
 

 

 

 

MODELING THE HYDROLOGIC IMPACT OF ARUNDO DONAX ON THE 

HEADWATERS OF THE NUECES RIVER USING THE SWAT MODEL 

 

 

A Thesis 

by 

SHAILEE PRAFULL JAIN  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Chair of Committee,    Clyde L. Munster 

Co-Chair of Committee,   Srinivasulu Ale 

Committee Member,   James R. Ansley  

Intercollegiate Faculty Chair, Ronald Kaiser 

 

August 2014 

 

Major Subject: Water Management and Hydrological Science 

 

Copyright 2014 Shailee Prafull Jain



 

ii 

 

ABSTRACT 

 

The invasive species Arundo donax (hereafter Arundo), has invaded the riparian 

zones of the Rio Grande River and the rivers of the Texas Hill Country over the last two 

decades. Arundo, also known as the giant cane, is a robust herbaceous plant that can 

grow in many different climatic conditions. Arundo was first observed along the Nueces 

River in 1994 by the Nueces River Authority (NRA). It then spread rapidly downstream 

due to its high growth rate and/or stream flow and completely displaced the native 

vegetation, primarily P. virgatum (hereafter switchgrass), in the riparian zone wherever 

it got established. An eradication program was started in 2010 by the NRA to remove 

Arundo from the Nueces River. The objective of this research project was to (1) develop 

an algorithm to simulate the propagation of Arundo, (2) study changes in streamflow 

patterns during pre- and post- Arundo invasion periods, (3) calibrate and validate the 

Soil Water Assessment Tool (SWAT) for the Nueces River Headwater (HUC 12110101) 

watershed in central Texas, and (4) assess the effects of the invasion of Arundo on the 

watershed hydrology by comparing it to the native grass species switchgrass (Panicum 

virgatum) that used to be the dominant species in the watershed. Arundo parameters 

appropriate for the Nueces River were added to create a new crop category in the SWAT 

database. Calibration and validation of SWAT were based on measured streamflow data 

available at the USGS gage (USGS 08910000) on the Nueces River for the period 1960 

to 1994.  
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Switchgrass, the native vegetation, was chosen as the plant to compare Arundo 

with so that the difference in hydrology could be understood. The results revealed that 

accumulated evapotranspiration was not statistically different between Arundo and 

switchgrass for the period of 16 years (1995-2010). There was also no difference in the 

water yields of Arundo and switchgrass. In conclusion it appears that Arundo in the 

Nueces River has not caused any changes in water uptake compared to the native grass, 

switchgrass, that previously dominated the headwaters.  
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ET Evapotranspiration 

HRU Hydrologic Response Unit 

HUC Hydrologic Unit Code 

NRA Nueces River Authority 

PHU Potential Heat Units 

STATSGO State Soil Survey Geographic Data 

SWAT Soil Water Assessment Tool 

USDA- ARS United States Department of Agriculture – Agricultural Research 

Service 
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 CHAPTER I

INTRODUCTION 

I.1 Need for study 

Invasive species "means a species that is not native to an ecosystem and whose 

introduction to the ecosystem causes or is likely to cause economic harm, environmental 

harm, or harm to human health. Humans, domestic livestock, and non-harmful exotic 

organisms are not invasive species"(Swinford and Hegar, 2009). Invasive woody species 

have been widely studied to understand their impact on the water cycle and how they 

must be managed (Ansley et al., 1995; Walker and Smith, 1997; Wilcox, 2002; Watts, 

2009). In Texas, the species most widely studied have been woody plants Juniperus spp., 

mesquite (Prosopis glandulosa) and Tamarix spp. as these have invaded large 

proportions of the rangeland in the state. Saleh et al. (2009) used the eddy covariance 

technique and found a significant difference in water uptake between a plot with 

mesquite as against one that had been brush managed. Nagler et al. (2008) found 

Tamarix in the Rio Grande region to not have any difference in transpiration over the 

native plants. Afinowicz et al. (2005) found a significant difference in the 

evapotranspiration of brush in the Guadalupe region in areas with a high density of 

brush. Wilcox and Thurow (2006) have written about the need to study species on a 

watershed level so that they can be understood as an ecosystem as against looking at the 

species in isolation.  

Non-woody invasive species such as grasses which alter the ecology have been 

called ‘transformer species’ (Pyšek et al., 2004) and have been known to alter 
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ecosystems (Milton, 2004) by way of increasing/ decreasing  fires, using resources such 

as light and water excessively, sand stabilizing, erosion pattern changing etc. However, 

very little work has been done in studying the relationship between invasive non-woody 

species and the water cycle (Watts, 2009). Arundo is one such species that has been 

termed ‘transformer’ by Richardson et al. (2005) in California and is known to adversely 

affect both the biodiversity by way of changing vegetation structure and jeopardizing 

bird and wildlife habitat that mainly feed on insects in California (Herrera and Dudley, 

2003) and ecosystem (Quinn and Holt, 2008) by way of high competitive advantage over 

a large range of native species of the region it invades. This study looks at the effect of 

the transformer species Arundo on the hydrological cycle in a watershed. 

I.2 Arundo 

 Arundo, also known as the giant cane, shown in Figure 1 was brought into 

California from the Mediterranean in the 1820s (Perdue, 1958) and has invaded the 

riparian zones of the Rio Grande River and the rivers of the Texas Hill Country. It was 

originally brought to the U.S. make thatched roofs, musical instruments and prevent soil 

erosion (Perdue, 1958). The species has been cultivated in Asia, Europe, North Africa 

and the Middle East (Bell, 1997).  

Arundo is a hydrophyte (McGaugh et al., 2006) which has been known to absorb 

up to 1,100 mm of water annually (Bell, 1997). Gowda et al. (2011) have found the 

water demand of the species to be 5.2 mm/ day in the Rio Grande Basin in Texas while 

Watt and Moore (2011) found the demand to be as high as 9.1 mm/day in the lower Rio 

Grande region in Texas and Giessow et al., (2011) found it to be 41.1 mm/day in 
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Southern California. Leaf Area Index (LAI) for the species has been known to range 

from an average of 15.6 in a study by the California Invasive Plants Council (Giessow et 

al., 2011) to 4.5 in a study done by Watts and Moore (2011) on the lower Rio Grande 

River in texas. It has a growth rate of up to 5cm/ day under optimum conditions (Perdue, 

1958).  

