damage 

needs to be taken under consideration in the development of revised and improved action 

thresholds for the stink bug complex in soybean.  

The present study determined damage potential of RBSB only in terms of yield 
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parameters. However, determination of yield reduction is not enough to estimate overall 

damage from RBSB, as seed quality can also affect the market value of a crop. Stink bug 

feeding during late reproductive stages (R6-R7) is known to affect seed quality 

adversely. For example, SGSB infestation during R7 soybeans have shown to 

significantly reduce crop value (Musser et al. 2011). We showed significant yield 

reduction due to RBSB infestation during R5-R6, but seed quality in response to RBSB 

infestation was not assessed. Future studies need to address seed quality to better 

estimate RBSB damage and to incorporate this information into action threshold 

calculations.  

To summarize, this is the first study to determine damage potential of RBSB in 

TX soybean and its association with the occurrence of flat pods. Results from this study 

have shown that impact of RBSB infestation in soybean depends upon the timing of 

infestation during crop phonological stages. In addition, this study has shown that direct 

RBSB feeding on developing pods results in the production of flat pods.   
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CHAPTER IV 

REDBANDED STINK BUG (HEMIPTERA: PENTATOMIDAE) INFESTATION 

AND OCCURRENCE OF DELAYED MATURITY IN SOYBEAN 

Synopsis 

Studies done in Brazilian soybean in 1970s indicates that redbanded stink bug 

(RBSB), Piezodorus guildinii (Westwood) is principally responsible for delayed 

maturity disorder in soybean Glycine max (L.) Merr. probably due to its ability to cause 

more damage per individual than other phytophagous stink bug species found in 

soybean. This species of stink bug has recently emerged as a serious pest of soybean in 

the southern US, particularly in the states of Louisiana and Texas. As RBSB has only 

recently gained the status of serious pest in US soybean, little is known about its 

association with the occurrence of soybean delayed maturity syndrome in the US. Also, 

the mechanism behind stink bug induced soybean delayed maturity remains unknown. 

Though no definitive evidence is present, one of the major hypothesis about stink bug 

induced delayed maturity is that stink bug feeding during pod and seed development 

stages result in reduced pod/seed load causing alteration of source-sink ratio in soybeans 

and eventually in delayed maturity. In order to determine what RBSB threshold triggers 

delayed maturity in soybean, experiments were conducted with different levels of RBSB 

infestation (0, 2, 4, and 8 adults/0.3 m) during R4 to R5 stages. In addition, to determine 

if soybean delayed maturity is exclusively due to reduced pod load by RBSB, 

experiments with different levels of mechanical pod removal (0%, 25%, 50%, and 75% 
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pod removal) were conducted on field grown soybeans. RBSB density up to 4 adults/0.3 

m did not trigger occurrence of delayed maturity indicated by green leaf retention. 

However, RBSB density of 8 adults/0.3 m showed a significant increase in the number 

of green leaves retained on plants at maturity. Results from the mechanical pod removal 

experiment showed no effect of pod removal on green leaf retention. Significant positive 

correlation was observed between RBSB density and occurrence of soybean delayed 

maturity while no significant correlation was observed between mechanical pod removal 

and number of green leaves retained on plant at maturity. Indicating the involvement of 

additional mechanism/s than just reduced pod load or alteration of sink-source ratio 

behind delayed maturity disorder of soybean.  

Introduction 

Delayed maturity is a common disorder in soybean, Glycine max (L.) Merr. 

Throughout the US (Holshouser 2009). It consists of stems failing to mature even though 

pods mature and are ready to harvest (Schwenk and Nickell 1980). The presence of 

green stems at harvesting makes the use of combines difficult and may cause seed loss 

by pod shattering. Many causes of soybean delayed maturity have been reported such as 

bean pod mottle virus, environmental stress, and insect feeding, mainly by stink bugs 

(Duncan 1968, Todd and Turnipseed 1974, Panizzi et al. 1979, Schwenk and Nickell 

1980, Holshouser 2009). 

An association between stink bug feeding and occurrence of delayed maturity in 

soybeans has been found in several studies (Daugherty et al. 1964, Duncan 1968, Todd 
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and Turnipseed 1974). Specifically, redbanded stink bug (RBSB), Piezodorus guildinii 

(Westwood) has been found to be a major cause of soybean delayed maturity, because it 

causes more damage per insect than any other stink bug species (Sosa-Gomez 1995, 

Correa-Ferreira and de Azevedo 2002). Consequently, increased occurrence of both 

delayed maturity and RBSB populations have been observed in Louisiana (Davis et al. 

2011) and Texas (Vyavhare and Way 2013) in recent years. Studies done in Brazilian 

soybean in 1970s have related RBSB densities to occurrence of delayed maturity (Costa 

and Link 1977, Panizzi et al. 1979). However, little or no latest information is available 

regarding RBSB infestation and occurrence of delayed maturity in the US where RBSB 

has recently emerged as a serious pest of soybean. It is not known what RBSB threshold 

during pod development stage causes delayed maturity nor the mechanism/s involved in 

the induction of delayed maturity as a result of RBSB feeding.  

Reduction in pod load is the common denominator between all factors thought to 

cause soybean delayed maturity (i.e., stink bugs, diseases and environmental stress). The 

current base of knowledge suggests that reduced pod load altering the ratio of 

photosynthetic source organs (e.g., leaves) to non-photosynthetic sink organs (e.g., pods) 

could be behind soybean delayed maturity. In plants photosynthetic matter production is 

regulated by photosynthetic source-sink balance (Kasai 2008)… In general, 

photosynthate move from the leaf to the regions of energy utilization such as the floral 

buds, developing seeds and pods (the sinks) (Egli et al. 1976). Stink bug feeding during 

R4-R5 stage soybeans is known to cause significant yield reduction through producing 

flat pods (empty pods) and reduced seed weight (Yeargan 1977). Fewer seed bearing 
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pods and seeds as a result of RBSB feeding during R4-R5 stages would result in greater 

amount of photosynthate being directed into vegetative rather than reproductive plant 

parts resulting into delayed maturity.  

