
BIOMARKER DISCOVERY AND VALIDATION FOR PROTEOMICS AND

GENOMICS: MODELING AND SYSTEMATIC ANALYSIS

A Dissertation

by

ESMAEIL ATASHPAZGARGARI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Ulisses de Mendonca Braga-Neto
Co-Chair of Committee, Edward R. Dougherty
Committee Members, Byung-Jun Yoon

Jean-Francois Chamberland
Ivan Ivanov

Department Head, Chanan Singh

August 2014

Major Subject: Electrical Engineering

Copyright 2014 Esmaeil Atashpazgargari

ABSTRACT

Discovery and validation of protein biomarkers with high specificity is the main

challenge of current proteomics studies. Different mass spectrometry models are used

as shotgun tools for discovery of biomarkers which is usually done on a small number

of samples.

In the discovery phase, feature selection plays a key role. The first part of this

work focuses on the feature selection problem and proposes a new Branch and Bound

algorithm based on U-curve assumption. The U-curve branch-and-bound algorithm

(UBB) for optimization was introduced recently by Barrera and collaborators. In

this work we introduce an improved algorithm (IUBB) for finding the optimal set of

features based on the U-curve assumption. The results for a set of U-curve problems,

generated from a cost model, show that the IUBB algorithm makes fewer evaluations

and is more robust than the original UBB algorithm. The two algorithms are also

compared in finding the optimal features of a real classification problem designed

using the data model. The results show that IUBB outperforms UBB in finding the

optimal feature sets. On the other hand, the result indicate that the performance of

the error estimator is crucial to the success of the feature selection algorithm.

To study the effect of error estimation methods, in the next section of the work,

we study the effect of the complexity of the decision boundary on the performance

of error estimation methods. First, a model is developed which quantifies the com-

plexity of a classification problem purely in terms of the geometry of the decision

boundary, without relying on the Bayes error. Then, this model is used in a simula-

tion study to analyze the bias and root-mean-square error (RMS) of a few widely used

error estimation methods relative to the complexity of the decision boundary. The

ii

results show that all the estimation methods lose accuracy as complexity increases.

Validation of a set of selected biomarkers from a list of candidates is an important

stage in the biomarker identification pipeline and is the focus of the the next section

of this work. This section analyzes the Selected Reaction Monitoring (SRM) pipeline

in a systematic fashion, by modelling the main stages of the biomarker validation

process. The proposed models for SRM and protein mixture are then used to study

the effect of different parameters on the final performance of biomarker validation.

We focus on the sensitivity of the SRM pipeline to the working parameters, in order

to identify the bottlenecks where time and energy should be spent in designing the

experiment.

iii

DEDICATION

To Sahba

iv

ACKNOWLEDGEMENTS

I would like to thank my advisors Dr. Ulisses M. Braga-Neto and Dr. Edward

R. Dougherty. I am especially grateful to Dr. Braga-Neto for his constant support,

guidance and encouragement, and for showing me that a delicate balance between

macro-leading and micro-helping is the golden key to fostering a student’s research.

His attention to details and high working standards has made a lasting impression

on my life. He is always open to ideas and discussion, and has helped me to believe

more in myself.

My special thanks go to Dr. Dougherty for his guidance throughout my research.

Besides showing me how to walk through the path I have chosen, he taught me the

importance of choosing the right path. Working with him, I learned not only how

to think about better solutions to problems, but also how to ask better questions.

His farsighted scientific vision and emphasis on true scientific research are important

lessons I have learned from him.

I am also grateful to my committee members, Dr. Byung-Jun Yoon, Dr. Jean-

Francois Chamberland and Dr. Ivan Ivanov for their advice and support.

I would like to thank Dr. Charles D. Johnson for his support during my two-year

collaboration with Texas A&M AgriLife Genomics and Bioinformatics Service.

Thanks also go to my friends in the GSP lab for great discussions we had on

different topics.

I dedicate this dissertation to Sahba, my lovely wife. My debt to her is beyond

words. Without her support, this work would have never been completed.

Thanks to my parents, Mousa and Rabieh, and my sister, Masoumeh, for being

a generous source of pure love, support, and encouragement throughout my life.

v

NOMENCLATURE

QQQ Triple Quadrupole

MS Mass Spectrometry

SRM Selected Reaction Monitoring

PSA Prostate Specific Antigen

CID Collision Induced Dissociation

PTP Proteotypic Peptides

TPR True Positive Rate

QDA Quadratic Discriminant Analysis

3NN 3-nearest-neighbor

NNet Two-layer Neural Network

BB Branch and Bound

UBB U-curve Branch and Bound

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES . xiv

1. INTRODUCTION . 1

1.1 Biomarker Discovery: Peaking Phenomenon, Feature Selection and
Error Estimation . 2

1.1.1 Feature Selection . 2

1.1.2 Error Estimation and Complexity of Decision Boundary . . . 7

1.1.3 Error Estimation Methods . 8

1.2 Biomarker Validation: Selected Reaction Monitoring 13

2. A FAST ALGORITHM FOR U-CURVE BRANCH-AND-BOUND FEA-
TURE SELECTION . 16

2.1 U-curve feature selection . 17

2.1.1 U-curve Branch and Bound 18

2.2 Proposed Algorithm . 18

2.3 Experimental Results . 23

2.3.1 Synthetic Benchmark U-curve Problem 25

2.3.2 Results . 28

2.3.3 Peaking Delay . 30

2.3.4 Dimension . 33

2.3.5 Validation of U-curve Assumption 35

2.3.6 Classification Problem . 36

3. RELATIONSHIP BETWEEN THE ACCURACY OF CLASSIFIER ER-
ROR ESTIMATION AND COMPLEXITY OF DECISION BOUNDARY . 51

vii

3.1 Model for Distributional Complexity 52

3.2 Simulation Study . 55

3.2.1 Expected True Error . 56

3.2.2 Performance of Error Estimators 57

3.3 Complexity Computation . 60

3.3.1 2D Case . 61

3.3.2 3D Case . 62

3.3.3 Discussion . 63

4. MODELING AND SYSTEMATIC ANALYSIS OF BIOMARKER VALI-
DATION USING SELECTED REACTION MONITORING 65

4.1 Selected Reaction Monitoring (SRM) 66

4.2 Methods . 69

4.2.1 Protein Mixture Model . 69

4.2.2 Sample Complexity and Purification 72

4.2.3 Peptide Mixture Model . 73

4.2.4 Peptide Ionization Efficiency 75

4.2.5 Transition . 76

4.2.6 Peptide Modification . 77

4.3 Results and Discussion . 79

4.3.1 Experimental Setup . 80

4.3.2 Effect of Purification . 81

4.3.3 Effect of Peptide Specificity 82

4.3.4 Effect of Peptide Efficiency . 82

4.3.5 Effect of Transition Noise . 83

4.3.6 Effect of Modification . 84

4.3.7 Effect of Sample Size . 84

4.3.8 Summary . 85

5. CONCLUSION . 88

REFERENCES . 92

viii

LIST OF FIGURES

FIGURE Page

1.1 Two main stages of biomarker development pipeline. The discov-
ery phase requires MS experiments with high resolution and short
duty cycles and typically involves small numbers of samples. Selected
biomarkers from the discovery step are validated in the next stage
before moving on to further analysis in clinical studies [1] 2

1.2 Peaking phenomenon. (a) Slightly correlated features. ρ = 0.125. (b)
Highly correlated features. ρ = 0.5. 3

1.3 Idealized schematics of QQQ MS used in SRM analysis. The first
quadruple filters out most co-eluting ions from the chromatographic
system. However, interfering ions may pass Q1 and enter Q2. Ions in
Q2 are fragmented and form the input of the Q3. Ideally the specific
m/z selection in Q3 passes only fragments of the desired ion and
eliminates interfering ions. 15

1.4 The entire simulation process. The protein abundance mixture data
enters the SRM process and is affected by different noise sources in
different levels of the process. The noisy data enters the biomarker
validation block, where the ranking power and true positive rate are
used to measure the performance of the overall biomarker validation
process. 15

2.1 (a) U-curve feature selection with n = 5, highlighting 4 chains. (b)
2D plot (c) 3D plot. The element with the yellow shade is the global
minimum. 19

2.2 UBB algorithm. (a) Search space. (b) the tree produced by enumer-
ation scheme. (c-f) Four steps of the algorithm. 20

2.3 Number of function evaluations required to find the minimum element
of the chain X by bisection vs. |X |. 23

2.4 IUBB process. (a) The original search space. (b-f) Five steps of the
algorithm. The elements with pink background indicate the the fea-
ture sets evaluated. Red background elements are the ones that are
removed from the search space without evaluation of the cost value.
The blue elements are the feature sets that are not evaluated nor re-
moved due to the U-assumption. The selected optimal chain is shown
by a red dashed line in all the diagrams. 24

ix

2.5 The u-curve problem model for n = 7. (a and b) 3D and 2D represen-
tation of the cost for α = 0.3. (c and d) 3D and 2D representation of
the cost for α = 0.6. Increasing α shifts the peaking from few number
of features to selection of more features in the optimal feature set. . . 27

2.6 Comparing a single run of two algorithms (α = 0.75) for different
values of n. (a) The best cost found by each algorithm in nFE number
of function evaluations. (b) Number of feature sets in the search space
that need to be evaluated vs. nFE. (c) Number of feature sets in the
search space that are pruned or removed from search space vs. nFE.
(d) The ratio of the plots in (c) vs. nFE. 31

2.7 Comparing a single run of two algorithms (α = 0.75) for different
values of n. (a) The ratio plot of the number of feature sets in the
search space that need to be evaluated vs. nFE. (b) The percentage
of feature sets in the search space that need to be evaluated vs. nFE.
(c) The difference between percentage of feature sets in the search
space that need to be evaluated vs. nFE. (d) Search Efficiency of two
algorithms vs. nFE. 39

2.8 (a) Plot of the average function evaluations used by each algorithm
to find the optimal feature sets, with standard deviation bars. (b)
Barplot of the average gain in efficiency displayed by IUBB over UBB
in terms of function evaluations required to find the global best feature
set. (a,b) n = 15. 40

2.9 (a,b) Average best cost vs. α. (c,d) Search efficiency vs. α. (e,f)
The ratio of search efficiency vs. α. (a,c,e) nFE = 2n × 5/100. (b,d,f)
nFE = 2n × 10/100. (a-f) n = 15. 41

2.10 (a,b) Average best cost vs. α. (c,d) Search efficiency vs. α. (e,f)
The ratio of search efficiency vs. α. (a,c,e) nFE = 2n × 5/100. (b,d,f)
nFE = 2n × 10/100. (a-f) n = 17. 42

2.11 (a) Plot of the average function evaluations used by each algorithm
to find the optimal feature sets, with standard deviation bars. (b)
Barplot of the average gain in efficiency displayed by IUBB over UBB
in terms of function evaluations required to find the global best feature
set. (c) Average percentage of the search space evaluated by each
algorithm to find the optimal feature sets, with standard deviation
bars. (d) Difference between the average percentage of the search
space evaluated by each algorithm to find the optimal feature sets,
with standard deviation bars. (a-d) α = 0.7. 43

x

2.12 (a,b) Average best cost vs. α. (c,d) Search efficiency vs. α. (e,f)
The ratio of search efficiency vs. α. (a,c,e) nFE = 2n × 5/100. (b,d,f)
nFE = 2n × 10/100. (a-f) α = 0.85. 44

2.13 (a) Plot of the average function evaluations used by each algorithm
to find the optimal feature sets, with standard deviation bars. (b)
Barplot of the average gain in efficiency displayed by IUBB over UBB
in terms of function evaluations required to find the global best feature
set. (c) Average percentage of the search space evaluated by each
algorithm to find the optimal feature sets, with standard deviation
bars. (d) Difference between the average percentage of the search
space evaluated by each algorithm to find the optimal feature sets,
with standard deviation bars. (a-d) α = 0.85. 45

2.14 (a,b) Average best cost vs. α. (c,d) Search efficiency vs. α. (e,f)
The ratio of search efficiency vs. α. (a,c,e) nFE = 2n × 5/100. (b,d,f)
nFE = 2n × 10/100. (a-f) α = 0.85. 46

2.15 The u-curve problem model for n = 7 and α = 0.7. (a and b) 3D and
2D representation of the cost for A = 0.2 and f = 2. (c and d) 3D
and 2D representation of the cost for A = 0.4 and f = 3. Increasing
A increases the depth of the local minimums. f control the frequency
of the local minimums. 47

2.16 Average cost vs. A. (a) nFE is 5% of the search space. (b) nFE is
10% of the search space. (a,b) α = 0.75, n = 15 and f = 2. 48

2.17 Average cost vs. A. (a) nFE is 5% of the search space. (b) nFE is
10% of the search space. (a,b) α = 0.85, n = 15 and f = 3. 48

2.18 Peaking phenomenon for LDA classifier designed using the samples
generated from the model . 49

2.19 Average best cost vs. nFE (a) Estimated error used in feature selection
(b) True error corresponding to the estimated error. 49

2.20 Average best cost vs. Dgm at 10 percent. (a) Estimated error used in
feature selection (b) True error corresponding to the estimated error. 50

3.1 (a) Sample matrix H. (b) Class-conditional densities fH(x, x2 |0) and
fH(x1, x2 |1). 53

3.2 Example of Bayes decision boundary and decomposition by line seg-
ments and rays. 54

xi

3.3 Expected true error of different classification rules vs. complexity, with
α = β = 1.5. (a) p = 2. (b) p = 3. 57

3.4 Performance of different error estimation methods vs. distributional
complexity for the 3NN classification rule. Top plots: p = 2. Bottom
plots: p = 3. Bias is shown on the left, whereas RMS is shown on the
right. 58

3.5 Performance of different error estimation methods vs. distributional
complexity for the QDA classification rule. Top plots: p = 2. Bottom
plots: p = 3. Bias is shown on the left, whereas RMS is shown on the
right. 59

3.6 Performance of different error estimation methods vs. distributional
complexity for the NNet classification rule. Top plots: p = 2. Bottom
plots: p = 3. Bias is shown on the left, whereas RMS is shown on the
right. 60

3.7 The process of finding the complexity χ(H) in the case p = 2. Here,
χ(H) = 5. 62

3.8 The process of finding the complexity χ(H) in the case p = 3. Here,
χ(H) = 9. 63

3.9 A sample configuration in 2D. Based on definition proposed in this
chapter, the complexity of this configuration is 5, while Attoor’s defi-
nition of complexity assigns 4 for this configuration. 64

4.1 Workflow of an SRM experiment. First, a set of proteins of interest
are determined for a specific study. Then, for each protein, some
proteotypic peptides are found. In the next step, for each PTP, those
fragments that are able to discriminate the peptide from others are
found. The transitions (pairs of m/z values for precursor/fragment
ions) are then validated to decrease the effect of unspecific signals. . . 68

4.2 The entire simulation process. The protein abundance mixture data
enters the SRM process and is affected by different noise sources in
different levels of the process. The noisy data enters the biomarker
validation block, where the ranking power and true positive rate are
used to measure the performance of the overall biomarker validation
process. 79

4.3 Effect of purification on the the SRM model on the performance of
the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs.
purification. (b) TPR vs. purification. 82

xii

4.4 Effect of peptide specificity on the the SRM model on the performance
of the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs.
peptide specificity. (b) TPR vs. peptide specificity. 83

4.5 Effect of peptide efficiency on the the SRM model on the performance
of the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs.
peptide efficiency. (b) TPR vs. peptide efficiency. 84

4.6 Effect of transition noise on the the SRM model on the performance
of the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs.
transition noise. (b) TPR vs. transition noise. 85

4.7 Effect of modification noise on the the SRM model on the performance
of the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs.
modification noise. (b) TPR vs. modification noise 86

4.8 Effect of sample size on the the SRM model on the performance of the
biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs. sample
size. (b) TPR vs. sample size. 87

xiii

LIST OF TABLES

TABLE Page

2.1 Summary of parameters . 38

4.1 Parameter settings in simulation of biomarker validation model 80

xiv

1. INTRODUCTION∗

The identification of biomarkers is a major goal of biomedicine in this century

[1], and proteomics using different mass spectrometry (MS) tools has played a key

role in this area. One well-known example of peptide biomarker is Prostate Specific

Antigen (PSA), which is a marker for early diagnosis of prostate cancer in men.

The PSA test is an FDA-approved serum or plasma-based population screening tool,

but has very low specificity, resulting in $750 million annual cost for unnecessary

medical follow-up. The lack of biomarkers with high specificity shows how challenging

the problem of proteomic biomarker identification is and the need for sensitive and

accurate instruments, powerful techniques, and careful analysis of proteomics data.

One of the important challenges of biomarker discovery is identification of low-

abundance biomarkers. Abundant biomarkers are easy to detect and quantify, but

these have already been identified for the most part. The current emphasis is

therefore on the discovery of low-abundance biomarkers [1]. Figure 1.1 displays

the biomarker identification pipeline and the two main stages in this process, the

discovery and validation/qualification phases. The global discovery phase is done

on a small number of samples and then a larger number of samples is used for the

validation of potential biomarkers, before going to clinical application [1].

In the discovery phase the selection of best protein biomarkers from a set of pro-

teins is very important. This emphasizes on the role of feature section algorithm. In

the first part of this work, in section 2, a feature selection algorithm is proposed for

∗Parts of this section are reprinted with permission from “Relationship between the accuracy of
classifier error estimation and complexity of decision boundary” by Esmaeil Atashpaz-Gargari,
Chao Sima, Ulisses M Braga-Neto, Edward R Dougherty, 2012, Pattern Recognition, vol. 46, no.
5, © 2012 Elsevier.