Arundo is a robust plant that can grow in many different climatic conditions. 

Because of its high growth rate and vegetative reproduction, it invades newer areas and 

takes over the native species in the region (Benton et al. 2005). It forms colonies in the 

process that can be several acres in size and its rhizomatous root masses stabilize stream 

banks and alter flow regimes (Zahran and Willis, 1992). It is mainly known to propagate 

through flooding (Giessow et al., 2011) but other causes could include forest fires, wind 

and human movement of soil from one place to another.  Dudley (2000) documents 

millions of dollars being spent on Arundo management and eradication which is being 

done using chemicals (Bell, 1997) and biological controls (Goolsby et al., 2007).  

I.3 Arundo on the Nueces River 

Arundo was first observed along the Nueces River in 1995 by the Nueces River 

Authority (NRA). It then spread rapidly downstream and completely displaced the native 

vegetation, primarily switchgrass, in the riparian zone wherever it got established. Its 

density was in the order of 760,000 stalks in a 3.52km2 area. An eradication program 

was started in 2010 by the NRA to remove this species from the Nueces River. They 

used chemicals such as plant amino acid blocker Imazapyr using both aerial spray and 

ground-level spraying techniques. Figure 2 shows a colony of Arundo after it was 
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sprayed. The NRA also has a program called the “Pull, Kill, Plant” to make the residents 

of the region aware of Arundo and teach them what is to be done when they find the 

species.  The motivation of this study was to model the impact of the invasion of Arundo 

on the hydrology of the headwaters of the Nueces River to provide a scientific backbone 

to the management projects being undertaken for its control and for ecological risk 

management. 

 

 

 

Figure 1. Arundo (Ventura County Weed Management Area, 2011) 
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Figure 2. A colony of Arundo treated using Imazapyr by the Nueces River Authority in 

2012 

 

I.4 Objectives 

While the overall goal of this research is to understand the effects of the invasion 

of Arundo on the hydrology of the headwaters of the Nueces River, the specific 

objectives and contribution of this study are: 

1: develop an algorithm to simulate the propagation of Arundo 

2: study changes in streamflow patterns during pre- and post- Arundo invasion 

periods (i.e., before and after 1994) 

 3: calibrate and validate SWAT for the Nueces River Headwater watershed in 

central Texas 
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4: assess the effects of the invasion of Arundo on the watershed hydrology when 

comparing it to the native grass species switchgrass that used to be the dominant species 

in the watershed. 

The methodology followed is that a streamflow trend analysis is done for the 

study area following which an algorithm has been developed for the propagation of 

Arundo which is a geographical information systems analysis. The SWAT model then 

has been calibrated for the watershed, Arundo parameters have been added to the crop 

database of SWAT and finally its impacts on the hydrology of the watershed have been 

analyzed. This has been described in detail in the chapters that follow. 
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 CHAPTER II

STREAMFLOW ANALYSIS 

II.1 Introduction 

The objective of this chapter is to assess if there are any changes in streamflow 

patterns during pre- and post-Arundo invasion periods (before and after 1995). Changes 

in streamflow patterns are an indicator of changes in the hydrology of a watershed. 

There are two ways of studying eco hydrology impacts: finding the effect of landuse 

change on hydrology or the effect of hydrology on landuse change. While this thesis 

explores the former question, this chapter looks at how hydrology has changed over time 

in the watershed based on precipitation and streamflow trends. Landuse and climate have 

been hypothesized to be two important factors that cause changes in streamflow on many 

occasions (Stohlgren et al., 2003; Zhang and Schilling, 2006;Changnon and Demissie, 

1994). Wilcox and Huang (2010) looked at various watersheds, including the one in this 

study, in the Hill Country region in Texas to find that streamflow and baseflow followed 

an increasing trend over time when looking at the period 1925-2010. They suggested 

that the reason for this was that invading brush had helped the rangeland that had been 

degraded by overgrazing in the 1950s. The invasive species opened up the dry soil to 

encourage infiltration, thereby increasing baseflow which further increased streamflow. 

The motivation to study the streamflow patterns in this watershed is to verify if the 

invasion of the Arundo can be considered a causal factor for any trends observed. 

 

 



 

8 

 

II.2 Description of study area 

The area chosen for this study is the watershed of the Nueces Headwaters (HUC 

12110101) (U. S. Department of Interior, 2013). The counties that are included in this 

watershed are Edwards, Real, Uvalde and Kinney. This watershed, which is located in 

the “Hill Country” in Texas, lies just north of the Edward’s aquifer recharge zone, which 

is a karst region. It covers an area of about 2126 km
2
. The outlet of the watershed is at 

the Laguna gage (USGS 08190000). The daily streamflow data is available for this gage 

from 1923 to 2013.  The temperature in the watershed ranges from a maximum of 43° C 

during the months of August and September to -15°C in the months between December 

and February. The average annual rainfall over the period from 1950 to 2010 is 69 cm. 

The major land-use in this region is rangeland covered by brush (55%) according to the 

2006 National Land Cover Dataset (NLCD). Although the Edward’s aquifer recharge 

zone is to the south of the area of study, the watershed area is still extremely karst and 

one can observe water disappearing into the ground and coming out of the stream 

through springs in various stretches of the river (Banta et al., 2012). The river is also 

geomorphologically complex in that it changes its course rapidly and underlying 

processes are not well understood. Figure 3 shows the location of the study watershed in 

Texas. An area of 3.52 km
2
 in the riparian areas of an 8 km stretch of the Nueces River 

north of the Laguna gage in the watershed has been densely populated by Arundo 

(Figure 4). 
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(a) 

 

(b) 

Figure 3.(a) Location of Nueces Headwaters Watershed (HUC 12110101) in Texas 

towards the north of the Edwards Aquifer, and (b) the boundary of HUC 12110101 with 

the counties 
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Figure 4. The small bright blue line near the watershed outlet was the area (3.52 km

2
) 

covered by Arundo. 