 Alteration of source-sink balance through mechanical pod removal have been 

shown to cause high levels of leaf chlorophyll retention and reduced rate of 

photosynthesis in soybean (Wittenbach 1982). Source-sink balance particularly at the 

grain filling stages (R5-R6) is a crucial factor in the regulation of leaf senescence (Miao 

et al. 2009). Nitrogen in grain is derived from nutrients that are taken up from roots and 

remobilized from vegetative organs of the plant (e.g. leaves, stems) to reproductive 

organs (e.g. flowers, pods) (Pan et al. 1986).  Reduced nitrogen uptake during grain 

filling stages cause nutrients to remobilize from leaves and the stem to developing pods, 

subsequently leading to leaf senescence (Htwe et al. 2011). However, removal of sink 

decreases the nutrient remobilization from leaves and stem causing them to stay green 

longer (Htwe et al. 2011).   

This study was conducted with two objectives. The first objective was to 

determine RBSB threshold causing delayed maturity in soybean. The second objective 

was to determine if reduced pod load (alteration of sink-source ratio) is the main cause 

of soybean delayed maturity or if some other mechanism/s could be involved. In order to 

determine the RBSB threshold for soybean delayed maturity to 51ccur, field cage 

experiments were conducted with different levels of RBSB infestation during R4-R5 

stages in field grown soybeans. While in order to determine if reduced pod load was 

associated with soybean delayed maturity, experiments with different levels of 
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mechanical pod removal were conducted. This study is the first to correlate sink 

reduction (mechanically and by RBSB feeding) with the green leaf retention at maturity 

in soybean.  

Materials and methods 

Field experiments were conducted at Texas A&M AgriLife Research and 

Extension Center in Beaumont, Texas, US over two years. The experiments were laid 

out as a completely randomized design. Glyphosate tolerant soybean variety (AG 6732) 

were planted in the field on June 10, 2012 and May 30, 2013, under irrigated conditions. 

Agronomic practices recommended by the Louisiana Agricultural Experiment Station 

and Louisiana Cooperative Extension Service (Levy 2012) for soybean production were 

used. The size of the study field was 27 m X 27 m and the spacing between rows was 0.3 

m. Plant density of 4 plants/ 0.3 m was maintained by thinning out extra plants at early 

vegetative stage in the central eight rows of the study field. Four rows of which were 

used for RBSB infestation and the other four rows for mechanical pod removal 

experiments.  

RBSB infestation experiment 

 Within the rows dedicated for the RBSB infestation experiment, spots with 4 

plants/0.3 m were randomly selected and the adjacent plants from both sides were 

removed mechanically to make space around selected plants to install cages. When 

soybeans approached R4 (full pod), cylindrical, wire mesh cages (1.5 ft X 5 ft) were 

placed over plants with the top of cages enclosed with fine wire mesh. Cages were used 



 

53 

 

such that they would not cause shading effect and alter plant canopy temperature 

(Hourly plant canopy temperature recorded for 24 hr under caged and uncaged 

conditions showed no significant effect of cages on canopy temperature). Prior to 

enclosure, plants were visually checked and made insect free. Plants were infested with 

four densities of RBSB: 0, 2, 4, and 8 adults/0.3 m (0, 0.5, 1, and 2 adults/plant). In 2012 

our experiment consisted of four replications while in 2013 there were six. Hence, in 

2012, 16 cages were examined. While in 2013, 24 such cages were examined in the 

field. Treatments (i.e., RBSB densities) were assigned randomly to each cage.  RBSB 

adults were collected from soybean fields located in Jefferson County, TX a day prior to 

placing them inside field cages. Upon collection, RBSB adults were kept in the 

laboratory on fresh soybean pods taken from the same field where they were collected. 

On the day of infestation, only healthy and robust adults were confined inside field cages 

in the ratio of 1:1 male and female. Stink bugs were kept inside cages for 10 days. Plants 

were inspected daily and dead RBSB were replaced to keep herbivore pressure constant. 

After 10 days of infestation, cages were removed and plants were sprayed alternatively 

with λ-cyhalothrin (Karate EC, Zeneca, Wilmington, DE) @ 0.03 lb AI/ac, methyl 

parathion @ 0.75 lb AI/ac, and acephate (Orthene 75% SP, Arysta NC) @ 1 lb. AI/ac to 

insure minimum further insect activity that would mask the treatment effect.  

Mechanical pod removal experiment 

 Within the rows dedicated for the mechanical pod removal experiment, spots 

with 4 plants/0.3 m were randomly selected and the adjacent plants from both sides were 

removed mechanically to make space around selected plants as in the RBSB infestation 
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experiment. There were no cages used in this experiment. There were four levels of pod 

removal treatments: removal of 25%, 50%, 75% pods, and a control with no pod 

removal. Pod removal treatments were assigned when plants had approached R4 stage 

(full pod).  In 2012, study was consisted of four replications while in 2013 there were 

six. For the first treatment i.e. 25% pod removal, one pod set from every four pod sets on 

each plant was removed by hand; for the 50% pod removal treatment, every alternate 

pod set from the stem was removed; for the 75% pod removal three of the every four pod 

sets were removed. After mechanical pod removal, plants were irrigated regularly to 

allow growth. Plants were sprayed with λ-cyhalothrin (Karate EC, Zeneca, Wilmington, 

DE) @ 0.03 lb AI/ac, methyl parathion @ 0.75 lb AI/ac, and acephate (Orthene 75% SP, 

Arysta NC) @ 1 lb. AI/ac using a hand sprayer in order to protect plants from any kind 

of insect damage which may mask treatment effects.  

Parameters recorded 

 In both the experiments, rate of photosynthesis and leaf chlorophyll content were 

recorded at soybean stage R6 (full seed), number of green leaves/0.3 m were recorded at 

maturity as an indicator of delayed maturity syndrome, and yield parameters such as 100 

seed weight and yield were recorded upon harvesting. Number of flat pods per plant was 

recorded for the RBSB infestation experiment to determine the extent of sink (pod) 

removal at each level of RBSB infestation.  

Photosynthetic measurements were taken following the procedure used by 

Macedo et al. 2003. Within each replication, we randomly selected two individual 

leaflets from any two plants out of the four that comprised each treatment, with the 
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restriction that only fully expanded leaflets from the uppermost three nodes were used 

(to ensure leaves used were of comparable age).  A portable photosynthesis system 

(Model Licor-6400, Li-Cor, Lincoln, NE) with CO2 injector and light source (in order to 

maintain stable CO2 and light concentrations for all measurements) was used to measure 

gas exchange parameters. Rate of photosynthesis was measured on 6 cm
2 
leaf sections, 

the maximum leaf area measured by LI-6400. Photosynthetic measurements were taken 

at 1600 µmol photons m
-2 

s
-1 

light intensity, 400 intercellular CO2 concentration, and 45-

55% of chamber humidity.   

