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ABSTRACT 

 

In the present research, the three dimensional particle tracking software OpenPTV 

is validated with synthetic images from the Standard PIV project by the Visualization 

Society of Japan, and with experimental data from the twin-jet facility at the Laser 

Diagnostics Multiphase Flow Laboratory in Texas A&M University. OpenPTV is an open 

source software, initially developed at ETH Zurich and now used among what has become 

the OpenPTV consortium, a collection of academic institutions with interest in 

experimental fluid mechanics who want to develop a better software for everyone. 

The software is tested with regard to particle detection, particle position and 

velocity reconstruction in three dimensional space, as well as individual particle trajectory 

reconstruction. For the experimental assessment, the OpenPTV results are compared with 

a Laser Doppler Velocimetry study, as well as results from the in-house two dimensional 

particle tracking velocimetry software. As contributions to the consortium, the author 

wrote a calibration code to be implemented in the OpenPTV software which will facilitate 

processing and improve performance as well as a post-processing script which allows 

ensemble averaging and computes various fluid mechanics metrics. 
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1. INTRODUCTION  

 

“The essence of engineering is the utilization of the resources and laws of nature to 

benefit humanity.” 

 

1.1 Various experimental fluid mechanics techniques 

Fluid mechanics is an integral part of nearly all mechanical systems. It is 

imperative to have a fundamental knowledge of internal and external fluid motion in order 

to completely characterize and understand a system. An example of such a system is the 

flow of water along a fuel rod array within a typical PWR reactor. To obtain thermal power 

parameters, i.e. the critical heat flux in order to assess the heat transfer within the system, 

requires comprehensive flow data [1]. 

 Traditionally, scholars have studied systems involving some type of flow by 

conducting an experiment using one or more flow measurement techniques, although more 

recently the emergence of Computational Fluid Dynamics (CFD) has become a viable 

alternative. Performing CFD simulations is often significantly more practical and 

inexpensive, however researchers still conduct fluid flow experiments to study complex 

systems and to validate simulation results.   

Several different operable techniques have been developed for flow measurement 

distinguished by their applicability, performance and the kind of results they deliver. Flow 

measurements can be performed intrusively by inserting probes into the flow or non-

intrusively. Among today’s flow measurement techniques, the most common are classified 

to these two types in Table 1. The results are velocities in one, two or three dimensions 

and/or trajectories over time.  
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Table 1: Overview of different flow measurement techniques [2] 

Classification Method Type of Measurement 

intrusive 

Hot Wire Anemometry (HWA) / Constant 
Temperature Anemometry (CTA) 

Single probe location, 
thermo-electric 

Pulsed Wire Anemometry (PWA) Single probe location, 
thermo-electric 

non-intrusive 

Laser Doppler Anemometry (LDA) Single probe, optical, 
particles 

Laser-2-Focus Anemometry (L2F) Single probe, optical, 
particles 

Laser Induced Fluorescence (LIF) Scanning lightsheet, 
optical, fluorescin 

Particle Image Velocimetry (PIV) Scanning lightsheet, 
optical, particles 

Particle Tracking Velocimetry (PTV) Object volume, optical, 
particles 

 
 
 
The thermo-electric velocity measurement techniques are common and more 

appropriate for the measurement of time series in one, two (2D) or three dimensional (3D) 

gas and liquid flows. The temporal resolution is high, whereas the spatial resolution is 

limited to the number of probe locations.  

Hot Wire Anemometry or Constant Temperature Anemometry is a well-

established technique which provides single point information about the flow velocity. 

The instantaneous velocity is measured by its cooling effect on a heated sensor (convective 

heat transfer), and the consequent voltage drop across the sensor. Depending on the setup, 

this technique can measure velocities ranging from a few cm/s to well above the speed of 

sound. 
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Pulsed Wire Anemometry works on the principle of measuring velocity by 

timing the flight of a passive tracer over a known distance. A pulsed wire emits a heated 

spot, a small slightly heated region of fluid, which is convected with the instantaneous 

flow and after a short time sensed by one of two sensor wires which is a positioned a 

known distance apart from the pulsed wire. PWA is similar to HWA / CTA in regard to 

having a limited spatial resolution, but differs by the restriction of yielding reasonable 

results only for small velocities (below 15 m/s). 

In contrast, the optical velocity measurement techniques are non-intrusive and 

hence do not influence the flow directly; however, there may be indirect disturbances to 

the flow such as heating of the system due to the illumination facility leading to unwanted 

thermal forcing (of the flow).  

Laser Doppler Anemometry is a very common technique used to study gas and 

liquid flow. Typically, liquids and especially gases are seeded with tracer particles. A 

photodetector receives light scattered from the tracer particles moving through the 

intersection volume and converts the light intensity into an electrical current. The scattered 

light contains a Doppler shift, the Doppler frequency, which is proportional to the velocity 

component perpendicular to the bisector of the two laser beams. Given the wavelength of 

the laser light and the angle between the intersecting laser beams, one can compute the 

Doppler frequency and the velocity using a conversion factor. Adding more beam pairs 

allows to measure all three velocity components. The advantages of LDA to alternative 

techniques is a very high temporal resolution and no need for calibration.  
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Laser-2-Focus Anemometry is a technique in which the velocity of extremely 

small particles is recorded. As in LDA, the light scattered by the particles when 

illuminated by a light source is the major measurement. Two highly focused parallel 

beams are projected; as a particle traverses the beams, it emits two scattering light pulses 

that are scattered back and are detected by two photodetectors each of which is assigned 

to a beam in the measuring volume. When the particle traverses both beams, it transmits 

two scattering signals whose time interval provides a value for the velocity component in 

the plane perpendicular to the beam axis. Like in LDA, the temporal resolution is relatively 

high, but the spatial resolution is limited to the number of probe locations. 

Laser Induced Fluorescence is a technique suitable for studying mixing 

processes in turbulent flows. The basic idea of LIF is to add fluorescein to the fluid which 

absorbs light of a certain wavelength and emits light of a different (usually higher) 

wavelength as it traverses the laser light sheet. Images, which are synchronized with the 

scanning, are recorded layer by layer by a high-speed camera in order to generate volume 

image datasets. Three-dimensional least squares matching can then be used to determine 

the velocity fields [2]. 

 

1.2 Particle Image Velocimetry 

Particle Image Velocimetry, or PIV, refers to a class of methods used in 

experimental fluid mechanics to determine instantaneous fields of the vector velocity by 

measuring the displacements of numerous fine particles that accurately follow the motion 

of the fluid [3]. Two velocity components are measured, but use of a stereoscopic approach 
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permits all three velocity component to be recorded, resulting in instantaneous three 

dimensional velocity vectors for the whole target area. The use of modern digital cameras 

and dedicated computing hardware, results in real-time velocity maps. Figure 1 displays a 

schematic of a PIV system. 

 
 
 

 
Figure 1: A standard PIV system [4] 

 
 
 

 The tracer particles are sufficiently small and of similar density as the fluid to 

accurately follow the fluid motion and not alter the fluid properties or flow characteristics. 

They are illuminated by means of a thin light sheet generated from a pulsed light source 

(usually a double-head pulsed laser system), and the light scattered by them is recorded 

onto two subsequent image frames by a digital imaging device, typically a CCD camera. 
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The recorded images are processed offline on a digital computer. Fundamentally, the 

process refers to a cross-correlation analysis of the particle-image patterns in small 

subdomains, called interrogation regions, between the first and second image frame. The 

particle-image pattern displacement divided by the image magnification and the time 

delay between the laser light pulses yields the local fluid velocity. This process is repeated 

for the entire image domain, which yields the instantaneous velocity in a planar cross 

section of the observed flow [5].  

 Some general aspects of PIV are [6]: 

 Non-intrusive velocity measurement: PIV is an optical technique and is applicable 

to studies involving high-speed flows with shocks in boundary layers close to the 

wall (where the flow may be disturbed by the presence of probes as in the 

aforementioned techniques).  

 Indirect velocity measurement: Like LDA, this technique measures the velocity of 

a fluid element indirectly by means of the measurement of the velocity of tracer 

particles within the flow. In two phase flows, particles, in the form of bubbles, are 

already present in the flow which allows the measurement of the bubble as well as 

the fluid velocity. 

 Whole field technique: In PIV, images of large parts of the flow field(s) in a variety 

of applications in gaseous and liquid media are recorded. Therefore, the spatial 

resolution of PIV compared to other flow measurement techniques is higher. 
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 Velocity lag: Small particles with a density very close to the fluid density will 

follow the flow better than larger particles with different density. The choice of 

tracer particles depends on the type of experiment to be performed. 

 Illumination: In liquids, “larger” particles are accepted because they scatter more 

light, thus requiring light sources of relatively low peak power. However, in 

gaseous flows, a high power source must illuminate the relatively small tracer 

particles. Moreover, the duration of the illumination light pulse must be short 

enough to “freeze” the motion of the particles during pulse exposure in order to 

avoid blurring of the image.  

  Time delay between illumination pulses: The time delay must be long enough to 

be able to determine the displacement between the images of the tracer particles 

with sufficient resolution and short enough to avoid particles with an out-of-plane 

velocity component leaving the light sheet between subsequent illuminations. 

 Distribution of tracer particles in the flow: A homogeneous distribution of medium 

density is desired for high quality PIV recordings in order to obtain optimal 

evaluation.  

 Density of tracer particle images: Figure 2 shows the three modes of particle image 

density. In the case of low image density, case (a), the images of individual 

particles can be detected and images corresponding to the same particle originating 

from different illuminations can be identified. This mode requires methods for 

individual particle tracking, referred to as particle tracking velocimetry (PTV). 

Medium image density, case (b), is required to apply the standard statistical PIV 
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evaluation techniques. For high image density, case (c), it is impossible to detect 

individual images as they overlap and form speckles, here Laser Speckle 

Velocimetry (LSV) is the appropriate technique to use. 