 

II.3 Approach 

II.3.1 Hydrograph separation to estimate baseflow component 

Streamflow consists of baseflow and stormflow. Baseflow is the groundwater 

contribution to the streamflow which occurs even when there is no precipitation, while 

the main cause for stormflow is runoff during flood events. The hydrograph is separated 

into baseflow and other components by using one of the following three commonly used 

techniques (Brodie and Hostetler, 2005): 
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1. Manual Separation of hydrograph- In this technique, the baseflow is separated from a 

streamflow graph manually based on where the baseflow comes in contact with 

stormflow. For this, all flow is assumed to be baseflow until a flood event occurs. 

2. Regression Analysis- The regression analysis focuses on the recession curve of the 

hydrograph and identifies patterns in periods of antecedent recession.  These patterns are 

then used to separate the baseflow from the stormflow. Computer models such as USGS 

RECESS (Rutledge, 1998) and USGS PART (Rutledge, 1998) can be used in 

conjunction for this analysis. While RECESS develops a master recession curve, PART 

uses this curve to separate baseflow and stormflow. 

3. Digital Filters- Digital filtering uses the method of frequency analysis to separate out 

low frequency signals as baseflow from a streamflow graph. There are two kinds of 

filters- recursive and non-recursive. While the output of a non-recursive filter is the 

weighted sum of a portion of the input data, recursive filters serve like feedback filters 

where the output of one filter goes back into another filter. Sponberg (2000) reported 

that the recursive filters are more efficient than the non-recursive ones. 

The manual separation technique is highly subjective and Arnold et al. (1995) 

argue that computer based programs should be used for baseflow separation in order to 

get consistency. Recession analysis was not considered appropriate for this study in view 

of the karst nature of the underlying aquifer. Although the Recession analysis works well 

for areas such as Harris catchment in Southwest Australia ( Wittenberg and Sivapalan, 

1999), in a karst aquifer, which is characterized by sink holes, caves, underground 

drainage systems, springs and sinking streams, surface water moves very quickly into 
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the subsoil and hence the normal pattern of hydrograph recession doesn’t appear. The 

filter separation, which is a commonly used technique, comes from the field of signal 

processing and normally has no basis in hydrology.  The Baseflow Filter Program 

developed by Arnold et al.(1999) and the Web GIS Based Hydrography Analysis Tool 

(WHAT) developed by Lim et al. (2005) are two commonly used programs to carry out 

the baseflow separation through recursive filtering. Another filtering technique is the 

USGS HYSEP (Sloto and Crouse, 1996). Of these, the WHAT program is the most user 

friendly and it has been tested against HYSEP and the Baseflow Filter Program. The 

results of all three techniques have been found to be very close (Lim et al., 2005). Out of 

the above options of baseflow separation, considering high variability in flow in the 

watershed and due to a lack of availability of better techniques to handle karst 

streamflows, the digital filtering technique was chosen for baseflow separation in this 

study.  The digital filtering technique was previously used by Wilcox (2009) for the 

analysis of streamflow trends in some karst watersheds in Texas including Nueces, 

Llano, Frio and Guadalupe watersheds where an increase in streamflow and baseflow 

trends was found over the time. The WHAT program was selected for baseflow 

separation in this study. 

II.3.2 Trend analysis 

Trend analysis can be done in five ways using parametric, non-parametric or 

mixed tests (Helsel and Hirsch, 2002) combined with the verification of the presence of 

any associate variables. As streamflow does not come from any known probability 

distribution function and since it is a random phenomenon (Helsel and Hirsch, 2002), 
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trend analysis of streamflow needs to use a non-parametric test. The Mann-Kendall test 

that assumes no distribution, is robust against outliers and has a high power for non-

normally distributed data (Onoz and Bayazit, 2003). This test is used to check the 

statistical trend in data with respect to time (Helsel and Hirsch, 2002).This test has been 

used in various streamflow trend analysis studies (Kumar et al., 2009; Wilcox et al., 

2008). The data for this test needs to be independent of serial correlation. Positive serial 

correlation tends to overestimate the significance of the trend while negative serial 

correlation underestimates it (Yue et al., 2002). To test for autocorrelation, the Durbin 

Watson test can be used which looks at each pair of consecutive elements in the dataset 

to test for correlation (Durbin and Watson, 1971). If there is autocorrelation, it can be 

removed using the Cochrane Orcutt procedure(Cochrane and Orcutt, 1949) which has 

been used to remove first order correlation in streamflow, baseflow and climate datasets 

in various studies (Lettenmaier, 1994; Wilcox, 2008). 

II.4 Methodology 

Daily streamflow data for the Laguna gage (USGS 08190000) for the period from 

1979 to 2010 was obtained from the USGS website (USGS, 2014). The WHAT program 

was used to separate daily, monthly and annual estimates of baseflow from streamflow. 

The daily baseflow, streamflow and precipitation were converted to incremental 

percentiles annually for further analysis (Wilcox, 2008). The data was tested for 

normality. The null hypothesis that the data is normal was rejected for both baseflow and 

streamflow with p values of <.0001. Once confirmed that the data was non- normal, it 

was tested for serial correlation using the Durbin Watson test. If the Durbin Watson test 
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gave a p-value less than 0.5, it implied that there was autocorrelation of the first degree 

which was removed by the Cochrane Orcutt procedure. No significant correlation was 

found for either streamflow or baseflow data. Finally, the non-parametric Kendall’s tau 

statistic was used to analyze the values for both baseflow and streamflow. If the 

Kendall’s tau statistic had a significant p-value, it implies there is a high probability of 

the presence of a trend in the data. The statistic for the measure of this trend is the Sen’s 

slope. The Sen’s slope is calculated as the median between each pair of data points. A 

positive Sen’s slope implies a positive trend while a negative Sen’s slope implies a 

negative trend. 

II.5 Results and discussion 

The null hypothesis for the Mann-Kendall test is that there is no change in the 

trend implying that the baseflow, streamflow and precipitation have neither decreased 

nor increased over time. This hypothesis was tested to verify if it could be rejected based 

on a significance value of 0.1. Table 1 shows the values of Sen’s slope and significance 

values for stream flow, baseflow and precipitation over a monthly time step. Figure 5 

shows the graphs of streamflow, baseflow and precipitation over a monthly time step for 

the two periods- 1979- 1994 and 1995- 2010.  Table 2 shows the values of the Kendall’s 

tau statistic for the annual incremental baseflow and streamflow values. The statistic 

could not be found for incremental percentiles of precipitation as the values for 

precipitation were 0 up to the 70
th

 percentile. Table 3 shows the values of Kendall’s tau 

for annual averages for baseflow, streamflow and precipitation. 
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Table 1. Monthly Sen’s Slope statistic and p- value for streamflow, baseflow and 

precipitation for Arundo pre-invasion (1979-1994) and post-invasion (1995- 2010) time 

periods. 
 1979-1994 1995-2010 

Streamflow 

Sen’s slope 0.16334 -0.2158 

p-value 0.046661 0.029053 

Baseflow 

Sen’s slope 0.113477 -0.39251 

p-value 0.071406 6.01E-07 

Precipitation 

Sen’s slope -0.00998 0.059955 

p-value 0.811771 0.183846 
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Figure 5. Trends for baseflow, streamflow and precipitation for the two periods 1979-

1994 and 1995-2010. 