Leaf chlorophyll content was determined in the same leaflets used for 

photosynthetic measurements using a chlorophyll meter, (Model, Spad-502, Minolta, 

Japan). Within each replication, four chlorophyll readings were taken (two per leaflet) 

which were then averaged to be used as a single replication.  

Data analysis 

 Data were subjected to analysis of variance (ANOVA) for the response variables 

of yield, number of green leaves, leaf chlorophyll content, and rate of photosynthesis 

using PROC GLM procedure (SAS Institute 2010). Data from RBSB infestation and 

mechanical pod removal were analyzed separately. Pairwise treatment differences were 

determined using Tukey test. In addition to the overall ANOVA, correlation and 

regression analysis were used to examine relationship among response variables 

(numbers of RBSBs, flat pods, green leaves at maturity, and % of mechanical pod 

removal).  
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Results 

RBSB infestation had a significant effect on soybean yield (F = 6.89, df = 3, P = 

0.0014) (Fig. 10A). The highest yield (86.17g) was recorded in our control treatment 

while it was the lowest (41.27g) when RBSB density was 8 adults/0.3 m. The decrease 

in yield correlated an increased number of flat pods in response to RBSB feeding. 

Numbers of flat pods varied significantly when RBSB density was 8 adults/0.3 m (F = 

16.55, df = 3, P <0.0001) (Fig. 11). Numbers of green leaves retained on plants at 

maturity where the highest when RBSB density was 8 adults/0.3 m (F = 35.62, df = 3, P 

<0.0001) (Fig. 10B).  

Even though there was significant yield reduction in response to RBSB 

infestation at 8 adults/0.3 m, no significant effect on the rate of photosynthesis was 

observed (F = 0.94, df = 3, P = 42.81) (Fig. 12). Leaf chlorophyll content was 

significantly affected by RBSB infestation (F = 6.88, df = 3, P = 0.0014) (Fig. 12). 

Significant increase in leaf chlorophyll content was observed under all RBSB infestation 

levels as compared to control plants. 
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Figure 10. Effect of RBSB on yield (A) and numbers of green leaves at maturity (B). 
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Figure 11. RBSB infestation and development of flat pods. 
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Figure 12. Effect of RBSB on rate of photosynthesis and leaf chlorophyll content. 

Means showing same lowercase letter are not significantly different. NS=not significant  
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A mechanical pod removal of 75% had a significant effect on yield (F = 3.65, df 

= 3, P = 0.0354) (Fig. 13A). However, no significant effect of mechanical pod removal 

was observed on green leaf retention at maturity (F = 2.12, df = 3, P = 0.138) (Fig. 13B).  

The effects of pod removal on leaf chlorophyll content and rate of photosynthesis 

are shown in Fig. 14. The amount of leaf chlorophyll remained constant across 

treatments indicating no effect of pod removal on leaf chlorophyll content (F = 0.17, df 

= 3, P = 0.9174).  However, significant reduction in rate of photosynthesis was observed 

following mechanical pod removal (F = 4.83, df = 3, P = 0.0042).  

There was significant positive correlation between RBSB density and green leaf 

retention in soybean (r = 0.72, P < 0.0001) (Table 7). Also, significant positive 

correlation was observed between RBSB density and % flat pods; and % flat pods and 

green leaf retention.  On the other hand, no significant correlation between mechanical 

pod removal and green leaf retention was observed.   

Figures 15 and 16 further illustrate the difference between mechanical pod 

removal and RBSB infestation treatments. There was no relationship between 

mechanical pod removal and green leaf retention in soybean. While RBSB induced pod 

removal (flat pods) was correlated with green leaf retention at maturity. The relationship 

between RBSB density and green leaf retention was the strongest (Fig. 16).  
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Figure 13. Effect of pod removal on yield (A) and green leaf retention at maturity (B) in soybean 
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Figure 14. The effect of pod removal on leaf chlorophyll content and rate of 

photosynthesis in soybean. NS=not significant 
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Table 7. Correlation coefficients (R) for mechanical pod removal, RBSB induced flat 

pods, RBSB density, and green leaf retention at maturity and RBSB density 

 

 

Mechanical pod 

removal 

 

RBSB induced flat 

pods  RBSB density 

Green leaf 

retention 0.26
ns

 (0.0988) 

 

0.38* (0.0159) 

0.72* 

(<0.0001) 

RBSB density   

 

0.49* (0.0014)   

*Significant at the 0.05 probability level 

ns= not significant; (P value) 
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Figure 15. Relationship between mechanical pod removal and green leaf retention (A); and RBSB induced pod removal (flat 

pods) and green leaf retention (B). Coefficients of determination (R
2
) are noted. 
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Figure 16. Relationship between RBSB density and green leaf retention at maturity in soybean. Coefficient of determination 

(R
2
) is noted.   
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Discussion 

Results from RBSB infestation experiments demonstrated that RBSB density of 

8 adults/0.3 m (2 adults/plant) during R4-R5 stages triggers delayed maturity in soybean 

variety AG 6732. Studies done in Brazilian soybean have also found a correlation 

between RBSB feeding and occurrence of soybean delayed maturity. For example, 

(Panizzi et al. 1979) reported foliage retention at RBSB densities 0.3-1.3 adults/0.3 m 

with infestation maintained for 25 d during R3-R8 stage soybeans. In contrast, the 

current study found that higher RBSB density (8 adults/0.3 m) was required to cause 

delay maturity in soybean. This could be because of different climatic conditions under 

both the regions where experiments were conducted which may affect plant growth 

and/or variable response of different soybean varieties as occurrence of delayed maturity 

is known to vary with the soybean varieties (Holshouser 2009). Several studies have 

related feeding by other stink bug species to delayed maturity in soybean. For example, 

