
SENTIMENT-BASED CLASSIFICATION OF TWEETERS AND UNIVERSITY

PROGRAMS

A Thesis

by

BOLUN HUANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Narasimha Reddy
Committee Members, Guofei Gu

Srinivas Shakkottai
Head of Department, Chanan Singh

August 2014

Major Subject: Computer Engineering

Copyright 2014 Bolun Huang

ABSTRACT

The rapidly growing World Wide Web (WWW) is no longer a passive information

provider. Nowadays, Internet users themselves have become contributors to the

WWW. A lot of user generated data, along with non-user-generated data, make

our world an informative, however, perhaps over-informed society. The increasing

amount of unorganized, disordered, unstructured, or even randomly generated data

drove the momentum of big data analysis, aiming to discover and learn the hidden

patterns behind the data. In this thesis, in particular, we look at two problems of

mining knowledge from data.

In the first project, we are trying to classify “democrats” and “republicans” in

Twitter. We first propose a sentiment-based classification model to classify “democrats”

and “republicans”, with the aim to address the problem that conventional quantita-

tive features, such as tweet count, follower-to-following ratio, election tweet count,

cannot reflect the opinion alignment of tweeters. Therefore we utilize sentiment

scores over multiple topics as our feature vector in the classification model. We in-

novatively proposed an automatic topic selection model to learn those distinguishing

topics, making the sentiment feature selection domain independent. However, the

sentiment-based classification model is not doing much better than non-sentiment

model. Given the fact that sentiment-based classification model is not doing well

enough, we propose using social relationship graph information to adjust our senti-

ment vectors. The graph-adjusted sentiment model achieves an accuracy higher than

80 percent in classification. What’s more, we deploy a completely graph-based model,

Belief Propagation (BP) model on the social graph, which achieves a prediction accu-

racy higher than 85 percent. We conclude that the effect of social relationship graph

ii

is more important than sentiment of tweets for classifying users into “democrats”

and “republicans”.

In the second project, we propose an alternative and new way to rank graduate

schools using algorithms, instead of using qualitative surveys as U.S. News does.

Based on the assumption that “schools tend to hire PhD graduates from better or

peer schools” to become their faculty members, we propose deploying link-based

ranking algorithms on the “hiring graph” among universities. We refine PageRank

(PR) algorithm and Hyperlink-induced Topic Search (HITS) Algorithm by taking

the edge weight into consideration, as our own way to rank graduate programs. In

order to validate our approach, we collect two separate data sets to construct the

“hiring graph”, faculty data in top 50 Computer Science (CS) programs and faculty

data in top 50 Mechanical Engineering (ME) programs across the United States. By

comparing our new rankings with U.S. News ranking, we discover that some programs

are either under-ranked or over-ranked by U.S. News. We also conduct extensive data

analysis on our data, revealing a lot of interesting patterns and cases behind the U.S.

News ranking. Finally, we conduct sensitivity analysis on each proposed algorithms

to see how sensitive they are in response to changes in the “hiring graph”.

iii

DEDICATION

To my mother,

and my father.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Reddy, and my committee mem-

bers, Dr. Gu and Dr. Shakkottai, for their continuous guidance and brilliant help

during the course of my research.

I would also like to thank my father and my mother for their love and support

during my graduate study. Without their love and support, I would never come this

far.

I would like to thank Vandana Bachani for her brilliant help at the beginning of

my first project.

Thanks also to my friends and colleagues during my stay in Texas A&M Univer-

sity. I would like to thank Srihasha Madala, Xin Wang, Abhishek Jain and Pradipta

Bose for their support and help. I would also like to thank my colleagues in Dr.

Reddy’s research group, Zhiyuan, Allen, Sangwhan, Sheng and Shyam for their great

helps in the course of my research.

Finally, I would like to thank my mentor in Flurry Inc, Soup Ranjan, for his great

guidance in my internship project.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Sentiment-based User Classification in Twitter 1
1.3 Algorithmic University Program Ranking 2

2. SENTIMENT-BASED USER CLASSIFICATION IN TWITTER 3

2.1 Introduction . 3
2.2 Data Set . 4

2.2.1 Data Description . 4
2.2.2 Social Relationship Graph . 8

2.3 Our Approach . 8
2.3.1 Sentiment Analysis Model . 9
2.3.2 Automatic Topic Discovery 11
2.3.3 Decision Tree Classification 17
2.3.4 Belief Propagation . 23

2.4 Evaluation Methodology . 25
2.4.1 Cross-Validation . 25
2.4.2 Accuracy . 25

2.5 Results . 26
2.5.1 Does Automatic Topic Selection Work? 26
2.5.2 Does Sentiment Matter? . 28
2.5.3 Does Social Relationship Graph Matter? 29
2.5.4 Does Belief Propagation Work? 30

vi

2.6 Conclusion . 32

3. ALGORITHMIC UNIVERSITY PROGRAM RANKING 34

3.1 Introduction . 34
3.2 Data Set . 35

3.2.1 Data Description . 35
3.2.2 “Hiring Graph” . 38

3.3 Our Approach . 39
3.3.1 PR-based Algorithms . 40
3.3.2 HITS-based Algorithms . 42

3.4 Evaluation Methodology . 44
3.4.1 RankDistance . 45
3.4.2 Sensitivity Analysis . 45

3.5 Results . 46
3.5.1 Top50 CS . 47
3.5.2 Top50 ME . 66

4. CONCLUSION AND FUTURE WORK 75

REFERENCES . 77

APPENDIX A. UNIVERSITY ABBREVIATIONS 81

vii

LIST OF FIGURES

FIGURE Page

2.1 Data Pre-processing Procedures . 4

2.2 Distribution of Tweet Volume . 7

2.3 Sentiment Score Distribution of HashTags 15

2.4 2-Level Social Relationship Graph . 23

2.5 Result of Belief Propagation Model 32

3.1 Hiring Graph in CS Data Set . 39

3.2 Ranking Divergence of CS Programs Compared to U.S. News 51

3.3 Distributions of Years in Top50 CS Data Set 55

3.4 Ranking Divergence of CS Programs Compared to U.S. News (1995-
2014) . 56

3.5 One-level Neighbouring Graphs in CS Data Set 60

3.6 Sensitivity Graphs on CS Data Set 64

3.7 Ranking Divergence of ME Programs Compared to U.S. News 67

3.8 Distributions of Years in Top50 ME Data Set 70

3.9 Ranking Divergence of ME Programs Compared to U.S. News (1991-
2013) . 71

viii

LIST OF TABLES

TABLE Page

2.1 Filtering Keywords . 5

2.2 High Volume Tweeters . 6

2.3 Sample Tweets of IBumbybee (“Republican”) 6

2.4 Sample Tweets of MsNatTurner (“Democrat”) 7

2.5 Top 78 HashTags . 14

2.6 HashTag Statistics . 16

2.7 Comparative Result A for Automatic Topic Selection 27

2.8 Comparative Result B for Automatic Topic Selection 28

2.9 Comparison between Sentiment Features and Non-sentiment Features 29

2.10 Result of Graph-adjusted Sentiment Classification Model 30

2.11 Result of Belief Propagation Models 31

3.1 Data Format Sample . 37

3.2 Algorithms and their Abbreviations 47

3.3 Results on Top50 CS Data Set . 48

3.4 Results on Top50 CS Data Set (1∼25) 52

3.5 Results on Top50 CS Data Set (26∼50) 53

3.6 Results between Recent Years and Earlier Years on CS Data Set . . . 56

3.7 Rank Difference Comparison on CS Data Set 57

3.8 Incoming Neighbours of Harvard in CS Data Set 61

3.9 Incoming Neighbours of Yale in CS Data Set 62

ix

3.10 Average Sensitivity Bounds of all algorithms on CS Data Set 63

3.11 Results on Top50 ME Data Set . 67

3.12 Results on Top50 ME Data Set (1∼25) 68

3.13 Results on Top50 ME Data Set (26∼50) 69

3.14 Results between Recent Years and Earlier Years on ME Data Set . . 71

3.15 Rank Difference Comparison on ME Data Set 72

3.16 Average Sensitivity Bounds of all algorithms on ME Data Set 73

A.1 Mapping between Universities and their Abbreviations in this thesis—1 82

A.2 Mapping between Universities and their Abbreviations in this thesis—2 83

x

1. INTRODUCTION

1.1 Motivation

Data seems to be dominating our world now. Most of the data is randomly

generated by users. Much of the data is disordered, unstructured and unorganized.

However, patterns of knowledge widely exist behind data. In the recent years, sci-

entists and engineers have been paying lots of effort on effectively managing data

and revealing the hidden patterns behind the data. In order to approach this goal,

we extensively utilized machine learning, data mining, sentiment analysis, pattern

recognition and knowledge discovery techniques and algorithms in order to reveal

the hidden value behind the data. Particularly, we look at two problems on mining

knowledge from data.

1.2 Sentiment-based User Classification in Twitter

The first problem we are interested in is to classify Twitter users according to their

political point of view. More specifically, by working on a labelled data set obtained

from Twitter Streaming data [1] crawled during the period of 2012 US Presidential

Election, we are trying to separate politically active tweeters as republican and demo-

crat according to their political leanings . The motivation is that we believe sentiment

related feature set could perform better than non-sentiment features set in this par-

ticular problem. In order to reveal the subjectivity within the Election alignment, we

propose using sentiment of topics, based on the hypothesis that different classes have

different opinions on many topics. As we know, the performance of many classifica-

tion models depends on the choice of features vectors. In this project, innovatively,

we want to identify distinguishing features automatically based on statistical distri-

bution of sentiments on a particular topic. We propose a scheme to examine and

1

rank the degree of polarity of topics, aiming to find those most distinguishing topics.

In addition, in order to improve the sentiment-based classification model, we took

advantage of social relationship graph to adjust the sentiment feature vectors. Fi-

nally, we deploy a completely graph-based model—Belief Propagation (BP) model,

given the observation that “tweeters with same political association tend to follow

or to be followed by each other” from the social graph.

1.3 Algorithmic University Program Ranking

In the second project we are trying to develop our own way to rank graduate

programs in a particular field. U.S. News ranks each graduate program across the

USA based on both input from program deans and some other statistical indica-

tors. We proposed an alternative and simple way to rank graduate programs using

algorithms on what we call “hiring graph”. Our motivation is based on a simple as-

sumption that “universities tend to hire PhD graduate students from better or peer

universities”. In order to validate our approach, we collected two sample datasets:

faculty data from top 50 Computer Science (CS) programs in the USA listed in the

U.S. News, and faculty data from top 50 Mechanical Engineering (ME) programs

in the USA listed in the U.S. News. We only collect two pieces of information for

each faculty: 1) Which university did they graduate from; 2) In which year did they

graduate from their graduate school. Once we have the data, we run experiments to

test HITS-based algorithms, PR-based algorithms on the “hiring graph” and let the

algorithms learn the rankings of the program automatically. Besides, by comparing

our rankings and the U.S. News ranking, we observe a lot of interesting patterns and

facts behind the U.S. News ranking, concluding that U.S. News might either over-

rank or under-rank some of the programs. Finally, our sensitivity analysis shows how

sensitive our algorithms are in terms of changes in the “hiring graph”.

2

2. SENTIMENT-BASED USER CLASSIFICATION IN TWITTER

2.1 Introduction

Twitter, a popular social networking platform, has been attracting lots of research

attention in the recent years. Twitter Streaming API [1] provides one percent of its

entire data (“firehose”) to the public for free, making data mining research on online

social media possible. Twitter REST API [2] provides interfaces for collecting more

personalized information of tweeters, making in-depth analysis possible. A typical

example of Twitter analysis is that much research has been done on fighting against

Twitter spammers. Amleshwaram et al in [3] proposed using a number of preselected

quantitative features to separate twitter spammers from benign users, achieving a

classification accuracy as high as 90 percent. In [4] Yang et al proposed a relationship

graph based inference model on Twitter, also trying to separate spammers from ordi-

nary Twitter accounts. Another research topic on Twitter is analyzing and revealing

political election trends and results, often with the technique called “sentiment anal-

ysis” [5]. For example, in [6], Metaxas and Mustafaraj discussed how Twitter affects

the Election progress and in what degree the Twitter trend reflects the offline Elec-

tion result. Wang et al, in [7], developed a real-time system to analyze the sentiment

characteristic of tweets during the 2012 US Presidential Election period, using Naive

Bayes model on unigram features to predict the tweets’ favorability. Choy et al, in

[8], conducted statistical analysis on tweets during Singapore Presidential Election

and compared their prediction based on their model to the actual result. Tumasjan

et al, in [9], proposed a sentiment analysis model to predict German Presidential

Election.

The previous election tweets analyses mainly focused on using statistical and

3

demographical analysis to “predict” or “conjecture” the result of election. In this

project, we would like to answer the following question: who is supporting which

party or candidate. Unlike [6] and [7], we pick a different angle of view: can we

classify followers of different political parties based on their tweets? We propose to

employ sentiment analysis to answer this question.

2.2 Data Set

2.2.1 Data Description

2.2.1.1 Labelled Users

In our data set we have 393 labelled tweeters in total. All these tweeters are

relatively active campaigners, either supporting Democrat or Republican candidates

during the 2012 US Presidential Election. All these users are still active after the

2012 US Presidential Election. We collected data using Twitter Streamming API [1]

during the 2012 US Presidential Election period, from October 01, 2012 to November

06, 2012.

Figure 2.1 shows the procedures employed in converting Twitter Streaming Data

to our set of labelled users. We will explain the entire procedures step by step.

Figure 2.1: Data Pre-processing Procedures

The first step is Election Keyword Filtering. In this step, we filtered out the

tweets related to election according to several keywords that we have defined. These

4

keywords are listed in Table 2.1. As a result, 1,745,985 election related tweets are

collected. After we have these tweets, in the second step, we collated these tweets

according to its poster, so as to obtain a list of tweeters, who are active during the

campaign. Hence we have a list of tweeters ordered in terms of tweet count that

have at least one election related tweet. In addition, we trimmed the tail of the list

to maintain a list of high volume tweeters who have at least 3 election related tweets.

Step two gave us 78,334 high volume tweeters and the most active tweeter posted

173 election related tweets. Table 2.2 shows a sample of the high volume tweeters.

The last step is the labelling task. We manually pick some of the tweeters to

label them as either “democrat” or “republican”. The methodology to determine the

label of each collected tweeter is to manually look at their election related tweets. If

the tweeter either supports Romney and Republicans exclusively, disputes Obama

and Democrats exclusively, or combine these two sentiments together, we label it

as “republican”; Similarly, if the tweeter either support Obama and Democrats ex-

clusively, disputes Romney and Republicans exclusively, or combine these two senti-

ments together, we label it as “democrat”. Table 2.3 gives us four sample tweets from

IBumbybee, which is labelled as “republican” in our data set. We can see that this

person is clearly a promoter for Mitt Romney and a disputant for Barack Obama.

Table 2.4 summarizes five sample tweets from MsNatTurner, which is labelled as

Table 2.1: Filtering Keywords

Keywords
election elections
obama romney

republican democrat
paul ryan
biden mitt
vote president

5

Table 2.2: High Volume Tweeters

No. Screen Name Election Related Tweets#
1 mohamedaldy 173
2 peace full 169
3 CelebVoler 152
4 TeamMikeMorris 152
5 BidacudaVote 140
6 skew11 129

. . .
78332 riaaxo 3
78333 iJUSTify tweets 3
78334 HighSierraMan 3

“democrat” in our data set. We can see that MsNatTurner is in favor of Obama

because MsNatTurner is appealing to re-elect Obama in her tweets.

Table 2.3: Sample Tweets of IBumbybee (“Republican”)

After three years of Obama, we are hopeless + changeless + we need Mitt Romney

to bring America back!C̃hris Christie ...
RT @ CraigBowden2020: We must get Obama out! Support Mitt Romney! # tcot
EvictTheIncumbent # nobama # lnyhbt # MV4F # election2012...
RT @ OrwellForce: Reminder: Obama’s plan to close the deficit by raising tax
rates CANNOT work http: // t. co/ W2RSewaL

RT @ MsMelanie: Mitt Romney does not have to prove anything. He has already
been successful in all areas of his personal and business...

In order not to introduce bias by only considering those extremely active cam-

paigning tweeters, we also labelled those tweeters with relatively fewer tweets. We

maintained a user distribution similar to the overall distribution so as to have a

representative data set, as Figure 2.2 shows. In Figure 2.2b, the darker bars repre-

sent “democrats” and lighter bars represent “republicans”. As we can see, we also

have made sure that the “republicans” and “democrats” are evenly and fairly dis-

6

Table 2.4: Sample Tweets of MsNatTurner (“Democrat”)

RT @ Mr Maz: I have decreed that anyone who votes for @ mittromney is an
textitidiot and douche!
RT @ JoeBiden: 3 reasons why President Obama should be re-elected:
http: // t. co/ KtsjI5A3

San Jose Mercury News: Re-elect President Obama http: // t. co/ q2JqJmLE

Obama2012 # 4jobs # 2futures # p2 # tcot
RT @ azmoderate: @ MittRomney talking about “rubbish” on a football field
and cleaning up a “lane” and compares it to hurricane clean up? ...
@ sunshineejc: Five Practical Reasons Not To Vote Republican | Common Dreams
http: // t. co/ Ibl5Aotr

(a) Overall Tweeters (b) 393 Labelled Tweeters

Figure 2.2: Distribution of Tweet Volume

tributed. Finally, among our 393 labelled tweeters, there are 212 “republicans” and

181 “democrats”.