 
 
 

 
(a)                                              (b)                                               (c) 

Figure 2: Three modes of particle image density: (a) low (PTV) (b) medium (PIV), 

and (c) high image density (LSV) [6] 

 
 
 
 

 Number of components of the velocity vector: In the case of planar illumination of 

the flow field, only two components of the velocity vector can be determined in 

2C-PIV. There are methods like stereo, dual-plane and holographic PIV which can 

extract the third component of the velocity vector; they are labeled 3C-PIV. 

 Temporal resolution: Recent developments of high-speed lasers and cameras allow 

time resolved measurements of most liquid and low-speed aerodynamic flows. 

 Spatial resolution: The size of the interrogation areas during evaluation must be 

small enough for the velocity gradients not to have significant influence on the 

results. Furthermore, the spatial resolution determines the number of independent 
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velocity vectors and therefore the maximum spatial resolution of the velocity map 

which can be obtained at a given spatial resolution of the sensor employed for 

recording.   

 

An example of an early experimental fluid mechanics study case was done by 

Ludwig Prandtl, a renowned German engineer and a major contributor to the field of 

fluid mechanics. He studied the separated flow behind a wing; the corresponding PIV 

image for this flow (a), and the corresponding vector map (b) from a PIV study is 

shown in Figure 3. 

 
 
 

 
(a)                                                         (b) 

Figure 3: Separated flow behind a wing [6] 

 
 
 

1.3 Particle Tracking Velocimetry 

The spatial resolution in PIV evaluation can be even further increased by tracking 

the individual particle images. While standard PIV can only be used to determine Eulerian 
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flow fields, with particle tracking velocimetry one can also obtain the Lagrangian 

representation of the flow field – Figure 4.  

 
 
 

 
Figure 4: Eulerian (left) and Lagrangian (right) flow field illustration [2] 

 
 
 

The advantages of PTV stand out when the flow is three dimensional, and thus 

requires a three dimensional analysis in order to obtain the velocity field and individual 

particle trajectories. 

Three dimensional PTV, or 3D-PTV, is based on the acquisition of image 

sequences from different views recording the motion of particles. In contrast to PIV, the 

aim of PTV is to reconstruct the trajectories of individual particles in three dimensional 

object space. In general PTV setups, the cameras observe the flow from outside the object 

volume, thus being located in a different optical medium than the particles. If the motion 

in a fluid is observed through a glass plate, the optical ray passes through air, glass and 



 

11 

 

fluid and is broken twice according to the refractive indices. Similarly to PIV, after an on- 

or offline digitization, the image sequence data is processed to segment the particle images 

and to extract the pixel coordinates of their centroids. If necessary, a high pass filter is 

applied to remove non-uniformities of the background intensity level. Next follows the 

assignment of corresponding particle images from different views using what is known as 

the epipolar constraint and will be explained in the next section. With knowledge of 

camera orientation data obtained from calibration, the particle correspondences can be 

established, and it is then possible to determine the 3D particle location in object space. 

From this point forward one can proceed with a tracking algorithm and reconstruct the 

particle trajectories. The spatio-temporal matching algorithm used in this study, performs 

the tracking procedure using information of image and object space simultaneously [2]. 

Figure 5 shows an illustration of the PTV processing scheme. 

In summary, Table 2 presents performance characteristics of the aforementioned 

flow measurement techniques. Note that PTV goes beyond just yielding vectors, and 

provides the Lagrangian trajectories of individual particles. 
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Figure 5: PTV processing scheme [2] 

 
 

 
 

Table 2: Performance characteristics of flow measurement techniques [2] 

Method 
Spatial 

Resolution 

Temporal 

Resolution 

Dimension of 

measurement 
Accuracy potential Results 

CTA Low Very high 1-3 1-3 % of velocity scale Vectors 

PWA Low High 1-3 ~ 1 % of velocity scale, 5 % 
for high turbulence 

Vectors 

LDA Low Very high 1-3 Vectors 

L2F Low High 1-3 Signal to noise ratio ~ 0.3 Vectors 

LIF Very high Very low 3 Systematic errors ~ 1-2 %, 
random errors of > 5-10 % Vectors 

PIV Very high Very low 2 (3) < 1 % of mean flow velocity Vectors 

PTV High Low 3 Lateral 1:4000, depth 1:2000 
of velocity vector Trajectories 
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1.4 Motivation 

 Over the past few decades, the abovementioned measurement techniques have 

been developed further and improved in order to meet the increasing complexity of 

engineering systems. In particular, numerous academic and commercial institutions have 

worked on new and more accurate PIV and PTV algorithms for two and three dimensional 

studies. The majority of these algorithms are well developed and considered important 

intellectual property, thus the academic institutions do not usually share their codes. 

Commercial companies, on the other hand, ask a very high purchasing price for their 

softwares, and many of them are not as customizable as some laboratories would like in 

order to better use the product for their applications. It is thus of great interest to the author 

to study the 3D-PTV code OpenPTV provided by the OpenPTV consortium. The code is 

an open source software, meaning that anyone is legally permitted to obtain the code and 

use it for their own purposes. The author promotes the idea of open source research, and 

believes that it is the only progressive approach to develop better products for the benefit 

of humanity.    

 
 

1.5 OpenPTV  

OpenPTV is a 3D-PTV software based on the core algorithms developed at ETH 

Zurich. The branches of the Zurich code have been developed independently by the 

Eindhoven University of Technology (TU/e) group of Turbulence and Vortex Dynamics 

(C++ version with Tcl/Tk and few new algorithms of general coordinate transformation) 

and by the Turbulence Structure Laboratory at Tel Aviv University (Python version, 
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PyPTV). Following a meeting at TU/e in October 2012, the three groups (ETH, TU/e and 

TAU) decided to release their software under open source licenses. The OpenPTV 

foundation has now become a collaborative effort of several research groups to join in 

order to develop a better software for 3D-PTV [7]. 

A sample result of 3D-PTV is shown in Figure 6. A model of an ascending aorta 

was created and studied using the OpenPTV software. Figure 7 shows a sample of the 

recovered trajectories. 

 
 
 

 
Figure 6: Aortic flow modelled in an ascending aorta [8] 
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Figure 7: Recovered trajectories of aorta experiment 
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2. PHOTOGRAMMETRY OF 3D-PTV 
 

2.1 Pinhole camera model 

The first step to perform a particle tracking study is to develop a model of each 

camera. In the case of the OpenPTV software, the cameras recording the image sequence 

are mathematically modeled as a pinhole according to Tsai’s calibration technique [9]. 

Each camera has its own intrinsic parameters, i.e. focal length and lens distortion, and 

extrinsic parameters corresponding to its orientation and position. The pinhole camera 

model relates the 3D coordinates of a point in object space to its corresponding 2D 

projection onto the image plane. This mapping is referred to as perspective projection. The 

center of the perspective projection is the point at which all rays intersect, and is denoted 

as the optical center or camera center. The line orthogonal to the image plane and passing 

through the optical center is called the optical axis. The principal point is the location 

where the image plane intersects with the optical axis. Figure 8 shows a schematic of the 

pinhole camera model. 
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Figure 8: Pinhole camera Model [10] 

 
 
 

This model represents an idealized mathematical version of a camera. However, a 

general PTV image sequence will not be composed of ideal images due to disturbances in 

the system leading to noise in the image data. In regard to the imaging hardware, this noise 

comes from aberrations such as chromatic aberration, monochromatic aberration, 

spherical aberration, coma, astigmatism, Petzval curvature of Field, and distortion among 

others [3]. An example of distortion is shown in Figure 9. In (a) there is no image 

distortion, in (b) the image has pincushion distortion, and in (c) the image has barrel 

distortion. Cases (b) and (c) are caused by variable lateral magnification. 
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(a)                              (b)                                  (c)   

Figure 9: Image distortion example [11] 

 
 
 
 
 In addition to the abovementioned aberrations, in PIV and PTV experiments it is a 

common scenario that the object and image planes are not normal to the optical axis, in 

other words they are not facing each other. The case of non-parallel planes is called 

oblique imaging and is another cause of disturbance in the image data. However, a 

geometrical arrangement known as the Scheimpflug condition can be applied to remedy 

the non-uniform magnification. By attaching Scheimpflug adaptors to the cameras, the 

setup essentially satisfies the required geometric arrangement, and the image plane is 

effectively parallel with the object plane. Only when very high accuracy is desired, one 

should look for alternative solutions to the use of Scheimpflug mounts [3]. Based on the 

author’s experience, this calibration technique requires information which is not easy to 

obtain, i.e. focal length, CCD or CMOS sensor offset relative to the projective center of 

the camera, and distortion parameters among others. An excellent alternative calibration 

technique is presented in the possible improvements section.  
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2.2 Mathematical model 

A comprehensive review of the mathematical model of the OpenPTV software is 

found in [2] and [12]. The fundamental mathematical model of 3D particle coordinate 

determination is the collinearity condition: Object point, camera projective center, and 

image point must lie on a straight line. The formulation includes the three object 

coordinates , ,O O OX Y Z  of the projective center, as well as the three angles , ,    

describing the direction of the optical axis, and applies to the idealized pinhole camera 

model. Figure 10 illustrates the collinearity condition. 

 
 
 

 
Figure 10: Collinearity condition (camera model inverted) [2] 
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 The OpenPTV software is designed to model lens distortion according to the 

Brown model with radial symmetric lens distortion (parameters 1 2 3, ,k k k ) and decentering 

distortion (parameters 1 2,p p ). In addition, the software accounts for multimedia geometry 

which occurs when there is one or more media (with different refractive indices) between 

the projective center of the camera and the particle position. The collinearity condition 

along with the intrinsic and extrinsic parameters of the camera, and the distortion 

parameters lead to a functional model of 16 parameters with ,x y  image coordinates as 

follows:  

 

1 2 3 1 2 1 2( , ) ( , , , , , , , , , , , , , , , , , , )O O O k k i i ix y f X Y Z c x y k k k p p a a X Y Z    (3.1) 

  

The parameters are determined through a calibration process, after which it is 

possible to apply the epipolar constraint to establish correspondences of the particle 

images from the different cameras [2]. 