 

Table 2. Daily percentile Kendall’s tau statistic and p- value for streamflow and 

baseflow for Arundo pre-invasion (1979-1994) and post-invasion (1995- 2010) time 

periods. 

                           Streamflow (1995-2010) Streamflow (1995-2010) 

percentile Kendall’s tau p-value Kendall’s tau p-value 

10 1.045455 0.278435 -5.56E-02 0.928033 

20 1.733333 0.392314 -8.85E-01 0.685329 

30 1.675 0.392314 -1.23E+00 0.588633 

40 1.2875 0.52807 -1.94E+00 0.52807 
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                            Streamflow (1995-2010) Streamflow (1995-2010) 

percentile Kendall’s tau p-value Kendall’s tau p-value 

50 1 0.821892 -8.71E-01 0.684723 

60 1.468376 0.752642 -1.49E+00 0.752642 

70 1.922222 0.588633 -1.67E+00 0.892558 

80 3.342857 0.52807 -6.54E+00 0.344418 

90 5.094444 0.499461 -8.56E+00 0.392314 

100 

 

43.833333 0.620425 -1.27E+03 0.010279 

 Baseflow (1979-1994) Baseflow (1995-2010) 

 Kendall’s tau p-value Kendall’s tau p-value 

10 0.821375 0.224134 -0.1075524 0.964089 

20 1.469683 0.260351 -0.8385833 0.685329 

30 1.435083 0.558351 -1.065 0.558351 

40 1.015545 0.444044 -1.5906667 0.444044 

50 1.034222 0.821892 -0.9228333 0.620425 

60 1.26579 0.620425 -1.289035 0.821892 

70 1.3486 0.558351 -0.7596923 0.821892 

80 2.914951 0.499461 -5.1977143 0.344418 

90 3.7144 0.620425 -10.242191 0.344418 

100 2.903846 0.752642 -165.795 0.006026 

  

Table 2. continued. 
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Table 3. Annual Kendall’s tau statistic and p- value for streamflow, baseflow and 

precipitation for Arundo pre-invasion (1979-1994) and post-invasion (1995- 2010) time 

periods. 

 1979-1994 1995-2010 

Streamflow 

 Kendall 

tau 

p-value Kendall 

tau 

p-value 

Mean 0.183 0.34442 -0.333 0.07910 

Baseflow 

     

 Kendall 

tau 

p-value Kendall 

tau 

p-value 

Mean 0.0251 0.92818 -0.25 0.19167 

Precipitation 

     

 Kendall 

tau 

p-value Kendall 

tau 

p-value 

Sum 0.05 0.82189 -0.133 0.49946 

 

 

The annual and daily incremental percentile values showed no trends with any 

significance for baseflow, streamflow and precipitation because the number of sample 

points was only 16 for each dataset which is not a large enough dataset to get a reliable 

result. For monthly values on the other hand, there were 192 points in each dataset and it 

was found that while there was no significant trend in precipitation, there was a positive 

trend found in streamflow and baseflow for the period 1979-1994 and a negative trend 

for the period 1995-2010. The null hypothesis of no trend in flow could be rejected at a 

significance value of 0.1. The changing of the Sen value from 0.1633 to -0.215 for 

streamflow and 0.113 to -.39 implies a significant change in trends. 

The limitations of all the above methods include the inability to take into 

consideration spatial distribution of subsurface flow and precipitation. They all assume a 
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sheet flow scenario and the region in the Nueces headwaters is karst. Hence flow is 

variable. Due to lack of methods available to deal with karst regions, the available 

software had to be used to separate the hydrograph. Another limitation was a lack of 

availability of enough precipitation data for such a large watershed. There were only two 

weather stations in the watershed that had complete precipitation records for the study 

period. When the rainfall distribution (from two weather stations) in the watershed was 

plotted against the streamflow, some hydrograph peaks and rainfall events didn’t match 

indicating that the available precipitation data was not representative for the watershed. 

II.6 Conclusions 

There was a positive trend in streamflow and baseflow for the pre-invasion of 

Arundo period while there was a negative trend in the same in the post-invasion period.  

Since there was no significant change in precipitation trends during the pre- and post-

invasion periods, Arundo invasion appears to have reduced streamflow and baseflow in 

the study watershed. However, this needs to be further tested using more robust 

statistical techniques that are suitable for karst aquifers. In addition, hydrologic models 

such as the Soil and Water Assessment Tool (SWAT) could provide more insights into 

hydrological processes occurring in the watershed and enable us to better understand the 

effects of Arundo invasion on hydrology. The SWAT model application for the study 

watershed is described in subsequent chapters. 
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 CHAPTER III

ARUNDO PROPAGATION 

III.1 Introduction 

In the previous chapter, it was discussed about how streamflow and baseflow in 

the watershed have changed over time. It was hypothesized that the invasion of Arundo 

might be the cause of the observed changes in streamflow and baseflow trends. As part 

of studying the invasion of Arundo, its propagation has been modeled in this chapter. 

The propagation of an invasive species is a complex phenomenon that requires 

modeling to take into account space and time (Dragic´evic, 2010). Movement of seeds 

through wind dispersal (Horn et al., 2012; Greene and Johnson, 1989) and by humans 

(Wichmann et at.,2008) has been modeled but no known dispersal models have been 

validated with independent datasets (Pitt et al, 2011). Processes governing dispersal of 

seeds through water have been studied by Merritt and Wohl (2002) but these have not 

been modeled to simulate propagation of a species. Cellular-automaton is a frequently 

used technique to model species propagation. This technique relies on a set of rules 

where whether a species is born or dies in a particular cell is dependent on the state of its 

surrounding cells. It has been used to model rhizominous species (Pirchio, 2007) such as 

Thalassia testudinum and monotypic species such as Changium Smyrnioides(Xu et al., 

2011). The downside of cellular automaton is that the complexity of natural phenomenon 

cannot be modeled using a universal set of simple rules (Rohde, 2005). While there has 

been a lot of work done on ecological modeling, there is little information available 
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about the propagation of an invasive species such as the Arundo that propagates in the 

riparian region mainly through floods. 