2.2.1.2 Recent Tweets

After having the labelled users as our ground truth, however, we did not use the

Streaming Twitter data we have during the Presidential Election Period to do our

experiments. There are several reasons for this. First of all, Twitter Streamming

API only provides one-percent random sample of the entire data. Secondly, in the

Streaming Twitter data we have collected, as we can see in Table 2.2, the volumes of

7

some tweeters is relatively small that they have little sentiment information in their

election related tweets. Thirdly, since we only care about the sentiment in tweets,

we don’t care about whether the tweets are from Presidential Election Period or

not as long as there are sentiment within the tweets. Based on the above reasons,

we collected a new data set to deploy our sentiment analysis model in September

2013. We crawled the recent 200 tweets for the 393 labelled tweeters using Twitter

REST API [2] so that we made sure that every user in our data set has a reasonable

volume of tweets—200 recent tweets. Hence, in total we have 78,600 tweets and all

the following sentiment analysis model is based on these 78,600 tweets.

2.2.2 Social Relationship Graph

Another data we have collected is the friends and followers data of our labelled

users, which is collected along side with the recent tweet data in September 2013. We

used GET friends/ids [10] and GET followers/ids [11] in Twitter API to crawl the

friends and followers of the 393 labelled users. Although the friends and followers

data must include some other tweeters outside our labelled data set, we do not

consider these social links and we project the social graph exclusively on the 393

users. Therefore we have created a social relationship graph with 393 nodes and

7,433 edges. Considering the labelled users are randomly chosen, the density of our

subtracted graph is pretty good and sufficient enough to investigate into the social

graph among these politically active tweeters.

2.3 Our Approach

In this section, we introduce our approach to analyzing the collected data. The

first major focus is to utilize sentiment analysis model to classify the users. We pro-

pose an automatic way to discover what topics are the most distinguishing, in other

words, the topics “separating” tweeters in terms of their political views. Another

8

major focus is to take advantage of social relationship graph information to adjust

or help improve the classification model to separate politically active tweeters.

2.3.1 Sentiment Analysis Model

Sentiment Analysis is a technique that tries to extract the opinion, sentiments,

attitudes and emotions from written language. It is sometimes referred as “Opin-

ion Mining”. Sentiment Analysis relies on “Natural Language Processing”(NLP),

which is out of the scope of this project. The scope of our sentiment analysis is on

computational treatment of sentiment scores given by the NLP in order to solve our

classification problem.

A basic task of sentiment analysis is to discover the polarity of a given text in a

corpus. For example, Park et al in [12] utilized sentiment analysis to classify tweets

to be positive, negative and neutral. Researchers in [7], [8] and [9] all focusing on

revealing the political subjectivity in the granularity of tweets posted during the

election period.

In our project, we propose utilizing sentiment analysis to determine the political

alignment of a particular tweeter with respect to some topics or trending keywords.

In our data set, each labelled tweeter is an author of 200 tweets and our data set

could be considered as a Corpus of 393 Documents.

In our problem, we have two target classes, which are “democrat” and “republi-

can”. Let’s say the two target classes are C1 and C2 respectively. The underlying

assumption of these two classes is that they have different opinions on many topics.

Let our corpus (labelled data set) S consists of N documents, D0, D1, D2, . . . , DN−1.

Assuming we have M topics, T0, T1, . . . , TM−1, discovered from our corpus, each topic

Tj must have a probabilistic distribution H (Tj) against the two classes:

9

H (Tj) =

HC1 (Tj) , if Tj in C1

HC2 (Tj) , if Tj in C2.

(2.1)

where HCi
(Tj) can be expressed as:

HCi
(Tj) =

PPos, when Tj is Positive in Ci

PNeu, when Tj is Neutral in Ci

PNeg, when Tj is Negative in Ci

(2.2)

where PPos is the probability that Tj has a positive sentiment, similarly for PNeu and

PNeg. We note that the sum of PPos, PNeu and PNeg is equal to 1.

Usually the distribution DC1 (Tj) and DC2 (Tj) are different, based on the as-

sumption that “Different classes have different opinions on many topics”. The larger

the difference is, the better the Tj can distinguish C1 and C2. Based on the above

model, we propose a method to discover the most distinguishing topics out of the

corpus in an “automatic” way.

Moreover, in order to correlate the sentiment of topics to the sentiment of tweet-

ers, we construct the following model. Saying each tweeter as a document D, for any

document Di ∈ S, regardless of what class Di belongs to, we have a projection of

the sentiment of all topics Tj on Di. Letting PDi
(Tj) represent the sentiment of Tj

projected on document Di, for every Di, we have a unique vector for each tweeter

V (Di) = (PDi
(T0) , PDi

(T1) , . . . , PDi
(TM−2) , PDi

(TM−1)) (2.3)

whereM is the total number of topics. After having the sentiment vectors of tweeters,

we could feed the vectors into a learning classifier to train the model or into a trained

10

classifier to predict the class of Di.

In order to construct our sentiment analysis model, we utilized three public sen-

timent analysis tools. The first one is AlchemyAPI [13]. AlchemyAPI is a powerful

NLP tool. Given a text in natural language, Alchemy returns a sentiment score in

the range of [−1, 1], indicating whether the text exposes negative/neutral/positive

sentiment. The smaller the score is, the more negative the text is; the larger the

score is, the more positive the text is; score of 0 indicates a neutral sentiment of the

text.

In addition to Alchemy API, we also take advantage of two word sets, Sentiword

Net [14] and Sentiment Lexicon dataset [15]. These two word sets are pools of

words with sentiments. In Section 2.3.2 we will use these tools to help us with topic

selection.

For convenience, we denote the sentiment score returned by Alchemy API, Senti-

wordNet and Sentiment Lexicon as SAlchemy, SSentiword and SLexicon respectively. By

using these three sentiment analysis tools, we generate the sentiment scores for every

single tweet. Thus, each tweet i has three sentiment scores: SAlchemy (i), SSentiword (i)

and SLexicon (i).

2.3.2 Automatic Topic Discovery

In tweets, every single word could be considered as a “keyword” or “topic”. How-

ever, a lot of noise exists in tweets. For example, “haha” could be a word while it

could not be considered a topic usually. For another example, “the” is a word while

it is not a topic. In order to not introduce avoidable noise into our topic candidates,

we utilize what is called “hashtag” in tweets. “Hashtag” is a word in tweets starting

with a number sign #, usually with the goal to emphasize a particular event, people,

hot topic, group and so on. By only considering hashtags instead of every single

11

word, we narrow down and simplify our topic domain greatly. Within our corpus,

we compute two metrics for each hashtag: TagCount and UserCount. TagCount is

simply the frequency of appearance of the hashtag, and UserCount is the number

of distinct users who have tweets containing this word. In other words, TagCount

reflects the popularity of the hashtag and UserCount reflects the range of coverage

of the hashtag.

As a result, 8,446 hashtags are discovered, which is a large number. Among all

the hashtags, # tcot has the largest TagCount as 3,669, saying that it appears 3,669

times in our corpus. The first filtering step would be to select those hashtags with

greater popularity as well as sufficiently large user coverage. We filter out those with

TagCount less than 37, which is less than 1 percent of the largest TagCount. Based on

the previous filtering, then we filter out those with UserCount less than 38 (less than

10 percent of the labelled users). We obtain 78 hashtags, or say, “topic candidates”,

with reasonable popularity and sufficient user coverage. Table 2.5 shows all the 78

hashtags with number sign # removed.

Since each tweet has an Alchemy sentiment score SAlchemy (i), we define: As long

as hashtag h appears in tweet i, we denotes that Sh (i) = SAlchemy (i). Since a hashtag

might appear in multiple tweets, say Lh tweets, thus the sentiment of a each hashtag

would be a set of Lh sentiment scores of h as:

Sh = {SAlchemy (i))} (2.4)

where {i} denotes the set of tweets containing topic h.

Thus, each hashtag has a distribution of sentiment scores. Figure 2.3 shows 4

examples of distribution of sentiment scores returned by Alchemy. As we can see,

some topics like “obamacare” and “gop” have a bipolar shape of distribution and wide

12

range; some topics like “liberal” do not have an obvious bipolar shape and the range

of sentiment scores is narrower. Based on these observations, we propose using the

Max-Min Diff characteristics to rank how distinguishing the topic is. For hashtag h,

Max-Min Diff (h) = Max (Sh)−Min (Sh), which is the absolute difference between

the maximum sentiment score of h and minimum sentiment score of h. We believe

that larger the Max-Min Diff is, the more distinguishing h is. Among SSentiword,

SAlchemy and SLexicon, SSentiword gives wider range of sentiment scores for hashtags.

Hence, we use SSentiword to rank the hashtags. After ranking the hashtags using

the Max-Min Diff of SSentiword (i), we have an ordered list of those hashtags. Table

2.6 shows part of the resulting ranking. The Top Set, Sentiment Top5, from No.

1 to No. 5, contains tcot, obama, syria, gop and rednationrising. The Middle Set,

Sentiment Middle5, from No. 40 to No. 44, contains nsa, aca, guncontrol, iran and

profile. The Last Set, Sentiment Last5, from No. 74 to No. 78, contains ohio, liberal,

nyc, forward and climate. In Table 2.6, Diff means Max-Min Diff, and Neg/Neu/Pos

indicates the number of times of that hashtag to be determined as Negative, Neutral

and Positive respectively.

Our hypothesis is that topics that have more divergent scores of sentiment will

lead to better classification of tweeters into two classes of “democrat” and “repub-

lican”. If this hypothesis is valid, The top ranking topics Sentiment Top5 should

perform better in classifying our labelled tweeters than Sentiment Middle5 and Sen-

timent Last5. We will show the comparative results among these feature sets in

Section 2.5.1.

13

Table 2.5: Top 78 HashTags

Hashtag UserCount TagCount Hashtag UserCount TagCount
tcot 266 3669 fb 42 71
syria 281 1620 newtown 40 71
p2 188 1578 zimmerman 103 69
benghazi 237 976 god 252 65
obama 366 915 tyranny 57 65
teaparty 138 775 christian 124 64
uniteblue 103 717 guncontrol 44 64
gop 288 633 nyc 91 63
obamacare 304 600 catholic 44 63
tlot 96 583 politics 136 62
pjnet 86 486 iraq 160 61
ff 58 285 aca 47 61
lnyhbt 76 273 america 335 59
tgdn 84 266 economy 163 59
israel 124 262 families 106 59
irs 164 244 bible 57 59
ccot 85 213 democrats 218 56
defundobamacare 66 200 liberal 169 56
dontfundit 47 170 jobs 210 55
johnmccainismoreuselessthan 38 150 trayvon 108 54
nsa 144 140 religion 67 50
nra 108 136 women 247 49
news 322 133 maddow 49 49
rednationrising 38 121 war 310 48
whatobamacaremeanstome 46 109 fail 107 47
forward 121 99 dems 171 45
faith 75 98 potus 157 45
egypt 143 97 russia 139 44
immigration 133 96 healthcare 123 44
msnbc 114 96 romney 105 44
video 291 88 chicago 107 43
msm 92 88 military 257 42
cnn 148 87 libertarian 41 42
iran 102 85 kerry 206 41
republicans 248 80 assad 177 40
lgbt 54 78 ohio 104 39
prolife 66 77 abortion 144 38
vote 308 75 climate 86 37
congress 305 74 sandy 60 37

14

(a) “obamacare”

(b) “gop”

(c) “syria”

(d) “liberal”

Figure 2.3: Sentiment Score Distribution of HashTags

15

T
ab

le
2.

6:
H

as
h
T

ag
S
ta

ti
st

ic
s

S
en

ti
w

or
d

N
et

3.
0

A
lc

h
em

y
A

P
I

S
en

ti
m

en
t

L
ex

ic
o
n

H
as

h
ta

g
N

eg
/N

eu
/P

o
s

M
in

M
ax

D
iff

N
eg

/N
eu

/P
os

M
in

M
ax

D
iff

N
eg

/N
eu

/P
os

M
in

M
a
x

D
iff

TopSet

1
tc

ot
10

59
/1

52
2/

10
88

-0
.7

5
0.

75
1.

5
16

22
/1

01
8/

10
29

-0
.7

02
0.

64
5

1.
34

7
18

08
/5

81
/1

28
0

-0
.7

5
0
.7

5
1
.5

2
ob

a
m

a
27

0/
33

4/
31

1
-0

.7
5

0.
75

1.
5

39
3/

25
0/

27
2

-0
.6

82
0.

55
3

1.
23

5
44

1/
11

4/
36

0
-0

.7
5

0
.7

5
1
.5

3
sy

ri
a

57
7/

60
2/

44
1

-0
.7

5
0.

75
1.

5
84

2/
35

5/
42

3
-0

.6
73

0.
49

5
1.

16
8

91
7/

17
7/

52
6

-0
.7

5
0
.7

5
1
.5

4
go

p
18

2/
25

9/
19

2
-0

.7
5

0.
75

1.
5

30
0/

17
0/

16
3

-0
.6

03
0.

49
2

1.
09

5
30

4/
13

3/
19

6
-0

.7
5

0
.7

5
1
.5

5
re

d
n

at
io

n
ri

si
n

g
37

/4
8/

36
-0

.7
5

0.
75

1.
5

48
/3

7/
36

-0
.4

41
0.

50
7

0.
94

8
66

/1
9/

36
-0

.7
5

0
.7

5
1
.5

..
.

MiddleSet

40
n

sa
62

/4
0/

38
-0

.5
0.

43
8

0.
93

8
76

/3
5/

29
-0

.5
45

0.
49

5
1.

04
87

/1
7/

36
-0

.5
4
5

0
.4

9
5

1
.0

4
41

ac
a

13
/3

1/
17

-0
.4

38
0.

5
0.

93
8

24
/1

4/
23

-0
.4

24
0.

48
8

0.
91

2
24

/1
1/

26
-0

.4
3
8

0
.5

0
.9

3
8

42
gu

n
co

n
tr

ol
13

/2
9/

22
-0

.2
86

0.
62

5
0.

91
1

23
/2

3/
18

-0
.4

78
0.

49
5

0.
97

3
26

/1
6/

22
-0

.4
7
8

0
.6

2
5

1
.1

0
3

43
ir

an
38

/2
8/

19
-0

.4
38

0.
43

8
0.

87
6

55
/1

8/
12

-0
.5

69
0.

42
0.

98
9

56
/8

/2
1

-0
.5

6
9

0
.4

3
8

1
.0

0
7

44
p

ro
li

fe
13

/4
1/

23
-0

.5
0.

37
5

0.
87

5
32

/2
3/

22
-0

.4
22

0.
43

5
0.

85
7

34
/1

6/
27

-0
.5

0
.4

3
5

0
.9

3
5

..
.

LastSet

74
oh

io
9/

18
/1

2
-0

.2
5

0.
31

2
0.

56
2

12
/1

4/
13

-0
.3

16
0.

47
0.

78
6

13
/8

/1
8

-0
.3

1
6

0
.4

7
0
.7

8
6

75
li

b
er

al
43

/3
/1

0
-0

.3
44

0.
20

8
0.

55
2

31
/7

/1
8

-0
.4

17
0.

35
4

0.
77

1
41

/0
/1

5
-0

.4
1
7

0
.3

5
4

0
.7

7
1

76
n
y
c

29
/1

5/
19

-0
.2

81
0.

25
0.

53
1

20
/2

5/
18

-0
.6

73
0.

30
2

0.
97

5
29

/7
/2

7
-0

.6
7
3

0
.3

0
2

0
.9

7
5

77
fo

rw
ar

d
30

/4
1/

28
-0

.1
88

0.
31

2
0.

5
43

/2
3/

33
-0

.4
04

0.
47

7
0.

88
1

50
/8

/4
1

-0
.4

0
4

0
.4

7
7

0
.8

8
1

78
cl

im
at

e
5/

15
/1

7
-0

.2
08

0.
25

0.
45

8
12

/1
2/

13
-0

.2
67

0.
30

7
0.

57
4

12
/3

/2
2

-0
.2

6
7

0
.3

0
7

0
.5

7
4

16

2.3.3 Decision Tree Classification

We use Decision Tree learning algorithm as our classifier. The idea behind de-

cision tree learning is to pick attributes that better separate positive and negative

cases. Decision Tree Learning algorithm constructs a Decision Tree on the train-

ing data. Usually it is implemented in an iterative manner. In each iteration, the

best match attribute, in our case, the “topic”, is chosen to deploy a “split” on the

data so as we could obtain the maximum Information Gain. The same procedure

is applied on the sub-branches of the tree until every example is classified into a

branch of the entire Decision Tree. The key principle of Decision Tree learning is to

use Shannon’s information theory to choose the attribute that gives the maximum

Information Gain, which is defined as:

Gain (E,A) = Entropy (E)−
∑

v∈V alues(A)

|Ev|
|E|

Entropy (Ev) (2.5)

where E is set of examples, A is a single attribute and Ev is the set of examples

where attribute A = v.