 

2.3 Epipolar constraint 

 In three dimensional particle tracking velocimetry it is imperative to establish 

multi-image correspondences. As the tracer particles are of the same size, shape and color, 

the only available tool to establish the correspondence is through constraints in the 

epipolar geometry. The OpenPTV software uses this epipolar geometry to automatically 

establish the appropriate correspondences [12].  With knowledge of the aforementioned 
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parameters one can make use of the coplanarity condition of the oriented image planes as 

shown in Figure 11; the geometric system can then be solved to obtain a mapping between 

the object and image coordinates of a particle.  

 
 
 

 
Figure 11: Epipolar geometry in a two-camera setup with intersecting epipolar line 

segments [2] 

 
 
 

For this particular schematic, the coplanarity condition is 

 

                                                      1 2 1 2( ' '') 0O O O P O P                                 (3.2) 
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which yields the respective epipolar line in image space. By proceeding from an image 

point of the first image, the corresponding search area can be reduced to the epipolar line 

in the second image. In a general experimental scenario, the search area has to be extended 

by a tolerance   to the epipolar line. This tolerance is strongly influenced by the quality 

of the calibration and the number of particles found in the epipolar search area. Therefore, 

it is recommended to use three or four cameras to more accurately determine the 

intersections of epipolar line segments, as the search area is reduced by the additional 

constraint(s). In the OpenPTV algorithm, the epipolar line intersection is implemented 

with a combinatorics algorithm to establish unambiguous quadruplets, triplets, and pairs 

of corresponding particle images [2]. 

 

2.4 OpenPTV tracking Algorithm 

 There are three methods to track individual particle trajectories, namely image 

space based, object space based, and spatio-temporal based tracking.  

In image space based techniques the image sequences are acquired using a multi-

camera setup and the tracking of particles is performed in two dimensional space with a 

particular approach (i.e. Fuzzy logic, neural network). The spatial correspondences 

between the resulting 2D tracks in each image are established in order to reconstruct the 

object space trajectories. 

In object space based techniques the first step is to solve the correspondence of the 

particles to determine the 3D position, after which an algorithm performs the search of the 

temporal match in the following frame. 
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OpenPTV uses a spatio-temporal matching algorithm which combines the 

abovementioned approaches. The image sequences are recorded, after which the particle 

correspondences are established using the epipolar constraint. Next, the three dimensional 

particle positions are determined, and tracking is done in 3D point clouds, where 

additional positions of unused 2D detected particles are computed. Moreover, the tracking 

uses kinematic motion modeling with a time-dependent polynomial of order two to 

perform the tracking. As a result of the combined methods, the reconstructed trajectories 

are more complete [2].  Figure 12 illustrates the processing scheme of the OpenPTV 

software, and Figure 13 displays a comparison of using only image or object based 

techniques compared to the spatio-temporal algorithm. 
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Figure 12: OpenPTV Processing scheme 

 

 

 

 
Figure 13: Incomplete and complete trajectories 
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2.5 OpenPTV out-of-plane position and velocity component reconstruction 

 When the three or four (depending on the number of cameras) particle pixel 

positions have been found, the three dimensional position of the particle can be determined 

through a mapping function 

 

         1 N

x

y F X

z



 
 


 
  

       (3.3) 

with            1 1 2 2, , , ,..., , TN

N NX X Y X Y X Y       (3.4) 

 

 The mapping function is obtained from the calibration procedure. Note that 

mathematically only two positions are necessary to obtain the three dimensional position 

of the particle, however the redundancy by using all N image positions generally improves 

the accuracy of the reconstruction [3]. The complete mathematical reconstruction 

algorithm is presented in [12]. 
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3. 3D-PIV STANDARD IMAGES  

3.1 Background 

 In order to assess a software, the best approach is to test its performance on 

benchmark problems. In 1996, the Visualization Society of Japan (VSJ) initiated a project 

for PIV standardization and popularization, called JPIV. The activities of the JPIV are the 

following: 

 Development of Standard images for 2D and transient 3D PIV 

 Analysis using the Standard Experimental Problems 

 Developments of PIV Database 

 
Various test cases ranging from two component two dimensional (2C2D) data to three 

component three dimensional (3C3D) data were created using computer graphics and 

studied using a three dimensional Large Eddy Simulation (LES) to obtain the velocity 

vector [13]. The simulation was identical for all test cases, namely a jet impinging on a 

wall as shown in Figure 14.  

 
 
 
 

 
Figure 14: Schematic of general geometry 
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 Parameters such as jet velocity and Reynolds number vary from case to case. In 

order to assess the OpenPTV software, the experimental or simulated data has to be 3C2D 

or 3C3D with a low image density. Therefore, test case 352 was chosen as the most 

suitable case to study. Table 3 shows relevant information about test case 352, and Figure 

15 shows a schematic of the simulated camera setup. 

 
 
 

Table 3: Standard PIV test case overview 

Test Case No. 352 

Number of cameras 3 
Number of images 145 

Image Size 256 x 256 pixel 
Interval 0.005 sec 

Reynolds Number 3000 
Maximum velocity 0.12 m/s 

Number of average particles per image 320 
Particle Diameter 5 pixel 

Water Refractive Index 1.33 
Air Refractive Index 1.0 

 

 
 

 
Figure 15: Schematic of camera setup 
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Figure 16: CAD model of camera setup - 1 

 

 
Figure 17: CAD model - 2 

 
 
 

Figure 16 and Figure 17 show two different views of a CAD model of the camera 

orientation, as well as the illumination region and the target volume. The left and right 

cameras are at a 30 degree angle with respect to the Y-axis, and all three cameras are in 
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the same horizontal plane (Y = 0). Note that the cameras in the images are not the cameras 

used in the study, but simply pre-built CAD models of a high speed camera model. As 

described in [12] this orientation is unfavorable due to the fact that no epipolar matches 

can be made at the center line and close to it. 

In addition to the 145 images per camera, a calibration image for each camera was 

provided showing the respective view of the artificial calibration target. The target is a 

cube of length 16 mm, with target particle locations at each edge and at the midpoints, as 

shown in Figure 18. 

 
 
 

 
(a)                                             (b)                                           (c) 

Figure 18: Calibration images for each camera: (a) left (b) center (c) right 

 
 
 

3.2 Image and data preparation 

 Before the test case can be run in the OpenPTV software, the images have to be 

processed, that is, they have to be converted from their original .raw format to a .tiff 

format. Adobe Photoshop is the most popular image processing software on the market 
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and was chosen by the author for simplicity and processing speed. Next the images were 

renamed from their original im0___.tiff to a file name readable by the OpenPTV code, 

namely cam1.10000, cam1.10001, cam1.10002, and similarly for cam2.10000, and 

cam3.10000, etc. This concluded the image preparation step.  

 An additional step was required to obtain the vectors for each individual particle 

in each frame. Due to the fact that the test cases were designed for PIV rather than PTV, 

the vector files provided as reference did not correspond to the particles themselves, but 

to systematically chosen grid locations as illustrated in Figure 19. 

 
 
 

 
Figure 19: Illustration of vector field from provided vector files 

 
 
 
 This information is unsuitable for comparison with the output of the OpenPTV 

software which provides the vectors of individual particles. However, the creators of the 
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test cases provided .dat files with the object space location of each particle in each image 

along with an ID number associated to it. Using this ID number, the author created vector 

files with vectors corresponding to individual particles by matching the particles from one 

frame to the next, determining the displacement and dividing by the time interval. This 

was done for all three dimensions, yielding 144 files with an ID for each particle as well 

as its 3D position and velocity for the respective frame. MATLAB was used to process 

and create the resulting files; the script used is attached in the Appendix. An illustration 

of a sample vector field with “correct” vectors is shown in Figure 20. 

 
 
 

 
Figure 20: Correct vector field for individual particles 
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3.3 OpenPTV calibration, parameter tuning, and post-processing 

 The first step in the PTV process is the correct calibration of the software in order 

to obtain the appropriate camera parameters for the experiment and improve the epipolar 

matching algorithm to increase quality and quantity of correspondences among particles 

from the three different views. In accordance with the software, four points are selected 

from the calibration target and clicked in each camera calibration image to obtain the 16 

parameters. The calibration process was kept as simple as possible, changing only those 

parameters which seem to affect the calibration results. It is assumed that there are no 

distortions or aberrations of any kind as the images are synthetic. Moreover, as no 

thickness of the wall in Figure 15 is provided, the thickness is set to 0 and the index of 

refraction is set to that of water, namely 1.33. This modification removed a shift in the Z-

direction which is present if a wall thickness is set. 

After the calibration results are deemed satisfactory, parameters relating to particle 

recognition and criteria for correspondences, and finally tracking were tuned to obtain 

optimal results. Over 100 runs, varying one parameter at a time were performed to 

determine the performance of the software. The observed trends are presented in the 

Results section. 

When the optimal settings are determined, the code is run for the whole image 

sequence. Several different file types are output by the software, and have to be further 

post-processed in order to obtain the velocity and trajectory information of each particle. 

A post-processing script with several parameters of its own is provided with the software 

and can be modified to improve the accuracy of the results. For example, one can set the 
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length of the fitting polynomial which filters the positions, velocities and accelerations; 

another important parameter is the radius of interpolation which sets how large the 

interpolation domain around a point should be. The script is run until the results can no 

longer be improved, according to the suggested criteria. 

