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ABSTRACT 

 

Carbon Monoxide (CO), oxides of nitrogen (NOx) and volatile organic compounds 

(VOCs) affect human health, and can also play a significant role in tropospheric ozone 

and secondary particulate matter formation. Correctly estimating the anthropogenic 

emission rates of these species is important for their effective control. Additionally, 

isoprene from biogenic sources also plays a key role in tropospheric ozone and 

secondary organic aerosol (SOA) formation. In this study, emission factors and 

inventories of CO, NOx and VOCs from on-road vehicles estimated by vehicle emission 

factor models and biogenic emissions of isoprene estimated by a popular biogenic 

emission model are evaluated using local and regional scale air quality modeling and 

source apportionment tools supplemented by concentration and flux data collected at 

surface and in the upper air. 

The USEPA’s Motor Vehicle Emission Simulator (MOVES) model is evaluated.  

Local scale analysis indicates over-estimation of NOx by approximately 15%, based on 

the curbside data collected near a high diesel traffic rural highway and the predicted NOx 

by the TAMU Near-Road Model. The regional scale analysis conducted using the 

observed NOx at a number of surface air quality monitoring sites in southeast Texas (ST) 

and a source-oriented Community Air Quality Model (SCMAQ), a regional chemical 

transport model, suggests an over-estimation of NOx emissions by approximately 35-

55% using the MOVES-based NEI.  

The near-road analysis also reveals that NO2/NOx ratio at curbside is approximately 

29%, much higher than the generally used 5% ratio. This increase in ratio resulted in 

predicted 8-hour ozone increase in ST by as much as 6 ppb. While the near-road analysis 

didn’t reveal significant overestimation in CO emissions due to high background 

concentrations and low emissions, the regional analysis showed that CO emission were 

overestimated by approximately 60% by the MOVES model.  

Finally, VOC emissions estimated by the MOVES model were evaluated using 

fluxes of 18 VOCs measured on a tall tower in urban Houston during 2008. Vehicle 
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contributions to the observed flux were determined using the Multilinear Engine (ME-2), 

a receptor-oriented source apportionment model. Emission factors of vehicle exhaust and 

evaporative emissions were estimated using a flux footprint model and the contributions 

resolved by ME-2. The MOVES model estimates vehicle exhaust emissions well, but 

severely under-estimates evaporative emissions from parked vehicles.  

The Model of Emissions of Gases and Aerosol from Nature (MEGAN) estimations 

of isoprene, the dominant biogenic VOC, in ST were also evaluated using SCMAQ. 

Comparison of predicted and observed isoprene concentrations at the surface layer and 

upper layers revealed a significant over-prediction of isoprene in urban areas and 

necessity of decreasing biogenic emission reduction by 2/3rd. The over-predictions 

of isoprene had negligible effects on predicted ozone concentrations in ST, but the 

isoprene generated SOA can be overestimated by as much as 50%. 
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1. INTRODUCTION 

 

Gaseous air pollutants have significant effects on respiratory (Chauhan et al., 1998; 

Uysal and Schapira, 2003; Wegmann et al., 2005), digestive (Mandal, 2005), nervous  

and cardiovascular (Badman and Jaffe, 1996; Burnett et al., 1997; Burnett et al., 1999) 

and urinary (Chang et al., 2010) systems, and radiative forcing (Daniel and Solomon, 

1998; Pacifico et al., 2009). Among the gaseous pollutants, CO, NOx and Ozone are 

recognized as criteria pollutants, and several volatile organic compounds (VOCs) fall 

under hazardous air pollutants category by the United States Environmental Protection 

Agency (US EPA). While NOx and VOCs directly involve in the formation of 

tropospheric ozone (Kleinman et al., 2005; Li et al., 2007), CO plays an important role 

by changing the abundance of  hydroxyl radicals (Isaksen and Hov, 1987). This makes 

the role of NOx, CO and VOCs in the atmosphere pivotal.   

Southeast Texas which is famous for its high density of industrial facilities located in 

the Houston-Galveston Bay (HGB) and Beaumont-Port Arthur (BPA) areas, houses 

Houston, the fourth-largest city in the US. Enormous amounts of NOx and VOCs in 

addition to high temperatures, intensive solar radiation and land-sea breeze circulations 

resulted in frequent violations of National Ambient Air Quality Standards (NAAQS) for 

ozone in this region (Banta et al., 2005; Kleinman et al., 2002). To design efficient 

control strategies for ozone, it is necessary to quantitatively evaluate various types of 

CO, NOx and VOC emission sources.   

Recent studies in Southeast Texas indicated that motor vehicles are significant 

contributors to CO (Buzcu Guven and Olaguer, 2011; Rappenglück et al., 2013), NOx 

(Zhang and Ying, 2011a) and VOCs (Buzcu and Fraser, 2006; Ying and Krishnan, 

2010). Estimating emissions from on-road mobile sources, using an emission factor 

model, is a key factor in studying the influence of motor vehicles on air quality. The 

estimated emissions are influenced by various parameters including vehicle type, age, 

speed, road, fuel type, mode of operation and meteorology. Emission factor models can 

be briefly divided into average speed and modal operation models. While analyzing 
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signal coordination and traffic congestion planning, a model which considers modes of 

vehicle operation is more beneficiary. But for studying the regional air quality an 

average speed model could be sufficient.  

In a modal operation model, second by second driving modes of a vehicle i.e. idle, 

acceleration/deceleration, cruise etc. are used to estimate emissions. For example, 

Comprehensive Modal Emissions Model (CHEM) (Scora and Barth, 2006) developed by 

University of California-Riverside is a graphical user interface model which estimates 

CO, carbon dioxide, NOx and hydrocarbons using the transient operation modes of 

vehicles. In this model, the vehicles are classified to normal and high emitting light duty 

and heavy duty vehicles. Each of the classes is subcategorized based on the engine 

power, weight, mileage and technology used.   

In an average speed model, the emission factors generated would be based on the 

average speed of vehicle. For example, Emission Factor Model (EMFAC) (CARB, 

2007) estimates the emission factors of eleven different pollutants namely total organic 

gas, reactive organic gases, total hydrocarbon, methane, CO, NOx, carbon dioxide, 

PM2.5, PM10, sulfur dioxide and lead. In this model, vehicles are classified based on 

their weight and fuel type. Similarly, Computer programme to calculate Emissions from 

Road Transport (COPERT) (EEA, 2007) used by European Environmental Protection 

Agency is also an average speed model which classifies vehicles based on their vehicle 

type, fuel, weight and technology used.  

The US EPA used MOBILE model, an average speed model, to estimate the 

emission factors for regulatory purposes. MOBILE classifies vehicles based on their 

weight and fuel used (USEPA, 2003). The US EPA has replaced MOBILE series with 

MOVES (USEPA, 2010b) which classifies vehicles based on their activity. MOVES 

apart from being an average speed model, can also be used as a modal operation model 

to estimate emission factors based on the transient operation of a vehicle. These 

emission factor models use data collected during chassis and engine dynamometer 

testing carried in controlled conditions. Thus, evaluating the performance of MOVES in 

real world conditions is necessary.  
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Tunnel, on-road and remote sensing studies were used in past to evaluate vehicle 

emission factor models. For example, Kirchstetter et al. (1996) estimated light duty 

vehicle emission factors using measurements at Caldecott tunnel. Results indicated that 

EMFAC model does a decent job in estimating VOC/NOx but over-estimates CO/NOx 

emission factors. Kuhns et al. (2004) compared CO emission factors estimated using a 

remote sensing system with MOBILE6 estimations and concluded that MOBILE6 over-

estimates the emissions by a factor of two. Weiss et al. (2011) used on road portable 

emission measurement system in Europe and concluded that COPERT under estimates 

NOx emissions from diesel vehicles by 60%. Even though, these methods give actual 

data regarding real-world behavior of vehicles, they are less precise than dynamometer 

tests, due to additional factors such as environmental, traffic and driver conditions 

(Franco et al., 2013). Additionally, their conclusions might be confined to the study area.   

Vehicle emission inventories can also be indirectly evaluated using near-road air 

quality models. Near-road air quality modeling has aided monitoring studies in past for 

congestion mitigation, traffic planning (Boriboonsomsin and Barth, 2007) and 

epidemiological studies on traffic exposure (Lee et al., 2012). Near-road models differ 

with other air quality models in their representation of pollutant dispersion processes like 

vehicle induced turbulence (Kalthoff et al., 2005; Kastner-Klein et al., 2000) and level of 

treatment of chemical and physical transformation of pollutants. Even though MOBILE 

emissions were used in the past (Cook et al., 2008; Vardoulakis et al., 2003; Wang et al., 

2013), no studies using MOVES in near-road air quality modeling are reported.   

Another way of studying vehicle emission inventories is by using regional air quality 

models to comparing the predicted and observed pollutant concentrations at monitoring 

sites. The USEPA uses National Emission Inventories (NEI) which includes temporal 

and spatial emission estimates from different sources. For example,Parrish (2006) 

compared the MOBILE generated vehicle emissions in NEI with a fuel based emission 

inventory, and concluded that MOBILE over-estimates CO by a factor of 2.  Another 

way of evaluating is by using regional air quality models which use NEI. For example, 

Miller et al. (2008) used a lagrangian model and concluded that the emission inventories 
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overestimate the CO emissions atleast by a factor of 2. Castellanos et al. (2011) analyzed 

Community Multiscale Air Quality Model (CMAQ) performance in Eastern United 

States during morning rush hours and concluded that the NEI overestimates NOx 

emissions. However, this assumption of using morning rush hour peaks to evaluate 

vehicle emission inventories might not be correct due to other factors like 

weekday/weekend vehicle fleet differences, and influence of other emission sources 

during rush hours.    

In addition to methods discussed above, vehicle emission factor models can be 

evaluated is using source apportionment techniques. For example in receptor oriented 

source apportionment, the total species concentration measured at a receptor location is 

attributed to the contributions of different sources in the locality. Kim et al. (2005) used 

Positive Matrix Factorization (PMF) to study the VOCs measured at three sites in 

Houston and concluded that vehicles contributed to 5-25% of total VOC mass measured 

at those sites. Buzcu and Fraser (2006) used PMF to analyze 54 VOC species collected 

at three sites in Houston, and concluded that fuel evaporation contributed to 29 and 17% 

of the total VOC mass measured at two of the locations. However, no clear vehicle 

exhaust profiles were observed at any of the sites, which might be due to the presence of 

these sites closer to largest industrial complexes in the Houston Ship Channel (HSC). 

Xie and Berkowitz (2006) used PMF to study VOC data from four PAMS stations near 

HSC and concluded that vehicle exhaust contributed to 1-10% of total VOC mass at 

three of the sites. Results also indicated that fuel evaporation contributed to 7-19% of the 

total VOC mass at the four sites analyzed. Luchner and Rappenglück  (2010) used PMF 

modeling to study the VOC data collected during TexAQS II Radical and Aerosol 

Measurement Project (TRAMP) and concluded that vehicle exhaust and fuel evaporation 

contribute to 15 and 14% respectively to the total VOC mass. Buzcu Guven and Olaguer 

(2011) analyzed the TRAMP data and concluded that vehicle exhaust contributed to 11-

16%, while fuel evaporation contributed to 21-22% at the monitoring sites. While these 

studies are useful in understanding sources of VOCs in the atmosphere, their 

fundamental assumption of species being non-reactive in nature constrains the method 
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mainly to primary species. Additionally, as these calculations are based on observed 

VOC concentrations, they cannot be related to the actual emission rates of VOCs. 

In addition to vehicles, plants emit isoprene, monoterpenes, sesquiterpenes, 

diterpenes etc., which account to major fraction of global VOC emissions (Guenther, 

1995; Guenther et al., 2006; Laothawornkitkul et al., 2009). Isoprene represents, 40-60% 

of total vegetation emissions (Guenther et al., 2006). However its share in total VOCs 

varies with location. For example, Buzcu and Fraser (2006) used PMF to analyze 54 

VOC species collected at three sites in Houston, and concluded that biogenic emissions 

(dominated with isoprene) contributed to less than 4% of the total VOC mass measured 

at two of the locations. Guo et al. (2007) used principal component analysis and 

estimated that biogenic isoprene contributed to a maximum of 4% in Hong Kong. 

Most studies till date in Southeast Texas either use USEPA’s BEIS (Pierce and 

Waldruff, 1991), with BEIS3.13 as latest version, or global biosphere emissions and 

interactions system (GloBEIS3) (Yarwood et al., 2002), or Model of Emissions of Gases 

and Aerosols from Nature (MEGAN) (Guenther et al., 2006). Temperature, photo 

synthetically active solar radiation and water availability (Alessio et al., 2008; Fuentes et 

al., 2000; Harley et al., 1996, 1997; Sharkey et al., 1999; Tingey et al., 1979) are major 

environmental factors effecting basal isoprene emission rates from plants in these 

models. Additionally, these models also require inputs from land use/land cover 

databases, leaf area index and biomass density.  

Texas Commission of Environmental Quality (TCEQ) is thinking of using MEGAN 

to generate isoprene emissions in Texas, for regulatory purposes. However, MEGAN has 

not been evaluated properly as yet in Southeast Texas. Generally above canopy flux 

measurements have been used to evaluate these emission factor models in forest areas 

(Geron et al., 1997; Guenther and Hills, 1998). For example, Potosnak et al. (2014) used 

measured isoprene fluxes in a deciduous forest, and concluded that while MEGAN does 

a good job in predicting light and temperature effects on isoprene emissions, its response 

to drought is not accurate. Another way of evaluating these emission factor models is by 

using regional air quality models. As discussed earlier, this can be achieved by 
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comparing predicted isoprene concentrations, using emissions generated by MEGAN, 

with observed concentrations. For example, Carlton and Baker (2011) used MEGAN 

generated emissions in CMAQ model and observed over predictions of isoprene 

concentrations. However, most of these validation studies are under taken in rural 

environments. The presence of other sources of isoprene (Song et al., 2008) along with 

heterogeneous distribution of vegetation makes urban/sub-urban regions quite different 

from a rural/forested region. But these models have not been sufficiently evaluated in 

urban regions.   

The first objective of this research is to test the feasibility of using MOVES to 

generate necessary emissions for near-road air quality modeling based on simple traffic 

count data. To carry out this objective, a three dimensional Eulerian air quality model,  

TAMNROM-3D (Kota et al., 2010) will be used to predict the gaseous pollutants near a 

rural freeway at Austin, Texas. This objective will aid the validation of MOVES in 

estimating CO, NO, NO2 and air toxics concentrations in a near-road environment.  

The second objective of this study is to apply the source-oriented regional air quality 

modeling approach to track emissions of CO and NOx from on-road vehicle sources 

separately to directly evaluate the accuracy of the on-road vehicle emission inventories. 

A source oriented CMAQ model, which explicitly tracks CO and NOx from on-road 

vehicles will be developed. This model will be applied to study summer time 

concentrations of CO and NOx in Southeast Texas. This will suggest modifications to 

future versions of MOVES in predicting CO and NOx emissions. 

The third objective of this research is to estimate vehicle emission factors using 

simultaneous VOC fluxes in an urban environment, and compare with MOVES 

predictions. Simultaneous fluxes of 18 VOCs, measured on the top of a tall tower in 

Houston, will be used in a receptor oriented source oriented model to quantify the source 

profiles and contributions of vehicle exhaust in the locality. The predicted contributions 

along with flux footprints will be used to estimate the VOC emission factors from 

vehicles. The comparison of estimated emission factors in this study with MOVES 

predictions will aid the evaluation of MOVES in terms of VOC emissions.  
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The fourth objective is to evaluate the performance of MEGAN model in estimating 

isoprene emissions in Southeast Texas. A source oriented CMAQ model, which 

explicitly tracks isoprene from vegetation, will be used during a relatively dry summer 

ozone episode. This study will aid in estimating uncertainties in the predicted isoprene 

concentrations due to soil moisture, the plant functional types (PFTs) and leaf area index 

(LAI).  

In conclusion, this study will aid in determining the potential short comings and 

benefits of using MOVES in generating CO, NOx and VOC emissions. Additionally, the 

evaluation of MEGAN will help in understanding the important factors in accurately 

predicting isoprene emissions in urban regions. Overall, this study will facilitate 

governing agencies in designing effective strategies for different sources in Southeast 

Texas for avoiding NAAQS violations and control radiative forcing.       
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2. SIMULATING NEAR-ROAD REACTIVE DISPERSION OF GASEOUS AIR 

POLLUTANTS USING A THREE-DIMENSIONAL EULERIAN MODEL* 

 

In this study, the TAMNROM-3D model, a 3D Eulerian near-road air quality model with 

vehicle induced turbulence parameterization and a MOVES based emission 

preprocessor, is tested using near-road gaseous pollutants data collected near a rural 

freeway with 34% heavy duty vehicle traffic. Exhaust emissions of gases from the 

vehicles are estimated using a lumped vehicle classification scheme based on the number 

of vehicle axles and the default county-level MOVES vehicle fleet database. The 

predicted dilution of CO and NOx in the downwind direction agrees well with 

observation, although the total NOx emission has to be scaled to 85% of its original 

emission rate estimated by the MOVES model. Using the atmospheric turbulent 

diffusion coefficient parameterization of Degrazia et al. (2000) with variable horizontal 

turbulent diffusion coefficient (Kxx) leads to slightly better predictions than a traditional 

non-height-dependent Kxx parameterization. The NO2 concentrations can be better 

predicted when emission of total NOx is split into NO and NO2 using the NO2 to NOx 

ratio of 29% measured near the road. Simulations using the SAPRC99 photochemical 

mechanism do not show significant changes in the predicted NO and NO2 concentrations 

near the road compared to simulations using a simple three-reaction mechanism that 

involves only NOx and O3. A regional air quality simulation in Houston, Texas during a 

high O3 episode in August 2000 shows that using the NO2 to NOx ratio of 29% instead of 

the traditional 5% leads to as much as 6 ppb increase in 8-hour O3 predictions.  

 

 

                                                 

* Reproduced with permission from: Kota, S.H., Ying, Q., Zhang, Y., 2013. Simulating 

near-road reactive dispersion of gaseous air pollutants using a three-dimensional 

Eulerian model. Science of the Total Environment 454-455, 348-357. Copyright 2013, 

Elsevier Ltd. 
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2.1 Introduction  

Elevated concentrations of carbon monoxide (CO), oxides of nitrogen (NOx) and air 

toxics are frequently observed in the vicinity of a roadway compared to their background 

ambient levels (Parrish, 2006). Health studies have indicated an increase in lung and 

respiratory related diseases (Gauderman et al., 2007; Kim et al., 2004), premature 

mortality (Finkelstein et al., 2004), and hypertension and cardiac problems (Hoffmann et 

al., 2006) due to exposure to traffic emissions. Near-road air quality models are 

necessary to aid air quality monitoring programs to provide required data for traffic 

planning, congestion mitigation and epidemiology studies of traffic pollution exposure.  

Although significant progress has been made in numerical simulations of near-road 

air pollution, most of the well-accepted near-road models (e.g. CALINE4) are based on 

steady-state solutions of the atmospheric turbulent dispersion equation. However, in 

many studies it is demonstrated that vehicle-induced-turbulence (VIT) significantly 

affects near-road pollutant dispersion (Eskridge and Hunt, 1979; Kota et al., 2010; 

Sahlodin et al., 2007). VIT is usually treated empirically, for example, using the mixing 

zone concept (Held et al., 2003; USEPA, 2010a). To overcome this limitation, Rao et al. 

(2002) formulated ROADWAY-2, a two-dimensional (2D) Eulerian model that treats 

VIT more realistically. Wang et al. (2011) incorporated VIT into a computational fluid 

dynamics (CFD) model and demonstrated that it yields better near-road predictions of 

NOx than CALINE4, using data collected near urban and rural freeways in Texas. The 

CFD approach, however, is complex to implement and is extremely computationally 

intensive due to millions of grid cells used in the solution processes. Another potential 

problem in the near-road modeling is that current near-road models typically use 

relatively simple atmospheric chemistry that includes mainly NO, NO2 and O3. The 

effect of organic peroxy radicals (RO2) on NO to NO2 conversion is either neglected 

entirely (as in ROADWAY-2) or accounted for using representative RO2 species from 

simple VOCs (Wang et al., 2011). However, these simple approaches have not been 

evaluated against a more complete atmospheric chemical mechanism. 
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Kota et al. (2010) developed a 3D Eulerian model, the TAMU Near-Road Model 

(TAMNROM-3D), to simulate near-road dispersion and chemical transformation of 

pollutants. The TAMNROM-3D model predicts vehicle induced turbulent kinetic energy 

in each grid cell to determine the magnitude of VIT using a parameterization scheme 

suggested by Bäumer et al. (2005). This allows it to include more mechanistic treatments 

of the chemical and physical processes that affect near-road pollutant concentrations. 

The capability of this model to predict the dispersion of a non-reactive tracer was 

already evaluated using the SF6 dataset collected at the General Motor’s testing track 

(Kota et al., 2010). It has been demonstrated that TAMNROM-3D performs better than 

CALINE4 and ROADWAY-2 on that dataset. However, the ability of the model to 

simulate dispersion and transformation of reactive air pollutants has not been evaluated. 

Emissions from on-road mobile sources are key input parameters to near-road and 

regional air quality models. The US EPA developed the MOBILE model to estimate on-

road vehicle emission factors. Recently, US EPA has suggested the replacement of the 

MOBILE model with the MOVES (Motor Vehicle Emission Simulator) model (USEPA, 

2010b). Although there are studies that directly evaluate MOVES emission factors with 

observed vehicle emission data, indirect evaluation of the MOVES model through near-

road air quality modeling using vehicle traffic count data has not been previously 

reported.  

Thus, the aim of this study is to (i) test the feasibility of using MOVES to generate 

necessary emissions for near-road air quality modeling based on simple traffic count 

data and (ii) to further evaluate the TAMNROM-3D performance on predicting averaged 

concentrations of reactive gaseous pollutants collected in the field.  

 

2.2 Model Description 

The detailed formulation and solution procedures of the TAMNROM-3D model can be 

found in Kota et al. (2010) and are not repeated here. In the following sections, the 

photochemical mechanism, the microphysics modules, and the MOVES based emission 

preprocessor are described. 
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2.2.1 Photochemical mechanism 

Unlike other near-road air quality models that use simplified representations of NO to 

NO2 conversion in near-road environments (Kenty et al., 2007; Kukkonen et al., 2001; 

Rao, 2002), the TAMNROM-3D model includes a relatively complete description of 

atmospheric gas phase chemistry based on the SAPRC-99 photochemical mechanism, 

which is one of the most widely used photochemical mechanism families for both 

regulatory and research applications (Carter, 1994; Czader et al., 2008). This is 

necessary because in real atmosphere peroxy radicals (RO2 or HO2) also convert NO to 

NO2. In addition, some radicals can react with NO2 to form relatively stable products, 

acting as a sink to NOx. Neglecting or unrealistically treating these processes may lead to 

errors in NO and NO2 predictions. The detailed treatment of the gas phase chemistry can 

be used as a reference to evaluate other simplified gas phase mechanisms of NO to NO2 

conversion in near-road models. Emission and photochemical degradation of several air 

toxics can also be simulated in the mechanism. The original SAPRC-99 mechanism 

already treats formaldehyde as an explicit species. In this study, the SAPRC-99 

mechanism is enhanced to explicitly simulate five additional air toxics from mobile 

sources: benzene, 1,3-butadiene, acetaldehyde, acrolein and Methyl Tertiary Butyl Ether 

(MTBE) using the reaction rate coefficients and products designations from Carter 

(2000). Using a relatively complete chemical mechanism allows the concentrations of 

OH to be estimated mechanistically, which is essential to model the photochemical 

decomposition of air toxics. The production of formaldehyde, acetaldehyde and acrolein 

from other VOCs are also more realistically represented in the model.  

 

2.2.2 Emission processing using the MOVES model 

Emissions from the on-road vehicular traffic for the TAMNROM-3D model are 

estimated using an emission preprocessing program based on vehicle count data and the 

MOVES model (version 2010a). The MOVES model uses detailed vehicle 

classifications based on vehicle uses and fuel types. Since most automatic traffic 
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counters measure vehicle velocity and the number of axles when vehicle make and 

model information is not directly available, it is convenient to classify vehicles into 

lumped classes based on the number of axles only. In this study, three lumped vehicle 

classes are used: Class A (two axles, light duty vehicles), Class B (more than 2 axles, 

heavy duty vehicles) and Class C (motorcycles). Class A includes passenger cars 

(MOVES ID: 21), passenger trucks (ID: 31) and light commercial trucks (ID: 32). Class 

B comprises of refuse trucks (ID: 51), single unit short haul trucks (ID: 52), single unit 

long haul trucks (ID: 53), combination short haul trucks (ID: 61), combination long haul 

trucks (ID: 62), motor homes (ID: 54) and buses (ID: 41-43). More strictly speaking, 

some two axles commercial trucks with 6 tires belong to the heavy duty vehicle category 

(FHWA, 2001), and are grouped into the vehicle class B. Moreover, MOVES does not 

treat two axles 6 tires vehicles separately, but places them in refuse trucks and motor 

homes. 

The emission factors predicted for each MOVES vehicle type and fuel combinations 

are vehicle population averaged to generate emission factors (EF, g mile-1 for moving 

vehicles and g hr-1 for parked or idling vehicles) for an average vehicle in these three 

lumped classes using equation (2.1): 

2
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(2.1) 

where j is the lumped vehicle class index (A, B or C), Mj is the number of MOVES 

vehicle classes in a lumped vehicle class j, f is the fuel type (gasoline and diesel) index, 

y is the vehicle age index, N is the total number of years in a vehicle fleet, p is the 

number of vehicles, and g is the emission factor (g mile-1 for moving vehicles and g hr-1 

for parked or idling vehicles) for a specific vehicle year, fuel and class. The vehicles can 

also be electric or CNG driven but their numbers are small (zero in the current modeling 

domain based on the MOVES default database) and thus are not considered in the 

current study. County specific g and p values are extracted from the MOVES default 

database. With the population-averaged EFs, the emission rate (E, g s-1) of species i from 

a lumped vehicle class j at each model grid cell can be calculated using equation (2.2): 
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, ,1609.3 / 3600j j i ji jE N V EF
 

(2.2) 

Where Nj and Vj are vehicle density and velocity (mph) in each grid cell, 

respectively. The coefficients 1609.3 and 3600 convert emission rate to the designated 

units. Obviously, equation (2.2) can only be applied to moving vehicles. For emissions 

of parked or idling vehicles, the population averaged parking or idling EFs (in g hr-1) are 

used along with the number of parked/idling vehicles in the grid cell to calculate the 

emissions. 

As an example that demonstrates how the averaged EFs are calculated, table 1 shows 

the 2007 vehicle population data for the vehicle fleet in Travis County, Texas and the 

NOx EFs from the MOVES default county level database. The MOVES vehicle fleet 

database has a cut-off vehicle age of 30 years (i.e. N=30 in equation (2.1)). Based on the 

data, the vehicle population weighted NOx EF for a Class A vehicle moving at 35 mph in 

year 2007 is 1.13 g mile-1. The lumped EFs generally change slowly with average 

vehicle speed. However, in the MOVES model, certain types of vehicles such as 

combination short and long-haul trucks, motor homes, and buses have EFs increasing 

rapidly as speeds decrease below approximately 20 mph. The lumped EFs for Class B 

vehicle will show significant sensitivity especially at these low speeds (see Figure A1 in 

Appendix A). Uncertainty of the predicted emissions and concentrations due to 

uncertainty in vehicle speed should be explored when modeling slow moving vehicles. 

 

 

Table 1 NOx emission factor (EF, g mile-1) for passenger car (PC), passenger truck (PT) and light 

commercial truck (LCT) moving at 35mph in Travis county, Texas based on 2007 vehicle fleet 

data in MOVES.  
Model 

Year 

No.of 

gas. 

PC 

EF of 

gas. 

PC 

No.of 

diesel 

PC 

EF of 

diesel 

PC 

No.of 

gas. 

PT 

EF of 

gas. 

PT 

No.of 

diesel 

PT 

EF of 

diesel 

PT 

No.of 

gas. 

LCT 

EF of 

gas. 

LCT 

No.of 

diesel 

LCT 

EF of 

diesel 

LCT 

1977 235 1.978 3 1.093 377 4.091 5 4.037 122 3.940 5 5.275 

1978 221 1.977 3 1.092 347 4.126 5 4.078 113 3.981 5 5.326 

1979 295 1.964 9 1.085 432 4.105 6 4.055 140 3.955 6 5.297 

1980 388 1.926 19 1.064 544 4.089 7 4.034 164 3.930 20 3.841 

1981 473 1.927 39 0.899 551 4.091 10 4.001 174 3.952 13 5.101 

1982 596 1.944 39 0.906 698 4.160 29 4.070 190 4.004 53 4.462 
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Table 1 Continued 
Model 

Year 

No.of 

gas. 

PC 

EF of 

gas. 

PC 

No.of 

diesel 

PC 

EF of 

diesel 

PC 

No.of 

gas. 

PT 

EF of 

gas. 

PT 

No.of 

diesel 

PT 

EF of 

diesel 

PT 

No.of 

gas. 

LCT 

EF of 

gas. 

LCT 

No.of 

diesel 

LCT 

EF of 

diesel 

LCT 

1983 936 2.349 30 0.808 976 4.412 21 4.067 265 4.258 68 4.654 

1984 1416 2.374 27 0.817 1450 4.480 21 4.134 419 4.314 73 4.673 

1985 2005 2.387 24 0.651 1901 4.493 33 4.037 581 4.327 65 4.684 

1986 2767 2.123 0 0.000 2208 3.710 50 4.204 693 3.628 61 4.213 

1987 3257 2.098 0 0.000 2534 3.744 27 4.256 804 3.631 52 5.542 

1988 4387 1.871 0 0.000 2987 3.381 15 4.318 925 3.307 78 5.018 

1994 14530 1.494 0 0.000 6909 3.168 126 5.041 2110 3.010 240 5.612 

1995 16349 1.506 0 0.000 7485 3.209 113 5.090 2236 3.053 303 5.479 

1996 17697 1.012 0 0.000 8588 1.603 173 5.222 2667 1.636 260 5.456 

1997 18022 1.016 0 0.000 9542 1.571 181 5.404 2807 1.590 442 4.707 

1998 18481 0.879 0 0.000 10922 1.392 110 4.408 3546 1.422 140 4.747 

1999 20488 0.880 0 0.000 12529 1.419 297 4.420 3571 1.456 714 4.452 

2000 22136 0.775 0 0.000 14226 1.171 337 4.017 4269 1.230 596 4.454 

2001 21508 0.477 83 0.668 15470 0.931 204 4.541 4331 1.052 906 3.939 

2002 21087 0.349 81 0.668 15974 0.684 210 4.334 4558 0.751 849 4.268 

2003 20089 0.328 78 2.477 16797 0.724 221 4.972 4929 0.787 756 4.831 

2004 20123 0.087 78 2.483 17934 0.258 236 4.985 4972 0.350 1099 4.843 

2005 20735 0.068 80 2.483 18037 0.217 238 4.985 5440 0.312 666 4.843 

2006 21078 0.067 81 0.243 16851 0.188 400 3.731 5311 0.287 453 3.717 

2007 20599 0.054 79 0.243 16582 0.178 393 1.624 5181 0.278 491 1.613 

 

 

In order to drive the SAPRC-99 photochemical mechanism, predicted emissions 

need to be speciated properly. NOx emissions can be split into NO and NO2 using a user-

specified NO2 to NOx ratio or the internal NO2 to NOx ratio specified by the MOVES 

model. Two user-specified NO2 to NOx ratios and the MOVES internal NO2 to NOx ratio 

will be tested in this study (see Section 4.1.3). The VOC profiles for light duty gasoline 

and heavy duty diesel vehicles, extracted from EPA’s SPECIATE 4.2 speciation profile 

database, are used to speciate total VOC estimated from Class A and B vehicles, 

respectively. It would be more accurate if heavy duty gasoline and diesel vehicle profiles 

are population-averaged to generate a more representative VOC emission profile for 

Class B vehicles, but the change in the emission of speciated VOCs is expected to be 

minor as the VOC speciation profiles for heavy duty diesel and gasoline engines are 

quite similar. 
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2.3 Model Application 

2.3.1 Description of field measurements and model setup 

The model was applied to study the concentrations of CO, air toxics, and NOx downwind 

of a roadway. The data used in this paper was collected at Farm to Market 973 (FM973) 

in Austin, Travis County, Texas in July, 2007. The experimental study is described 

elsewhere (Clements et al., 2009; Zhu et al., 2009) and only briefly summarized here. 