Based on Decision Tree Classifier, we compare two different set of attributes, or

“features” in our experiment. They are non-sentiment features described in Section

2.3.3.1, and sentiment features described in Section 2.3.3.2.

2.3.3.1 Non-sentiment Features

In our “non-sentiment classification model”, non-sentiment features is chosen di-

rectly from users’ profile or computed from factual data of the user. To this end

we extracted three categories of non-sentiment features, totally twelve. The first

category is factual profile features captured directly from users’ twitter profile, in-

cluding friends count, tweets count, favorites count, followers count and listed count.

17

They are combined to reflect the uniqueness of each individual tweeter. The second

category is behavioural features, consisting of interval variance, retweet ratio, url ra-

tio, unique mention and unique url. Compared with the first category, behavioural

features dig deeper into the behavioural characteristics of the tweeter. The third cat-

egory is contextual features, including polarity and tweet similarity. We will briefly

explain these features one by one.

Friends count (FriCnt): FriCnt is the total number of friends of the user.

Tweets count (TwtCnt): TwtCnt is the total number of tweets posted by the

user.

Favorites count (FavCnt): favorite tweets are those tweets which the user

“likes”, “endorses” or gives a “thumb-up” to. FavCnt is the number of favourite

tweets obtained from the user’s profile.

Followers count (FolCnt): FolCnt is the number of followers that the user

has.

Lists count (LstCnt): lists in Twitter are the “groups” or “memberships” that

the user is in. LstCnt is the number of lists in the user’s profile.

Interval variance (IntV ar): IntVar measures the standard variation of the

intervals between two consecutive tweets posted by the user. It reflect the frequency

and pattern of how the user post the tweets. Formally it is defined as:

IntV ar = Standard-Deviation (Intervals) , (2.6)

where Intervals is a set of Interval between all adjacent tweets posted by the user.

Retweet ratio (RtRat): RtRat is the ratio of the number of retweets (tweets

starting with “RT”) over the number of total tweets of that user. Formally it is

defined as:

18

RtRat =
Num of retweets

Total num of tweets
. (2.7)

Url ratio (UrlRat): UrlRat is the ratio of the number of tweets containing URL

over the total number of tweets of that user. Formally it is defined as:

UrlRat =
Num of tweets with URL

Total num of tweets
. (2.8)

Unique mention (UniMen): UniMen refers to the ratio of the number of

unique mentions (tweeter’s screen name starting with @) over the total number of

mentions of that user. Formally it is defined as:

UrlMen =
Num of unique mentions

Total num of mentions
. (2.9)

Unique url (UniUrl): UniUrl refers to the ratio of the number of unique URLs

over the total number of URLs. Formally it is defined as:

UniUrl =
Num of unique URLs

Total num of URLs
. (2.10)

Polarity (Pol): Pol refers to the ratio of mentioning of “Obama” over mention-

ing of “Romney”. It is basically an alignment metric to see whom the user is talking

about more, “Obama” or “Romeny”. Formally, the equation of computing Pol is

defined as:

Pol =
Num of tweets mentioning Obama− Num of tweets mentioning Romney

Total num of tweets of that user
.

(2.11)

19

Tweet similarity (TwtSim): TwtSim is a metric measuring the average simi-

larity of the user’s tweets. It is calculated using cosine similarity over TF-IDF vector

of tweets. TF-IDF, term frequency-inverse document frequency is a metric to mea-

sure the importance of a term in terms of a document. Assuming the user has N

tweets, called a Corpus C of tweets. Each tweet can be viewed as a document. The

IF-IDF value of term t in document i tfidf (t, i) is calculated as:

tfidf (t, i) = tf (t, i)× idf (t, C) , (2.12)

where tf (t, i) is the frequency of term t in tweet i, and idf (t, C) is the inverse

document frequency of term t in corpus C, which is formally defined as:

idf (t, C) = log
N

1 + ‖{i ∈ C : t ∈ d}‖
, (2.13)

where N is the total number of documents (tweets in our case) in the corpus and

‖{i ∈ C : t ∈ d}‖ is the number of documents containing term t.

Each tweet i has a TF-IDF vector

VTF−IDF (i) = (tfidf (t0, i) , tfidf (t1, i) , · · · , tfidf (tM−1, i)) , (2.14)

where t0, t1, · · · , tM−1 comprise all the terms in corpus C.

Formally, the TwtSim is defined as:

TwtSim =

∑
i∈C, j∈C and i 6=j

Cosine-Similarity (VTF−IDF (i) , VTF−IDF (j))

1
2
·N (N − 1)

, (2.15)

where C is the corpus of tweets, N is the total number of tweets in C and Cosine-

20

Similarity(V1, V2) is a function that calculate the cosine similarity between vector V1

and vector V2.

We experimented three combinations of non-sentiment features: the first set con-

tains only the five behavioural features, which are IntVar, RtRat, UrlRat, UniMen

and UniUrl. We denote this set of non-sentiment features as Non-sentiment 5 for

later analysis. The second combination contains five behavioural features and two

contextual features, including Pol and TwtSim. We denote it as Non-sentiment 7 in

the future discussion. The third combination contains all three categories of fea-

tures, which is Non-sentiment 7 “plus” factual profile features. We denote it as

Non-sentiment 12. We will describe the differences among these three sets later.

2.3.3.2 Sentiment Features

In our “sentiment classfication model”, instead of using factual features, we use

a vector of sentiment scores, as defined in Equation 2.3, as our feature vector. In

our experiments, we compared the results from five different set of topics. The

first set is Sentiment Top5, the top 5 ranked topics in Table 2.6. The second set is

Sentiment Middle5, the middle 5 ranked topics in Table 2.6. The third set is Senti-

ment Last5, the last 5 ranked topics in Table 2.6. The fourth set comprises 39 topics

from the top half of Table 2.6, from hashtag No. 1 to hashtag No. 39, denoted

as Sentiment TopHalf for latter discussion. The fifth set comprises 39 topics from

the bottom half of Table 2.6, from hashtag No. 40 to hashtag No. 78, denoted

as Sentiment LatterHalf for latter discussion. We will describe the observed differ-

ences among their performances. What’s more, we conducted a comparison between

sentiment features and non-sentiment features.

21

2.3.3.3 Graph-adjusted Sentiment Features

From the social relationship graph we have constructed before, we observed an

interesting fact that tweeters with same political alignment tend to follow or to be

followed by each other. This revealing fact might greatly help us achieve a more

accurate classification of tweeters in terms of their political alignment. Figure 2.4a

is the 2-level social relationship graph for tweeter IBumbybee, which is labelled as

“republican” in our dataset. Figure 2.4b is the 2-level social relationship graph for

tweeter MsNatTurner, which is labelled as “democrat” in our dataset. In Figure 2.4,

the light nodes represent the users who are labelled as “republican”, while the dark

nodes represent the users who are labelled as “democrat”. As we can see clearly,

“democrats” tends to follow or to be followed by “democrats”, while “republicans”

tends to follow or to be followed by “republicans”. Such “clustering” effect of tweeters

bring us to propose a graph-based refinement on our sentiment classification model.

The updating rule of sentiment score SSUi
(Tj) on topic Tj of user Ui is defined as:

SSUi
(Tj)← α · SSUi

(Tj) + (1− α) ·

∑
Uk∈M

SSUk
(Tj)

N
, (2.16)

where α is the adjustment factor, M is the set of outgoing neighbours of Ui and N

is the size of M . This simply means that we “borrow” part of the sentiments of Tj

from our friends in our social relationship graph. The value of α is ranging from 0

to 1. α = 0 means that the sentiment score on a particular topic of a particular user

totally depends on his friends. α = 1 means that we do not apply the graph-based

adjustment at all. Using the updated sentiment features, we construct the “graph-

adjusted sentiment model” in our experiments. We propose this refinement for the

following reason. Since the users might not talk about some topics, “borrowing” the

22

(a) IBumbybee(“Republican”) (b) MsNatTurner(“Democrat”)

Figure 2.4: 2-Level Social Relationship Graph

sentiments from their friends could enrich our data points.

2.3.4 Belief Propagation

Based on the observation discovered in Section 2.3.3.3, we propose another approach—

Belief Propagation (BP) algorithm to solve our classification problem. In this case,

knowing the ground truth (their labels) of a small set of tweeters, also called seed,

we apply BP algorithm to predict the labels of the rest of tweeters.

BP is an approximation algorithm originally invented by Pearl [16] with the

goal of solving the marginal probabilistic inference in the context of general graphs.

Given a directed graph G = (V,E) with a set V of nodes and a set E of edges,

BP is used to estimate the marginal probability of undiscovered nodes based on the

known probabilistic model of the other nodes. The “belief ” of a node is denoted

as the probability of the node being in a particular state. The belief of a node is

influenced by the “messages” passed by the neighbours of that node, making the

nature of BP as a “message-passing” algorithm. BP is usually implemented in an

iterative manner; the algorithm stops when the marginal probabilistic distributions

23

of all the nodes converge.

Denoting the belief of node i in a state xk as bi (xk), the computation of bi (xk)

depends on two factors: (1) the initial probability estimate of node i and (2) the

mutual influence between the states of two neighbours.

Denoting the initial probability of node i being in state xk as φi (i), and the

probability of node j being in a state xh given the probability of node i being in the

state xj as ψij (xk, xh), the message from i to j which estimates node i’s perception

of node j being in a particular state (xh), is defined as:

mij (xh) =
∑
xk∈Si

φi (xk)ψij (xk, xh)
∏

l∈N(i)\j

mli (xk) , (2.17)

where N (i) is the set of neighbors of node i and Si represents all the states that

node i could be in (In our case, S = {democrat, republican}).

Having a message from one node to another, the belief of node i being in state

xk is defined as:

bi (xk) = Cφi (xk)
∏

k∈N(i)

mki (xk) , (2.18)

where C denotes the normalization factor ensuring
∑

xk∈Si
bi (xk) = 1.

At the beginning of BP, the unknown nodes are initialized with a normal distri-

bution, giving equal probability for each possible state. In addition, all the messages

are initialized as 1 before running BP. The messages get updated in each iteration

and the algorithm stops when all the messages converge. And the messages are

normalized at each iteration such that
∑

xi∈Si
mki (xi) = 1.

24

2.4 Evaluation Methodology

In order to evaluate the performance of the classification and BP inference accu-

racy described in 2.3, we employ two techniques, which are widely used in Machine

Learning research.

2.4.1 Cross-Validation

Cross-Validation is a common evaluation technique in classification problems. In

K-fold cross-validation, the original sample is randomly partitioned into k equal size

subsamples; Of the k subsamples, a single subsample serves as test data and the

other k − 1 subsamples are used as training data. The cross-validation result is the

average of k repetitions, with each of the k subsamples used exactly once as test

data.

In BP model described in Section 2.3.4 particularly, for K-fold cross-validation,

one subsample is served as the known ground truth—the seed while the other k − 1

subsamples are what we are going to predict. We repeat k times with each of the

subsamples used exactly once as the seed.

All the K-fold cross-validation results discussed later are the average of 10 random

K-fold cross-validations.

2.4.2 Accuracy

The prediction accuracy is a common way to measure the performance of classi-

fication model. Denoting the number of “democrats” predicted to be “democrat” as

TD, the number of “democrats” predicted to be “republican” as FD, the number of

“republicans” predicted to be “republican” as TR and the number of “republicans”

predicted to be “democrat” as FR, the Accuracy of the model is defined as:

25

Accuracy =
TD + TR

TD + FD + TR + FR
(2.19)

According to the above formula, Accuracy is basically the ratio of the number of

correct estimates over the total number of predictions. The performances shown in

the Result Section are all measured by the Accuracy defined above.

2.5 Results

In this Section, we are going to present the results of our models, which are

Non-Semtiment Classification Model described in 2.3.3.1, Sentiment Classification

Model described in 2.3.3.2, Graph-adjusted Sentiment Classification Model described

in 2.3.3.3 and BP Model described in 2.3.4.

2.5.1 Does Automatic Topic Selection Work?

In order to evaluate our proposed automatic topic selection methodology, we ap-

plied different sentiment feature sets ranked by our automatic topic selection method-

ology. Table 2.7 compares the results among Sentiment Top5, Sentiment Middle5

and Sentiment Last5. As we know, these three feature sets are selected out of

the automatic topic selection scheme described in Section 2.3.2. Before doing the

experiments we expected that the top ranked topics—Sentiment Top5 could out-

perform the middle ranked topics—Sentiment Middle5 and latter ranked topics—

Sentiment Last5. In Table 2.7, column 2, 3 and 4 show the classification accuracies

of 4-fold, 5-fold and 10-fold cross-validation respectively.

As we can see from Table 2.7, the performance of Sentiment Top5 is better than

that of Sentiment Middle5 and much better than Sentiment Last5. The best accu-

racy Sentiment Top5 gets is 64.3 percent with 4-fold, while Sentiment Middle5 is

getting an accuracy slightly smaller than 50 percent, which means not even better

26

than a random guess. The Sentiment Last5 gets an accuracy as low as 39.8 percent,

which is possibly because that the topics in Sentiment Last5 are somehow mislead-

ing.

Furthermore, Table 2.8 shows the comparative result between Sentiment TopHalf

and Sentiment LatterHalf, which is also differentiated by our automatic topic selec-

tion scheme. In Table 2.8, column 2, 3 and 4 show the classification accuracies of

4-fold, 5-fold and 10-fold cross-validation respectively.

From Table 2.8, Sentiment TopHalf feature set surpasses Sentiment LatterHalf

feature sets with a classification accuracy of 0.627. The best result of Sentiment LatterHalf

feature set is 0.575 in 4-fold cross-validation. Interestingly, the gap between these

two sentiment feature set is not as big as the one observed from Table 2.7, prob-

ably because the dimensions of both Sentiment TopHalf and Sentiment LatterHalf

are 38, which is large enough containing sufficiently rich information in both feature

sets.

In summary, we could safely conclude that automatic topic selection does help

to discover more distinguishing topics. However, we do not have a “good threshold”

for Max-Min Diff to select how many distinguishing topics as our features, which is

the limitation of our automatic topic selection scheme.

Table 2.7: Comparative Result A for Automatic Topic Selection

Feature Set 4-fold 5-fold 10-fold
Sentiment Top5 0.643 0.635 0.627
Sentiment Middle5 0.495 0.485 0.484
Sentiment Last5 0.412 0.398 0.399

27

Table 2.8: Comparative Result B for Automatic Topic Selection

Feature Set 4-fold 5-fold 10-fold
Sentiment TopHalf 0.622 0.614 0.627
Sentiment LatterHalf 0.575 0.574 0.568

2.5.2 Does Sentiment Matter?

In this section, we compare the performances of two sentiment feature sets, Sen-

timent Top5 and Sentiment TopHalf, with the performances of three sets of non-

sentiment features, Non-sentiment 5, Non-sentiment 7 and Non-sentiment 12.

Table 2.9 shows the comparisons between sentiment feature sets and non-sentiment

feature sets, from which we can observe several interesting results. Sentiment Top5

achieves the best performance with the highest prediction accuracy as 0.643. By

comparing row Sentiment Top5 with row Non-sentiment 12 and Non-sentiment 7,

we can see that though not obvious, sentiment features yield slightly better classi-

fication result than non-sentiment features. Furthermore, the performance between

Non-sentiment 12 and Non-sentiment 7 is pretty much even, while Non-sentiment 5

yields a significant drop in performance, roughly as good as “random guess”. As we

discussed before, the only difference between Non-sentiment 5 and Non-sentiment 7

is that Non-sentiment 7 contains two more features: Polarity and Tweet Similarity.

The performance gap between Non-sentiment 7 and Non-sentiment 5 shows that

the contribution of Polarity and Tweet Similarity is significant in Non-sentiment

Classification Model.

As we can see, the sentiment model seems to make little difference compared

to the non-sentiment model. In fact, several reasons could be behind the fact that

sentiment classification model is not performing as well as what we expected. The

first limitation is the data. There is unavoidable bias during the labelling of tweeters

28

since it is conducted manually; the truncating of high volume tweeters also bring

bias into our data. Thus, the data we have collected is probably not sufficient and

representative enough. The second limitation comes from the sentiment analysis

techniques we have used. Even though the NLP techniques is pretty mature and

can easily handle formal written language processing, it is just not powerful enough

to figure out complex irony tones or sarcasm in tweets. What’s more, powerful

sentiment analysis tool like Alchemy would also look naive in front of the informal

“slang” used widely in Twitter. Sentiment in Twitter is far more complex than we

thought.

2.5.3 Does Social Relationship Graph Matter?

As discussed in Section 2.3.3.3, we consider the value of the social relationship

graph, where “users with similar political view tend to be grouped together”. In

order to take advantage of this valuable fact while still using sentiment features in

classification, we propose “borrowing” sentiments from friends in the social relation-

ship graph as we formally defined in Formula 2.16. We tested the effect of the value

of α in Formula 2.16. Considering the 4-fold cross-validation gives the best perfor-

mance so far among all the experiments, we deploy the graph-based adjustment on

this model only.