 The final output of the OpenPTV software are files for each frame which include 

information about particle position, velocities in all three dimensions, accelerations in all 

three dimensions, as well as trajectory information. As shown in Table 2, no other flow 

measurement technique provides information about the full velocity gradient tensor and 

particle trajectories apart from photogrammetric PTV, or 3D-PTV. 
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4. TWIN JET EXPERIMENT 

4.1 Background 

 Texas A&M University is currently conducting research on the University of 

Tennessee’s twin-jet tank with the support of the Department of Energy. The outer 

dimensions of the tank base are 1016 mm length by 762 mm width. A CAD model of the 

tank is shown in Figure 21 [14]. The fluid used is water with seeding particles, and the 

cross sectional area of each jet is 508 𝑚𝑚2. The facility uses two pumps which can create 

Reynolds numbers close to 25,000.  

 

 
 

 
Figure 21: CAD model of twin-jet tank 
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 This tank was chosen as a good set up to assess the performance of OpenPTV by 

comparing its results with a LDV, and a 2D-PTV analysis. In this study the pump flow 

rates were set to 10 min
g  which yields an average velocity of 1.24 m

s
at the jet outlet. 

 

4.2 Camera set-up  

 The author had access to three high-speed cameras which were set to run in a 

synchronized manner with each other as well as the laser illuminating the target volume. 

Figure 22 shows the camera set up from behind looking at the calibration target in the 

filled tank. 

 

 
 

 
Figure 22: Camera set up with target – 1 
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 The distance between the camera lenses and the center of the calibration target 

were measured to be 21.5 inches for the left and right cameras, and about 20 inches for 

the top camera. The angles of the left and right cameras with respect to the Y axis were -

12 and 12 degrees respectively, while the top camera had an inclination of -20 degrees (X-

axis). The triangular set-up was chosen as it is recommended by [12]. The laser used to 

illuminate the tracer particles is shown in Figure 23. 

 
 
 

  
Figure 23: Laser 
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 In order to reduce any background noise, the tank facility was covered up with 

black covers to stop any ambient light from entering the fluid domain, as shown in Figure 

24. 

 
 
 

 
Figure 24: Covered tank 

 
 
 
 
 The cameras have a high sensitivity so disturbances have to be kept to a minimum. 

Initial images with the laser running were taken in order to determine the quality of the 

images and whether OpenPTV will be able to process them. Figure 25 shows the first 

images, and that a modification is needed to ensure uniform illumination. 
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Figure 25: Frame from left camera 

 
 
 

 It is easy to observe that the right side of the image is brighter than the left side. 

Therefore, the tracking software will have trouble detecting and tracking particles from 

one half of the image in all three views. Moreover, the flow coming from the jet is very 

bright, but it is not due to the light scattered by the particles; the pumps were producing a 

relatively high flow rate (a tentative 18 min
g ) which resulted in air being entrapped as 

the fluid comes down from the top which is then released through the jet as bubbles. 

Although this is perhaps favorable to study two-phase flow, this scenario is unfavorable 

for the current study as the research is to assess the code, and not to study two-phase flow. 

Therefore, the flow rate was reduced to the abovementioned 10 min
g and the laser was 
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moved to the top of the tank, and a plate was inserted at the top of the water level to prevent 

distortion of the laser light due to waves. Figure 26 presents the currently used set-up. 

 
 
 

 
Figure 26: Laser on top of tank 

 
 
 

 The modification in set up improved the image quality dramatically as can be seen 

in Figure 27 which shows a frame from the right camera. 
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Figure 27: Uniform illumination 

 
 
 

 The image is darker due to the fact that the flow rate was reduced, thus removing 

the occurrence of bubbles. In addition, the aperture of the cameras was decreased in order 

to make use of the power of the laser, which works with a higher stability when run at 

higher power. The image density is held low, as required by a PTV study. More on the 

images is presented in the next subsection. 

 

4.3 Image pre-processing 

 The camera data is sent to the provided Phantom software. The videos are set to a 

have an image size of 800 by 600, and are initially saved in the native .cine format, and 

later to .bmp files for the 2D-PTV and .tiff for the OpenPTV software, respectively. The 
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first images taken were the calibration images. Figure 28 shows the 3D printed calibration 

target with dimensions 10 cm by 10 cm by 3/8 inches thickness, and three depth levels in 

order to be able to select target points at different Z locations with respect to the origin of 

the target area (in this study this was chosen to be the center point of the calibration target). 

 
 
 

 
Figure 28: Calibration target as seen by left camera 

 
 
 

 The user can choose from a total of 43 target points with known object space 

coordinates. Each camera has one calibration image associated with it and is used in the 

calibration procedure of the OpenPTV processing. The camera orientation is necessary in 

order to determine a mapping between the object space coordinates and the image 
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coordinates, which can then be used to reconstruct the particle positions and velocities. 

Moreover, the orientation information is used to create the epipolar geometry to find the 

correspondence between the three sets of pixel coordinates for each particle in an image. 

Figure 29 shows the beginning of the calibration process for the right camera, when the 

yellow “guessed” calibration points still do not match the positions of the target points. 

 
 
 

 
Figure 29: Calibration of right camera 

 
 
 

 After the dots match the correct locations in each view, the calibration is complete 

and the images can be processed. The first frame from all three views is shown in Figure 

30. 
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(a) 

 

(b) 

 

(c) 
Figure 30: First frame from all three views 
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5. RESULTS 

5.1 3D-PIV Standard Images 

5.1.1 Pre-analysis 

 Before the post-processing analysis, the author wanted to familiarize himself with 

the OpenPTV software. To do that, the author investigated the roughly forty parameters 

which have to be set in order to run the software. Figure 31 and Figure 32 show some of 

the resulting trends of two selected parameters. 

 
 
 

 
Figure 31: Matches versus. threshold 
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Figure 32: Links established versus. minimum particle displacement in X direction 

in mm 

 
 
 
5.1.2 Particle centroids 

A preliminary check whether the software is working, is to check the particle 

locations in image coordinates and verify them with the reference data. This confirms the 

effectiveness of the detection algorithm. The author wrote a MATLAB script in which the 

pixel locations from the OpenPTV output are matched with the correct data. The matching 

criteria was based on a maximum difference between the X and Y values, and the various 

epsilon values are shown in Figure 33. 
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Figure 33: Matching success rate versus. maximum allowable difference 

 
 
 

It is clear that at an epsilon of 1 pixel most of the particles are matched, with the 

highest success ratio for camera 2. The corresponding matching success per frame for an 

epsilon of 1 is shown in Figure 34. The matching is slightly higher in the first 80 frames 

which seems to be a trend in the further analysis. Table 4 shows the average percentage of 

found particles per frame using the OpenPTV code and the percentage matched particles 

compared to the correct data as well as the errors for X and Y in pixel. Figure 35 displays 

the particle pixel locations from OpenPTV overlaid on the correct data. One can easily 

observe that there are a number of unmatched particles at the boundaries. This might be 

due to the fact that the algorithm is not run for the complete 256 (depends on image size) 
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arrays of information However, it is possible that with a different matching criteria or 

method, the performance could be improved. 

 

Table 4: OpenPTV centroid detection results 

Camera 
Percent found 

[%] 

Percent matched 

[%] 

Error in x 

[pixel] 

Error in y 

[pixel] 

Camera 

1 
93.34 91.07 0.2518 0.2522 

Camera 

2 
93.80 92.18 0.2528 0.2516 

Camera 

3 
92.88 90.46 0.2522 0.2524 

 
 
 
 

 
Figure 34: OpenPTV matching success per frame 
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Figure 35: OpenPTV and correct pixel locations 

 
 
 

The results seem satisfactory, as only about 9.5 % of the information is lost. Note 

that the synthetic images were modeled with a maximum (grayscale) intensity according 

to 
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where  , ,p p px y z  is the particle location with size pd  and laser-sheet thickness 2 p . 

 This is a model used to reconstruct the gray scale intensity and pixel locations of 

a particle with given object space coordinates. However, equation 5.2 may lead to 

inaccuracies in the reconstruction of the Z component as it is not a direct mapping. 

Moreover, some information might have been lost in the conversion from the .raw format 

to the .tif format, which could lead to difficulty in particle detection. 

In addition to comparing the OpenPTV results to the correct data, the in-house two 

dimensional PTV code used in the laboratory was run with the same images.  

 

 

 

Table 5: 2D PTV results 

Camera 
Percent found 

[%] 

Percent matched 

[%] 

Error in x 

[pixel] 

Error in y 

[pixel] 

Camera 

1 
88.97 74.67 0.2624 0.2813 

Camera 

2 
80.92 75.65 0.2600 0.2792 

Camera 

3 
89.02 74.98 0.2625 0.2827 
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Figure 36: 2D PTV matching success rate vs. epsilon 

 
 
 

 
Figure 37: 2D PTV matching success per frame 
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Figure 38: 2D PTV particle locations 

 
 
 
As this code has fewer parameters, i.e. tolerable discontinuity and particle size in the two 

the two coordinates in pixels to name two, it is more difficult to find all particles, 

particularly when two particles are overlapping each other. Figure 36 shows the 

success rate for the same range of epsilon. Figure 37 shows the matching success rate 

frame, and Figure 38 shows the particle positions. There are fewer particles found, and 

code also does not see the particles on the boundaries.  

 

 

Table 5 shows the corresponding percentages and errors. The author believes that 

both the OpenPTV and the 2D PTV codes do not compute the centroid locations at the 

lower and upper limits of the X and Y pixel directions. An important note is that the correct 
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data includes particles which are not necessarily in all three views simultaneously. These 

particles have been removed for all statistical investigations. 

 

5.1.3 Object space coordinate matching 

The next step in the PTV procedure using the OpenPTV code is the determination 

of the particles object space coordinates. This is where the epipolar constraint is used in 

order to reconstruct the X, Y, and Z coordinates. Based on the camera orientation, it is 

clear that all the particles on the horizontal center line will not be processed, as all three 

cameras are in the same horizontal plane. From [12] one can gain an understanding why 

this is the case, and why the set up for the twin jet experiment was chosen as suggested 

from the reference.  