FM973 is a two-lane surface roadway with a width of 4.25 m/lane. It has a significant 

amount of heavy duty vehicle traffic (approximately 34%). NO, NO2 and CO 

measurements were taken from up to 68 m upwind to 13-105 m downwind of the 

roadway using a mobile platform. Wind data and carbonyls concentrations were 

measured at 80 m upwind and 15 m downwind at stationary locations. Observed NOx 

concentrations were taken from Wang et al. (2011) for the same model episode. In this 

study, data collected in the afternoon of July 13, 2007, during which Wang et al. (2011) 

did the analysis and the wind was mostly perpendicular of the roadway, was used to 

supply boundary conditions and evaluate model performance. The average CO 

concentrations were not reported in Wang et al. (2011) for that specific day, thus the 

concentrations were taken from Clements et al. (2009), which are based on data 

collected on July 12-14 under perpendicular wind. A simulation of the concentrations of 

NOx under parallel wind conditions was also conducted and briefly discussed in the 

Supplementary Materials (see figure A2 and associated discussions in Appendix A). 

Generally speaking, the model can also predict the NOx concentrations reasonably well 

in that case, but the results are sensitive to the selection of mean wind direction. 

 The model domain was divided into 100×40 grids horizontally with a grid size of 

4.25×4.25 m so that the entire lane width could fit into a single grid cell. The vertical 

domain was divided into 11 layers extending to 40 m above surface, which is identical to 

the vertical extent used in Kota et al. (2010). The vertical spacing of grid cells varies 

from 1 m near the surface to 10 m at the top. Figure 1 shows an overview of the model 

domain and the measurement locations. The 8.5 m wide two-lane highway is placed at 

67.5 m from the left boundary as shown in inner panel of figure 1. As illustrated in 
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figure A3 (Appendix A), predicted NOx concentration profiles from a higher grid 

resolution simulation are almost identical to the base case results. 

 

 

 
Figure 1 Schematic for FM973 and the relative position of the stationary (S) and mobile 

(M) stations to the roadway. The stationary stations measure carbonyls and wind data 

and the mobile stations measure other gas phase species concentration. M1 station 

measures concentrations immediately upwind till 68 m perpendicular to the road, M2 

station measures from immediate downwind to 15 m, and M3 station moves up to 105 m 

downwind for concentrations of gaseous species. 

 

 

The emissions from roadways were calculated based on an average traffic volume of 

17.34 vehicles per minute (34% of which, reported as heavy duty vehicles, are 

considered as Class B vehicles) moving at speed of 35 mph during the model episode 

(Clements et al., 2009). Even though, less than 3 axle vehicles were treated as light duty 

in the experimental study, vehicles with 2 axles and 6 tires were treated as Class B in 

this study, due to the reasons discussed earlier. The vehicle population averaged EF for 

Class A and B vehicles at Travis County, Texas is shown in table 2. A clear increase in 

EF from Class B compared to Class A vehicles is observed for all species, ranging from 
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1.3 times for CO to 9.3 times for NOx. This indicates that the percentage of Class B 

vehicles in a fleet could significantly affect, and sometimes dominate, the concentrations 

of pollutants measured near a roadway.  EFs of NOx were scaled by 0.85 from the values 

shown in table 2 for both Class A and Class B vehicles in this study to minimize the 

difference between predicted and observed NOx concentrations. This less-than-unity 

scaling factor qualitatively agrees with a previous report that the MOVES model over 

estimates NOx emissions from older vehicles (Choi and Koupal, 2011). It is also in 

agreement with previous assessments that the MOBILE model (version 6, or MOBILE6) 

slightly over estimates NOx EFs when compared to observations (CRC, 2004), and the 

MOVES model predicts even higher NOx EFs than MOBILE6 (Kota et al., 2013b). 

Figure A4, in Appendix A, depicts the difference predicted NOx concentrations due 

MOVES predicted NOx emissions and 75% and 85% scaled MOVES emissions. Results 

indicate that 85% scaled case is slightly better than the other two cases, and thus is used 

as base case in this study.    

 

 

Table 2 Vehicle fleet averaged EFs for Class A and B vehicles at 35 mph. Units are g 

mile-1. 

Species Class A Class B 

CO 11.00 14.71 

NOx* 1.13 10.49 

VOC 3.09×10-1 1.14 

Acetaldehyde 2.79×10-3 2.26×10-2 

Acrolein 2.52×10-4 3.33×10-3 

Formaldehyde 5.71×10-3 5.86×10-2 

Benzene 1.50×10-2 2.95×10-2 

1,3-Butadiene 2.45×10-3 7.64×10-3 

*Actual emission factors of NOx used in calculating on-road emissions are reduced by 

85%. 

 

 

The photolysis rates were calculated for 1500 CST, July 13, 2007 as the actual data 

were collected during 1320-1715 CST. The temperature within the domain was assumed 
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to be a uniform value of 25.5 oC based on the averaged measurements. Measured 

average wind speed of 2.17 m s-1 at 3 m above surface was extrapolated to mid-level 

model layer height based on the velocity profile above rough surfaces as suggested by 

Seinfeld and Pandis (2006) with a surface roughness length of 0.1 m. A convective 

planetary mixing layer height of 2200 m, which is typical for summer time, was used in 

atmospheric turbulent diffusivity calculations. The surface bulk turbulent parameters 

such as surface friction velocity, convective velocity scale and Monin-Obukhov length 

were estimated using the parameterizations described in Garratt (1994). The horizontal 

and vertical atmospheric turbulent diffusion coefficients are calculated using the 

parameterization of Degrazia et al. (2000). More discussion on this can be found in 

Section 2.5.1. 

Boundary conditions for CO (60 ppb), NO (0.9 ppb), NO2 (1.9 ppb), acetaldehyde 

(0.5 ppb), formaldehyde (0.7 ppb) and acrolein (0.04 ppb) were from the upwind 

location measurements. The boundary conditions of O3 (26 ppb) was taken from Wang et 

al. (2011). The boundary conditions for the remaining model species were extracted 

from a 4 × 4 km2 grid cell which contains the roadway in a regional air quality 

simulation for August 2006. 

 

2.4 Results 

2.4.1 CO 

The performance of the model in terms of dilution of a tracer species is shown in figure 

2 using CO as a representative species. The observed concentrations agree best with the 

predictions for the case with a boundary concentration of 60 ppb. The predictions are 

sensitive to the ±25% change of the boundary conditions because of the low emission 

rate of CO from a rural road but the dilution rate of the tracer can still be accurately 

predicted. In order to evaluate the sensitivity of the model predictions to the emission 

rate, the emission rate of CO is changed by ±25% in two sensitivity runs. Only small 

variations to the base case emission rates are predicted, again due to low vehicle density 

during the simulated episode.  
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Figure 2 Predicted and observed CO concentrations as a function of downwind distance. 

The predictions are for cases with different boundary concentration values of 30, 60 and 

75ppb. The sensitivity of model results to variability of vehicle density (±25%) is also 

shown for the case with boundary condition of 60 ppb. 

 

 

2.4.2 Air toxics 

Predictions of acetaldehyde, acrolein, formaldehyde, benzene and 1,3-butadiene at the 

roadway and 15 m downwind of the roadway are shown in  table 3, along with 

observations of acetaldehyde, acrolein and formaldehyde at 15 m downwind and 55 m 

upwind. (i.e. the boundary conditions used in the simulation). As expected, the air toxics 

concentrations at the roadway are higher than the upwind concentrations due to 

emissions from vehicles. The predictions at 15 m downwind usually agree well with the 

observations for acetaldehyde and acrolein. For formaldehyde, the reported 

concentration at 15 m downwind is lower than the upwind concentration. This disagrees 
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with the model prediction, which shows an increase in the concentration. The reported 

lower concentration of formaldehyde in the downwind is in contrast with the 

measurements at the State Highway 71 and Interstate Highway 35, which show clear 

increase in the formaldehyde concentrations in the downwind vicinity of the roadways 

(Clements et al., 2009). This leads to speculations that the observed decrease in the 

formaldehyde concentrations at FM973 could be an error in the measurements.  

 

 

Table 3 Observations and predictions of air toxics near the roadway (units: ppb). 

Species Observations Predictions 

  -80 m 15 m 0 m 15 m 

Acetaldehyde 0.495 0.527 0.556 0.534 

Acrolein 0.037 0.041 0.042 0.039 

Formaldehyde 0.703 0.205 1.020 0.938 

Benzene NA NA 0.062 0.036 

1,3-Butadiene NA NA 0.019 0.010 

* ‘NA’ indicates data is unavailable. 

 

 

2.4.3 NOx 

In traditional regional air quality modeling, the estimated NOx emissions are split into 

NO and NO2 assuming a NO2 to NOx ratio of 5% (Berkowicz, 2000). The MOVES 

model has the capability of predicting NO2 directly. The predicted NO2 to NOx ratio is 

approximately 10% for Class A vehicles and 7% for Class B vehicles in this study, 

yielding an average ratio of approximately 9%. The NO2 to NOx ratio predicted by the 

MOVES model does not vary much with vehicle speed. Carslaw et al. (2005) reported a 

clear continuous increasing trend of NO2 to NOx ratio near roadways in London from 

5% in 1997 to 17% in 2003. Wang et al. (2011) reported that a fixed NO2 to NOx ratio of 

29% at the roadway is needed to make model predicted downwind concentrations agree 

with measurements.  
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In this section, the impact of initial NO2 to NOx ratio (5% vs. 29%) and the level of 

details in the gas phase chemistry (no chemistry vs. simple NOx-O3 conversions vs. full 

SAPRC-99 mechanism) to the predictions of NO and NO2 in the model are tested. The 

simple NOx-O3 chemistry has only three reactions, as listed in (1.R1)-(1.R3) below: 

NO2 + hv NO + O, j1=7.05×10-3 s-1 (1.R1) 

NO + O3NO2 + O2, k2=1.81×10-14 cm3 s-1 (1.R2) 

O + O2 + M O3, k3=5.79×10-34 cm6 s-1 (1.R3) 

The implication of a possible higher NO2 to NOx ratio in regional air quality 

simulations are further explored in Section 2.5.4.  

Figure 3 (a) shows that the three simulations with NO2 to NOx ratio of 29% have 

similar concentrations of NO near the vicinity of the roadway, while the simulation with 

NO2 to NOx ratio of 5% predicts higher NO concentrations. At further downwind 

distances (approximately 25 m), the concentrations from different simulations become 

quite similar. The effect of NO2 to NOx ratio is more significant in the predictions of 

NO2 concentration, as demonstrated in figure 3 (b). When using an NO2 to NOx ratio of 

5%, the model under-predicts NO2 concentrations in the immediate downwind of the 

roadway. It also predicts a slight increase in the NO2 concentration from 0 to 100 m, 

before the concentration starts to decrease with distance. This does not agree with 

observations, which show a monotonous decrease of NO2 from the roadway. The 

predictions agree with observation much better when a NO2 to NOx ratio of 29% is used. 

An additional simulation that uses the MOVES predicted NO2 to NOx ratios shows 

similar results as the 5% ratio case. These results are in general agreement with Wang et 

al. (2011), in which the same FM973 roadway was simulated. However, the 

methodologies used in the two studies are quite different. In this study, concentration of 

pollutants are predicted based on calculated emission rates using lumped vehicle 

categories and the MOVES emission model as discussed in Section 2.2, which is 

different from Wang et al. (2011) where concentrations of all pollutants at the roadway 

are fixed using concentrations measured at the nearest downwind site. 
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Figure 3 (a) also shows that the simulation with no chemistry predicts higher NO 

concentrations as it does not account for NO to NO2 conversion due to O3, HO2 and 

RO2. The difference between the simple chemistry and the full chemistry cases is small 

because of the low peroxy radical concentrations as predicted by the SAPRC99 

mechanism (see figure A5 in Appendix A). Figure 3 (b) shows that the difference due to 

chemistry is more noticeable for NO2, with an increase of approximately 10% when full 

chemistry is applied. This conclusion is similar to that of Wang et al. (2011), which 

suggests that peroxy radicals do not significantly alter NO2 concentrations at FM973.  

The effects of using a more detailed chemical mechanism on NO and NO2 are further 

explored in Section 2.5.3 for different emission scenarios.  

 

 

 
Figure 3 Predicted and observed (a) NO and (b) NO2 concentrations as a function of 

downwind distance for the cases with NO2 to NOx ratio of 5% and 29 % (both with full 

SAPRC-99 gas phase chemistry) and with different treatment of gas phase chemistry 

(both with NO2 to NOx ratio of 29%). 

 

 

2.5 Discussions 

2.5.1 Atmospheric and vehicle induced turbulent diffusion 

One of the problems in applying a finer grid size in studying the transport of pollutants 

using an Eulerian approach is the formulations of vertical and lateral atmospheric 
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diffusion coefficients. It has been suggested that the parameterizations used in regional 

air quality models might not be suitable for grid sizes less than 4 km (Byun and Schere, 

2006). However, our previous study shows that these parameterizations might be 

sufficient for concentrations averaged over 20-30 minutes (Kota et al., 2010). In this 

study, the atmospheric diffusion coefficients are calculated using the parameterization 

developed by Degrazia et al. (2000). This scheme gives continuous transitions of the 

turbulent diffusion coefficients when the atmospheric stability class changes. In addition, 

it also gives height dependent horizontal diffusion coefficients (Kxx). It has been 

successfully applied and evaluated in several trajectory and Eulerian modeling studies 

(e.g. see Costa et al. (2006) and Carvalho et al. (2007)) of atmospheric tracer dispersion 

experiments, including the Prairie Grass (Barad, 1958) and the Copenhagen dataset 

(Gryning and Lyck, 1984).  

The NOx results using this parameterization are compared with results based on the 

vertical turbulent diffusion parameterization as described in Jacobson (1998) and 

horizontal turbulent diffusion parameterization in Seinfeld and Pandis (2006), as used in 

Kota et al. (2010). The Kzz values predicted by the two parameterization schemes are 

very similar while the Degrazia et al. (2000) parameterization predicts much lower Kxx 

near the surface (figure 4). As shown in figure 5, the Degrazia et al. (2000) 

parameterization gives higher predictions when it is very close to the roadway and the 

difference between the two parameterizations becomes less significant further 

downwind. Although the differences are small, this new parameterization gives 

predictions that are slightly closer to the observations.  
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Figure 4 Simulated (a) vertical turbulent diffusion coefficient (Kzz) using Degrazia et al. 

(2000) and Jacobson (1998) parameterizations, and (b) horizontal turbulent diffusion 

coefficient (Kxx) using Degrazia et al. (2000) and Seinfeld and Pandis (2006) 

parameterizations. 

 

 

The AERMOD model, which is recommended by the US EPA for regulatory 

purposes, is also used to predict NOx concentrations. In this study the FM973 roadway 

was treated as an area-polygon source with a length of 170 m and width of 8.5 m. These 

dimensions are selected to correspond with the simulated roadway in this study. A 

mixing zone height is taken to be 2.8 m i.e. 1.7 times (USEPA, 2010a) the population 

weighted vehicle height of 1.6 m. AERMOD over-predicts NOx concentration near the 

roadway but under-predicts at further downwind distances. This indicates that using a 

mixing zone of 2.8 m might lead to under-prediction of the effect of VIT on pollutant 

dispersion in this case. The impact of the vehicle induced turbulent diffusivities on 

roadway is also shown in figure 5. The sensitivity simulation neglecting VIT (no VIT 

case) also leads to a slight overestimation of surface NOx concentrations. 
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Figure 5 Change in NOx decay for cases with Jacobson (1998) + Seinfeld and Pandis 

(2006) and Degrazia (2000) parameterizations of atmospheric diffusivity; and without 

vehicle induced turbulence as a function of distance from the freeway. AERMOD 

predictions are also included for comparison purposes. Filled circles are averaged 

observations. Units are ppb. 

 

 

2.5.2 Year of fleet and heavy duty vehicle fraction 

The emissions used in the previous sections are estimated based on average vehicle EFs 

for lumped Class A and B vehicles for the 2007 vehicle fleet in Travis County, and the 

traffic count data and heavy duty fraction of vehicles in the experimental study. The 

sensitivity to the selections of the year of vehicle fleet and the fraction of heavy duty 

vehicles on the roadway is studied in detail in figure 6. Figure 6(a) shows the predicted 

NOx concentrations for vehicle fleet years of 2000 and 2015 along with the base year 

2007 for the Travis County, based on the data from the MOVES model. The heavy duty 

vehicle fraction (i.e. Class B vehicles) is still kept at 34%, as used in the base case 

simulations. As expected, using emissions based on fleet year 2000 predicts higher NOx 

concentrations while using the 2015 fleet predicts much lower concentrations. The 

predicted concentrations of NOx from roadway decrease by approximately 50% by 2015 
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from 2000. This is expected due to newer vehicle technologies (Roy et al., 2009) 

introduced to meet stringent US EPA regulations.  

 

 

 
Figure 6 Sensitivities of predicted NOx concentrations due to (a) vehicle fleet year 

(2000, 2007 and 2015) and (b) fraction of heavy duty vehicles (0%, 34% and 100%). 

NOx is units of ppb.  

 

 

Figure 6(b) shows the predicted NOx concentrations for different fractions of heavy 

duty vehicles. Apart from the base case results (34% class B vehicles), two additional 

simulations are included, one with all vehicles treated as class B vehicles and one with 

all vehicles treated as Class A vehicles. The simulations show an increase in predicted 

concentrations of NOx with an increase of the heavy duty vehicle fraction in the vehicle 

fleet. This is because in the MOVES modeled diesel vehicles generally produce more 

NOx when compared to gasoline driven vehicles, and most of the heavy duty vehicles in 

the vehicle fleet are diesel powered. Although the results are affected by the Class B 

fractions, uncertainties in the estimation of heavy duty fractions are not expected to 

significantly change the simulation results. Using the reported heavy duty vehicle 

fraction based on the number of axles and lumped MOVES classes with county specific 

average vehicle emission, reasonable results can be achieved in this study.  
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2.5.3 Impact of full chemistry on near-road NO and NO2 predictions  

In Section 2.4.3, it is demonstrated that using the SAPRC99 photochemical mechanism 

does not significantly alter the predictions of NO and NO2 near roadways. However, the 

simulations were for a rural road with high diesel fraction with low vehicle traffic 

compared to more busy urban freeways (for example see Zhu et al. (2002)). Since 

gasoline vehicles typically emit more VOCs than diesel vehicles but less NOx, it is 

necessary to evaluate if the conclusion drawn in Section 2.4.3 is still applicable under 

high traffic volume and gasoline faction scenarios. Figure 7(a) and 7(b) illustrate the 

change in NO and NO2 concentrations near-road predicted by simple and full chemistry 

with the base case (17.34 vehicles min-1) and 10 times of the vehicle density, all with a 

100% gasoline vehicle fleet. Same boundary conditions used in the base case are used in 

the simulations. Similar to figure 3, only slight changes in predicted concentrations of 

NO and NO2 are predicted in the full chemistry cases compared to the simple chemistry 

cases.  

 

 

 
Figure 7 Predicted NO (a) and NO2 (b) using simple and full chemistry under higher 

vehicle density (173 vehicles min-1) and 100% gasoline passenger vehicle fleet. Case 1a: 

full chemistry with original vehicle density; Case 1b: simple chemistry with original 

vehicle density; Case 2a: full chemistry with higher vehicle density; Case 2b: simple 

chemistry with higher vehicle density.   
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       Another sensitivity study is conducted by increasing boundary conditions of O3 

(from 26 ppb in the base case to 55 ppb) and VOCs (from 3.2 ppb in the base case to 20 

ppb). The higher boundary concentrations were extracted from a grid representing urban 

Houston in a regional air quality simulation using the CMAQ model with SAPRC99 

mechanism. Again there is only small difference from the simple chemistry case when 

full SAPRC99 chemistry is used. These simulations indicate that the three-reaction 

mechanism is sufficient in predicting near-road NO and NO2 concentrations. 

 

2.5.4 Regional impact of NO2 to NOx ratio 

In the previous section, it is demonstrated that the assumption of NO2 to NOx ratio of 5% 

can leads to erroneous estimation of NO2 near roadway. The potential impact of a higher 

NO2 to NOx ratio in regional air quality modeling has not been discussed in detail. In this 

study EPA’s Community Multiscale Air quality Model CMAQ (version 4.7.1) (Byun 

and Schere, 2006) is used to study the impact of a higher NO2 to NOx ratio (29% based 

on this study) instead of the commonly used ratio of 5% on air quality predictions in 

Southeast Texas. The simulation episode is from August 16th to September 5th 2000, 

which is part of the Texas Air Quality Study 2000. Details of the modeling episode, 

model inputs and model evaluation can be found in several previous model studies (Ying 

and Krishnan, 2010; Zhang and Ying, 2011a, b) and thus are not included here. Two 

different simulations with different NO2 to NOx ratio of 5% and 29% were used to split 

the total NOx emissions from on-road emissions. The results of the simulations are 

presented in figure 8. 
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Figure 8 Regional difference (29% NO2 to NOx minus 5% NO2 to NOx results) in 

episode averaged CMAQ predictions of (a) 8-hr O3, (b) NO at 1900 CST and (c) NO2 at 

1900 CST. The episode averaged diurnal variation of (d) O3, (e) NO and (f) NO2 at grid 

cell (22,31) where the differences are most significant are also illustrated. While the 

yaxis denotes grid number in panels (a)-(c), they denote concentration (ppb) in panels 

(d)-(f). Units are ppb for all the panels.  

 

 

Figure 8(a) shows that in the urban Houston area where vehicle emissions are 

highest, episode-average 8-hr (1100-1800CST) O3 concentrations are increased by 

approximately 3-4 ppb due to the increased NO2 fraction in the NOx emission. The 

maximum increase can be as high as 6 ppb. Figure 8(b) and 8(c) show a decrease of 

peak-hour NO (0700CST) and an increase in peak-hour NO2 concentrations in the case 

with 29% ratio compared to the 5% ratio case. Higher NO2 concentrations lead to less O3 

loss due to NO+O3 titration reaction, thus explaining the predicted higher O3 

concentrations. Figure 8(d), (e) and (f) show the predicted episode average 

concentrations of O3, NO and NO2 from the two cases as a function of hour of a day in a 

grid cell in Houston where maximum differences are observed. A decrease in NO and an 

increase in NO2 and O3 is observed at all hours in the case with 29% ratio compared to 

the case with 5% ratio. A rush hour peak where the maximum NO and NO2 

concentrations and minimum O3 concentrations is observed at 0700 hrs.  

Although the differences are significant, they are based on a uniform change in the 

emission NO2 to NOx ratio in the entire model domain. The actual change in the NO2 to 
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NOx ratio is expected to be significantly affected by the fraction of diesel vehicles, the 

age of the vehicles and types of emission control equipment. The 29% ratio based on a 

fleet of 34% of heavy duty vehicle fraction might represent a higher estimation for 

regions where more light duty vehicles are expected. Thus, the values reported in this 

sensitivity study should be considered as a possible upper limit of the impacts on 

ambient O3, NO and NO2 levels.  

 

2.6 Conclusions 

The TAMNROM-3D model with the SAPRC-99 photochemical mechanism can 

reasonably predict the concentrations of gaseous and particulate matter concentrations 

near a rural roadway with significant fraction of heavy duty vehicle traffic. Emissions 

from on-road vehicles for near roadway air quality studies can be easily estimated with 

the MOVES model, using population-averaged EFs for three lumped vehicle classes 

based on the number of axles and vehicle count data that differentiate vehicles by axles 

or by weight (as light and heavy duty vehicles). Results from the NO2 simulations imply 

that both the traditional 5% NO2 to NOx ratio and the MOVES predicted NO2 to NOx 

ratio (~9%) under-represents the actual NO2 concentrations near roadways. A much 

higher NO2 to NOx ratio (29%) in the emissions might be needed to match the predicted 

and observed downwind NO2 concentrations. This higher NO2 to NOx ratio also has 

significant implication in regional air quality modeling and attainment demonstration as 

the regional air quality simulation in Southeast Texas suggests that using an NO2 to NOx 

ratio of 29% instead of the traditional 5% can lead to higher 8-hour O3 predictions by 

more than 6 ppb. 

From a near-road modeling perspective, NO2 concentrations are not significantly 

affected by RO2 radical concentrations generated from VOC emissions. This study 

indicates that the dominant pathway of conversion of NO to NO2 is its reaction with O3 

and complex radical reactions can be neglected.  

As it has been demonstrated in the study, the MOVES EF model still has significant 

uncertainties for NOx and is likely to overestimate total NOx emissions and 
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underestimate NO2 fraction for modern-day vehicles. More studies are needed to 

constrain the uncertainties of the MOVES model. For example, source typed regional air 

quality models like CMAQ can be used to study the performance of MOVES in 

predicting the observations at vehicle influenced cases (Kota et al., 2013b). Moreover, 

the MOVES predicted emission factors can be compared with emission factors estimated 

using observations collected near tunnel (Fujita et al., 2012). Care should be taken when 

MOVES is applied in near-road modeling studies without sufficient observation to 

constrain the model predictions, as the results may have large uncertainties especially in 

NO2 predictions. 
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3. ESTIMATION OF ON-ROAD VEHICLE CO AND NOX NATIONAL EMISSION 

INVENTORIES USING AN URBAN-SCALE SOURCE-ORIENTED AIR QUALITY 

MODEL* 

 

The MOBILE6.2 model was replaced by the Motor Vehicle Emission Simulator 

(MOVES) in 2012 as an official tool recommended by the United States Environmental 

Protection Agency (US EPA) to predict vehicular pollutant emission factors. In this 

study, on-road vehicle emission inventories of CO and NOx for Southeast Texas 

generated by MOVES and MOBILE6.2 in two versions of the 2005 National Emission 

Inventory (NEI) were studied by comparing predicted CO and NOx using the EPA’s 

Community Multiscale Air Quality (CMAQ) Model incorporated with a source-oriented 

gas phase chemical mechanism with measurements made at six urban and industrial sites 

in Southeast Texas. The source tracing technique allows direct determination of 

contributions of on-road vehicles to overall CO and NOx concentrations and 

identification of ambient concentration measurements which are mostly impacted by 

vehicle emissions. 

By grouping the fractional bias (FB) values of the hourly predictions based on 

vehicle contributions to total CO or NOx concentrations, clear trends in the FB were 

observed, indicating systematic biases in the emission inventory for these species. Data 

points dominated by vehicle emissions suggest that surface CO concentrations due to 

vehicle exhaust are significantly over-estimated by a factor of 2 using either MOVES or 

MOBILE6.2. NOx concentrations are overestimated by approximately 20-35% and 70% 

by using the MOBILE6.2 and MOVES emissions, respectively. Emission scaling runs 

show that a domain-wide reduction of MOBILE6.2 CO emissions by 60% and NOx 

                                                 

* Reproduced with permission from: Kota, S.H., Zhang, H., Chen, G., Schade, G.W., 

Ying, Q., 2014. Evaluation of on-road vehicle CO and NOx National Emission 

Inventories using an urban-scale source-oriented air quality model. Atmos. Environ. 85, 

99-108. Copyright 2014 Elsevier Ltd.  
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emissions by 15-25% leads to better model performance of exhaust CO and NOx 

concentrations in the current study. 

 

 3.1 Introduction  

The United States Environmental Protection Agency (US EPA) develops National 

Emission Inventories (NEI) to aid air quality studies by providing temporal and spatial 

emission estimates from different sources across the nation. Air pollution control 

agencies use NEI and other emissions inventories to model air quality and to formulate 

air quality attainment plans that will meet federal and local standards. Motor vehicles are 

significant contributors to air pollution (Harley et al., 1993; Schauer et al., 1996; Ying 

and Kleeman, 2006; Zavala et al., 2006; Zhang and Ying, 2011a), global climate change 

Wegmann et al., 2005 and public health problems (Brunekreef et al., 1997; Gauderman 

et al., 2007; Hoek et al., 2002; Samet et al., 2000) by directly emitting significant 

amounts of criteria pollutants, including carbon monoxide (CO) and nitrogen oxides 

(NOx), among others. Many of these emissions also contribute to the formation of 

secondary pollutants such as ozone and secondary particulate matter. To evaluate the 

impact of vehicle traffic on these issues, an accurate estimation of pollutant emissions 

from a vehicle fleet is essential.  

The US EPA used the MOBILE model in the past to estimate the vehicle emission 

factors for regulatory purposes. The MOBILE6.2 model (the latest version in the 

MOBILE series) is a fuel based emission factor model that broadly classifies vehicles 

into gasoline motorcycles, diesel and gasoline powered cars, trucks and buses. In 

addition, there are multiple classes of trucks based on their weight. Recently, the US 

EPA requested replacement of the MOBILE6.2 model with the MOVES (Motor Vehicle 

Emission Simulator) model (USEPA, 2010b) as the official model for estimating on-

road vehicle emissions. MOVES uses an activity based approach and classifies vehicles 

based on their utilities (passenger cars, passenger trucks, light commercial trucks, refuse 

trucks, single unit short-haul trucks, single unit long-haul trucks, combination short-haul 

trucks, combination long-haul trucks, motorcycles, motor homes and buses). In this 
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model, each vehicle type can be combined with one of several fuel types (diesel, 

gasoline, natural gas, electric, etc.) to estimate their emission factors. While both 

MOBILE6.2 and MOVES include a regional emission component to support the 

development of national and regional emission inventories, MOVES also includes a 

project-level emission component to local-scale emission and air quality modeling.   

Several previous studies have investigated the differences between NOx emissions 

estimated by these two models and reached generally consistent results. For example, 

Vallamsundar and Lin (2011) showed that NOx emissions from the MOVES (version 

2010a; MOVES hereafter) model was approximately 20% higher than MOBILE6.2 

estimations with identical input data for Cook County, IL. Fujita et al. (2012) compared 

MOVES and MOBILE6.2 estimated NOx using vehicle data collected in a traffic tunnel 

in California and concluded that MOVES predictions were approximately 10% higher 

than MOBILE6.2 predictions. Kota et al. (2012) also demonstrated that MOVES 

predicts higher emissions factors of NOx and the differences are more significant for 

heavy-duty vehicles at all speeds and for passenger vehicles at low speeds.  Differences 

between MOVES and MOBILE6.2 in CO predictions have also been reported. For 

example, Fujita et al. (2012) reported that CO concentrations in the traffic tunnel 

predicted by MOVES were lower than those predicted by MOBILE6.2 by approximately 

30%. Kota et al. (2012) found that MOVES-predicted passenger car CO emission factors 

are approximately 12-34% lower than MOBILE6.2 predictions using the national 

average vehicle fleet of 2007. However, CO emission factors for heavy duty vehicles 

predicted by MOVES can be as much as 63% higher than MOBILE6.2 predictions.  

As MOVES and MOBILE6.2 predictions can vary significantly, it is essential to 

evaluate these predictions against measured ambient concentrations. A direct evaluation 

was made by Fujita et al. (2012) to compare predicted CO and NOx concentrations with 

observations made in a tunnel in California dominated by passenger car traffic. It was 

concluded that both MOVES and MOBLIE6.2 significantly over-predicted measured 

NOx concentrations by 30-45% although MOVES predictions were closer to the 
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observations. CO concentrations were also over-predicted significantly by both models 

and MOVES predictions were better.  

While the traffic tunnel measurements provided excellent direct data to evaluate the 

emission factor models, the evaluations were limited by vehicle fleet composition which 

might not be representative for other areas. However, many regional air quality 

monitoring sites measure CO and NOx concentrations simultaneously over much longer 

periods of time with hourly resolution, which can provide additional data to evaluate the 

emission factor models. Wallace et al. (2012) observed that CO/NOx ratios predicted by 

MOVES were better than MOBILE6.2 at a freeway-influenced regional air quality 

monitoring site in Idaho, although both models significantly over-predicted the observed 

ratios. The Wallace et al. (2012) study assumed CO/NOx ratio measured at the air quality 

site during morning traffic hours were dominated by CO and NOx from vehicle 

emissions, which might not be valid for many other surface air monitoring sites because 

other local or regional sources could also contribute to NOx and CO concentrations. 

Most of the studies to this date evaluated vehicle related emission inventories by 

selecting morning rush hours at urban sites as representative data for the analyses 

(Parrish, 2006; Wallace et al., 2012; Zavala et al., 2009), assuming pollutant 

concentrations during these hours were dominated by emissions from vehicles. This 

assumption, however, is not always correct as many factors such as vehicle fleet 

differences on weekday and weekends, and other emission sources could affect the 

predicted concentrations during rush hours. 