(Boethel et al. 2000) showed that N. viridula infestation and occurrence of soybean 

delayed maturity. E. servus was also shown to cause delayed maturity in soybean 

(Daugherty et al. 1964). However, little have been done on elucidating the mechanism 

behind stink bug induced delayed maturity in soybean. Reduced pod load and altered 

source-sink ratio due to stink bug feeding was thought to be a potential mechanism 

causing delayed maturity, but before the current study, no study had compared the 

response of same soybean variety to sink removal by stink bug feeding and mechanical 

pod removal through the point of view of delayed maturity.  
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Results from mechanical pod removal experiments showed no relationship 

between reduced pod load and occurrence of delayed maturity. Also, the correlation 

between RBSB induced pod removal (flat pods) and green leaf retention was weak 

(Table 7). RBSB density, however, had strong positive correlation with the occurrence 

of soybean delayed maturity indicated by green leaf retention. These results indicate that 

occurrence of soybean delayed maturity in response to RBSB feeding may not be 

attributed exclusively to reduction in pod load. If soybean delayed maturity was solely 

due to reduced pod load, plants with up to 75% of mechanical pod removal would have 

retained green leaves as well. However, green leaves were retained only in response to 

high RBSB density (8 adults/0.3 m) but not in response to mechanical pod removal 

which indicates the possible involvement of additional mechanism(s) than just pod 

reduction or alteration of sink-source ratio behind RBSB induced soybean delayed 

maturity. 

The literature suggests that reduced pod load or altered sink-source ratio can 

have significant effects on the rate of photosynthesis or on the accumulation of 

photosynthate and ultimately plant maturity in soybean. For example, soybean is known 

to have an ability to adjust its rate of photosynthesis depending upon the demand from 

sinks or depending upon source-sink ratio (Kasai 2008). There is evidence showing 

reduction in the rate of photosynthesis in response to removal of developing pods which 

exert high demand for photosynthate (Thomas and Stoddart 1980). Similarly, there is 

evidence demonstrating a decrease in the rate of photosynthesis in soybeans in response 

to mechanical pod removal due to reduced demand for assimilate in depodded plants, 
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even though leaf chlorophyll content was not decreased (Nooden 1984). Our results from 

the mechanical pod removal experiment were in agreement with those from Nooden 

(1984) study as we also observed reduction in rate of photosynthesis in response to pod 

removal and no effect on leaf chlorophyll content (Fig. 14). In contrast, in the RBSB 

infestation experiment, even though there was significant decrease in the amount of sink 

(increase in numbers of flat pods and decrease in yield) at the RBSB density of 8 

adults/0.3 m, there was no reduction in the rate of photosynthesis and leaf chlorophyll 

content was significantly increased (Fig. 12). Thus, soybean plants responded differently 

to sink removal by mechanical pod removal than by RBSB feeding.  In the case of sink 

removal by RBSB, instead of showing signs of senescence such as reduced rate of 

photosynthesis, plants continued photosynthesis, showed an increase in the amount of 

leaf chlorophyll (Fig. 12), and retained significantly higher numbers of green leaves at 

maturity (Fig. 10B).   

Some caution is advice before using the results of this study to exclude the 

possibility of the involvement of sink-source imbalance in the occurrence of soybean 

delayed maturity. I did not measure the partitioning of assimilate into vegetative and 

reproductive plant parts in response to sink removal by both mechanical removal and 

RBSB feeding. This partitioning will shed more light on the understanding of the role of 

sink removal on photosynthate accumulation in source organs and on the tendency of 

plants to stay green. Therefore, further studies are needed to estimate the partioning of 

assimilate between different plant organs in response to sink removal by both 

mechanical pod removal and RBSB feeding. Also, although it is possible that the iron 
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mesh cages installed to confine RBSBs on plants could have produced a cage effect on 

these treatments, I find that possibility unlikely. Temperature was compared within and 

outside cages and no variation was detected. Furthermore, as RBSB is known to have 

more deleterious salivary enzymes than other stink bug species (Depieri and Panizzi 

2011), exploring if RBSB feeding cause hormonal imbalances in plants could shed light 

into the mechanisms by which this insect produce delayed maturity. Hormones such as 

cytokinin, gibberellin, and ethylene are known to regulate senescence in plants (Nooden 

et al. 1997). Thus, the effect of RBSB in changing the expression of specific 

phytohormones is one of the areas in which future research could be conducted.  

In conclusion, this study indicates that high RBSB density (8 adults/0.3 m) 

during R4-R5 stage soybeans can delay soybean maturity. Results of this study suggest 

that the RBSB induced delayed maturity in soybean may not be solely due to reduced 

pod load or alteration of source-sink ratio, but that additional mechanisms may be 

involved. 
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CHAPTER V  

BASELINE INSECTICIDE SUSCEPTIBILITY OF REDBANDED STINK BUG 

(HEMIPTERA: PENTATOMIDAE) FIELD POPULATIONS IN TEXAS 

SOYBEAN 

Synopsis 

Redbanded stink bug (RBSB), Piezodorus guildinii (Westwood) is a relatively 

new pest of soybean, Glycine max (L.) Merr. in the southern US. Invasion by this 

neotropic pentatomid has been responsible for a substantial increase in the amount of 

insecticides applied in soybean potentially triggering the development of insecticide 

resistance in RBSB. This study was conducted to generate baseline data on insecticide 

susceptibility levels in current RBSB field populations. RBSB adults collected from 

commercial soybean fields were used in glass vial bioassay to determine LC50 values 

for pyrethroids (bifenthrin and cyfluthrin), neonicotinoids (thiamethoxam and 

imidacloprid), and an organophosphate (acephate) using technical grade materials. In 

addition, a small plot field trial was conducted to determine the efficacy of some 

commonly used pyrethroid, neonicotenoid and organophosphate formulations against 

RBSB. Glass-vial bioassays generated LC50 values of 0.76 µg/vial for bifenthrin, 0.18 

µg/vial for cyfluthrin, 2.32 µg/vial for thiamethoxam, and 1.07 µg/vial, for imidacloprid 

after 4h of exposure. When RBSBs were exposed to acephate for 4h in vial bioassays, no 

more than 20% of mortality was recorded preventing the calculation of LC50 while after 

24 hours of exposure a LC50 of 2.84 µg/vial was generated.  Results from the field trial 
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found significant reduction in numbers of surviving RBSBs one day after treatment 

(DAT) in all insecticide treatments except acephate when compared to untreated plots. 