Table 2.10 shows the result of graph-adjusted sentiment model in terms of the

Table 2.9: Comparison between Sentiment Features and Non-sentiment Features

Feature Set 4-fold 5-fold 10-fold
Sentiment Top5 0.643 0.635 0.627
Sentiment TopHalf 0.622 0.614 0.627
Non-sentiment 12 0.625 0.630 0.635
Non-sentiment 7 0.630 0.621 0.631
Non-sentiment 5 0.512 0.533 0.525

29

Table 2.10: Result of Graph-adjusted Sentiment Classification Model

α Sentiment Top5 Sentiment Middle5 Sentiment Last5
0.1 0.853 0.779 0.807
0.2 0.825 0.747 0.811
0.3 0.801 0.759 0.796
0.4 0.777 0.750 0.774
0.5 0.764 0.741 0.770
0.6 0.774 0.730 0.749
0.7 0.787 0.728 0.744
0.8 0.755 0.724 0.745
0.9 0.781 0.741 0.747
1 0.643 0.495 0.412

adjustment factor α. As we can see, when considering the influence from friends,

the classification accuracy jumps up 14 percent in feature set Sentiment Top5, from

64.3% to 78.1%. And there is a trend that the smaller the α value is, the higher the

accuracy of the model. Although the accuracy is not monotonously increasing as α

value decreases, the accuracy reaches the highest, 85.3%, when α = 0.1 on feature

set Sentiment Top5, which is more than 20 percent improvement from non-graphical

model. It is a good indication that social information makes a significant difference

in our case. It is noted that the graph structure improves results across all choices

of sentiment topics. It is also noted that once graph structure is considered (α 6= 1),

the choice of sentiments do not seem to make significant difference.

2.5.4 Does Belief Propagation Work?

Given that graph information is dominating the sentiment of tweets, we also

propose a completely graph-based model, the Belief Propagation (BP) Model to

predict the association of political tweeters. In some cases, the BP algorithm is

not able to give a prediction on some nodes because of the limitation of a certain

graph structure. In this case, we assume two actions when this happens. For the

tweeter that BP is not able to predict, we either do “random guess” or “do not

30

Table 2.11: Result of Belief Propagation Models

Model 2-fold 5-fold 10-fold 20-fold 50-fold
BP randomguess 0.893 0.897 0.895 0.888 0.824
authBP randomguess 0.873 0.898 0.893 0.890 0.886
BP dontjudge 0.856 0.856 0.853 0.850 0.791
authBP dontjudge 0.812 0.860 0.856 0.861 0.863

judge” which class it belongs to at all. Obviously “random guess” scheme would

have a better accuracy since some of the unknown nodes have the chance to be

guessed right. While not “judging”, none the unknown nodes will be taken as correct

prediction. We denoted these two schemes as BP randomguess and BP dontjudge

respectively. Another case we have tested is to see the result by only considering

the most authoritative tweeters as our “seed”. The two same schemes in terms of

unpredictable users are applied in this model, and denoted as authBP randomguess

and authBP dontjudge respectively.

Table 2.11 shows the results of the above four BP models in 2-fold, 5-fold, 10-fold,

20-fold and 50-fold. The best accuracy BP achieves is 0.898 by authBP randomguess

at 5-fold cross-validation. The best performance of BP is 86.3 percent accuracy, with

“dontjudge”. What’s more, Apart from the 2-fold cross-validation, the advantage of

authBP over regular BP is obvious, especially in 50-fold, when only 2 percent of the

most authoritative nodes are served as “seed”. In other words, in the absence of

enough ground truth information, using most authoritative nodes in the graph can

greatly improve the inference accuracy of BP.

31

Figure 2.5: Result of Belief Propagation Model

2.6 Conclusion

In this project, first of all, we proposed a model to classify political tweeters by

using sentiments in tweets. We came up with an automatic way to select the most

distinguishing topics from tweets. We have shown that sentiment classification model

reaches a classification accuracy as 64.3 percent, unfortunately, not much different

from non-sentiment classification model. Besides, we also found that social relation-

ship graph reveals lots of information in separating politically active tweeters. By

taking the advantage of social relationship graph, we refine the sentiment classifica-

tion model, which achieves a classification accuracy as high as 85 percent. What’s

more, the accuracy of graph-adjusted sentiment model increase when the graph in-

formation takes more effects. Finally, we deployed an alternative approach—Belief

Propagation inference model on predicting the political alignment of tweeters based

only on social graph, which also achieves high prediction accuracy.

We have concluded that the limitation of our sentiment model comes from the

limitation of data collection as well as the sentiment analysis techniques. With graph-

32

adjusted sentiment model, we achieve a decent classification accuracy. On the other

hand, it also shows us that graph factor takes a more significant role in separating

tweeters than sentiment factor. Our alternative approach, the Belief Propagation

inference model also does well in predicting the political association of tweeters.

We have also seen that, the selection of the “seeds” obviously has an effect on the

performance of Belief Propagation model.

33

3. ALGORITHMIC UNIVERSITY PROGRAM RANKING

3.1 Introduction

Ranking is a general and popular problem in our community as well as on the

Web. Simply speaking, ranking is a knowledge discovery method, revealing the

ordered, organized truth hidden behind disordered and unstructured data. For ex-

ample, U.S. News provides rankings on academic organizations, providing reference

to people choosing educational schools. Google deploys a PageRank [17] algorithm

to determine the relevance and importance of a web page. In this project, our mo-

tivation is simply and clearly stated: we are trying to develop a simple and effective

method to rank universities, graduate schools/programs in particularly. This work

could be valuable by providing people reference when choosing schools to pursue

higher education.

According to the statement from U.S. News website [18], they rank the graduate

programs from both statistical data and expert assessment data. The statistical data

includes both input and output measures. The input measures reflect the quality of

students, faculties and any other resources into the programs. The output measures

reflect the educational outcomes of the graduates from the academy. The expert

assessment data is collected from the input of program deans. Each dean is asked to

rank a program from 1 to 5 and the average rates are used to rank programs. Finally

these two types of data is normalized, weighted and totaled into a ranking score.

Besides, social scientists have also done research on university ranking methodolo-

gies. For example, Lukman et al in [19] proposed a model to compare universities

regarding educational and environmental performances. A comprehensive study on

the indicators, dimensions, methodologies in university ranking from sociology per-

34

spective of view is provided in [20]. Leydesdorff and Shin provided a new idea to

rank universities in terms of their relative citation counts in [21]. Other metrics such

as publication counts, industry hiring preferences have been used as well.

All these works on ranking universities are valuable. Differently, our work is

trying to invent a new algorithmic methodology to solve this problem, which can

achieve reasonable and reliable ranking of university programs. Some well-established

graph-based ranking algorithms exist. Kleinberg proposed an effective reinforced

algorithm to calculate the hubs and authorities in the hyperlinked environment in

[22]. One year later, Page and Brin in [17] proposed the well-known PageRank, which

is the fundamental algorithm of Google Search Engine. In order to solve our own

algorithmic university ranking problem, we apply these techniques on our university

hiring graph.

3.2 Data Set

3.2.1 Data Description

The intuition behind our thought is that “schools usually hire PhD graduates from

better or peer schools”. It means that, for example, if Harvard University (Harvard)

hires a PhD graduate student from Cornell University (Cornell) to become a faculty

member, it indicates that Cornell is at least as good as or better than Harvard.

Since the hiring process is operated by local experts from each department or school,

we believe that it reveals more sophisticated qualities of a program than U.S. News

measurement does. Based on this hypothesis, we develop an algorithmic method,

which use proper ranking algorithms to come up with our own ranking of programs

in a particular field. Our algorithms will be applied on the so-called “hiring graph”

of universities. For a simple example, if Harvard hires a PhD from Cornell, in the

“hiring graph”, there would be one directed edge from Harvard to Cornell with weight

35

1, and Harvard and Cornell are two nodes in the graph. Therefore, the university

ranking problem simply becomes a graph-based ranking problem.

In order to construct such graph, we collected two faculty profile data sets in

March 2014, from top 50 Computer Science (CS) Departments [23] and top 50 Me-

chanical Engineering (ME) Departments [24] across the USA respectively. We did

not combined these two data sets together even though we have found a few ME

professors were graduated with CS PhD. We collected these two separate data sets

in order to show that our method will work in more than one field. For each faculty

in our data set, we collected two pieces of information, where and when did the fac-

ulty get his/her PhD. Table 3.1 shows the sample data that we collect. In Table 3.1,

column 2 to 5 represent all 4 entries for each faculty: 1) Dept.: Department that the

faculty member works in; 2) Univ.: The university that the faculty member works

in; 3) PhD From: Which university the faculty member graduated from as PhD; 4)

Year Grad.: the year the faculty got his/her PhD.

Several things that we have to point out for our data set. First of all, we do not

collect the name for each faculty for privacy concerns. Some of the professors are

not posting their educational information on the web at all. Luckily, most of the

faculties disclose their resume or educational information on their department page

or personal page, making it possible for us to collect a large enough sample of the

hiring graph. What’s more, all the faculty data we collected is the current status of

each program. This is to say that, the graph only reflects current employment and

does not reflect historical employment. The graph also does not reflect the the hiring

decisions that may have been terminated without tenure.

Unfortunately, since we cannot find any organization that can provide such data,

all the data, we have, is collected on the website of each graduate program. Consid-

ering the data we want is posted in different format on each web page, we collected

36

them manually instead of writing a crawler.

For the top 50 CS programs data set, we collected data from 2,018 faculty mem-

bers currently in those programs. 1,793 (88.9%) faculty members out of the total,

have PhD graduation year information on their web pages.

For the top 50 ME programs data set, we collected data from 1,941 faculty mem-

ber currently in those programs. 1,709 (88.0%) faculty members out of the total,

have educational year information on their web pages.

We note that this is a small sample of graduates from these programs. Second,

a faculty member’s career lasts 30 to 35 years or more and hence the data reflects

the hiring decisions made over several years. Our data reflects that the faculty PhD

graduation that range from 1949 to 2014 in CS data set and from 1946 to 2013 in

ME data set. This enables us to bin the data based on year of graduation to obtain

a historical progression of school new hirings.

While our methodology can be applied to the entire hiring graph of all CS or ME

programs, we restrict ourselves to top 50 programs due to difficulties in collecting

the data manually.

Table 3.1: Data Format Sample

Faculty Dept. Univ. PhD From Year Grad.
F1 CS CMU MIT 2005
F2 CS Princeton UTAustin 2009
F3 CS TAMU UIUC 1997
F4 ME Cornell Caltech 1987
F5 ME UCLA UCBerkeley 1991
F6 ME Purdue Stanford 2012

37

3.2.2 “Hiring Graph”

Our algorithms will be applied on the so-called mutually “hiring graph” of uni-

versities. For a simple example, if Harvard hires a PhD from Cornell, in the “hiring

graph”, there would be one directed edge from Harvard to Cornell with weight 1, and

Harvard and Cornell are two nodes in the graph. Therefore, the university ranking

problem simply becomes a graph-based learning problem.

Mathematically, the hiring graph could be denoted as a directed graph G =

(V,E), comprising a set V of nodes (universities) and a set E of edges. Edge E(x, y)

means there is at least one PhD from university y hired in university x as faculty.

In the hiring graph, one university might hire several PhD graduates from another

university as faculty members. In this case, we set the weight of each edge to be

the number of PhD graduates hired from that university. For example, assuming

university A hires 9 PhDs graduates from university B, regardless of the year in

which they graduated, the weight of edge E(A,B) would be 9.

In our CS data set, for example, many faculties would come from universities

outside the top 50, such as Hebrew University (Hebrew) and University of Toronto

(UToronto). In our CS data set, we have 182 universities in our graph in total, among

which are the top 50 from U.S. News. In our ranking experiments, we might or might

not consider those universities outside the top 50 while running our algorithms, and

we stick to the top 50 for ranking. Similarly, there are 211 universities other than

the top 50 in our ME data set. Figure 3.1a shows an example of how the hiring

graph looks like exclusively for top 50 CS schools. Comparatively, Figure 3.1b shows

an example of how the hiring graph looks like when considering all the recorded CS

schools in our data set. We will discuss the difference of both cases in our results.

One thing we want to point out is that, some universities hire their own PhDs.

38

(a) Hiring Graph Subtracted (b) Hiring Graph Extended

Figure 3.1: Hiring Graph in CS Data Set

Hence there are some self-edges pointing to and pointed by the same node in the

hiring graph. We expect that things might change in terms of whether we consider

these self-edges or not. In our experiments, we will discuss the difference between

both cases.

3.3 Our Approach

The hiring graph and ranking of graduate programs has similarities to web page

and rankings of web pages. In page ranking methodologies, links pointing to a

web page are seen to increase the authority or importance of those pages [17, 22].

Similarly, we postulate that hiring links in our graph provide similar information in

our hiring graph about the quality of the graduate programs. Hence, we propose to

employ page ranking algorithms on the hiring graph to ascertain the quality of the

programs.

The simplest way is to rank graduate programs according to their in-degree, which

basically represents “the number of PhD got hired by other schools” in the hiring

39

graph. We also applied various link-based algorithms based on PageRank (PR) [17]

and Hyperlink-induced Topic Search (HITS) [22] to do the ranking. In this section

we are going to describe the algorithms that we used.

3.3.1 PR-based Algorithms

3.3.1.1 PR Algorithm

PR algorithm is originally invented to rank web pages according to their relative

importance, which later became the foundation of Google Search Engine. It uses link

structure of web pages exclusively without any text information on the web pages. It

is based on a model called random surf model, in which a random surfer is assumed

to periodically jump to any random web page in the Web [17].

According to our assumptions described before, an incoming edge of university p

would also means the importance of the university, which is consistent with idea of

PageRank. Thus we think that PageRank (PR) like algorithms could be applied in

our problem.

Here we describe an iterative manner of computing the PR value of every node

in a graph. Let G = (V,E) be the directed graph with a set V of vertices or nodes

and a set E of edges. At the beginning, the PR scores of all nodes are initialized as

1

N
where N is the total number of nodes in the graph. In each iteration, the PR

score r (pi) of node pi is defined as:

r (pi) =
(1− α)

N
+ α ·

∑
pj∈M(pi)

r (pj)

L (pj)
(3.1)

where N is the total number of nodes, p0, p1, . . . , pN−1 ∈ V, M(pi) is the set of pages

that link to pi, L (pj) is the number of outgoing links from pj, and α is the damping

factor. Letting the damping factor α = 0.85 is a democratic choice according to Page

40

in [17], which has been proved to be effective through a large number of experiments.

Hence, in our PR-based approach we also use the same value, 0.85, as our damping

factor. The algorithm stops when the PR scores converge, or in other words, remain

unchanged or change little between two consecutive iterations.

As we can see in equation 3.1, the PR scores of pj ∈M (pi) is bringing a normal-

ized effect to node pi since the PR score of pj is divided by the number of outgoing

links of pj. In addition, since the edges in the Web graph are not weighted or are all

weighted as 1, we dont take the edge weight into effect.

3.3.1.2 Weighted PR Algorithm with Weights Normalized

In our problem, one significant difference of the hiring graph with the web graph

is that every edge in the hiring graph has a weight. Hence we refined the original PR

algorithm by taking the edge weight into consideration, which is called weighted PR

algorithm. When still considering the normalization effect as it does in the original

PR algorithm, the new formula of the PR score r (pi) of node pi would become

r (pi) =
(1− α)

N
+ α ·

∑
pj∈M(pi)

r (pj) · w (ε (pj, pi))

W (pj)
(3.2)

whereN is the total number of nodes, p0, p1, . . . , pN−1 ∈ V, ε (pj, pi) ∈ E, w (ε (pj, pi))

denotes the weight of ε (pj, pi), M(pi) is the set of pages that link to pi, α is the

damping factor, and W (pj) is the sum of the weights of outgoing links from pj,

whose formula is:

W (pj) =
∑

ε(pj ,pk)∈E

w (ε (pj, pk)). (3.3)

41

3.3.1.3 Weighted PR Algorithm with Weights Unnormalized

We also tested another refinement of PR algorithm, in which the incoming link

effect is not normalized by a factor of incoming links’ outgoing factor, but the total

number of nodes in the graph. In this case, since the splitting factor is fixed and

hence the normalization effect does not take into account for any node. This version

of formula is defined as:

r (pi) =
(1− α)

N
+ α ·

∑
pj∈M(pi)

r (pj) · w (ε (pj, pi))

N
(3.4)

whereN is the total number of nodes, p0, p1, . . . , pN−1 ∈ V, ε (pj, pi) ∈ E, w (ε (pj, pi))

denotes the weight of ε (pj, pi), M(pi) is the set of pages that link to pi and α is the

damping factor.

As we can see in formula 3.4, without normalization, the actual number of edges

and edge weights matter. We expected that those programs with large in-degree

might probably take the advantage of unnormalization.