Another approach that utilizes the ambient monitoring data is to use regional air 

quality models, with MOVES or MOBILE6.2 based regional emission inventories, to 

predict CO and NOx concentrations at air quality monitoring sites. By comparing the 

predicted and observed concentrations, an indirect evaluation of the underlying emission 

factor model can be performed. McKeen et al. (2009) reported that CO emissions in 

1999 NEI might be significantly overestimated, based on comparisons of air quality 

model predicted and emission inventory reported CO/NOy ratios. Brioude et al. (2011) 

applied an inverse modeling technique and determined that 2005 NEI-based CO 
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emissions in the Houston urban area were overestimated by 41%. Kim et al. (2011) 

compared predicted NOx with satellite observations in Texas and concluded that NOx 

emissions from urban Houston were reasonably represented. However, none of these 

studies have been able to clearly separate vehicle emissions from other emission sources. 

Simon et al. (2011) used the Community Multiscale Air Quality (CMAQ) Model in the 

northeastern United States with two different versions of the 2005 NEI, and concluded 

that MOVES predicted higher NOx than MOBILE6.2 with smaller biases at urban areas 

during morning rush hour peaks. However, the conclusion is sensitive to the selection of 

the meteorology model. Kota et al. (2012)  showed that CMAQ NOx and ozone 

predictions using MOVES agreed better with observations at 7 out of 11 surface 

observation sites in Southeast Texas during the 2006 Texas Air Quality Study. However, 

since the predicted concentrations by traditional regional air quality models are affected 

by a combination of different sources, direct comparison of predicted and observed 

concentrations does not provide a direct evaluation of the underlying emission factor 

models either.  

Recently, source-oriented versions of the CMAQ model have been developed to 

directly determine contributions of different sources to predicted air quality by tracking 

emissions from multiple sources simultaneously as well as their transport, transformation 

and removal in the atmosphere. The source-oriented models have been applied in the 

past to determine contributions of different sources to VOCs and NOx in Southeast 

Texas (Ying and Krishnan, 2010; Zhang and Ying, 2011a), among other applications in 

Texas and California. The objective of this study is to apply the source-oriented air 

quality modeling approach to track emissions of CO and NOx from on-road vehicle 

sources separately to directly evaluate the emission inventories of these two compounds 

based on MOBILE6.2 and MOVES generated emission factors.  

 

3.2 Model Description 

The SAPRC99 (S99) photochemical mechanism (Carter, 2000) was modified to include 

additional source-specific species and reactions, and incorporated into the CMAQ model 
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(version 4.7.1) to determine source contributions to CO and NOx from on-road vehicles 

and other sources. The CMAQ model is a three-dimensional regional air quality model 

developed by the US EPA that simulates the emission, transport, transformation and 

removal of gas and particulate air pollutants in the atmosphere. It has been widely used 

in both regulatory and research applications (Simon et al., 2012). More details of the 

CMAQ model can be found in Byun and Schere (2006), Foley et al. (2010) and Carlton 

et al. (2010).  

 

 

 

Figure 9 The Southeast Texas model domain with locations of air monitoring stations. Stations 

‘a-f’ have both CO and NOx observations available, while stations ‘g-m’ have only NOx 

observations. Grid cell index for the 4 km domain are shown on x and y axis.   

 

 

To determine the contribution of vehicle sources to overall CO concentrations, CO 

emissions from on-road vehicles are represented in the emission input files as CO_X1 

while CO emissions from other sources, including initial and boundary conditions, are 

combined and represented as CO. The S99 mechanism is modified so that any reaction 

that involves CO as a reactant is expanded into two reactions. For example, CO 

oxidation reaction with OH is expanded into two reactions as shown in reaction set 3.R1, 

2

2

CO + OH  HO

CO_X  + OH1   HO




 

 (3.R1) 
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where CO_X1 and CO represent concentrations due to on-road and all other sources, 

respectively. Modifications to the reactions that generate CO are not necessary as the 

produced CO is automatically grouped with the emitted CO from other sources. 

Similarly, CO entering the model domain as boundary conditions is also represented as 

other CO species. Modifications to the NOx chemistry to determine contributions due to 

on-road vehicle sources are similar. In the emission input files, NO_X1 and NO2_X1 are 

used to represent emissions from on-road vehicle sources and NO and NO2 are used to 

represent emissions from all other sources and from upwind sources through boundary 

conditions. Reactions that involve reactive nitrogen species are expanded to include 

reactions for NO_X1, NO2_X1 and other typed nitrogen species. More details of 

expanding the NOx chemistry in S99 can be found in Zhang and Ying (2011a).  

 

3.3 Model Application 

Details of the model episode, domain and input data have been described previously 

(Kota et al., 2012; Zhang and Ying, 2012) and are briefly summarized below. In this 

work, the modified CMAQ 4.7.1 with the source-oriented S99 mechanism, described in 

the previous section, was applied to predict concentrations of CO and NOx due to on-

road vehicle emissions in Southeast Texas during a 2.5 week long episode (August 28 to 

September 15, 2006). The simulations were conducted using a three-level nested domain 

with the inner most 4-km resolution Southeast Texas domain centered on the Houston 

metropolitan area. The nested-domain setup is based on that used by the Texas 

Commission on Environmental Quality (TCEQ), and has been documented in detail in a 

previous study (Zhang and Ying, 2011b). Simulation results of the third-level 4-km 

resolution domain (figure 9), which covers Houston-Galveston-Brazoria (HGB) and 

Beaumont-Port Arthur (BPA) areas, is discussed in detail in this study.   

The US EPA’s NEI for 2005 (2005 NEI) was used to generate anthropogenic 

emissions of CO, NOx, SO2, NH3 and VOCs. The US EPA’s Sparse Matrix Operator 

Kernel Emissions (SMOKE) emission processing model (version 2.5) was used to 

process the NEI emission inventory to generate the gridded, speciated and temporally 
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allocated emission rates for the CMAQ model. NEI assumes monthly time resolution of 

meteorology and source activity. Modifications were made to the SMOKE model so that 

emissions from on-road vehicles are saved separately from other sources in the final 

emission files (Ying and Krishnan, 2010). Two versions of the 2005 NEI were acquired 

from the US EPA: NEI v4, which uses the MOVES model to generate on-road vehicle 

emissions, and NEI v2, which uses the MOBILE6.2 model to calculate emissions from 

on-road mobile sources. The 2005 NEI v2 uses county-specific vehicle fleet information 

and vehicle miles travelled (VMT) data based on default database in the EPA’s National 

Mobile Inventory Model (NMIM) and state-supplied data set to directly generate 

emissions of gases at county level. Emissions from the State of Texas were based on 

Texas-specific data provided by TCEQ. The 2005 NEI v4 uses state level MOVES 

simulations and allocates the emissions to county-level using the county-specific data 

used in NEI v2. These county-level emissions generated by the state-month approach 

were then spatially allocated using SMOKE into model grid cells. More details about the 

2005 NEI v2 and v4 can be found at the US EPA Clearinghouse for Inventories and 

Emissions Factors (CHIEF) website (http://www.epa.gov/ttn/chief/index.html). 

Emissions from other anthropogenic activities for the two NEI inventories are identical. 

Biogenic emissions were generated using the biogenic emission inventory system 

version 3 (BEIS3) imbedded in the SMOKE model. 

 

 

Table 4 Predicted average-day emissions of CO and NOx (103 kg day-1) in the 4-km CMAQ model domain 

for August 2006. 

  CO NOx 

  MOBILE6.2 MOVES MOBILE6.2 MOVES 

LDGV 1053.4 977.3 77.2 130.9 

LDGT 503.7 816.0 42.4 103.1 

HDGT 44.5 50.5 11.2 7.0 

MC 3.5 5.1 0.2 0.2 

LDDV 0.2 0.1 0.2 0.3 

LDDT 0.2 1.0 0.3 1.6 

HDDT 45.9 78.7 156.1 232.5 

BUS 2.3 3.0 7.5 8.7 

Total 1653.8 1931.6 295.1 484.3 

Note: LDGV = Light duty gasoline vehicles; LDGT = Light duty gasoline trucks; HDGT = Heavy duty gasoline 

trucks; MC = Motorcycles; LDDV = Light duty diesel vehicles; LDDT = Light duty diesel trucks; HDDT = heavy 

duty diesel trucks; BUS = buses. 

http://www.epa.gov/ttn/chief/index.html
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The provided EPA emission inventories were formatted for regional air quality 

modeling purposes, and MOVES emissions were internally mapped to MOBILE6.2 

classifications. Table 4 summarizes the predicted CO and NOx emissions in Texas for a 

representative weekday (August 31, 2006).  The differences in the underlying emission 

factors used in the two emission models are likely the fundamental cause of the observed 

regional emission differences. First of all, MOVES incorporates more recent vehicle 

emission testing data. For example, NOx emission rates for heavy-duty diesel trucks in 

MOVES were based on emission data collected for vehicle model years 1994-2006 

while the MOBILE6.2 emission rates were based on vehicles from mid to late 

1990s.Secondly, the algorithms used by the two models to interpolate the experimental 

data can also cause differences. For example, MOVES needs vehicle specific power, 

which is affected by vehicle conditions as well as driver behavior, in the vehicle 

emission factor estimations. Uncertainty analysis is needed to evaluate the error of 

vehicle emission inventory estimations due to uncertainties in these additional inputs.  

 

 

 
Figure 10 Episode average emission rates of CO (a) and NOx (b) from on-road vehicle sources 

based on MOBILE6.2, and the differences of the episode average emission rates between 

MOVES and MOBILE6.2 for CO (c) and NOx (d) in the 4-km domain. The difference plots are 

calculated using MOVES case - MOBILE case. Units are kg day-1 (per grid cell). Ranges are 

scaled to better illustrate spatial distribution.  



 

41 

 

Regional average emission rates of CO and NOx from on-road vehicles in the 

Southeast Texas domain and differences between the MOVES and MOBILE6.2 

emission estimates are illustrated in figure 10. Overall, the MOVES model predicts 

higher emissions of CO and NOx, with a higher percentage difference for NOx.  

As it has been shown in a previous study that different meteorology models affect air 

quality model’s prediction of NOx concentrations (Simon et al., 2011), two sets of 

meteorological inputs were used in this study to drive the model simulations. The first 

set of meteorological files was generated by the TCEQ using the Penn State/UCAR 

mesoscale model (MM5) and was extensively evaluated in a previous study (Ngan et al., 

2012). The second set of meteorology inputs were generated in-house using the Weather 

Research and Forecasting (WRF) Model following the same domain configurations as 

the MM5 simulations. The initial and boundary conditions for the WRF simulations 

were prepared using the 1°×1° resolution (National Centers for Environmental 

Prediction) FNL (Final) Operational Global Analysis dataset (available at 

http://rda.ucar.edu/datasets/ds083.2/). The land use/land cover and topographical data 

were from the 30 sec resolution default WRF input dataset. The performance of the 

MM5 and WRF model for 10-m wind speed and wind direction is shown in table 5. Both 

models over-predict wind speed but MM5 predictions are generally lower and closer to 

observation at all but one station. The two models have similar performance in wind 

direction.  

 

 

Table 5 Mean Fractional bias (MFB) of predicted wind speed and direction by MM5 and WRF at different 

TCEQ operated meteorological stations. 

    Wind Speed (m/s) Wind Direction 

  Site AO* AS* MFB MFE RMSE AO AS MFB MFE RMSE 

MM5 Aldine 1.98 2.49 0.22 0.37 1.09 119.93 103.58 -0.12 0.65 102.69 

NW Harris 1.86 2.61 0.33 0.45 1.29 165.67 143.11 -0.17 0.63 120.17 

Bayland park 2.21 2.29 0.04 0.39 1.11 151.40 138.25 -0.12 0.61 116.57 

Park Place 2.00 2.49 0.19 0.42 1.22 160.59 135.39 -0.18 0.70 130.71 

Houston East 1.67 2.57 0.41 0.46 1.24 133.81 106.54 -0.20 0.64 105.83 

Clinton drive 1.95 2.37 0.19 0.37 1.01 141.95 118.20 -0.11 0.71 124.30 

Deer Park 2.01 2.58 0.25 0.39 1.17 154.90 132.70 -0.19 0.70 129.60 

Galveston 3.62 3.49 -0.03 0.31 1.23 149.78 142.73 -0.03 0.35 78.35 

Conroe 2.77 3.29 0.20 0.37 1.34 199.92 146.75 -0.29 0.51 124.95 

http://rda.ucar.edu/datasets/ds083.2/
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Table 5 Continued 
    Wind Speed (m/s) Wind  Direction 

  Site AO AS MFB MFE RMSE AO AS MFB MFE RMSE 

WRF Aldine 1.99 2.54 0.21 0.48 1.42 118.77 123.64 -0.01 0.68 115.66 

 NW Harris 1.87 3.40 0.51 0.64 2.25 168.66 136.85 -0.24 0.74 135.55 

 Bayland park 2.19 2.66 0.17 0.51 1.55 154.88 153.08 -0.03 0.62 117.22 

 Park Place 1.98 2.86 0.33 0.53 1.63 159.03 156.61 -0.04 0.70 127.17 

 Houston East 1.67 2.61 0.38 0.52 1.51 135.33 107.54 -0.22 0.70 115.38 

 Clinton drive 1.95 2.74 0.32 0.49 1.44 142.76 130.52 -0.06 0.69 121.58 

 Deer Park 2.01 2.91 0.34 0.51 1.60 158.62 137.53 -0.18 0.66 121.04 

 Galveston 3.61 3.36 -0.07 0.39 1.78 148.86 145.37 -0.08 0.59 118.57 

 Conroe 2.75 3.77 0.30 0.47 1.88 210.07 160.67 -0.29 0.56 128.25 

* AO and AS denote average observation and simulation respectively.  

 

 

Two sets of simulations, one with the on-road emissions based on the MOVES 

emission factors (MOVES case hereafter) and another with on-road emissions based on 

the MOBILE6.2 emission factors (MOBILE case hereafter), are carried out in this study. 

In each set of simulations, two simulations were conducted, one each using MM5 and 

WRF meteorological inputs to drive the air quality simulations.  

 

3.4 Results and Discussion  

3.4.1 Model performance of overall CO and NOx  

Figure 11(a) and 11(b) show the relative differences between the MOVES and 

MOBILE6.2 (using MM5 meteorology) predicted episode-average regional CO and NOx 

concentrations. As expected, higher NOx emissions from MOVES resulted in higher 

predicted concentrations compared to the MOBILE case. The urban Houston area shows 

the biggest difference in predicted emissions and ambient concentrations. The maximum 

percentage difference of surface CO and NOx concentrations is approximately 16% and 

43%, respectively. Table 6 shows the list of air quality monitoring stations and the mean 

fractional bias (MFB) for predicted CO and NOx using different combinations of 

emissions (MOVES or MOBILE6.2) and meteorological inputs (MM5 or WRF). The 

observation data at those stations were acquired from the US EPA Air Quality System 

(AQS). Simulations using MM5 generally show better model performance than WRF 
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simulations using the same emission inputs because of better wind speed predictions. 

Simulations using MOVES generated vehicle emissions show better model performance 

of CO and NOx than their counterparts using MOBILE6.2 emissions, if WRF 

meteorology inputs are used. When MM5 meteorology inputs are used, there is no clear 

indication of improvement in model performance using MOVES emissions.  

 

 

 
Figure 11 Relative differences of episode average (a) CO and (b) NOx concentrations (ppb) from 

on-road vehicles in Southeast Texas. The relative difference is calculated as (MOVES case–

MOBILE case)/MOVES case×100%.  Ranges are scaled to better illustrate spatial distribution. 

 

 

Table 6 Mean Fractional Bias (MFB*) of CO and NOx at different air quality monitoring sites in 

Southeast Texas. 

Site 

CO NOx 

MOVES  MOBILE MOVES     MOBILE MOVES      MOBILE MOVES      MOBILE 

MM5 WRF MM5 WRF 

(a) Lang -0.22 -0.26 -0.52 -0.55 -0.01 0.36 -0.69 -0.90 
(b) Aldine -0.20 -0.22 -0.54 -0.55 0.05 -0.24 -0.77 -1.00 
(c)Texas Avenue -0.07 -0.09 -0.45 -0.47 0.55 0.29 -0.06 -0.31 
(d) Park Place 0.52 0.51 0.06 0.05 0.47 0.23 -0.08 -0.29 
(e) Clinton drive 0.34 0.33 -0.21 -0.22 0.68 0.53 0.18 0.04 
(f) Deer Park -0.42 -0.44 -0.65 -0.67 0.87 0.80 0.64 0.59 
(g) Houston East - - - - -0.07 -0.25 -0.5 -0.65 
(h) NW Harris - - - - -0.38 -0.55 -0.89 -1.03 
(i) Bayland Park - - - - 0.40 0.13 -0.27 -0.52 
(j) Hamshire - - - - -0.98 -1.12 -0.99 -1.10 
(k) Beaumont - - - - 0.64 0.54 0.22 0.14 
(l)West orange - - - - -0.23 0.37 -0.78 -0.88 
(m) Galveston - - - - -0.23 -0.32 -0.91 -0.99 

*MFB=2/N*Σ(Pi-Oi)/(Pi+Oi), where N is the total number of data points, P is prediction, O is 

observations and subscript i represents the ith data point.  
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Based on the overall FB values, it is hard to determine if vehicle CO and NOx 

emissions are correctly estimated by the emission factor models, and whether MOVES-

based NEI gives better emission estimates than MOBILE6.2-based NEI. CO and NOx 

concentrations at receptor locations are not only influenced by vehicle emissions and 

meteorology but also emissions from other sources. For example, Zhang and Ying 

(2011a) showed that industries, coal combustion and natural gas are also important 

sources of ambient NOx in the Southeast Texas region. Although CO is predominantly 

from vehicle emissions in urban areas, other combustion sources, such as industrial 

combustion sources in the area could also contribute to CO concentrations in the ambient 

air. Another potential error in CO is the allocation of off-road start exhaust emissions, 

which was allocated to roadways on the basis of VMT. This led to temporal and spatial 

misallocation of off-road vehicle emissions, as they were not related to on-road VMT 

activity. Errors in the emission estimations of these sources as well as the meteorological 

inputs might be compensated by errors in the vehicle emissions. This could lead to 

apparently better model performance even though the vehicle emissions were shifted 

towards a wrong direction.  

 

3.4.2 CO and NOx performance as a function of vehicle contributions 

The advantage of the source-oriented model in this study is its capability of directly 

resolving contributions of on-road vehicle sources to total CO and NOx concentrations. 

This allows a more detailed analysis of the model results to evaluate vehicle emission 

inventories. Six stations with both CO and NOx measurements were used for further 

analysis (figure 9).  
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Figure 12 Time series of relative source contributions (percent of vehicles and other sources are 

indicated by green and blue, respectively) to total CO at stations shown in figure 9. The red dots 

indicate total predicted CO concentrations (ppb) from MM5/MOBILE6.2 (secondary y-axis). 

 

 

Figure 12 shows the predicted time series of CO using MM5/MOBILE6.2 and 

relative contributions due to vehicles and other sources at the six stations. There are clear 

diurnal and episodic variations in the vehicle contributions to total CO concentrations. 

For example, the Park Place site (figure 12c) shows highest level of vehicle influence 

while the Deer Park site (figure 12f) shows the lowest influence. Figure 13 shows the 

predicted time series of NOx using MM5/MOBILE6.2 and the relative contributions due 

to vehicles and other sources at the six stations. There are obvious variations in the 

vehicle influence among different stations. Relative contributions of NOx due to vehicles 

are lower at Clinton Drive (figure 13e) and Deer Park (figure 13f), and higher at Aldine 
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(figure 13a) and Lang (figure 13b). Unlike CO, high concentrations of NOx do not 

always correspond to higher vehicle contributions, suggesting that other sources can also 

be significant contributors to NOx concentrations. In fact, the Clinton Drive and Deer 

Park sites are closer to the Houston Ship Channel (HSC) area and are more influenced 

by NOx emissions from natural gas combustion (Zhang and Ying, 2011a). 

 

 

 
Figure 13 Time series of relative source contributions (vehicles and other sources are 

indicated by green and blue, respectively) to total NOx at stations shown in figure 9. The 

red dots indicate total predicted NOx concentrations (ppb) from MM5/MOBILE6.2 

(secondary y-axis). 
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With the source-oriented CMAQ results, it is now possible to further evaluate the 

impact of vehicle emissions on model performance. Figure 14 shows the fractional bias 

(FB) of CO and NOx as a function of relative contributions of on-road vehicles to total 

concentrations using all available hourly data at the six stations. FB is chosen because it 

is a bounded measure, and is unbiased regarding under and over-predictions (Seigneur et 

al., 2000). The vehicle contributions are grouped into 10 bins with a bin width of 10%. 

For CO (figure 14a), when the vehicle contributions are less than 50%, the FB values are 

generally below zero with a relatively stable median value of -0.5. This indicates that 

CO from some other sources is likely under-predicted in the emission inventory. For 

data points with higher vehicle contributions, FB increases. The median FB value is 

close to zero with 60-70% vehicle contributions, and exceeds 0.5 in the 90-100% range 

bin. The FB values of CO using MOVES-based NEI are similar to those using 

MOBILE6.2-based emissions. This clearly indicates that concentrations of CO due to 

vehicles are significantly overestimated by both MOVES-based NEI and MOBILE6.2-

based NEI. Taking the median FB value of 0.6 from the 90-100% vehicle contribution 

bin in the MOVES case, predicted CO concentrations due to on-road vehicles are 

approximately 1.85 times higher than the observed values.  
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Figure 14 Fractional bias (FB) of CO (a,c) and NOx (b,d) as a function on-road vehicle 

contributions to the total CO and NOx. Simulations are conducted using MOVES (red) and 

MOBILE6.2 (grey) emissions with MM5 (a,b) and WRF (c,d) meteorology.  The Box-Whisker 

plot shows the maximum, minimum, upper and lower quartiles and the median of the FB within 

each vehicle contribution bin. FB=2*(P-O)/(O+P), where O and P represents observation and 

predictions, respectively. The small squares indicate the number of data points for each vehicle 

contribution bin (secondary y-axis). 

 

 

Figure 14(b) shows the FB of NOx initially decreasing from large positive values 

when vehicle fraction increases. This suggests that emissions from some other NOx 
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sources are likely overestimated and error in the vehicle emissions is lower. If NOx 

emissions from vehicle sources were accurately estimated, one would expect that the 

decreasing trend in FB would slow down and approach a relatively constant value as 

vehicle contribution increases. In fact, if the meteorology inputs were perfect, the FB 

would approach zero. However, this is not clearly reflected in figure 14(b). Instead, the 

median FB value reaches its minimum at approximately 60-70% vehicle contributions 

but starts to increase when vehicle contributions further increase. The increasing trend in 

the FB suggests that, overall, vehicle emissions of NOx are likely overestimated by both 

emission models. The difference between MOVES and MOBILE6.2 cases are more 

obvious for vehicle contributions of more than 50%, reflecting the larger differences in 

the NOx emissions between MOBILE6.2-based NEI and MOVES-based NEI (figure 10). 

The median FB for the MOVES case at 90-100% vehicle contributions is 0.5, which 

corresponds to an overestimation of 1.67 times (67% higher) the ambient NOx 

concentrations. There are no data points within the 90-100% vehicle contribution range, 

but it would be approximately 0.2-0.3 (22-35%) higher based on differences in the FB 

values between 50-90% vehicle contribution ranges. Based on the MM5 meteorological 

inputs, NOx emissions from MOBILE6.2-based NEI are more accurate than MOVES-

based NEI.  

Ranges of FB values as a function of time of the day were also investigated. High 

vehicle contributions to CO occur more often during early morning hours (5AM-8AM) 

when the mixing height is low and vehicle emissions are high due to commute traffic. 

However, there is no significant difference in the ranges of FB for early morning, rest of 

the day (9AM-7PM) and nighttime hours (8PM-4AM). For NOx, high vehicle 

contributions occur throughout daytime hours and ranges of FB do not differ 

significantly between early morning and rest of the daytime hours. This suggests that 

error in dispersion rates and emission rates does not vary significantly throughout the 

day. 

Figure 14(c) and 14(d) are similar to figure 14(a) and 14(b) but are based on 

simulations using the WRF meteorology. Relatively poorer WRF model performance is 
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clearly reflected in the larger FB ranges. Similar trends can be observed for CO and NOx 

model performances. FB for CO increases monotonically from negative values, 

indicating underestimation of the emissions from other sources, to positive values, 

indicating overestimation of on-road vehicle emissions. This is generally consistent with 

the conclusions based on MM5 meteorology, although the amount of overestimation 

does not appear as high as it is in the MM5 case. FB for NOx decreases from large 

positive to negative values and then increases again as vehicle contributions increase. 

This is also consistent with results based on MM5. However, NOx emissions from both 

MOBILE6.2-based NEI and MOVES-based NEI could be concluded as underestimated 

based on the WRF results; and MOVES-based NOx emissions would appear to be more 

accurate than MOBILE6.2-based emissions because the FB values are more close to 

zero. However, the better overall NOx performance using MOVES-based NEI emissions, 

as shown in table 6, is likely because higher NOx emissions from MOVES-based NEI 

compensate the errors to the overall concentration caused by over-predicted wind speed.  

Since the MM5 wind speed predictions are better than the WRF predictions in this 

study, and are over-predicted (table 5), the conclusions drawn from this study should be 

based on the simulations using MM5 instead of WRF. In the following sections, only 

simulations based on MM5 meteorology inputs are used in the analysis.  

 

3.4.3 Estimating the amount of CO and NOx emission overestimations 

Since the predicted to observed CO and NOx ratios do not necessarily reflect the amount 

of overestimation in the emission inventory, a series of simulations were conducted by 

systematically reducing the vehicle emissions of CO and NOx emissions in the 

MOBILE6.2 case. CO emissions from on-road vehicles were reduced by 40%, 60% and 

80%; and NOx emissions from on-road vehicles were reduced by 5%, 15% and 25% in a 

series of simulations using MM5 meteorology. As shown in figure 15(a), a 60% CO 

emission reduction from on-road vehicle exhaust is needed to reduce the FB of CO 

closer to zero, when vehicle contributions approach 100%. Figure 15(b) showed that 15-
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25% reductions of on-road vehicle NOx emissions are necessary to better match the 

observations with predictions.  

 

 

 
Figure 15 Fractional bias (FB) of CO (a) and NOx (b) as a function of on-road vehicle 

contributions to the total CO and NOx under different emission reduction scenarios. For 

CO, emissions of on-road vehicles were reduced to 60%, 40% and 20% of the base case 

emission rates; and for NOx, the emissions were reduced to 95%, 85% and 75% of the 

base case emission rates.  

 

 

The meteorology models in this study appear to over-predict dispersion by 

overestimating wind speed (see table 5). Wind speed predicted by WRF is even higher 

than MM5, leading to even lower predicted concentrations of CO and NOx (see table 6 

and figure 14). This suggests that if the models had predicted wind speed correctly, the 

predicted CO and NOx concentrations would have been even higher than what is 

currently predicted by MM5. Thus the overestimation of CO and NOx under high vehicle 

contributions is likely due to emission overestimations, and the amount of 
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overestimation we proposed based on emission scaling using MM5 meteorology might 

be a lower limit and the actual overestimation might be even higher. 

 

3.4.4 Differentiating diesel vs. gasoline vehicle emissions  

Theoretically, the method described in the previous section can allow a further detailed 

evaluation of diesel and gasoline vehicle emissions separately. An additional simulation 

that tracks the diesel emissions was conducted using MOBILE6.2 and MM5. However, 

almost all vehicle exhaust CO is generated from gasoline vehicles (table 4). None of the 

stations has any data points where diesel emitted CO dominates the total CO 

concentration, thus a detailed analysis of diesel CO emission is not possible in this study. 

The conclusions regarding CO emissions drawn from the above analysis should only be 

applied to gasoline vehicle emissions.  

 

 

 
Figure 16 Fractional bias (FB) of NOx as a function of gasoline (red) and diesel (grey) 

contributions to total vehicle NOx using MM5 meteorology and MOBILE6.2 inputs. 

Only data points with more than 80% of NOx from vehicle emissions are included in the 

analysis. Diesel contributions are always more than 50% while gasoline contributions 

are always less than 50% of total vehicle NOx, thus there is no overlap in the data points. 

 

 

Diesel vehicles can, however, be a significant contributor of NOx because of 

significantly higher NOx emission than gasoline vehicles on a per-vehicle basis. Data 

points with vehicle NOx contributions greater than 80% were selected for further 

analysis. The FB values of these data points were grouped based on the ratio of diesel 
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NOx to total vehicle NOx concentrations. However, at all NOx monitoring sites, 

variations of the diesel contributions to vehicle NOx were narrowly distributed between 

50 and 70%. The high diesel contributions are in agreement with NOx emissions from 

diesel and gasoline vehicles reported in table 4 and in Kite (2011). This lack of variation 

in the diesel contributions in predictions makes it difficult to quantitatively determine the 

error in the diesel vs. gasoline emissions. Nevertheless, as shown in figure 16, the range 

of the FB values increases as diesel contributions increase, suggesting that diesel NOx 

emissions are likely not as accurate as gasoline NOx.  

 

3.5 Conclusions 

In this study, on-road vehicle emission inventories of CO and NOx in the 2005 NEI for 

Southeast Texas based on the MOVES and MOBILE6.2 emission factor models were 

evaluated by comparing predicted CO and NOx using a source-oriented CMAQ model 

with observations to directly determine the contributions from on-road vehicles to CO 

and NOx concentrations. The source tracing technique allows direct determination of 

contributions of on-road vehicles to overall CO and NOx concentrations and 

identification of ambient concentration measurements which are mostly impacted by 

vehicle emissions. Clear trends in the fractional bias (FB) values of the hourly 

predictions can be observed when they are grouped by vehicle contributions to total CO 

or NOx, indicating systematic biases in the emission inventory for these species. For 

vehicle emissions dominated data points, surface CO concentrations are significantly 

over-estimated by a factor of 2 using either MOVES-based NEI or MOBILE6.2-based 

NEI. In turn, NOx concentrations are overestimated by approximately 30% and 70% by 

using the MOBILE6.2-based and MOVES-based NEI emissions, respectively. 

Additional simulations in this study indicated that a domain-wide reduction of 60% and 

15-25% in CO and NOx vehicle emissions, respectively, are necessary for better 

performance of the MOBILE6.2 case. 

The quantitative results derived from this study can be affected by the accuracy of 

the meteorological inputs. The MM5 meteorological inputs provided by the TCEQ were 
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more accurate than the in-house meteorological simulation using a standard WRF model. 

Although both MM5 and WRF inputs lead to the conclusion that CO emissions are 

overestimated by both emission factor models, they led to a different assessment of NOx 

emissions. Further studies using the source-oriented technique to evaluate emission 

inventories should carefully evaluate and improve the meteorological model results to 

minimize uncertainty in the subsequent source contribution analysis. Also, long-term 

simulations that provide more temporal and spatial coverage are needed to evaluate the 

performance of the vehicle emission factor models under different meteorological and 

vehicle fleet conditions for both gasoline and diesel vehicles. Many other sources 

including air quality model configuration (e.g. horizontal and vertical grid resolution), 

parameterization of dispersion processes (e.g. vertical turbulent diffusion coefficient), 

emissions processing (e.g. spatial and temporal allocation of emission) and vehicle fleet 

information (e.g. regional variation of vehicle fleet composition, especially high 

emitters), could affect the modeling results. The effects of the potential error sources on 

the evaluation of the accuracy of MOBILE and MOVES-based regional and national 

emission inventories need to be further studied.    
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4. ESTIMATION OF VOC EMISSION FACTORS FROM FLUX MEASUREMENTS 

USING A RECEPTOR MODEL AND FOOTPRINT ANALYSIS* 

 

Fluxes of eighteen volatile organic compounds (VOCs) collected during May to July 

2008 from a tower platform 60 m above the ground surface in an urban Houston 

residential area were analyzed using a receptor-oriented statistical model and an 

analytical flux-footprint model to resolve daytime source specific emissions rates. The 

Multilinear Engine version 2 (ME-2) was used to determine that five sources were 

responsible for the measured flux at the tower: (i) vehicle exhaust, (ii) a foam plastics 

industrial source with significant pentane emissions, (iii) consumer and commercial 

solvent use emissions, (iv) a biogenic emissions source dominated by isoprene, and, (v) 

evaporative fuel emissions. The estimated median daytime (0700-1900 CST) hourly 

emission rate from the foam plastics industry was 15.7±3.1 kg h-1, somewhat higher than 

its permitted hourly emission rates. The median daytime vehicle exhaust volatile organic 

compounds emission rate of 14.5±2 g h-1 vehicle-1, was slightly higher than our 

estimation using the Motor Vehicle Emission Simulator (MOVES) with a county-

representative vehicle fleet of year 2008 (11.6±0.2 g h-1 vehicle-1). The median daytime 

evaporative fuel volatile organic compounds emission rate from parked vehicles was 

2.3±1 g h-1 vehicle-1, which is higher than MOVES estimations and could not be 

explained by the age of the vehicle fleet, indicating either locally higher VOC 

evaporative emission sources in the footprint or an underestimation of evaporative 

emissions by MOVES, or both.  