Arundo invaded the riparian zone of the Nueces headwaters in central Texas 

rapidly between the years 1995 and 2010. Very little is known about how this species 

propagates over space and time. In order to understand the hydrologic effects of this 

species, it was necessary to model propagation of this species with time. A California 

Invasive Plant Council Report (Giessow et al., 2011) suggested that one of the ways 

Arundo spreads is through flood events. The growth of Arundo is rhizominous and the 

nodes falling on the ground can become responsible for the start of new colonies. On 

close examination in the study area, it is found that Arundo is also present in water and 

hence the carrier of the nodes appears to be water. Other means of Arundo propagation 

could include i) movement of nodes by wind, ii) movement of nodes by human factors 

such as digging of mud from one region and its placement in an another location, and iii) 

falling of nodes on the ground due to fires and their development into colonies. Keeping 

the above information in mind, the propagation of Arundo was modeled in a GIS system 

using a combination of Python (Guzdial and Ericson, 2009), R (Hornik, 2014) and the 

Geospatial Modeling Environment (Hawthorne, 2012). 

Arundo propagation was modeled based on the following two assumptions: 

1. Arundo propagates downstream due to flooding events. This was 

corroborated by the fact that all the colonies of Arundo were in the downstream 

of the first plant observed by the Nueces River Authority in 1995. 

2. Propagation of Arundo colonies follows an exponential growth pattern. 
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This assumption was based on the data (Arundo swaths and number of stalks) 

available from the measurements made by the Nueces River Authority. 

III.2 Methodology 

Data relating to number of stalks and diameter of Arundo colony are reproduced in 

Table 4, were obtained from the Nueces River Authority. A set of 36 data points was 

used to find the correlation between the diameter of a colony and the number of stalks 

(Figure 6). The curve was tested for a polynomial and linear fit but an exponential curve 

was found to be the best-fit curve for this data with R
2
= 0.8381. Hence the assumption 

that growth of Arundo colonies proceeds exponentially was valid. 

 

Table 4. Data showing diameter of colonies versus the number of stalks which was 

obtained from the Nueces River Authority 

Measurement 

No. 

No. of 

Stalks 

Diameter 

(m) 

Measurement 

No. 

No. of 

Stalks 

Diameter 

(m) 

1 17 0.9144 19 100 4.8768 

2 150 5.4864 20 2500 15.24 

3 77 4.572 21 1300 7.62 

4 32 1.8288 22 10 0.6096 

5 19 0.6096 23 1000 10.668 

6 28 0.4572 24 14 0.762 

7 150 4.572 25 5000 22.2504 
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Table 4. continued 

Measurement 

No. 

No. of 

Stalks 

Diameter 

(m) 

Measurement 

No. 

No. of 

Stalks 

Diameter 

(m) 

8 75 4.2672 26 200 4.572 

9 58 3.048 27 50 1.524 

10 400 6.7056 28 20 1.2192 

11 1000 14.3256 29 150 3.6576 

12 100 3.6576 30 250 6.096 

13 100 4.2672 31 5000 22.86 

14 35 1.2192 32 50 2.4384 

15 400 7.0104 33 150 4.2672 

16 1300 9.4488 34 400 6.096 

17 50 1.8288 35 300 7.62 

18 90 3.6576 36 70 3.6576 
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Figure 6. Colony formation follows an exponential distribution. 

 

 

The colonization curve (Figure 6) also closely follows a logistic regression curve 

described by Equation 1 and Figure 7 below.   

Equation 1. from Law et al., 2003 

  

where 

G = population growth 

r = intrinsic growth rate 

N = number of individuals in the population 

K = carrying capacity, maximum population size that an environment can sustain. 

G=rN[(K-N)/K] 
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Figure 7. Density dependence- growth rate is a function of population size. 

 

 

From the curve in Figure 6, the value of K was taken as 5000 stalks. The value of 

N was taken as the number of plants present in the swath at a given time step. The 

intrinsic growth rate was taken as 2 per older stalk. Equation 1 was used for each swath 

separately. The value of G obtained at each iteration determined the population in each 

iteration.  

Data from aerial photography taken in 2010, available from the Nueces River 

Authority, showed formation of colonies with clumps of Arundo plants in the riparian 

reaches of the river in the 3.53 km 
2
 study area (Figure 8). A k-means analysis was run 

on this data to isolate clusters of colonies (Figure 9). 
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Figure 8. Swaths of Arundo that were treated by the Nueces River Authority in 2010. 
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Figure 9. Cluster analysis using K-means created 15 clusters in the study area. 

 

 

Following the assumption that the plant propagates downstream through 

flooding, data on flood events in the watershed was downloaded from the National 

Oceanic and Atmospheric Administration (NOAA) website where a flood event for the 

region is defined by the river stage being over 3.048 m. There were five flood events 

during the time period from 1995 to 2010 (Table 5). On the basis of this observation, a 

Poisson distribution was used with a lambda of (5/168 = .03) to generate random flood 

events in the period of growth. The distribution was used in place of the actual events so 

that the frequency of the events could be simulated for a more general scenario where 

the simulation needs to be run for the future when the dates of flood events are not 
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known. It was assumed that whenever there was a flood event, Arundo would propagate 

downstream. 

 

Table 5. Flood events in the Nueces Headwaters Watershed based on crests in the 

historical hydrograph for the Laguna Gage (USGS 08190000). 