 The last output files from the OpenPTV software are ptv_is. files which contain 

the temporal and spatial information for each particle. From these files one can obtain the 

velocity, acceleration and trajectory information. The author ran another matching process 

to verify how many particles were found and lost from the correspondence procedure. This 

was done to confirm the effectiveness of the tracking and reconstruction algorithm(s). As 

mentioned previously, 9.5 % of the total information of all particles in the images was lost 

during the particle detection. Moreover, the unfavorable camera orientation is expected to 

decrease the number of successful matches. After choosing a range for the matching 

criteria, the author determined that the maximum number of successful matches with 

respect to the three object space coordinates is roughly 81.7 % as shown in Figure 39. This 

constitutes an 8.8 % loss from the centroid detection. An important trend is discovered in 
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Figure 40 which investigates the percentage of successful matches per frame for an epsilon 

of 0.0018 m.  

 
 
 

 
Figure 39: Matching success rate versus. epsilon for object space coordinates 
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Figure 40: Matching success rate per frame 

 
 
 

 From Figure 40 it is clear that the OpenPTV algorithm reconstructs the object 

coordinates with lower success as the frame number increases. The same trend was found 

in the centroid determination, but to a much lesser extent. This suggests that the velocity 

reconstruction will show a similar trend. A scatter plot of the matched object coordinates 

is shown in Figure 41. 
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Figure 41: 3D Scatter plot of matched particle positions 

 
 
 

 From the decreasing number of matches, one might think that the error between 

the correct and reconstructed positions is rather large. However, in Table 6, the errors for 

each coordinate suggest that the algorithm works with excellent performance. The errors 

for position are on the orders of micrometers, while the errors for velocities are on the 

order of millimeters. For example, if the position of a particle is 0.3 cm in X, the algorithm 

is accurate within 1 percent. Considering scenarios where the study is involving turbulent 

flow, a 1 % error is an extremely low uncertainty. 
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Table 6: Object coordinate metrics 

Metric Value 

Error in X   [µm] 6.446 

Error in Y   [µm] 6.355 

Error in Z   [µm] 11.993 

Number of Particles 28,942 

 
 
 

Moreover, these values were determined for almost 30,000 instances. Despite, the 

expected difficulties in reconstruction from incomplete calibration information and 

inappropriate camera set-up, the OpenPTV algorithm reconstructs the particle positions 

with remarkable accuracy.  

 

5.1.4 Velocity reconstruction 

 As mentioned in subsection 4.3, the final output files from the OpenPTV software 

hold information about the particle for the previous and following frame, as well as the 

object space coordinates. However, no velocity information is computed. Based on the 

author’s understanding, the majority of the research being done using OpenPTV is 

Lagrangian statistics which focuses on the particle trajectories, rather than the velocity 

field. In order to obtain the velocity from the ptv_is. files, the OpenPTV consortium 

provides a post processing script which allows for parameter tuning to compute the 
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velocity and acceleration data. The output files are xuap.* files which contain raw and 

filtered X, Y, and Z positions as well as filtered velocity and acceleration data. After 

successfully running the post processing script, the author performed another matching 

routine to determine whether the code maintained the 81.7 % volume of information or if 

there was further data loss, by matching purely based on the X, Y, and Z positions, then 

by setting varying epsilons for each direction, and finally by including the velocity 

information. No difference was found by using any of the three approaches. After 

analyzing the output files yielded from different parameter tuning and matching criteria, 

the author observes that there is a large data loss, on average about 20 %. Of particular 

interest is the percentage error in W velocity which should be on the order of 15 % as 

given in the test case information. The post processing script provides results which match 

roughly 53 % of all correct particles with a percent error of 15 %. The error can be 

decreased, but it would be at the expense of successfully matched particles. The question 

of whether it is really necessary to match the particles. In an experimental study there 

would be no “correct” data, so no matching routine can be performed. Since the research 

is about the assessment of the OpenPTV code, the author believed that a matching routine 

would be beneficial to provide the error for the particle positions and velocities. Due to 

the low matching success rate, the author wrote a script to obtain the velocity from the 

ptv_is. files to perhaps increase the match rate. Figure 42 shows the matching rate for the 

provided script, and Figure 43 shows the equivalent for the author’s script.  

Table 7 displays the average number of particles matched, as well as the errors for 

X, Y, Z, U, V, and W. Using the author’s script, a total of 28,730 particles with velocities 
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were found, and using the provided script the corresponding number is 24,796, out of a 

total of 47,345 based on the correct data.  

 

 

 
Figure 42: Matching rate for provided script 
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Figure 43: Matching rate for author's script 

 

 

 

 Both samples increase in successful matching as the epsilon is increased, with the 

difference being that the velocity script written by the author finds roughly 7 % more 

matches for all epsilons. 
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Table 7: Error and number of matches 

Metric Provided script Author’s script 

Error in X   [µm] 4.916 4.038 

Error in X [%] 0.3545 0.2608 

Error in Y   [µm] 4.961 3.775 

Error in Y [%] 0.3502 0.2485 

Error in Z   [µm] 8.369 7.840 

Error in Z [%] 0.6187 0.5531 

Error in U   [mm] 1.075 1.073 

Error in U [%] 8.9653 8.1657 

Error in V   [mm] 1.162 1.011 

Error in V [%] 6.4261 5.0193 

Error in W   [mm] 1.407 2.207 

Error in W [%] 15.0435 23.4375 

Number of Particles 24,796 28,730 
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The author’s script obtains about 7 % more matches which translates to roughly 

4,000 matches, and the errors for X, Y, Z, U, and V are lower. However, there is a 150 % 

increase in error in the W component error. Again, it is up to the analyst’s discretion which 

results have higher priority, and it must be kept in mind that these calculations are for 

statistical validation only, and have no bearing on how well the software calculates the 

desired metrics.  

Plots of the vector field for a particular frame are displayed below. Figure 44 shows 

the matched results using the provided post processing script. Next, Figure 45 displays the 

results for all particles in the frame using the same script. 

 
 
 

 
Figure 44: Matched vectors for provided script 
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Figure 45: All vectors using provided script 

 
 
 

One can easily notice that all vectors from X > 0.01 m were missed, but the 

matched vectors overlay precisely due to the relatively high accuracy. Figure 46 shows 

the matched vectors using the author’s script, and Figure 47 shows the full vector field for 

the frame. The result visibly looks slightly better, which suggests that the improvement of 

7 % seems to be correct. From the modified vectors, there are a total of 47,345 particle 

positions and velocities. Losing about 40 % of the data is a significant loss in information, 

but it has to be remembered that particle tracking velocimetry is a measurement technique 

to analyze the overall flow in the target volume. Based on the results, it seems that despite 

the 40 % loss of data, the spatial resolution of the results is not significantly affected, and 
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that the available data is sufficient for a quantitative statistical study of the simulated 

images.  

 
 
 
 

 
Figure 46: Matched vectors using author's script 
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Figure 47: All vectors using author's script 

 
 
 

5.1.5 Statistical steady state analysis 

In PIV, the results are presented in a structured grid stretched throughout the fluid 

domain, as shown in Figure 19. In order to calculate important flow characteristics such 

as vorticity or Reynolds stress, the individual particle vectors have to be averaged and/or 

interpolated to systematic positions in cross-sectional planes, i.e. x - y, y - z, x - z. As 

currently the OpenPTV consortium is not studying flows according to these 

characteristics, the author wrote a script in MATLAB to average all vectors in one frame, 

multiple frames, or the complete image sequence in order to obtain a three dimensional 

grid where the vectors are assigned to specific locations, called voxels. The grid can be a 

cube, or stretched in one or all of the three coordinate directions, similar to a mesh in CFD 
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simulations. The first grid size was chosen as 10 by 10 by 10 cubes inside the target 

volume. Figure 48 shows the averaged vector field with the provided script velocity, and 

Figure 49 shows the same for the author’s obtained velocity. 

 
 
 

 
Figure 48: Provided script result 

 
 
 



 

66 

 

 
Figure 49: Author's solution 

 
 
 

From a closer look, one can see that there are a lot of incorrect vectors in the 

velocity obtained by the provided script (PS). This trend is seen throughout the statistical 

steady state analysis. The author continued the analysis of the OpenPTV results by 

studying the vorticity behavior. In nuclear and mechanical systems, understanding the 

cause and strength of the vorticity is crucial. The author decided to use a finer grid in order 

to create smooth plots. A 20 by 20 by 20 grid size was chosen and the vorticity was plotted 

across the x – y plane at three different heights. Figure 50 shows the vorticity at the bottom 

plane (z = -0.0095 m) using the correct, author’s, and PS results. Figure 51 shows the 

vorticity close the center (z = -0.0005 m), and Figure 52 shows the vorticity at the top 

plane (z = 0.0095 m).  
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Figure 50: Vorticity at bottom plane 
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Figure 51: Vorticity at center plane 
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Figure 52: Vorticity at top plane 
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 It seems that in the bottom and center planes, the author’s result more closely 

matches the correct solution, and at the top plane the PS results match better. However, 

the overall behavior from the author’s results still matches that of the correct solution. The 

vectors in the particular plane are overlaid to gain a better understanding of the flow 

velocity. As a last piece of study of the synthetic images, the author plotted the streamwise 

velocity at different heights and at different cross sections in the streamwise direction. The 

heights are identical as the vorticity plots; Figure 53 shows the bottom plane, Figure 54 

the center plane, and Figure 55 shows the top plane. The results are overlaid so any major 

deviations can be observed easily. 