 

 

                                                 

* Reproduced with permission from:  Kota, S.H., Park, C., Hale, M.C., Werner, N.D., 

Schade, G.W., Ying, Q., 2014. Estimation of VOC emission factors from flux 

measurements using a receptor model and footprint analysis. Atmos. Environ. 82, 24-35. 

Copyright 2014 Elsevier Ltd.  
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4.1 Introduction  

Volatile organic compounds (VOCs) play a prominent role in photochemical reactions 

that lead to the formation of ozone and secondary particulate matter, thus directly affect 

regional air quality and global climate (Atkinson, 2000; Kroll and Seinfeld, 2008). A 

number of VOCs are also classified as hazardous air pollutants by the US EPA due to 

their adverse health effects. Although significant efforts have been devoted in the past to 

develop and improve VOC emission inventories, large uncertainties and biases remain 

(Brown et al., 2004; Buzcu and Fraser, 2006; Reid et al., 2000). Under-reported or 

unreported anthropogenic emissions in VOC emission inventories are one of the major 

factors that affect air quality models and forecasts, particularly for ozone (Nam et al., 

2006) in metropolitan areas. In urban areas, vehicle emissions account for a large 

fraction (e.g. approximately 30% in the Houston metropolitan area) of the anthropogenic 

VOC emissions (Ying and Krishnan, 2010), but the accuracy of the emissions depends 

largely on the vehicle emission factor models used in the estimations. The uncertainty in 

the VOC emission inventory can thus significantly affect the evaluations of VOC 

emissions on air quality, human health, climate and the design of effective control 

strategies to mitigate adverse effects. 

Ozone and particulate air quality in Houston, the 4th largest metropolitan area in the 

United States (US) with a population of over 2.2 million, is significantly influenced by 

the VOC emissions from petrochemical, industrial and motor vehicle sources (Kim et al., 

2011; Vizuete et al., 2008; Ying and Krishnan, 2010). This complex mixture of VOCs 

has led to a number of studies to quantify the contributions of different sources to the 

observed VOC concentrations in the area. Fujita et al. (1995) used Chemical Mass 

Balance (CMB) modeling to study the VOC data from Photochemical Assessment 

Monitoring Stations (PAMS) and concluded that refineries are the dominant VOC source 

in the Houston Ship Channel (HSC). Henry et al. (1997) used a multivariate receptor 

model to study data collected during the Coastal Oxidant Assessment for Southeast 

Texas (COAST) study, and showed that self-reported emissions by various industries in 

the HSC area were unreliable. Kim et al. (2005), Buzcu and Fraser (2006), and Luchner 
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and Rappenglück (2010) applied the Positive Matrix Factorization (PMF) technique to 

study VOC sources in Houston, and concluded that refineries, petrochemical industries, 

vehicle emissions and biogenic sources are all important contributors to the ambient 

VOC abundance. While these receptor-oriented source apportionment studies are useful 

in understanding sources of VOCs in the atmosphere, the calculations are based on 

measured VOC concentrations and thus are not directly related to the actual emission 

rates of VOCs from various sources.  

Instead of using ambient concentrations, VOC fluxes calculated from 

micrometeorological and VOC gradient measurements have been used in the past to 

estimate biogenic emission fluxes from forest areas (Karl et al., 2001; Langford et al., 

2010a; Lee et al., 2005; Spirig et al., 2005). Recently, micrometeorological flux 

measurements have also been applied to measure emission rates of anthropogenic and 

biogenic VOCs in urban environments (Karl et al., 2009; Langford et al., 2009; Park et 

al., 2010; Velasco et al., 2009). The urban fluxes, usually measured from tall towers, are 

used to directly infer the emission rates of pollutants from upwind areas using footprint 

models (Langford et al., 2010b). The results of footprint modeling, resulting in apparent 

surface fluxes, can be used in conjunction with an analysis of land use/land cover and/or 

traffic count data to infer specific emission rates for different sources included in the 

footprint areas  (Park et al., 2011). Although this technique is useful, it is not 

straightforward to identify responsible sources within the footprint area due to the high 

spatial heterogeneity of emission sources in typical urban environments. In addition, 

different sources are likely responsible for different groups of VOCs, while a typical 

footprint analysis applies to a homogeneous source distribution.  

In this study, simultaneous fluxes of 18 VOCs are used in receptor-oriented 

statistical analyses to resolve sources of measured VOC fluxes in an urban environment. 

Results of the source attribution analysis are used alongside flux-footprint modeling to 

determine the emission rates of VOCs from the different sources. To the knowledge of 

the authors, this is the first time such a combination of VOC flux measurements and 
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receptor-oriented source apportionment analyses is applied to resolve source specific 

emission rates of VOCs in urban locations. 

 

 

Table 7 List of measured VOCs and their abbreviations. 

IUPAC name (common name) Abbreviation Method Detection Limit 

(MDL), ppt 

butane* C4 12.0 

2-methyl 1,3-butandiene (Isoprene) C5H8 10.0 

n-pentane C5H12 10.0 

2-methylbutane (Isopentane) IC5H12 10.0 

Benzene BENZ 8.0 

Ethylbenzene EBENZ 6.0 

n-hexane NC6H14 8.0 

2-methylpentane M2PEN 8.0 

3-methylpentane M3PEN 8.0 

methylbenzene (toluene) TOLU 7.0 

n-heptane NC7H12 7.0 

2-methylhexane (Isoheptane) M2HEX 7.0 

2,2-dimethylpentane (neoheptane) NEOH 7.0 

1,3- and 1,2-dimethylbenzene (m/p-

xylene) 

MPXYL 6.0 

1,2-dimethylbenzene (o-xylene) OXYL 6.0 

2-methylprop-2-enal (methacrolein) MACR 16.0 

butenone (methyl vinyl ketone) MVK 16.0 

butanone (methyl ethyl ketone) MEK 16.0 
* Note: includes n-butane and 2-methylpropane (isobutane). 

 

 

4.2 Methodology 

4.2.1 Data and data uncertainties 

The experimental setup and data collection have been described in detail in Park et al. 

(2010) and are only briefly summarized here: Meteorology data and concentration and 

flux of 18 VOCs (see table 7 for the list of the VOCs) were measured at 60 m above 

ground level (agl) from a tall communication tower owned by the Greater Houston 

Transportation Company (hereinafter referred as the Yellow Cab Tower, or YCT) in an 

older neighborhood 3-4 km north of downtown Houston (Northside Village area; Figure 
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B3 in Appendix B) from May 23 to July 27, 2008. The area surrounding the tower is 

mostly residential, with several multi-lane roadways and a light industrial area 

surrounding YCT. It was estimated that 29% of the surrounding areas are covered by 

trees and shrubs, among which a mature oak tree population results in significant 

emissions of isoprene as reported in Park et al. (2011). Figure 17 shows a schematic 

view of the area surrounding the flux measurement site, including the locations of YCT, 

major through-traffic roadways, two YC parking lots, and some other potentially 

contributing sources that are mentioned in this manuscript. 

The VOC concentrations were measured using a dual channel gas chromatograph 

with flame ionization detectors (GC-FID) and the fluxes were determined using a 

relaxed eddy accumulation (REA) setup. In summary, the REA setup measures the 

concentration of a VOC species in atmospheric updrafts (Cup) and downdrafts (Cdown) 

over an averaging time period of 30 minutes. The resultant flux (F) is calculated using 

equation (4.1): 

 (4.1) 

where β is a flux correction factor (in this study β=0.335, see Park et al. (2011) for 

details) and σw is the standard deviation of vertical wind speed of each 30 min sampling 

period. At the top of each hour a 30-minute sample was taken and it was assumed to 

represent the average flux of that hour. Species specific method detection limit (MDL) 

of the concentration measurements is included in table 7. Flux MDL (species and sample 

specific) was based on regular (every 30th run) GC-FID channel intercomparisons by 

obtaining identical air samples into the Teflon bags. The 95% confidence limit (95%CI) 

of the difference in concentration between these samples (excluding outliers) was used 

as the error of the concentration difference measurement (equation 4.1) for each VOC. 

Sample specific flux MDLi,j (MDL for the ith sample and jth species) is calculated by 

MDLi,j= β σw,i ×(95%CI)j.  
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Figure 17 A schematic showing the positions of the Yellow Cab Tower (YCT), nearby major 

roadways (Collingsworth St., Quitman St., Hardy St., and Elysian St.), surface parking lots near 

YCT, a foam plastics industry site, a gasoline transport refilling facility and two refueling 

stations. Numbers on the x and y axes represent distance in m from the origin of the flux 

footprint model domain.  

 

 

Prescreening was performed to eliminate data obtained under low turbulence and 

non-stationary flux conditions: Flux and concentration data obtained under friction 

velocities, u*<0.2 m s-1 or 60-m agl wind speed less than 2 m s-1 were not retained (Park 

et al., 2011). This particularly reduced the amount of nighttime data, when turbulence 

was weaker. Furthermore, periods with questionable stationarity of high frequency CO2 

and low frequency CO data, following the standard deviation technique used by Foken 

and Wichura (1996), were removed. For the remaining samples (760 30-minute 

samples), data below MDLi,j were replaced with 0.5MDLi,j, and missing data were set to 

the median concentration of the species (Polissar et al., 1998). A species was marked as 

missing in the flux data set if one or both of the two GC-FID channels had a 

concentration below MDL.  
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The uncertainty (σ) associated with each sample for receptor-oriented source 

apportionment analyses was estimated using equation (4.2) when the concentration or 

absolute value of flux was less than or equal to MDLi,j  or otherwise using equation (4.3)  

(Polissar et al., 2001): 
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(4.4) 

where μi,j is the absolute analytical uncertainty of the measured concentration or flux. A 

relative precision of 10% for concentrations based on internal standard variability was 

used to calculate the absolute uncertainty (see Park et al., 2010 for further details). 

However, for fluxes equation (4.4), derived using error propagation of equation (4.1) and 

accounting for 5% uncertainty in σw, was used to estimate absolute analytical 

uncertainty. The uncertainties for missing data in concentration analysis were set to five 

times the median concentration. For fluxes if both updraft and downdraft concentrations 

are missing then missing flux is replaced by median with an associated uncertainty of 5 

times median. However, if only one channel concentration is missing, then the sample is 

treated as below MDL.  

 

4.2.2 Source apportionment of fluxes 

The Multilinear Engine version 2 (ME-2) (Norris, 2009), the underlying solver for the 

United States Environmental Protection Agency Positive Matrix Factorization (PMF) 

version 3.0 model (USEPA, 2008; downloaded from 

http://www.epa.gov/heasd/products/pmf/pmf.html), was used to solve the source 

apportionment problem for both concentration and flux data. ME-2 can be used to solve 

the least-square problem from many types of factor analysis (including PMF) and has 

been applied before in a number of air pollution source apportionment studies (Amato et 
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al., 2009; Kim et al., 2003; Ramadan et al., 2003; Wu et al., 2007).  One of the features 

of ME-2 that is useful for this study is that it can be configured to allow negative source 

contributions (Norris, 2009), which is natural for the flux data as the measured net flux 

can be a superposition of gross positive and negative fluxes from different sources and 

sinks. In this study, for the concentration data source apportionment, ME-2 was 

configured to use non-negativity constrains for source profiles and contribution matrices, 

and to allow an unconstrained solution for the contribution matrices when it was applied 

to determine source contributions for the flux data.  For both concentration and flux 

source apportionment, 100 bootstrap runs with a block size of 16 and a minimum 

correlation R-value of 0.6 were conducted to ensure proper solutions and to estimate the 

uncertainties to the estimated profiles.  

 

4.2.3 Automatic identification of source profiles 

To attribute the ME-2 resolved source profiles (mg mg-1) to a specific source, the 

profiles were compared with renormalized VOC profiles (including only the 18 species 

analyzed in this study) from the SPECIATE 4.2 database (Hsu and Divita, 2008), a VOC 

and PM speciation profile data base maintained by the US EPA, using equation (4.5): 

 (4.5) 

where fi and si are the ith matching component in the ME-2 resolved source profile and 

the SPECIATE 4.2 profile, respectively. θ is bounded between 0 and 1, where 1 

indicates perfect agreement. Top 20 matching SPECIATE profiles were then manually 

checked to determine the source type for the ME-2 source profile.  

 

4.2.4 Emission rate estimation  

The source-apportioned VOC fluxes at YCT were used to estimate the VOC emission 

rates of the identified sources using the analytical footprint model described by Kormann 

and Meixner (2001). Generally, the flux measured at a certain height, F(0,0,zm), can be 

related to upwind surface fluxes, as described by equation (4.6), 
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    (4.6) 

where the two-dimensional flux-footprint probability density function   represents the 

probability of a unit flux at (x,y,0) that reaches the flux measuring location (0,0,zm). The 

Kormann and Meixner model assumes a homogeneous underlying surface and well-

defined atmospheric turbulence regimes. It is attractive due to the limited amount of 

input parameters required, providing a symmetric flux footprint function with results 

similar to a more sophisticated model (Kljun et al., 2004; Kljun et al., 2002). However, it 

has not yet been rigorously tested in a turbulently more complex urban environment, 

which is heterogeneous both in terms of roughness length (due to different building and 

vegetation heights) and heat flux/stability. In addition, the analytical footprint model 

strictly only provides the flux footprint function at the displacement height, which may 

vary between 5 and 13 m at this site.  

The flux footprint model output option of EdiRe flux processing software 

(http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/) was used to calculate the 2D 

gridded flux-footprint probability function φ (i.e.   integrated within each grid cell) in a 

domain of 6×6 km2, i.e. using a square grid of 30 m, with the YCT at the center of the 

domain. Hourly flux footprint probability values used in the following analyses were 

calculated by averaging the 30-min footprint values within a given hour. If flux 

F(0,0,zm) is known, the calculated footprint probabilities can be used to estimate the 

surface emission fluxes by inverting a discrete form of equation (4.5). For the emission 

rate analysis in Section 3.2, individual periods were removed from the analysis if the 

domain sum of the flux probability φ was less than 0.7 to ensure that a sufficient amount 

of the flux footprint lies within the computation domain. Nighttime data (2000 – 0600 

CST) were completely excluded to further reduce uncertainty. This resulted in a total 

removal of 363 samples before source specific criteria were specified for the emission 

rate analysis. 

 

 

http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/
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4.3 Results and Discussion 

Analysis of the concentration data are described in greater detail in the Appendix B 

(figure B1-B2). In summary, measured concentrations were generally well-reproduced 

by ME-2 with five factors, representing consumer and commercial solvent use 

emissions, an industrial source dominated by pentane emissions (referred to as the “foam 

plastics industry” emissions hereafter), vehicle exhaust, evaporative emissions and a 

biogenic emissions source. While this is an expected result in line with previous work, 

the additional flux dimension can provide further insight, wherefore in the following 

analyses we focus on the flux data. A comparison of the source profiles and relative 

source contributions derived from concentration and flux data can be found in figure B3 

and Table B6 in Appendix B. 

  

4.3.1 Source apportionment of flux data 

Results generated by ME-2 assuming 4, 5 and 6 factors (sources) were explored. The 

value of the sum-of-squares objective function Q to its expected (or theoretical) value 

Qexpected, Q/Qexpected, for 4, 5 and 6 factors were 1.4, 1.15 and 1.1, respectively. The 5 and 

6 factor solutions had similar correlation coefficients (r2) for the total VOC mass (0.935 

vs. 0.941), and the amount of total VOC represented (84% vs. 85%). However, the 6-

factor solution resulted in two very similar consumer and commercial solvent use 

emission factors. Similar results were also achieved for ME-2 analysis of the 

concentration data (see Supplementary Materials). Thus, the 5-factor solution, with 

rotational parameter FPEAK of 4 (Norris, 2009) (see Tables B2 and B3 for more 

information), was used in the following analyses.  

Figure 18 shows the predicted source profiles, which are determined to represent (1) 

consumer and commercial solvent use emissions, with C4 as the dominant species (43% 

of the VOCs in the profile, θ=97%), (2) a foam plastics industry emissions source, with 

pentane as the dominant species (60% of the VOCs in the profile), (3) vehicle tailpipe 

exhaust emissions, dominated by TOLU and MPXYL (19% and 24% of the VOCs in the 

profile, θ=92%), (4) evaporative emissions, dominated by IC5H12 (30% of the VOCs in 
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the profile, θ=94%), and (5) biogenic emissions, dominated by isoprene (44% of the 

VOCs in the profile, θ=91%). Table B4 in the supplementary materials lists the top 

matching profiles in the SPECIATE 4.2 database. Figure 18(a) shows the consumer and 

commercial solvent use emissions factor, which apparently does not represent fugitive 

evaporative fuel emissions from vehicles because butane, primarily used as aerosol 

propellant, is the dominate species in that profile, and it does not have a significant 

contribution from IC5H12 (less than 5%). Rubin et al. (2006) reported that IC5H12 

(26.6%) is much more important than n-butane (8.0%) among the most abundant 

components in evaporative fuel emissions, which agrees much better with the profile 

shown in figure 18(d). The profile shown in figure 18(a) more closely resembles several 

consumer and commercial profiles in the SPECIATE 4.2 data base than the closest 

vehicle fuel evaporation profiles (θ=93%). Figure 18(b) was determined to be a foam 

plastics industry source based on the directional dependence of the factor (figure 21) and 

a survey of the surrounding area as described later in this section. Another observation 

from this study is the absence of pentane in vehicle exhaust and evaporative emissions 

source profiles predicted by ME-2. This is in contrary to previous studies which reported 

an isopentane to pentane ratio of 1.5-2.5 and 2-3 from evaporative emissions and vehicle 

exhaust respectively (Gentner et al., 2009; Leuchner and Rappenglück, 2010; 

McGaughey et al., 2004). This could be due to presence of strong foam plastic source, 

with pentane as the dominant species, in the direction of major road traffic, taking up all 

the variation of this species. Figure C3 in Appendix C shows a comparison of the 

profiles based on concentration and flux data. The two profiles are very similar and no 

consistent trend of the major species could be found. 
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Figure 18 Predicted source profiles (mg mg-1) by ME-2 based on the flux data. Error 

bars are standard deviations estimated using bootstrap analyses. 
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Figure 19 shows that ME-2 predicted VOC fluxes generally agreed well with 

observations except for few species such as MACR, MVK and MEK. Normalized mean 

bias factor (NMBF) and Normalized mean absolute error factor (NMAEF), calculated 

using Gustafson and Yu (2012),  for the species were in the range of -0.37 to -0.06 and 

0.43 to 0.75 for most species, as shown in Table B5. MACR and MVK are oxidation 

products of isoprene, and MEK is an oxidation product of n-butane and isopentane. The 

receptor-oriented statistical methods typically do not work as well for these compounds 

because the ratio of these products to their precursor changes as they are transported 

towards the receptor.  

 

 

 
Figure 19 Observed and reconstructed fluxes of VOC species measured at the Yellow 

Cab Tower. Thin solid lines represent 1:1, 1:2 and 2:1 ratios. Units are mg m-2 h-1. Note 

that the data points with missing observations replaced by median values are not shown 

in the plot.  

 

 

The diurnal variation of the contribution of each source to the measured total VOC 

flux is presented in figure 20. Figure 20(a) shows that VOC flux due to consumer and 

commercial solvent use emissions is higher during the day, with a maximum median 
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flux of 1.6 mg m-2 h-1. Contributions at late night until early morning were 

comparatively smaller, possibly due to lower temperature as well as decreased activities 

associated with the emissions of these VOCs. Figure 20(b) indicates a clear diurnal 

pattern of contributions from the foam plastics industry source, with a maximum median 

flux of 1.2 mg m-2 h-1 during the late afternoon. Contributions were lower during the 

night as emissions of this source are also largely driven by ambient temperatures and 

work activity. Figure 20(c) shows a clearly higher daytime than nighttime contribution 

from vehicle exhaust with a clear morning rush hours peak around 0700-0900 CST 

(average median flux of 0.76 mg m-2  h-1), which was 50% higher than the surrounding 

hours’ (0600-0700 and 0900-1000 CST) median fluxes. The morning peak coincided 

with the weekday rush hours observed on Hardy St., the nearest major thoroughfare near 

the sampling site (See Table B7). More discussions of the nearby roadways can be found 

in Section 3.2.2. Figure 20(d) indicates that contributions from evaporative emissions 

were slightly higher (maximum median flux of 1.5 mg m-2 h-1) than vehicle exhaust at 

the YCT but the factor did not display an as significant rush hour peak signature as 

observed in Figure 20(c). This suggests that the evaporative VOC emissions source was 

likely not dominated by running losses from vehicles on the nearby roadways.  Lastly, 

Figure 20(e) indicates that the highest biogenic isoprene contributions from the 

surrounding oak tree population occurred in the early afternoon due to an optimum 

radiation and temperature environment at that time of day (Park et al., 2011). Biogenic 

isoprene contributions peaked at 1200 to 1400 CST, with a maximum median flux of 2.1 

mg m-2 h-1.  
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Figure 20 ME-2 predicted average hourly source contributions (mg m-2 h-1) to the measured 

VOC fluxes at the Yellow Cab Tower. The box-and-whisker plot shows the median, min, max 

and interquartile range of the data for each hour. 95% confidence intervals of the median are 

shown in red.   
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Figure 21 Wind direction dependence of the ME-2 apportioned fluxes of measured 

VOCs. Units are mg m-2 h-1. Negative fluxes are shown in red. 

 

 

Figure 21 shows the wind directional dependence of the fluxes from the different 

resolved sources. Approximately 75% of the time during the analysis, the receptor was 

under the influence of southerly winds. Figure 21(a) indicates that most of the 

contributions from consumer and commercial solvent use source were from south to 

southeast directions of the tower without a strong directional dependence. This suggests 

that this is a regional source rather than a collection of a few point sources. In contrast, 

the contribution of the foam plastics industry emissions source, figure 21(b), is almost 

exclusively from the south-southeast direction throughout the day. This strong wind 

direction dependence suggests contributions from a well-defined source. A survey of the 

area southeast of YCT revealed this potential source to be an industry specializing in 

foam plastics approximately 1.6 km southeast of the receptor location (figure 17), noting 

that pentane is used as an expansion agent in many foam plastics industries (Mills, 
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2007). As the source is relatively far away from YCT, unidentified non-stationary flux 

conditions could explain the occasional negative fluxes shown in the figure. 

The vehicle exhaust contributions, depicted in figure 21(c), are from all directions as 

the tower is surrounded by roadways. However, two directions stand out slightly: 

Southeast, likely due to optimum overlap of the flux footprint with the major 

thoroughfare Hardy/Elysian roads, and south-southwest due to significant traffic 

surrounding two major schools in that direction in approximately 1 km distance from 

YCT. As the sampling site is amidst the parking lots of the Yellow Cab Co., which 

operates around 1400 vehicles (Mike Spears, Houston Yellow Cab Co., personal 

communication, May, 2011), many of which are parked at different directions from the 

tower, observed contributions of evaporative emissions from all directions, figure 21(d), 

can be expected. Comparison of figures 21(c) and 21(d) indicates that evaporative 

emissions contributions followed a different wind direction pattern compared to vehicle 

exhaust, which supports the earlier discussion that evaporated gasoline from parked 

vehicles rather than running vehicles are responsible for most of the observed fluxes. 

This presumption of attributing evaporative emissions dominantly to parked vehicles 

will be discussed in detail in later sections. Lastly, the presence of oak trees in the 

surrounding neighborhood resulted in contributions of biogenic emissions from all 

directions, shown in figure 21(e). Details have been published by Park et al. (2011). 

Negative fluxes due to biogenic emissions occurred mostly during nighttime, with a 

strong direction dependence pointing towards the HSC area, again suggesting a 

contribution from non-stationary conditions due to emissions from sources advected 

from outside the footprint domain.   

 

4.3.2 VOC emission rates using footprint analysis 

Figure 22 shows the gridded flux footprint probability φ between hours 0700-1200 (374 

individual ½ hours) and 1300-1900 CST (678 individual ½ hours). During both morning 

and afternoon hours, the dominant wind direction was southerly so that high values of 

the footprint function occurred in that direction. Thus, sources to the south of the tower 
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contributed most to the fluxes measured at the tower. Maximum footprint values 

generally occurred close to YCT and decreased rapidly towards the border of the 

domain. This suggests that, on average, the footprint model area is sufficient to include 

the influence of major sources. In the following sections, emission rates for the foam 

plastics industry, vehicle exhaust and evaporative fuel emissions are discussed. The 

calculation of isoprene emission factors was discussed by Park et al. (2011) and is not 

repeated here. Emission rates of VOCs from consumer and commercial solvent use 

cannot be directly estimated as the unit area emission rate from residential and 

commercial areas are different. An optimization step is needed to estimate the emission 

rates for those two different sources. Many factors also affect the unit area emission rates 

such as the type of commercial facilities and products.  Due to limitations of manuscript 

length, an analysis of the VOC emission rates from this source will be discussed 

elsewhere.  

 

 

 
Figure 22 Averaged footprint function in the domain for (a) 0700-1200 and (b) 1300-

1900 CST. Numbers on the x and y axes are distance in m. Maximum values are 

approximately 3.35×10-3 for grid cells close to the tower, which is located at center 

(3000 m, 3000 m). See Figure 17 for details of the major roadways and other emission 

sources.  
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4.3.2.1 Foam plastics industry emissions 

To narrow the VOC emission rates from the foam plastics industry, only the data with 

wind directions between 100 and 170 degrees to the receptor location were considered in 

the analysis. This resulted in 123 samples which had non-negative flux contributions. 

Equation (4.7) was used to calculate the VOC emission factor of the foam plastics 

industry factor: 

 6
1

10 Ipentane pentane I
E S F 



   
(4.7) 

where Epentane is the VOC emission rate from the industrial source (kg h-1); SI is area (m2) 

of the industrial source region, from which VOC emissions are released into the 

atmosphere; Fpentane is the ME-2-resolved VOC flux (mg m-2 h-1) for the industry; φ is 

the flux footprint probability at each grid cell; 10-6 converts the units from mg to kg; and 

the summation means summing the φ values for the grid cells within the industrial 

source region.  

In order to estimate the uncertainty of the VOC emissions rate due to uncertainty in 

φ, a Monte Carlo technique was used with the underlying assumption that uncertainties 

in φ can be represented by the variation of φ in nearby grid cells. For each valid foam 

plastics industry emissions’ flux data point, 4000 simulations were carried out. In each 

simulation, the emission source region was randomly moved around a fixed center 

location, assuming a normal distribution with a standard deviation of ±3 grid cells (i.e. 

±90 m) in both x and y directions. The average VOC emissions rate for the pentane 

source for a flux data point was then calculated from these 4000 simulations. The 

number of necessary simulations was determined by incrementally increasing the 

number of simulations until the mean and standard deviation of the emission rate no 

longer changed. The number of grid cells that cover the emission source region and the 

shape of the source region remained constant in these simulations. Once mean emission 

rates of all data points were determined, extremely high and low hourly mean emission 

rates within the dataset were removed as outliers, which are defined as samples that fall 

outside 1.5 times the inter-quartile range of the data (Moore and McCabe, 1999). This 

resulted in removal of 19 samples (15%) from overall emission factor analysis. This 
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outlier removal procedure was also carried out for the analysis of other sources described 

in subsequent sections. 

Half of the estimated emission factors had a relative standard deviation of less than 

9.6% and 90% of the data had a relative standard deviation of less than 19.3%. This 

suggests that for most of the data points, the uncertainty in the individual emission rate 

due to uncertainty in φ was quite small. Statistical analysis of the data (table 8) showed a 

median of 15.7 kg h-1 with 95% confidence intervals [12.6, 18.8] kg h-1, and a mean 

emission rate of 18.5 kg h-1. Although the area of the source region is related with the 

plume size of emissions at the displacement height, which is unknown, it is not going to 

greatly affect Epentane because when SI decreases 
I
 also decreases. As long as there is 

a weak gradient of φ near the source region, Epentane will remain relatively constant. To 

verify this, the area of the source region was varied from 1 to 15 grid cells in a series of 

calculations similar to the approach described above but without using the Monte Carlo 

technique that varies the center of the source region. The resulting mean emission rate 

varied slightly between 17.1 and 18.7 kg h-1. The average of the mean emission rates 

was 17.7 kg h-1, which is very similar to the mean using 15 grid cells as the source area.  

 

 

Table 8 Descriptive statistics for the hourly emission rates.  

 

Foam Plastics  

Industry 

source 

Vehicle  

exhaust 

emissions 

Vehicle  

evaporate 

emissions 

 (kg h-1) (g h-1 vehicle-1) (g h-1 vehicle-1) 

Number of data points 107 204 60 

Minimum 0.2 0.1 0.1 

1st quartile 7.6 5.7 0.5 

Median 15.7 14.5 2.3 

3rd quartile 27.5 23.9 5.3 

Maximum 53.3 55.1 11.4 

Lower 95% confidence limit for 

median 12.6 12.5 1.4 

Upper 95% confidence limit for 

median 18.8 16.5 3.3 

Mean 18.5 17.5 2.9 

Standard deviation 13.6 14.2 0.8 

Skewness 0.7 0.9 0.7 
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The company has a permit to emit 10.5 kg h-1, with 45% of emissions from storage. 

Thus, the estimated mean and median emission factors were 40-60% higher than 

permitted emissions. However, summer, particularly June 2008 had above normal 

temperatures possibly enhancing emissions, and as comparisons of the Kormann and 

Meixner model to a more sophisticated back-trajectory footprint model suggest a 

systematically longer “tail” of the Kormann and Meixner model footprint function 

(Kljun et al., 2003), we cannot exclude a slight high bias in our estimate for this distant 

source. Additionally, the absence of pentane in vehicle related source profiles (figure 18) 

could have resulted in this over-prediction.  

 

4.3.2.2 Vehicle exhaust 

VOC emission factors for vehicle exhaust were also estimated using resolved vehicle 

exhaust flux and the footprint model. Hourly vehicle volume (Tables B7 and B8 in 

Appendix B) and speed (Tables B9 and B10 in Appendix B) data were collected on four 

major roadways for through-traffic (Hardy St., Elysian St., Collingsworth St. and 

Quitman St.; figure 17 and figure B3 in Appendix B) near YCT during March and 

November, 2011. Hardy and Elysian are north-south oriented multi-lane roadways one 

and two blocks east of YCT, respectively. Quitman and Collingsworth are normal two-

lane east-west oriented streets, 7 blocks south, and 4 blocks north of YCT, respectively. 

In the emission factor calculation, nearby local streets within approximately 250 m of 

YCT were also included. Traffic data collected on Hays Street, which is the local east-

west oriented street approximately 20 m north of the tower, were assumed to represent 

general traffic conditions in the surrounding local streets. The names and the locations of 

the eight nearby local streets included in the emission factor calculation are shown in 

figure B4 (Appendix B). As shown in figure B5 (Appendix B), these eight local streets 

and four thoroughfares encompass areas with significant footprint probability. Including 

additional local roadways further away from YCT is not expected to affect the estimated 

emission factor.  
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Hourly traffic density (number of driving vehicles per grid cell) for a typical 

weekday and weekend day, which is needed for the emission factor calculation, was 

calculated using the collected traffic data. Although traffic count data were not directly 

available for the current modeling period, it was assumed that traffic density did not 

change significantly within a few years in this relatively old neighborhood. This 

assumption is supported by a less than 1% change in annual average diurnal traffic 

(AADT) during 2008-2011 on the freeways surrounding the tower 

(http://www.txdot.gov/apps/statewide_mapping/StatewidePlanningMap.html). It was 

further assumed that vehicle density was uniform at the footprint grid cells of the same 

roadway, and that the vehicle fleet composition was the same everywhere in the domain 

so that the VOC emission factor is uniform throughout the domain.  