1

Discovery phase

Discovery Candidate
Biomarkers

Clinical
Application BiomarkersApplication

Selected
BiomarkersValidation / Qualification

Validation/q alifi ation phaseValidation/qualification phase

Figure 1.1: Two main stages of biomarker development pipeline. The discovery phase
requires MS experiments with high resolution and short duty cycles and typically
involves small numbers of samples. Selected biomarkers from the discovery step are
validated in the next stage before moving on to further analysis in clinical studies [1]
.

selecting global best feature set. The performance of the feature selection algorithms

depends heavily on the accuracy of the error estimation methods. Then, in the next

chapter, in section 3, we introduce a measure for quantifying the complexity of the

decision boundary and use it to study the performance of the widely used error es-

timation methods as the complexity changes. Modeling the validation pipeline is

the focus of the final part of this work, section 4. We study the triple quadrupole

based Selected Reaction Monitoring (SRM) pipeline and model the protein quantifi-

cation process through SRM. Then we use this model to study the effect of different

parameters on the performance of the pipeline.

1.1 Biomarker Discovery: Peaking Phenomenon, Feature Selection and Error

Estimation

1.1.1 Feature Selection

Given the joint feature label distribution, increasing the number of features de-

creases the classification error. However, when the classifier is designed using sample

2

data and the number of samples is small, the classification error does not monotoni-

cally decrease. Increasing the number of features used to design the classifier, with a

fixed number of samples, makes the expected error of the designed classifier decrease

and then increase. This is known as the peaking phenomenon, which was first studied

in [2].

Figures 1.2(a) and (b) show peaking phenomenon for the Linear Discriminant

Analysis (LDA) classification rule. In Figure 1.2(a) the features are slightly corre-

lated. In this case, peaking occurs earlier (i.e., for a smaller number of features) or

later depending on the sample size. For example, at sample size 30, peaking occurs

with about 6 features, but when sample size increases to 100, peaking occurs at a

larger feature size. In Figure 1.2(b) the features are highly correlated. As we see in

this case, even for a large sample size, peaking occurs early. Figure 1.2 is based on

the work in [3].

0
5

10
15

20

0

50

100

0.2

0.25

0.3

0.35

feature size

error vs. feature size and sample size

sample size

er
ro

r
ra

te

0
5

10
15

20

0

50

100

0.25

0.3

0.35

0.4

0.45

feature size

error vs. feature size and sample size

sample size

er
ro

r
ra

te

(a) (b)

Figure 1.2: Peaking phenomenon. (a) Slightly correlated features. ρ = 0.125. (b)
Highly correlated features. ρ = 0.5.

Feature selection is the problem of finding an optimal subset of a finite set of

features that minimizes a cost (criterion) function, often taken to be the classification

3

error [4]. Determining the optimal set of features can be a complicated task as for a

problem with n features, there are
(
n
d

)
possible feature sets of size d and 2n possible

total possible feature sets.

If the criterion function used for feature selection is independent of the classifi-

cation rule, the method is said to be a filter approach. Otherwise a feature selection

method is called wrapper. Due to the high complexity of feature selection many

sub-optimal algorithms have been proposed. The following is the brief description of

some of the widely used sub-optimal feature selection methods.

• Best Individual d Features : The criterion function is evaluated for each indi-

vidual feature Xi and the best d features are selected.

• Sequential Forward Search: At each step the criterion function is evaluated for

for all features and the best feature is selected. This is repeated until d features

are selected.

• Sequential Backward Search: This algorithm starts with the selection of all the

features. At each step the criterion function is evaluated removing each of the

individual features. The feature that minimizes the criterion drop is removed

from the feature set and the algorithm continues until d features are remaining.

• Generalized Sequential Forward Search: At each step of the algorithm, the

combination of r features that are not in the current feature set are evaluated.

The group for which the addition of the features to the group of the selected

features maximizes the criterion value, is selected and added to the group.

When r = 1 this algorithm is the same as Sequential Forward Search.

• Generalized Sequential Backward Search: At each step of the algorithm, the

combination of r features that are in the current feature set are evaluated.

4

The group for which the removal of its features from the group of the selected

features minimizes the criterion value drop is eliminated from the set of selected

features. When r = 1 this algorithm is the same as Sequential Backward

Search.

• Plus-l Take-r Search: Depending on the values of l and r this can be both

bottom-up and top-down search. If l > r at each step, using sequential forward

search, l features are added and then using the sequential backward search, r

features are removed. If r > l at each step, using sequential backward search,

r features are removed and then using the sequential forward search, l features

are added.

• Generalized Plus-l Take-r Sequential Search: This method uses generalized

sequential forward search and generalized sequential backward search instead

of sequential forward search and sequential backward search, respectively.

• Floating Search: This the Plus-l Take-r search method, where the values of l

and r are allowed to vary.

Besides the sub-optimal feature selection methods, some algorithms have been

proposed that use heuristics to attempt to find the optimal feature set in fewer eval-

uations than exhaustive search. Among these are feature selection algorithms based

on the well-known Branch-and-Bound (BB) paradigm for discrete and combinatorial

optimization [5, 6]. A BB algorithm uses some property of the criterion function,

such as monotonicity, to accomplish a systematic enumeration of the features sets in

the form of a tree. At each step of the algorithm, the Bound (B) is defined as the

cost of the best feature set found until that step. If the cost c of a node is smaller

than the bound, its successor nodes are explored further and B is updated. If c > B

5

for a node, then the successors of that node are discarded. If the tree is organized in

such a way that large sections of it can be pruned en masse, then the BB algorithm is

successful. Different improvements have been proposed to enhance the performance

of the basic BB algorithm [7]. Yu and Yuan [8] suggest avoiding the evaluation of

intermediate single-branching nodes by obtaining a “minimum search tree.” Also

ordering the nodes in the tree based on the significance of the features is used in

some of the variants of the BB algorithm [7]. To avoid evaluation of the cost, some

algorithms try to estimate it and use the estimated value to construct the tree [9].

Now, due to the peaking phenomenon, discussed previously, the classification er-

ror is likely to display a U-shaped behavior along a chain of increasing nested feature

sets. In this case, the original BB algorithm, or its variants mentioned previously, are

not suitable, as all of these algorithms assume that the cost function is monotonic.

Hence, the solution found by these algorithms will not necessarily be the global best

possible feature set. The original proposal of a feature selection algorithm based on

a U-shaped cost function was made by Ris and colleagues in [10]. They called this

algorithm the U-curve Brand-and-Bound (UBB) feature selection algorithm. The

purpose of the first part of the work, in section 2 is to propose and analyze a fast

algorithm to implement the UBB method, which outperforms the original algorithm.

In small sample feature selection problems, the performance of the feature selec-

tion depends heavily on the accuracy of the error estimation algorithm. The focus of

the section 3 of this dissertation will be the analysis of the performance of the error

estimation methods. In this section, we will study the effect of the complexity of the

decision boundary on some of the widely used error estimators.

6

1.1.2 Error Estimation and Complexity of Decision Boundary

Small-sample classifier design has become a paramount issue in functional ge-

nomics. The problem of choosing a classification rule and feature selection is exacer-

bated by the difficulty of error estimation with small samples, where one is compelled

to train and test a classifier on the same data. Cross-validation seems to be the pre-

ferred choice of many investigators owing to its approximate global unbiasedness,

but the variance of the cross-validation error estimation is typically very high, which

can make it unreliable [11, 12]. As for bootstrap estimation, it has reduced variance

in comparison to cross-validation, but at an increased computational cost. Bolstered

Resubstitution [13] tries to achieve a reasonable compromise to the bias, variance

and complexity trilemma.

Error estimation performance is generally a function of classification rule, sample

size, dimensionality and feature-label distribution. In section 3 of this work, we ana-

lyze the performance of error estimation methods as a function of complexity of deci-

sion boundary. In this section, we will quantify the effect of distribution complexity

on the RMS, for several data-efficient popular error estimators, including resubstitu-

tion, leave-one-out, cross-validation, bootstrap, and bolstering. Several classification

rules are considered: Quadratic Discriminant Analysis (QDA), 3-nearest-neighbor

(3NN) and neural networks (NNet). The analysis in this study extends to the error

estimation problem some of the ideas in [14], where the true classification error was

studied as a function of the complexity of the feature-label distribution and of the

sample size.

The issue studied in part is critical to experimental design. If one makes no

modeling assumptions with small-sample classifier design, then, virtually nothing

can be said about the error of the designed classifier and hence nothing can be said

7

about the scientific content of the classifier – it is epistemologically vacuous [15].

On the other hand, in defining distributional complexity we want to differentiate

between complexity and separability of the classes. Specifically, we want a measure

of complexity that will not be related to the Bayes error but will be related to the

complexity of the Bayes decision boundary. The classes may be multimodal, with

different “modes” being highly interwoven in Euclidean space, but without overlap

among the class-conditional densities. In this case the Bayes error will be zero, but

the Bayes classifier may possess a complex decision boundary. Despite the fact that,

in principle, such a situation involves perfectly separable classes, it presents one, in

practice, with a difficult problem for both classifier design and error estimation. Our

interest here is not with error-estimation RMS as a function of Bayes error, but as

a function of distribution complexity, and thus complexity of the decision boundary,

and our proposed definition of complexity reflects this fact.

In the following, we review some of the well known error estimation methods. We

will compare the performance of these methods for different levels of the complexity

of the decision boundary.

1.1.3 Error Estimation Methods

In two-group statistical pattern recognition, there is a feature vector X ∈ IRp and

a label Y ∈ {0, 1}. The pair (X, Y) has a joint probability distribution F, which is un-

known in practice. Hence, one has to resort to designing classifiers from training data,

which consists of a set of n independent observations, Sn = {(X1, Y1), . . . , (Xn, Yn)},

drawn from F. A classification rule is a mapping g : {IRp × {0, 1}}n × IRp → {0, 1}.

A classification rule maps the training data Sn into the designed classifier g(Sn, ·) :

IRp → {0, 1}. The true error of a designed classifier is its error rate given the training

8

data set:

εn[g|Sn] = P (g(Sn, X) 6= Y) = EF(|Y − g(Sn, X)|), (1.1)

where the notation EF indicates that the expectation is taken with respect to F;

in fact, one can think of (X, Y) in the above equation as a random test point (this

interpretation being useful in understanding error estimation). The expected error

rate over the data is given by

εn[g] = E
Fn

(εn[g|Sn]) = E
Fn
EF(|Y − g(Sn, X)|), (1.2)

where Fn is the joint distribution of the training data Sn. This is sometimes called

the unconditional error of the classification rule, for sample size n.

Were the underlying feature-label distribution F known, the true error could be

computed exactly, via (1.1). In practice, one is limited to using an error estimator.

Ideally, this estimate should be fast to compute and as close as possible to the true

error, for the given training data. Most error estimators used in practice implement

some form of sample-mean-like approximation using test points. The error estimator

is unbiased, with respect to the unconditional error, if the test points come from

independent samples not used to design the classifier.

1.1.3.1 Resubstitution

The simplest and fastest way to estimate the error of a designed classifier in the

absence of test data is to compute its error directly on the sample data itself:

ε̂resub =
1

n

n∑
i=1

|yi − g(Sn, xi)|. (1.3)

9

This resubstitution estimator, attributed to [16], is very fast, but is usually optimistic

(i.e., low-biased) as an estimator of εn[g] [11]. For some classification rules, resub-

stitution can be severely low-biased, an extreme case being one-nearest-neighbor

classification, in which the resubstitution estimator is identically equal to zero. Typ-

ically, the more complex is the classifier, the more optimistic is resubstitution, since

complex classifiers tend to overfit the data, especially with small samples [17].

1.1.3.2 Cross-Validation

Cross-validation removes the optimism from resubstitution by employing test

points not used in classifier design [18]. In k-fold cross-validation, the data set Sn is

partitioned into k folds S(i), for i = 1, . . . , k (for simplicity, we assume that k divides

n). Each fold is left out of the design process and used as a test set, and the estimate

is the overall proportion of error committed on all folds:

ε̂cvk =
1

n

k∑
i=1

n/k∑
j=1

|y(i)
j − g(Sn\S(i), x

(i)
j)|, (1.4)

where (x
(i)
j , y

(i)
j) is a sample in the i-th fold. The process may be repeated: several

cross-validation estimates are computed using different partitions of the data into

folds, and the results are averaged. A k-fold cross-validation estimator is unbiased

as an estimator of εn−n/k[g]. The most well-known cross-validation method, usually

attributed to [19], is the leave-one-out estimator, whereby a single observation is left

out each time:

ε̂loo =
1

n

n∑
i=1

|yi − g(S i
n−1, xi)|, (1.5)

where S i
n−1 is the data set resulting from deleting data point i from the original

data set Sn. This corresponds to n-fold cross-validation. The leave-one-out esti-

mator is unbiased as an estimator of εn−1[g]. Cross-validation estimators are often

10

pessimistic, since they use smaller training sets to design the classifier. Their main

drawback is their variance [12, 11]. They can also be quite slow to compute when

the number of folds or samples is large.

1.1.3.3 Bootstrap

The bootstrap error estimation technique [20, 21] is based on the notion of

an ”empirical distribution” F∗, which serves as a replacement to the original un-

known distribution F. The empirical distribution puts mass 1
n

on each of the n

available data points. A ”bootstrap sample” S∗n from F∗ consists of n equally-

likely draws with replacement from the original data Sn. Hence, some of the sam-

ples will appear multiple times, whereas others will not appear at all. The actual

proportion of times a data point (xi, yi) appears in S∗n can be written as P ∗i =

1
n

∑n
j=1 I(x∗j ,y

∗
j)=(xi,yi), where IS = 1 if the statement S is true, zero otherwise. The

basic bootstrap zero estimator [22] is written in terms of the empirical distribution as

ε̂0 = EF∗ (|Y − g(S∗n, X)| : (X, Y) ∈ Sn \ S∗n). In practice, the expectation EF∗ has

to be approximated by a Monte-Carlo estimate based on independent replicates S∗bn ,

for b = 1, . . . , B (B between 25 and 200 being recommended [22]):

ε̂0 =

∑B
b=1

∑n
i=1 |yi − g(S∗bn , xi)| IP ∗bi =0∑B
b=1

∑n
i=1 IP ∗bi =0

. (1.6)

The bootstrap zero estimator works like cross-validation: the classifier is designed on

the bootstrap sample and tested on the original data points that are left out. It tends

to be high-biased as an estimator of εn[g], since the amount of samples available for

designing the classifier is on average only (1− e−1)n ≈ 0.632n. The estimator

ε̂b632 = (1− 0.632) ε̂resub + 0.632 ε̂0. (1.7)

11

tries to correct this bias by doing a weighted average of the bootstrap zero and

resubstitution estimators. It is known as the .632 bootstrap estimator [22], and has

been perhaps the most popular bootstrap estimator in data mining [23]. It has

low variance, but can be extremely slow to compute. In addition, it can fail when

resubstitution is too low-biased [12].

1.1.3.4 Bolstered Resubstitution

As mentioned, the empirical feature-label distribution F∗ is a discrete distribution

that puts mass 1
n

on each of the n available data points. The resubstitution estimator

can be written in terms of the empirical feature-label distribution as

ε̂resub = EF∗ [|Y − ψn(X)|] (1.8)

Relative to F∗, no distinction is made between points near or far from the decision

boundary. If one spreads the probability mass of the empirical distribution at each

point, then variation is reduced because points near the decision boundary will have

more mass on the other side of the boundary than will points far from the decision

boundary. Consider a probability density function f♦i , for i = 1, . . . , n, called a

bolstering kernel, and define the bolstered empirical distribution F♦, with probability

density function given by

f♦(X) =
1

n

∑n

i=1
f♦i (X −Xi) (1.9)

The bolstered resubstitution estimator [13] is obtained by replacing F∗ by F♦ in

Eq. (1.8) to obtain

ε̂bolst = EF♦ [|Y − ψ(X)|] (1.10)

Bolstering can be applied to other error estimators; however, we only use bolstered

12

resubstitution, the bolstering method used the most to date.

The bolstered resubstitution estimator is given by

ε̂bolst =
1

n

n∑
i=1

(
Iyi=0

∫
A1

f♦i (x− xi) dx

+ Iyi=1

∫
A0

f♦i (x− xi) dx
) (1.11)

where Aj = {x | ψ(x) = j}. The integrals are the error contributions made by the

data points, according to whether yi = 0 or yi = 1. If the classifier is linear, then

the decision boundary is a hyperplane and it is usually possible to find analytical

expressions for the integrals; otherwise, Monte-Carlo integration can be employed.

The amount of bolstering determines the variance and bias properties (hence,

RMS also) of the bolstered estimator. As a general rule, wider bolstering kernels lead

to lower-variance estimators, but after a certain point this advantage becomes offset

by increasing bias. A zero-mean, spherical Gaussian bolstering kernel f �i with covari-

ance matrix of the form κ2
i I, where I is the identity matrix, has been proposed [13],

and has been shown to work well in low-dimensional feature spaces. The standard

deviation κi is based on a non-parametric sample-based estimator, d̂y, of the mean

minimum distance between points belonging to class y. Specifically, κi = d̂yi/αp,

where αp is a correction constant that depends only on the dimension p. We refer to

[13] for details on computing d̂y and αp.

1.2 Biomarker Validation: Selected Reaction Monitoring

Earlier in this chapter we reviewed the two main stages of biomarker develop-

ment pipeline, the discovery phase and the validation phase, and mentioned that the

selected biomarkers from the discovery step are validated in the next stage before

moving on to further analysis in clinical studies.

13

Different Mass Spectrometry (MS) modes with high speed and high resolution are

used successfully for the discovery stage which results in a set of candidate biomark-

ers. The validation phase requires MS modes with high sensitivity, such as Selected

Reaction Monitoring (SRM). SRM is a tandem MS mode that exploits unique capa-

bilities of the triple-quadrupole (QQQ) system to reach high precision in detecting

biomarkers in complex samples. The first and third quadrupoles act as filters to se-

lect a predefined m/z value, while the second quadrupole works as a collision induced

cell. The two stages of mass selection make SRM the right choice for quantitative

analysis of low-abundance biomarkers.