While at 12 DAT, all insecticide treatments including acephate showed significant 

reduction in numbers of RBSBs.  Results from both laboratory bioassay and field trial 

showed that RBSBs are more susceptible to neonicotinic and pyrethroid insecticides than 

to the organophosphate acephate, which took longer time to show RBSB mortality.  

Keywords: Redbanded stink bug, insecticides, susceptibility, LC50.  

Introduction 

  Historically, the soybean stink bug pest complex in the southern US has 

consisted of mainly three species, viz., southern green stink bug (SGSB) Nezara viridula 

(L.), the green stink bug (GSB) Chinavia hilaris (Say), and the brown stink bug (BSB) 

Euschistus servus (Say) (McPherson et al. 1993). However, during the past decade, the 

redbanded stink bug (RBSB), Piezodorus guildinii (Westwood), has emerged as a major 

soybean pest in this region. RBSB, has been known as a serious pest of soybeans in the 

neotropics since the 1960s (Panizzi et al. 2000). In the US, it was first reported in Florida 

in the 1960s (Genung et al. 1964), however, it was never considered as an important pest 

of US soybeans until 2000 when this species was first reported in south Louisiana 

(Temple et al. 2011). By 2002, the RBSB in southern Louisiana was found to exceed the 

action threshold commonly used for the stink bug complex (i.e., southern green stink 

bug, green stinkbug and brown stink bug together). Soon after, RBSB spread rapidly, 

infesting entire soybean growing areas in Louisiana by 2006 (Davis et al. 2011). 
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Currently, the RBSB has become a significant portion of the overall stink bug complex 

in Louisiana soybeans (Temple et al. 2011). Similarly, soybean field surveys conducted 

during 2011-2013 across the Upper Gulf Coast of Texas have shown RBSB as the most 

abundant stink bug species in this area (see chapter 2). 

Stink bug pests mainly feed on young, tender growth and developing seeds 

(McPherson et al. 1994). The RBSB causes more damage per insect than other stink bug 

species on soybean (Correa-Ferreira and de Azevedo 2002). The relatively higher 

damage caused by RBSB when compared with other stink bug pests is thought to be due 

to the more deleterious action of RBSB salivary enzymes when compared to other 

species (Depieri and Panizzi 2011). In addition to direct damage, RBSB is mainly 

responsible for delayed maturity syndrome in soybeans (Sosa-Gomez 1995)  

Control of RBSB relies almost exclusively on insecticides. One of the most 

serious concerns regarding RBSB management is its low susceptibility to labeled 

insecticides. For example, RBSB populations in Louisiana have been observed to be less 

susceptible to currently available products compared to other commonly known stink 

bug species which has resulted in a significant increase in insecticide applications on 

soybeans (Davis et al. 2011). Esterases are responsible for insect resistance to 

organophosphates and pyrethroids (Li et al. 2007). Baur et al. (2010) reported higher 

esterase activity in RBSB populations in Louisiana than in Brazil, even though the later 

have a longer history of organophosphate use (>30 years). Similarly, although the US 

has a shorter history than Brazil in controlling RBSB populations using 

organophosphates, RBSB populations in the US are more tolerant to organophosphates 
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than in Brazil (Baur et al. 2010). Reduced organophosphate susceptibility of RBSB 

populations in Louisiana might be caused by the relatively higher doses of insecticides 

used in US soybean when compared to Brazil (Baur et al. 2010). Until recently, acephate 

was the only product recommended for RBSB in the US. Dependence on this single 

product continuously for nearly a decade has raised concerns about development of 

resistance in RBSB. Recently, insecticides with different modes of action (e.g., 

neonicotinoids) have been recommended and registered for RBSB control (soybean 

Insect Control Guide, http://www.lsuagcenter.com/). Currently, no information exists 

about the susceptibility levels of RBSB field populations in Texas where multiple 

insecticide applications targeting RBSB have become more common. Surveys of 

insecticide susceptibility levels among insect populations are crucial for they help 

detecting any shift in insecticide performance and provide early warning to modify 

chemical control strategies so that resistance development in insect population is avoided 

or delayed.  The objectives of this study were to establish baseline susceptibility data for 

RBSB field populations in Texas soybeans using vial bioassay with organophosphate 

(acephate), pyrethroids (bifenthrin and cyfluthrin), and neonicotinoids (imidacloprid and 

thiamethoxam). The Second objective was to determine the field efficacy of selected 

insecticide formulations currently recommended for RBSB management. 

http://www.lsuagcenter.com/
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Materials and methods 

Field trial for insecticide evaluation 

  Field trials were conducted at the Texas A&M AgriLife Research and Extension 

Center, Beaumont. Roundup ready AG 6732 soybean was planted on a 46 m
2
 plot on 

July 11
th

, 2013 under irrigated conditions. A day after planting, pre-emergence 

herbicides, First Rate (Dow AgroSciences, Indianapolis, IN) @ 0.75 oz/A and Dual 

Magnum (Syngenta crop protection, Greensboro, NC) @ 2.5 pt/A were applied with a 2-

person hand-held spray boom (13- No. 2 cone nozzles, 50 mesh screens, 15 gpa final 

spray volume). Plots were trimmed to 40 ft length after emergence. Spacing between 

rows was 30 inches and each plot consisted of four rows. Weeds were controlled by 

Roundup (Monsanto, St. Louis, MO) spray @ 1% concentration by volume. 5 ft alleys (3 

rows) were left between plots as a buffer. Insecticide treatments were arranged in a 

randomized complete block design with six treatments: lambda-cyhalothrin (Karate Z, 

Syngenta Crop Protection, Greensboro, NC), acephate (Orthene 90S, AMVAC Chemical 

Corporation, Los Angeles, CA), beta cyfluthrin and imidacloprid (Leverage 360, Bayer 

CropScience, Research Triangle Park, NC), lambda-cyhalothrin and thiamethoxam 

(Endigo ZC, Syngenta Crop Protection, Greensboro, NC), bifenthrin (Brigade 2EC, 

FMC Corporation, Philadelphia, PA) and a control consisting of unsprayed soybeans. 