3.3.2 HITS-based Algorithms

3.3.2.1 HITS Algorithm

HITS algorithm is proposed by Kleinberg, with the initial intention to discover

the “authoritative” sources of a particular topic in the WWW. Let G = (V,E) be the

Web graph comprising a set V of vertices (pages) and a set E of links. Innovatively,

it defines two types of pages in the Web: hubs and authorities. A hub is a page that

links to other pages; an authority is a page that is linked by other pages. The ranking

philosophy behind HITS is mutually reinforcing relationship: “a good hub is a page

that points to many good authorities’; a good authority is a page that is pointed to

by many good hubs”[22]. HITS is usually implemented in iterative manner. In each

42

iteration, the updating rules for the authority value Auth (p) and hub value Hub (p)

of page p is formulated as

Auth (p)←
∑

ε(q,p)∈E

Hub (q) (3.5)

and

Hub (p)←
∑

ε(p,q)∈E

Auth (q). (3.6)

In each iteration the new values are updated from old values from last iteration.

After each iteration, the hub scores and authority scores should be normalized before

starting the next iteration. The algorithm will stop once the hub scores or authority

scores converge (remain the same or change little).

Unlike PR algorithm, HITS algorithm considers the effect of hubs into account.

In HITS algorithm, the effect of hubs and authorities will reinforce each other and

those authorities pointed by strong hubs will stand out of those authorities pointed by

weak hubs. In the hiring graph specially, to UCBerkeley for example, we expect that

a link from MIT would be more important than say, a link from TAMU, because

MIT has more credits to support UCBerkeley to be a better school. Under this

assumption, in our experiments, we developed and tested several variations of HITS-

based algorithm on our PhD hiring graph. Finally, we look at the authority scores

of each program and rank them according to their authorities only.

3.3.2.2 Weighted HITS Algorithm

Similarly, we also take the weights of edges in the hiring graph into consideration.

The updating rules are defined in equation 3.7 and equation 3.8 for the weighted HITS

algorithm. The only difference in the following updating rules from the formula of

HITS is that we multiply the weight of the incoming/outgoing edges when calculating

43

the authority/hub of a given node.

Auth (p)←
∑

ε(q,p)∈E

Hub (q) · w (ε (q, p)) (3.7)

and

Hub (p)←
∑

ε(p,q)∈E

Auth (q) · w (ε (p, q)), (3.8)

where w (ε (p, q)) is the weight of edge from node p to node q.

3.3.2.3 HubAvg Algorithm

To overcome the shortcoming of the HITS algorithm of a hub getting a high

weight when it points to a large number of low quality authorities, we also suggest

the following refinement according to [25]. While the updating rule for authority

remains the same, the updating rule for hub is averaged by the number of outgoing

edges of the node:

Auth (p)←
∑

ε(q,p)∈E

Hub (q) · w (ε (q, p)) (3.9)

and

Hub (p)← 1

M (p)

∑
ε(p,q)∈E

Auth (q) · w (ε (p, q)), (3.10)

where w (ε (p, q)) is the weight of edge from node p to node q and M (p) is the sum

of weights of outgoing edges of node p.

3.4 Evaluation Methodology

In order to evaluate the performance of the above link-based algorithms, we

proposed using the U.S. News ranking as a baseline. However, this is not to say that

U.S. News ranking is the “ground truth” since U.S. News ranking is also a subjective

44

point of view. We only use it as a reference to analyze our own ranking method

so that we could discuss and conclude from what we have observed. Since we also

determined the top schools from the U.S. News website, U.S. News ranking would

be a good reference for our comparative experiments.

3.4.1 RankDistance

In order to measure the distance between two rankings, we proposed an “edit-

distance”-like measurement, called “RankDistance”. The computation of “RankDis-

tance” is described as follow. Supposing R1 and R2 are two rankings for a set

of samples S = (a0, a1, . . . , aN−1). Defining the rank of ai in Rj as PRj
(ai), The

RankDistance RankDist (R1, R2) between R1 and R2 is:

RankDist (R1, R2) =

∑
ai∈S

|PR1 (ai)− PR2 (ai)|

N
, (3.11)

where N is the total number of samples.

From equation 3.11 we can see that the smaller the RankDist (R1, R2) is, the

closer R1 and R2 are. In our experiments, we compared our method with U.S. News

ranking using RankDist. As we said before, we are not taking U.S. News as the

ground truth with which our results have to perfectly match.

3.4.2 Sensitivity Analysis

Apart from RankDist, which measures how close the ranking to U.S. News, we

also proposed another measurement called “sensitivity analysis”, which measures

how robust the algorithm is to small changes in data. The intuition of sensitivity

analysis is that universities keep hiring and professors retire or leave universities

every year for whatever reasons. Thus the hiring graph keeps changing slightly year

after year. We do not expect significant change in our ranking results if a minor

45

change happened in the hiring graph. The sensitivity analysis looks at this issue.

Our methodology to measure the sensitivity is simple. For each ranked program,

we carry out two hypothetical changes separately in the graph regarding this pro-

gram: 1) add a non-existing edge from one top ranked program to this program; 2)

delete one existing edge from the best program that link to this program; if not avail-

able, delete one existing edge from the best program that linked by this program.

The first change will boost the rank of the program and the second change will lower

the rank of the program. Thus by running a specific algorithm, we will have both

an upper bound and a lower bound for each program. We will present and discuss

the sensitivity analysis results in detail in the following section.

3.5 Results

In this section we are going to present our experimental results on our two data

sets: Top50 CS and Top50 ME. We tested five methods in all. They are: in-degree

Ranking, weighted PageRank algorithm with weights normalized, weighted PageR-

ank algorithm with weights unnormalized, weighted HITS algorithm and Hubavg

algorithm. Table 3.2 provides a mapping between each algorithm and its abbrevia-

tion, which will be used in the following thesis for convenience.

For each data set, we are going to present the result of each method compared

with the U.S. News ranking. In addition, we divided our data set into two roughly

equal parts by a given year, to see whether there is a difference between the ranking

in the most recent years and the ranking in the earlier years. Furthermore, we

performed some case studies for an in-depth look into a few universities that are

ranked differently between U.S. News and our approach. Moreover, we conducted

sensitivity tests for all the algorithms.

46

3.5.1 Top50 CS

3.5.1.1 Graph subtracted or extended? Self-edges Retained or Removed?

Considering the entire Top50 CS data set, we have 182 schools and 1,106 edges.

We generated a subtracted graph that only contains the top 50 schools. In the

subtracted graph, we have 50 schools and 842 edges. In addition, as we know that

there are self-edges in the graph, we also compared the differences between the one

with self-edges and the one with self-edges removed.

Table 3.3 shows the results of our algorithms compared with U.S. News Ranking

using RankDist measurement. According to the definition of RankDist, given a set

of 50 samples, the maximum RankDist between two rankings we can get is 25, which

occurs when one is exactly the reverse of the other one. Another common case is that,

when we randomly shuffle the ranking, we get a RankDist about 16.63 obtained by

1000 trials of random shuffles. In Table 3.3, column 1 is a list of algorithms that

we have applied; column 2 shows the RankDist to the U.S. News ranking when we

employ the algorithm on subtracted graph with self-edges retained; column 3 shows

the RankDist to the U.S. News ranking when we employ the algorithm on subtracted

graph with self-edges removed; column 4 shows the RankDist to the U.S. News ranking

when we employ the algorithm on extended graph with self-edges retained; column

Table 3.2: Algorithms and their Abbreviations

Algorithm Abbreviation
In-degree Ranking Algorithm IndeRank
Weighted PR Algorithm with weights normalized WeightedPR w n
Weighted PR Algorithm with weights unnormalized WeightedPR wo n
Weighted HITS Algorithm HITS Weighted
Hubavg Algorithm HITS Hubavg

47

Table 3.3: Results on Top50 CS Data Set

RankDist to the U.S. News Ranking

Algorithm
Subtracted
graph with
self-edges

Subtracted
graph w/o
self-edges

Extended
graph with
self-edges

Extended
graph w/o
self-edges

Average

Max. 25.0 25.0 25.0 25.0 25.0
RandomShuffle 16.63 16.63 16.63 16.63 16.63
IndeRank 5.04 3.92 5.0 4.08 4.51
WeightedPR w n 5.28 5.04 5.08 4.72 5.05
WeightedPR wo n 5.0 4.44 4.76 3.92 4.53
HITS Weighted 4.72 4.2 4.72 4.16 4.45
HITS Hubavg 4.44 3.92 4.4 3.88 4.16
Average 4.896 4.304 4.792 4.152 —

5 shows the RankDist to the U.S. News ranking when we employ the algorithm on

extended graph with self-edges removed. The last column and the last row show the

average of each row and each column respectively.

We can see clearly from Table 3.3, the RankDist values in column 4 are gen-

erally smaller than the values in column 2, which means that the results on ex-

tended graph with self-edges retained is closer to the ranking of U.S. News than the

results on subtracted graph with self-edges retained. This is probably because we

have more structural information in the extended hiring graph, even though we did

not rank those programs outside the top 50 programs in our record. Particularly,

HITS Hubavg algorithm seems to do the best job in both cases, with RankDist 4.44

and 4.4 respectively. Following HITS Hubavg, HITS Weighted, WeightedPR wo n

and IndeRank are also doing pretty good jobs in both cases with self-edges retained.

By comparing column 2 and column 3, we can see that, except WeightedPR w n,

RankDist values in column 3 are all smaller than those in column 2, indicating that

results obtained from graph without self-edges are generally closer to the U.S. News

ranking compared with the graph with self-edges. In addition, by comparing column

4 and column 5, we can observe similar fact that all five algorithms are doing better

48

in column 5 than those in column 4. The above observations indicate that removing

self-edges in hiring graph helps improving the performance of algorithms. This is to

say removing self-edges helps removing noises in hiring graph because self-edges do

not reflect the mutual relationship between schools. In the case of extended graph

with self-edges removed, HITS Hubavg is performing the best with a RankDist of

3.88, then comes WeightedPR wo n (3.92), IndeRank (4.08) and HITS Weighted

(4.16). What’s more, we can see that HITS-based algorithms are generally perform-

ing better than PR-based algorithms, probably because they consider the mutual

reinforced effect from both hubs and authorities. Furthermore, WeightedPR without

normalization is doing consistently better than WeightedPR with normalization.

By comparing the average RankDist obtained from each algorithm in all four

cases, HIT Hubavg yields the smallest RankDist of 4.16, followed by HITS Weighted

(4.45), IndeRank (4.51) and WeightedPR wo n (4.53).

By comparing the average RankDist obtained from all four case across all five

algorithms, we can see that extended graph without self-edges achieves the smallest

RankDist of 4.152, followed by subtracted graph without self-edges (4.304), extended

graph with self-edges (4.792) and subtracted graph with self-edges (4.896).

3.5.1.2 Original Rankings

Table 3.4 and Table 3.5 show the original rankings of U.S. News accompanied with

the results of all five algorithms in our experiments. As a side note, all the results in

Table 3.4 and Table 3.5 are retrieved from the experiments on the Extended Graph

with self-edge removed of the entire CS data set. A number of observations can

be made from the results. MIT, CMU, Stanford and UCBerkeley always occupy the

top 4 schools in the rankings and the top 20 schools are ranked roughly consistent

across all the algorithms. What’s more, CMU seems to be a little bit over-ranked by

49

U.S. News and MIT stands out all the time in all our five algorithms. At the first

glance, our approach yields reasonable rankings that are consistent. It indicates that

our approach is an effective way to rank graduate programs.

By comparing the results from WeightedPR w n and WeightedPR wo n, the

ranking of some schools are dramatically different. For example, the in-degrees

of UIUC and Harvard are 77 and 49 respectively, which means that UIUC is a

larger program than Harvard. However, they are ranked differently by these two

algorithms. UIUC is ranked No. 5 in WeightedPR wo n while No. 8 in Weight-

edPR w n; Harvard is ranked No. 5 in WeightedPR w n while No. 8 in Weight-

edPR wo n. For another example, the in-degree of UCLA and Caltech are 38 and 26

respectively. However, they are ranked differently by these two algorithms. UCLA

is ranked No. 13 in WeightedPR wo n while No. 18 in WeightedPR w n; Caltech

is ranked No 11 in WeightedPR w n while No. 15 in WeightedPR wo n. This is

to say that, large programs, like UIUC and UCLA, are ranked higher in Weight-

edPR wo n than WeightedPR w n, while small programs, like Harvard and Caltech,

are ranked higher in WeightedPR w n than WeightedPR wo n. As we know, it is the

actual number of incoming edges that matters in WeightedPR wo n, in which case

those large programs which places lots of PhDs would take the advantage. On the

other hand, WeightedPR w n, which normalizes this effect, would not favor those

large programs any more. In this case, the quality of PhD placements would take

the advantage over the quantity of PhD placements. This also explains that Har-

vard with smaller in-degree is ranked even higher than UIUC with larger in-degree

in WeightedPR w n. In sum, for PR-based algorithms, normalization is favoring

smaller programs while unnormalization is favoring bigger programs, as expected.

Considering WeightedPR wo n yields closer result to U.S. News ranking, we can

conclude that the U.S. News might probably favor bigger programs as well.

50

Figure 3.2: Ranking Divergence of CS Programs Compared to U.S. News

What’s more, the two HITS-based algorithms, HITS Weighted and HITS Hubavg

seem to give very similar rankings according to Table 3.4 and 3.5. This is because

HITS-based algorithm is more stable than PR-based algorithms since HITS-based

algorithms take the effects from both hubs and authorities into consideration.

Besides, we can also observe some significant differences in rankings for some

schools. For example, Harvard is ranked much higher by our method than U.S. News.

This is probably because Harvard is still getting the momentum from the earlier days

when Harvard was strong in CS. Figure 3.2 shows the ranking divergence for each

program between our algorithms against U.S. News. In Figure 3.2, the straight line

is the baseline of U.S. News ranking. The curves of our algorithms are roughly

consistent with the U.S. News baseline. We can also observe that there are some

programs with huge divergence between our approach and the U.S. News ranking,

such as Harvard, Duke, StonyBrook and Utah. We will discuss some interesting cases

in detail in section 3.5.1.4 later.

51

T
ab

le
3.

4:
R

es
u
lt

s
on

T
op

50
C

S
D

at
a

S
et

(1
∼

25
)

T
h

e
ra

n
k
in

gs
ar

e
re

tr
ie

ve
d

fr
o
m

ex
p

er
im

en
ts

o
n

th
e

en
ti

re
E
x
te
n
d
ed

G
ra

p
h

w
it
h

S
e
lf
-e
d
g
e
R
e
m
o
v
ed

R
a
n

k
U

S
N

ew
s

In
d

eR
an

k
W

ei
g
h
te

d
P

R
w

n
W

ei
g
h
te

d
P

R
w

o
n

H
IT

S
W

ei
g
h
te

d
H

IT
S

H
u

b
av

g
1

cm
u

m
it

m
it

m
it

m
it

m
it

2
m

it
u

cb
er

ke
le

y
st

a
n

fo
rd

u
cb

er
ke

le
y

u
cb

er
ke

le
y

u
cb

er
ke

le
y

3
st

an
fo

rd
st

an
fo

rd
u

cb
er

ke
le

y
st

a
n

fo
rd

st
a
n

fo
rd

st
an

fo
rd

4
u

cb
er

ke
le

y
cm

u
cm

u
cm

u
cm

u
cm

u
5

u
iu

c
u

iu
c

h
a
rv

a
rd

u
iu

c
u

iu
c

u
iu

c
6

co
rn

el
l

co
rn

el
l

co
rn

el
l

co
rn

el
l

w
a
sh

in
g
to

n
co

rn
el

l
7

w
as

h
in

gt
on

p
ri

n
ce

to
n

w
a
sh

in
g
to

n
w

a
sh

in
g
to

n
co

rn
el

l
w

a
sh

in
g
to

n
8

p
ri

n
ce

to
n

w
as

h
in

g
to

n
u

iu
c

h
a
rv

a
rd

p
ri

n
ce

to
n

p
ri

n
ce

to
n

9
ga

te
ch

u
ta

u
st

in
p

ri
n

ce
to

n
p

ri
n

ce
to

n
h

a
rv

a
rd

h
a
rv

a
rd

10
u

ta
u

st
in

h
ar

va
rd

w
is

co
n

si
n

u
ta

u
st

in
u

cl
a

u
ta

u
st

in
11

ca
lt

ec
h

u
p

en
n

ca
lt

ec
h

w
is

co
n

si
n

u
p

en
n

u
p

en
n

12
w

is
co

n
si

n
w

is
co

n
si

n
u

ta
u

st
in

u
p

en
n

w
is

co
n

si
n

w
is

co
n

si
n

13
u

cl
a

u
cl

a
u

p
en

n
u

cl
a

u
ta

u
st

in
u

cl
a

14
u

m
ic

h
ga

te
ch

u
m

a
ss

g
a
te

ch
ca

lt
ec

h
ca

lt
ec

h
15

co
lu

m
b

ia
u

m
ar

y
la

n
d

g
a
te

ch
ca

lt
ec

h
u

m
a
ss

g
at

ec
h

16
u

cs
d

p
u

rd
u

e
u

m
ic

h
u

m
a
ry

la
n

d
g
a
te

ch
u

m
a
ss

17
u

m
ar

y
la

n
d

ca
lt

ec
h

ya
le

p
u

rd
u

e
u

m
ic

h
u

m
a
ry

la
n

d
18

h
ar

va
rd

u
m

as
s

u
cl

a
u

m
a
ss

u
m

a
ry

la
n

d
u

m
ic

h
19

u
p

en
n

u
m

ic
h

u
cs

d
u

m
ic

h
u

cs
d

co
lu

m
b

ia
20

b
ro

w
n

co
lu

m
b

ia
co

lu
m

b
ia

co
lu

m
b

ia
co

lu
m

b
ia

p
u

rd
u

e
21

p
u

rd
u

e
u

sc
p

u
rd

u
e

u
cs

d
ya

le
u

cs
d

22
ri

ce
u

cs
d

u
m

a
ry

la
n

d
ya

le
p

u
rd

u
e

ya
le

23
u

sc
n

or
th

ca
ro

li
n

a
n

o
rt

h
ca

ro
li

n
a

u
sc

u
sc

n
y
u

24
ya

le
ya

le
st

o
n
y
b

ro
o
k

n
o
rt

h
ca

ro
li

n
a

n
y
u

u
sc

25
d

u
ke

n
y
u

u
m

in
n

es
o
ta

n
y
u

n
o
rt

h
ca

ro
li

n
a

n
o
rt

h
ca

ro
li

n
a

52

T
ab

le
3.