Figure 1.3 displays the idealized schematics of SRM analysis on QQQ MS. The

co-eluting analytes that enter the first quadrupole are filtered based on predefined

m/z values and enter the second quadrupole for collision induced dissociation. The

resulting fragment ions are then filtered by third quadrupole passing the preset m/z

values for the desired fragment ions. The two stages of mass filtering in SRM and

its targeted nature lead to an increased sensitivity by one or two orders of magni-

tude compared with usual full scan methods. It is worthy mentioning that the term

“Multiple Reaction Monitoring” (MRM) has been used to describe parallel acquisi-

tion of SRM for measurement of several target ions. However, to avoid ambiguity

between the number of transitions monitored and number of stages used in the mass

spectrometry analysis (MSn), its use is deprecated by IUPAC [24].

In this work, in section 4, SRM-based biomarker validation pipeline is modeled.

Protein mixture model, sample complexity and purification, peptide mixture model,

peptide ionization efficiency, transition, and peptide modification are the most im-

portant part of the model. The model developed in this study is then deployed to

analyze the performance of biomarker validation workflow using SRM experiments,

with different model parameter settings. Figure 4.2 displays the simulation process.

14

D
etecto

r

LC-ESI

Quadrupole 1 Quadrupole 2 Quadrupole 3

precursor ion selection fragmentation fragment ion selection ion guide

Figure 1.3: Idealized schematics of QQQ MS used in SRM analysis. The first quadru-
ple filters out most co-eluting ions from the chromatographic system. However, in-
terfering ions may pass Q1 and enter Q2. Ions in Q2 are fragmented and form the
input of the Q3. Ideally the specific m/z selection in Q3 passes only fragments of
the desired ion and eliminates interfering ions.

The list of candidate biomarkers generated based on the protein mixture model is

the input of the SRM pipeline. In different stages of this process, the protein mixture

data is affected by different noise sources depending on the experiment setting. The

model parameters are changed during the simulation and for each parameter setting

the average performance is found.

Param n

Param 2

Param 1

SRM Process
Model

Protein Mixture
Model

Biomarker
Identification
Performance

.
.

.

Figure 1.4: The entire simulation process. The protein abundance mixture data
enters the SRM process and is affected by different noise sources in different levels
of the process. The noisy data enters the biomarker validation block, where the
ranking power and true positive rate are used to measure the performance of the
overall biomarker validation process.

15

2. A FAST ALGORITHM FOR U-CURVE BRANCH-AND-BOUND FEATURE

SELECTION

Feature selection is the problem of finding an optimal subset of a finite set of

features that minimizes a cost function, often taken to be the classification error [4].

For a problem with n features, there are
(
n
d

)
possible feature sets of size d and 2n

possible total possible feature sets. This makes the feature selection problem a hard

task in dealing with large number of candidate features n.

Many algorithms have been proposed that use heuristics to find the suboptimal

feature set in fewer evaluations than exhaustive search. Sequential Forward Selec-

tion (SFS) and Sequential Backward Selection (SBS) are two well-known suboptimal

search algorithms. However, if the goal is to find the global best features, all the fea-

ture sets should be evaluated or as another solution, the assumptions of the search

problem can be used to discard the solutions which do not have the potential to

be the global best feature set. The well-known Branch-and-Bound (BB) algorithm

proposed in [5] uses the monotonicity property of the criterion function to systemat-

ically enumerate all candidate solutions, where large subsets of fruitless candidates

are discarded.

The original BB algorithm assumes a monotonic criterion function. This assump-

tion does not hold in practice. For example, with peaking phenomenon the true error

of a classifier designed using small number of samples, decreases and then increases

by using more features. Recently Ris and colleagues in [10] proposed a U-curve

Brand-and-Bound (UBB) which extends the idea of BB algorithm to the U-curved

criterion functions. The purpose of the current part of the dissertation is to propose

and analyze a fast algorithm to implement the UBB method, which outperforms the

16

original algorithm. A cost function is proposed in this part of the work to model the

feature selection problem with peaking phenomenon. The model is able to control

the delay in peaking using the parameters which determine the number of features at

which peaking happens. This enables us to study the features selection algorithms

in dealing with problems with different peaking behaviors.

2.1 U-curve feature selection

In this section, we introduce the U-curve optimization problem formally [10]. Let

P(S) denote the power set of the finite non-empty set S.

Definition 1 (Chain). A chain is a collection {X1, X2, ..., Xk} ⊆ P(S), such that

X1 ⊆ X2 ⊆ ... ⊆ Xk.

Definition 2 (U-shaped curve). Let X ⊆ P(S) be a chain. A function f : X → R

describes a U-shaped curve if, for any X1, X2, X3 ∈ X , then X1 ⊆ X2 ⊆ X3 implies

that f(X2) ≤ max{f(X1), f(X3)}.

Definition 3 (Decomposability in U-shaped curves). A cost function c : P(S)→ R

is decomposable in U-shaped curves if, for each chain X ⊆ P(S), the restriction of c

to X describes a U-shaped curve.

Definition 4 (Minimum cost). Let X∗ be an element of X ⊆ P(S) and let c be a

function defined on P(S). If there does not exist another element X ∈ X such that

c(X) < c(X∗), then X∗ is of minimum cost in X . If X = P(S), then we say that

X∗ is of minimum cost.

The U-curve problem can be defined as follows: Given a non-empty set S and a

cost function c : P(S)→ R that is decomposable in U-shaped curves, find an element

X∗ ∈ P(S) of minimum cost. Figure 2.1 (a) illustrates the U-curve problem. In this

17

figure, four different chains are highlighted in red. Figures 2.1 (b,c) display 2D and

3D plots of the problem in figure 2.1 (a).

2.1.1 U-curve Branch and Bound

The UBB algorithm proposed in [10] uses the U-curve structure of the cost func-

tion to find the minimum cost element of S without evaluating all the elements in S.

Through a recursive enumeration scheme, it first constructs a tree T and then uses

it as the search space. The fact that c is decomposable in U-shaped curves is used to

prune the tree during the search. The algorithm branches until the cost of a visited

element starts to increase. Observing the first increase in the cost function, the tree

is pruned. The algorithm continues the search on the pruned tree. Figure 2.2 shows

the process of UBB for selecting the optimal solution of a U-curve problem. More

details about UBB and its pesudocode can be found in [10].

2.2 Proposed Algorithm

The results in [10] show that UBB requires fewer function calls compared to

Exhaustive Search (ES) in finding the global best solution of the U-curve problem.

However, UBB’s number of function calls is still high (about half of ES’s function

calls). To tackle the high number of function calls of UBB, an improved algorithm

is proposed here, which consists of two main innovations:

1) Iterative updating of optimal chains. Through an enumeration process,

UBB constructs a tree structure as the search space of the optimization problem.

The tree is pruned when the cost of an element in the search chain starts increasing.

Although in the first iterations of the UBB algorithm, finding a minimum element

in a chain leads to removal of many elements in the tree, in the next steps the

search chains are not the best possible chains in the search space and the pruning

becomes very slow. This is one of the reasons that the number of function calls in

18

11111 16

11110 11101 11011 151614

11100 01101 10101 11001 01011 10011100 01101 10101 11001 01011 10071415814

11000 10100 01100 01001 10001 01056131513

10000 01000 00100 141514

00000 17

6

10111 01111 16155

011 11010 10110 00111 01110011 11010 10110 00111 01110 148159 14

010 10010 00110 00011 00101 0432 8

00010 00001 214

7

(a)

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.5
0

0.5

−0.5

0

0.5

0

10

20

(b) (c)

(d)

Figure 2.1: (a) U-curve feature selection with n = 5, highlighting 4 chains. (b) 2D
plot (c) 3D plot. The element with the yellow shade is the global minimum.

19

11111 16

11110 11101 11011 10111 01111 1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

11111 16

11110 11101 11011 10111 01111 1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

(a) (b)

16

11011 10111 01111 1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

16

10111 01111 1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

(c) (d)

16

10111 01111 1615151614

11100 01101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

16

10111 01111 1615151614

11100 01101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

(e) (f)

Figure 2.2: UBB algorithm. (a) Search space. (b) the tree produced by enumeration
scheme. (c-f) Four steps of the algorithm.

20

UBB is high. To improve the pruning process, instead of limiting the search to the

tree structure constructed through the enumeration process of UBB, at each step of

IUBB we determine the optimal chain in the search space which leads to pruning the

most elements of the search space. This is done as follows. For a feature selection

problem with n features, the search space can be represented by a Boolean lattice L

of degree n. Let Ll be organized in layers, as represented in Figures 2 and 3, where

Ll denotes the l-th layer, for 0 ≤≤ n, that is, let Ll contain all possible feature sets

of size l. In addition, let each feature set X be represented by a binary string of size

n, where a “1” at the ith position indicates that feature set i belongs to X, again as

represented in Figures 2 and 3. For 0 ≤ l ≤ n− 1, we define Rl = [rij], a matrix of

size

(
n

l

)
×
(

n

l + 1

)
, with i, j-element general element given by

rij =

 1, if |X l+1
j −X l

i | = 1

0, otherwise
(2.1)

where X l
i and X l+1

j are ith and jth elements of Ll and Ll+1, respectively. In other

words, rij is the Hamming distance between X l+1
j and X l

i . If rij = 1, then the two

feature sets are on the same chain. Let Cl be the vector of row sums of Rl, and

define the vectors

Tn = 0 ,

Tn−1 = Cn−1 ,

Tl = Cl + Rl ×Tl+1 , l = n− 2, n− 3, ..., 0 .

(2.2)

The ith element of Tl indicates the pruning gain of its corresponding element in the

search space. We use Tl to find chains for which finding the minimum element results

21

in maximum pruning of the search space. At each step of the algorithm, an optimal

chain X ∗ is found, and after determining the minimum element of the chain, all the

states connected to the optimal element are removed from the search space. Then

the matrices Rl, Cl and Tl are updated, and the algorithm continues until there is

no remaining element in the search space.

2) Use of bisection to find chain minimum. The main drawback of UBB is

that in finding the minimum element of a chain, it searches all the elements before

reaching the element that shows increasing cost value. That is, for a chain X =

{X1, X2, ..., Xk}, if the U-curve cost function has a minimumX∗ = Xi∗ , the algorithm

evaluates the cost function (i∗ + 1) times to find X∗. When dealing with a large

number of features, the algorithm will tend to need a large number of unnecessary

function calls to find X∗. To use the U-curve assumption efficiently, as an alternative,

faster methods can be used to find the minimum element of the chain. We use

bisection in the proposed algorithm. This changes the complexity of finding the

minimum of the chain X from O(|X |) to O(log(|X |)). Figure 2.3 shows the number

of the function calls required to find the minimum element X∗ of the chain when i∗ is

uniformly distributed in the set 2, . . . , |X |−1 and the cost function is c(i) = (i− i∗)2.

As we see, at |X | = 500, bisection requires on average 17 function evaluations, while

|X |/2 = 250 function evaluations are needed on average by the method in UBB to

find the minimum element X∗i .

The pseudocode of the algorithm is shown in Algorithm 1.

Compared to the original UBB algorithm, the proposed IUBB algorithm uses

the U-assumption efficiently by first using a different search structure which focuses

on an optimal chain X ∗ in the search space at each step of the algorithm. Then

using the U-assumption for not only pruning the search space, but also for finding

the minimum element X∗ of each chain (Bisection module). This improved and

22

0 100 200 300 400 500
6

8

10

12

14

16

18

20

|X |

F
u
n
ct
io
n
E
v
a
lu
a
ti
o
n
s
(F

E
)

Mean FE
Max FE
Min FE

Figure 2.3: Number of function evaluations required to find the minimum element
of the chain X by bisection vs. |X |.

efficient use of U-curve assumption enables the proposed algorithm to outperform

UBB in most the search problems. In the next section we will compare the two

algorithms for a few different feature selection experiments.

2.3 Experimental Results

In this section the performances of the proposed IUBB algorithm and the original

UBB algorithm are compared. The analysis is broken into two different parts. First,

the algorithms are compared for a set of synthetic benchmark U-curve problems.

The parameters in the synthetic problems allows us to study the effect of varying

structure of the U-shape feature selection problem and analyze the behavior of the

algorithms while the complexity of the problem changes over the variation of the

parameters. Next, the UBB and IUBB algorithms are applied in feature selection

for a real classification problem and their performances are compared.

23

11111 16

11110 11101 11011 10111 01111 1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

16

11011 10111 01111 1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

(a) (b)
16

11011 1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

16

1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

(c) (d)
16

1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

16

1615151614

11100 01101 10101 11001 01011 10011 11010 10110 00111 01110 14815971415814 14

11000 10100 01100 01001 10001 01010 10010 00110 00011 00101 043256131513 8

10000 01000 00100 00010 00001 21141514

00000 17

(e) (f)

Figure 2.4: IUBB process. (a) The original search space. (b-f) Five steps of the
algorithm. The elements with pink background indicate the the feature sets evalu-
ated. Red background elements are the ones that are removed from the search space
without evaluation of the cost value. The blue elements are the feature sets that are
not evaluated nor removed due to the U-assumption. The selected optimal chain is
shown by a red dashed line in all the diagrams.

24

Algorithm 1 IUBB Algorithm

Initialize Boolean lattice L of degree n.
Nr ⇐ Number of elements is the search space that are not visited.
copt ⇐∞
while Nr ≥ 0 do

Find the optimal chain X ∗
Bisection(X ∗) ⇒ X∗

if c(X∗) < copt then
copt ⇐ c(X∗)
Xopt ⇐ X∗

end if
Prune(L,X ∗, X∗)⇒ (L, Nr)

end while
return Xopt and copt

2.3.1 Synthetic Benchmark U-curve Problem

In this section, a model is introduced for the U-curve feature selection problem,

which allows us to change the structure of the problem and observe the performance

of the algorithms while the difficulty of the feature selection problem varies. The

parameters in the model control the number of features in the optimal feature set,

representing problems ranging from early peaking to late peaking. This model can be

used as a benchmark U-curve cost function to study other feature selection methods.

The model for the cost function is given by:

z = f(x|c,W, zsup) = zsup[1− exp(
1

2
(x− c)TW(x− c))] (2.3)

25

where

n : Dimension of the feature selection problem

x ∈ {0, 1}n : Binary Feature Vector

c ∈ {0, 1}n : Center (Global Minimum of Cost Function)

W ∈ R(n×n) : Positive Definite Weighting Matrix (Shaping Matrix)

zsup : Cost Supremum, Cost Scale or Ideal Maximum Value of Cost

(2.4)

The parameter 0 ≤ α ≤ 1 controls the number of the features in the optimal set

of the features, i.e.

α =
1

n

∑
i = 1nci (2.5)

The parameter α controls the peaking ”delay” and the number of features present

in the optimal feature set.

To have a better view of the proposed model, in figure 2.5 we plot two samples

of u-curve model problem for two different settings of parameters, (α = 0.3 , n = 7),

(α = 0.6 and n = 7). Figure 2.5 (a) shows a U-curve problem with early peaking.

The number of features in the optimal set of the features in the problem depicted in

Figure 2.5 (b) is almost 60% of the total number of features and peaking happens

late. When α = 1 the cost function is monotonic which models a feature selection

problem with large sample size with monotonically decreasing classification error as

more sample are used in the classifier design..

These two classes of problems with different characteristics can be used to see

how the shift in peaking affects the algorithms. The structure of the problems de-

picted in figure 2.5 shows that the model proposed for U-curve problem model is

flexible enough to generate a vast range of feature selection problems with peaking

phenomena. To study the robustness of the algorithms when the U-curve assumption

26

does not hold, in the next sections we will add parameters to the model to simulate

the real feature selection problems where the estimated error over the elements of

the chains does not hold the U-assumption completely.

−0.5 0 0.5
−0.5

0
0.5
0

0.2

0.4

0.6

0.8

1

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) (b)

−0.4 −0.2 0 0.2 0.4 0.6
−0.5

0

0.5

0

0.2

0.4

0.6

0.8

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

(c) (d)

Figure 2.5: The u-curve problem model for n = 7. (a and b) 3D and 2D represen-
tation of the cost for α = 0.3. (c and d) 3D and 2D representation of the cost for
α = 0.6. Increasing α shifts the peaking from few number of features to selection of
more features in the optimal feature set.

The u-curve problem model proposed here, can be used as a benchmark for the

study of the other algorithms that address this class of optimization problems. The

parameters in the cost model enables us to change the structure of the feature se-

27

lection problem and see how the behavior of the algorithms change over a set of

different problems.

2.3.2 Results

A set of different test U-curve feature selection optimization problems of size n

and different structures resulting from different sets of model parameters, are used

to assess the performance of each method. Different measures are used to compare

the two feature selection algorithms. Before introducing these measures, we define

the following terms.

• nFE: the number of function evaluations. This is the number of feature sets

visited and evaluated by an algorithm.

• nPR: the number of feature sets pruned by applying the U-assumption on the

search structure.

• nRM : the number of feature sets removed from search for reasons other that

the Pruning. For example removal of some of the feature sets from a chain

using Bisection to find the minimum element.

• nDD: the number of feature sets Pruned or Removed (nDD = nPR + nRM).

• nUD: the number of feature sets not Visited, Pruned or Removed (nUD =

2n − nFE − nPR − nRM).

Definition 5 (Search Efficiency). For a global search algorithm, at each nFE, the

Search Efficiency is defined as:

SE =
nFE + nDD

nFE
, SE ≥ 1 (2.6)

28

Search Efficiency shows the ability of the two algorithms in using the U-assumption

for discarding undesired solutions from search space. For Exhaustive search the

SE = 1 as there is no use of U-assumption in the search process and there is no

additional gain in evaluating a feature set (nDD = 0). However, IUBB and UBB try

to use the information of each function evaluation to discard some of the solutions.