Each treatment had four replications. Treatments were applied at standard recommended 

rates (Table 8) at R6 (full seed) when stink bug populations were at their peak.  
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Table 8. Treatment descriptions and rates 

Commercial 

Product Active Compound Rate (Kg AI /ha) 

Orthene 90S acephate 1.01 

Leverage 360 beta cyfluthrin + imidacloprid 0.02 + 0.04 

Endigo ZC lambda cyhalothrin + thiamethoxam 0.028 + 0.037 

Brigade 2EC bifenthrin 0.09 

Karate Z lambda cyhalothrin 0.028 
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Insecticides were applied using a hand-held spray boom (2-nozzle boom (Conejet 

TSS cone nozzles, 50 mesh screens, 22 gpa final spray volume). Experimental plots 

were sampled for insects using a standard 38 cm diameter sweep net (12 sweeps/plot) 1 

day after treatment (DAT) and 12 DAT. Samples were collected in zip lock plastic bags 

and taken to the laboratory for further processing. Laboratory processing consisted of 

quantifying RBSB adults and nymphs (3
rd

, 4
th

, and 5
th 

instars only). 

Data analysis 

 Analysis of variance (ANOVA) (PROC GLM, SAS Institute 2010) was used to 

determine if any of the insecticide treatments significantly affected RBSB mean 

densities. Multiple comparisons among treatment means were made using the Bonferroni 

mean separation test (PROC GLM, SAS Institute 2010).   

Vial bioassay 

Field collected RBSB adults were used for glass-vial bioassays. Insects were 

collected from soybean fields near Rosharon, TX during august 2013 using a standard 38 

cm diameter sweep net. Adults were kept at room temperature for 24 hrs before 

bioassays and fed with washed pods of soybean, collected from the same field where 

RBSBs were collected. Vial bioassays were conducted using technical grade materials of 

three groups of insecticides with different modes of action: An organophosphate 

(acephate), neonicotinoids (thiamethoxam and imidacloprid) and pyrethroids (cyfluthrin 

and bifenthrin). Acephate (99.5% wt:wt) was obtained from Chem Service (West 

Chester, PA); Imidacloprid ( 98.80% wt:wt) and beta cyfluthrin (98.40% wt:wt) were 

obtained from Bayer Environmental Science (Durham, NC); Thiamethoxam ( 99.6% 
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wt:wt) was obtained from Sigma-Aldrich (Milwaukee, WI) and Bifentrhin (98.1% 

wt:wt) was obtained from FMC Corporation (Philadelphia, PA). Glass-vial bioassays 

followed Willrich et al. (2013) methodology. The range of concentrations of each 

insecticide that caused 20% to 80% mortality after 24 hrs of exposure in preliminary 

bioassays was used. Technical grade materials were dissolved in 99.5% acetone (Sigma-

Aldrich, Milwaukee, WI) to make stock solutions, which were diluted to the bioassay 

concentrations on the day of the bioassay. Nine to ten concentrations of each compound 

were used. The concentration of acephate ranged from 0 to 6.0 µg/vial. The 

concentrations of pyrethroid and neonicotinoid insecticides ranged from 0 to 2.0 µg/vial. 

Control vials received only acetone. No modification in the vial bioassay was made for 

systemic insecticides imidacloprid and thiamethoxam because they also exhibit contact 

activity against sucking insects (Mullins 1993, Maienfisch et al. 2001). The interior 

surface of 20 ml glass scintillation vials was coated with 0.5 ml of appropriate 

insecticides diluted in acetone. Vials were rotated on a hot dog roller (with heating unit 

turned off) until all the acetone evaporated. Vials were placed in the dark until use in 

bioassays. There were ten replications of each treatment with one RBSB adult placed in 

each vial. Mortality was determined 4h and 24h after exposure. The criterion for 

mortality was inability of insects to assume an upright posture within 5 seconds after 

being dislodged from vials (Willrich et al. 2003).  

Analysis of dose-response data 

  Mortality in untreated vials was never above 10% therefore, there was no need to 

determine corrected mortality (Abbott 1925). Mortality data was subjected to probit 
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analysis using PoloPlus (LeOra Software, Petaluma, CA) to generate LC50 and 95% 

confidence intervals (CI). Chi-square values (χ
2
) were used to estimate how well probit 

models fit the dose-mortality data.  

Results 

Results from field trials showed that all the insecticides used were effective at 

controlling RBSB (i.e., mean number of RBSBs per 12 sweeps for each treatment was 

significantly lower than the control) at 1 DAT except for acephate which showed no 

significant difference from untreated plots. No significant effect of sampling date was 

observed on RBSB population (Table 9). At 12 DAT, all insecticide treatments including 

acephate showed significantly less numbers of RBSBs/12 sweeps than untreated plots 

(Fig. 17). 
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Table 9. Analysis of variance indicating the significance of insecticide treatment, 

replication and sampling date on mean number of RBSBs/12 sweeps. 

 

Source DF F value P value 

Treatment 5 14.35 <.0001 

Replication 3 2.05 0.1263 

Sampling date 1 1.91 0.1759 
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Figure 17. Number of RBSBs per 12 sweeps. Bars showing same letters are not significantly different (P <.0001, Bonferroni) 
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Estimates of LC50 and 95% confidence intervals were calculated for field 

collected RBSB adults exposed to insecticide treatments. The predicted values of the 

probit model did not differ significantly from the observed values in vial bioassays 

(Tables 10 and 11), indicating that the probit model was suitable for the dose-mortality 

analysis. 

After 4h of exposure with acephate, no LC50 value was generated because no 

more than 20% mortality was recorded in acephate treated vials. This indicates that after 

4h from vial bioassay, LC50 value with acephate should be more than 6 µg/vial in RBSB 

population we studied. In case of pyrethroid and neonicotinoid insecticides, the bioassay 

yielded enough numbers of knocked down individuals after 4h to be able to generate 

LC50 values (Table 10).  