5:
R

es
u
lt

s
on

T
op

50
C

S
D

at
a

S
et

(2
6∼

50
)

T
h

e
ra

n
k
in

gs
ar

e
re

tr
ie

ve
d

fr
o
m

ex
p

er
im

en
ts

o
n

th
e

en
ti

re
E
x
te
n
d
ed

G
ra

p
h

w
it
h

S
e
lf
-e
d
g
e
R
e
m
o
v
ed

R
a
n

k
U

S
N

ew
s

In
d

eR
a
n

k
W

ei
g
h
te

d
P

R
w

n
W

ei
g
h
te

d
P

R
w

o
n

H
IT

S
W

ei
g
h
te

d
H

IT
S

H
u

b
av

g
26

u
m

as
s

b
ro

w
n

n
y
u

b
ro

w
n

st
o
n
y
b

ro
o
k

st
o
n
y
b

ro
o
k

27
n

or
th

ca
ro

li
n

a
st

on
y
b

ro
o
k

b
ro

w
n

st
o
n
y
b

ro
o
k

b
ro

w
n

b
ro

w
n

28
jo

h
n

sh
op

k
in

s
u

m
in

n
es

o
ta

u
ta

h
u

m
in

n
es

o
ta

p
en

n
st

a
te

ri
ce

29
n
y
u

ri
ce

u
sc

ri
ce

u
m

in
n

es
o
ta

u
m

in
n

es
o
ta

30
p

en
n

st
at

e
p

en
n

st
a
te

u
v
ir

g
in

ia
o
h

io
st

a
te

o
h

io
st

a
te

o
h

io
st

a
te

31
u

ci
rv

in
e

oh
io

st
a
te

ri
ce

p
en

n
st

a
te

u
ci

rv
in

e
p

en
n

st
a
te

32
u

m
in

n
es

ot
a

u
ta

h
o
h

io
st

a
te

u
ta

h
u

ta
h

u
ta

h
33

u
v
ir

gi
n

ia
n

or
th

w
es

te
rn

p
en

n
st

a
te

u
v
ir

g
in

ia
n

o
rt

h
w

es
te

rn
u

v
ir

g
in

ia
34

n
or

th
w

es
te

rn
u

ci
rv

in
e

jo
h

n
sh

o
p

k
in

s
u

ci
rv

in
e

u
v
ir

g
in

ia
u

ci
rv

in
e

35
oh

io
st

at
e

u
v
ir

gi
n

ia
u

ci
rv

in
e

n
o
rt

h
w

es
te

rn
ru

tg
er

s
n

o
rt

h
w

es
te

rn
36

ru
tg

er
s

jo
h

n
sh

o
p

k
in

s
n

o
rt

h
w

es
te

rn
jo

h
n

sh
o
p

k
in

s
ri

ce
jo

h
n

sh
o
p

k
in

s
37

u
cd

av
is

ru
tg

er
s

u
ch

ic
a
g
o

ru
tg

er
s

jo
h

n
sh

o
p

k
in

s
ru

tg
er

s
38

u
cs

b
u

ar
iz

on
a

u
co

lo
ra

d
o

u
a
ri

zo
n

a
u

co
lo

ra
d

o
u

a
ri

zo
n

a
39

u
ch

ic
ag

o
u

co
lo

ra
d

o
d

a
rt

m
o
u

th
u

co
lo

ra
d

o
u

a
ri

zo
n

a
u

co
lo

ra
d

o
40

d
ar

tm
ou

th
u

ch
ic

a
g
o

ru
tg

er
s

u
ch

ic
a
g
o

u
ch

ic
a
g
o

u
ch

ic
a
g
o

41
st

on
y
b

ro
ok

d
u

ke
d

u
ke

d
u

ke
u

cd
av

is
d

u
ke

42
ta

m
u

u
cs

b
u

a
ri

zo
n

a
u

cs
b

d
u

ke
u

cd
av

is
43

u
ar

iz
on

a
u

cd
av

is
b

o
st

o
n

u
cd

av
is

u
cs

b
w

u
st

l
44

u
co

lo
ra

d
o

w
u

st
l

w
u

st
l

b
o
st

o
n

w
u

st
l

d
a
rt

m
o
u

th
45

u
ta

h
b

os
to

n
u

cs
b

w
u

st
l

d
a
rt

m
o
u

th
u

cs
b

46
va

te
ch

d
ar

tm
o
u

th
u

cd
av

is
d

a
rt

m
o
u

th
b

o
st

o
n

b
o
st

o
n

47
w

u
st

l
n

cs
ta

te
ta

m
u

ta
m

u
n

cs
ta

te
n

cs
ta

te
48

ar
iz

on
as

ta
te

ta
m

u
n

cs
ta

te
n

cs
ta

te
ta

m
u

ta
m

u
49

b
os

to
n

ar
iz

on
a
st

a
te

a
ri

zo
n

a
st

a
te

a
ri

zo
n

a
st

a
te

a
ri

zo
n

a
st

a
te

a
ri

zo
n

a
st

a
te

50
n

cs
ta

te
va

te
ch

va
te

ch
va

te
ch

va
te

ch
va

te
ch

53

3.5.1.3 Recent Years vs Earlier Years

In this section we focus on comparing the recent data and the earlier data, ex-

pecting to discover some differences out of the comparison. As we described in 3.2.1,

more than 80 percent of the entries have Year Grad. information. Thus, based on the

entries with year information, we generated the distribution of year data in Top50

CS data set, which is shown in Figure 3.3. Figure 3.3a on the left is the frequency

distribution of years, and Figure 3.3b on the right is the Cumulative Distribution

Function (CDF) of year distribution.

Although the data set is quite “recent” since all the data we have collected appear

on the web pages currently, we can see that there are a number of professors gradu-

ated decades ago. Some of them might still be active in academic fields and some of

them might just be “emeritus faculties” that only hold the title and no longer active.

In this case, we are interested to see what would happen if we only consider the data

from recent years and what would be the differences compared with the entire data.

As we can see in Figure 3.3b, the CDF curve crosses 50 percent between calendar

year 1994 and 1995. In fact, before 1994 inclusively, there are 875 data points; after

1994 exclusively, there are 918 data points. The numbers are roughly equal and it

would be fair to divide the data set by year 1994 into two equally large subsets to

analyze the effect of year of graduation.

Table 3.6 shows the comparison between the results of recent years and earlier

years. In Table 3.6, column 2 shows the resulting RankDist applied on the entire

data set; column 3 shows the resulting RankDist applied on the data set from 1949

to 1994 inclusively; column 4 shows the resulting RankDist applied on the data set

from 1995 to 2014 inclusively.

Interestingly, the RankDist values in column 4 are all smaller than the RankDist

54

values in column 3. On average, the values in column 4 are 27% smaller than the

values in column 3, indicating that the ranking results from recent 20 years are much

closer to the U.S. News ranking than the results on years before 1995. Considering

there is unavoidable noise in the data set, this improvement is quite significant.

We expect that it is probably because some old CS programs such as Harvard and

Yale would do better in the old days, while some new CS programs like Gatech

and UCSD would boost up recently, letting the old CS programs going down in the

ranking. We will investigate into such special cases later. In addition, compared

with the results on the entire data set, the recent year seems to do a little bit worse

but the RankDistances are pretty close. The reason that the result on recent 20

years could not do as good as the results on the entire data set is the amount of

information. Data from the recent 20 years is only half of the entire data. It would

be unfair to compare them since using the entire data has the advantage of having

more data points.

Furthermore, in the experiments on recent 20 years (1995 ∼ 2014 inclusively),

WeightedPR wo n is doing the best with RankDist 4.16, then comes IndeRank (4.28)

and then HITS Hubavg (4.64). In the earlier years data, WeightedPR wo n and

HITS Hubavg obtain the lowest RankDists of 6.04 and 6.12 respectively.

(a) Frequency Distribution (b) CDF

Figure 3.3: Distributions of Years in Top50 CS Data Set

55

Table 3.6: Results between Recent Years and Earlier Years on CS Data Set

RankDist with U.S. News
on Extended graph w/o self-edges

Algorithm Entire Data 1949∼1994 1995∼2014
IndeRank 4.08 6.28 4.28
WeightedPR w n 4.72 6.44 4.68
WeightedPR wo n 3.92 6.04 4.2
HITS Weighted 4.16 6.42 5.0
HITS Hubavg 3.88 6.12 4.64

Figure 3.4: Ranking Divergence of CS Programs Compared to U.S. News (1995-2014)

Figure 3.4 shows the ranking divergence of all programs obtained from recent

data. Yale and Duke is doing not as well as U.S. News estimates.

3.5.1.4 Observations

In order to know where the differences between U.S. News ranking and our rank-

ings come from, we investigate into the actual rank changes for each program in our

data set. Because the space is limited in this report and because WeightedPR wo n

and HITS Hubavg seems doing better than other algorithms according to our pre-

56

Table 3.7: Rank Difference Comparison on CS Data Set

WeightedPR wo n HITS Hubavg
Univ Entire ’49∼’94 ’95∼’14 AbsDif Entire ’49∼’94 ’95∼’14 AbsDif
Yale +2 +12 -22 34 +2 +12 -21 33
NYU +4 +12 0 12 +6 +16 -5 21
Purdue +4 +8 -1 9 +1 +5 -9 14
Harvard +10 +11 -2 13 +9 +12 -1 13

UCSD -5 -19 +2 21 -5 -19 +3 22
Gatech -5 -20 0 20 -6 -24 -3 21
Rice -7 -16 -2 14 -6 -16 -1 15
Columbia -5 -9 0 9 -4 -10 0 10

Utah +13 +17 +9 8 +13 +18 +6 12
Duke -16 -8 -18 10 -16 -9 -19 10
StonyBrook +14 +20 +10 10 +15 +21 +13 8
Caltech -4 -7 -8 1 -3 -6 -7 1
TAMU -5 -9 0 9 -4 -6 -6 0

UIUC 0 0 -2 2 0 0 -4 4
Stanford 0 0 0 0 0 +1 0 1
UTAustin 0 +1 0 1 0 +1 +2 1
MIT +1 +1 +1 0 +1 +1 +1 0

vious discussion, in this section, we only use these two algorithms and part of the

entire programs to explain our observations.

Table 3.7 shows the exact difference for each program in WeightedPR wo n rank-

ing and HITS Hubavg ranking compared with U.S. News ranking. The positive value

means the rank is higher than the rank in U.S. News; the negative value means the

rank is lower than the rank in U.S. News. The AbsDif value is simply the absolute

difference between the values in ’49 ∼ ’94 and ’95 ∼ ’14. We can see that some of

the programs get ranked dramatically different from their rank in U.S. News, such

as StonyBrook, Harvard and Duke. It is these programs that enlarge the difference

between the results from our algorithms and the U.S. News.

The first block, consisting of Yale, Purdue, Harvard and NYU, is comprising the

programs that are doing much better before 1994 than they did after 1994. Part of

the reason could be that they are old programs, who have establishing their academic

57

strengths in the earlier days. Another reason could be that they fell behind in the

recent years, for example, as we can see, Yale and Purdue are ranked much lower

from recent data by our algorithms than U.S. News.

The second block, including Gatech, UCSD, Rice and Columbia, is comprising

the programs that are doing much worse before 1994 than they did after 1994. This

is probably because they are young programs and grew fast in the recent years.

The third block, includes those programs that are “under-estimated” or “over-

estimated” by U.S. News. For example, StonyBrook and Utah are under ranked by

U.S. News while Duke, Caltech and TAMU are over ranked by U.S. News.

The last block consists of those programs that are relatively stable in both our

rankings and U.S. News ranking. The common characteristics of these programs,

such as Stanford and UIUC are ranked roughly the same by both our algorithms and

U.S. News. When seeing the whole scenario, such programs compose the majority

of the programs, making the RankDist as low as about 3.88.

These observations are not coincident but all reflected from the hiring graph.

Here is an example. Duke and UMass are equally ranked as No. 25 in U.S. News

ranking. However, in the hiring graph, Duke is ranked lower than UMass. Figure 3.5a

shows the neighbours of UMass in the hiring graph; Figure 3.5b shows the neighbors

of Duke in the hiring graph. In Figure 3.5, the medium dark nodes are the target

node we are looking at; the dark nodes are the nodes pointed by the target node;

the light nodes are the nodes pointing to the target node. Hence, the target node is

hiring PhDs from dark nodes; the light nodes are hiring PhDs from our target node.

We can see in 3.5a, CMU, UCBerkeley, Princeton, Cornell, Harvard, Purdue and

some other schools have hired PhD graduates from UMass. On the other hand, even

though ranked similarly by the U.S. News, Duke is performing much worse compared

with UMass in terms of hiring graph. As we can see in 3.5b, only Utah, UVirginia,

58

UMaryland, Dartmouth, NorthCarolina and OhioState have hired PhDs from Duke.

Since these programs are not as highly ranked as the programs that hired UMass

PhDs, UMass gets ranked higher in our approach.

Here is another example. In the U.S. News ranking, StonyBrook and TAMU are

equally ranked as No. 40. However, they get ranked differently in our approach.

The PhDs from StonyBrook went to Cornell, Harvard, Gatech, UPenn, UMaryland,

UCSB, Yale, UCDavis and so on, while the PhDs from TAMU went to Utah and

OhioState. We can see a gap between the qualities of these two sets, and StonyBrook

gains more credits from the higher quality programs hiring its graduates. This is why

StonyBrook is ranked about 15 ranks higher than the U.S. News by our approach.

We can also confirm this observation from the third block in Table 3.7.

Another interesting observation is that some schools are doing better in the earlier

days while doing not that well in the recent 20 years. Harvard and Yale seem to be

two typical examples of such programs. Table 3.8 shows the incoming edges of

Harvard with year and Table 3.9 shows the incoming edges of Yale with year. We

can see that Harvard’s PhDs got hired widely among Universities before 1994 while

only a few of them got hired in the recent 20 years. Yale has 15 incoming edges

before 1994, while only 2 after 1994. Since these schools did not place as many of

their graduates as faculty in recent years, their rankings fall by a substantial number

when we look at recent data.

3.5.1.5 Sensitivity Analysis

Our expectation is that, one or two faculties coming or leaving the department

should not affect the rank of the department dramatically. Any change in rankings

from such small changes in hiring graph is considered to provide an idea of fidelity

of rankings.

59

(a) UMass (b) Duke

(c) StonyBrook (d) TAMU

Figure 3.5: One-level Neighbouring Graphs in CS Data Set

Thus we proposed measuring the upper bound and lower bound of the rank for

each program under the circumstance when there is a minor change in the hiring

graph. To measure the upper bound of a program’s rank, we accordingly add a

“Virtual” edge from the # 1 program (e.g., MIT in CS data) to that program,

which means that MIT just hired a PhD from that program; if there is already an

edge from MIT to that program, we will simply increase the edge weight by 1. To

measure the lower bound of a program’s rank, we accordingly delete an existing

edge from highest ranked program to that program. If the target edge has a weight

60

Table 3.8: Incoming Neighbours of Harvard in CS Data Set

Harvard’s Incoming Nodes

Univ. Year Univ. Year Univ. Year
NYU 1950 UMaryland 1970 Caltech 1980
NorthCarolina 1956 Duke 1970 Cornell 1981
UCBerkeley 1959 NYU 1970 MIT 1984
UCLA 1963 MIT 1972 UMaryland 1985
Purdue 1963 Princeton 1973 Dartmouth 1986
Yale 1965 Harvard 1974 Gatech 1989
UMass 1966 UArizona 1974 UPenn 1989
NorthCarolina 1967 StonyBrook 1976 Boston 1992
UCDavis 1967 Duke 1977 CMU 1993
Yale 1968 Wustl 1978 Columbia 1993
USC 1969 Stanford 1980 UPenn 1993

UIUC 1995 StonyBrook 2003 Duke 2008
UCLA 1996 Boston 2003 Northwestern 2012
Cornell 1997 ArizonaState 2005 ArizonaState 2012
StonyBrook 1998 Harvard 2007

more than 1, we will decrease the edge weight by 1; if the target edge has a weight

exactly as 1, we will remove the edge from the graph. The reason we perform these

two manipulations is that we have already seen that the quality and quantity of

incoming edges play an essential role in the ranking of programs. We expect that

these experiments would provide an idea of the sensitivity of our rankings.