Comparing the search efficiency of the two algorithms will allow us to see how effi-

ciently the two algorithms use the U-assumption in finding the global best feature

sets. On the other hand SE indicates the level of the trust over a solution if the

algorithms stop in a fixed nFE due to limited computational resources. For example

if we stop the search at nFE = 100, then SE = 2 means that the best solution found

at nFE = 100 represents 2 × nFE candidate solutions of the search space. A low

value of SE will show that the algorithm uses the assumption inefficiently and on

the other hand a solution found by the algorithm is only representing the part of

search space that has directly been visited and evaluated.

We will use the following indices for comparing the two algorithms.

• Search Efficiency: Will show the efficiency of the algorithms in using the

U-assumption.

• n0
FE: The number of function evaluations required to find the optimal feature

sets.

• Best Cost: The cost of best feature set found by each algorithm will be used

to compare two algorithms.

Using the mentioned measures, we compare two algorithms in figures 2.6 and

2.7. Figure 2.6 (a) shows the best cost found by each algorithm in nFE number of

function evaluations. Also figure 2.6 (b) depicts number of feature sets in the search

29

space that need to be evaluated vs. nFE. On the other hand, figure 2.6 (c) indicates

number of feature sets in the search space that are pruned or removed from search

space vs. nFE. Also figure 2.6 (d) shows the ratio of the plots in Figure 2.6(c) vs.

nFE. In figure 2.7 (a) we see the ratio plot of the number of feature sets in the search

space that need to be evaluated vs. nFE. Also figure 2.7 (b) shows the percentage

of feature sets in the search space that need to be evaluated vs. nFE. The difference

between percentage of feature sets in the search space that need to be evaluated vs.

nFE is shown in figure 2.7. Finally figure 2.7 (d) depicts search Efficiency of two

algorithms vs. nFE.

IUBB has a high search gain in low NFEs which very important as this represents

a real case where the computational resources limit the number of estimation of the

error of the candidate feature sets and searching the entire search space and even a

small percentage of it is computationally intensive.

Figures 2.6 and 2.7 compared two algorithms for a single application of UBB and

IUBB on feature selection problems with different dimensions. In the next section

we will evaluate the two algorithms based on their average performance in dealing

with U-curve feature selection problems with different structures. To do this, we will

limit the number of function evaluation of each algorithm to a fixed number (5% and

10% of the search entire search space) and will use the cost of best feature set found

by each algorithm and the search efficiency at these fixed nFEs. This models a more

realistic scenario where search is limited by the limitations of the computational

resources.

2.3.3 Peaking Delay

In this part, fixing the dimension of the feature selection problem to 15 and 17,

we want to study how the variation of the parameters in the model problem, will

30

10
0

10
2

10
4

10
6

0

1

2

3

4

5

6

7

8

9

10

B
es
t
C
o
st

nFE

UBB, n = 11
IUBB, n = 11
UBB, n = 13
IUBB, n = 13
UBB, n = 15
IUBB, n = 15
UBB, n = 17
IUBB, n = 17

10
0

10
2

10
4

10
6

0

2

4

6

8

10

12

14
x 10

4

n
U
D

nFE

UBB, n = 11
IUBB, n = 11
UBB, n = 13
IUBB, n = 13
UBB, n = 15
IUBB, n = 15
UBB, n = 17
IUBB, n = 17

(a) (b)

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

10
4

10
5

n
P
R
+

n
R
M

nFE

UBB, n = 11
IUBB, n = 11
UBB, n = 13
IUBB, n = 13
UBB, n = 15
IUBB, n = 15
UBB, n = 17
IUBB, n = 17

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60
n

I
U

B
B

D
D

n
U

B
B

D
D

nFE

n = 11
n = 13
n = 15
n = 17

(c) (d)

Figure 2.6: Comparing a single run of two algorithms (α = 0.75) for different values of
n. (a) The best cost found by each algorithm in nFE number of function evaluations.
(b) Number of feature sets in the search space that need to be evaluated vs. nFE. (c)
Number of feature sets in the search space that are pruned or removed from search
space vs. nFE. (d) The ratio of the plots in (c) vs. nFE.

31

affect the performance of IUBB, and UBB. Figure 2.8 (a, b) show the effect of the

model parameter α on the performance of the algorithms when dimension n is set to

15.

As we see in Figure 2.8 (a) the increase of the model parameter α from 0 to 0.5

increases the number of cost evaluation required by each algorithm. This behavior

is not beyond our expectations, as the increase of alpha, will move the minimum

elements of the chains from the selection of fewer features towards the selection of

more features and this will lower the pruning potential of the algorithms, delaying

their success in finding the best feature sets. On the other hand, when α increases

the chance of finding global minimum in the initially constructed chains decreases.

The algorithms have the worst performance when α is about 0.5. Increasing α in

the interval [0.5, 1] improves the performance of the two methods. When α is about

1, this means that the optimal solution is in the first selected chain and the two

algorithms perform well.

Figure 2.8 (b) shows the ratio of the number of function evaluations required to

find the best features. As we see UBB has a better performance for α ∈ [0, 0.5].

For α ≥ 0 IUBB has better performance. The ratio plot shows that the UBB might

require about 40 times more evaluations for a problem with late peaking.

Figure 2.9 compares the two algorithms using their Avg Cost, SE and SE ratio

plots for NFE = 5% and NFE = 10% of the search space. As we see, if the two

algorithms are provided with a fixed number of possible function evaluations, IUBB

has a better performance in terms of the cost of best feature set and the search

efficiency, over the entire range of possible αs. Also we see that the two algorithms

have high search efficiency for low values of αs and as α increases the search efficiency

decreases very fast for both of the algorithms. This shows the importance of the

performance of the algorithms in higher values of α. In the next section we will

32

study the effect of dimension of the feature selection problem on the performance of

the two algorithms. Figure 2.10 shows the same results for n = 17

2.3.4 Dimension

One of the main drawbacks of the Branch-and-Bound algorithms is their weak

performance as the dimension of the feature selection problem increases. The results

show that UBB has inherited this weakness as its performance in high dimensions

decreases. In this section the proposed U-curve benchmark problem model is used to

compare the algorithms against the increase of the problem dimension. The dimen-

sion n changes from 10 to 17 and performance of the two algorithms are evaluated

based on two different criteria.

Figure 2.11 (a) shows a plot of the average number of function calls required by

two algorithms to find best feature sets. Figure 2.11 (b) depicts the ratio of the

number of the function calls used by the two algorithms to find the global minimum.

In figure 2.11 (c) the average percentage of the search space evaluated by each algo-

rithm to find best features is depicted. Figure 2.11 (d) shows the difference between

the two plots in figure 2.11 (c). The results will be described in more details. Also

smaller error bars in figures 2.11 (a and c) indicate that the IUBB is more robust

than UBB to the changes in the structure of the problem.

To have a better understanding of the results of the two algorithms, figure 2.12

(a and b) compares the average cost of the two algorithms when the 5% and 10%

of the search space is evaluated by two algorithms. Figures 2.12 (c and d) depict

the average search gain at 5% and 10% of the search space. on the other hand

figures 2.12 (e and f) show the ratio of the average search gain at 5% and 10% of the

search space. As we see in these figures limiting the search to the 5% and 10% of

the search space which is the case when dealing with real feature selection problems

33

where the limitation in the computational resources confine the number of function

evaluation, IUBB has a better performance. The average cost of the best feature set

found by IUBB is less than that of UBB. On the other hand the search efficiency plots

shows that IUBB outperforms UBB. Higher value of search gain besides low average

cost value indicates that not only IUBB results in a better set of features, but also

its results are more trustworthy as they represent a larger portion of search space.

The ratio of the search gain plot shows that IUBB uses the U-curve assumption more

efficiently than the original UBB.

The result in Figures 2.12 were for α = 0.7. We observed that with this value of

α the search efficiency of the UBB converges to 1 (Exhaustive search) as n increases.

To study the behavior of the two algorithms in more details, we change the value of

the α and see its effect on the performance of the two algorithms as the dimension

n increases.

Figure 2.13 (a) shows a plot of the average number of function calls required by

two algorithms to find best feature sets. Figure 2.13 (b) the ratio of the number of the

function calls used by the two algorithms to find the global minimum. In figure 2.13

(c) the average percentage of the search space evaluated by each algorithm to find

best features is depicted. Figure 2.13 (d) shows the difference between the two plots

in figure 2.13 (c). The results will be described in more details. Also smaller error

bars indicate that the IUBB is more robust than UBB to the changes in the structure

of the problem.

Figure 2.14 (a and b) compares the average cost of the two algorithms when the

5% and 10% of the search space is evaluated by two algorithms. Figures 2.14 (c and

d) depicts the average search gain at 5% and 10% of the search space. on the other

hand figures 2.14 (e and f) show the ratio of the average search gain at 5% and 10%

of the search space between two algorithms.

34

2.3.5 Validation of U-curve Assumption

The previous results compared two algorithms in finding the global minimum of

a set of U-curve optimization problems. In this section we study the performance

of the algorithms in cases where the U-curve assumption is not held. We add new

parameters to the model that control deviation from U-curve assumption. The math-

ematical model of the modified cost function follows:

z = f(x|c,W, zsup) = zsup[1− exp(
1

2
(x− c)TW(x− c)) + A cos (2πf x̄)] (2.7)

where

x̄ : mean of x

A : Amplitude of the cos term

f : Frequency of the cos term

(2.8)

The cos term in the cost function controls the deviation of the problem from

U-curve assumption. If A is set to 0 the problem is a U-curve. If A > 0 then the

problem does not satisfy the U-curve assumption and each chain might have more

than one local minimum. The value of f controls the number (frequency) of local

minimums and A controls the depth of the local minimums.

To see the effect of changing A and f , figure 2.15 shows the 3D and 2D plot of the

cost value of the different elements of the search space for two different sets of the

parameters. In figure 2.15 the parameters A and f are set to 0.2 and 2 respectively.

Figure 2.15 shows the cost where A = 0.4 and f = 3. As we see A and f control the

level of deviation from the assumption and can be used to study the performance of

the algorithms when the problem is not u-curve. Increasing A increases the depth of

the local minimums in the chains. A proper algorithm should be able to avoid these

35

minimums for a large enough range of A. On the other hand increasing f generally

increases the frequency of the local minimums, making it harder for the algorithms

to find the global minimum of a chain and prune the search space.

Figure 2.15 shows two samples of u-curve model problem for two different settings

of parameters, (A = 0.2, f = 2) and (A = 0.4, f = 3). In figure 2.15 (b) the deviation

from U-curve assumption is higher compared to problem depicted in figure 2.15 (a).

As we see the two parameters A and f , enrich our model and make it flexible for

generating problems that do not hold the U-curve assumption completely.

Figure 2.16 shows the cost of the best feature sets found by two algorithm as the

value of A increases. As we see, for A ≤ 0.075 the two algorithms are able tolerate

the deviation from U-curve assumption. However as A becomes greater than 0.075,

UBB loses its performance suddenly while IUBB is robust to the increases of the

value of A.

Figure 2.17 shows the same results as figure 2.16 for f = 3. As we see, in this

case, even a small value of deviation from U-assumption is enough for UBB to get

stock in local minimums of the function.

2.3.6 Classification Problem

After comparing the two algorithms over a range of different U-curve problems,

in this section we apply the algorithms on real feature selection problems. A set

of different feature selection problems are generated based on the method and data

model described in the next section. The estimated value of the true error using

some of the well-known error estimation methods is used by the algorithms to select

the optimal set of the features.

36

2.3.6.1 Data Model

This section describes the model used for the data. The features are divided into

two different groups, markers and non-markers. We use the model proposed in [25]

where a Gaussian block model is used for the abundance of markers and non-markers,

with the latter group being divided into two groups, high-variance and low-variance.

More details are given next.

There are altogether Dgm global markers. The class-conditional distributions

are Dgm-dimension Gaussian: N(µgm0 ,Σgm
0) for class 0 and N(µgm1 ,Σgm

1) for class 1,

where µgm0 and µgm1 are the mean vectors of class 0 and 1, respectively, and Σgm
0 and

Σgm
1 are the covariance matrices.

The means are set to µgm0 = (0, 0, ..., 0) and µgm1 = (1, 1, ..., 1), while a block-based

structure is used to define the covariance matrices, whereby markers are divided into

groups of Dm markers each. Markers from different groups are uncorrelated and

markers of the same group possess same correlation ρ between each other. Specifi-

cally, we define Σgm
0 and Σgm

1 as Σgm
0 = σ2

0 × Σ and Σgm
1 = σ2

1 × Σ, with

Σ =



Rρ 0 · · · 0

0 Rρ · · · 0

...
...

. . .
...

0 0 · · · Rρ


, (2.9)

where Rρ is a Dm ×Dm matrix with 1’s on the diagonal and ρ’s elsewhere.

Non-markers are features that provide no discriminating power between two

classes. High-variance non-markers are uncorrelated. For any feature, the distri-

bution will be a mixture of Gaussians, N(0, σ0) and N(1, σ1), where σ0 and σ1 are

the same values used in markers. The number of high-variance non-markers is de-

37

noted by Dhv.

Low-variance non-markers are also uncorrelated. For any feature, the distribution

is N(0, σ0). The number of Low-variance non-markers is Dlv = D − Dgm − Dhv.

Figure 2.18 shows the peaking phenomenon for LDA classifier designed using the

samples generated from the model.

2.3.6.2 Results

Using the data model a set of different feature selection problems are generated.

These problems are used to compare the two algorithms for feature selection in a set

of real problems. Table 2.1 shows the summary of the parameter values used in this

section. Figures 2.19 and 2.20 show the application of UBB and IUBB on a set of

feature selection problems generated using the model. The results show that how the

accuracy of the error estimation algorithm affects the feature selection algorithms.

Table 2.1: Summary of parameters

Parameter Value
Classification rule LDA
No. of sample size nTr 40
No. of total feature dimensions n 15
No. of global markers Dgm 10
Blok Size Dm 2

ρ 0.5
σ0 0.3

38

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

n
U
B
B

U
D

/
n
I
U
B
B

U
D

nFE

n = 11
n = 13
n = 15
n = 17

10
0

10
2

10
4

10
6

0

10

20

30

40

50

60

70

80

90

100

n
U
D
/
(2

n
)
×
1
0
0

nFE

UBB, n = 11
IUBB, n = 11
UBB, n = 13
IUBB, n = 13
UBB, n = 15
IUBB, n = 15
UBB, n = 17
IUBB, n = 17

(a) (b)

10
0

10
2

10
4

10
6

0

5

10

15

20

25

30

35

40

(n
U
B
B

U
D

−
n
I
U
B
B

U
D

)/
2
n
×
1
0
0

nFE

n = 11

n = 13

n = 15

n = 17

10
0

10
2

10
4

10
6

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ea
rc
h
E
ffi
ci
en

cy

nFE

UBB, n = 11
IUBB, n = 11
UBB, n = 13
IUBB, n = 13
UBB, n = 15
IUBB, n = 15
UBB, n = 17
IUBB, n = 17

(c) (d)

Figure 2.7: Comparing a single run of two algorithms (α = 0.75) for different values
of n. (a) The ratio plot of the number of feature sets in the search space that need
to be evaluated vs. nFE. (b) The percentage of feature sets in the search space that
need to be evaluated vs. nFE. (c) The difference between percentage of feature sets
in the search space that need to be evaluated vs. nFE. (d) Search Efficiency of two
algorithms vs. nFE.

39

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5
x 10

4

α

A
v
g
.
N
F
E

UBB
IUBB

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

α

N
F
E

U
B
B

/
N
F
E

I
U
B
B

(a) (b)

Figure 2.8: (a) Plot of the average function evaluations used by each algorithm to find
the optimal feature sets, with standard deviation bars. (b) Barplot of the average
gain in efficiency displayed by IUBB over UBB in terms of function evaluations
required to find the global best feature set. (a,b) n = 15.

40

0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

α

B
es
t
C
o
st

-
5
p
er
ce
n
t

UBB
IUBB

0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

α

B
es
t
C
o
st

-
1
0
p
er
ce
n
t

UBB
IUBB

(a) (b)

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

α

S
ea
rc
h
E
ffi
ci
en
cy

in
5
p
er
ce
n
t

UBB
IUBB

0.2 0.4 0.6 0.8 1
0

5

10

15

20

α

S
ea
rc
h
E
ffi
ci
en
cy

in
1
0
p
er
ce
n
t

UBB
IUBB

(c) (d)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

α

S
E

U
B
B
/
S
E

I
U
B
B
−
5
p
er
ce
n
t

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

α

S
E

U
B
B
/
S
E

I
U
B
B
−
1
0
p
er
ce
n
t

(e) (f)

Figure 2.9: (a,b) Average best cost vs. α. (c,d) Search efficiency vs. α. (e,f) The
ratio of search efficiency vs. α. (a,c,e) nFE = 2n×5/100. (b,d,f) nFE = 2n×10/100.
(a-f) n = 15.

41

0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

α

B
es
t
C
o
st

-
5
p
er
ce
n
t

UBB
IUBB

0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

α

B
es
t
C
o
st

-
1
0
p
er
ce
n
t

UBB
IUBB

(a) (b)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

α

S
ea
rc
h
E
ffi
ci
en
cy

in
5
p
er
ce
n
t

UBB
IUBB

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

α

S
ea
rc
h
E
ffi
ci
en
cy

in
1
0
p
er
ce
n
t

UBB
IUBB

(c) (d)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

α

S
E

U
B
B
/
S
E

I
U
B
B
−
5
p
er
ce
n
t

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

α

S
E

U
B
B
/
S
E

I
U
B
B
−
1
0
p
er
ce
n
t

(e) (f)

Figure 2.10: (a,b) Average best cost vs. α. (c,d) Search efficiency vs. α. (e,f) The
ratio of search efficiency vs. α. (a,c,e) nFE = 2n×5/100. (b,d,f) nFE = 2n×10/100.
(a-f) n = 17.