There was relatively higher mortality after 24h of exposure than after 4h of 

exposure in vial bioassay with acephate. As a result, after 24h vial bioassays with 

acephate, we were able to generate a LC50 value of 2.84 µg/vial (Table 11).  
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Table 10. Mortality recorded after 4h from vial bioassay on field populations of RBSB 

collected near Roshaton, TX in August 2013 

 

Insecticide N
a 

Slope ± SE LC50
b
 (CI 95%) χ

2 
(df) 

Acephate 110 - - - 

Imidacloprid 110 1.51 ± 0.32 1.07 (0.56-2.90) 11.54 

Thiamethoxam 110 0.91 ± 0.27 2.32 (1.02-24.90 4.23 

Bifenthrin 100 2.01 ± 0.55 0.76 (0.50-1.06) 5.74 

Cyfluthrin 110 1.10 ± 0.31  0.18 (0.08-0.32) 7.17 

a 
Total number tested including controls 

b
Lethal concentration expressed in µg insecticide vial

-1
 with 95% confidence intervals 

(CI) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

83 

 

Table 11. Mortality recorded after 24h from vial bioassays on field populations of 

RBSB collected near Roshaton, TX in August 2013 

 

Insecticide N
a 

Slope ± SE LC50
b
 (CI 95%) χ

2 
(df) 

Acephate 110 3.03 ± 0.73 2.84 (2.06-3.61) 2.25
NS

  

Imidacloprid 110 1.07 ± 0.24 0.66 (0.37-1.34) 6.91  

Thiamethoxam 110 1.15 ± 0.24  0.36 (0.20-0.64) 4.04  

Bifenthrin 100 3.40 ± 0.69 0.76 (0.59-0.93) 6.04  

Cyfluthrin 110 1.13 ± 0.30 0.46 (0.27-1.11)**
 

2.55
 NS

  

a 
Total number tested including controls 

b
Lethal concentration expressed in µg insecticide vial

-1
 with 95% confidence intervals 

(CI) 
NS

The predicted values of the probit model did not differ significantly from the observed 

values in vial bioassays (P ≤ 0.025) 

**Lesser numbers of RBSB individuals showed knock down symptoms at 24h than that 

of at 4h of exposure resulting in higher LC50 value with longer exposure 

 

 

 

 

 

 

 

 

 

 

 



 

84 

 

In case of the pyrethroid bifenthrin, after 24h of exposure in vial bioassay the 

overall mortality (dead + knocked down) remained the same as that recorded after 4h of 

exposure. However, there was an increase in the relative proportion of dead versus 

knocked down RBSBs. This resulted in the same bifenthrin LC50 value after 4h and 24h 

of exposure. The pyrethroid beta cyfluthrin, showed an unusual trend. The LC50 value 

after 24h of beta cyfluthrin exposure was greater than after 4h (Table 11).  This is 

because, after 4h of exposure with beta cyfluthrin, several RBSBs were knocked down 

but recuperated after 24h of exposure. Some of the individuals that showed knocked 

down symptoms after 4h of exposure with beta cyfluthrin could have recovered from 

toxicity by the time when RBSB mortality was recorded at 24h. This resulted in overall 

lesser mortality at 24h after vial bioassay than at 4h generating higher LC50 value at 24h 

and lower LC50 value at 4h.  

Discussion 

Dose-mortality data from this study provides a benchmark for future evaluation 

of insecticide susceptibility of RBSB populations. Because currently no laboratory 

maintains standard susceptible colonies of RBSB, future studies to determine changes in 

insecticide susceptibility can compare back to historical values such as the ones 

generated in this study. This data can also be used for the immediate purpose of 

comparing current field data to that of previously determined LC50 values from other 

geographic locations. This kind of monitoring data may play an important role in 
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adjusting chemical control strategies such that they would increase the durability of 

insecticides.   

Baur et al. (2010) conducted glass-vial bioassay on RBSB populations collected 

in Iberville, Parish, LA in 2004 and recorded a LC50 value of 3.83 µg/vial after 4h of 

exposure to acephate.  In our study, no LC50 value could be generated with acephate 

after 4 hr of exposure in vial bioassays. No more than 20% RBSB mortality was 

observed at any of the acephate concentrations used (0 to 6 µg/vial) (Table 10). This 

indicates that the LC50 for acephate after 4h of exposure in vial bioassay lies above 6 

µg/vial in the RBSB population we studied. The relatively higher acephate LC50 in 

current Texas RBSB populations when compared with Louisiana populations tested in 

2004 suggests higher tolerance to this insecticide. If one assumes that RBSBs from 

Louisiana and Texas belong to the same panmictic population, one could argue that 

RBSB populations seem to have developed resistance to acephate.  

Following a day of treatment, acephate treated plots had a mean RBSB density 

which was not significantly different from untreated plots (Fig.17) which was still above 

the action threshold (~3 RBSBs/12 sweeps) (soybean Insect Control Guide, 

http://www.lsuagcenter.com/). While pyrethroids and mixtures of pyrethroids and 

neonicotinoids were able to bring down RBSB population below action threshold 

relatively fast, as indicated by the significant reduction in RBSB populations in treated 

plots at 1DAT. Similarly, vial bioassays showed slower activity of acephate against 

RBSB. After 4h in the acephate vial bioassay, RBSB mortality was too little to calculate 

LC50 (Table 3) while pyrethroids and neonicotinoids had a rapid knockdown effect on 

http://www.lsuagcenter.com/
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RBSB. Our field results should be interpreted with caution. High RBSB mobility 

(Panizzi et al. 1980) combined with the relatively small size of our experimental plots 

may have affected our insecticide efficacy results.  

In summary, this study provides baseline data on current resistance/susceptibility 

levels of RBSB field populations in Texas to insecticide chemistries with different 

modes of action. RBSB susceptibility to insecticides needs to be determined at other 

locations in Texas and Louisiana where RBSB has emerged as a serious soybean pest to 

determine the overall status of insecticide resistance in RBSB. Currently, RBSB 

management is solely dependent upon insecticide applications (5-7 applications per 

season). If current rates of insecticide use against RBSB continue, development of 

insecticide resistance in this pentatomid pest is likely.  
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CHAPTER VI  

CONCLUSION 

 

Historically, three stink bug species: southern green stink bug (SGSB), green 

stink bug (GSB), and brown sting bug (BSB), formed the stink bug complex in southern 

US soybean. However, in recent years, the redbanded sting bug (RBSB) has emerged as 

a pest, which poses a substantial threat to soybean production in this region. The 

geographic range of RBSB includes regions in Argentina and Brazil where it’s been 

known to cause economic damage to soybean since 1960s. Consequently, considerable 

work has been done on RBSB and its impact on soybean production in Brazil. However, 

in the US where RBSB has only recently emerged as a serious pest of soybean, little 

information exists regarding its biology, ecology, damage potential, and management 

tactics which is why this dissertation research was undertaken with the goal to gather 

information that will contribute towards achieving the long term goal of developing and 

implementing an integrated pest management program for RBSB.  