 
 
 
 

 
Figure 53: Streamwise velocity in x-y plane at bottom height 
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Figure 54: Streamwise velocity in x-y plane at center height 
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Figure 55: Streamwise velocity in x-y plane at top height 

 
 
 

Again, the author’s solution more closely matches the correct data than the PS 

solution. Since the simulated target area is at the left edge of the jet (from the top, or x – y 

plane), the streamwise velocity is expected to be small to zero going into the negative X 

direction, away from the jet. By the same logic, going closer to the jet (positive X) means 

that the streamwise velocity is increasing. One instance of the Reynolds stress tensor 

component 𝑢′𝑣′̅̅ ̅̅ ̅ was plotted in Figure 56 at the same cross sectional positions as the 

streamwise velocity. The plot shows that there are strong fluctuations going away from 

the jet stream until they level off at zero, as expected.  
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Figure 56: u'v' Reynolds fluctuations at various cross sections 

 
 
 

 The errors after averaging were computer to determine whether the averaging has 

an effect. Using grid sizes of 5x5x5, 10x10x10 and 20x20x20 cells the resulting errors for 

U, V, and W are displayed in Table 8: Errors after averaging. 
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Table 8: Errors after averaging 

Metric 
Provided script Author’s script 

5 10 20 5 10 20 

Error in U   [mm] 7.504 9.521 10.074 1.929 3.732 4.644 

Error in V   [mm] 10.948 14.529 21.988 1.973 3.462 6.856 

Error in W   [mm] 3.245 5.324 6.415 1.422 3.098 3.717 

 
 
 
 

 The errors in U and V are larger than compared with the results in Table 7, but 

surprisingly the error in W is lower. It was expected that the averaging changes the error, 

but the author expected an increase in all velocity component errors, and not a decrease in 

the out-of-plane vector which is expected to have the largest error. Note that as the grid 

size increases, the error increases which is expected due to the large number of particles 

not detected by the OpenPTV software and consequent lack of vectors in a lot of cells. 

  

5.1.6 Computational Fluid Dynamics (CFD) study  

As a bonus study the author tried to confirm the quantitative results with a 

computational fluid dynamics simulation. The geometry was rebuilt from the available 

information in [13], and five different mesh sizes were used in the simulation. Figure 57 

shows a plot of the mesh as well as the number of faces and cells. The total length is 1.06 
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m, the width 0.2 m, and the height 0.078 m. The inlet pipe was created as a 2 cm by 2 cm 

by 10 cm surface in order to ensure fully developed flow going into the large chamber.  

 
 
 

 
Figure 57: Mesh used for CFD 

 
 
 

 The five different mesh sizes had a different size mesh, namely 2, 3, 4, 5, and 6 

mm. The author used more than one mesh in order to determine if the solution is grid 

independent. After each simulation was done, the author used the maximum velocity as a 

reference and computed the percent difference between two consecutive mesh sizes. Table 

9 shows the mesh size, the maximum velocity, and the percent difference. 
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Table 9: Mesh size and percent difference in velocity 

Mesh Size Maximum Velocity [m/s] Difference [%] 

2 mm 0.17858 - 

3 mm 0.17117 4.15 

4 mm 0.16928 1.10 

5 mm 0.16588 2.01 

6 mm 0.16468 0.72 

 
 
 
 
  
 Since the differences are so small, it seems that either one of the solutions can be 

used as the grid independent solution. The author chose the finest mesh of 2 mm. The 

original standard images for the various test cases were done using transient LES 

simulations, however no time information was provided. Therefore, the author chose to 

run a steady state turbulent simulation with a k-epsilon turbulence model assuming 

constant density and three dimensional flow. The resulting streamline velocity at the 

center plane is shown in Figure 58 from a side view, and from the top in Figure 59.  
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Figure 58: Side view of slice showing streamwise velocity 

 
 

 
Figure 59: Top view of streamwise velocity profile 
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 A contour plot of the streamwise velocity from the correct data and from the 

author’s solution is presented in Figure 60. Note that this contour plot represents only a 

small fraction of the information in Figure 59, as the target area is only 2 cm by 2 cm of 

the complete 1.06 m by 0.2 m geometry. 

 
 
 

 
Figure 60: Streamwise velocity contour for correct data and author's solution 

 
 
 
 
 The magnitudes from the two figures match reasonably well, and the author’s 

script of the OpenPTV velocity reconstruction is very accurate in comparison to the 

correct data. Figure 61 shows a guess of where the target area might have been with the 

correct scale of the target area to the complete system geometry. 
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Figure 61: Velocity profile and target area from CFD 

 
 
 
 

 
Figure 62: Vorticity slice at center from side 
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 Since the vorticity was calculated previously and shown in Figure 50 through 

Figure 52, the author wanted to compare the results with the CFD results. Figure 62 shows 

the vorticity from a side view for a slice at the center plane, and Figure 63 shows the 

vorticity from above the system. 

 
 
 
 

 
Figure 63: Top view of vorticity 

 
 
 
 The author is unsure why the automatically set scale is at is it considering that the 

contrast of color in the figure is not noticeable, however the scale basically matches that 

of Figure 51 which confirms that the images are from an experiment with identical/similar 
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conditions and that the OpenPTV software correctly computed the velocity. The guessed 

target area is also plotted over the vorticity slice in Figure 64. 

 
 
 

 
Figure 64: Target area in vorticity plot 

 
 
 

 While the author was not able to determine the correct position of the target area, 

the results of the CFD simulation are very close to those obtained from OpenPTV and 

compared with the correct data, thus further validating the performance of the OpenPTV 

software. 
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5.1.7 Trajectories 

The OpenPTV code provides the Lagrangian trajectories of individual particles. 

For the assessment of the code there is not much information provided to verify the code’s 

ability to successfully reconstruct the trajectories; therefore the author did not focus much 

attention to this aspect of OpenPTV. An attempt to obtain an idea of the performance of 

the code is shown in Figure 65 and Figure 66 which show the trajectories with a minimum 

length of 50 from the OpenPTV output, and from the correct data (generated by the 

author), respectively. The OpenPTV code found 91 trajectories with a minimum length of 

50 points, while the correct data has 779 trajectories of this minimum length, yielding a 

success rate of only approximately 11.7 %. In the correct data, a total number of 988 

unique particles were found which yields 988 unique trajectories. With the author’s 

parameters, the OpenPTV code finds 1733 trajectories. It is thus clear that while the code 

is able to reconstruct and connect some of the “broken” trajectories, there are a lot of 

“additional” trajectories which are found due to the inability of the code to find all the 

links.  
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Figure 65: OpenPTV output for trajectories with length over 50 

 

 

 
Figure 66: Correct data for trajectories with length over 50 
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Figure 67 and Figure 68 show the complete trajectories for all frames from OpenPTV, 

and the correct data, respectively. 

 
 
 
 

 
Figure 67: OpenPTV - all trajectories 
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Figure 68: All correct trajectories 

 
 

 

The author is convinced that under different conditions, i.e. laminar steady state 

flow, the OpenPTV software will more successfully reconstruct the complete particle 

trajectories. Tuning the parameters during the image processing and tracking procedure 

can improve the number of reconstructed trajectories. An example of a very successful 

trajectory reconstruction can be found in Dr. Liberzon’s study of the aorta mentioned 

section 1.5 [14].  

 
 
 
 
 
 



 

86 

 

5.2 Twin-jet experiment 

 As mentioned in section 4, the twin jet geometry was studied using three different 

approaches, namely Laser Doppler Velocimetry, 2D-PTV as well as with the OpenPTV 

software.  

 

5.2.1 2D analysis 

 Before the three dimensional performance of the OpenPTV code is tested, the 

author gathered data using only one camera looking straight at the jets (center), and from 

the side of the jets (rotated). The images were analyzed using the OpenPTV code as well 

as the lab’s 2D-PTV code. Additionally, a Laser Doppler Velocimetry study was done for 

the center configuration with measurements taken at multiple locations.  

  

5.2.1.1 Laser Doppler Velocimetry 

 The traverse system (partly seen in Figure 22) which holds and moves the cameras 

was moved to obtain data through a large part of the length and width of the tank. For the 

present study, only data from 48 mm to the left and to the right and 50 mm below and 

above the center of the target area is used.  

 Measurements within this specified area were taken at 45 mm below the center and 

at 50 mm above the center of the target area. 21 points ranging from -48 to 48 mm in the 

X direction were taken, and an additional 6 measurements were taken at 50 mm, which 

are called Main points in Figure 69 and correspond to points at the left and right edges of 

the jets as well as in their centers. The left jet outlet begins at -24.5 mm and end at -10 
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mm, while the right jet outlet begins at 12 mm and ends at 26 mm. The streamwise velocity 

is plotted and follows the expected parabolic behavior at the lower measurement, and then 

levels out between the two vertices which indicates mixing of the jet streams. The velocity 

was non-dimensionalized by the maximum velocity obtained, which for these 

measurements was 1.42 m
s

.   

 
 
 

 
Figure 69: LDV streamwise velocity 

 
 
 
 
 The streamwise velocity profile is parabolic for each stream at the lower 

measurement location as expected. Note that no measurement was made in between the 
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jets for the Main points readings, and MATLAB linearly interpolates the values in between 

the two recorded values.  

 
 
 

 
Figure 70: LDV lateral velocity 

 

 

Figure 70 shows the corresponding non-dimensionalised lateral velocity. In the region 

between the two jets the profile is not yet developed for the lower reading, but clearly 

shows the expected behavior at the higher measurement. The streamwise and lateral 

fluctuations are also plotted for comparison in Figure 71 and Figure 72 respectively. 
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Figure 71: Streamwise fluctuation 

 
 
 

 
Figure 72: Lateral fluctuation 
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5.2.1.2 2D - Particle Tracking Velocimetry 

 The same images which were used in the OpenPTV study, were also processed 

using the labs two dimensional code. For comparison purposes, only three sets of data 

were used, namely the center view looking at the jets, and the rotated view once when the 

laser was directed at the back jet (further away from camera), and once when it was 

illuminating the front jet (closer to camera).  

 

1. Center View 

Figures Figure 73 and Figure 74 show the streamwise and lateral velocity contour plots. 

In Figure 73 one can also observe the cross sectional velocity at the two cross sections 

studied with LDV, and at a higher location. 

 
 
 

 
Figure 73: Streamwise velocity center 
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Figure 74: Lateral velocity center 

 
 
 
 One can clearly see the two jet streams separately right at the outlet, and then the 

mixing phenomena about 50 mm above the outlet. Moreover, the latter plot shows that the 

particles to the left of the stream are drawn towards it, and the same on the right where the 

velocity direction is reversed. 