42

9 10 11 12 13 14 15 16 17 18
0

1

2

3

4

5

6

7
x 10

4

Dimension

A
v
g
.
N
F
E

UBB
IUBB

10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

2.5

Dimension

N
F
E
U
B
B

/
N
F
E
I
U
B
B

(a) (b)

10 12 14 16 18
0

10

20

30

40

50

60

Dimension

S
ea
rc
h
S
p
a
ce

p
er
ce
n
ta
g
e

UBB
IUBB

10 11 12 13 14 15 16 17
0

2

4

6

8

10

12

14

16

Dimension

D
iff

in
S
ea
rc

S
p
a
ce

p
er
ce
n
ta
g
e

(c) (d)

Figure 2.11: (a) Plot of the average function evaluations used by each algorithm to
find the optimal feature sets, with standard deviation bars. (b) Barplot of the average
gain in efficiency displayed by IUBB over UBB in terms of function evaluations
required to find the global best feature set. (c) Average percentage of the search
space evaluated by each algorithm to find the optimal feature sets, with standard
deviation bars. (d) Difference between the average percentage of the search space
evaluated by each algorithm to find the optimal feature sets, with standard deviation
bars. (a-d) α = 0.7.

43

10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Dimension

B
es
t
C
o
st

-
5
p
er
ce
n
t

UBB
IUBB

10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Dimension

B
es
t
C
o
st

-
1
0
p
er
ce
n
t

UBB
IUBB

(a) (b)

10 12 14 16 18
1

1.5

2

2.5

3

3.5

Dimension

S
ea
rc
h
E
ffi
ci
en
cy

in
5
p
er
ce
n
t

UBB
IUBB

10 12 14 16 18
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Dimension

S
ea
rc
h
E
ffi
ci
en
cy

in
1
0
p
er
ce
n
t

UBB
IUBB

(c) (d)

10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

2.5

Dimension

S
E
U
B
B

/
S
E
I
U
B
B
−5

p
er
ce
n
t

10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

2.5

Dimension

S
E
U
B
B

/
S
E
I
U
B
B
−1

0
p
er
ce
n
t

(e) (f)

Figure 2.12: (a,b) Average best cost vs. α. (c,d) Search efficiency vs. α. (e,f) The
ratio of search efficiency vs. α. (a,c,e) nFE = 2n×5/100. (b,d,f) nFE = 2n×10/100.
(a-f) α = 0.85.

44

9 10 11 12 13 14 15 16 17 18
−1

0

1

2

3

4

5
x 10

4

Dimension

A
v
g
.
N
F
E

UBB
IUBB

10 11 12 13 14 15 16 17
0

2

4

6

8

10

12

14

16

18

Dimension

N
F
E
U
B
B

/
N
F
E
I
U
B
B

(a) (b)

10 12 14 16 18
−10

−5

0

5

10

15

20

25

30

35

40

Dimension

S
ea
rc
h
S
p
a
ce

p
er
ce
n
ta
g
e

UBB
IUBB

10 11 12 13 14 15 16 17
0

5

10

15

Dimension

D
iff

in
S
ea
rc

S
p
a
ce

p
er
ce
n
ta
g
e

(c) (d)

Figure 2.13: (a) Plot of the average function evaluations used by each algorithm to
find the optimal feature sets, with standard deviation bars. (b) Barplot of the average
gain in efficiency displayed by IUBB over UBB in terms of function evaluations
required to find the global best feature set. (c) Average percentage of the search
space evaluated by each algorithm to find the optimal feature sets, with standard
deviation bars. (d) Difference between the average percentage of the search space
evaluated by each algorithm to find the optimal feature sets, with standard deviation
bars. (a-d) α = 0.85.

45

10 12 14 16 18
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Dimension

B
es
t
C
o
st

-
5
p
er
ce
n
t

UBB
IUBB

10 12 14 16 18
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Dimension

B
es
t
C
o
st

-
1
0
p
er
ce
n
t

UBB
IUBB

(a) (b)

10 12 14 16 18
1

1.5

2

2.5

Dimension

S
ea
rc
h
E
ffi
ci
en
cy

in
5
p
er
ce
n
t

UBB
IUBB

10 12 14 16 18
1

1.5

2

2.5

Dimension

S
ea
rc
h
E
ffi
ci
en
cy

in
1
0
p
er
ce
n
t

UBB
IUBB

(c) (d)

10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

2.5

Dimension

S
E
U
B
B

/
S
E
I
U
B
B
−5

p
er
ce
n
t

10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

2.5

Dimension

S
E
U
B
B

/
S
E
I
U
B
B
−1

0
p
er
ce
n
t

(e) (f)

Figure 2.14: (a,b) Average best cost vs. α. (c,d) Search efficiency vs. α. (e,f) The
ratio of search efficiency vs. α. (a,c,e) nFE = 2n×5/100. (b,d,f) nFE = 2n×10/100.
(a-f) α = 0.85.

46

−0.4 −0.2 0 0.2 0.4 0.6 −0.5
0

0.5
−0.5

0

0.5

1

1.5

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) (b)

−0.4 −0.2 0 0.2 0.4 0.6
−0.5

0

0.5

−0.5

0

0.5

1

1.5

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

(c) (d)

Figure 2.15: The u-curve problem model for n = 7 and α = 0.7. (a and b) 3D
and 2D representation of the cost for A = 0.2 and f = 2. (c and d) 3D and 2D
representation of the cost for A = 0.4 and f = 3. Increasing A increases the depth
of the local minimums. f control the frequency of the local minimums.

47

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A(Amp)

B
es
t
C
o
st

-
5
p
er
ce
n
t

UBB
IUBB

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A(Amp)

B
es
t
C
o
st

-
1
0
p
er
ce
n
t

UBB
IUBB

(a) (b)

Figure 2.16: Average cost vs. A. (a) nFE is 5% of the search space. (b) nFE is 10%
of the search space. (a,b) α = 0.75, n = 15 and f = 2.

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A(Amp)

B
es
t
C
o
st

-
5
p
er
ce
n
t

UBB
IUBB

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A(Amp)

B
es
t
C
o
st

-
1
0
p
er
ce
n
t

UBB
IUBB

(a) (b)

Figure 2.17: Average cost vs. A. (a) nFE is 5% of the search space. (b) nFE is 10%
of the search space. (a,b) α = 0.85, n = 15 and f = 3.

48

0
5

10
15

20

20

40

60

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature sizesample size

er
ro
r
ra
te

05101520

20
40

60

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature sizesample size

er
ro
r
ra
te

(a) (b)

Figure 2.18: Peaking phenomenon for LDA classifier designed using the samples
generated from the model

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

B
es
t
C
o
st

nFE

UBB, Dgm = 4
IUBB, Dgm = 4
UBB, Dgm = 12
IUBB, Dgm = 12

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

B
es
t
C
o
st

(T
ru
e)

nFE

UBB, Dgm = 4

IUBB, Dgm = 4

UBB, Dgm = 12

IUBB, Dgm = 12

(a) (b)

Figure 2.19: Average best cost vs. nFE (a) Estimated error used in feature selection
(b) True error corresponding to the estimated error.

49

0 5 10 15
−0.05

0

0.05

0.1

0.15

Dgm

B
es
t
C
o
st
1
0
p
er
ce
n
t

UBB
IUBB

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Dgm

B
es
t
C
o
st

-
T
ru
e1
0
p
er
ce
n
t

UBB
IUBB

(a) (b)

Figure 2.20: Average best cost vs. Dgm at 10 percent. (a) Estimated error used in
feature selection (b) True error corresponding to the estimated error.

50

3. RELATIONSHIP BETWEEN THE ACCURACY OF CLASSIFIER ERROR

ESTIMATION AND COMPLEXITY OF DECISION BOUNDARY∗

Since the scientific content of any model depends on its predictive capacity, the

most important attribute of any classifier is its error, that being the probability

of misclassification. Since the feature-label distribution is generally unknown when

designing a classifier, its error must be estimated by an error-estimation rule, so that

the validity of the classifier model, consisting of both the classifier and its error,

depends on the accuracy of the error-estimation rule. If the sample is large, one can

split the data into training and test data, design the classifier on the training set, and

estimate its error on the test set. In this case, there exists a distribution-free bound on

the root mean square (RMS) error of the error estimator, namely, RMS ≤ 1/2
√
m,

where m is the number of data points in the test set [11]. When the sample is

small, splitting the data results in poor classifier design, so that data-efficient error

estimators must be used, i.e., error estimators that operate on the same data used for

designing the classifier. Given an error-estimation rule, an obvious question concerns

when it performs well, meaning that it has an acceptable RMS. This depends strongly

on the error-estimation rule, the classification rule used to design the classifier, the

feature-label distribution, and the sample size.

In this part of the dissertation we study the performance of the error estimators

as the complexity of the decison boundary changes. A measure is defined for quan-

tifying the complexity. This chapter is organized as follows. Section 3.1 describes in

∗Parts of this section are reprinted with permission from “Relationship between the accuracy of
classifier error estimation and complexity of decision boundary” by Esmaeil Atashpaz-Gargari,
Chao Sima, Ulisses M Braga-Neto, Edward R Dougherty, 2012, Pattern Recognition, vol. 46, no.
5, © 2012 Elsevier.

51

detail the Beta Mixture Model (BMM) used in the chapter. Section 3.2 presents the

simulation study results. A method to compute the complexity of a distribution is

found in the section 3.3.

3.1 Model for Distributional Complexity

For clarity, we describe the model in two dimensions. The generalization of

the model to three or more dimensions is straightforward. To begin, we define the

configuration matrix

H =



h11 h12 ... h1m

h21 h22 ... h2m

. . . .

hm1 hm2 ... hmm


,

where hij ∈ {0, 1}, and i, j ∈ {1, 2, ...,m}. Next, we consider the set of two-

dimensional square cells of side ` > 0,

Dij = [(i− 1)`, i`]× [(j − 1)`, j`] , i, j ∈ {1, 2, ...,m} .

On each cell Dij, we consider the joint density fij of two independent, identically

distributed Beta random variables with parameters a > 0, b > 0:

fij(x1, x2) =
1

C
(x1 − (i− 1)`)a−1(i`− x1)b−1(x2 − (j − 1)`)a−1(j`− x2)b−1 ,

for (x1, x2) ∈ Dij, with fij(x1, x2) = 0 for (x1, x2) 6∈ Dij, where C > 0 is a nor-

malization constant to make the density integrate to 1. Now, for any given matrix

H, let Rk = {(i, j) | hij = k} for k = 0, 1. We define the class conditional density

52

fH(x1, x2 |k) for our model as the mixture

fH(x1, x2 |k) =
1

|Rk|
∑

(i,j)∈Rk

fij(x1, x2) , k = 0, 1 .

The feature-label distribution is given by the combination of the two class-conditional

densities: fH(x1, x2) = c0fH(x1, x2 | 0) + (1 − c0)fH(x1, x2 | 1), where c0 is the prior

probability of class 0. We refer to this model as a Beta Mixture Model (BMM). An

example is shown in Fig. 3.1.

0
1

2
3

4
5

6

0
1

2
3

4
5

6

Class 0
Class 1

(a) (b)

Figure 3.1: (a) Sample matrix H. (b) Class-conditional densities fH(x, x2 | 0) and
fH(x1, x2 |1).

For any given matrix H, and corresponding feature-label distribution fH(x1, x2),

the Bayes error is zero, and the data produced by the model are perfectly separable.

This is crucial to our approach, as we want the complexity of the distribution to

arise exclusively from the complexity of the Bayes decision boundary, which for this

model consists of a combination of line segments and rays. See Figure 3.2 for an

illustration. We define the distributional complexity χ(H) to be the total number

of the line segments and rays in the Bayes decision boundary. For example, In

Fig. 3.2, the distributional complexity is χ(H) = 5. A simple method to compute

53

Figure 3.2: Example of Bayes decision boundary and decomposition by line segments
and rays.

the complexity for any given configuration is presented in section 3.3.

The collection of all configurations of a given complexity χ will be denoted by

Mχ. For example, with χ = 1, i.e., a Bayes decision boundary consisting of a single

line, we have

M1 =




1 1 1

0 0 0

0 0 0

 ,


0 0 0

0 0 0

1 1 1

 ,


1 0 0

1 0 0

1 0 0

 ,


0 0 1

0 0 1

0 0 1

 ,
0 0 0

1 1 1

1 1 1

 ,


1 1 1

1 1 1

0 0 0

 ,


0 1 1

0 1 1

0 1 1

 ,


1 1 0

1 1 0

1 1 0




.

Each configuration in M1 leads to a distinct classification problem and decision

boundary; however, from the perspective of the difficulty of classifier design or error

estimation, complementation of the labels 0 and 1 and rotation produce equiva-

lent configurations. This defines an equivalence relation, and our concern is with

the equivalence classes M̃χ. For example, taking the standard approach of listing a

54

single representative of each equivalence class, for χ = 1, 2, 3 we have

M̃1 =




1 1 1

0 0 0

0 0 0


 ,

M̃2 =




0 0 0

0 0 0

0 0 1

 ,


0 0 0

0 1 1

0 1 1

 ,


1 1 1

0 0 0

1 1 1

 ,


0 0 0

0 0 0

0 1 1


 ,

M̃3 =




1 1 1

0 0 0

0 0 1

 ,


1 1 1

0 0 0

0 1 1

 ,


1 1 1

0 0 1

1 1 1

 ,


1 1 1

0 1 1

1 1 1

 ,


0 0 1

0 0 1

0 1 1


 .

3.2 Simulation Study

Based on the Beta Mixture Model and definition of complexity proposed in the

previous section, we carry out a detailed simulation study to evaluate the impact

of distributional complexity on the performance of different error estimation meth-

ods. We consider dimensionality p = 2, 3. In the case p = 2 we obtain results for

each of the 28− 2 possible 3× 3 configurations (leaving out complements and trivial

cases), whereas in the case p = 3, results are obtained for a random sampling of

the possible 3 × 3 × 3 configurations at each level of complexity. In all cases, the

cells have size ` = 1, and the beta parameters are set to α = β = 1.5. Results for

other choices of parameters are similar, and can be found on the companion website

at http://gsp.tamu.edu/Publications/supplementary/atashpaz12a. Three classifica-

tion methods are employed: Quadratic Discriminant Analysis (QDA), 3-Nearest-

55

Neighbors (3NN) and two-layer Neural Networks (NNet). The error estimators con-

sidered in this study are resubstitution (resub), 10-fold cross validation with repeti-

tion (cv10r), leave-one-out (loo), bootstrap .632 (boot), and bolstered resubstitution

(bolstrd). Following the recommendation of [13], we utilize in the 3NN case a varia-

tion of bolstering, called semi-bolstered resubstitution, whereas for QDA and NNet,

the standard bolstered resubstitution estimator is employed. A description of all

error estimators used in this study is given in section 3.3.

The resubstitution estimator is only plotted in the case p = 2, as its bias becomes

disproportionate in the case p = 3, making the differences among the other estimators

difficult to visualize if they are plotted together. We present here results for sample

size n = 60; in addition, the companion website contains results for n = 120, which

were observed to be similar, with the exception that true classification errors are

smaller, as expected. The number of Monte-Carlo runs is set to 10,000 in each

experiment. Based on this large number of repetitions, the expected true error of

each classification rule is computed along with the bias and RMS of the several error

estimators; these are used to analyze their performance as a function of distributional

complexity.

3.2.1 Expected True Error

Before analyzing the performance of the error estimators, it is worth consider-

ing briefly the behavior of the true classification error. Figure 3.3 displays the true

expected error of the various classification rules as a function of distributional com-

plexity. As we see in the plots, the expected true error monotonically increases

as the complexity increases. All the classification rules show good performance for

low-complexity models. Interestingly, QDA outperforms 3NN and NNet for low-

complexity models, but its performance quickly degrades as complexity increases.

56

This occurs because the simple structure of QDA makes it unsuitable for application

to complex models. Across moderate and large complexities, 3NN is the best classi-

fication rule. This occurs because, compared to QDA, 3NN is more flexible and can

create decision boundaries of different complexities. On the other hand, although

NNet is capable of constructing complex decision boundaries, it requires large sample

sizes for training, and this requirement can be seen to increase sharply with larger

distributional complexity.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

Complexity

T
ru

e
E

rr
or

QDA
3NN
NNet

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Complexity

T
ru

e
E

rr
or

QDA
3NN
NNet

(a) (b)

Figure 3.3: Expected true error of different classification rules vs. complexity, with
α = β = 1.5. (a) p = 2. (b) p = 3.

3.2.2 Performance of Error Estimators

Here we analyze the performance of the different error estimators, in terms of

bias and RMS, as a function of distributional complexity, for the 3NN, QDA, and

NNet classification rules.

3.2.2.1 3NN

Figure 3.4 displays the bias and RMS of the different error estimators for the

3NN classification rule. As mentioned previously, resubstitution is not plotted in the

case p = 3 due to its disproportionate bias. We can see that performance degrades as

distributional complexity increases. The RMS plot shows that semi-bolstered resub-

57

1 2 3 4 5 6
−0.04

−0.02

0

0.02

0.04

0.06

Complexity

B
ia

s

Resub
CV10r
LOO
Boot
Bolstrd

1 2 3 4 5 6
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Complexity

R
M

S

Resub
CV10r
LOO
Boot
Bolstrd

5 10 15
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Complexity

B
ia

s

CV10r
LOO
Boot
Bolstrd

2 4 6 8 10 12 14
0.02

0.03

0.04

0.05

0.06

0.07

Complexity

R
M

S

CV10r
LOO
Boot
Bolstrd

Figure 3.4: Performance of different error estimation methods vs. distributional com-
plexity for the 3NN classification rule. Top plots: p = 2. Bottom plots: p = 3. Bias
is shown on the left, whereas RMS is shown on the right.

stitution outperforms the other error estimation methods across the entire complexity

range, followed closely by bootstrap. The cross-validation estimators cv10r and loo

show acceptable performance for lower complexities. The worst error estimation

method is resub, due to its bias, which rapidly increases as the complexity increases.