As a result, Figure 3.6 shows the sensitivity bound of each program by all our

five algorithms. From 3.6a to 3.6e, the x axis are the programs order by the rank

from top to bottom; the y axis are the ranks. In these figures, each program has

a bar that represents its sensitivity variation bound. The bottom of the bar means

the upper bound that how high it could be ranked when adding a virtual significant

edge; the top of the bar means the lower bound that how low it could be ranked

when deleting a significant edge of the program. Thus, the narrower the variation

61

Table 3.9: Incoming Neighbours of Yale in CS Data Set

Yale’s Incoming Nodes

Univ. Year Univ. Year Univ. Year
Dartmouth 1975 UCLA 1982 Northwestern 1986
UMass 1977 UMaryland 1982 USC 1987
CMU 1979 Princeton 1986 NYU 1988
Princeton 1980 Northwestern 1986 UPenn 1994
NYU 1980 Northwestern 1986 Rutgers 1994

Cornell 2005

bound is, the less sensitive that program’s ranking is to minor changes in the hiring

graph.

In Figure 3.6a, IndeRank is doing well among the top 25 schools, while exhibiting

significant variation below the top 25. This is because the IndeRank only cares

about the number of incoming edges for a particular program, and many programs

below top 25 have similar number of incoming edges. Hence, here comes the greatest

disadvantage of IndeRank, which is that IndeRank is not able to rank those programs

with the same number of incoming edges, even though the qualities of these edges

vary. In other words, IndeRank only care about the quantity of edges but not the

quality of edges. This seems to indicate that IndeRank leads to wide fluctuation in

rankings for schools from 25 to 50 with minor changes.

In Figure 3.6b, WeightedPR w n is not doing well either. Especially, the upper

bounds for the lower programs are extremely wide, which means that adding an edge

from MIT to a program significantly boosts the rank of that program. This happens

because of two reasons. First of all, adding a high quality incoming edge suddenly

become the major contribution of that program since the the program does not have

many incoming edges. Secondly, the nature that PageRank only care about the

authority, brings up the authority of that program instantly when adding an edge to

62

that program pointed by another well established authority. Thus, WeightedPR w n

seems to be very sensitive to potentially small changes in the hiring graph.

The performance of the other three algorithms are fairly similar in terms of the

sensitivity graphs. One interesting thing is that WeightedPR wo n does not have the

problem of WeightedPR w n, probably because it does not normalize the influence

from incoming edges. In addition, HITS-based algorithms are very robust to minor

changes. Another interesting thing is that, we can observe a “step-like” shape in

3.6c, 3.6d and 3.6e, indicating some programs share either upper bound or lower

bound or both of them. It is a clear indicator that these programs might be about

even and difficult to say which is a better one and hence should be ranked together.

Table 3.10 summarizes the average sensitivity bounds for all the algorithms.

The UpperBound indicates the average boost-up we can achieve for each algorithm;

the LowerBound indicates the average degradation we get for each algorithm; the

Abs.Range is simply the absolute difference between UpperBound and LowerBound.

The UpperBound of WeightedPR w n (5.76) is extremely high, which is consistent

with our analysis on the sensitivity graph. Based on these results in Table 3.10,

Weighted wo norm, HITS Weighted and HITS Hubavg seem to offer a better dis-

tinction of programs.

Table 3.10: Average Sensitivity Bounds of all algorithms on CS Data Set

IndeRank
WeightedPR
w norm

WeightedPR
wo norm

HITS
Weighted

HITS
Hubavg

UpperBound +1.54 5.76 +1.54 1.6 1.4
LowerBound -1.54 -1.98 -0.92 -1.24 -1.16

Abs.Range 3.08 7.74 2.46 2.84 2.56

63

(a) IndeRank

(b) WeightedPR w n (c) WeightedPR wo n

(d) HITS Weighted (e) HITS Hubavg

Figure 3.6: Sensitivity Graphs on CS Data Set

64

3.5.1.6 Discussion

Up until now, we have seen that our proposed method provides a new way of

ranking programs in CS data set. HITS Hubavg and WeightPR wo norm are doing

the best in terms of both RankDist when comparing to U.S. News ranking and

sensitivity. Even though IndeRank achieves fairly good RankDist, the nature of its

disadvantage does not convince us that it is a good way to rank graduate programs.

In addition, we also observed a large variation of the upper bound from Weight-

edPR w n, making it less robust compared with HITS Hubavg, WeightPR wo norm

and HITS.

Our analysis resulted in some programs being very differently ranked from U.S.

News. Notably, Harvard and Yale do not do as well in our rankings and Stonybrook

and Minnesota do significantly better in our rankings. Our analysis also showed that

some programs have seen significant change in the last 20 years; Gatech and UCSD

have considerably improved while Purdue and Yale have significantly decreased in

placing their PhDs in academic.

65

3.5.2 Top50 ME

We have shown that our approach works pretty well in Top50 CS data set. More

importantly, if robust enough, our approach should not only work for CS graduate

programs but also universally for other graduate programs. In order to validate

our methodology, we collected another separate data set, which is the faulty profile

data from Top 50 ME programs in the USA, and then run our algorithms. If our

algorithms are effective, we should be able to obtain similar results as we did in

the CS data set. Although it is not sufficient to prove that our approach could be

“universally” applied, we could still conclude that our approach is not only suitable

for ranking CS program but also suitable for other programs.

3.5.2.1 Original Rankings

Similar to what we did in the CS data set, we first examine how our approach

performed in subtracted graph with self-edges, subtracted graph without self-edges,

extended graph with self-edge and extended graph without self-edges. Table 3.11 shows

the comparisons among these cases.

As we can see in Table 3.11, results obtained from extended graph without self-

edges are the best among the four. This is a similar observation as in CS data set. The

best RankDist we achieved is from HITS Weighted, which is 4.48. HITS Hubavg

(4.8), IndeRank (4.88) and WeightedPR wo n (5.0) also yield rankings pretty close

to U.S. News ranking. Even though we observed that, in the case of HITS Weighted

and HITS Hubavg, RankDists from graph with self-edges are smaller those from

graph without self-edges, averagely the result from extended graph without self-edges

is still the smallest. One thing we noticed is that the RankDist in ME data set is

slightly larger than that in CS Data Set. This is probably because there are more

noises in ME programs, in which case some ME programs hire PhD from other fields,

66

Table 3.11: Results on Top50 ME Data Set

RankDist to the U.S. News Ranking

Algorithm
Subtracted
graph with
self-edges

Subtracted
graph w/o
self-edges

Extended
graph with
self-edges

Extended
graph w/o
self-edges

Average

Max. 25.0 25.0 25.0 25.0 25.0
RandomShuffle 16.66 16.66 16.66 16.66 16.66
IndeRank 5.36 4.88 5.52 4.96 5.18
WeightedPR w n 6.84 6.8 6.6 6.04 6.57
WeightedPR wo n 6.08 5.52 5.08 5.0 5.42
HITS Weighted 4.48 5.12 4.48 5.12 4.8
HITS Hubavg 4.84 5.04 4.8 4.84 4.88
Average 5.52 5.472 5.296 5.192 —

Figure 3.7: Ranking Divergence of ME Programs Compared to U.S. News

such as Aerospace, Material, Civil Engineering and CS and so on.

Table 3.12 and Table 3.13 combined show the original rankings of our algorithms

obtained from the extended graph without self-edges of the entire data set, with

the U.S. News ranking. Figure 3.7 shows the ranking divergence of each program

between our algorithms and U.S. News. We can see that, some programs, such as

UMaryland, Harvard, UPenn and UVirginia, are ranked dramatically different from

the U.S. News. We will discuss some of these cases in Section 3.5.2.3.

67

T
ab

le
3.

12
:

R
es

u
lt

s
on

T
op

50
M

E
D

at
a

S
et

(1
∼

25
)

T
h

e
ra

n
k
in

gs
ar

e
re

tr
ie

ve
d

fr
o
m

ex
p

er
im

en
ts

o
n

th
e

en
ti

re
E
x
te
n
d
ed

G
ra

p
h

w
it
h

S
e
lf
-e
d
g
e
R
e
m
o
v
ed

R
a
n

k
U

S
N

ew
s

In
d

eR
a
n

k
W

ei
g
h
te

d
P

R
w

n
W

ei
g
h
te

d
P

R
w

o
n

H
IT

S
W

ei
g
h
te

d
H

IT
S

H
u

b
av

g
1

m
it

u
cb

er
ke

le
y

st
a
n

fo
rd

u
cb

er
ke

le
y

u
cb

er
ke

le
y

u
cb

er
ke

le
y

2
st

an
fo

rd
m

it
u

cb
er

ke
le

y
m

it
m

it
st

a
n

fo
rd

3
ca

lt
ec

h
st

an
fo

rd
m

it
st

a
n

fo
rd

st
a
n

fo
rd

m
it

4
u

cb
er

ke
le

y
ca

lt
ec

h
ca

lt
ec

h
ca

lt
ec

h
u

iu
c

ca
lt

ec
h

5
ga

te
ch

u
iu

c
co

rn
el

l
u

iu
c

ca
lt

ec
h

u
iu

c
6

u
iu

c
u

m
ic

h
p

ri
n

ce
to

n
u

m
ic

h
u

m
ic

h
u

m
ic

h
7

u
m

ic
h

co
rn

el
l

h
a
rv

a
rd

co
rn

el
l

p
ri

n
ce

to
n

co
rn

el
l

8
co

rn
el

l
p

ri
n

ce
to

n
u

iu
c

p
ri

n
ce

to
n

co
rn

el
l

p
ri

n
ce

to
n

9
p

ri
n

ce
to

n
p

u
rd

u
e

u
m

ic
h

p
u

rd
u

e
p

u
rd

u
e

h
ar

va
rd

10
cm

u
h

ar
va

rd
co

lu
m

b
ia

h
a
rv

a
rd

w
is

co
n

si
n

p
u

rd
u

e
11

p
u

rd
u

e
w

is
co

n
si

n
u

cs
d

w
is

co
n

si
n

h
a
rv

a
rd

u
cl

a
12

u
ta

u
st

in
u

cl
a

u
cl

a
u

cl
a

g
a
te

ch
w

is
co

n
si

n
13

jo
h

n
sh

op
k
in

s
ga

te
ch

w
is

co
n

si
n

g
a
te

ch
u

cl
a

g
a
te

ch
14

n
or

th
w

es
te

rn
u

p
en

n
p

u
rd

u
e

u
p

en
n

p
en

n
st

a
te

u
m

in
n

es
o
ta

15
u

cl
a

u
m

in
n

es
o
ta

u
p

en
n

p
en

n
st

a
te

u
ta

u
st

in
jo

h
n

sh
o
p

k
in

s
16

u
m

in
n

es
ot

a
p

en
n

st
a
te

u
ta

u
st

in
u

m
in

n
es

o
ta

u
m

in
n

es
o
ta

u
p

en
n

17
p

en
n

st
at

e
u

ta
u

st
in

g
a
te

ch
u

ta
u

st
in

u
p

en
n

u
ta

u
st

in
18

ta
m

u
jo

h
n

sh
o
p

k
in

s
cm

u
jo

h
n

sh
o
p

k
in

s
cm

u
n

or
th

w
es

te
rn

19
u

m
ar

y
la

n
d

n
or

th
w

es
te

rn
jo

h
n

sh
o
p

k
in

s
n

o
rt

h
w

es
te

rn
jo

h
n

sh
o
p

k
in

s
p

en
n

st
a
te

20
va

te
ch

va
te

ch
u

m
in

n
es

o
ta

cm
u

n
o
rt

h
w

es
te

rn
cm

u
21

u
cs

d
cm

u
p

en
n

st
a
te

va
te

ch
o
h

io
st

a
te

va
te

ch
22

w
is

co
n

si
n

u
cs

d
ya

le
u

cs
d

va
te

ch
u

cs
d

23
oh

io
st

at
e

co
lu

m
b

ia
u

cs
b

co
lu

m
b

ia
ta

m
u

o
h

io
st

a
te

24
re

n
ss

el
ae

r
oh

io
st

a
te

n
o
rt

h
w

es
te

rn
o
h

io
st

a
te

w
a
sh

in
g
to

n
co

lu
m

b
ia

25
w

as
h

in
gt

on
w

as
h

in
g
to

n
va

te
ch

w
a
sh

in
g
to

n
co

lu
m

b
ia

w
a
sh

in
g
to

n

68

T
ab

le
3.

13
:

R
es

u
lt

s
on

T
op

50
M

E
D

at
a

S
et

(2
6∼

50
)

T
h

e
ra

n
k
in

gs
ar

e
re

tr
ie

ve
d

fr
o
m

ex
p

er
im

en
ts

o
n

th
e

en
ti

re
E
x
te
n
d
ed

G
ra

p
h

w
it
h

S
e
lf
-e
d
g
e
R
e
m
o
v
ed

R
a
n

k
U

S
N

ew
s

In
d

eR
a
n

k
W

ei
g
h
te

d
P

R
w

n
W

ei
g
h
te

d
P

R
w

o
n

H
IT

S
W

ei
g
h
te

d
H

IT
S

H
u

b
av

g
26

co
lu

m
b

ia
re

n
ss

el
a
er

o
h

io
st

a
te

re
n

ss
el

a
er

re
n

ss
el

a
er

u
cs

b
27

d
u

ke
u

cs
b

re
n

ss
el

a
er

u
cs

b
u

cs
d

ya
le

28
h

ar
va

rd
ta

m
u

m
ic

h
st

a
te

ta
m

u
m

ic
h

st
a
te

re
n

ss
el

a
er

29
ri

ce
m

ic
h

st
a
te

u
m

a
ry

la
n

d
ya

le
io

w
a
st

a
te

ta
m

u
30

u
cs

d
ya

le
w

a
sh

in
g
to

n
m

ic
h

st
a
te

u
v
ir

g
in

ia
m

ic
h

st
a
te

31
u

fl
or

id
a

u
v
ir

gi
n

ia
d

u
ke

u
v
ir

g
in

ia
d

u
ke

d
u

ke
32

u
p

en
n

d
u

ke
ri

ce
d

u
ke

u
cs

b
u

v
ir

g
in

ia
33

u
sc

ri
ce

u
cd

av
is

io
w

a
st

a
te

ya
le

u
m

a
ry

la
n

d
34

u
cd

av
is

u
m

ar
y
la

n
d

ta
m

u
u

m
a
ry

la
n

d
u

cd
av

is
u

cd
av

is
35

u
co

lo
ra

d
o

io
w

as
ta

te
io

w
a
st

a
te

ri
ce

le
h

ig
h

io
w

a
st

a
te

36
ca

se
u

ci
rv

in
e

le
h

ig
h

u
cd

av
is

ri
ce

ri
ce

37
io

w
a
st

at
e

u
cd

av
is

u
v
ir

g
in

ia
u

ci
rv

in
e

u
m

a
ry

la
n

d
u

ci
rv

in
e

38
m

ic
h

st
at

e
n

cs
ta

te
u

ci
rv

in
e

n
cs

ta
te

u
ci

rv
in

e
n

cs
ta

te
39

ya
le

u
fl

or
id

a
ru

tg
er

s
le

h
ig

h
n

cs
ta

te
le

h
ig

h
40

n
cs

ta
te

le
h

ig
h

n
cs

ta
te

u
fl

o
ri

d
a

u
fl

o
ri

d
a

u
sc

41
n

ot
re

d
am

e
u

sc
u

fl
o
ri

d
a

ru
tg

er
s

u
sc

u
fl

o
ri

d
a

42
ar

iz
on

as
ta

te
ru

tg
er

s
u

sc
u

sc
a
ri

zo
n

a
st

a
te

ru
tg

er
s

43
le

h
ig

h
n

ot
re

d
a
m

e
ca

se
a
ri

zo
n

a
st

a
te

w
u

st
l

ca
se

44
ru

tg
er

s
w

u
st

l
n

o
tr

ed
a
m

e
ca

se
ca

se
n

ot
re

d
a
m

e
45

u
ci

rv
in

e
u

co
lo

ra
d

o
u

co
lo

ra
d

o
n

o
tr

ed
a
m

e
n

o
tr

ed
a
m

e
a
ri

zo
n

a
st

a
te

46
u

v
ir

gi
n

ia
ca

se
va

n
d

er
b

il
t

w
u

st
l

ru
tg

er
s

w
u

st
l

47
va

n
d

er
b

il
t

ar
iz

on
a
st

a
te

a
ri

zo
n

a
st

a
te

u
co

lo
ra

d
o

d
re

x
el

u
co

lo
ra

d
o

48
w

u
st

l
d

ar
tm

o
u

th
w

u
st

l
d

a
rt

m
o
u

th
d

a
rt

m
o
u

th
d

ar
tm

o
u

th
49

d
ar

tm
ou

th
d

re
x
el

d
a
rt

m
o
u

th
d

re
x
el

u
co

lo
ra

d
o

d
re

x
el

50
d

re
x
el

va
n

d
er

b
il

t
d

re
x
el

va
n

d
er

b
il

t
va

n
d

er
b

il
t

va
n

d
er

b
il

t

69

(a) Frequency Distribution (b) CDF

Figure 3.8: Distributions of Years in Top50 ME Data Set

3.5.2.2 Recent Years vs Earlier Years

For top50 ME data set, we also compared the case between earlier years and

recent years. Figure 3.8 shows the distributions of year data in our top50 ME data

set. Figure 3.8a on the left is the frequency distribution of years, and Figure 3.8b on

the right is the Cumulative Distribution Function (CDF) of year distribution.