 
 

2. Back jet  

Figures Figure 75 and Figure 76 display the velocity behaviour at the back jet. The 

streamwise velocity was found to be higher than the result obtained from the center view, 

but still below the LDV measurement. 
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Figure 75: Streamwise velocity back jet 

 
 
 

 
Figure 76: Lateral velocity back jet 
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3. Front jet 

Figures Figure 77 and Figure 78 show the corresponding plots for the jet closer to the 

camera. The obtained results will be used to assess the performance of the three 

dimensional velocity reconstruction. 

 
 
 

 

 
Figure 77: Streamwise velocity front jet 
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Figure 78: Lateral velocity front jet 

 
 
 

5.2.1.3 OpenPTV 

 1. Pre-processing and calibration 

After the images were converted to the required .tiff format and renamed, the 

author performed a calibration of the cameras, which although the code is used for 2D, is 

still necessary as the code needs to know where the origin of the target area is, and how 

much a displacement of 1 pixel translates to a displacement in world coordinates. The 

calibration was performed for the same three sets of data as used in the 2D-PTV code, and 

matched the expected orientation information, including the distance between the two jets 

from the rotated view.   
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 2. Tracking procedure 

 The numerous parameters in OpenPTV allow the user to vary the resulting output 

data very significantly. In initial runs the author kept the number of detected particles 

similar to the standard PIV test case study. However, as the 2D-PTV code attempts to use 

all particles in each frame, the OpenPTV parameters were set to detect as many particles 

as possible. This was done by lowering the grayscale threshold and reducing the expected 

size of each particle. Figure 79 shows the detected particles in one frame for the front jet, 

and Figure 80 shows all detected particles in all frames overlaid in one image. 

 
 
 

 
Figure 79: Detected particles in one frame for front jet study 
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Figure 80: All detected particles in all frames for the front jet data 

 

 

One can see that the laser light illuminated the inside of the jets as well, and that 

OpenPTV was able to detect those particles. Furthermore, the left and right side of the 

image in the latter figure have black spots which indicate that no particles were found 

there, and it is the author’s presumption that the code correctly identifies this region as 

relatively stagnant due to the lack of relative motion of the particles. Roughly one third of 

the detected particles were linked to each other.  
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 3. Results 

 The results obtained from the OpenPTV do not compare well with the LDV and 

2D-PTV data.  

 Frontal view - center  

Figure 81 shows the streamwise velocity normalized by the maximum streamwise velocity 

magnitude. Despite the author’s attempts to improve the results by varying the parameters 

and the grid size, the two jet streams are not easily detectable, even with a coarse scale. 

 
 
 

 
Figure 81: Streamwise velocity at center view 
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 The result for the lateral velocity, shown in Figure 82 is slightly better as one can 

validate that the behavior matches that of the LDV and 2D-PTV, however the contours 

are not clearly defined. 

 
 
 

 
Figure 82: Lateral velocity at center view 

 

 
 
 The left side of image shows that the particles are being drawn to the right, while 

the reverse occurs on the right side. Corresponding cross sectional velocities at the 

previously used heights above the jet are plotted in Figures Figure 83 and Figure 84. Not 

only can one not see the expected humps representing the two streams, but there are also 

velocities found to the sides of the jets which is not physically accurate. 
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Figure 83: Lateral velocity at cross sections 

 

 
Figure 84: Streamwise velocity at cross sections 
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 For comparison with the LDV results, the U and V fluctuations are also plotted in 

Figure 85. 

 
 
 

 
Figure 85: U and V fluctuations at cross sections 

 
 
 

 Rotated view - back and front jets 

The change of view did not improve the results in a noticeable way, but in Figure 86 

which shows the streamwise velocity, one can see a shape, which the author assumes, 

resembles the side view of the jet streams. The lateral velocity plots and fluctuation results 

were not matching the LDV and 2D-PTV data well, and were thus omitted from this 

document, but can be provided at request. For informational purposes, the grid size used 

to average the vectors is 100 cells in the X direction, and 80 cells in the Y direction.  
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(a) 

 
(b) 

Figure 86: Streamwise velocity from (a) back and (b) front jet 
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 After consultation with one of the members of the OpenPTV consortium, it was 

confirmed that the set-up of the equipment is not suitable for the OpenPTV code, or 

particle tracking in the literal sense. The laser used to illuminate the particles, shoots pulses 

at synchronized times for only 2 of 3 frames; between the first two frames the time interval 

is 2 ms, however between the second and third frames it is 33 ms. This discrepancy is too 

large for the code to handle, as the particle can move roughly 15 times farther during the 

longer interval. The concept of having this difference in time delay, is referred to as frame 

straddling, and is used in most PIV studies, as well as some PTV codes like the 2D-PTV 

code in the lab at Texas A&M. The author attempted to compensate for this discrepancy 

by only using the frames with 2 ms between them, however the results are not very good 

as shown in this section. A consequence of the frame straddling is that the tracking 

algorithm performs very poorly, as it is based on a kinetic model and not cross-correlation 

like PIV codes and the labs 2D-PTV code. Moreover, no trajectory reconstruction can be 

performed at these conditions, as particles will most likely leave the target area during the 

33 ms.  

In order to avoid this problem in the 3D study, the author used a halogen lamp and 

a continuous laser which provide continuous light, as was modeled in the standard test 

case data, and as used by the other members of the OpenPTV consortium. 
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5.2.2 3D study 

In the first attempted configuration in which the laser was positioned to the side of 

the tank, no good data was obtained. When the laser was moved to the top of the tank, the 

obtained images looked much better in regard to brightness and focus. However, the 

unforseen difference in camera parameters among all three cameras has resulted in very 

difficult conditions for the OpenPTV software to perform to its potential. 

 The first step in the analysis is the calibration. Figure 87 shows the output of the 

sortgrid subroutine in OpenPTV which attempts to position the known target points in 

their respective image coordinates for each view. Despite a tedious trial-and-error process 

in which the author tried to match the crosses with the centroids of the points, the 

orientation setting could not be improved. After a careful investigation of the calibration 

images using ImageJ, it was determined that there is not enough grayscale contrast 

between the target points and the (rougher than expected) surface of the calibration target. 

For future experiments the author recommends designing and building a target with white 

target points printed on a black target, preferable made of some kind of metal and a CNC 

machine with very high accuracy. As the reconstructed position of each particle is directly 

related to the accuracy of the camera calibration, one needs to use a target with easily 

detectable points from all views. A possible alternative to the current design, one could 

print points on a transparency and laminate it to prevent water damage. 
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Figure 87: Bad sorting of target points for left camera 

 
 
 
 One can also observe that point 22 which represents the origin of the calibration 

target was not found. A quick analysis of the calibration images in the popular ImageJ 

showed that the target points have a very similar grayscale to the surface of the target. This 

means that either the current target has to be painted black to lower the surface grayscale, 

a new target with larger target holes will have to be manufactured, or that the images will 

have to be pre-processed such that the points can easily be detected. The orientation 

subroutine yielded a calibration with quite large errors, as seen in Figure 88. 

 
 
 



 

105 

 

 
Figure 88: Bad orientation for right camera 

 
 
 
 
 The unsatisfactory calibration is expected to result in high reconstruction 

inaccuracies and significant mismatching of particles. An epipolar geometry analysis was 

performed to determine how much the bad calibration will affect the results. Figure 89 

shows one particle which was seen in the left and right cameras, but not in the center 

camera.  
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(a) 

 
 

 
(b) 

 
 
 

 
 (c) 

Figure 89: (a) left, (b), right, and (c) center camera 
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 In (a) a particle is chosen which creates a yellow line in the other two views. Then 

the view is changed to the right camera (b) where the same particle is selected by the user 

based on the distance to the epipolar line and an educated guess of which particle on the 

line is the same particle in (a). When the particle is chosen in the right view, the blue line 

is created in the left and center views. Looking at (c), one can not see a particle in the 

vicinity of the intersection between the two epipolar lines. This indicates that no match 

could be made, and thus this particle is either matched only in two views, or lost 

completely. Note that the epipolar visualization is for visualization purposes only, and 

does not have to be performed for analysis. 

 To show preliminary results, the author ran the OpenPTV software to determine 

whether any useful results could be obtained despite the unfavorable conditions. Figure 

90 shows the detected locations of all particles throughout the image sequence for the left 

view. The jet stream is clearly visible which indicates that the particles detected in the left 

view should yield somewhat useful results. 
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Figure 90: Left view detected particles 

 
    
 

 After a post-processing analysis, the data obtained from the current images and 

using the bad calibration parameters has resulted in unusable results. The grid averaged 

vector field using a grid size of 10 by 10 by 10 volumes is shown in Figure 91. Only 11 

different vectors were found and they point in directions which are physically inconsistent 

with the flow. Similarly, the vorticity plot in Figure 92 is not very informative and seems 

to be incorrect compared with theory and the 2D-PTV result. 
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Figure 91: Bad velocity result 

 
 
 

 
Figure 92: OpenPTV vorticity result 



 

110 

 

 The only promising result from the preliminary analysis is the trajectory plot in 

Figure 93. A small, but still useful number of trajectories were reconstructed and point 

upward in the direction of the streamwise velocity as expected.  

 
 
 

 

 
Figure 93: OpenPTV preliminary trajectories 

 
 
 

 As the calibration and image quality improve, the author expects to obtain much 

better results, and potentially see particle trajectories in the jet streams which merge 

indicating that the two jets mix. 
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Unfortunately, even after exchanging the equipment which provides continuous 

illumination and identical monochrome cameras, it was not possible to obtain good data 

to compare with the LDV and 2D-PTV study. Figure 94 shows the implementation of a 

halogen lamp, as well as a continuous laser to provide the required illumination. 