Nevertheless, for low complexities, where the decision boundary is simple, the RMS

of resub and the cross-validation estimators are essentially equal.

3.2.2.2 QDA

Figure 3.5 displays the bias and RMS of the different error estimation methods

for the QDA classification rule. Once again, we observe that the performance of all

error estimators become worse as distributional complexity increases. The bolstered

resubstitution error estimator outperforms the others, followed closely by bootstrap,

58

1 2 3 4 5 6
−0.03

−0.02

−0.01

0

0.01

0.02

Complexity

B
ia

s

Resub
CV10r
LOO
Boot
Bolstrd

1 2 3 4 5 6
0.01

0.02

0.03

0.04

0.05

0.06

Complexity

R
M

S

Resub
CV10r
LOO
Boot
Bolstrd

5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

Complexity

B
ia

s

CV10r
LOO
Boot
Bolstrd

2 4 6 8 10 12 14
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Complexity

R
M

S

CV10r
LOO
Boot
Bolstrd

Figure 3.5: Performance of different error estimation methods vs. distributional com-
plexity for the QDA classification rule. Top plots: p = 2. Bottom plots: p = 3. Bias
is shown on the left, whereas RMS is shown on the right.

with cross-validation estimators lagging behind, even though they are the latter

have the least bias. Resubstitution is extremely optimistically biased, which makes

its RMS largest.

3.2.2.3 NNet

Figure 3.6 displays the bias and RMS of the different error estimation methods

for the NNet classification rule. The general trends described earlier hold. Of note

however is the very large bias displayed by resubstitution, which occurs due to the

fact that NNet is more prone to overfitting than 3NN and QDA.

59

1 2 3 4 5 6
−0.06

−0.04

−0.02

0

0.02

0.04

Complexity

B
ia

s

Resub
CV10r
LOO
Boot
Bolstrd

1 2 3 4 5 6

0.02

0.04

0.06

0.08

0.1

Complexity

R
M

S

Resub
CV10r
LOO
Boot
Bolstrd

2 4 6 8 10 12 14
0.03

0.04

0.05

0.06

0.07

0.08

Complexity

R
M

S

CV10r
LOO
Boot
Bolstrd

5 10 15
−0.02

−0.01

0

0.01

0.02

0.03

Complexity

B
ia

s

CV10r
LOO
Boot
Bolstrd

Figure 3.6: Performance of different error estimation methods vs. distributional com-
plexity for the NNet classification rule. Top plots: p = 2. Bottom plots: p = 3. Bias
is shown on the left, whereas RMS is shown on the right.

3.3 Complexity Computation

As mentioned in section 3.1, in the p = 2 case, the complexity of the distribution

is defined to be the total number of lines, line segments and rays in the Bayes optimal

piecewise linear classifier. In the p = 3 case, the Bayes piecewise linear classifier will

be a combination of planes, half-planes, quarter planes and plane segments.

This can be extended to obtain the definition of complexity for general dimen-

sionality p ≥ 2 as follows. Let H be a p-dimensional configuration matrix of size

m×m× · ×m. Let Lij be a (p− 1)-dimensional matrix obtained from H by fixing

the i-th coordinate at value j, where i ∈ {1, . . . , p} and j ∈ {1, . . . ,m}. Define

60

(p− 1)-dimensional matrices Dd
j,j+1 by:

Di
j,j+1 = Lij − Lij+1,

where i = 1, . . . , p and j = 1, . . . ,m − 1. The complexity χ(H) is the total number

of connected components of nonzero terms in the p× (m− 1) matrices Dd
j,j+1, where

two cells are defined to be connected if they share a “face” in (p − 1)-dimensional

space.

These definitions can be best understood by means of examples in the p = 2 and

p = 3 cases. We will assume in both cases that m = 3, as in the examples given in

Section 3.1.

3.3.1 2D Case

In the p = 2 case, given a configuration matrix

H =


h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 ,

the matrices D1
1,2, D1

2,3, D2
1,2 and D2

2,3 are given by:

D1
1,2 =

[
h1,1 − h2,1 h1,2 − h2,2 h1,3 − h2,3

]
,

D1
2,3 =

[
h2,1 − h3,1 h2,2 − h3,2 h2,3 − h3,3

]
,

D2
1,2 =


h1,1 − h1,2

h2,1 − h2,2

h3,1 − h3,2

 ,

61

D2
2,3 =


h1,2 − h1,3

h2,2 − h2,3

h3,2 − h3,3

 .

The complexity χ(H) is the total number of connected components of nonzero terms

in the previous matrices. This is illustrated in Figure 3.7, with a matrix H for which

χ(H) = 5.

Figure 3.7: The process of finding the complexity χ(H) in the case p = 2. Here,
χ(H) = 5.

3.3.2 3D Case

In the p = 3 case, given a 3× 3× 3 configuration matrix H = [hijk], the matrices

D1
1,2, D1

2,3, D2
1,2, D2

2,3, D3
1,2 and D3

2,3 are given by:

D1
1,2 = [h1jk − h2jk] , D1

2,3 = [h2jk − h3jk] ,

D2
1,2 = [hi1k − hi2k] , D2

2,3 = [hi2k − hi3k] ,

D3
1,2 = [hij1 − hij2] , D3

2,3 = [hij2 − hij3] .

62

The complexity χ(H) is the total number of connected components of nonzero terms

in the previous matrices. This is illustrated in Figure 3.8, with a matrix H for which

χ(H) = 9.

Figure 3.8: The process of finding the complexity χ(H) in the case p = 3. Here,
χ(H) = 9.

3.3.3 Discussion

The idea of using the grid-based configuration for modeling the complexity of

decision boundary is taken from [14], where a definition of complexity is proposed

based on the Bayes tree classifier designed for each configuration. There, the dis-

tributional complexity of a feature-label distribution is defined to be ”the minimal

number of hyperplanes necessary to achieve the Bayes classifier if the Bayes classifier

is achievable by a finite number of hyperplanes, and in infinity otherwise”. Whereas

that former definition links the complexity to the characteristics of the Bayes tree

classifier, our definition deals exactly with the final outcome of this classifier, which

is the Bayes decision boundary. Figure 3.9 shows a configuration in the 2D case

which has complexity 5 according to our new definition. Based on the previous def-

inition, the complexity of this configuration is 4, as we need four hyperplanes to

63

make the Bays tree classifier. The measure defined in this part of the dissertation

focuses on the decision boundary, assuming completely separable classes. Fixing the

value of Bayes error to zero, this definition enables one to directly study the effect

of the geometric complexity of the decision boundary on the performance of error

estimators.

Figure 3.9: A sample configuration in 2D. Based on definition proposed in this chap-
ter, the complexity of this configuration is 5, while Attoor’s definition of complexity
assigns 4 for this configuration.

64

4. MODELING AND SYSTEMATIC ANALYSIS OF BIOMARKER

VALIDATION USING SELECTED REACTION MONITORING

Proteomics deals with the study of gene and cellular function at the protein level.

Microarrays, 2D Gel Electrophoresis, and Mass Spectrometry (MS) are the most

widely used technologies for high-throughput proteomics. Among these technologies,

MS has increasingly become the method of the choice for analysis of complex protein

samples [26]. Among its unique advantages are unsurpassed molecular specificity

and very high detection sensitivity [27]. MS analysis is composed of thee major

steps: 1) Ionization: Conversion of the analyte molecules or atoms into gas-phase

ionic species. 2) Mass Analysis : Separation and mass analysis of ions on the basis

of their mas-to-charge (m/z) ratio. 3) Detection: Detection and measurement of the

mass-separated ions.

Time of flight (TOF), Linear quadrupole/3D-quadrupole ion trap, Fourier Trans-

form Ion Cyclotron Resonance (FT-ICR) and Orbitrap are some of the main mass

analyzers used in MS instruments. Application of two or more stages of mass anal-

ysis leads to Tandem Mass Spectrometry (MS/MS) which enables us to examine

selectively the fragmentation of particular ions in a mixture of ions [28]. Selected

reaction monitoring (SRM) is a specific mode of Tandem Mass Spectrometry, which

is widely used for quantitative measurement of analytes present in complex mixture

and for validation of low-abundance biomarkers. In this part of the work, we model

the SRM-based biomarker validation pipeline. The proposed model is then used

to study the effect of the different parameter setting on the overall performance of

biomarker validation process.

65

4.1 Selected Reaction Monitoring (SRM)

For over 30 years, SRM has been the method of choice for doing mass spectrom-

etry on small molecules in order to study drug metabolism. However, its application

to protein identification and quantification was limited by the low mass range of the

instruments used for metabolite identification. The introduction of the quadrupole

instrument with extended mass range removed this restriction in the application of

SRM for studying proteins and peptides [1, 29, 30]. Although SRM can be done

on some of the other tandem MS instruments (e.g., EB- and BE-Magnetic sector

tandem MS), it is preferably implemented on triple-quadrupole, due to low cost,

linear mass scale, operational simplicity and straightforward scan laws. The first

and third quadrupoles in the QQQ system act as mass filters to specifically select

a predefined m/z values, controlled by direct-current (dc) and radio-frequency (rf)

potentials. The second quadrupole in SRM operates as rf-only quadrupole passing

all ions. In fact, this quadrupole acts as the collision induced dissociation (CID) unit.

This is done in two steps: collision activation and collisionally activated dissociation

and is performed in the high- and low-energy regimes. The later is the mode that

is preferably implemented in quadrupole. One of the main disadvantages of CID

over other ion activation and dissociation methods is that ion-dissociation efficiency

gradually falls off as the precursor ion’s weight increases.

A prototypical SRM experiment consists of three major steps. First, a list of can-

didate proteins is determined. The list of proteins of interest is determined based on

previous knowledge from discovery studies and the scientific literature. The available

information about the potentially relevant proteins (e.g., ProteinAtlas) can also be

employed in this step. In the next stage, for each candidate protein, a set of proteo-

typic peptides (PTPs) should be identified and targeted to determine the presence

66

of the protein and to quantify it. PTPs of a specific protein should be able to

uniquely identify that protein or one of its isoforms as well as have a good ioniza-

tion efficiency. Moreover, their mass to charge ratio should be in the mass range

of the MS instrument. Besides these general characteristics, in a quantitative ex-

perimental workflow, PTSs should be fully recovered in the sample preparation and

also present good chromatographic behavior to reduce the chemical background [31].

Furthermore, post-translational and chemically induced modifications of the peptides

should be taken into account. These types of peptide modifications are described in

more detail in next section, where they form a part of the model for the SRM pro-

cess. Along with experimental methods, computational tools are also used to select

MS-observable peptides for proteins. In the third step, for each selected peptide, the

fragment ions that can unambiguously represent the targeted peptide from others

should be identified. Based upon the experiments on the QQQ instrument or data

from previously done shotgun experiments, 2-4 fragment ions are selected for each

PTP. For example, being integrated with PeptideAtlas [32], TIQAM [33] can be used

in this step [34].

Determination of the pairs of m/z values for the first and third quadrupole is

referred to as selection of a “transition.” [35]. The selection of transitions are of high

importance for reaching high quantification accuracy red and different factors such

as ionization and fragmentation conditions should be taken into account. Fragmen-

tation conditions and specially the distribution of fragment ion intensities depends

on the type of instrument and the operating parameters. In the QQQ system, singly

charged y-type ions are the predominant type of fragments generated by CID in a

linear collision cell, as b-type ions and doubly charged fragments are significantly

less stable than their y-type N-terminal counterparts. [35, 36]. On the other hand,

tryptic peptide ions are predominantly doubly or triply charged with one charge at

67

each terminus. Therefore, the single-charge fragments will generally have a larger

m/z value than the precursor value. On the other hand, single-charged chemical

background will produce fragments with smaller m/z than the precursor. Therefore,

the selection of transitions for which fragments have larger m/z than the precursor

is essential for transition selectivity and high signal to noise ratios [35].

In spite of the two narrow filtering stages in SRM, the selected transitions may not

be specific for the peptide of interest in a complex sample. This lack of specificity can

result in false quantification values for the targeted peptide. Several methods are used

to validate selected transitions before using them in SRM. Spiking heavy isotope-

labelled peptides to the sample, which match the sequence of the target peptide, can

help distinguishing the effect of unspecific signals. However, the cost of using heavy

labelled peptides is high for quantification of large number of proteins, and usually

other methods (e.g., SRM-triggered MS/MS scanning) are used, but those are unable

to validate the transitions for low-abundance proteins in the detection limit of SRM

[35]. Figure 4.1 summarizes the main steps in an SRM experiment.

A set of proteins of interest

Selection of transitions

Selection of Proteotypic
peptides

Validation/optimization
of transitions

Quantitative Analysis by SRM

Figure 4.1: Workflow of an SRM experiment. First, a set of proteins of interest are
determined for a specific study. Then, for each protein, some proteotypic peptides
are found. In the next step, for each PTP, those fragments that are able to dis-
criminate the peptide from others are found. The transitions (pairs of m/z values
for precursor/fragment ions) are then validated to decrease the effect of unspecific
signals.

68

4.2 Methods

In spite of the widespread application of SRM in the protein biomarker validation

process, there is little work on integration of the different modules in SRM workflow

and their systematic study for to assess the impact of different parameters on the

overall biomarker validation pipeline. A model-based approach toward the SRM

experiment will help us to have a better understanding of the characteristics of the

different modules of the SRM-based biomarker validation process. Here, the SRM

pipeline is modeled as a noisy channel affecting the underlying protein abundance

signal; a model for the noise channel is proposed and used to analyze the effect of

different parameters and experimental settings on the final performance of the SRM-

based biomarker validation pipeline and the ability of SRM to detect true biomarkers

among a set of candidate ones. Although the aim of the SRM model proposed here

is not to determine the exact value of each parameter, it will be useful in providing a

systematic view towards studying the individual components of the SRM experiment.

4.2.1 Protein Mixture Model

The first major component of the model is the protein mixture model. This part

models the abundance of the proteins in the actual SRM experiment. Marker and

non-marker proteins, as well as low-abundance and high-abundance proteins, are

modeled in this part. The list of candidate biomarkers in the biomarker validation

stage, enter the SRM pipeline described in the previous section. As mentioned pre-

viously, there are different sources of error in the SRM workflow that result in false

quantification values for the protein abundance. The situation is exacerbated when

dealing with low-abundance protein biomarkers. Background high-abundance pro-

teins, inefficiency of peptide ionization, chemically induced modification and transi-

tion noise are the most widely quoted sources of error in SRM experiments [31, 35, 1].

69

In a typical experiment, the total set of samples are divided into two sample

classes (e.g. control vs. treatment). There are a total number of Npr
a proteins

in the mixture, among which there are Npr
c candidate proteins going through the

validation stage (Npr
a > Npr

c). Based on the observations reported in [37], the protein

concentration in the pooled sample can be modeled by a Gamma distribution[38].

ηi ∼ Gamma(t, θ), i ∈ {1, 2, ..., Npr
a } (4.1)

where t and θ are shape and scale parameters, and as an example t = 2 and θ = 1000

present a realistic model with dynamic range of approximately 4 orders of magnitude.

As mentioned in Background section, many of the high-abundance protein bio-

markers are already found by shotgun experiments and the focus of the SRM experi-

ment is on validation of low-abundance candidate biomarkers. In order to model the

concept of low-abundance and high-abundance proteins, we use two different Gamma

distributed concentration models. For all the Npr
a proteins, and i ∈ {1, 2, ..., Npr

a },

ηi ∼

 Gamma(tc, θc), i ∈ {1, 2, ..., Npr
c }

Gamma(ta, θa), i ∈ {(Npr
c + 1), (Npr

c + 2), ..., Npr
a }

(4.2)

where tc, θc, ta and θa are are shape and scale parameters for candidate list and

background proteins respectively. This reflects the nature of a real SRM experiment

where the goal is to validate a set of low-abundance biomarkers among a complex

set of high-abundance ones. We denote the number of true biomarkers in the set of

Npr
c candidate list and Npr

a all proteins in the list by Nm
c and Nm

a respectively. The

values of tc, θc, ta and θa are given in Table 4.1.

Biomarkers are proteins in the sample for which the expression level in the treat-

ment and control sample differ significantly. The difference between markers and

70

non-markers in the expression level can be modeled by fold change [38]:

fi =


ai, if protein i is over-expressed

1
ai
, if protein i is under-expressed

1, otherwise

(4.3)

where the fold change parameter, ai, is uniformly distributed in [1, h], h > 1. This

results in a distribution that is approximately log-normal for the fold change itself.

The value of h used in the simulations is specified in Table 4.1.

The sample variation of proteins in the mixture is modeled by a Gaussian distri-

bution as proposed in [25], where a block model is used for the covariance matrix.

The following multivariate Gaussian is used to model the concentration of the pro-

tein i ∈ {1, 2, ..., Npr
a } in class j ∈ {0, 1} and the interaction among all the proteins

in the sample:

Cpr
ij ∼

 N ([η1, η2, ..., ηNpr
a

],Σ), j ∈ class 0

N ([f1η1, f2η2, ..., fNpr
a
ηNpr

a
],Σ), j ∈ class 1

(4.4)

The covariance matrix Σ has a block structure, such that

Σ = [σ2
ij]Npr

a ×Npr
a

σ2
ij = σiiσjjλij

σii = φi × ηi

(4.5)

where the constant φ is the coefficient of variation and the correlation matrix Λ is

71

defined as:

Λ = [λij] =



Rρ 0 · · · 0

0 Rρ · · · 0

...
...

. . .
...

0 0 · · · Rρ


, (4.6)

where Rρ is a b×b matrix with 1’s on the diagonal and ρ’s elsewhere. The block-based

structure of the covariance matrix represents the real interaction among the proteins.

The proteins in each block (e.g., proteins within a pathway) are correlated, while

there is no interaction among the proteins of different blocks [25]. The correlation

ρ and block size b control the level of interaction among the proteins and their

corresponding value used in simulations are specified in Table 4.1.