The specific objectives of this study were to determine the relative abundance of 

major stink bug species (SGSB, GSB, BSB, and RBSB) across different soybean growth 

stages on the Upper Gulf Coast of Texas; to determine the growth stage specific 

response of soybean to RBSB; to determine the RBSB threshold that triggers delayed 

maturity and to find out if delayed maturity is due to reduced pod load; and finally, to 

generate baseline data on insecticide susceptibility of RBSB field population and 

evaluate efficacy of commonly used insecticides against RBSB.  
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In order to develop an integrated pest management program for any insect pest, it 

is of prime importance to know the abundance of the target species in the threaten 

commodity. Data on the relative abundance of target pests aid in assessments of the 

extent of risk and economic damage and improve the design of specific control actions. 

A three year survey study across commercial soybean production areas in the Upper 

Gulf Coast of Texas found that RBSB has become the most dominant stink bug species 

in this area. This is the first study reporting a shift in stink bug species composition 

relative to RBSB abundance in TX soybean. Increased abundance of RBSB over 

previously known major stink bug species (SGSB, GSB, and BSB) has become a major 

concern for soybean growers in TX, because RBSB causes more damage per insect than 

other stink bug species.  

Soybean fields infested with RBSB not only shows substantial yield losses but 

also exhibit symptoms of delayed maturity. Although there are many potential causes 

known to be associated with soybean delayed maturity, RBSB is thought to be the major 

cause because of the deleterious action of its salivary enzymes. In order to understand 

what RBSB threshold triggers soybean delayed maturity and if this disorder is solely due 

to reduced pod load (causing alteration in sink-source ratio), field experiments were 

conducted with different levels of RBSB infestation and mechanical pod removal during 

R4-R5 stages of soybean. Results from these experiments showed that RBSB density of 

8 adults/0.3 m is needed during R4 stage to trigger the development of delayed maturity 

in soybean variety AG 6732. Plants infested with RBSB densities below 8 adults/0.3 m 

did not show symptoms of delayed maturity (green leaf retention at maturity). 
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Mechanical pod removal experiments however, showed no effect of pod removal on 

occurrence of delayed maturity. There was a significant positive correlation between 

RBSB density and delayed maturity while no correlation existed between reduced pod 

load and occurrence of delayed maturity. These findings suggest that RBSB induced 

soybean delayed maturity may not be due just to the reduction in pod load, but additional 

factors may also be involved.  

One of the major concern with RBSB management is its reduced susceptibility to 

labeled insecticides which has resulted into substantial increase in the amount of 

insecticides applied in soybean. A small plot field trial was conducted to determine the 

efficacy of selected insecticides against RBSB. Pyrethroids (bifenthrin and lambda 

cyhalothrin) and mixtures of pyrethroids + neonicotinoids (lambda cyhalothrin + 

thiamethoxam and beta cyfluthrin + imidacloprid) were found to have rapid action 

against RBSB. Soybean plots treated with these insecticides showed significant 

reduction in RBSB population one day after treatment. On the other hand, plots treated 

with the commonly used organophosphate, acephate, showed no significant difference in 

number of RBSBs when compared with control plots. Results from laboratory bioassays 

using insecticides showed a similar trend. Neonicotinoids and pyrethroids (imidacloprid, 

thiamethoxam, beta cyfluthrin, and bifenthrin) had rapid knockdown effect on RBSB 

while acephate took longer to cause RBSB mortality. After 4h of bioassays, LC50 values 

for neonicotinoids and pyrethroids ranged from 0.18 to 2.32 µg/vial. While in case of 

acephate, no enough mortality was recorded after 4h to be able to generate a LC50.  This 

suggests that the LC50 for acephate lies somewhere above 6 µg /vial. Comparing LC50 
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values from this study to historical LC50 values, suggests that current RBSB populations 

have reduced susceptibility to acephate.  

Future studies are needed to develop more effective management tactics against 

the new stink bug pest complex in soybean. General suggestions for future research 

include: 

1. A revision of the economic threshold for the new stink bug complex in soybean. The 

current economic threshold used to justify chemical control against soybean stink 

bug complex is based upon historical data when RBSB was not an economic pest in 

US soybeans. The shift in stink bug species composition we have reported in Texas 

soybean and the RBSB ability to cause more injury per individual than other stink 

bug species, warrant the need to revise the action threshold for the stink bug complex 

where RBSB is present. A revised action threshold will help soybean producers by 

allowing them to fine-tune decision making on the proper use of management tactics.  

2. Study the ecological interactions among RBSB and other stink bug species. It seems 

that upon increased numbers of RBSB, numbers of SGSB, BSB, and GSB have gone 

down. Studying the interactions among these species will provide information about 

the influence of invasive RBSB on other stink bug species fitness and whether it has 

displacing effects on their populations.  

3. Elucidate mechanism/s involved in RBSB induced soybean delayed maturity. We 

found that high RBSB density triggers soybean delayed maturity and that this it is 

not just solely due to reduced pod load or to the alteration of sink-source ratio. 

Future studies may be conducted to elucidate the specific mechanism/s associated 
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with soybean delayed maturity. Testing if RBSB feeding alters the expression of key 

plant hormones would be an interesting possibility.    

4. Study insecticide resistance mechanisms. This study found that RBSB field 

populations seem to have developed resistance to acephate. More studies may be 

conducted to monitor insecticide resistance development in RBSB by conducting 

laboratory bioassays on RBSB populations over larger geographic areas. Dose-

mortality data could be compared between RBSB populations under different 

scenarios of selection pressure from insecticide applications. For example, RBSB 

populations in Lousiana soybeans have been under constant selection pressure from 

insecticide applications for longer time than in Texas and RBSB populations in 

Missouri soybeans have just begun to establish. Comparing RBSB tolerance to 

acephate among these locations will provide interesting data. Similarly, RBSB 

populations on different host plant species such as on durana clover, indigo, 

susbenia, etc.,which are hardly subjected to insecticide exposure, should be 

compared with RBSB populations in soybean in terms of insecticide susceptibility. 

Understanding the variability in resistance/susceptibility levels among different 

RBSB populations will improve area-wide management plan for RBSB. 

Results from this dissertation research have provided information that will help in 

the implementation of economical, effective, and sustainable management strategies for 

RBSB in soybean, US’ number one crop in terms of value of crop export. 
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