The hourly emission factors were calculated using equation (4.8) based on the ME-2-

apportioned vehicle VOC exhaust fluxes and the corresponding footprint values, 
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(4.8) 

where EFexhaust is the VOC emission factor for an average vehicle in the domain (g h-1 

vehicle-1), Fexhaust is the ME-2 apportioned vehicle VOC flux at YCT (mg m-2 h-1) for a 

specific hour; ζroad is the roadway mask function, which returns unity if a footprint grid 

cell belongs to one of the  roadways otherwise it returns zero; k is the vehicle density of 

a grid cell (number of vehicles m-2); φ is the average hourly footprint value at each grid 

cell; and 10-3 converts units to g h-1 vehicle-1. Since the roadways and larger vehicle 

densities are located dominantly in the east and south directions of the tower, only 

hourly data with wind direction between 20 and 270 degrees were considered for the 

analysis. This resulted in 233 samples which had non-negative flux contributions from 

vehicle exhaust. The total emission rates of the 18 measured VOCs were converted to 

the total VOC emission rates using a weighing factor of 0.41±0.11 (mass of 18 measured 

VOCs/total of all VOC mass in a VOC speciation profile) based on the vehicle exhaust 

profiles available in the SPECIATE 4.2 chemical speciation data base (Hsu and Divita, 

2008).  

http://www.txdot.gov/apps/statewide_mapping/StatewidePlanningMap.html
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Similar to the foam plastics industry emission factor calculations, uncertainty in the 

vehicle exhaust due to k and φ was estimated using the Monte Carlo technique. For each 

data point, 20000 simulations were carried out. In each simulation, the vehicle density 

was calculated by randomly varying the vehicle speed and traffic volume based on 

normal distributions with mean and standard deviations shown in tables B7-B10 in 

Appendix B. Uncertainty in the footprint function was again estimated by randomly 

selecting φ values from grid cells with a normal distribution centered at the road grid 

points and a standard deviation of 3 grid cells in both x and y directions. 29 samples 

(approximately 12%) were removed as outliers from the analysis. 

 

 

 

 
Figure 23 Comparison of vehicle exhaust emission rates estimated using the flux-

footprint analysis and the MOVES model. Uncertainties of the MOVES emission are 

one standard deviation about the mean, estimated using a Monte-Carlo technique that 

considers the uncertainties in the vehicle volume and speed, as used in the flux-footprint 

calculations. 
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Half of the estimated emission factors had a relative standard deviation of less than 

30% and 90% of the data had a relative standard deviation of less than 200%. Data 

points with larger uncertainties typically occurred when the wind was not from the 

south. The gradient of φ is significant near the north-south streets of Hardy and Elysian 

(figure 22), which explains some of the higher uncertainty in the estimated hourly 

emission rates. Table 8 shows the statistical analysis of the hourly data. The mean 

vehicle exhaust emission rate was 17.5 g h-1 vehicle-1. The median emission rate was 

14.5 g h-1 vehicle -1, with a 95% confidence interval [12.5, 16.5] g h-1 vehicle-1.  

The calculated VOC emission factor from an average vehicle was next compared 

with the emission factors estimated by the Motor Vehicle Emission Simulator (MOVES) 

model. Calculating emission factors for an average vehicle using MOVES and traffic 

monitoring data has been described in detail in a separate manuscript (Kota et al., 

2013a). Figure 23 shows the MOVES estimated emission factor for fleet years 2000 to 

2008 and their comparison with the flux-footprint estimated emission factors. Variations 

in the predicted MOVES emission factors were smaller because, e.g., no footprint 

function is involved in the MOVES emission calculations. The MOVES emission factors 

for fleet year 2005 to 2008 were within the 95% confidence interval of the median 

emission factors estimated by the flux-footprint analysis, and the 2005 MOVES 

emission factor (14.1±0.2 g h-1 vehicle-1) was closest to the median value (14.5 g h-1 

vehicle-1). However, the mean emission rate from the flux-footprint analysis (17.5 g h-1 

vehicle-1) was closest to the MOVES estimated emissions for fleet year 2004 (16.5 g h-1 

vehicle-1).  

In addition to the major roads discussed in this study, two major freeways, US-59 

and I-45 (both oriented roughly in north-south direction) are located at the edge of the 

footprint region 1270 m toward the east and 1740 m toward the west from the tower, 

respectively. I-45 and US-59 have 35.4 and 22.2 times higher vehicle traffic than 

Quitman (http://ttihouston.tamu.edu/hgac/trafficcountmap/). Despite these substantially 

higher traffic volumes, including the two freeways in the emission factor calculation 

resulted in only a 2.7% decrease in the average emission factor.  

http://ttihouston.tamu.edu/hgac/trafficcountmap/
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4.3.2.3 Evaporative fuel emissions  

Although there are many potential sources that can contribute to evaporative fuel 

emissions, we are interested in limiting our analysis to the VOC evaporative flux from 

stopped and parked vehicles, mostly at or near YCT and its two major parking lots, 

located at 90-180 m southeast and 60-120 m northeast of YCT (figure 17). The number 

of parked taxi cars near the tower was estimated by counting the number of designated 

parking spots near the facility (240 and 120 vehicles in southeast and northeast parking 

lots, respectively). Since not all the parking spaces were occupied by vehicles, this may 

give a lower bound estimation of the actual evaporative emission rate. Parked vehicles 

on the streets in other grid cells can also contribute to the measured flux at the tower. 

The parked vehicle density in other grid cells was estimated to be 2 vehicles per grid cell 

based on Google Earth images for the year 2008. To reduce the uncertainty in the 

emission rates estimation, only samples with wind directions between 100-190 degrees 

(the southeast parking lot) and 20-80 degrees (the northeast parking lot) were included in 

the calculation. This resulted in 70 samples which had non-negative flux contributions 

from evaporative emissions. Contributions to evaporative fuel emissions from a gasoline 

transport company approximately 1.2 km to the east of the sampling site (figure 17) was 

estimated based on daily transport truck trips and the AP-42 refueling losses emission 

factor (see Supplementary Materials) and subtracted from total evaporative fuel emission 

rate. 

The mean and standard deviation for each hourly vehicle evaporative emission factor 

were again estimated using the Monte-Carlo technique. 3000 simulations were 

undertaken by randomly varying parking lots and the gas transport company location 

with a standard deviation of 3 grid cells around the actual location of these facilities to 

account for uncertainties in φ. In addition, an uncertainty of 50% in the AP-42 truck 

refueling emission factor was assumed, and the number of truck trips per hour was 

assumed to have an uncertainty of 25%. Half of the estimated emission factors had a 

standard deviation of less than 17% and 90% of the data had a standard deviation of less 
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than 50%. The smaller uncertainty indicates that spatial variation of φ was relatively 

small near the source region. 10 samples (approximately 14%) were removed as outliers 

from the analysis. Table 8 shows the statistical analysis of the hourly data. The mean 

vehicle evaporative emission rate was found to be 2.9 g h-1 vehicle-1; the median 

emission rate was 2.3 g h-1 vehicle -1, with a 95% confidence interval of [1.3, 3.3] g h-1 

vehicle-1.   

The evaporative fuel emission factor from the flux-footprint analysis was again 

compared with MOVES estimated values. The YCT site features a constant turnover of 

taxi cabs during daytime coming to and from headquarters, stopping or parking short-

term near the tower, which is expected to contribute additional hot-soak emissions. The 

MOVES based average daytime emission factor for the parked vehicles (assuming half 

of the vehicles with peak hot soak emissions and the remaining half with average hot 

soak emissions) were 0.41 g h-1 vehicle-1 and 0.55 g h-1 vehicle-1 for year 2008 and 2000 

vehicle fleets, respectively, which is approximately 18% and 24% of the median 

emission rate from the flux-footprint analysis. Thus, uncertainty in vehicle ages cannot 

explain the discrepancy and alternative explanations were explored. 

Uncertainties in the estimation of number of parked vehicles in other areas in the 

footprint domain and emissions from two fuel service stations (gas stations), located at 

480 m NNE and 1380 m SE of the tower, as shown in figure 17, were determined (see 

Supplementary Materials) to have very small effects on the evaporative fuel emission 

factor. Another potential source of evaporative emission is on-road vehicles. Based on 

vehicle density described in Section 3.2.2 and additional evaporative emission factors of 

running vehicles estimated using the MOVES model (approximately 0.06 g km-1 at 48 

kmh-1), a decrease of the evaporative fuel emission factor by approximately 10% was 

obtained, which still cannot explain the significant discrepancy between the obtained 

vehicle fuel emission factors based on the flux source apportionment data and the 

MOVES model. Possible explanations for the difference between flux-based and 

MOVES-based evaporative emission rates could be (i) evaporative fuel emissions from a 

large auto-repair workshop 100 m east to the tower, (ii) a few percent of poorly 
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maintained vehicles that could have evaporative emission rates hundreds of times higher 

than well-maintained vehicles, and/or (iii) a significant underestimation of evaporative 

emissions by the MOVES model in this environment, similar to previous results 

(Quigley, 2007). A more detailed inspection of the vehicle fleet condition would be 

needed to confirm the existence of the first two possibilities.  

 

4.4 Conclusions 

In this study, a receptor-oriented statistical model and an analytical flux-footprint model 

were utilized to analyze VOC flux data obtained from an urban area in Houston to 

determine the contributions of responsible sources of VOCs to observed flux and the 

VOC emission rates from these sources. Emission rates from a foam plastics industry 

source, running vehicle exhaust and evaporative emissions were calculated. Median 

VOC emissions from the industrial source were 15.7±3.1 kg h-1, higher than officially 

permitted amounts, but potentially biased due to the large distance from the source and 

higher temperatures in the summer months. Estimated vehicle exhaust emissions, with a 

median emission rate of 14.5±2 g h-1 vehicle-1, were similar to the estimates using the 

MOVES model and a vehicle fleet of year 2005 (14.1±0.2 g h-1 vehicle-1), possibly 

representative of the vehicles used in the study domain.  And finally, estimated 

evaporative emissions from parked vehicles, with a median emission rate of 2.3±1 g h-1 

vehicle-1, were significantly higher than the MOVES model predictions, suggesting 

either (i) the existence of poorly maintained vehicles with much higher evaporative 

emissions, (ii) other sources apart from vehicles contributing to the evaporative fuel 

emissions flux., and/or (iii) a significant underestimation of evaporative fluxes by 

MOVES. Based on this study, while the reported evaporative emission rates should be 

considered as an upper limit for parked vehicles in this area, more studies on evaporative 

fuel emissions appear to be needed to validate the accuracy of the emissions model. 

The flux methodology used in this study can be used as an alternative approach to 

measure emission rates from sources for which direct emissions measurements are 

difficult or impossible. For example, if deployed to a tall tower downwind of 
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petrochemical industry regions in the Houston Ship Channel, it could be used to estimate 

emissions from these industrial sources, including fugitive and transient emissions, 

which are usually not reported accurately (Vizuete et al., 2008). The method used here 

could also be used more widely to determine real-world emissions from in-use vehicles 

and compare with estimations from emission factor models, with a goal of validation. 

The advantage of this method is that it naturally estimates the emission rate under real 

world driving and dilution conditions rather than under an artificial driving cycle and 

dilution ratio in typical vehicle emission testing. It can also provide more details on the 

chemical composition than remote sensing, which is limited in its ability in resolving 

chemical compositions (Singer et al., 1998). However, as demonstrated in this study, 

more details regarding the vehicle fleet composition, speeds and density are needed to 

improve the top-down versus bottom-up emissions comparison, and to effectively 

validate and improve vehicle emission factor models.   
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5. EVALUATION OF MEGAN PREDICTED BIOGENIC ISOPRENE EMISSIONS 

AT URBAN LOCATIONS USING A SOURCE-ORIENTED COMMUNITY 

MULTISCALE AIR QUALITY MODEL 

 

Summertime isoprene emissions in urban Houston area predicted by the Model of 

Emissions of Gases and Aerosol from Nature (MEGAN) version 2.1 during the 2006 

TexAQS study were evaluated using a source-oriented Community Multiscale Air 

Quality Model. Predicted isoprene concentrations at six surface sites operated by the 

Texas Commission of Environmental Quality (TCEQ) are significantly higher than 

observations during daytime hours when biogenic emissions dominate the total isoprene 

concentrations, with mean normalized bias (MNB) ranges from 2.01 to 5.96 and mean 

normalized error (MNE) ranges from 2.01 to 5.98. Predicted upper air isoprene and its 

first generation oxidation products of methacrolein (MACR) and methyl vinyl ketone 

(MVK) are also significantly higher (MNB=8.6, MNE=9.1) than observations made 

onboard of NOAA’s WP-3 airplane which flew past the urban area. Over-prediction of 

isoprene and its oxidation products both at the surface and the upper air strongly 

suggests that biogenic isoprene emissions in urban Houston areas are significantly 

overestimated. Reducing the emission rates by approximately 2/3 is necessary to reduce 

the error between predictions and observations. Comparison of gridded leaf area index 

(LAI), plant functional type (PFT) and isoprene emission factor (EF) in the MEGAN 

input data and these from a field survey in an urban Houston area shows that the 

apparent isoprene over-prediction is likely caused by the combined effects of large 

overestimation of EF and underestimation of LAI in the urban Houston area in MEGAN. 

Although, predicted ozone concentrations in this region are not significantly affected by 

isoprene over-predictions, predicted isoprene SOA concentrations can be higher by as 

much as 50% using the higher isoprene emission rates.   
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5.1 Introduction  

Plants emit significant amounts of biogenic volatile organic compounds (BVOCs) into 

the atmosphere (Guenther, 1995). Many of the BVOCs are highly reactive unsaturated 

alkenes, such as isoprene and terpenes, that can effectively react with hydroxyl radical 

(Zhang et al., 2000), ozone (Warneke et al., 2004) and nitrate radical (Brown et al., 

2009; Brown et al., 2013) in atmospheric photochemical reactions. BVOCs are the 

dominant precursors to global secondary organic aerosol (SOA) loading and thus have 

significant impacts on global climate (Pacifico et al., 2009). In urban areas with 

significant biogenic influences, BVOCs can also contribute significantly to regional 

SOA concentrations (Kleeman et al., 2007; Zhang and Ying, 2011b). In addition to its 

major role in aerosol formation, BVOCs are important precursors of tropospheric ozone. 

For example, the incremental ozone reactivity of isoprene is approximately 20% higher 

than ethylene (Carter, 1994; Derwent et al., 1996). In a previous study, Ying and 

Krishnan (2010) showed that contributions of biogenic emissions to ozone formation is 

20% higher than contributions of anthropogenic emissions in Southeast Texas.  

Evaluation of the impacts on air quality and global climate due to biogenic emissions 

depends on accurate isoprene and other BVOC emissions estimations from different 

vegetation types. A number of models have been developed to estimate biogenic 

emissions in regional and global scales, such as the Biogenic Emission Inventory System 

(BEIS) (Pierce et al., 1998),  the Model of Emissions of Gases and Aerosols from Nature 

(MEGAN) (Guenther et al., 2006; Guenther et al., 2012), and  the Global Biosphere 

Emissions and Interactions System (GloBEIS3) (Yarwood et al., 2002). These emission 

models have been directly evaluated with leaf-level and ambient flux measures (Kaser et 

al., 2013; Langford et al., 2010a), and indirectly with observed concentrations. Model 

inter-comparison studies have also been reported. For example, Carlton and Baker 

(2011) used the Community Multiscale Air Quality (CMAQ) model to simulate 

concentrations of BVOCs and their oxidation products in a high emission region in 

central United States using BEIS and MEGAN, and found that while MEGAN 

significantly over-estimated isoprene and monoterpene emissions, BEIS under-estimated 
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them. Warneke et al. (2010) derived emission rates of isoprene from ambient 

measurements and compared with MEGAN and BEIS estimations, and came to similar 

conclusions.  

While these studies provided important evaluations of the emission models, they are 

usually carried out over densely forested areas with rather uniform vegetation types and 

coverage. Capability of the biogenic emission models in heterogeneous urban/suburban 

regions with less vegetation cover has not been satisfactorily evaluated. In addition, 

recent studies have pointed out that the anthropogenic contributions to isoprene 

concentrations in urban and rural environment can be significant. For example, Borbon 

et al. (2001) used principal component analysis on measured hydrocarbons in an urban 

region and concluded that motor vehicle contributions to isoprene were non-negligible in 

summer and became more significant in winter. Song et al. (2008) studied the 

differences between observed and CAMx-predicted concentrations of isoprene in 

Southeast Texas using GloBEIS, and concluded that under-predictions of anthropogenic 

emissions might be a reason for under-predictions of isoprene at urban locations. Park et 

al. (2011) summarized past findings and concluded from urban isoprene measurements 

in Houston that traffic emissions can make non-negligible contributions to isoprene 

emissions, especially at nighttime and during the early morning rush hours. If 

anthropogenic emissions are a significant contributor to total isoprene concentrations, 

traditional observation and modeling based techniques, which use total isoprene 

concentrations from all sources, could not be directly used to evaluate the performance 

of the biogenic emission inventories in urban areas.  

In this study, the capability of the most recent version of the MEGAN model 

(MEGAN2.1) in estimating isoprene emissions in Southeast Texas during a relatively 

wet summer ozone episode is evaluated using high temporal resolution isoprene 

concentration data collected at a number of urban sites as well as in the upper air near 

these urban locations. Uncertainties in the predicted isoprene concentrations due to 

emission factors, the plant functional types (PFTs) and leaf area index (LAI) are 

discussed.    
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5.2 Model Description 

The Community Multiscale Air Quality Model (CMAQ, version 4.7.1) (Byun and 

Schere, 2006; Carlton et al., 2010; Foley et al., 2010) was used as a framework to 

incorporate a source-oriented version of the SAPRC-99 gas phase photochemical 

mechanism (Carter, 2000) to directly predict isoprene concentrations due to biogenic and 

anthropogenic emissions. In the source-oriented CMAQ model, emissions, transport, gas 

phase chemistry, dry/wet deposition of isoprene from biogenic sources are tracked 

separately from isoprene emitted from anthropogenic sources using two different 

isoprene species. The upwind isoprene entering the domain from model boundaries is 

lumped with the anthropogenic isoprene source category. Due to the short atmospheric 

lifetime, isoprene from upwind sources is not expected to travel long distance to affect 

concentrations at sites in the middle of the model domain.  

While more detailed source-oriented SAPRC-99 mechanisms have been used in the 

past to track VOC sources  (Ying and Krishnan, 2010; Zhang et al., 2013), the current 

version is greatly simplified to only track primary emissions of isoprene from two 

sources (biogenic and anthropogenic). This is sufficient for the purpose of this study to 

evaluate biogenic isoprene emission inventories and can greatly reduce simulation time 

and output file size. By separately tracking the isoprene from biogenic and 

anthropogenic emission sources, comparisons of observations with predictions can be 

made at times when predicted isoprene concentrations at monitoring sites are dominated 

by biogenic emissions. This allows a more strict evaluation of the performance of the 

underlying biogenic emission model. A similar approach was used in a previous study 

that evaluated vehicle emissions of CO and NOx in Southeast Texas  (Kota et al., 2014). 

 

5.3 Model Application 

The source-oriented CMAQ model was applied to predict the isoprene concentrations 

during a three-week summer ozone episode in Southeast Texas during the 2006 Texas 

Air Quality Study (TexAQS 2006), from August 25th to September 16, 2006. Hourly 

isoprene concentrations were measured at six ground based stations using automatic gas 
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chromatography (AutoGC) instruments operated by TCEQ. During this data intensive 

period, isoprene and its first oxidation products methacrolein (MACR) and methyl vinyl 

ketone (MVK) were also measured aboard the National Oceanic and Atmospheric 

Administration (NOAA) WP-3D aircraft using the Proton-Transfer Reaction Mass 

Spectrometry (PTR-MS). Three of the flight days, August 31st, September 11th and 13th, 

are within the simulation episode. As shown in figure 24, most of flight tracks were 

directly above the urban areas where the surface measurements are made. This upper air 

data were downloaded from the NOAA’s website at 

http://esrl.noaa.gov/csd/projects/2006/. They can be directly used to evaluate the 

combined isoprene emission and CMAQ model performance.      

CMAQ simulations were conducted using three-level nested domains, with 

horizontal grid resolutions of 36, 12 and 4 km. The vertical extent of the domain has 14 

layers with a surface layer thickness of 42 m. The 36 and 12-km resolution domains 

cover the eastern United States (US) and the east Texas and neighboring states, 

respectively. The innermost 4-km domain centers on the Houston-Galveston-Brazoria 

and Beaumont-Port Author areas. A detailed map of the 4-km domain with the locations 

of AutoGC sites and flight paths is shown in figure 24. More detailed descriptions of the 

AutoGC sites are available from TCEQ (http://www.tceq.state.tx.us/cgi-

bin/compliance/monops/site_info.pl). Barring the Beaumont site, all other sites are 

located in areas near downtown Houston. Beaumont, Deer Park, Milby Park and 

Channelview sites are located in urban residential areas. The Cesar Chavez and Clinton 

sites are located in commercial and industrial areas, respectively.  

 

 

http://esrl.noaa.gov/csd/projects/2006/
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Figure 24 The Southeast Texas model domain (4-km horizontal resolution) and locations of 

isoprene monitoring sites. Sites (a) Beaumont (AQS code: 482450009, 30.0360,-94.070), (b) 

Cesar Chavez (482016000, 29.680,-95.250), (c) Deer Park (482011039, 29.67,-95.120), (d) 

Clinton (482011035, 29.730,-95.250), (e) Milby Park (482010069, 29.710,-95.260) and (f) 

Channelview (482010026, 29.80,-95.120) are AutoGC sites operated by TCEQ. Site (g) is the 

Yellow Cab Tower (YCT) site where local LAI and PFT data are reported by Park et al. (2011).  

Blue line shows the NOAA WP-3D aircraft flight tracks.  The inset is a satellite map of the 

urban area where the stations are located (from Google). 

 

Details of the anthropogenic emissions and meteorological input preparation for the 

study episode have been documented previously (Kota et al., 2014; Zhang et al., 2013) 

and are only briefly summarized here. The meteorology inputs needed to drive the 

CMAQ model simulations were generated by TCEQ using the PSU/NCAR mesoscale 

model (MM5). The performance of the MM5 predictions for the modeling episode has 

been comprehensively evaluated in a previous study and shown to be able to reproduce 

the observed meteorological conditions (Ngan et al., 2012). The 2005 National Emission 

Inventory for 2005 (2005 NEI-v2) from the US EPA was processed using the Sparse 

Matrix Operator Kernel Emissions (SMOKE, version 2.5) model to generate 

anthropogenic emissions of gaseous and particulate pollutants. 

 

  



 

89 

 

 
Figure 25 Episode averaged isoprene emissions (kg day-1) from (a) biogenic and (b) 

anthropogenic sources.  

 

 

The biogenic emissions were generated by TCEQ using MEGAN2.1. Leaf area index 

(LAI) was based on the eight-day averaged 1-km resolution LAI in the MCD15A2 

product. LAI in the urban grid cells was set to a constant value of 0.4. The gridded LAI 

values were divided by the vegetation fraction in the same grid cell to estimate the LAI 

for the vegetated area (LAIv), which is used as input to the MEGAN model. MEGAN2.1 

follows the 16 plant functional type (PFT) classification scheme used in the community 

land scale model (CLM, version 4)  (Lawrence et al., 2011). In this study, the North 

America PFT dataset provided by Alex Guenther was used directly without 

modifications. Temperature and photosynthetically active radiation (PAR) were based 

on a TCEQ internal WRF simulation for the same 2006 TexAQS episode. Since TCEQ 

now uses an expanded air quality model domain, and all inputs are prepared based on 

this domain, it is not possible to use the MM5 model results used in this study to drive 

MEGAN calculations. Reduction of isoprene emissions due to potential soil moisture 

limitations was not considered when running the MEGAN model. Episode-averaged 

daily emission rates of isoprene from biogenic (domain total: 1691.5 ton d-1) and 

anthropogenic sources (140 kg d-1) in the 4-km domain are shown in figure 25.  
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Table 9 Percentage of four dominant vegetative types, total vegetative fraction (TPFT) 

and LAI at the site location. 

Site PFT1 

(%) 

PFT7 

(%) 

PFT10 

(%) 

PFT14 

(%) 

Overall 

Vegetation 

Cover (%) 

LAI 

Beaumont 12 19 8 8 50 1.2 

Cesar Chavez 11 17 4 6 48 0.42 

Deer Park 7 12 4 5 36 0.47 

Clinton 11 17 3 5 43 0.4 

Milby Park 11 17 4 6 48 0.43 

Channelview 12 19 7 6 52 1.29 

 

 

Figure 26(a) shows the averaged LAIv during the simulation period. In the urban 

Houston area, the LAIv value ranges from 0.5-1.0. LAIv values are highest in the 

northeast part of the domain, with a maximum value of 0.93. Percentage vegetation 

cover based on the sum of the all PFT values in a grid cell is shown in figure 26(b). 

Vegetation coverage in the urban area is approximately 20-50%. Spatial distribution of 

the top four major PFTs are shown in panels (c)-(f), representing temperate needle leaf 

evergreen tree (PFT1), temperate broadleaf deciduous tree (PFT7), temperate broadleaf 

deciduous shrubs (PFT10) and C4 grass (PFT14), respectively. Contributions of other 

PFTs to total vegetation cover are small. In the northeast part of the domain where LAIv 

values are highest, the percentage contribution of temperate needle leaf tree is also high, 

reaching 35-50%. Temperate broadleaf deciduous shrubs and C4 grass contributions are 

highest along the coastal areas. Table 9 lists these properties at the AutoGC sites. LAIv 

input values ranged from 0.8 at the Milby Park site to 2.4 at the Channelview site in the 

Houston area. Total vegetation coverage at these sites was considered constant for the 

study period, ranging from 36% at the Deer Park site to 52% at the Channelview.  
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Figure 26 (a) Leaf area index for vegetated areas within each grid cell (LAIv), (b) Fraction of cell 

covered by vegetation (based on the sum of all fractional plant functional type (PFT) data), (c-f) 

Percentage of major vegetation types: (c) temperate needle leaf evergreen tree, (d) temperate 

broadleaf deciduous tree, (e) temperate broadleaf deciduous shrubs, and (f) C4 grass in the 

Southeast Texas domain. 

 

 

Table 10 Performance statistics of predicted hourly isoprene concentrations at six TCEQ 

operated AutoGC sites. 

Site MFB* MFE MNB MNE Np (%)# 

Beaumont 0.96 (1.30)^ 1.18 (1.32) 4.61 (5.96) 4.75 (5.98) 74 

Cesar Chavez 0.68 (0.99) 0.98 (1.03) 2.93 (3.75) 3.13 (3.78) 67 

Deer Park 0.53 (0.79) 0.94 (0.98) 2.35 (2.84) 2.60 (2.93) 71 

Clinton 0.32 (0.55) 0.96 (0.90) 1.46 (1.73) 1.83 (1.94) 85 

Milby Park 0.92 (1.14) 1.1 (1.16) 3.72 (4.41) 3.83(4.42) 75 

Channelview  0.48 (0.85) 1.03 (1.17) 2.32 (2.98) 2.65 (3.08) 75 
*MFB=2/N*Σ(Pi-Oi)/(Pi+Oi), MFE=2/N*Σabs(Pi-Oi)/(Pi+Oi), MFB=1/N*Σ(Pi-Oi)/(Oi), and  

MNE=1/N*Σabs(Pi-Oi)/(Oi) where N is the total number of data points, P is prediction, O is 

observations and subscript i represents the ith data point.  

^ The numbers in the parenthesis are based on the hours when predicted isoprene from biogenic 

emissions accounts for more than 90% of the total isoprene concentration.  

# Percentage of data points that biogenic isoprene accounts for 90% of the total concentration.   

 

5.4 Results and Discussion  

5.4.1 MEGAN over-predicts biogenic isoprene emissions  

Total (anthropogenic + biogenic) isoprene concentrations predicted by the model were 

compared to the AutoGC measurements made at six surface TCEQ stations (see figure 

24), as shown in figure 27. In general, predictions were able to reproduce the observed 

diurnal and day-to-day variation patterns of the concentrations. However, predicted 
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concentrations are significantly higher than the observed concentrations. Detailed 

statistical analysis of the model performance at the sites is shown in table 10. The mean 

fractional bias (MFB), mean fractional error (MFE), mean normalized bias (MNB) and 

mean normalized error (MNE) for all the stations are 0.67, 1.0, 3.0 and 3.2, respectively, 

suggesting an average over-prediction of approximately 300%. The model performance 

is worst at Beaumont, which has an input LAI value of 1.2 and total vegetative fraction 

of 50%.  Comparatively better performance was achieved at Clinton, which has the 

lowest input LAI (0.4) and second lowest total PFT (43%) among the sites.   

As the monitoring sites are located in urban regions, contributions of on-road 

vehicles and industries might be non-negligible. The source-oriented CMAQ is capable 

of determining the contributions of biogenic emissions to total isoprene explicitly to 

provide a more direct evaluation of the biogenic isoprene emission inventory. Figure 28 

shows the relative contributions of biogenic and anthropogenic sources to total isoprene 

concentrations at the six surface monitoring sites. Isoprene emissions from biogenic 

sources dominate the total isoprene concentrations during the day but anthropogenic 

emission contributions are much more important at night, when the total concentration of 

isoprene is low. The CMAQ model performance of isoprene is further analyzed by only 

including data points in which biogenic emissions contribute to at least 90% of total 

isoprene. As shown in table 10, the model performance is even worse under these 

conditions. The MFB, MFE, MNB and MNE for the biogenic emission dominated data 

points from all stations are 0.9, 1.1, 3.6 and 3.7 respectively, which are approximately 

10-20% higher than the corresponding parameters that are based on all data points.  
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Figure 27 Time series of predicted and observed isoprene concentrations (ppb) at the six 

TCEQ operated AutoGC sites. Predictions and observations are shown using left and 

right y-axis, respectively. 
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Figure 28 Time series of relative source contributions (biogenic and other sources are 

indicated by green and blue, respectively) to total isoprene at (a) Beaumont, (b) Cesar 

Chavez, (c) Deer Park, (d) Clinton, (e) Milby Park and (f) Channelview. The red lines 

indicate total predicted isoprene concentrations (ppb) (secondary y-axis). 

 

 

Predicted isoprene and MACR+MVK concentrations at higher elevations were 

compared with upper air concentrations. Figure 29(a) and (b) show the comparison of 

observed and predicted isoprene and the sum of MACR and MVK concentrations along 

the flight tracks. Again, only data points with more than 90% of the biogenic emissions 

contributions are included in the analysis. Results indicate significant over-predictions of 

both isoprene and MACR+MVK concentrations across all elevations. The observed 

MACR+MVK concentrations show good correlation with observations (r2=0.7). The 

MNB and MNE values are 4.5 and 4.6, respectively. The over-prediction of isoprene in 
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the upper air further supports the notion that the overestimation is unlikely due to errors 

in the model’s transport calculations of species. If the emissions were close to reality but 

the model predicted less vertical dilution to cause the over-estimation at the surface, one 

would expect under-predictions of isoprene and its first generation oxidation products at 

higher elevations. Song et al. (2008) demonstrated that while vertical diffusion schemes 

have significant impacts on surface isoprene concentrations, they have less impact on the 

predicted isoprene concentrations aloft. The isoprene concentrations were less affected 

by the horizontal wind due to slow surface wind speed during the study episode (~2 m s-

1) and the short life time of isoprene. The over-prediction of MACR+MVK provides 

further evidence that the isoprene over-estimation is not due to a lack of oxidation 

capacity of the simulated atmosphere. If the oxidation capacity (i.e. hydroxyl radical 

concentrations) was significantly under-predicted, the concentrations of the first 

generation oxidation products in the upper air would typically be under-predicted as 

well.  

 

 

 
Figure 29 Comparison of predicted concentrations of (a) isoprene, and (b) MACR+MVK 

with observations collected on NOAA P-3 aircraft during TEXAQS-2006 study. Data 

points are color-coded by their measurement height (m).  
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Combining the time series of isoprene at the surface sites and the statistical analysis 

of the model performance at surface and higher elevations, it can be concluded that 

isoprene emissions from urban Houston areas are likely strongly overestimated by the 

current MEGAN model. In order to estimate the magnitude of over-estimation, several 

emission scaling simulations that reduces biogenic isoprene emissions by 33%, 50% and 

66% were conducted.  Figure 30 shows the episode averaged hourly predicted isoprene 

concentrations for the base case along with the simulations with a uniform emission 

reduction of 66% and the observed isoprene concentrations. Model performance of 

isoprene at the surface stations was improved with reduced emissions, as shown in table 

11. Apart from Clinton Drive, the model performance in terms of MFE, MNB and MNE 

for the case with 66% reduction is better than the base case and other two scaling cases, 

i.e. 33% and 50%. For example, at Beaumont, MFE for the 66% reduction case is much 

better than the base case, 50% reduction and 33% reduction cases by 90%, 58% and 32% 

respectively. In addition to surface concentrations, predicted upper air concentrations of 

isoprene and MVK+MACR are also improved. The next question that needs to be 

investigated is what causes the over-estimation of isoprene emissions. In the following 

sections, uncertainties in the emissions due to vegetation type and fractional cover 

estimation in urban areas are discussed.  