4.2.2 Sample Complexity and Purification

Many of the biomarkers with high abundance have already been found and the

main interest in SRM-based biomarker validation process is in the quantification of

low-abundance proteins. In biological samples, there is a wide dynamic range in

protein abundance (> 1010), which is much larger than the dynamic range of many

MS instruments. For example, while interleukin has very low abundance, albumin

makes up more than 50% (about 60%) of human plasma protein (30-50 g/L for

albumin compared to below 100 pg/L for interleukin) [39].

Presence of high-abundance proteins interfering with the low-abundance ones bi-

ases the detection and quantification of biomarkers in complex samples. For example,

due to suppression of their ionization by high-abundance proteins, low-abundance

proteins escape detection. This makes purification and removal of high abundant

proteins an important stage of biomarker validation workflow. Purification removes

72

background noise in the data, i.e. the nonspecific contributions of proteins not being

evaluated as the candidate markers [40, 27]. There are different commercial and

non-commercial options for the enrichment of samples for low-abundance proteins

and the amount of energy that is put in this step greatly affects the overall per-

formance of biomarker identification in the SRM process. For example, albumin

precipitation, size exclusion, and immuno-depletion are strategies that have been

developed to eliminate some of the most abundant proteins from blood serum. As

an specific example, Seppror IgY12, removes twelve high-abundance proteins from

human biological fluids such as serum, plasma, and cerebral spinal fluid (CSF) [41].

In this part, we model purification by removing a set of high-abundance proteins

from the protein mixture model. The parameter pp controls the purification in the

model by indicating the percentage of high abundance proteins that are successfully

removed. Denoting the set of proteins selected for purification by Gp, we have:

Ĉpr
ij =

 γiC
pr
ij , if protein i ∈ Gp

Cpr
ij , otherwise

(4.7)

where γi ∼ U(0, βγ). The value used for βγ (0 < βγ << 1) in the simulations is given

in Table 4.1.

4.2.3 Peptide Mixture Model

As mentioned in Background section, for each protein in the list of candidate

biomarkers, a set of proteotypic peptides (PTPs) is identified and targeted to de-

termine the presence of the protein and to quantify it. PTPs should uniquely iden-

tify the proteins, have good ionization efficiency, be fully recovered during sample

preparation, and also present good chromatographic behavior to reduce the chemical

background [31].

73

The molar concentration of Cpp
i of peptide i in each sample, in class j is given by

Cpp
ij =

∑
k∈Ωi

Ĉpr
kj , i ∈ {1, 2, ..., Npp

c }, j ∈ {0, 1} (4.8)

where Ωi is the set of all proteins sharing peptide species i and Npp
c is the number

of peptides. In an usual SRM experiment, for each protein, 1-2 PTPs are used.

Denoting the number of peptides per protein by Npp, then Npp
c is equal to Npp×Npr

a .

In the results reported in this section of the work, we set Npp = 2. In the ideal case,

the cardinality of the set Ωi is 1, that is Cpp
i , the concentration of peptide i, is related

to only one protein. Equation (4.8) can be rewritten as following.

Cpp
ij =

Npr
a∑

k=1

ξikĈ
pr
kj , i ∈ {1, 2, ..., Npp

c }, j ∈ {0, 1} (4.9)

where for i ∈ {1, 2, ..., Npp
c } and k ∈ {1, 2, ..., Npr

a }, ξik is as following:

ξik =

 1, Protein k has peptide j

0, otherwise
. (4.10)

In an ideal SRM experiment, each peptide is specific to one protein and then

the peptide-protein relation matrix Ξ = [ξik]Npp
c ×Npr

a
has only one element equal to

1 in each row. In real SRM experiments, the complexity of the sample increases the

possibility of having target peptides as a part of other proteins. To model this fact,

we define si, the specificity of the ith PTP, as

si = 1− P (
∣∣Ξ1

i

∣∣ 6= 1) (4.11)

where |S| shows the cardinality (the number of elements) of the set S and Ξ1
i is the

74

set of non-zero elements of the ith row of PTP-protein relation matrix Ξ. A peptide

among the list of PTPs is called specific if its share in the sample is created by only

its parent target protein. The specificity si of a specific PTP is then equal to 1.

However, in real SRM experiments, this idealized situation does not occur and for

some of the proteotypic peptides, the specificity will be less than 1.

There are many factors that should be considered in choosing the PTPs for each

protein. For example, for each PTP, MS properties, uniqueness, and chemical behav-

ior should be taken into account[35]. Increasing the number of proteins exacerbates

the problem of finding PTPs that are specific to the target proteins and comply

with other PTP selection criteria. On the other hand, we are not interested in the

exact specificity value of each PTP, but rather want to observe the general effect of

PTP specificity on the overall performance of biomarker validation process by SRM

experiment. We thus define s as the average specificity over all peptides and study

its effect on the identification of low-abundance protein biomarkers.

4.2.4 Peptide Ionization Efficiency

The abundance of a peptide is represented by the ion abundance in MS data.

The abundance of a peptide i in class j is modeled by

µij = κ eiC
pp
ij , (4.12)

where ei is the peptide efficiency factor, similarly to [42], and κ represents the instru-

ment response factor, being the ratio between the ion current signal and the original

analyte concentration.

The efficiency of different peptides in passing through the liquid chromatogra-

phy column is mainly controlled by their hydrophobicity[27], followed by ionization

efficiency, which is affected by sample complexity, peptide concentration, and char-

75

acteristics such as polarity of side chains, molecular bulkiness, and so on [43, 38].

Efficiency is also affected by the destabilizing effect of some amino acids at the N-

terminal end of peptides. Some methods have been proposed for prediction of ei

for different peptides. However, these methods fail to address the complexity issue

and dependence of the efficiency on not only the underlying peptide, but also on the

other peptides present[38].

This makes the prediction of ei for all the peptides problematic. Here, instead of

the exact value of ei, we are more interested in its effect on the overall performance

of the SRM experiment. In the ideal case, ei is 1 for all peptides. A model based

on the uniform distribution U(αpe, 1) models the variation of the peptide efficiency.

The parameter αpe controls the dispersion of the ionization efficiency and in the

Results section, we analyze the model over a wide range to observe the effect of this

parameter on the performance of the biomarker validation process.

4.2.5 Transition

In a complex sample, a particular precursor/fragment combination may not be

specific to a targeted peptide, and other peptides with precursor/fragment ion pairs

of similar masses might create unspecific signals. In the case that SRM is used to

target low-abundant peptides, such unspecific signals might still be well above the

detection limit and might be easily mistaken as being derived from the targeted

peptide and thus lead to misquantifications [35]. Validation methods are used to

ensure that the origin of the quantified signal is the targeted peptide. SRM-triggered

MS/MS scanning is the method of choice in different studies. However, this method

is challenging when used for the most low-abundance peptides [44]. Spiking heavy

isotope labeled peptides into the sample is an alternative for the use of SRM-triggered

MS/MS. But the costs of such method can be very high for projects targeting a large

76

number of proteins. In addition, the application of stable isotopes is limited by

the resolution of the quadrupole as isotope labelling should introduce a sufficiently

large mass difference between precursor and fragment ions[35]. Using smaller mass

differences in isotope-labelling requires a higher resolution for the quadrupole, which

in turn decreases the sensitivity. Low resolution has been reported in many papers

as a source of error for SRM experiments using triple quadrupole mass spectrometers

in complex samples[1].

The effect of transitions from background high-abundance peptides is considered

as a significant source of error in quantification of the low-abundant peptides. Un-

specific signals are created from other peptides with ion pairs of similar masses with

the targeted peptide. By increasing the measured abundance of the targeted pep-

tide, the unspecific signals create misquantification. Therefore, the noise is always

positive. The exponential distribution is a simple and adequate choice to model this

kind of unipolar additive noise:

ζij = µij + εtij , (4.13)

where

εtij ∼ exp(µtranµij) . (4.14)

4.2.6 Peptide Modification

Standard sources of error, including variation in experimental conditions, in-

strument variance, and thermal noise, can affect the accuracy of quantitative MS

experiments. Besides these general factors, peptide modification is reported as one

of the important causes of misquantification in SRM experiments [35].

Some peptides contain amino acids with high propensity to chemical modifica-

77

tions and can bias the quantification. Cysteine alkylation, methionine oxidation,

asparagine deamidation, and N-terminal cyclization of glutamic are some of the

chemically induced modification of peptides [31]. Oxidation, for example, is reported

to inversely affect the performance of MS experiments for quantification of peptides

[45]. Since a part of the targeted peptide is converted into the modified form during

the process, chemically induced modification is reported to be a potential source of

error in quantitative MS experiments [35, 31].

The Gaussian distribution is the standard model for the cumulative effect of

independent additive disturbances (distinct noise sources). In [46], a Gaussian noise

model with quadratic dependence of the variance on the expected abundance of

peptide is used to model the overall effect of different noise sources affecting the

actual abundance of a peptide in LC-MS. Likewise, we propose to use the Gaussian

noise to model the effect of peptide modification as well as the other sources of error

with significant impact on modifying the actual abundance of the peptide in SRM

(LC-MS-MS). We have

νij = ζij + εmij , (4.15)

where

εmij ∼ N (0, αpmν
2
ij + βpmνij) . (4.16)

The two parameters αpm and βpm control the severity of the noise. In [46] a

replication analysis is proposed to estimate the values of these two parameters. The

values of αpm and βpm used in simulations are specified in Table 4.1. Having fixed βpm,

we will investigate the effect of αpm on the performance of the biomarker validation

in the next section.

78

4.3 Results and Discussion

The previous modelling strategy is used to analyze the performance of biomarker

validation workflow using SRM experiments, using different model parameter set-

tings. Figure 4.2 displays the simulation process. The list of candidate biomarkers

generated based on the protein mixture model is the input of the SRM pipeline. In

different stages of this process, the protein mixture data is affected by different noise

sources depending on the experiment setting. Then, the output of the SRM process

enters the validation block. Ranking power [47] and percentage of true biomarkers

are used as the metrics to assess the performance of the biomarker identification

process. The model parameters are changed during the simulation and for each pa-

rameter setting the average performance is found. The ranking power is described

in the next section.

Param n

Param 2

Param 1

SRM Process
Model

Protein Mixture
Model

Biomarker
Identification
Performance

.
.

.

Figure 4.2: The entire simulation process. The protein abundance mixture data
enters the SRM process and is affected by different noise sources in different levels
of the process. The noisy data enters the biomarker validation block, where the
ranking power and true positive rate are used to measure the performance of the
overall biomarker validation process.

79

4.3.1 Experimental Setup

We perform a total of 5000 Monte-Carlo runs in this experimental study, using

the parameter settings given in table 4.1, and compute average performance metrics

over all the runs. The performance metrics used to evaluate SRM performance

Parameter Defaults value
Number of classes 2
Sample size n = 80
Block size b = 5
Block correlation ρ = 0.8
Fold change h = 2, ai ∼Unif(1, 2)
Modification noise αpm = 0.03, βpm = 3.6
Peptide efficiency factor αpe = 0.5, ei ∼ U(0.5, 1)
Gamma parameters tc = 2, θc = 100, ta = 5, θa = 10e6
Purification βγ = 10e− 6
Protein mixture Npr

a = 250, Npr
c = 40

Ranking power d = 2, r = 0.01

Table 4.1: Parameter settings in simulation of biomarker validation model

are the percentage of peptides correctly identified and the ranking power [47]. The

former is computed by applying the t-test as a feature selection method to find

the best discriminant set of features, and computing the ratio of true biomarkers

detected in that list. The latter defines a measure of goodness based on how close

the estimate-based feature sets are to optimality. Let Abest be the best feature set

relative to the feature-label distribution, ε0 be the true error of the classifier for Abest

designed on the sample, and A(1), A(2), ..., A(m) be a list of feature sets ordered by the

classification errors ε1, ε2, ..., εm, sorted from lowest to highest. The ranking power

of the list is defined by

∆n,r
D,d = P (ε1 − ε0 < r) , (4.17)

for r > 0. The ranking power gives the probability that at least one feature set in

the list has error within r of the best feature set. The closer ∆n,r
D,d is to 1, the better

80

the performance is (as long as m is small; here, m = 10 is used). The pseudocode

for computing the power rank is described in Algorithm 2.

Algorithm 2 Power rank computation algorithm

Set up data model M and determine Abest.
for i = 1 to N do

1) Generate n-point sample T for M .
2) Compute the true error, ε0, for Abest using the samples from M .
3) For every feature set of size d, design a classifier from T .
4) Compute the true and estimated errors for the classifiers from step (3).
5) Rank all the feature sets by their estimated errors to get the top m estimated-
error list.
6) Select the feature set in the list with the lowest true error, ε1.
if ε1 − ε0 ≤ r then
count⇐ count+ 1

end if
end for
∆n,r
D,d ⇐ count/N

return ∆n,r
D,d;

4.3.2 Effect of Purification

Figure 4.3 displays the effect of purification on the performance of the SRM

biomarker validation process. We can see that increasing the purification factor

from 90% to 99% increases the ranking power by 7%. Increasing the purity from

90% to 99% translates into the increase of TPR from 50% to 80%. Although our

purpose is not to focus on the exact value of each parameter in the model, the results

show how purification is an important step in the SRM experiment. This confirms

the fact that purification strategies, such as albumin precipitation, size exclusion,

and immuno-depletion, directly control the accuracy of the SRM-based biomarker

validation.

81

90 92 94 96 98 100
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

∆
n
,r

D
,d

(m
=

1
0
)

pp

∆n,r
D,d (m = 10) vs. pp

90 92 94 96 98 100
50

55

60

65

70

75

80

T
P
R
(%

)

pp

TPR(%) vs. pp

(a) (b)

Figure 4.3: Effect of purification on the the SRM model on the performance of the
biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs. purification. (b) TPR
vs. purification.

4.3.3 Effect of Peptide Specificity

Figure 4.4 shows the effect of peptide specificity on the performance of SRM

biomarker validation process. The results show that a very small amount of decrease

in the specificity factor can bias the quantification of the low-abundance proteins to

a great extent. For example, decreasing the specificity from 1 to 0.95 decreases the

TPR by about 75%. These results indicate the importance of the selection of proper

set of proteotypic peptides emphasizing on the fact that PTPs of a specific protein

should be able to uniquely identify the protein (being specific peptides).

4.3.4 Effect of Peptide Efficiency

Although the exact distribution of the peptide efficiency is not known, observing

its effect on the overall performance of the biomarker validation process provides us

with a good insight into the effect of this parameter on the SRM experiment. This

effect can be seen in Figure 4.5. The variation of peptide efficiency factor, αpe (the

lower bound of ei), in the interval [0, 1] changes the TPR by 6%, increasing it from

45% at αpe = 0 to 51% at αpe = 1. Based on the ranking power plot, we observe a

82

0.94 0.95 0.96 0.97 0.98 0.99 1
0.8

0.85

0.9

0.95

1

1.05

∆
n
,r

D
,d

(m
=

1
0
)

s

∆n,r
D,d (m = 10) vs. s

0.94 0.95 0.96 0.97 0.98 0.99 1
20

30

40

50

60

70

80

90

100

T
P
R
(%

)

(s)

TPR(%) vs. (s)

(a) (b)

Figure 4.4: Effect of peptide specificity on the the SRM model on the performance of
the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs. peptide specificity.
(b) TPR vs. peptide specificity.

similar trend: ∆n,r
D,d increases from 0.88 to 0.97 by increasing the peptide efficiency

factor from 0 to 1. These results agree with our expectations as the increase of the

peptide efficiency reduces the transmission loss.

4.3.5 Effect of Transition Noise

Figure 4.6 shows the effect of transition noise on the performance of SRM biomarker

validation process. Both the ranking power and TPR curves show that an increase

of the transition noise decreases the overall performance of the biomarker validation.

For example the ranking power is 0.96 when the effect of this noise is set to zero.

However by increasing the noise factor to 2, ∆n,r
D,d reduces to 0.91. We observe a simi-

lar behavior, looking at TPR curve, where the rate decreases by 7% as the transition

noise increases. This emphasizes the importance of applying the proper methods for

validation of the transitions to increase the confidence on the origin of the quanti-

fied signal. Based on the experiment constraints, methods such as SRM-triggered

MS/MS scanning and spiking of heavy isotope labelled peptides should be used to

prevent the contribution of unspecific signals in the quantification of the proteins of

83

0 0.2 0.4 0.6 0.8 1
0.86

0.88

0.9

0.92

0.94

0.96

0.98

∆
n
,r

D
,d

(m
=

1
0
)

αpe

∆n,r
D,d (m = 10) vs. αpe

0 0.2 0.4 0.6 0.8 1
44

45

46

47

48

49

50

51

52

T
P
R
(%

)

αpe

TPR(%) vs. αpe

(a) (b)

Figure 4.5: Effect of peptide efficiency on the the SRM model on the performance of
the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs. peptide efficiency.
(b) TPR vs. peptide efficiency.

interest.

4.3.6 Effect of Modification

Figure 4.7 displays the effect of modification noise on the performance of the SRM

biomarker validation process. Increasing the modification noise factor αpm from 0

to 0.5 reduces the TPR value by 17%. On the other hand, the ranking power plot

behaves the same by decreasing αpm from 0.96 to 0.8. Decreasing the modification

noise from 0.2 to 0 dramatically increases the ranking power value, emphasizing the

fact that reduction of this source of error in quantification of the low-abundance

biomarkers is crucial for a successful SRM experiment. This also shows that one

should avoid using peptides with high tendency for chemical modifications in the list

of PTPs.

4.3.7 Effect of Sample Size

Compared to the discovery stage of biomarker development, where thousands of

analytes are measured, a validation experiment deals with the quantification of a

limited list of analytes, meaning that the sample size requirement is less demanding.