 
 
 

          
Figure 94: Halogen lamp and continuous laser 

 
 
 

 Inexperience with the cameras led to a reduced quality in the images in the two 

side cameras, however it was still better than with the color camera previously used. Figure 

95 shows the resulting blurriness in the images which does not allow for correct particle 

identification, or tracking. 
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Figure 95: Blurry particles 

 
 
 

 No useful velocity plots could be obtained with the data, however the OpenPTV 

code was able to reconstruct 310 trajectories from the flow, as shown in Figure 96. 

 
 
 

  
Figure 96: Trajectories from 3D twin jet study 
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 Taking a close look at the vertical axis one can see that the OpenPTV code suggests 

large out-of-plane motion in the flow, which would be indicative of the mass of fluid 

which is pulled towards the jet stream by the negative pressure. This is expected to happen 

primarily at locations close to the surface of the jet surface, and to an increasingly smaller 

extent further up the stream. Chaotic turbulent motion is expected close to the jet surface 

as well as in the merging region of the jets where the separate masses of fluid hit each 

other and mix, before they begin exhibiting similar behavior to single jet flow. With better 

equipment and more time the author expects to capture a better image and representation 

of the flow characteristics and potentially match the results with the LDV, PIV, and CFD 

results.  
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6. AUTHOR’S CONTRIBUTIONS 

6.1 Calibration – based reconstruction 

The OpenPTV software uses a geometric reconstruction according to the Tsai 

camera pinhole model. Before the images can be processed, the user has to obtain certain 

information about the system geometry, such as the focal length, thickness of the glass, 

refractive indices of all media between the camera lens and the tracer particles. Often in 

experiments it is very difficult or impossible to obtain some of these parameters due the 

complexity of the system. In addition, some geometries do not allow the insertion of a 

calibration target and make the necessary measurements, for example a (model of a) fuel 

rod bundle. A simple and very practical alternative calibration and reconstruction 

technique is to use an algebraic mapping function to relate the three object coordinates X, 

Y, and Z to the two pixel coordinates x, and y [16]. This technique was proposed by Soloff 

in 1997 [17]. The idea is to take images of calibration target points with known coordinates 

in three dimensional space, and select those points in the images using a software to obtain 

the pixel coordinates. The larger the number of points selected, the higher the accuracy of 

the mapping. The suggested function is a polynomial of order three in the X and  Y 

directions and order two in the Z (out of plane) direction as follows: 
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where x  is one of the two pixel coordinates, and 1 2 3, ,x x x  are the respective object space 

coordinates. For each camera there will be two such equations with its own 18 parameters. 

This means that in order to work with 3D data, one will obtain a minimum of 72 separate 

coefficients, as at least two cameras are needed each with two equations. Due to the 

expected error in the reconstruction of the out of plane component, it is advised to use a 

high number of selected points in the calibration phase. The coefficients are computed 

through a least-squares algorithm. The author wrote a calibration script using this 

technique and verified it with data from another case provided by the Standard PIV 

challenge. Figure 97 shows two calibration images, one from the left and one from the 

right (the center camera image was left out for formatting reasons): 

 
 
 

      
(a)                                                                  (b) 

Figure 97: Left and right calibration images of a sample test case 
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 In this set, instead of using a three dimensional calibration target, there is only one 

plane which is moved to 5 different depths (Z coordinates). Each image has to be loaded 

and processed separately in order to obtain the appropriate coefficients for the 3D 

reconstruction. Figure 98 through Figure 100 shows the point selection screen in the 

author’s MATLAB script. 

 
 
 

 
Figure 98: Left calibration image 
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Figure 99: Center calibration image 

 
 
 

 
Figure 100: Right calibration image 
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 In this test case, 49 points were selected from each of the 5 planes for each of the 

3 cameras. This results to a total of 245 selected points per camera to be used for mapping 

using a least-squares algorithm. If desired, the number of points as well as the number of 

planes can be modified. The output of the script are arrays holding the coefficients for the 

mapping functions, and can be used for the epipolar constraint. Figure 101 shows the 

output of the coefficients for the x directions of the left camera. 

 
 
 

 
Figure 101: Coefficients for mapping function 

  

  
 
 

 As a quick validation, the author chose 3 points with known three dimensional 

coordinates, and matched the predicted results with the output of the mapping functions. 

For this particular case the errors in x, and y directions were 0.929 and 0.624 pixels, 
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respectively. This might seem a relatively high error, but one must keep in mind that the 

images are 256 by 256 pixels and it is impossible to select the exact position of the target 

point centroid which might lie at the edge of a pixel or elsewhere on the pixel resulting in 

non-integer pixel values. Figure 102 shows a case where the point is selected, but clearly 

does not lie at the centroid of the particle. 

 
 
 

 
Figure 102: Misplaced centroid location restricted due to pixel coordinate 

 
 
 

 With a larger image size, this restriction will potentially be mitigated, but the added 

accuracy will result in high computation time and it is up to the user whether to increase 
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the number of selected points / planes, use a larger image size, or use a particular least-

squares method, or accept the result.  

 In order to use this technique in the OpenPTV software, the reconstruction 

algorithm will have to be changed according to [16], which fundamentally means to solve 

the inverse of the mapping function with a non-linear least-squares algorithm. The test 

case 352 images analyzed in this research were studied using the Tsai model, the Soloff 

model, as well as the Hall model [18]. Table 10 shows the reconstruction error of the 

calibration points for the test case, and Table 11 shows the reconstruction error for the 

seeded particles 

 
 
 

Table 10: Reconstruction error of calibration points 
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Table 11: Reconstruction error for first frame of test case 352 (273 particles) 

 

 
 
 

 The error for the Tsai model is roughly three times higher than the Soloff model 

using 75 marker points. This means that the reconstruction of the object space coordinates 

of all particles will potentially be three times more accurate, and consequently the resulting 

velocity will be three times more accurate. 

 

6.2 Grid averaging 

 The understanding of the author in regard to the current application of OpenPTV 

is that the consortium performs Lagrangian statistics studies, meaning that the interest lies 

in the Lagrangian field. In such studies there is no need to obtain averaged velocity vector 

results on structured grids to determine the average flow in a particular section of the flow 

domain. In contrast, PIV studies are used for the exact purpose of obtaining average 

vectors on specific grid locations, which potentially provide a better understanding of the 

flow distribution depending on the desired information or system behavior expectations. 

Fundamentally, grid averaging refers to loading the particles from all frames in one plane 
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(2D) or volume (3D) and selecting a certain size for the interrogation cells in which any 

present particle vectors will be averaged and assigned to the “cell” vector. 

 Given a steady state flow with a sufficiently high image density to cover the whole 

flow domain, but still within the available range for individual particle tracking, OpenPTV 

can be used to not only track particle trajectories, but using the author’s grid averaging 

script, the user can obtain averaged vector results with a specified grid size. As in CFD, 

the larger the grid size or mesh, the higher the resolution of the results and the “smoother” 

the results. Figure 103 shows the instantaneous vector field of the first frame as computer 

by the author’s velocity script, and Figure 104 and Figure 105 show the grid averaged 

result. 

 

 

 
Figure 103: Instantaneous velocity 
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Figure 104: Grid averaged result 

 

 

 



 

124 

 

 
Figure 105: Better view of averaged grid (from top) 

 
 
 

 Looking at Figure 105 one notices some empty cells (regions). These empty cells 

indicate that no particle was found within the cell volume. Only one frame was used to 

generate the above figures, and considering the lower image density (compared to PIV) it 

is expected that one or more cells will be empty.  

 The grid allocated the averaged vector magnitudes and directions in the center 

position of each cell. If desired, a weighted averaged can be used instead and will only 

require a brief modification to the script. This grid is meant to both space and time average 

the information for studies like the determination of Reynolds stress components at 

specific locations.  
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7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

 Photogrammetric studies of flow distributions are becoming increasingly popular 

for various applications in the field of natural and applied sciences. As such, the 

development of more stable, accurate algorithms and softwares to perform three 

dimensional particle tracking velocimetry is gaining in interest and financial support. One 

3D PTV code which is well developed, but free for all to use and contribute to, is 

OpenPTV. The original code was written and tested at ETH Zurich, and now has been 

released under open source licenses by what has now become the OpenPTV consortium, 

a collection of academic institutions which perform research in the field of experimental 

fluid mechanics.  

 The Laser Diagnostics Multiphase Flow Laboratory at Texas A&M University 

would like to become a new member of the consortium and help develop a better software. 

As an initial step, the author decided to provide the consortium with validation and for this 

purpose used available benchmark test data from the Standard PIV images created by the 

Visualization Society of Japan. The OpenPTV code was tested in regard to particle 

detection, particle position reconstruction, particle velocity reconstruction, as well as 

individual particle trajectory reconstruction. The performance of the code for each of these 

metrics is promising, and possible improvements were discovered.  

 As a second trial of validation, experimental data from the available twin-jet 

facility in the lab was gathered and analyzed using Laser Doppler Velocimetry, 2D-PTV 

and OpenPTV.  
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 As a direct contribution to the OpenPTV consortium and the Laser Diagnostics 

Multiphase Flow Laboratory, the author wrote a script which performs the necessary 

calibration in a much more practical, efficient, and accurate manner than the current 

OpenPTV software. The results can be improved in accuracy by approximately 300 %, 

while the experimental set-up is simplified by mitigating the need to make measurements 

of focal length, camera angles, thickness of glass, or knowledge of individual media 

refractive indices. In addition, a script to ensemble average all vectors for statistically 

steady-state (or PIV) study was written for post-processing purposes and can be used to 

compute vorticity, and Reynolds stress. 

 

7.2 Future work 

 The next step in the improvement of the OpenPTV code is to implement the 

author’s calibration technique, and to expand it to also perform the reconstruction of the 

object space coordinates. Moreover, the interface of the code can be improved, and bugs 

which cause consistent crashes have to be removed in order to have a more stable working 

version. A possible direct collaboration with the various groups involved in the OpenPTV 

consortium should be considered, due to what appears to be similar interests among 

several groups.   
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