 

 

Table 11 Performance statistics of predicted hourly isoprene concentrations for cases 

with scaled emissions (by 33, 50 and 66%).   

 MFB MFE MNB MNE 

Site 33% 50% 66% 33% 50% 66% 33% 50% 66% 33% 50% 66% 

Beaumont 0.72 0.51 0.18 0.98 0.82 0.62 2.59 1.64 0.71 2.76 1.64 1.00 

Cesar Chavez 0.39 0.20 -0.08 0.81 0.73 0.67 1.50 0.90 0.30 1.80 1.27 0.83 

Deer Park 0.23 0.01 -0.3 0.8 0.73 0.71 1.17 0.62 0.08 1.54 1.10 0.74 

Clinton -0.1 -0.27 -0.60 0.82 0.78 0.82 0.50 0.10 -0.27 1.01 0.02 0.59 

Milby Park 0.64 0.44 -0.13 0.85 0.71 0.58 2.03 1.30 0.59 1.54 1.10 0.74 

Channelview 0.17 -0.04 0.36 0.86 0.79 0.78 1.1 0.58 0.06 1.53 1.1 0.77 

Upper Air  

isoprene 
-0.25 -0.44 -0.71 1.27 1.24 1.25 3.66 2.30 1.02 4.48 3.22 2.1 

Upper Air 

MACR+MVK 
0.12 -0.09 -0.41 0.96 0.86 0.83 1.72 0.97 0.26 2.19 1.52 1.01 
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Figure 30 Episode averaged observations, base case and 66% (66% reduction of 

biogenic emissions) predictions as a function of hour of a day. The Box-Whisker plot 

shows the maximum, minimum, upper and lower quartiles, and the median.   
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5.4.2 What causes the overestimation of isoprene emissions 

In a simplified representation, emission rate (F) of isoprene in each model grid cell (µg 

h-1) can be calculated by equation (5.1): 

AEFLAIF v    (5.1) 

where γ is a lumped correction factor (unit-less) that includes corrections for radiation, 

temperature, soil moisture, leaf age, and CO2 level; LAIv is the leaf area index for the 

vegetated surface (m2 of leaf area per m2 of vegetated surface area); EF is the emission 

factor of isoprene at standard conditions (µg h-1×m2 of vegetation area/(m2 of leaf 

area×m2 of ground area)); and A is the area of the grid cell (m2). In the default 

configuration, MEGAN2.1 uses a gridded EF map for isoprene emissions. The EF map 

was prepared based on fractional areal coverage of vegetation species (χ, in units of m2 

vegetation surface per m2 of ground surface) in a grid cell and species-specific emission 

factors at standard condition (ε, in units of µg of VOC per hour per m2 of leaf surface 

area), based on equation (5.2): 

 


N

i iiEF
1

  (5.2) 

where i is the vegetation type index, and N and is the total number of vegetation types in 

a grid cell. As an alternative to the offline prepared EF maps using detailed vegetation 

cover information, the EF map can also be calculated during a MEGAN simulation using 

PFT distributions and PFT-specific emission factors (Guenther et al. 2012). In that case, 

ε is the PFT-specific emission rate and χ is the fractional PFT in a grid cell. 

The accuracy of the PFT, EF and LAI data can significantly affect the prediction of 

emissions and ambient concentrations of isoprene (Pfister et al., 2008). Although the 

accuracy of the inputs used in calculating the correction factor γ can also affect isoprene 

emissions estimations, a consistent positive scale factor  in the predicted isoprene 

concentrations suggests that  other parameters needs to be examined more carefully first. 

Uncertainties of LAI and PFT in urban areas can be greater than in forested areas, 

potentially leading to large uncertainties in emission estimations. Remote sensing 

determination of LAI in urban areas is largely constrained by spatial heterogeneity 
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within the resolved satellite pixel (Jensen and Hardin, 2005). Determination of PFT in 

urban areas is more uncertain because multiple satellite products are often involved 

(Poulter et al., 2011).  In the following, the MEGAN input data (LAI, PFT and EF) are 

compared with a field survey of tree distributions in a residential area surrounding the 

Yellow Cab Tower (YCT) (see figure 24) as reported by Park et al. (2011).  

The estimated respective PFT distributions from that field survey are 5% PFT1, 25% 

PFT7 (including live oak), 2% PFT10 and 10% PFT13/14 (PFT13 represents C3 grass), 

with a normalized total vegetation coverage (accounting for tree overlap with impervious 

and grassy areas) of 35-40%. Oak trees in PFT7 are the most important isoprene 

emitters. As listed in Park et al. (2011), major oak trees in this area are live oak (26% of 

all oaks), water oak (23%), post oak (23%), willow oak (16%) and white oak (6%). 

Using above canopy flux measurements, Park et al. (2011) obtained a standard emission 

rates of 400 µg m-2 h-1, reasonably matching a local isoprene emissions model. This is 

much lower than the MEGAN gridded isoprene EF of 5700 µg m-2 h-1 for a 1-km grid 

that includes the YCT.  

To understand what causes the higher EF in the MEGAN input file, the alternative 

approach calculating EF using PFT distributions and PFT-specific EF (Guenther et al., 

2012) was also attempted. The PFT distributions from the gridded MEGAN PFT input 

file (re-gridded to the 4-km domain) at the YCT location are 19% PFT1, 30% PFT7, 2% 

PFT10 and 3% PFT14, and total vegetation coverage is 58%. The percentage of PFT7, 

the category that includes tree species with maximum isoprene emission factors, is 

similar in both the field survey and the gridded input file. Using these PFT distributions 

and the PFT-specific EF, the calculated isoprene EF at standard conditions (using 

equation 5.2) is 3380 µg m-2 h-1. This much larger estimated isoprene EF than obtained 

from the field data is mainly due to over-estimation of EF for PFT7. Based on Guenther 

et al. (2012), EF for PFT7 (EF7) is 10000  µg m-2 h-1, and this large value is applied to 

all tree species in PFT7. However, the actual EF7 includes many non-emitting tree 

species; at the YCT site more than 2/3rds of the PFT7 trees are non-emitters, meaning 

MEGAN assumes a much too high fraction of isoprene emitting trees in PFT7 than what 
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appears appropriate for the urban Houston area. In addition, the isoprene emission factor 

of coastal live oak is relatively small compared to most other oak tree species. So, it is 

likely that EF7 was over-estimated due to both higher fractions of isoprene-emitting 

trees, and higher emitting oak trees. Also, EF7 might be estimated by assuming a higher 

fraction of isoprene emitting trees in PFT7 than what is appropriate for the urban 

Houston area. Lastly, the difference between calculated EF using PFT-specific EFs and 

gridded EF is not clearly understood. However, since 5700×0.58=3306, which is very 

close to 3380, leads to suspicions that when preparing gridded EF, it was inadvertently 

divided by the fraction of vegetation area in the grid cell.  

In summary, the above analysis suggests that using PFT and PFT-specific EF can 

lead to significant errors in isoprene emission estimations, especially in urban 

environments. Such over-estimations may be inadvertently corrected, however, by 

additional incorrect input data, such as LAI.  

The LAIv in full sun estimated from the field survey was approximately 3.75 (i.e., 

1.5/40%). The gridded 4-km resolution LAI input data is approximately 0.69 (i.e. 

0.4/58%), which is only 18.4% of the field survey data. Even though the larger gridded 

area includes more impervious land compared to the field study area, this indicates that 

LAI of 0.4 used for urban grids is an under-estimate and should be increased to a value 

closer to 1.  Ignoring the LAI dependence of the radiation correction factor (considering 

only leaves in full sun), the ratio of MEGAN calculated emission rates (FMEGAN) at YCT 

to the emission rates based on field survey (Ffield) can be estimated using Equation (5.3): 

62.2
400

5700

75.3

69.0

,

,


field

MEGAN

fieldv

MEGANv

field

MEGAN

EF

EF

LAI

LAI

F

F
 (5.3) 

This indicates that MEGAN over-estimated the isoprene emissions by a factor of 2.62 at 

this location. This is in good agreement with the emission scaling runs (see section 

5.4.1), which suggested that isoprene emissions in urban Houston are likely 

overestimated by a factor of 3. The above analyses suggest that the over-estimation of 

isoprene emissions in urban Houston maybe due to combined effects of underestimation 
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of LAIv and over-estimation of EF. Accurate vegetation cover and species-specific 

emissions should be used when estimating isoprene emissions.  

 

 
Figure 31 Predicted average (a) total secondary organic aerosol (SOA) and (d) SOA 

from isoprene (ISOA) concentrations during the simulation period. Changes in predicted 

SOA and ISOA in the 66% isoprene reduction case are shown in Panels (b,d) 

respectively. The scales are different to better illustrate spatial distributions. Units are µg 

m-3. 

 

5.4.3 Impacts on surface ozone and SOA concentrations 

Overestimation of biogenic emissions may also impact ozone and SOA formation. 

Analyses of ozone time series and its model performance show little impact on ozone 

concentrations at ozone monitors in the Houston-Galveston-Brazoria area (see figure C1 

and table C1 in Appendix C). This is consistent with a previous study which shows 

gradual ozone buildup in air parcels as they are transported towards to receptor sites. The 

air parcels usually started in rural areas with large isoprene emissions and ozone 

formation in these areas are limited by NOx availability. As they reach the urban areas 

industrial and transportation related emissions are more important in ozone formation 

(Ying and Krishnan 2010). Thus the changes in the emissions of isoprene have a smaller 

than expected impact on the observed ozone concentration at the monitor sites. 
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However, overestimation of isoprene leads to significantly higher estimations of 

SOA from isoprene and also leads to slightly higher predictions of other SOA 

components, as shown in figure 31. Predicted SOA concentration due to isoprene in the 

base case simulation is approximately 0.2-0.3 µg m-3, and total SOA is approximately 

1.5-2 µg m-3.  In the 66% emission reduction case, isoprene SOA concentrations are 

decreased by approximately 0.1 µg m-3. Comparatively, decrease in total SOA is slightly 

higher, as shown in figure 31(b) and (c), suggesting that changes in isoprene emissions 

can change the oxidation capacity of the atmosphere and lead to changes in SOA from 

other precursors.  

 

5.5 Conclusions 

In this study, MEGAN2.1 estimations of biogenic emissions in an urban area in 

Southeast Texas were evaluated by comparing predicted isoprene concentrations by a 

source-oriented CMAQ model with isoprene measurements at six surface sites equipped 

with Auto-GC during the summer TexAQS 2006 episode. In addition, predicted isoprene 

and MACR+MVK in the upper air are compared with measurements made by PTR-MS 

on NOAA’s WP-3D aircraft. The source-oriented model confirms that even in urban 

areas biogenic isoprene dominates the daytime ambient isoprene concentrations. 

However, the predicted biogenic isoprene mixing ratios are much higher than 

observations at both surface sites (MNB=2.01-5.96, MNE=2.21-5.98) and in the upper 

air (MNB=8.6, MFE=9.1). Upper air MACR+MVK concentrations are also significantly 

over-estimated (MNB=3.6 and MFE=3.8). Due to relatively short life time of isoprene 

during the day and slow wind speeds in the modeling episode, it can be concluded that 

biogenic emissions are significantly over estimated by the MEGAN model in this study. 

Uniform emission reduction simulations suggest that a reduction of isoprene emissions 

by approximately 66% is necessary to make the predictions close to observations. 

Although simultaneously predicted ozone concentrations in this region and episode are 

not significantly affected by isoprene over-predictions, predicted isoprene SOA 
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concentrations are can by higher by as much as 50% with the higher isoprene emission 

rates.  

 Comparison of PFT distributions, isoprene EF at standard conditions and LAI data 

from a field survey with the gridded input data at an urban location shows that gridded 

PFT distributions at the urban sites are close to the field data. However, over-prediction 

of isoprene EF at standard conditions could be a major reason for the discrepancy in 

predicted and observed concentrations. The comparison with field data also indicates 

that the representative LAI used in urban grids in this study is likely lower than what is 

present in the field. These warrant getting more field data for better prediction of 

species-specific EF and LAI to improve biogenic isoprene estimations in urban areas 

using MEGAN.  
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6. CONCLUSION 

 

6.1 Summary 

The overall objective of this study is to evaluate vehicle and biogenic emission 

inventories in Southeast Texas. While sections 2 to 4 discuss regarding the evaluation of 

vehicle emission inventories with respect to CO, NOx and VOCs emissions, section 5 

includes evaluation of biogenic emission inventory. 

In section 2, TAMNROM-3D model with SAPRC99 photochemical mechanism, and 

MOVES generated emissions, was used to predict the concentrations of pollutants near a 

rural highway at Austin. Results indicate that there are significant uncertainties in 

MOVES NOx estimations, pointing to a significant over-prediction of atleast 15%. 

Additionally, MOVES NO2/NOx ratio of 9% is an under-representation, and the model 

performance of NO2 indicates that a ratio of 29%, estimated from the curb side 

measurements, is necessary. To further probe the influence of using curbside ratio of 

29% instead of traditional practice of using 5%, a regional simulation using CMAQ for 

Southeast Texas was carried out. Results indicated an increase of 6 ppb in 8-hour 

averaged ozone due to the usage of 29% ratio. This indicates that sufficient care should 

be taken while using MOVES in a near-road environment, especially in the absence of 

adequate observations.  

In section 3, on-road vehicle emission inventories in Southeast Texas during 2006 

for CO and NOx were evaluated using a source-oriented CMAQ model with MM5 

generated meteorology. Clear trends in FB were observed when the data were grouped 

based on the vehicle contributions to total CO and NOx. While over-prediction of NOx 

by both vehicles and other sources is observed, an under prediction of CO by other 

sources but over prediction by vehicles is observed. However, further analysis is 

required in studying the performance of other sources. Results indicate that MOVES 

generated NEI over predicts CO and NOx by a factor of 2 and 1.7 respectively. This 

indicates necessity of significant reductions in CO and NOx emission predictions by 

MOVES. To analyze the influence of meteorology models on conclusions, an additional 
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simulation using WRF generated meteorology was performed. Eventhough, relatively 

poorer performance of WRF generated meteorology resulted in greater FB ranges the 

trends were similar in both simulations. This indicates that future regional air quality 

studies should carefully evaluate and improve performance of meteorology models.  

In section 4, fluxes of 18 VOCs collected during May to July 2008 on a 60m tower 

in an urban Houston residential area were analyzed using ME-2. Two vehicle related 

profiles, one representing exhaust and dominated with toluene and xylenes, the other 

representing evaporative emissions and dominated by isopentane, were observed. The 

diurnal variation of vehicle contributions, indicate a morning rush hour peak around 

7AM-9AM, with average median flux of 0.76 mg m-2 h-1. Evaporative emissions had 

higher contributions than vehicle exhaust, but did not show a morning rush hour peak. 

EdiRe, an analytical flux-footprint model, along with the contributions estimated by ME-

2, was used to resolve daytime source specific emissions rates. The estimated vehicle 

exhaust emissions, with a median emission rate of 14.5±2 g h-1 vehicle-1, were similar to 

the MOVES model predictions for a vehicle fleet of year 2005 (14.1±0.2 g h-1 vehicle-1). 

This possibly is representative of the vehicles used in the study domain. However, the 

estimated evaporative emission rate of 2.3±1 g h-1 vehicle-1 was around 7 times higher 

than MOVES predictions. This could either be due to presence of poorly maintained 

vehicles in the locality, or presence of other evaporative fuel emissions source in the 

locality, or significant under-prediction of evaporative emissions by MOVES. Thus, 

more studies are required to analyze performance of MOVES in estimating evaporative 

emissions.  

In section 5, MEGAN estimated biogenic emissions in an urban area in Southeast 

Texas were evaluated using a source-oriented CMAQ model. The predicted 

concentrations were compared with isoprene measurements at six surface sites operated 

by TCEQ, and NOAA’s WP-3D aircraft during the summer TexAQS 2006 episode. The 

predicted biogenic isoprene was much higher than observations at surface with MNB in 

the range of 2.01 to 5.96. Similarly, the upper air MNB was 8.6, indicating an over-

prediction. A clear over-prediction of the upper air concentrations of isoprene’s 
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oxidation products, MACR+MVK, with a MNB=3.6 was also observed. This indicates 

that biogenic emissions are substantially over estimated by the MEGAN model. 

Sensitivity simulations indicated that reduction of isoprene emissions by approximately 

66% is necessary to achieve a reasonable model-measurement match. To understand the 

accuracy of input vegetation data, detailed field observations at a location in the domain 

were compared to the gridded LAI and PFT input data. Although the analysis indicated 

inconsequential difference in PFT distribution, the emission factor for the critical PFT7 

was drastically overestimated, seemingly assuming a very different PFT composition 

(many high isoprene emitting trees) than present in Houston (few, including low 

isoprene emitting tree species). These differences likely explain the drastic over-

estimation of urban isoprene concentrations.  

 

6.2 Recommendations for Future Research  

Section 2 indicates that MOVES over estimates NOx emissions. However, due to less 

vehicle density on the roadway in the study proper conclusions regarding MOVES CO 

estimations could not be achieved. Thus, this analysis should be repeated in a case with 

higher vehicle density roadway. Additionally, this section indicated that using curb side 

NO2/NOx ratio in emissions resulted in better model performance. However, as MOVES 

predicts tail pipe emissions, the higher curbside ratio could be due to conversion of NO 

to NO2 from tail pipe to curbside. Thus, this should be explored further. 

Sections 2, 3 and 4 concentrate on evaluation of MOVES performance in estimating 

gaseous pollutants from vehicles. However, in addition to gaseous pollutants, particulate 

matter (PM) emissions from vehicular traffic are also of health concerns (Anderson et 

al., 2001; Curtis et al., 2006). Studies also showed high ultrafine particle number 

concentrations near roadways (e.g. Zhu et al. (2002)). Thus it is necessary to model size 

resolved particle number and mass concentrations near roadways. In addition to 

speciated PM2.5 and PM10, MOVES has the ability to predict emissions of metals from 

vehicles. Moreover, unlike previous USEPA emission factor models, which were 

insensitive to vehicle speed MOVES PM and EC/OC emission factors change with 
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vehicle speed (Kota et al., 2012). Thus it would be interesting to evaluate the 

performance of MOVES in predicting PM. 

In section 3, the estimated vehicle exhaust emission factor in this study was 

compared to MOVES predictions. Eventhough transient operating modes of vehicles on 

the surrounding roadways for every minute were available in this study, only MOVES 

predictions at average speed was only considered. So in future the exploration of modal 

version of MOVES is recommended. Additionally, the procedure used in section 3 

should be repeated for particle fluxes measured on the tower. This would help in direct 

evaluation of MOVES PM emission factor estimations.   

Receptor oriented statistical analysis used in section 3, resulted in identification and 

quantification of pentane emissions from a point source in the locality. This method can 

be further used in regions where under-reporting or non-reporting of emissions from 

industries is common.    

The accuracy of source-oriented model, used in section 4, is a must for the policy 

makers while analyzing the results. However, in this dissertation only influence of 

meteorology models on model performance was only studied. Thus effects of horizontal 

and vertical grid resolutions, dispersion parameterizations should be explored in future. 

Additionally, this source-oriented model can also be used in estimating the effect of 

different vehicle fleet compositions on predicted concentrations. This can help the policy 

makers by suggesting possible regulations on certain fleet for environmental benefits.  

Moreover, section 4 suggests NOx emission control only. But due to non-linearity of 

VOC and NOx reactions resulting in the formation of ozone, both NOx and VOCs 

emitted from vehicles should be tracked together in future, to suggest effective control 

strategy for ozone in Southeast Texas. 



 

108 

 

REFERENCES 

 

Alessio, G.A., Estiarte, M., Llusia, J., Peñuelas, J., 2008. Contrasting species-specific, 

compound-specific, seasonal, and interannual responses of foliar isoprenoid 

emissions to experimental drought in a mediterranean shrubland. International 

Journal of Plant Sciences 169, 637-645. 

Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., Hopke, 

P.K., 2009. Quantifying road dust resuspension in urban environment by multilinear 

engine: A comparison with PMF2. Atmos. Environ. 43, 2770-2780. 

Anderson, H.R., Bremner, S.A., Atkinson, R.W., Harrison, R.M., Walters, S., 2001. 

Particulate matter and daily mortality and hospital admissions in the west midlands 

conurbation of the United Kingdom: associations with fine and coarse particles, 

black smoke and sulphate. Occupational and Environmental Medicine 58, 504-510. 

Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 

2063-2101. 

Badman, D.G., Jaffe, E.R., 1996. Blood and air pollution: State of knowledge and 

research needs. Otolaryngology - Head and Neck Surgery 114, 205-208. 

Banta, R., Senff, C., Nielsen-Gammon, J., Darby, L., Ryerson, T., Alvarez, R., 

Sandberg, S., Williams, E., Trainer, M., 2005. A bad air day in Houston. Bulletin of 

the American Meteorological Society 86, 657-669. 

Barad, M.L., 1958. Project Prairie Grass: A field program in diffusion, Geophys. Res. 

Paper No. 59(ii) TR-58-235(ii). Air Force Cambridge Research Centre, Bedford, 

Massachusetts. 

Bäumer, D., Vogel, B., Fiedler, F., 2005. A new parameterisation of motorway-induced 

turbulence and its application in a numerical model. Atmos. Environ. 39, 5750-5759. 

Berkowicz, R., 2000. OSPM - A parameterised street pollution model. Environmental 

Monitoring and Assessment 65, 323-331. 



 

109 

 

Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J.C., Guillermo, R., 2001. 

An investigation into the traffic-related fraction of isoprene at an urban location. 

Atmos. Environ. 35, 3749-3760. 

Boriboonsomsin, K., Barth, M., 2007. Evaluating air quality benefits of freeway high-

occupancy vehicle lanes in southern California. Transportation Research Record: 

Journal of the Transportation Research Board 2011, 137-147. 

Brioude, J., Kim, S.W., Angevine, W.M., Frost, G.J., Lee, S.H., McKeen, S.A., Trainer, 

M., Fehsenfeld, F.C., Holloway, J.S., Ryerson, T.B., Williams, E.J., Petron, G., Fast, 

J.D., 2011. Top-down estimate of anthropogenic emission inventories and their 

interannual variability in Houston using a mesoscale inverse modeling technique. 

Journal of Geophysical Research-Atmospheres 116, D20305. 

Brown, S.G., Reid, S.B., Roberts, P.T., Buhr, M.P., Funk, T.H., Kim, E., Hopke, P.K., 

2004. Reconciliation of the VOC and NOx emission inventory with ambient data in 

the Houston, Texas region, 13th International Emission Inventory Conference 

"Working for Clean Air in Clearwater", Clearwater, FL. 

Brown, S.S., deGouw, J.A., Warneke, C., Ryerson, T.B., Dube, W.P., Atlas, E., Weber, 

R.J., Peltier, R.E., Neuman, J.A., Roberts, J.M., Swanson, A., Flocke, F., McKeen, 

S.A., Brioude, J., Sommariva, R., Trainer, M., Fehsenfeld, F.C., Ravishankara, A.R., 

2009. Nocturnal isoprene oxidation over the northeast United States in summer and 

its impact on reactive nitrogen partitioning and secondary organic aerosol. 

Atmospheric Chemistry and Physics 9, 3027-3042. 

Brown, S.S., Dube, W.P., Bahreini, R., Middlebrook, A.M., Brock, C.A., Warneke, C., 

de Gouw, J.A., Washenfelder, R.A., Atlas, E., Peischl, J., Ryerson, T.B., Holloway, 

J.S., Schwarz, J.P., Spackman, R., Trainer, M., Parrish, D.D., Fehshenfeld, F.C., 

Ravishankara, A.R., 2013. Biogenic VOC oxidation and organic aerosol formation in 

an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX. 

Atmospheric Chemistry and Physics 13, 11317-11337. 



 

110 

 

Brunekreef, B., Janssen, N.A.H., deHartog, J., Harssema, H., Knape, M., vanVliet, P., 

1997. Air pollution from truck traffic and lung function in children living near 

motorways. Epidemiology 8, 298-303. 

Burnett, R.T., Dales, R.E., Brook, J.R., Raizenne, M.E., Krewski, D., 1997. Association 

between ambient carbon monoxide levels and hospitalizations for congestive heart 

failure in the elderly in 10 Canadian cities. Epidemiology 8, 162-167. 

Burnett, R.T., Smith-doiron, M., Stieb, D., Cakmak, S., Brook, J.R., 1999. Effects of 

particulate and gaseous air pollution on cardiorespiratory hospitalizations. Archives 

of Environmental Health: An International Journal 54, 130-139. 

Buzcu, B., Fraser, M.P., 2006. Source identification and apportionment of volatile 

organic compounds in Houston, TX. Atmos. Environ. 40, 2385-2400. 

Buzcu Guven, B., Olaguer, E.P., 2011. Ambient formaldehyde source attribution in 

Houston during TexAQS II and TRAMP. Atmos. Environ. 45, 4272-4280. 

Byun, D., Schere, K.L., 2006. Review of the governing equations, computational 

algorithms, and other components of the models-3 community multiscale air quality 

(CMAQ) modeling system. Applied Mechanics Reviews 59, 51-77. 

CARB, 2007. EMFAC2007. Calculating emission inventories for vehicles in California, 

user guide. California Air Resource Board, Sacramento, California. 

Carlton, A.G., Baker, K.R., 2011. Photochemical modeling of the Ozark isoprene 

volcano: MEGAN, BEIS, and their impacts on air quality predictions. Environmental 

Science & Technology 45, 4438-4445. 

Carlton, A.G., Bhave, P.V., Napelenok, S.L., Edney, E.D., Sarwar, G., Pinder, R.W., 

Pouliot, G.A., Houyoux, M., 2010. Model representation of secondary organic 

aerosol in CMAQv4.7. Environmental Science & Technology 44, 8553-8560. 

Carslaw, D.C., 2005. Evidence of an increasing NO2/NOX emissions ratio from road 

traffic emissions. Atmos. Environ. 39, 4793-4802. 

Carter, W.P.L., 1994. Development of ozone reactivity scales for volatile organic-

compounds. Journal of the Air & Waste Management Association 44, 881-899. 



 

111 

 

Carter, W.P.L., 2000. Documentation of the SAPRC-99 chemical mechanism for VOC 

reactivity assessment, report to the California air resources board. California Air 

Resources Board, Sacramento, California. 

Carvalho, J.C., Vilhena, M.T., Moreira, D.M., 2007. Comparison between Eulerian and 

Lagrangian semi-analytical models to simulate the pollutant dispersion in the PBL. 

Applied Mathematical Modelling 31, 120-129. 

Castellanos, P., Marufu, L.T., Doddridge, B.G., Taubman, B.F., Schwab, J.J., Hains, 

J.C., Ehrman, S.H., Dickerson, R.R., 2011. Ozone, oxides of nitrogen, and carbon 

monoxide during pollution events over the eastern United States: An evaluation of 

emissions and vertical mixing. Journal of Geophysical Research: Atmospheres 116, 

D16307. 

Chang, T.-Y., Huang, K.-H., Liu, C.-S., Shie, R.-H., Chao, K.-P., Hsu, W.-H., Bao, B.-

Y., 2010. Exposure to volatile organic compounds and kidney dysfunction in thin 

film transistor liquid crystal display (TFT-LCD) workers. Journal of Hazardous 

Materials 178, 934-940. 

Chauhan, A.J., Krishna, M.T., Frew, A.J., Holgate, S.T., 1998. Exposure to nitrogen 

dioxide (NO2) and respiratory disease risk. Reviews on Environmental Health 13, 

73-90. 

Choi, D., Koupal, J., 2011. MOVES validation, MOVES workshop, Ann Arbor, 

Michigan. 

Clements, A.L., Jia, Y., Denbleyker, A., McDonald-Buller, E., Fraser, M.P., Allen, D.T., 

Collins, D.R., Michel, E., Pudota, J., Sullivan, D., Zhu, Y., 2009. Air pollutant 

concentrations near three Texas roadways, part II: Chemical characterization and 

transformation of pollutants. Atmos. Environ. 43, 4523-4534. 

Cook, R., Isakov, V., Touma, J.S., Benjey, W., Thurman, J., Kinnee, E., Ensley, D., 

2008. Resolving local-scale emissions for modeling air quality near roadways. 

Journal of the Air & Waste Management Association 58, 451-461. 



 

112 

 

Costa, C.P., Vilhena, M.T., Moreira, D.M., Tirabassi, T., 2006. Semi-analytical solution 

of the steady three-dimensional advection-diffusion equation in the planetary 

boundary layer. Atmos. Environ. 40, 5659-5669. 

CRC, 2004. Evaluation of the US EPA MOBILE6 highway vehicle emission factor 

model. Final report CRC Project E-64. ENVIRON International Corp, Novato, 

California. 

Curtis, L., Rea, W., Smith-Willis, P., Fenyves, E., Pan, Y., 2006. Adverse health effects 

of outdoor air pollutants. Environment International 32, 815-830. 

Czader, B.H., Byun, D.W., Kim, S.T., Carter, W.P.L., 2008. A study of VOC reactivity 

in the Houston-Galveston air mixture utilizing an extended version of SAPRC-99 

chemical mechanism. Atmos. Environ. 42, 5733-5742. 

Daniel, J.S., Solomon, S., 1998. On the climate forcing of carbon monoxide. Journal of 

Geophysical Research: Atmospheres 103, 13249-13260. 

Degrazia, G.A., Anfossi, D., Carvalho, J.C., Mangia, C., Tirabassi, T., Campos Velho, 

H.F., 2000. Turbulence parameterisation for PBL dispersion models in all stability 

conditions. Atmos. Environ. 34, 3575-3583. 

Derwent, R.G., Jenkin, M.E., Saunders, S.M., 1996. Photochemical ozone creation 

potentials for a large number of reactive hydrocarbons under European conditions. 

Atmos. Environ. 30, 181-199. 

EEA, 2007. COPERT4. Computer programme to calculate emissions from road 

transport, user manual. European Topic Center on Air and Climate Change, Europe. 

Eskridge, R.E., Hunt, J.C.R., 1979. Highway modeling .1. Prediction of velocity and 

turbulence fields in the wake of vehicles. Journal of Applied Meteorology 18, 387-

400. 

FHWA, 2001. Traffic monitoring guide. Section 4: Vehicle classification monitoring. 

U.S. Department of transportation, Washington, District of Columbia. 

Finkelstein, M.M., Jerrett, M., Sears, M.R., 2004. Traffic air pollution and mortality rate 

advancement periods. American Journal of Epidemiology 160, 173-177. 



 

113 

 

Foken, T., Wichura, B., 1996. Tools for quality assessment of surface-based flux 

measurements. Agricultural and Forest Meteorology 78, 83-105. 

Foley, K.M., Roselle, S.J., Appel, K.W., Bhave, P.V., Pleim, J.E., Otte, T.L., Mathur, R., 

Sarwar, G., Young, J.O., Gilliam, R.C., Nolte, C.G., Kelly, J.T., Gilliland, A.B., 

Bash, J.O., 2010. Incremental testing of the community multiscale air quality 

(CMAQ) modeling system version 4.7. Geoscientific Model Development 3, 205-

226. 

Franco, V., Kousoulidou, M., Muntean, M., Ntziachristos, L., Hausberger, S., Dilara, P., 

2013. Road vehicle emission factors development: A review. Atmos. Environ. 70, 

84-97. 

Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J.W., Ciccioli, P., 

Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T.D., Stockwell, W., 2000. 

Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bulletin of the 

American Meteorological Society 81, 1537-1575. 

Fujita, E.M., Campbell, D.E., Zielinska, B., Chow, J.C., Lindhjem, C.E., DenBleyker, 

A., Bishop, G.A., Schuchmann, B.G., Stedman, D.H., Lawson, D.R., 2012. 

Comparison of the MOVES2010a, MOBILE6.2, and EMFAC2007 mobile source 

emission models with on-road traffic tunnel and remote sensing measurements. 