84

0 0.5 1 1.5 2
0.9

0.91

0.92

0.93

0.94

0.95

0.96

∆
n
,r

D
,d

(m
=

1
0
)

µtran

∆n,r
D,d (m = 10) vs. µtran

0 0.5 1 1.5 2
46

47

48

49

50

51

52

T
P
R
(%

)

µtran

TPR(%) vs. µtran

(a) (b)

Figure 4.6: Effect of transition noise on the the SRM model on the performance of
the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs. transition noise.
(b) TPR vs. transition noise.

However, the time and cost of the experiment as well as the challenges of finding

patients with correct demographics for the disease of interest, with proper medical

history and lifestyle, still restricts the number of samples in a biomarker validation

experiment to the “small-sample” region [48]. Observing the effect of the number

of samples on the performance of the biomarker validation process will be beneficial

to the selection of the right amount of replicates considering the limitations on the

time and cost of the experiment. Figure 4.8 shows the effect of sample size on the

performance of SRM biomarker validation process. Both TPR and ranking power

plots show that these two performance indices are greatly affected by the increase of

the sample size. Increase of the sample size from 40 to 100 results in 10% increase

in the TPR value. The similar change in the sample size translates into the increase

of ranking power value by 0.07.

4.3.8 Summary

General facts can be gleaned from the results reported above on the relative

importance of each parameter to the sensitivity of biomarker validation performance

85

0 0.1 0.2 0.3 0.4 0.5
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

∆
n
,r

D
,d

(m
=

1
0
)

αpm

∆n,r
D,d (m = 10) vs. αpm

0 0.1 0.2 0.3 0.4 0.5
38

40

42

44

46

48

50

52

54

56

58

T
P
R
(%

)

αpm

TPR(%) vs. αpm

(a) (b)

Figure 4.7: Effect of modification noise on the the SRM model on the performance
of the biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs. modification
noise. (b) TPR vs. modification noise

using the QQQ-based SRM system.

• Purification critically increases the efficiency of the whole pipeline by reducing

the background high-abundance proteins.

• On the other hand, peptide ionization efficiency also plays an important role

in the success of biomarker validation experiment.

• A high value of modification noise can greatly compromise the performance of

the system, as measured by the decreases of the TPR and ranking power value.

• Likewise, a decrease of peptide specificity reduces the TPR and ranking power

to a great extent.

The results emphasize the importance of the correct selection of peptides in an SRM

experiment. If the selected peptides are not unique to the targeted protein, it is

hard to have high-precision quantification of the abundance of the targeted peptides,

which will show itself in the unsuccessful protein validation results. An additional

86

40 50 60 70 80 90 100
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

∆
n
,r

D
,d

(m
=

1
0
)

Sn

∆n,r
D,d (m = 10) vs. Sn

40 50 60 70 80 90 100
44

46

48

50

52

54

56

T
P
R
(%

)

Sn

TPR(%) vs. Sn

(a) (b)

Figure 4.8: Effect of sample size on the the SRM model on the performance of the
biomarker validation pipeline. (a) ∆n,r

D,d at list size m = 10 vs. sample size. (b) TPR
vs. sample size.

factor is of course sample size, which not surprisingly showed a clear effect on the

performance of the biomarker discovery pipeline.

87

5. CONCLUSION∗

As the first part of this dissertation, the U-curve feature selection problem was

studied. UBB is a recently proposed branch-and-bound algorithm for solving the U-

curve optimization problem. This algorithm requires fewer number of function calls

compared to exhaustive search. However, the experiments and simulations showed

that this algorithms fails in using the U-curve assumptions efficiently. In an attempt

to overcome the weaknesses of this algorithm and to use the U assumption efficiently,

we proposed a new optimization algorithm for feature selection.

To analyze the efficiency of the algorithms in facing feature selection problems

with different structures, a feature selection cost model was introduced in this part

of the work. This cost model, is used as a benchmark in this work for comparing

the two algorithms. The parameters of the cost function turns it into a flexible

realistic cost model for feature selection in small sample problems. This cost model

can independently be used in any other study about comparing feature selection

methods.

Different indices were used to evaluate the performance of the algorithms. The

number of function calls needed to find the best feature set, the best cost vs. number

of function calls and the search efficiency were three major indices used to compare

the algorithms. Among these indices, search efficiency shows the efficiency of the

two algorithms in using the U-curve assumption for finding the best feature set in

the search space.

∗Parts of this section are reprinted with permission from “Relationship between the accuracy of
classifier error estimation and complexity of decision boundary” by Esmaeil Atashpaz-Gargari,
Chao Sima, Ulisses M Braga-Neto, Edward R Dougherty, 2012, Pattern Recognition, vol. 46, no.
5, © 2012 Elsevier.

88

The results showed that the proposed algorithm outperforms the original UBB in

terms of number of function evaluations needed to find the global best features. Also

with the same number of function evaluations, IUBB generally reaches a feature set

with lower cost value compared to UBB. The most important factor in comparing

the two algorithms is the search efficiency. The results showed that IUBB has a

higher value of search efficiency in almost all the number of function calls. Meaning

that the algorithm is capable of searching more candidate solutions in the search

space with a fixed number of cost function evaluations. This not only justifies the

better performance of the algorithm in finding the feature sets with lower cost, but

also indicates the level of trust on the results of the two algorithms.

To test the performance of the algorithms when the U-curve assumption does not

hold completely, the cost model was modified to generate feature selection problems

which are deviated from the U-assumption. The results show that IUBB is robust

to the changes in the structure of the problem.

To evaluate the performance of the algorithms in dealing with real feature selec-

tion problems, the algorithms were used to solve the feature selection problem, where

the cost value of each set of feature is the estimated error of the classifier designed

for different sets of data generated based on the model described in section 2.3.6.1.

The results showed that IUBB performs better than UBB. Also the we observed that

accuracy of error estimation is crucial in having a successful feature selection.

In next step of this work, we developed a model for distributional complexity and

studied the behaviour of different error estimation methods as a function of com-

plexity for three different classification rules using the proposed model. The model

was based on a mixture of beta distributions with a Bayes error of zero, so that

only the complexity of the decision boundaries comes into play. Simulation results

showed that the increase of distributional complexity leads to increasing degrada-

89

tion in error estimation performance. The best error estimator according to RMS

was observed to be bolstered resubstitution, across the entire range of complexities

considered, followed closely by bootstrap, with cross-validation estimators lagging

behind. Resubstitution tends to present a dramatic increase in bias with increasing

complexity, making this estimator unsuitable for complex distributions.

It has been observed and analytically demonstrated that cross-validation error

estimation performance degrades with increasing Bayes error, in particular, for Gaus-

sian class-conditional densities [49, 50]. The difference between degradation owing to

increasing Bayes error and increasing distributional complexity can be clearly seen by

considering optimal classification in the Gaussian model where both classes share the

identity covariance matrix. In such a case, the Bayes decision boundary is a hyper-

plane equidistant between the means of the class-conditional densities. Moving the

means closer at the same rate for both (the limit being Bayes error 0.5), the Bayes

hyperplane remains fixed but the performance of cross-validation degrades. This

corresponds to decreasing estimation performance while keeping the distributional

complexity fixed at 1. In our proposed model, the Bayes error remains constant at

0, but the Bayes decision boundary increases in complexity. Clearly, the decreasing

estimation precision is a consequence of very different factors in the two scenarios.

In the next step, the key components of the typical SRM-based biomarker val-

idation work-flow were reviewed, modelled and analyzed. Based on the synthetic

data the process was simulated and the effect of different parameter setting on the

performance was studied. Ranking power and the TPR were used as two different

metrics to assess the performance of the biomarker validation process as a function

of the parameters of the model. The goal of this study was not determination of the

exact value of each parameter for reaching a given performance value, but rather to

investigate the effect of the different parameters, namely, sample purification, pep-

90

tide ionization efficiency, peptide specificity, modification noise, and sample size, on

the overall performance of the SRM experiment utilized for biomarker validation.

The model presented here can not only be utilized to observe the effect of different

instrument and experimental settings on biomarker validation by SRM, but also could

be useful for experimental design, providing an insight on the working range of the

important parameters of the SRM pipeline. It creates the required infrastructure for

studying the inverse problem, where one can use the model to set the parameters

of the entire experiment to reach the highest performance considering technical,

experimental and financial constraints. Also the model has the advantage of being

flexible to future possible extension in order to include more detailed modules of the

SRM pipeline.

91

REFERENCES

[1] N.R. Kitteringham, R.E. Jenkins, C.S. Lane, V.L. Elliott, and B.K. Park. Mul-

tiple reaction monitoring for quantitative biomarker analysis in proteomics and

metabolomics. Journal of Chromatography B, 877(13):1229–1239, 2009.

[2] G Hughes. On the mean accuracy of statistical pattern recognizers. Information

Theory, IEEE Transactions on, 14(1):55–63, 1968.

[3] Chao Sima and Edward R Dougherty. The peaking phenomenon in the presence

of feature-selection. Pattern Recognition Letters, 29(11):1667–1674, 2008.

[4] Anil Jain and Douglas Zongker. Feature selection: Evaluation, application, and

small sample performance. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 19(2):153–158, 1997.

[5] Patrenahalli M Narendra and Keinosuke Fukunaga. A branch and bound

algorithm for feature subset selection. Computers, IEEE Transactions on,

100(9):917–922, 1977.

[6] Ari Frank, Dan Geiger, and Zohar Yakhini. A distance-based branch and bound

feature selection algorithm. In Proceedings of the Nineteenth conference on Un-

certainty in Artificial Intelligence, pages 241–248. Morgan Kaufmann Publishers

Inc., 2002.

[7] Songyot Nakariyakul and David P Casasent. Adaptive branch and bound algo-

rithm for selecting optimal features. Pattern Recognition Letters, 28(12):1415–

1427, 2007.

92

[8] BIN Yu and Baozong Yuan. A more efficient branch and bound algorithm for

feature selection. Pattern Recognition, 26(6):883–889, 1993.

[9] Petr Somol, Pavel Pudil, and Josef Kittler. Fast branch & bound algorithms

for optimal feature selection. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 26(7):900–912, 2004.

[10] Marcelo Ris, Junior Barrera, and David C Martins Jr. U-curve: A branch-and-

bound optimization algorithm for u-shaped cost functions on boolean lattices

applied to the feature selection problem. Pattern Recognition, 43(3):557–568,

2010.

[11] L. Devroye, L. Gyorfi, and G. Lugosi. A probabilistic theory of pattern recogni-

tion, volume 31. Springer Verlag, Berlin, 1996.

[12] U.M. Braga-Neto and E.R. Dougherty. Is cross-validation valid for small-sample

microarray classification? Bioinformatics, 20(3):374, 2004.

[13] U.M. Braga-Neto and E. Dougherty. Bolstered error estimation. Pattern Recog-

nition, 37(6):1267–1281, 2004.

[14] S.N. Attoor and E.R. Dougherty. Classifier performance as a function of distri-

butional complexity. Pattern Recognition, 37(8):1641–1651, 2004.

[15] E.R. Dougherty and U. Braga-Neto. Epistemology of computational biology:

mathematical models and experimental prediction as the basis of their validity.

Journal of Biological Systems, 14(1):65–90, 2006.

[16] C.A.B. Smith. Some examples of discrimination. Annals of Human Genetics,

13(1):272–282, 1946.

93

[17] V.N. Vapnik. Statistical learning theory. Wiley-Interscience, New York, 1998.

[18] R.O. Duda, P.E. Hart, D.G. Stork, et al. Pattern classification, volume 2. wiley

New York, 2001.

[19] P.A. Lachenbruch and M.R. Mickey. Estimation of error rates in discriminant

analysis. Technometrics, 10:1–11, 1968.

[20] B. Efron. The jackknife, the bootstrap and other resampling plans. In SIAM

Monograph No. 38, NSF-CBMS, page 92, 1982.

[21] B. Efron. Bootstrap methods: another look at the jackknife. The Annals of

Statistics, 7(1):1–26, 1979.

[22] B. Efron. Estimating the error rate of a prediction rule: improvement on cross-

validation. Journal of the American Statistical Association, 78:316–331, 1983.

[23] I.H. Witten and E. Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, San Francisco, California, 2005.

[24] K.K. Murray, R.K. Boyd, M.N. Eberlin, G.J. Langley, L. Li, and Y. Naito.

Standard definitions of terms relating to mass spectrometry. International Union

of Pure and Applied Chemistry Analytical Chemistry Division, 2006.

[25] J. Hua, W.D. Tembe, and E.R. Dougherty. Performance of feature-selection

methods in the classification of high-dimension data. Pattern Recognition,

42(3):409–424, 2009.

[26] R. Aebersold, M. Mann, et al. Mass spectrometry-based proteomics. Nature,

422(6928):198–207, 2003.

94

[27] C. Dass. Fundamentals of contemporary mass spectrometry, volume 16. John

Wiley & Sons, Hoboken, New Jersey, 2007.

[28] E. de Hoffmann. Tandem mass spectrometry: a primer. Journal of Mass Spec-

trometry, 31(2):129–137, 1996.

[29] D. Zakett, RGA Flynn, and RG Cooks. Chlorine isotope effects in mass spec-

trometry by multiple reaction monitoring. The Journal of Physical Chemistry,

82(22):2359–2362, 1978.

[30] JD Baty and PR Robinson. Single and multiple ion recording techniques for the

analysis of diphenylhydantoin and its major metabolite in plasma. Biological

Mass Spectrometry, 4(1):36–41, 1977.

[31] S. Gallien, E. Duriez, and B. Domon. Selected reaction monitoring applied to

proteomics. Journal of Mass Spectrometry, 46(3):298–312, 2011.

[32] E.W. Deutsch, H. Lam, and R. Aebersold. Peptideatlas: a resource for target

selection for emerging targeted proteomics workflows. EMBO Reports, 9(5):429–

434, 2008.

[33] V. Lange, J.A. Malmström, J. Didion, N.L. King, B.P. Johansson, J. Schäfer,

J. Rameseder, C.H. Wong, E.W. Deutsch, M.Y. Brusniak, et al. Targeted quan-

titative analysis of streptococcus pyogenes virulence factors by multiple reaction

monitoring. Molecular & Cellular Proteomics, 7(8):1489–1500, 2008.

[34] L. Malmström, J. Malmström, N. Selevsek, G. Rosenberger, and R. Aebersold.

Automated workflow for large-scale selected reaction monitoring experiments.

Journal of Proteome Research, 11, 2012.

95

[35] V. Lange, P. Picotti, B. Domon, and R. Aebersold. Selected reaction monitoring

for quantitative proteomics: a tutorial. Molecular Systems Biology, 4(1), 2008.

[36] King Wai Lau, Sarah R Hart, Jennifer A Lynch, Stephen CC Wong, Simon J

Hubbard, and Simon J Gaskell. Observations on the detection of b-and y-type

ions in the collisionally activated decomposition spectra of protonated peptides.

Rapid Communications in Mass Spectrometry, 23(10):1508–1514, 2009.

[37] Y. Taniguchi, P.J. Choi, G.W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, and

X.S. Xie. Quantifying e. coli proteome and transcriptome with single-molecule

sensitivity in single cells. Science, 329(5991):533–538, 2010.

[38] Y. Sun, U. Braga-Neto, and E.R. Dougherty. A systematic model of the lc-ms

proteomics pipeline. BMC Genomics, 13(Suppl. 6):S2, 2012.

[39] N.L. Anderson and N.G. Anderson. The human plasma proteome history, char-

acter, and diagnostic prospects. Molecular & Cellular Proteomics, 1(11):845–

867, 2002.

[40] X. Xu and T.D. Veenstra. Analysis of biofluids for biomarker research.

PROTEOMICS-Clinical Applications, 2(10-11):1403–1412, 2008.

[41] J.E. Bandow. Comparison of protein enrichment strategies for proteome analysis

of plasma. Proteomics, 10(7):1416–1425, 2010.

[42] W. Timm, A. Scherbart, S. Böcker, O. Kohlbacher, and T.W. Nattkemper. Peak

intensity prediction in maldi-tof mass spectrometry: a machine learning study

to support quantitative proteomics. BMC Bioinf., 9(1):443, 2008.

96

[43] N.B. Cech and C.G. Enke. Practical implications of some recent studies in

electrospray ionization fundamentals. Mass Spectrometry Reviews, 20(6):362–

387, 2002.

[44] P. Picotti, O. Rinner, R. Stallmach, F. Dautel, T. Farrah, B. Domon, H. Wen-

schuh, and R. Aebersold. High-throughput generation of selected reaction-

monitoring assays for proteins and proteomes. Nature Methods, 7(1):43–46,

2009.

[45] J.M. Froelich and G.E. Reid. The origin and control of ex vivo oxidative peptide

modifications prior to mass spectrometry analysis. Proteomics, 8(7):1334–1345,

2008.

[46] M. Anderle, S. Roy, H. Lin, C. Becker, and K. Joho. Quantifying reproducibility

for differential proteomics: noise analysis for protein liquid chromatography-

mass spectrometry of human serum. Bioinformatics, 20(18):3575–3582, 2004.

[47] C. Zhao, M.L. Bittner, R.S. Chapkin, and E.R. Dougherty. Characterization of

the effectiveness of reporting lists of small feature sets relative to the accuracy

of the prior biological knowledge. Cancer Informatics, 9:49, 2010.

[48] X. Ye, J. Blonder, and T.D. Veenstra. Targeted proteomics for validation of

biomarkers in clinical samples. Briefings in Functional Genomics & Proteomics,

8(2):126–135, 2009.

[49] N. Glick. Additive estimators for probabilities of correct classification. Pattern

Recognition, 10(3):211–222, 1978.

[50] A. Zollanvari, U. Braga-Neto, and E. Dougherty. Exact representation of the

second-order moments for resubstitution and leave-one-out error estimation for

97

linear discriminant analysis in the univariate heteroskedastic gaussian model.

Pattern Recognition, pages 908–917, 2011.

98