Date Stage (m) 

10/28/1996 7.8 

 06/22/1997 7.74 

08/22/1998 6.11 

11/17/2004 4.92 

06/16/1997 3.56 

 

 

III.3  Algorithm 

   Figure 10 shows a flow chart of an algorithm for the code written using Python 

Scripting to create a model that would propagate the growth of Arundo. After the K-

means analysis was run (as described above), the data was split into 15 clusters using 

the “Split” function in the geoprocessing toolkit. The “convexHull” function was then 

used to create polygons based on the split cluster points.  These were then sorted from 

North to South (upstream to downstream) direction. Later, the “Create Random Points”  
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function was used to generate random points in the most upstream polygon. After that, 

an iterative loop was run based on G, the population growth that was calculated at each 

step. For colonization, “Generate Conditional Random Points” function was used from 

the Geospatial Modelling Environment package. This function generates random points 

based on a normal distribution for each random point that was already present in the 

polygon, hence enabling the modeling of exponential growth. The number of 

conditional random points was therefore given by G. Based on a Poisson distribution, it 

was verified whether or not there was a flood event. If there was a flood event, random 

points were generated in polygons downstream. If there wasn’t a flood, then no 

propagation was simulated downstream, but only colonization of already existing stalks 

was simulated. Arundo propagation simulation was run on a monthly time step over 14 

years.  
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Figure 10. Algorithm for the simulation of Arundo propagation 
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III.4 Results and discussion 

Before analyzing the results, it was made sure that both criteria of generating 

clusters downstream based on floods and colonization based on exponential growth were 

satisfied. Figure 11 shows Arundo propagation downstream with time. It may be noticed 

that in years 5 and 8, there was no propagation of Arundo downstream. This was because 

there was no flood event between years 5 and 8. However, zooming in to these two 

figures indicates that the density of the colonies in year 8 was much higher than that in 

year 5. The colonization is illustrated in Figure 12, which depicts the modeled 

exponential growth of Arundo over time by zooming into one out of the 15 polygons 

formed during the k-means analysis. 

When the simulated output was compared with the observed data on Arundo 

Colonies, a general matching pattern was seen. However, the spread of the random 

points was not simulated well. The reason for this is that the other factors affecting 

Arundo propagation could not be incorporated into the developed algorithm due to a lack 

of availability of relevant data. Also, there was no data showing snapshots of the 

propagation over time such that distance between the colonies as time progressed could 

not be assessed. 

 



 

32 

 

 

  

 

 

Year 1 Year 4 Year 5 Year 8 Year 13 

Figure 11. Propagation of Arundo downstream with flood events. 

 

 

In this preliminary simulation, a time step of one month was used. Minimum 

distance between two generated conditional random points also needs to be incorporated 

in this approach so that the propagation density is not restricted to a very small radius 

around the transplanted Arundo stalks during flood events. 

Factors such as transport of stalks due to wind or humans were also not 

incorporated into this algorithm at this stage. The developed algorithm forms a 

framework that can be further improved to model the propagation of various species. 

The conditions that could not be used due to lack of available data such as what wind 

speeds cause migration and in which direction, how often humans are responsible for 

movement of stalks through fires or soil digging and what kind of turbulence in flow 
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conditions causes migration of stalks in the water. These can be added to the algorithm 

using simple logical conditions. Real time wind movement and precipitation data can 

also be incorporated to make better predictions. These developments were beyond the 

scope of this study, however. 

 

 

  

  

Year 1 Year 2 Year 4 Year 5 

  

  

Year 6 Year 7 Year 12 Year 14 

Figure 12. Growth of Arundo colonies based on an exponential distribution within one 

polygon. 

 

 

The model could not be calibrated statistically due to a lack of sufficient 

observed information. Aerial photography was not available before 2010 and hence the 

output of the algorithm at different time steps could not be compared with observed data. 
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The propagation of Arundo involving its increase in density over time as well as 

its movement from one location to another was modeled. The next question to be 

addressed was how the species affects the hydrology of the watershed. For this purpose, 

the SWAT model was chosen. The output from Arundo propagation algorithm could not 

be directly used in the SWAT simulations as the above algorithm simulates the increase 

in density of the species over time and one cannot alter the density of a crop in the 

SWAT model. The heart of the SWAT model is hydrologic response units (HRUs) 

which are explained in Chapter IV and these are defined by a combination of landuse, 

soil type and slope. Within a landuse, one cannot create a mixture of crops or simulate 

clusters, which is what is done by the above algorithm. This algorithm was still added to 

this thesis as it is a contribution to understanding the propagation of the species. 

 The subsequent chapters will talk about modeling the study watershed using the 

SWAT model to understand the hydrologic impacts of Arundo. 
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 CHAPTER IV

SWAT CALIBRATION AND VALIDATION AND ASSESSING IMPACTS OF 

ARUNDO ON THE HYDROLOGY OF THE WATERSHED 

IV.1 Introduction 

 In previous chapters, an algorithm to propagate Arundo was developed (Chapter 

3) and an analysis of streamflow trends for the headwaters of the Nueces River (Chapter 

2) was carried out. Analysis of streamflow trends revealed a positive trend in streamflow 

before Arundo invasion and a negative trend after invasion. This chapter will discuss the 

modeling of the watershed using the Soil Water Assessment Tool (SWAT) and further 

an analysis of how the invasion of Arundo has impacted the area of the watershed it was 

found in. 

 The effect of an invasive plant species on hydrology can be studied at two both 

the field scale and the watershed scale. At the field level, techniques such as eddy- 

covariance for assessing evapotranspiration (Snyder et al., 2012; Dzikiti et al.,2012; 

Sonnentag et al.,2011) , rainfall simulators (Porter, 2005) for assessing water budget at a 

plot scale, and bulk density measurements fitted to models such as Van Dechten or 

Durner to assess root water uptake capability (Tokumoto, 2013) are used. While several 

studies have been undertaken at a field scale, Wilcox et al.(2006) argue that it is 

important to understand how vegetation changes are affecting the water cycle at a 

watershed scale. Process based watershed scale models used for such studies include 

SWAT (Arnold et al.,1993, 1998), Hydrological Simulation Program- FORTRAN 

(HSPF)(Bicknell et al.,1997), Soil and Water Integrated Model (SWIM) (Krysanova et 
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al., 1998) and Dynamic Watershed Simulation Model (DWSM) (Borah and Bera, 2004) . 