Journal of the Air & Waste Management Association 62, 1134-1149. 

Fujita, E.M., Lu, Z., Sagebiel, J., Robinson, N.F., Watson, J.G., 1995. VOC source 

apportionment for the coast oxidant assessment for southeast Texas. Texas Natural 

Resource Conservation Commission, Desert Research Institute, Austin, Texas. 

Garratt, J.R., 1994. The atmospheric boundary layer. Press Syndicate of the University 

of Cambridge, New York. 

Gauderman, W.J., Vora, H., McConnell, R., Berhane, K., Gilliland, F., Thomas, D., 

Lurmann, F., Avol, E., Kunzli, N., Jerrett, M., Peters, J., 2007. Effect of exposure to 

traffic on lung development from 10 to 18 years of age: A cohort study. The Lancet 

369, 571-577. 



 

114 

 

Gentner, D.R., Harley, R.A., Miller, A.M., Goldstein, A.H., 2009. Diurnal and seasonal 

variability of gasoline-related volatile organic compound emissions in Riverside, 

California. Environmental Science & Technology 43, 4247-4252. 

Geron, C.D., Nie, D., Arnts, R.R., Sharkey, T.D., Singsaas, E.L., Vanderveer, P.J., 

Guenther, A., Sickles, J.E., Kleindienst, T.E., 1997. Biogenic isoprene emission: 

Model evaluation in a southeastern United States bottomland deciduous forest. 

Journal of Geophysical Research: Atmospheres 102, 18889-18901. 

Gryning, S.E., Lyck, E., 1984. Atmospheric dispersion from elevated sources in an 

urban area: Comparison between tracer experiments and model calculations. Journal 

of climate and applied meteorology 23, 651-660. 

Guenther, A., 1995. A global model of natural volatile organic compound emissions. 

Journal of Geophysical Research 100, 8873-8892. 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C., 2006. 

Estimates of global terrestrial isoprene emissions using MEGAN (Model of 

emissions of gases and aerosols from nature). Atmospheric Chemistry and Physics 6, 

3181-3210. 

Guenther, A.B., Hills, A.J., 1998. Eddy covariance measurement of isoprene fluxes. 

Journal of Geophysical Research: Atmospheres 103, 13145-13152. 

Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., 

Wang, X., 2012. The model of emissions of gases and aerosols from nature version 

2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic 

emissions. Geoscientific Model Development 5, 1471-1492. 

Guo, H., So, K.L., Simpson, I.J., Barletta, B., Meinardi, S., Blake, D.R., 2007. C1–C8 

volatile organic compounds in the atmosphere of Hong Kong: Overview of 

atmospheric processing and source apportionment. Atmos. Environ. 41, 1456-1472. 

Gustafson, W.I., Yu, S., 2012. Generalized approach for using unbiased symmetric 

metrics with negative values: normalized mean bias factor and normalized mean 

absolute error factor. Atmospheric Science Letters 13, 262-267. 



 

115 

 

Harley, P., Guenther, A., Zimmerman, P., 1996. Effects of light, temperature and canopy 

position on net photosynthesis and isoprene emission from sweetgum (Liquidambar 

styraciflua) leaves. Tree Physiology 16, 25-32. 

Harley, P., Guenther, A., Zimmerman, P., 1997. Environmental controls over isoprene 

emission in deciduous oak canopies. Tree Physiology 17, 705-714. 

Harley, R.A., Russell, A.G., McRae, G.J., Cass, G.R., Seinfeld, J.H., 1993. 

Photochemical modeling of the southern California air-quality study. Environmental 

Science & Technology 27, 378-388. 

Held, T., Chang, D.P.Y., Niemeier, D.A., 2003. UCD 2001: An improved model to 

simulate pollutant dispersion from roadways. Atmos. Environ. 37, 5325-5336. 

Henry, R.C., Spiegelman, C.H., Collins, J.F., Park, E., 1997. Reported emissions of 

organic gases are not consistent with observations. Proceedings of the National 

Academy of Sciences of the United States of America 94, 6596-6599. 

Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., van den Brandt, P.A., 2002. 

Association between mortality and indicators of traffic-related air pollution in the 

Netherlands: A cohort study. Lancet 360, 1203-1209. 

Hoffmann, B., Moebus, S., Stang, A., Beck, E.M., Dragano, N., Mohlenkamp, S., 

Schmermund, A., Memmesheimer, M., Mann, K., Erbel, R., Jockel, K.H., Heinz 

Nixdorf, R.S.I., 2006. Residence close to high traffic and prevalence of coronary 

heart disease. Eur. Heart J. 27, 2696-2702. 

Hsu, Y., Divita, F., 2008. SPECIATE 4.2 Speciation database development 

documentation. Draft Report. Prepared for Office of Research and Development, 

U.S. Environmental Protection Agency. E.H. Pechan & Associates, Inc., Research 

Triangle Park, North Carolina. 

Isaksen, I.S.A., Hov, Ø., 1987. Calculation of trends in the tropospheric concentration of 

O3, OH, CO, CH4 and NOx. Tellus B 39B, 271-285. 

Jacobson, M.Z., 1998. Fundamentals of atmospheric modeling. Cambridge University 

Press, New York. 



 

116 

 

Jensen, R.R., Hardin, P.J., 2005. Estimating urban leaf area using field measurements 

and satellite remote sensing data. Journal of Arboriculture 31, 21-27. 

Kalthoff, N., Bäumer, D., Corsmeier, U., Kohler, M., Vogel, B., 2005. Vehicle-induced 

turbulence near a motorway. Atmos. Environ. 39, 5737-5749. 

Karl, T., Apel, E., Hodzic, A., Riemer, D.D., Blake, D.R., Wiedinmyer, C., 2009. 

Emissions of volatile organic compounds inferred from airborne flux measurements 

over a megacity. Atmospheric Chemistry and Physics 9, 271-285. 

Karl, T., Guenther, A., Jordan, A., Fall, R., Lindinger, W., 2001. Eddy covariance 

measurement of biogenic oxygenated VOC emissions from hay harvesting. Atmos. 

Environ. 35, 491-495. 

Kaser, L., Karl, T., Guenther, A., Graus, M., Schnitzhofer, R., Turnipseed, A., Fischer, 

L., Harley, P., Madronich, M., Gochis, D., Keutsch, E.N., Hansel, A., 2013. 

Undisturbed and disturbed above canopy ponderosa pine emissions: PTR-TOF-MS 

measurements and MEGAN 2.1 model results. Atmospheric Chemistry and Physics 

13, 11935-11947. 

Kastner-Klein, P., Berkowicz, R., Plate, E.J., 2000. Modelling of vehicle-induced 

turbulence in air pollution studies for streets. International Journal of Environment 

and Pollution 14, 496-507. 

Kenty, K.L., Poor, N.D., Kronmiller, K.G., McClenny, W., King, C., Atkeson, T., 

Campbell, S.W., 2007. Application of CALINE4 to roadside NO/NO2 

transformations. Atmos. Environ. 41, 4270-4280. 

Kim, E., Brown, S.G., Hafner, H.R., Hopke, P.K., 2005. Characterization of non-

methane volatile organic compounds sources in Houston during 2001 using positive 

matrix factorization. Atmos. Environ. 39, 5934-5946. 

Kim, E., Hopke, P.K., Paatero, P., Edgerton, E.S., 2003. Incorporation of parametric 

factors into multilinear receptor model studies of Atlanta aerosol. Atmos. Environ. 

37, 5009-5021. 



 

117 

 

Kim, J.J., Smorodinsky, S., Lipsett, M., Singer, B.C., Hodgson, A.T., Ostro, B., 2004. 

Traffic-related air pollution near busy roads: The east bay children's respiratory 

health study. Am. J. Respir. Crit. Care Med. 170, 520-526. 

Kim, S.W., McKeen, S.A., Frost, G.J., Lee, S.H., Trainer, M., Richter, A., Angevine, 

W.M., Atlas, E., Bianco, L., Boersma, K.F., Brioude, J., Burrows, J.P., de Gouw, J., 

Fried, A., Gleason, J., Hilboll, A., Mellqvist, J., Peischl, J., Richter, D., Rivera, C., 

Ryerson, T., Hekkert, S.T.L., Walega, J., Warneke, C., Weibring, P., Williams, E., 

2011. Evaluations of NOx and highly reactive VOC emission inventories in Texas 

and their implications for ozone plume simulations during the Texas air quality study 

2006. Atmospheric Chemistry and Physics 11, 11361-11386. 

Kirchstetter, T.W., Singer, B.C., Harley, R.A., Kendall, G.R., Chan, W., 1996. Impact of 

oxygenated gasoline use on California light-duty vehicle emissions. Environmental 

Science & Technology 30, 661-670. 

Kite, C., 2011. Preliminary comparison between MOVES and MOBILE6 

Houston/Galveston/Brazoria (HGB) on-road emission inventories for 2006 and 2018. 

Texas Commision on Environmental Quality, Austin, Texas. 

Kleeman, M.J., Ying, Q., Lu, J., Mysliwiec, M.J., Griffin, R.J., Chen, J.J., Clegg, S., 

2007. Source apportionment of secondary organic aerosol during a severe 

photochemical smog episode. Atmos. Environ. 41, 576-591. 

Kleinman, L.I., Daum, P., Imre, D., Lee, Y.N., Nunnermacker, L., Springston, S., 

Weinstein‐Lloyd, J., Rudolph, J., 2002. Ozone production rate and hydrocarbon 

reactivity in 5 urban areas: A cause of high ozone concentration in Houston. 

Geophysical Research Letters 29, 105-101-105-104. 

Kleinman, L.I., Daum, P.H., Lee, Y.N., Nunnermacker, L.J., Springston, S.R., 

Weinstein-Lloyd, J., Rudolph, J., 2005. A comparative study of ozone production in 

five U.S. metropolitan areas. Journal of Geophysical Research: Atmospheres 110, 

D02301. 

Kljun, N., Calanca, P., Rotach, M., Schmid, H., 2004. A simple parameterisation for flux 

footprint predictions. Boundary-Layer Meteorology 112, 503-523. 



 

118 

 

Kljun, N., Kormann, R., Rotach, M.W., Meixer, F.X., 2003. Comparison of the 

Langrangian footprint model LPDM-B with an analytical footprint model. 

Boundary-Layer Meteorology 106, 349-355. 

Kljun, N., Rotach, M.W., Schmid, H.P., 2002. A three-dimensional backward 

Lagrangian footprint model for a wide range of boundary-layer stratifications. 

Boundary-Layer Meteorology 103, 205-226. 

Kormann, R., Meixner, F., 2001. An analytical footprint model for non-neutral 

stratification. Boundary-Layer Meteorology 99, 207-224. 

Kota, S.H., Ying, Q., Schade, G.W., 2012. MOVES vs. MOBILE6.2: Differences in 

emission factors and regional air quality predictions, Transportation Research Board 

Annual Meeting, Washington, District of Columbia. 

Kota, S.H., Ying, Q., Zhang, Y., 2010. TAMNROM-3D. Three-dimensional Eulerian 

model to simulate air quality near highways. Transportation Research Record: 

Journal of the Transportation Research Board 2158, 61-68. 

Kota, S.H., Ying, Q., Zhang, Y., 2013a. Simulating near-road reactive dispersion of 

gaseous air pollutants using a three-dimensional Eulerian model. Science of the Total 

Environment 454-455, 348-357. 

Kota, S.H., Zhang, H., Chen, G., Schade, G.W., Ying, Q., 2014. Evaluation of on-road 

vehicle CO and NOx national emission inventories using an urban-scale source-

oriented air quality model. Atmos. Environ. 85, 99-108. 

Kota, S.H., Zhang, H., Ying, Q., Schade, G., W., 2013b. Evaluation of CO and NOx 

emissions from MOVES and MOBILE6.2 in southeast Texas using a source-oriented 

regional air quality model Transportation Research Board Annual Meeting, 

Washington, District of Columbia. 

Kroll, J.H., Seinfeld, J.H., 2008. Chemistry of secondary organic aerosol: Formation and 

evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42, 3593-

3624. 

Kuhns, H.D., Mazzoleni, C., Moosmüller, H., Nikolic, D., Keislar, R.E., Barber, P.W., 

Li, Z., Etyemezian, V., Watson, J.G., 2004. Remote sensing of PM, NO, CO and HC 



 

119 

 

emission factors for on-road gasoline and diesel engine vehicles in Las Vegas, NV. 

Science of The Total Environment 322, 123-137. 

Kukkonen, J., Härkönen, J., Walden, J., Karppinen, A., Lusa, K., 2001. Evaluation of the 

CAR-FMI model against measurements near a major road. Atmos. Environ. 35, 949-

960. 

Langford, B., Davison, B., Nemitz, E., Hewitt, C.N., 2009. Mixing ratios and eddy 

covariance flux measurements of volatile organic compounds from an urban canopy 

(Manchester, UK). Atmospheric Chemistry and Physics 9, 1971-1987. 

Langford, B., Misztal, P.K., Nemitz, E., Davison, B., Helfter, C., Pugh, T.A.M., 

MacKenzie, A.R., Lim, S.F., Hewitt, C.N., 2010a. Fluxes and concentrations of 

volatile organic compounds from a south-east Asian tropical rainforest. Atmospheric 

Chemistry and Physics 10, 8391-8412. 

Langford, B., Nemitz, E., House, E., Phillips, G.J., Famulari, D., Davison, B., Hopkins, 

J.R., Lewis, A.C., Hewitt, C.N., 2010b. Fluxes and concentrations of volatile organic 

compounds above central London, UK. Atmospheric Chemistry and Physics 10, 627-

645. 

Laothawornkitkul, J., Taylor, J.E., Paul, N.D., Hewitt, C.N., 2009. Biogenic volatile 

organic compounds in the Earth system. New Phytologist 183, 27-51. 

Lawrence, D.M., Oleson, K.W., Flanner, M.G., Thornton, P.E., Swenson, S.C., 

Lawrence, P.J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G.B., Slater, 

A.G., 2011. Parameterization improvements and functional and structural advances 

in version 4 of the community land model. Journal of Advances in Modeling Earth 

Systems 3, M03001. 

Lee, A., Schade, G.W., Holzinger, R., Goldstein, A.H., 2005. A comparison of new 

measurements of total monoterpene flux with improved measurements of speciated 

monoterpene flux. Atmospheric Chemistry and Physics 5, 505-513. 

Lee, G., You, S., Ritchie, S.G., Saphores, J.-D., Jayakrishnan, R., Ogunseitan, O., 2012. 

Assessing air quality and health benefits of the clean truck program in the Alameda 

corridor, CA. Transportation Research Part A: Policy and Practice 46, 1177-1193. 



 

120 

 

Leuchner, M., Rappenglück, B., 2010. VOC source–receptor relationships in Houston 

during TexAQS-II. Atmos. Environ. 44, 4056-4067. 

Li, G., Zhang, R., Fan, J., Tie, X., 2007. Impacts of biogenic emissions on 

photochemical ozone production in Houston, Texas. Journal of Geophysical 

Research: Atmospheres 112, D10309. 

Mandal, P.K., 2005. Dioxin: A review of its environmental effects and its aryl 

hydrocarbon receptor biology. Journal of Comparative Physiology B: Biochemical, 

Systemic, and Environmental Physiology 175, 221-230. 

McGaughey, G.R., Desai, N.R., Allen, D.T., Seila, R.L., Lonneman, W.A., Fraser, M.P., 

Harley, R.A., Pollack, A.K., Ivy, J.M., Price, J.H., 2004. Analysis of motor vehicle 

emissions in a Houston tunnel during the Texas Air Quality Study 2000. Atmos. 

Environ. 38, 3363-3372. 

McKeen, S., Grell, G., Peckham, S., Wilczak, J., Djalalova, I., Hsie, E.Y., Frost, G., 

Peischl, J., Schwarz, J., Spackman, R., Holloway, J., de Gouw, J., Warneke, C., 

Gong, W., Bouchet, V., Gaudreault, S., Racine, J., McHenry, J., McQueen, J., Lee, 

P., Tang, Y., Carmichael, G.R., Mathur, R., 2009. An evaluation of real-time air 

quality forecasts and their urban emissions over eastern Texas during the summer of 

2006 second Texas air quality study field study. Journal of Geophysical Research: 

Atmospheres 114, D00F11. 

Miller, S.M., Matross, D.M., Andrews, A.E., Millet, D.B., Longo, M., Gottlieb, E.W., 

Hirsch, A.I., Gerbig, C., Lin, J.C., Daube, B.C., Hudman, R.C., Dias, P.L.S., Chow, 

V.Y., Wofsy, S.C., 2008. Sources of carbon monoxide and formaldehyde in North 

America determined from high-resolution atmospheric data. Atmospheric Chemistry 

and Physics 8, 7673-7696. 

Mills, N.J., 2007. Foamed thermoplastics: Microstructure and processing. Butterworth-

Heinemann, Oxford. 

Moore, D.S., McCabe, G.P., 1999. Introduction to the pratice of statistics, 3rd ed. W. H. 

Freeman, New York. 



 

121 

 

Nam, J., Kimura, Y., Vizuete, W., Murphy, C., Allen, D.T., 2006. Modeling the impacts 

of emission events on ozone formation in Houston, Texas. Atmos. Environ. 40, 

5329-5341. 

Ngan, F., Byun, D., Kim, H., Lee, D., Rappengluck, B., Pour-Biazar, A., 2012. 

Performance assessment of retrospective meteorological inputs for use in air quality 

modeling during TexAQS 2006. Atmos. Environ. 54, 86-96. 

Norris, G.A., R. Vedantham, K. Wade, P. Zhan, S. Brown, P. Pentti, S. I. Eberly, and C. 

Foley, 2009. Guidance document for PMF applications with the multilinear engine. 

U.S. Environmental Protection Agency, Washington, District of Columbia. 

Pacifico, F., Harrison, S.P., Jones, C.D., Sitch, S., 2009. Isoprene emissions and climate. 

Atmos. Environ. 43, 6121-6135. 

Park, C., Schade, G.W., Boedeker, I., 2010. Flux measurements of volatile organic 

compounds by the relaxed eddy accumulation method combined with a GC-FID 

system in urban Houston, Texas. Atmos. Environ. 44, 2605-2614. 

Park, C., Schade, G.W., Boedeker, I., 2011. Characteristics of the flux of isoprene and its 

oxidation products in an urban area. Journal of Geophysical Research: Atmospheres 

116, D21303. 

Parrish, D.D., 2006. Critical evaluation of US on-road vehicle emission inventories. 

Atmos. Environ. 40, 2288-2300. 

Pfister, G.G., Emmons, L.K., Hess, P.G., Lamarque, J.F., Orlando, J.J., Walters, S., 

Guenther, A., Palmer, P.I., Lawrence, P.J., 2008. Contribution of isoprene to 

chemical budgets: A model tracer study with the NCAR CTM MOZART-4. Journal 

of Geophysical Research: Atmospheres 113, D05308. 

Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., Guenther, A., 1998. 

Influence of increased isoprene emissions on regional ozone modeling. Journal of 

Geophysical Research: Atmospheres 103, 25611-25629. 

Pierce, T.E., Waldruff, P.S., 1991. PC-BEIS: A personal computer version of the 

biogenic emissions inventory system. Journal of the Air & Waste Management 

Association 41, 937-941. 



 

122 

 

Polissar, A.V., Hopke, P.K., Paatero, P., Malm, W.C., Sisler, J.F., 1998. Atmospheric 

aerosol over Alaska: 2. Elemental composition and sources. Journal of Geophysical 

Research: Atmospheres 103, 19045-19057. 

Polissar, A.V., Hopke, P.K., Poirot, R.L., 2001. Atmospheric aerosol over Vermont: 

Chemical composition and sources. Environmental Science & Technology 35, 4604-

4621. 

Potosnak, M.J., LeStourgeon, L., Pallardy, S.G., Hosman, K.P., Gu, L., Karl, T., Geron, 

C., Guenther, A.B., 2014. Observed and modeled ecosystem isoprene fluxes from an 

oak-dominated temperate forest and the influence of drought stress. Atmos. Environ. 

84, 314-322. 

Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., Zimmermann, 

N.E., 2011. Plant functional type mapping for earth system models. Geoscientific 

Model Development 4, 993-1010. 

Quigley, C.J., 2007. Refueling and evaporative emissions of volatile organic compounds 

from gasoline powered motor vehicles, Civil Engineering. University of Texas, 

Austin, p. 198. 

Ramadan, Z., Eickhout, B., Song, X.-H., Buydens, L.M.C., Hopke, P.K., 2003. 

Comparison of positive matrix factorization and multilinear engine for the source 

apportionment of particulate pollutants. Chemometrics and Intelligent Laboratory 

Systems 66, 15-28. 

Rao, K.S., 2002. ROADWAY-2: A model for pollutant dispersion near highways. 

Water, Air, & Soil Pollution: Focus 2, 261-277. 

Rappenglück, B., Lubertino, G., Alvarez, S., Golovko, J., Czader, B., Ackermann, L., 

2013. Radical precursors and related species from traffic as observed and modeled at 

an urban highway junction. Journal of the Air & Waste Management Association 63, 

1270-1286. 

Reid, S.B., Chinkin, L.R., Penfold, B.M., Gilliland, E.K., 2000. Emissions inventory 

validation and improvement: A central California case study. Sonama Technology, 

Inc., Petaluma, California. 



 

123 

 

Roy, S., Hegde, M.S., Madras, G., 2009. Catalysis for NOx abatement. Applied Energy 

86, 2283-2297. 

Rubin, J.I., Kean, A.J., Harley, R.A., Millet, D.B., Goldstein, A.H., 2006. Temperature 

dependence of volatile organic compound evaporative emissions from motor 

vehicles. Journal of Geophysical Research: Atmospheres 111, D03305. 

Sahlodin, A.M., Sotudeh-Gharebagh, R., Zhu, Y., 2007. Modeling of dispersion near 

roadways based on the vehicle-induced turbulence concept. Atmos. Environ. 41, 92-

102. 

Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I., Zeger, S.L., 2000. Fine particulate 

air pollution and mortality in 20 US Cities, 1987-1994. N. Engl. J. Med. 343, 1742-

1749. 

Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, 

B.R.T., 1996. Source apportionment of airborne particulate matter using organic 

compounds as tracers. Atmos. Environ. 30, 3837-3855. 

Scora, G., Barth, M., 2006. Comprehensive modal emissions model(CHEM), version 

3.01. University of California, Riverside, California. 

Seigneur, C., Pun, B., Pai, P., Louis, J.-F., Solomon, P., Emery, C., Morris, R., Zahniser, 

M., Worsnop, D., Koutrakis, P., White, W., Tombach, I., 2000. Guidance for the 

performance evaluation of three-dimensional air quality modeling systems for 

particulate matter and visibility. Journal of the Air & Waste Management 

Association 50, 588-599. 

Seinfeld, J.H., Pandis, S.N., 2006. Atmospheric chemistry and physics. From air 

pollution to climate change, 2 ed. John Wiley & Sons,Inc., Hoboken, New Jersey. 

Sharkey, T.D., Singsaas, E.L., Lerdau, M.T., Geron, C.D., 1999. Weather effects on 

isoprene emission capacity and applications in emissions algorithms. Ecological 

Applications 9, 1132-1137. 

Simon, H., Baker, K.R., Phillips, S., 2012. Compilation and interpretation of 

photochemical model performance statistics published between 2006 and 2012. 

Atmos. Environ. 61, 124-139. 



 

124 

 

Simon, H., Phillips, S., Possiel, N., Pouliot, G., Koupal, J., Zubrow, A., Eyth, A., Mason, 

R., 2011. Evaluation of CMAQ NOx performance using onroad vehicle emissions 

inputs from two mobile source emissions models, 2011 CMAS Conference, the 

Friday Center, UNC-Chapel Hill, North Carolina. 

Singer, B.C., Harley, R.A., Littlejohn, D., Ho, J., Vo, T., 1998. Scaling of infrared 

remote sensor hydrocarbon measurements for motor vehicle emission inventory 

calculations. Environmental Science & Technology 32, 3241-3248. 

Song, J., Vizuete, W., Chang, S., Allen, D., Kimura, Y., Kemball-Cook, S., Yarwood, 

G., Kiournourtzoglou, M.A., Atlas, E., Hansel, A., Wisthaler, A., McDonald-Buller, 

E., 2008. Comparisons of modeled and observed isoprene concentrations in southeast 

Texas. Atmos. Environ. 42, 1922-1940. 

Spirig, C., Neftel, A., Ammann, C., Dommen, J., Grabmer, W., Thielmann, A., Schaub, 

A., Beauchamp, J., Wisthaler, A., Hansel, A., 2005. Eddy covariance flux 

measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction 

mass spectrometry. Atmospheric Chemistry and Physics 5, 465-481. 

Tingey, D.T., Manning, M., Grothaus, L.C., Burns, W.F., 1979. The influence of light 

and temperature on isoprene emission rates from live oak. Physiologia Plantarum 47, 

112-118. 

USEPA, 2003. User's guide to MOBILE6 and MOBILE6.2. Mobile source emission 

factor model. U.S. Environmental Protection Agency, Washington, District of 

Columbia. 

USEPA, 2008. EPA positive matrix factorization (PMF) 3.0. Fundamentals and user 

guide. U.S. Environmental Protection Agency, Research Triangle Park, North 

Carolina. 

USEPA, 2010a. Transportation conformity guidance for quantitative hot-spot analyses in 

PM2.5 and PM10 nonattainment and maintenance areas. Transportation and 

Regional Programs Division, Office of Transportation and Air Quality ,U.S. 

Environmental Protection Agency, Washington, District of Columbia. 



 

125 

 

USEPA, 2010b. User guide for motor vehicle emission simulator MOVES2010a U.S. 

Environmental Protection Agency, Washington, District of Columbia. 

Uysal, N., Schapira, R.M., 2003. Effects of ozone on lung function and lung diseases. 

Current Opinion in Pulmonary Medicine 9, 144-150. 

Vallamsundar, S., Lin, J., 2011. MOVES Versus MOBILE. Transportation Research 

Record: Journal of the Transportation Research Board 2233, 27-35. 

Vardoulakis, S., Fisher, B.E.A., Pericleous, K., Gonzalez-Flesca, N., 2003. Modelling air 

quality in street canyons: a review. Atmos. Environ. 37, 155-182. 

Velasco, E., Pressley, S., Grivicke, R., Allwine, E., Coons, T., Foster, W., Jobson, B.T., 

Westberg, H., Ramos, R., Hernandez, F., Molina, L.T., Lamb, B., 2009. Eddy 

covariance flux measurements of pollutant gases in urban Mexico City. Atmospheric 

Chemistry and Physics 9, 7325-7342. 

Vizuete, W., Kim, B.U., Jeffries, H., Kimura, Y., Allen, D.T., Kioumourtzoglou, M.A., 

Biton, L., Hendersona, B., 2008. Modeling ozone formation from industrial emission 

events in Houston, Texas. Atmos. Environ. 42, 7641-7650. 

Wallace, H.W., Jobson, B.T., Erickson, M.H., McCoskey, J.K., VanReken, T.M., Lamb, 

B.K., Vaughan, J.K., Hardy, R.J., Cole, J.L., Strachan, S.M., Zhang, W., 2012. 

Comparison of wintertime CO to NOx ratios to MOVES and MOBILE6.2 on-road 

emissions inventories. Atmos. Environ. 63, 289-297. 

Wang, Y.J., DenBleyker, A., McDonald-Buller, E., Allen, D., Zhang, K.M., 2011. 

Modeling the chemical evolution of nitrogen oxides near roadways. Atmos. Environ. 

45, 43-52. 

Wang, Y.J., Nguyen, M.T., Steffens, J.T., Tong, Z., Wang, Y., Hopke, P.K., Zhang, 

K.M., 2013. Modeling multi-scale aerosol dynamics and micro-environmental air 

quality near a large highway intersection using the CTAG model. Science of The 

Total Environment 443, 375-386. 

Warneke, C., de Gouw, J.A., Del Negro, L., Brioude, J., McKeen, S., Stark, H., Kuster, 

W.C., Goldan, P.D., Trainer, M., Fehsenfeld, F.C., Wiedinmyer, C., Guenther, A.B., 

Hansel, A., Wisthaler, A., Atlas, E., Holloway, J.S., Ryerson, T.B., Peischl, J., Huey, 



 

126 

 

L.G., Hanks, A.T.C., 2010. Biogenic emission measurement and inventories 

determination of biogenic emissions in the eastern United States and Texas and 

comparison with biogenic emission inventories. Journal of Geophysical Research: 

Atmospheres 115, D00F18. 

Warneke, C., de Gouw, J.A., Goldan, P.D., Kuster, W.C., Williams, E.J., Lerner, B.M., 

Jakoubek, R., Brown, S.S., Stark, H., Aldener, M., Ravishankara, A.R., Roberts, 

J.M., Marchewka, M., Bertman, S., Sueper, D.T., McKeen, S.A., Meagher, J.F., 

Fehsenfeld, F.C., 2004. Comparison of daytime and nighttime oxidation of biogenic 

and anthropogenic VOCs along the New England coast in summer during New 

England air quality study 2002. J. Geophys. Res.-Atmos. 109, D10309. 

Wegmann, M., Fehrenbach, A., Heimann, S., Fehrenbach, H., Renz, H., Garn, H., Herz, 

U., 2005. NO2-induced airway inflammation is associated with progressive airflow 

limitation and development of emphysema-like lesions in C57BL/6 mice. 

Experimental and Toxicologic Pathology 56, 341-350. 

Weiss, M., Bonnel, P., Hummel, R., Provenza, A., Manfredi, U., 2011. On-road 

emissions of light-duty vehicles in Europe. Environmental Science & Technology 

45, 8575-8581. 

Wu, C.-f., Larson, T.V., Wu, S.-y., Williamson, J., Westberg, H.H., Liu, L.J.S., 2007. 

Source apportionment of PM2.5 and selected hazardous air pollutants in Seattle. 

Science of The Total Environment 386, 42-52. 

Xie, Y., Berkowitz, C.M., 2006. The use of positive matrix factorization with 

conditional probability functions in air quality studies: An application to 

hydrocarbon emissions in Houston, Texas. Atmos. Environ. 40, 3070-3091. 

Yarwood, G., Wilson, G., Shepaed, S., 2002. User's guide to the global biosphere 

emissions and interactions system (GloBEIS) version3. ENVIRON International 

Corporation, Novato, California. 

Ying, Q., Kleeman, M.J., 2006. Source contributions to the regional distribution of 

secondary particulate matter in California. Atmos. Environ. 40, 736-752. 



 

127 

 

Ying, Q., Krishnan, A., 2010. Source contributions of volatile organic compounds to 

ozone formation in southeast Texas. Journal of Geophysical Research: Atmospheres 

115, D17306. 

Zavala, M., Herndon, S.C., Slott, R.S., Dunlea, E.J., Marr, L.C., Shorter, J.H., Zahniser, 

M., Knighton, W.B., Rogers, T.M., Kolb, C.E., Molina, L.T., Molina, M.J., 2006. 

Characterization of on-road vehicle emissions in the Mexico city metropolitan area 

using a mobile laboratory in chase and fleet average measurement modes during the 

MCMA-2003 field campaign. Atmospheric Chemistry and Physics 6, 5129-5142. 

Zavala, M., Herndon, S.C., Wood, E.C., Onasch, T.B., Knighton, W.B., Marr, L.C., 

Kolb, C.E., Molina, L.T., 2009. Evaluation of mobile emissions contributions to 

Mexico city's emissions inventory using on-road and cross-road emission 

measurements and ambient data. Atmospheric Chemistry and Physics 9, 6305-6317. 

Zhang, H., Li, J., Ying, Q., Guven, B.B., Olaguer, E.P., 2013. Source apportionment of 

formaldehyde during TexAQS 2006 using a source-oriented chemical transport 

model. Journal of Geophysical Research: Atmospheres 118, 1525-1535. 

Zhang, H., Ying, Q., 2011a. Contributions of local and regional sources of NOx to ozone 

concentrations in southeast Texas. Atmos. Environ. 45, 2877-2887. 

Zhang, H., Ying, Q., 2011b. Secondary organic aerosol formation and source 

apportionment in southeast Texas. Atmos. Environ. 45, 3217-3227. 

Zhang, H., Ying, Q., 2012. Secondary organic aerosol from polycyclic aromatic 

hydrocarbons in southeast Texas. Atmos. Environ. 55, 279-287. 

Zhang, R.Y., Suh, I., Lei, W., Clinkenbeard, A.D., North, S.W., 2000. Kinetic studies of 

OH-initiated reactions of isoprene. Journal of Geophysical Research-Atmospheres 

105, 24627-24635. 