In ME data set, the earliest year is 1946 and the latest year is 2013. As we can

see from 3.8b, the CDF curve crosses 50 percent between calendar year 1990 and

1991. In fact, up to 1990, there are 814 data points; after 1990, there are 896 data

points. The numbers are roughly equal and it would be fair to divide the data set

by year 1990 into two equally large subsets to analyze the effect of year.

Table 3.14 shows the comparsion between the results from the recent and earlier

years data. In Table 3.14, column 2 shows the resulting RankDist applied on the

entire data set; column 3 shows the resulting RankDist applied on the earlier data

set (1946 ∼ 1990); column 4 shows the resulting RankDist applied on the later data

set from (1991 ∼ 2013).

We can see clearly from Table 3.14 that the result is consistent with the result

obtained from CS data set. The ranks obtained from the year between 1991 and 2013

70

Figure 3.9: Ranking Divergence of ME Programs Compared to U.S. News (1991-
2013)

are generally closer to the U.S. News than the ranks obtained from the years before

1991. The best case on recent data falls on WeightedPR wo n, with a RankDist of

5.52, followed by IndeRank (5.6), WeightedPR w n (5.6) and HITS Hubavg (5.68).

3.5.2.3 Observations

In ME data set, we still observed some interesting differences in rankings when

our approach is compared with U.S. News. Table 3.15 shows the exact difference for

each program in WeightedPR wo n ranking and HITS Hubavg ranking compared

Table 3.14: Results between Recent Years and Earlier Years on ME Data Set

RankDist with U.S. News
on Extended graph w/o self-edges

Algorithm Entire Data 1946∼1990 1991∼2013
IndeRank 4.96 7.12 5.6
WeightedPR w n 6.04 7.84 5.6
WeightedPR wo n 5.0 7.4 5.52
HITS Weighted 5.12 7.76 6.0
HITS Hubavg 4.84 7.36 5.68

71

Table 3.15: Rank Difference Comparison on ME Data Set

WeightedPR wo n HITS Hubavg
Univ Entire ’49∼’94 ’95∼’14 AbsDif Entire ’49∼’94 ’95∼’14 AbsDif
CMU -10 -12 -6 6 -10 -10 -8 2
TAMU -10 -21 -6 15 -11 -17 -10 7
UMaryland -15 -24 -13 11 -14 -23 -16 7
Rice -6 -5 -4 1 -7 -3 -4 1
Harvard 18 17 17 0 19 17 18 1

UCSB 3 -19 9 28 4 -19 9 28
Gatech -8 -22 -2 20 -8 -26 -2 24
Columbia 3 11 -8 19 2 8 -8 16
PennState 2 -7 5 12 -2 -12 3 15
Wisconsin 11 13 0 13 10 13 0 13
UTAustin -5 -14 2 16 -5 -11 1 12
Yale 10 23 -1 24 12 23 0 23

with U.S. News ranking. The positive value means the rank is higher than the rank

in U.S. News; the negative value means the rank is lower than the rank in U.S.

News. The AbsDif value is simply the absolute between the values in ’49 ∼ ’94 and

’95 ∼ ’14.

The first block, including CMU TAMU, Rice, UMaryland and Harvard, is com-

prising those programs that are either under-estimated or over-estimated by the U.S.

News. For example, Rice, UMaryland, TAMU and CMU are over ranked by U.S.

News, while Harvard is under ranked by U.S. News. The second block comprises

those programs that are performing dramatically different before 1990 and after

1990. For example, Gatech, UCSB, PennState and UTAustin are probably young

programs and they experienced a boost of rank during the year from 1991 to 2013.

The other three, Columbia, Wisconsin and Yale are obviously experiencing a down-

fall and not many other Universities recognizing their strength in ME as they did in

the old days.

72

3.5.2.4 Sensitivity Analysis

In order to measure the responsiveness of these algorithms to minor change in

the hiring graph, we conducted sensitivity analysis on ME data set as we did on

the CS data set. In this case, the virtual edge is chosen to be a virtual edge from

UCBerkeley to a given program, since UCBerkely is ranked as No. 1 in most of the

cases. Thus, the narrower the variation bound is, the less sensitive the algorithm is.

All these five algorithms are doing well in ranking the top 20 programs, with little

jitter.

Table 3.16 summarizes the average variation bound for each algorithm. As we can

see, HITS Weighted has the smallest variation bound as Abs.Range = 1.88, Then fol-

lows HITS Hubavg (Abs.Range = 2.12) and WeightedPR wo n (Abs.Range = 3.28).

Table 3.16: Average Sensitivity Bounds of all algorithms on ME Data Set

IndeRank
WeightedPR
w norm

WeightedPR
wo norm

HITS
Weighted

HITS
Hubavg

UpperBound +2.44 +7.5 +1.86 0.46 0.8
LowerBound -2.42 -2.34 -1.42 -1.42 -1.32

Abs.Range 4.86 9.84 3.28 1.88 2.12

73

3.5.2.5 Discussion

After seeing the result from another complete different data set—faculty data

from top 50 ME programs in the USA, we show that our algorithms work well in

both CS data set and ME data set. Most of the results and analysis are consistent

in both data sets. What’s more, in ME data set, HITS Hubavg is performing the

best in terms of RankDist and HITS Weighted is performing the best in terms of

sensitivity. It would be unfair to say that the other algorithm are doing not well

since we do not have any perfect ground truth in our experiments.

More importantly, as we did in the CS data set, we found some valuable obser-

vations from our analysis.

74

4. CONCLUSION AND FUTURE WORK

In this thesis we presented two separate projects, both related to data mining

and knowledge discovery.

In the first project—Tweeter Classification using Sentiment Analysis, we collected

the recent 200 tweets in September 2013 for those politically active tweeters, and then

labelled them as either “democrats” or “republicans”. We automatically discovery

distinguishing topics and used these topics as a feature vector to classify the tweeters.

The result shows that our new methodology performed not much better than non-

sentiment approach, reaching a classification accuracy around 64 percent. Then, with

the help of social relationship graph information, we are able to boost the accuracy

of adjusted sentiment model up to 85 percent. We concluded that the limitations of

our sentiment model come from both Twitter data and existing sentiment analysis

tools, which are not robust enough on complex social media data in Twitter. We

also deploy Belief Propagation model to infer the political association of tweeters in

the social graph, which achieves highest prediction accuracy among all the models

we have.

The future work of the first project would mainly focus on improving the quality of

the data. If possible, the sentiment classification model should be tested in “firehore”

data instead of streaming data, to see if that would make a difference. In addition,

sentiment analysis model should be improved considering the complexity of Twitter

data.

In the second project—Algorithmic University Program Ranking, we propose a

new and alternative way to rank graduate programs using algorithms. We have

shown that our approach reasonable and reliable rankings for graduate programs.

75

In addition, our approach works in both CS data set and ME data set, indicating

that our approach is capable across fields. Among all our five algorithms, on average,

WeightedPR wo norm, HITS Hubavg and HITS Weighted seems doing well in terms

of both RankDist to U.S. News and sensitivity. A reasonable rank for graduate

programs might probably be the average of the four algorithms—WeightedPR w n,

WeightedPR wo n, HITS Hubavg and HITS Weighted, because each algorithm has

its own advantage.

Moreover, we observe lots of interesting patterns and facts from our data. By

extensive data analysis, we not only discover what is behind the “hiring graph” but

also reveal valuable knowledge beyond U.S. News ranking.

The future work of this project will move a further step based on what we have

currently, which is to construct a model for “cross-domain” university ranking. Given

the fact that some programs hire Ph.D.s from other fields. For example, an Me-

chanical Engineering program might hire a Computer Science Ph.D. specializing in

Robotics. We believe that the “cross-domain” effect across fields also matters in the

hiring graph. It would be interesting to come up with an algorithm able to rank each

universities in multiple programs at once.

76

REFERENCES

[1] Twitter Streaming API: https://dev.twitter.com/docs/api/streaming. Re-

trieved on May 05 2014.

[2] Twitter REST API: https://dev.twitter.com/docs/api. Retrieved on May

20 2014.

[3] A. A. Amleshwaram, N. Reddy, S. Yadav, G. Gu and C. Yang. CATS: Char-

acterizing Automation of Twitter Spammers. Bangalore, India: Communication

Systems and Networks (COMSNETS), 2013, pp. 1-10.

[4] C. Yang, R. Harkreader, J. Zhang, S. Shin and G. Gu. Analyzing Spammers

Social Networks for Fun and Profit: A Case Study of Cyber Criminal Ecosystem

on Twitter. New York, NY, USA: Proceedings of the 21st international conference

on World Wide Web, 2012, pp. 71-80.

[5] B. Pang and L. Lee. Opinion Mining and Sentiment Analysis. Hanover, MA,

USA: Journal, Foundations and Trends in Information Retrieval, 2008. Volume

2 Issue 1-2, pp. 1-135.

[6] P. T. Metaxas and E. Mustafaraj. Social Media and the Elections. Journal, SCI-

ENCE, 26 October 2012. Volume 338, pp. 472-473.

[7] H. Wang, D. Can, A. Kazemzadeh, F. Bar and S. Narayanan. A System for

Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle.

Stroudsburg, PA, USA: Proceedings of the ACL 2012 System Demonstrations,

2012, pp. 115-120.

[8] M Choy, M. L. F. Cheong, M. N. Laik and K. P. Shung. A Sentiment Analysis of

Singapore Presidential Election 2011 Using Twitter Data with Census Correction.

77

Journal of Information Technology & Politics, 2012.

[9] A. Tumasjan, T. O. Sprenger, P. G. Sandner and I. M. Welpe. Predicting Elections

with Twitter: What 140 Characters Reveal about Political Sentiment. In Fourth

International AAAI Conference on Weblogs and Social Media, 2010.

[10] Get friend API call in Twitter: https://dev.twitter.com/docs/api/1/get/

friends/ids. Retrieved on May 21 2014.

[11] Get follower API call in Twitter: https://dev.twitter.com/docs/api/1/

get/followers/ids. Retrieved on May 21 2014.

[12] A. Pak and P. Paroubek. Twitter as A Corpus for Sentiment Analysis and Opin-

ion Mining. Proceedings of the Seventh conference on International Language

Resources and Evaluation (LREC10), European Language Resources Association

(ELRA), Valletta, Malta (May 2010), pp. 1921.

[13] Alchemy API: http://www.alchemyapi.com/. Retrieved on May 21 2014.

[14] S. Baccianella, A. Esuli, and F. Sebastiani. SentiWordNet3.0: An Enhanced

Lexical Resource for Sentiment Analysis and Opinion Mining. In Proceedings

of the Seventh Conference on International Language Resources and Evaluation

(LREC10), Valletta. pp. 22002204.

[15] B. Liu, M. Hu and J. Cheng. Opinion Observer: Analyzing and Comparing

Opinions on the Web. Proceedings of the 14th International World Wide Web

conference (WWW-2005), May 10-14, 2005, Chiba, Japan.

[16] J. Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical Ap-

proach. Proceedings of the Second National Conference on Artificial Intelligence.

AAAI-82: Pittsburgh, PA. Menlo Park, California: AAAI Press. pp. 133136.

78

[17] L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank Citation Rank-

ing: Bringing Order to the Web. Technical Report, Stanford University, 1999.

[18] How US News calculated the 2015 best graduate school rankings: http:

//www.usnews.com/education/best-graduate-schools/articles/2014/03/

10/how-us-news-calculated-the-2015-best-graduate-schools-rankings.

Retrieved on May 13 2014.

[19] R. Lukman, D. Krajnc and P. Glavic. University Ranking Using Research, Ed-

ucational and Environmental Indicators. Journal of Cleaner Production, Volume

18, Issue 7, May 2010, pp. 619-628.

[20] J. C. Shin, R. K. Toutkoushian and U. Teichler. University Rankings: Theoret-

ical Basis, Methodology and Impacts on Global Higher Education. 2011: Springer

Science+Business Media.

[21] L. Leydesdorff and J. C. Shin. How to Evaluate Universities in Terms of Their

Relative Citation Impacts: Fractional Counting of Citations and the Normal-

ization of Differences Among Disciplines. Journal of the American Society for

Information Science and Technology. Volume 62, Issue 6, 2011, pp. 1146-1155.

[22] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. New York,

NY, USA. Journal of the ACM, Volume 46 Issue 5, Sept. 1999, pp. 604-632.

[23] Computer Science ranking in US News: http://grad-schools.usnews.

rankingsandreviews.com/best-graduate-schools/top-science-schools/

computer-science-rankings. Retrieved from March 23 2014.

[24] Mechanical Engineering ranking in US News: http://grad-schools.

usnews.rankingsandreviews.com/best-graduate-schools/

79

top-engineering-schools/mechanical-engineering-rankings?int=

997808. Retrieved in Apr 25 2014.

[25] A. Borodin, G. O. Roberts, J. S. Rosenthal and P. Tsaparas. Link Analysis

Ranking: Algorithms, Theory, and Experiments. New York, NY, USA. Journal of

ACM Transactions on Internet Technology (TOIT), Volume 5 Issue 1, February

2005, pp. 231-297.

80

APPENDIX A

UNIVERSITY ABBREVIATIONS

81

Table A.1: Mapping between Universities and their Abbreviations in this thesis—1

Abbreviation(s) University
arizonastate/ArizonaState Arizona State University
boston/Boston Boston University
brown/Brown Brown University
caltech/Caltech California Institute of Technology
case/Case Case Western Reserve University
cmu/CMU Carnegie Mellon University
columbia/Columbia Columbia University
cornell/Cornell Cornell University
dartmouth/Dartmouth Dartmouth College
drexel/Drexel Drexel University
duke/Duke Duke University
gatech/Gatech Georgia Institute of Technology
harvard/Harvard Harvard University
iowastate/IowaState Iowa State University
johnshopkins/JohnsHopkins Johns Hopkins University
lehigh/Lehigh Lehigh University
michstate/MichState Michigan State University
mit/MIT Massachusetts Institute of Technology
ncstate/NCState North Carolina State University
northcarolina/NorthCarolina University of North Carolina at Chapel Hill
northwestern/Northwestern Northwestern University
notredame/NotreDame University of Notre Dame
nyu/NYU New York University
ohiostate/OhioState Ohio State University
pennstate/PennState Pennsylvania State University
princeton/Princeton Princeton University
purdue/Purdue Purdue University
rensselaer/Rensselaer Rensselaer Polytechnic Institute
rice/Rice Rice University
rutgers/Rutgers Rutgers University

82

Table A.2: Mapping between Universities and their Abbreviations in this thesis—2

Abbreviation(s) University
stanford/Stanford Stanford University
stonybrook/StonyBrook State University of New York at Stony Brook
tamu/TAMU Texas A& M University
uarizona/UArizona University of Arizona
ucberkeley/UCBerkeley University of California, Berkeley
ucdavis/UCDavis University of California, Davis
uchicago/UChicago University of Chicago
ucirvine/UCIrvine University of California, Irvine
ucla/UCLA University of California, Los Angeles
ucolorado/UColorado University of Colorado
ucsb/UCSB University of California, Santa Barbara
ucsd/UCSD University of California, San Diego
uflorida/UFlorida University of Florida
uiuc/UIUC University of Illinois at Urbana-Champaign
umaryland/UMaryland University of Maryland
umass/UMass University of Massachusetts Amherst
umich/UMich University of Michigan
uminnesota/UMinnesota University of Minnesota
upenn/UPenn University of Pennsylvania
usc/USC University of Southern California
utah/Utah University of Utah
utaustin/UTAustin University of Texas at Austin
uvirginia/UVirginia University of Virginia
vanderbilt/Vanderbilt Vanderbilt University
vatech/Vatech Virginia Polytechnic Institute
washington/Washington University of Washington
wisconsin/Wisconsin University of Wisconsin-Madison
wustl/Wustl Washington University in St. Louis
yale/Yale Yale University

83