In a comparison of these models, Borah and Bera (2003) show that while HSPF is useful 

for mixed agricultural and urban watersheds, SWAT is a more appropriate model for 

continuous simulations in agricultural watersheds. DWSM is a single rain event model 

and would not be appropriate for this study. SWIM is a modification of SWAT. SWAT 

was thus the most appropriate model for this study. It has also been used in studying the 

hydrological impacts of invasive species in the works of Afinowicz et al. (2005) and 

Arnold et al. (2003). The SWAT model is a hydro- dynamic and physically- based semi-

distributed model (Arnold et al., 2012), which has been widely used in the field of 

ecohydrology. It simulates the water cycle at a basin scale. It is based on five linear 

reservoirs; vegetation, surface, snow accumulation and melting, underground and 

surface runoff (Simic et al., 2009). This study tries to understand how a change in the 

vegetation reservoir affects the other reservoirs. The heart of the SWAT model is the 

Hydrologic Response Unit (HRU), which is a combination of a landuse type, a soil type 

and slope. The HRU responds to weather inputs such as, rainfall and temperature, based 

on equations for processes in the hydrological cycle such as evapotranspiration, 

infiltration, and runoff. 

 The area of study is the headwaters of the Nueces River (HUC 12110101) which 

is a karst region towards the north of the Edward’s Aquifer recharge zone in Texas Hill 

Country (see Chapter 2.2). SWAT has been used to model karst regions in the previous 

studies by Baffaut and Benson (2009), Amatya et al. (2011) and Echegaray (2009). 

Baffaut and Benson (2009) suggest treating sink holes as ponds with high soil hydraulic 



 

37 

 

conductivity and increasing transmission losses to account for losing streams. Echegary 

(2009) further suggests that SWAT HRUs be modified for karst regions by altering the 

baseflow recession constant and groundwater delay parameters such that in regions by 

altering the baseflow recession constant to as high as one, and adjusting groundwater 

delay parameters in such a way that the delay time to recharge the aquifers is made as 

low as one day in the regions of sinkholes. Springs, according to Baffaut and Benson 

(2009), were considered to be point sources. Since data about the quantity of water 

flowing out of the springs could not be obtained, this modification could not be 

incorporated in the SWAT model developed for this study. The guidelines laid out for 

working with sinkholes were followed in this study, however. 

IV.2 Statistical analysis 

The statistical analysis for the evaluation of the goodness of fit of the SWAT 

model was done based on the guidelines provided by Moriasi et al. (2007). The indicator 

statistics used for assessing the model performance include: percentage bias (PBIAS), 

Nash Sutcliffe efficiency (NSE), Root Mean Square Error (RMSE) and standard 

deviation ratio (RSR). The PBIAS statistic is a measure of how far the average tendency 

of the simulated values is from that of the observed values. A positive PBIAS means 

overestimation of observed value while negative PBIAS means its underestimation. The 

optimal PBIAS value is zero. The NSE is a measure of the residual variance of the 

simulated data as against the variance of the observed data. Its value ranges between 

negative infinity and one where the higher value indicates better fit. The RMSE is an 

indicator of error in the simulated values as against the observed values and the RSR is 
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the RMSE normalized by the standard deviation of the observed values. The best value 

for the RSR is zero. PBIAS, NSE, RMSE and RSR were used to evaluate the fit of the 

SWAT model after its calibration and validation. 

IV.3 Arundo 

Arundo did not exist as a crop in the SWAT crop database. This is because it has 

newly been established to be an invasive species and there have been very few studies 

about its parameters. To add a new crop to the SWAT database, 35 parameters for crop 

growth need to be inputted. The details for these parameters are laid out in Appendix A 

of the SWAT Input/Output File Documentation (2012). This Appendix is included at the 

end of this Thesis for ready reference. Literature was reviewed for identifying 

appropriate parameters for Arundo as this species was not present in the crop database. 

For a parameter such as Leaf Area Index (LAI), there were a wide range of values found. 

A study by the Giessow et al. (2011) found an average LAI of 15.6 over 14 surveyed 

sites in Southern California while Watts and Moore (2011) measured the LAI for the 

species in the Lower Rio Grande region in Texas and found it to be 4.5.  Maximum 

canopy height and rooting depth values varied from 9.9 m and 1 m respectively in 

Southern California (Giessow et al., 2011) to 6 m (Rieger and Kreager, 1990) in 

Southern California near San Diego and 5 m in California (Frandsen, 1997). Details such 

as fertilizer uptake and harvest index for optimal growth conditions could not be found 

for Arundo in the literature. After consultation with Dr. Moore (Ecosystem Science and 

Management Department), who has done substantial work on  Arundo on the Rio 

Grande River, and Dr. Kiniry, Research Agronomist at the United States Department of 
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Agriculture – Agricultural Research Service (USDA-ARS) Laboratory at Temple, TX, S. 

officinarum (sugarcane) was recommended as a substitute for Arundo for modeling 

purposes. After further examination, the SWAT model used a value of 25 

(kg/ha)(MJ/m
2
) for sugarcane for the radiation use efficiency while a value of 54 

(kg/ha)(MJ/m
2
) was found for Arundo by Ceotto (2013).  Hence sugarcane could not be 

used as a direct substitute and new crop parameters had to be developed for Arundo. 

 Agricultural Land Management Alternative with Numerical Assessment Criteria 

(ALMANAC) has been used to find the parameters for the crops in the SWAT crop 

database.  ALMANAC is a crop model developed at the USDA- ARS (Kiniry et al., 

1992) and it simulates crop growth based on nutrient uptake, water use, water stress, 

temperature stress, and nutrient stress. This model operates at a one square meter plot 

scale from which the biomass of the plant is taken and analyzed.  The model has been 

used to find crop growth parameters as a model such as SWAT is a watershed scale 

model and needs input from a model such as the ALMANAC to simulate plant growth. 

ALMANAC has been used to find plant parameters for all the plants in the SWAT crop 

database. The plant growth is based on potential heat units (PHUs) that are accumulated 

when the average temperature in a day is higher than the base temperature required for 

that plant. For crop parameters of Arundo, the initial crop parameters were taken to be 

sugarcane, and then modified in the ALMANAC model to produce the values for 

Arundo. 

 Switchgrass was the native species in the riparian region of the watershed that 

was replaced by Arundo. Maximum LAI of the switchgrass has been found to be 
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between 4.9 in Nebraska (Mitchell et al., 1998) and 12 in Texas (Kiniry et al.,1996). It is 

known to have a water uptake capacity of up to 670 mm annually in Iowa and 656 mm 

annually in Texas (Kiniry et al., 2008). The parameters for switchgrass were already 

present in the crop database for SWAT. 