Zhu, Y., Hinds, W.C., Kim, S., Shen, S., Sioutas, C., 2002. Study of ultrafine particles 

near a major highway with heavy-duty diesel traffic. Atmos. Environ. 36, 4323-

4335. 



 

128 

 

Zhu, Y., Pudota, J., Collins, D., Allen, D., Clements, A., DenBleyker, A., Fraser, M., Jia, 

Y., McDonald-Buller, E., Michel, E., 2009. Air pollutant concentrations near three 

Texas roadways, Part I: Ultrafine particles. Atmos. Environ. 43, 4513-4522. 

 

 

 

 

 

 

 



 

129 

 

APPENDIX A 

 

 
Figure A1 Emission factors for lumped Class B vehicle as a function of vehicle speed 

based on the 2007 US national fleet from MOVES.  

 

Performance of TAMNROM 3-D under parallel winds in the same field study was 

evaluated using the NOx observations from Wang et al. (2011). During the simulation 

episode average wind speed and temperature were 2.71 m s-1 and 29.4 0C respectively. 

The emissions from roadways were calculated based on an average traffic volume of 

12.9 vehicles per minute (28% of which are considered as Class B vehicles) moving at 

speed of 35 mph during the model episode (Wang et al., 2011). Figure A1 shows the 

dilution of NOx with parallel winds (0 degrees) and with near parallel winds (348 

degrees). Results indicate that TAMNROM-3D can also well predicts the dilution of 

pollutants under parallel wind condition.  
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Figure A2 Predicted NOx as a function of downwind distances for the cases where wind 

is exactly parallel to roadway and for the case with wind direction 345.8 degrees (from 

north, the angel between the road and wind direction is 14.2 degrees). 

 

To study the sensitivity of the grid size to results, a new simulation with a horizontal grid 

size of 2.125×2.125m and a vertical height of 80 m was conducted. The vertical domain 

was divided into 24 layers with a vertical spacing of grid cells varies from 1 m near the 

surface to 20 m at the top. Figure A3 (a) shows that surface NOx profiles in the base case 

and the higher resolution case are almost identical. Figure A3 (b) shows that using a 

finer resolution in the vertical direction leads to very small differences in the vertical 

concentration profile of NOx. 

 
Figure A3 Predicted NOx horizontal (a)and vertical profiles (b) based on the original 

grid setup and a finer grid. 
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Figure A4 Change in NOx concentrations as a function of distance for the case with 

original MOVES emissions (100% NOx), base case (85% NOx) and a case where 

MOVES emission factor has been scaled by 75% (75% NOx). Mean Fractional Bias 

(MFB) is included in the brackets. MFB=2(P-O)/(P+O), where P and O are 

corresponding observation and prediction at a distance.  

 

 
Figure A5 (a) Pseudo first order reaction rate coefficients (k’) of NO conversion due to 

O3, HO2 and RO2 (for X=O3 and HO2, k’=k*[X]; for RO2, 2,1
' [ ]

n

i ii
k k RO


 ; n is the 

number of RO2 radical species in the mechanism, k is the reaction rate of the compounds 

with NO) as function of downwind distance.  
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APPENDIX B 

 

B.1 Source Apportionment of Concentration Data 

A subset of the concentration data matching the available flux data was used in the 

analysis. Although the concentration data themselves need not be screened based on u* 

and non-stationarity as applied to the flux data, selecting matching time periods for the 

flux and concentration data allows a more reasonable comparison between the 

concentration and flux source apportionment results.  

The concentration data were analyzed using Multilinear Engine version 2 (ME-2) 

assuming four, five and six factors. In the four-factor model, two profiles (vehicle 

exhaust and residential and commercial solvent emissions) were not separated. In the 

six-factor model two similar profiles both identified as consumer and commercial 

solvent use emissions were observed. The five-factor model (with an fpeak value of 1) 

yielded reasonable source profiles and was used in subsequent analyses. In order to 

corroborate the ME-2 analysis, the measured concentrations were also analyzed using 

the Unmix model, which also resulted in the same five sources. Bootstrap analysis was 

used for both ME-2 and Unmix analyses to ensure the robustness of the chemical 

composition of the profiles. 100 bootstrap runs with minimum correlation R-value of 0.6 

were conducted.  

The resultant factor profiles from both multivariate methods are shown in Figure B1. 

The first source is dominated by C4 alkanes, which accounts for 57% (by mass) of the 

VOCs in the PMF profile and 49% of the VOCs in the Unmix profile. Both PMF and 

Unmix profiles match a number of consumer and commercial solvent use emissions 

VOC profiles in the SPECIATE database (θ=97.5% for PMF profile and θ=95% for 

Unmix profile). The second source representing emissions from a foam plastics industry 

is dominated by pentane (C5H12), which accounts for 79% of the VOCs in the PMF 

profile and 77% of the VOCs in the Unmix profile. The third source predominantly 

includes toluene (TOLU, 20% of the VOCs in the PMF profile and 16% of the VOCs in 

the Unmix profile) and m/p xylenes (MPXYL, 25% and 15% of VOCs in the PMF and 

Unmix profiles, respectively). In addition to toluene and m/p-xylenes, the profiles also 

have a significant amount of benzene (BENZ), ethylbenzene (EBENZ) and o-xylene 

(OXYL). The profiles match several similar vehicle exhaust profiles in the SPECIATE 

database (θ=94% for PMF and 95% for Unmix). The fourth source matches with several 

similar evaporative fuel emissions profiles in the SPECIATE database (θ=91.8% for 

PMF and 92% for Unmix). This profile is dominated by isopentane, (IC5H12, 19% and 

24% of the VOCs in the PMF and Unmix profiles, respectively) and C4 alkanes (18% 

and 24% of the VOCs in the PMF and Unmix profiles, respectively). The last source 

includes isoprene (C5H8) as the major VOC species (35% and 17% of the VOCs in ME-

2 and Unmix profiles, respectively). The profile matches a biogenic emissions profile in 

the SPECIATE database (θ=83% for PMF and θ=77% for Unmix).  
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Figure B1: Predicted source profiles (mg mg-1) by ME-2 (black) and Unmix (red) based 

on the concentration data. Error bars are standard deviations estimated using bootstrap 

analyses.  

A comparison of reconstructed concentrations of species from ME-2 with measured 

concentrations is shown in Figure B2. In general, the ME-2 model reproduces the 

observed concentrations well. Table B3 shows normalized mean bias factor (NMBF) and 

for each VOC species. For species with lower concentrations such as MVK and MACR, 

a slight under-prediction is observed.  That is expected as these species are mostly 

secondary products from isoprene oxidation, and their formation rates vary by different 

emissions as driven by meteorological conditions.  
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Figure B2: ME-2 reconstructed and observed concentrations of VOC species measured 

at the Yellow Cab Tower. Units are µg/m3. 

 

Table B1 shows the percentage of missing fluxes and concentrations for each species. 

Most of the species had less than 20% negative flux data points within the entire data set. 

The negative fluxes were generally much smaller in magnitude compared to the positive 

fluxes and were mostly due to noise associated with the measured concentrations in the 

up and downdrafts. However, some of the absolute values of negative fluxes were 

significantly negative, and possibly indicative of advective effects due to source 

heterogeneity. 

Table B1 Percentage of negative fluxes and missing fluxes and concentrations  

Abbreviation of Species Percentage of 

negative fluxes (%) 

Percentage of 

missing* fluxes or 

concentrations (%)  

C4 9.5 1.5 

C5H8 13.1 15.1 

C5H12 12.9 5 

IC5H12 18.1 1.8 

BENZ 22.1 0.1 

EBENZ 19.8 1.3 

NC6H14 17.1 2.3 

M2PEN 19.8 2.1 

M3PEN 37.8 5.4 

TOLU 11.8 1.7 

NC7H12 14.9 1.4 

M2HEX 19.4 3.4 

NEOH 14.6 3.3 
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MPXYL 9.6 1.4 

OXYL 26.5 1.3 

MACR 12.3 45.3 

MVK 36.3 8.05 

MEK 16.5 49.4 

Note: Here ‘missing’ denotes fluxes with one or both of the GC-FID channels had 

concentration below MDL.  

B.2 Selection of the FPEAK parameter for flux data 

Different possible FPEAK parameters were explored in this study. As negative FPEAK 

parameters showed convergence issues (Around 10% of their bootstrap runs did not 

converge), their results are not shown here. The results of three FPEAK cases 0, 3, 4 and 

5 are discussed in detail here. Q/Qexpected was 1.12, 1.14, 1.15 and 1.6 for 0, 3, 4 and 5 

FPEAK cases respectively. 83.1, 83.8, 83.7 and 83.3% of total VOC was reproduced for 

0, 3, 4 and 5 FPEAK cases respectively. From Table B2, it is clear that compared to 

selected FPEAK case (FPEAK=4) percentage of dominant species are similar with 

FPEAK 3 and 5 cases, but higher than FPEAK 0. For example, biogenic emissions are 

dominated by isoprene by 15%, 40%, 44% and 43% for 0, 3, 4 and 5 FPEAK cases 

respectively. The comparison of predicted and observed fluxes of different species is 

shown in Table B3.  Results indicate that for most of the species normalized mean bias 

factor (NMBF) for FPEAK 3, 4 and 5 cases were similar, unlike for FPEAK case 0. 

Only 4 species in FPEAK cases 0 showed better results than selected FPEAK (FPEAK 

=4) case.  

Table B2: Comparison of percentage of dominant species for FPEAK cases 0, 3, 4 and 5 

Percentage of 

dominant species 

in the source 

profile 

FPEAK=0 FPEAK=3 FPEAK=4 FPEAK=5 

Consumer and 

commercial 

solvent use 

emissions 

 

28% 42% 43% 43% 

Foam Plastic 

industry 

emissions 

36% 58% 60% 59% 

     

Vehicle exhaust 13%  23% 24% 24% 

     

Evaporative 

emissions 

23% 30% 30% 30% 

     

Biogenic 

emissions 

15% 40% 44% 43% 
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Table B3 Normalized Mean Bias Factor (NMBF), calculated for different species for 

five factor solution. NMBF for FPEAK values of 0, 3, 4 and 5 are shown.   

Abbreviation Fpeak=0 Fpeak=3 Fpeak=4 Fpeak=5 
C4 -0.36 -0.34 -0.34 -0.34 

C5H8 -0.06 -0.02 -0.02 -0.02 

C5H12 -0.16 -0.17 -0.19 -0.21 

IC5H12 -0.1 -0.1 -0.1 -0.1 

BENZ -0.38 -0.38 -0.38 -0.38 

EBENZ -0.08 -0.07 -0.07 -0.07 

NC6H14 -0.1 -0.09 -0.08 -009 

M2PEN -0.01 -0.003 -0.002 -0.004 

M3PEN -0.26 -0.26 -0.25 -0.25 

TOLU -0.41 -0.42 -0.42 -0.43 

NC7H12 -0.12 -0.12 -0.12 -0.13 

M2HEX -0.07 -0.06 -0.06 -0.06 

NEOH -0.07 -0.06 -0.05 -0.06 

MPXYL -0.1 -0.08 -0.08 -0.09 

OXYL 0.003 0.007 0.008 0.008 

MACR -0.97 -0.9 -0.89 -0.9 

MVK -3.6 -3.4 -3.4 -3.4 

MEK -0.5 -0.47 -0.47 -0.48 

* Definitions and brief explanations of NMBF can be found in the paragraph below 

Table B5. 

 

 

B.3 Comparison of concentration and flux source apportionment results 

Table B4 Matching profile names, profile id in parentheses, in the SPECIATE 4.2 

database for concentration and flux data along with their θ values.  

Source  Concentration Flux 

Consumer and commercial 

solvent use emissions 

Consumer and commercial 

products: Household 

products (8514); θ=97.5% 

Consumer and Commercial 

Products: Household 

Products (8511); θ=97.5% 

Consumer and Commercial 

Products: Household 

Products: Hard Surface 

Cleaners (8512); θ=97.4% 

Consumer and Commercial 

Products: Personal Care 

Products (8501); θ=97.3% 

Consumer and Commercial 

Products: Miscellaneous 

Products (8531); θ=97.3% 

Consumer and 

commercial products: 

Household products 

(8514); θ=97.4% 

Consumer products: 

Rubber and vinyl 

protectants (3021); 

θ=97.3% 

Consumer products: 

Household products 

(3146); θ=97.1% 

Consumer products: 

Personal care products 

(3147); θ=96.9% 

Consumer and 

commercial products: 
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Household products 

(8512); θ=96.9% 

Consumer and 

commercial products: 

Miscellaneous products 

(8539); θ=96.9% 

 

Foam plastics industry 

emissions source 

Pentane* (1198); θ=100% Pentane (1198); θ=100% 

Vehicle tailpipe exhaust Vehicle exhaust (2492); 

θ=94.1% 

Vehicle Exhaust  (2510); 

θ=91.8% 

Vehicle Exhaust (2499); 

θ=90.7% 

Vehicle Exhaust (2520); 

θ=90.3% 

Light-Duty Gasoline 

Vehicles – Exhaust (1203); 

θ=89.4% 

Vehicle exhaust 

(2510);θ=91.8% 

Light-Duty Gasoline 

Vehicles – Exhaust 

(1203); θ=90% 

Vehicle Exhaust (2492); 

θ=88.2% 

Vehicle Exhaust (2499); 

θ=87.5% 

Vehicle Exhaust (2491); 

θ=86% 

Evaporative emissions Gasoline headspace vapor-

Exxon Grade 93 (4471); 

θ=91.8% 

Gasoline Headspace Vapor 

- Shell Grade 93 (8571); 

θ=90.4% 

Gasoline Headspace Vapor 

- Circle K Grade 93 (8614); 

θ=89.8% 

Gasoline Headspace Vapor 

- Exxon Grade 89 (4530); 

θ=89.3% 

Gasoline Headspace Vapor 

– Super America Grade 87 

(4503); θ=89.3% 

Gasoline vapor ‘Hot-

Soak’ (2452), θ=93.6% 

Gasoline headspace 

vapor-Conoco grade 89 

(8550), θ=92.3% 

Gasoline headspace 

vapor-Shell grade 89 

(4482), θ=91.0% 

Gasoline Headspace 

Vapor - Exxon Grade 89 

(8541); θ=90.1% 

Gasoline Headspace 

Vapor - Chevron Grade 

89 (8541); θ=89% 

 

Biogenic emissions Isoprene (1148); θ=83% Isoprene (1148); θ=91% 

Note: In the ‘pentane’ profile (1198), pentane is the only species.   
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Table B5 Normalized mean bias factor (NMBF) and normalized mean absolute error 

factor (NMAEF) calculated for different species.  

Abbreviation Concentration Flux 

 NMBF NMAEF NMBF NMAEF 

C4 -0.08 0.19 -0.34 0.70 

C5H8 0.07 0.18 -0.02 0.17 

C5H12 -0.40 0.08 -0.19 0.28 

IC5H12 -0.15 0.22 -0.10 0.58 

BENZ -0.08 0.18 -0.38 0.89 

EBENZ -0.06 0.18 -0.07 0.58 

NC6H14 -0.07 0.16 -0.08 0.44 

M2PEN -0.13 0.21 -0.002 0.56 

M3PEN -0.08 0.17 -0.25 0.45 

TOLU -0.16 0.28 -0.42 0.74 

NC7H12 -0.08 0.18 -0.12 0.55 

M2HEX -0.05 0.15 -0.06 0.43 

NEOH -0.03 0.13 -0.05 0.32 

MPXYL -0.03 0.17 -0.08 0.40 

OXYL -0.07 0.23 0.008 0.74 

MACR 0.002 0.21 -0.89 1.20 

MVK -0.003 0.26 -3.40 10.6 

MEK -0.22 0.45 -0.47 1.00 

 

Definitions and interpretation of NMBF and NMAEF 

 

The above definitions are valid when P / O = P /O , i.e. the signs of predicted mean ( P ) 

and observed mean ( O ) should be the same. If the signs are different, NMBF and 

NMAEF are undefined.  This did not occur for any species in the current study. The sign 

of NMBF indicates whether �̅� is under (<0) or overestimated (>0) relative to the 

observed mean ( �̅�). The magnitude of NMBF indicates the factor of the under or 

overestimation. NMAEF is always positive and varies from 0 to ∞.  It represents the 

ratio of the mean absolute gross error and mean prediction or observation.  Based on 

NMBF and NMAEF in Table B5, both observed concentrations and fluxes were under-

predicted by ME-2 analysis. While the NMBF for concentration and flux data are similar 

for many species, flux data in general have larger NMAEF values. This is reflected by 
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more scattered data shown in figure 19 for fluxes than data in Figure B2 for 

concentrations.  

 

 
Figure B3: Predicted source profiles (mg mg-1) for concentrations (black) and fluxes 

(blue). Error bars are standard deviations estimated using bootstrap analyses.  
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Table B6 shows a comparison of the average relative contributions of each source to 

total VOCs for the flux and concentration data. Contributions due to biogenic, consumer 

and commercial solvent use emissions and vehicle exhaust were quite similar. For the 

concentration data, evaporative emissions have higher contributions than the foam 

plastics industry emissions but for the flux data the foam plastics industry source has 

higher contributions. This is an expected result since the foam plastics industry source is 

a localized point source (and of known location) in the tower’s footprint, while the 

evaporative source is a large area source, likely to be found all over Houston. 

 

Table B6 Comparison of average relative contributions of each source (percentage) to 

total VOCs for concentration and flux data.   

Source Concentration Flux 

Consumer and commercial solvent use emissions 27.8% 21.5% 

Foam plastics industry emissions 23% 32% 

Vehicle exhaust 8.8% 12% 

Evaporative emissions 30.5% 23.3% 

Biogenic emissions 10% 11.2% 

 

B.4 More details on evaporative emissions 

B.4.1 Emissions from gasoline transport facility  

A gasoline transport company approximately 1.2 km to the east of the sampling site 

(Figure 17) operates gasoline transport trucks that accumulate 30-40 trips per day, and 

might also contribute to the measured flux at YCT.  Each truck can transport 

approximately 33 m3 of fuel. The evaporation of gasoline during refueling of these 

trucks, estimated using the US EPA’s Air Pollutant Emission factors (AP-42) 

(http://www.epa.gov/ttn/chief/ap42/index.html) for refueling losses, is 212 mg L-1. Flux-

footprint values were used to calculate the contributions to the measured flux at the 

tower.  

B.4.2 Emission from fuel service stations 

There are two fuel service stations (gas stations), located at 480 m NNE and 1380 m SE 

of the tower, as shown in Figure 17. It was estimated that an average of 4000 gallons of 

fuel was sold per day, according to National Association of Convenience and Refueling 

Stores annual report 2011. Assuming 167 gallons of fuel per hour were sold in those 

stations, however, only a decrease of less than 1% was observed in the vehicle 

evaporative emission factor. 

B.4.3 Parked vehicle density 

If the parked vehicle density in other areas was higher than what was expected, the 

evaporative emission factors would accordingly be lower. However, it would require a 

vehicle density of more than 40 vehicles per grid cell to arrive at an emission factor on 

the order of 0.4 g h-1 vehicle-1. Such a high density of vehicles (approximately two times 

higher than vehicle density in the YC parking lots) in the surrounding area is unrealistic. 

 

B.5 Other Supporting Data 
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Figure B4: Yellow Cab Tower (YCT) and surround areas (Google Map image). White 

line on the figure represents approximately 1 km. ‘A’ is the location of YCT. 
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Figure B5: Local streets (marked with red boxes) included in the vehicle exhaust 

emission factor calculation (Google Map image). ‘A’ represents the Yellow Cab Tower. 

Streets with north/south bound traffic arrows are Elysian and Hardy, respectively. 

Collingsworth and Quitman are near the north and south boundary of the figure. White 

bar in the lower-left represents approximately 200 m. 
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Table B7 Mean and standard deviation (SD) of number of vehicles observed, on 

weekdays, during March and November 2011 as a function of time for Elysian, Hardy, 

Quitman, Collingworth and Hays streets. 

  Elysian Hardy Quitman Collingsworth Hays 

Hour Mean SD Mean SD Mean SD Mean SD Mean SD 

0 23 5 26 5 28 4 30 12 12 4 

1 15 11 12 3 16 5 23 11 8 3 

2 13 7 10 3 15 5 20 6 6 2 

3 10 4 12 3 12 4 23 10 7 3 

4 16 5 22 5 25 9 25 6 12 6 

5 39 10 67 14 71 13 65 23 47 8 

6 87 7 281 52 173 12 133 42 64 7 

7 182 26 845 149 453 71 233 71 288 60 

8 148 11 610 108 306 26 187 32 109 17 

9 139 9 233 39 237 15 177 19 108 7 

10 154 11 170 26 217 30 169 44 110 11 

11 180 10 177 34 223 19 203 56 120 12 

12 198 16 196 33 241 25 272 31 168 36 

13 202 13 194 30 245 35 233 13 122 10 

14 235 24 194 32 229 24 238 24 136 19 

15 378 34 280 45 308 32 279 32 248 27 

16 533 35 256 38 292 43 317 35 185 20 

17 646 108 264 43 363 28 323 39 178 17 

18 340 85 224 36 333 25 270 34 177 18 

19 183 25 167 25 246 30 210 47 129 12 

20 105 27 125 19 178 17 156 37 90 11 

21 96 26 95 14 122 11 127 30 65 11 

22 74 22 74 12 83 12 101 28 50 11 

23 53 17 43 13 59 12 67 23 32 6 
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Table B8 Mean and standard deviation (SD) of number of vehicles observed, on 

weekends, during March and November 2011 as a function of time for Elysian, Hardy, 

Quitman, Collingworth and Hays streets. 

  Elysian Hardy Quitman Collingsworth Hays 

 Hour Mean SD Mean SD Mean SD Mean SD Mean SD 

0 57 13 53 10 77 14 54 10 28 2 

1 40 18 38 7 49 12 44 7 17 4 

2 51 25 33 6 46 15 44 5 17 7 

3 23 5 21 4 25 4 23 4 17 4 

4 18 4 16 4 21 4 18 4 7 2 

5 24 5 30 7 36 6 33 9 20 7 

6 35 8 57 13 69 14 55 20 23 5 

7 62 20 91 23 144 36 83 20 32 8 

8 87 13 101 21 184 22 122 15 51 13 

9 112 13 129 23 226 17 165 17 76 25 

10 125 6 143 27 219 12 203 15 77 21 

11 133 19 149 29 235 29 221 12 89 18 

12 156 43 163 30 261 41 227 23 97 17 

13 153 48 168 25 258 41 236 15 97 15 

14 156 47 173 29 241 50 237 24 102 23 

15 150 52 160 29 242 37 239 13 109 19 

16 154 30 161 28 255 43 259 13 105 18 

17 165 21 163 27 247 12 243 17 106 20 

18 146 22 163 27 262 14 231 24 93 10 

19 131 17 132 19 238 11 187 17 87 10 

20 106 7 121 18 189 15 154 21 70 13 

21 94 19 111 17 146 11 143 9 68 17 

22 87 24 111 17 126 22 102 16 45 11 

23 67 16 73 15 79 19 71 16 27 10 
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Table B9 Mean and standard deviation (SD) of observed vehicle speeds (m s-1) on 

weekdays during March and November 2011 as a function of time for Elysian, Hardy, 

Quitman, Collingworth and Hays streets. 

  Elysian Hardy Quitman Collingsworth Hays 

Hour Mean SD Mean SD Mean SD Mean SD Mean SD 

0 15.6 3.6 14.4 3.6 10.4 2.5 13.4 2.3 12.9 4.7 

1 15.2 3.7 14.3 3.8 10.3 1.9 12.2 3.1 12.3 3.0 

2 15.1 3.4 14.5 4.1 10.1 1.7 10.6 3.8 12.8 2.9 

3 16.1 2.8 14.1 3.7 10.8 2.6 11.4 4.7 11.5 4.1 

4 15.4 3.2 14.9 3.5 10.1 2.4 13.2 2.5 13.7 3.0 

5 14.7 4.1 15.0 3.9 10.3 2.5 14.4 2.2 14.1 2.7 

6 16.0 3.2 16.6 3.4 10.1 2.5 13.4 2.0 12.3 3.1 

7 15.7 3.3 16.9 3.1 9.1 2.4 11.0 2.3 10.8 2.9 

8 15.7 3.2 16.6 3.0 9.7 2.6 12.5 2.5 12.0 3.0 

9 15.6 3.2 16.6 3.3 9.7 2.3 13.0 2.2 11.8 2.9 

10 15.6 3.1 15.8 3.5 9.7 2.2 12.7 2.5 11.7 2.9 

11 15.7 3.0 15.0 3.5 10.1 2.1 12.8 2.5 11.9 3.2 

12 15.8 2.8 14.8 3.2 10.1 2.0 12.9 2.2 11.5 2.8 

13 16.1 3.1 14.9 3.4 9.8 2.1 12.9 2.4 11.8 2.6 

14 16.1 3.1 15.2 3.3 10.1 2.0 12.2 2.6 12.0 2.8 

15 16.2 2.8 15.1 3.5 9.4 2.1 11.4 2.5 10.4 2.6 

16 16.9 2.6 15.1 3.1 9.8 2.1 11.2 3.1 11.8 2.9 

17 16.8 2.4 15.0 3.1 9.2 2.2 12.0 2.6 11.7 2.9 

18 16.5 2.6 15.2 3.2 9.1 2.1 12.5 2.0 11.8 2.9 

19 15.8 2.9 14.8 3.2 9.3 2.0 12.8 2.1 11.9 2.9 

20 15.4 3.0 14.2 3.3 9.5 2.0 13.0 2.0 11.6 2.9 

21 15.5 3.0 14.2 3.1 9.8 2.0 13.1 2.1 11.9 3.0 

22 15.3 3.2 14.3 3.4 10.0 2.1 12.9 2.1 12.1 3.1 

23 15.9 2.7 14.6 3.2 10.0 1.9 13.1 2.0 12.2 3.9 

 

 

Table B10 Mean and standard deviation (SD) of observed vehicle speeds (m s-1) on 

weekends during March and November 2011 as a function of time for Elysian, Hardy, 

Quitman, Collingworth and Hays streets. 

  Elysian Hardy Quitman Collingsworth Hays 

Hour Mean SD Mean SD Mean SD Mean SD Mean SD 

0 15.5 3.1 14.2 3.4 10.0 2.2 12.8 2.4 11.5 2.4 

1 15.2 3.4 15.4 5.0 10.1 2.3 13.2 2.6 11.4 3.2 

2 14.8 3.5 15.2 4.4 10.6 1.7 13.6 3.0 12.2 2.0 
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3 16.1 3.0 15.6 3.2 9.9 1.7 13.1 2.8 13.8 3.3 

4 15.4 3.8 14.9 3.9 10.1 2.2 13.5 2.2 11.3 3.2 

5 14.7 3.8 13.5 4.6 10.0 2.3 14.2 2.1 13.6 3.4 

6 16.2 3.8 15.0 5.1 10.1 2.3 14.0 2.7 13.3 3.6 

7 15.7 3.2 15.2 3.6 10.0 2.3 12.9 2.6 12.6 3.5 

8 15.7 3.3 15.9 3.2 9.8 2.1 12.8 2.5 11.5 3.7 

9 16.0 3.1 15.3 3.4 9.6 2.0 12.7 2.7 11.4 4.3 

10 15.7 3.3 15.4 3.6 10.3 2.1 12.7 2.5 11.1 3.5 

11 16.0 2.9 14.9 3.3 10.0 1.9 12.6 2.5 11.6 3.0 

12 16.1 3.3 14.9 3.6 9.9 2.0 12.3 2.8 11.9 3.3 

13 16.0 3.0 14.8 3.4 9.8 2.0 12.6 2.3 11.6 2.7 

14 16.2 3.3 15.0 3.1 10.1 2.1 12.5 2.4 12.3 3.4 

15 15.9 3.1 14.6 3.5 9.9 2.0 12.7 2.5 12.4 2.8 

16 15.8 3.1 14.3 3.5 9.9 2.0 11.3 3.3 12.4 3.1 

17 15.8 2.9 15.0 3.2 9.1 2.2 11.5 2.7 12.3 3.3 

18 15.6 3.6 15.0 3.4 9.3 2.2 12.6 2.2 12.2 3.6 

19 15.5 2.8 14.2 3.2 9.5 2.1 12.7 2.0 11.4 2.7 

20 15.4 3.0 14.8 3.1 9.9 2.0 12.5 1.9 11.5 2.7 

21 15.7 3.0 14.5 3.2 9.8 2.2 12.9 2.2 11.6 2.6 

22 15.6 2.7 14.0 3.6 9.8 2.0 12.8 1.9 12.4 2.7 

23 15.1 3.0 14.1 3.3 9.8 2.2 13.1 2.0 11.9 2.7 
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APPENDIX C 

 

 
Figure C1 Comparison of predicted and observed hourly concentrations of ozone.  
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Table C1 Performance statistics of predicted hourly ozone concentrations for base case 

(BC) and case with biogenic emissions reduced by 66% at TCEQ operated stations.  
    MFB MFE MNB MNE 

Site EPA Site No. BC 66% BC 66% BC 66% BC 66% 

Manvel park 480391004 -0.08 -0.13 0.12 0.15 -0.07 -0.12 0.11 0.14 

Lake Jackson 480391016 0.03 -0.02 0.13 0.12 0.04 -0.01 0.13 0.11 

Groves 481670014 -0.02 -0.05 0.12 0.13 -0.01 -0.04 0.12 0.12 

Aldine 482010024 -0.13 -0.16 0.16 0.18 -0.11 -0.14 0.15 0.16 

Channelview 482010026 -0.13 -0.18 0.17 0.20 -0.11 -0.15 0.15 0.18 

Northwest Harris 482010029 -0.16 -0.18 0.18 0.19 -0.14 -0.16 0.16 0.17 

Houston North 482010046 -0.04 -0.08 0.13 0.14 -0.03 -0.06 0.13 0.13 

Lang 482010047 -0.01 -0.05 0.13 0.14 0.01 -0.03 0.13 0.13 

Croquet 482010051 0.09 0.03 0.15 0.14 0.11 0.04 0.17 0.15 

Pecan valley 482010055 -0.06 -0.12 0.14 0.17 -0.05 -0.10 0.13 0.15 

Monroe 482010062 -0.06 -0.13 0.17 0.20 -0.04 -0.10 0.16 0.17 

Hou. Westhollow 482010066 -0.07 -0.12 0.15 0.18 -0.05 -0.10 0.14 0.15 

Polk Avenue 482010070 -0.18 -0.24 0.23 0.27 -0.14 -0.19 0.19 0.22 

Texas Avenue 482010075 -0.11 -0.17 0.17 0.20 -0.09 -0.14 0.16 0.18 

Park Place 482010416 -0.24 -0.31 0.27 0.32 -0.19 -0.24 0.22 0.25 

Lynchburg 482011015 -0.21 -0.26 0.23 0.26 -0.17 -0.21 0.19 0.21 

Hou. East 482011034 -0.15 -0.19 0.19 0.21 -0.12 -0.16 0.17 0.19 

Clinton 482011035 -0.19 -0.25 0.21 0.26 -0.16 -0.21 0.18 0.21 

Deer Park 482011039 -0.17 -0.24 0.20 0.26 -0.14 -0.20 0.17 0.21 

Seabrook 482011050 -0.04 -0.09 0.13 0.14 -0.03 -0.07 0.12 0.13 

Beaumont 482450009 -0.05 -0.10 0.18 0.19 -0.02 -0.06 0.17 0.17 

Port Arthur 482450011 -0.13 -0.18 0.17 0.20 -0.11 -0.15 0.15 0.17 

Jefferson 482450018 0.05 0.02 0.05 0.04 0.05 0.02 0.05 0.04 

Hamshire 482450022 -0.11 -0.13 0.15 0.16 -0.09 -0.11 0.14 0.15 

Sabine Pass 482450101 -0.06 -0.10 0.14 0.15 -0.04 -0.08 0.13 0.14 

SETPRC Port Arthur 482450628 -0.10 -0.16 0.19 0.22 -0.07 -0.12 0.17 0.19 

Conroe 483390078 -0.14 -0.14 0.14 0.14 -0.13 -0.13 0.13 0.13 

West Orange 483611001 -0.04 -0.06 0.21 0.22 0.01 -0.01 0.22 0.23 

Maurice Ville 483611100 -0.02 -0.05 0.13 0.12 -0.01 -0.04 0.13 0.12 

          

 

 

 