 The objective for this section is to calibrate and validate the SWAT model for the 

headwaters of the Nueces River and use the calibrated model for assessing the impacts 

of the invasion of Arundo on the watershed hydrology (or water balances). 

 

IV.4 Approach  

IV.4.1 SWAT model calibration and validation 

IV.4.1.1 Datasets used  

The geospatial and temporal datasets for the SWAT modeling were obtained 

from various sources. The Digital Elevation Model (DEM) (USGS, 2010) of the study 

area was downloaded from the National Hydrography Dataset (subbasin “d” in region 

12). The DEM resolution was 30 m X 30 m.  The land cover/land use data for the 

watershed was obtained from the National Land Cover Dataset (NLCD) (Fry et al., 

2011) and the National Agricultural Statistics Service (NASS) (Han et al., 2012) 

resources. The soil information was obtained from the Natural Resource Conservancy 

State Soil Survey Geographic Data (NRCS STATSGO) database that comes with 

SWAT.  Weather data was taken from the USDA- ARS Temple website. Two weather 

stations, C41198 and C414907, located as shown in Figure 4,were found to be in the 

watershed when the latitudes and longitudes of the available weather stations from the 



 

41 

 

afore mentioned website were mapped to the watershed. The data for daily precipitation 

and temperature (minimum and maximum) for these two stations was thus downloaded. 

The weather data was available from January 1, 1950, to December 31, 2010.  

 

IV.4.1.2 Model set up 

The DEM was used to delineate the watershed using ArcSWAT 2012 with 

geographical information systems software ArcGIS 10.1 which was developed by 

Environmental Systems Research Institute (ESRI) in 2012. The watershed boundary was 

constructed based on the points of highest elevation in the topography of the region after 

placing the outlet at the Laguna gage (USGS 08190000).  The flow lines which were to 

be used for the routing of water in the watershed were created by ArcSWAT on the 

principle that water flows from a higher elevation to a lower elevation. Hence a flow 

direction grid was created. A threshold was defined such that only cells accumulating 

more water than the threshold number of cells were used to create the flow network. 

Since the DEM resolution was 30m * 30m and the watershed covered an area of 2126 

km 
2
, the threshold was set at 22,000 cells, which translated to a minimum draining area 

of 20 km
2
.  A total of 29 subbasins were isolated within this watershed.  Hydrologic 

response units (HRUs) were defined based on a unique combination of soils, slopes and 

landuse. The slopes were classified into five categories based on the natural breaks in the 

histogram of the slopes obtained from the DEM. The threshold for the area to be covered 

by the soil and slope class for HRU definition was set to be 10% while that for landuse 

was set at 0% since Arundo needed to be simulated and it occupies a very small area of 
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3.52km 
2
.  A total of 1224 HRUs were created, out of which Arundo had invaded in 7 

HRUs after 1995. A summary of the slopes, soils and landuse is shown in Table 6 below. 

 

Table 6. Summary of landuse, slopes and soil types for HRU definitions and % area 

covered by each of these. 

  Area [ha] % Watershed 

Area 

LANDUSE:    

 Water  WATR* 155.79 0.08 

 Residential-Low Density  

URLD 

2,285.37 1.20 

 Residential-High Density  

URHD 

231.84 0.12 

 Commercial  UCOM 58.50 0.03 

 Wetlands-Mixed  WETL 11.88 0.01 

 Southwestern US (Arid) Range 

SWRN 

85.95 0.05 
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Table 6. continued 

  Area [ha] % Watershed 

Area 

 Forest-Deciduous  FRSD 17475.03 9.16 

 Forest-Evergreen  FRSE 55504.35 29.08 

 Forest-Mixed  FRST 16.83 0.01 

 Range-Brush  RNGB 104808.9 54.91 

 Range-Grasses  RNGE 9351.9 4.9 

 Hay  HAY 15.12 0.01 

 Agricultural Land-Row Crops 

 AGRR 

43.2 0.02 

 Wetlands-Forested  WETF 472.77 0.25 

 Sugarcane  SUGC 0.27 0 

 Alamo switchgrass  SWCH 352.62 0.18 

SOILS:    

 TX155** 110,018.30 57.64 
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Table 6. continued 

  Area [ha] % Watershed 

Area 

 TX157 804.87 0.42 

 TX159 893.61 0.47 

 TX253 2549.61 1.34 

 TX467 34033.05 17.83 

 TX544 27446.85 14.38 

 TX546 6183.27 3.24 

 TX581 8940.69 4.68 

SLOPE:    

 0-2.13% 18,809.64 9.85 

 10.688-22% 43903.17 23.00 

 2.13-5% 32518.35 17.04 

 22-9999% 54540.18 28.57 

 5-10.688% 41098.95 21.53 
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* SWAT landuse name. 

** Soil classification from the STATSGO database in SWAT 

 

Once the HRUs were defined, the weather files were input into the SWAT model. The 

SWAT model was then run on a daily time step while the output was read on a monthly 

time step. 

 

IV.4.1.3 Calibration and validation 

The simulations were run for the period from 1950 to-1994 on a daily time step 

with a monthly time step output and the first 10 years were considered as warm up 

period. The warm up period helps the model set basic flow conditions and bring the 

hydrologic processes to an equilibrium condition. The period for calibration was chosen 

to be 1960-1977 and the validation period was chosen to be 1978-1994. These time 

periods were selected so that the hydrology of the watershed could be simulated 

correctly before the invasion of Arundo that was first observed in 1995.  

 The most sensitive parameters during calibration were found to be curve number 

(CN2), soil available water capacity (sol_awc), baseflow recession constant (alpha_bf), 

groundwater delay (GW_DELAY), soil evaporation compensation factor (ESCO), 

transmission losses (ch_k2), threshold water level in shallow aquifer for base flow 

(GWQMN), saturated hydraulic conductivity of the first layer of the soil (SOL_K) and 

aquifer percolation constant (RCHRG_DP).  CN2 affects the runoff and decreasing CN2 

decreases runoff.  SOL_ AWC is used in percolation calculations and an increase in 
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available water capacity increases percolation. An increase in Alpha_bf results in a 

shorter receding limb of the hydrograph and indicates a rapid response to recharge. 

GW_DELAY is a measure of the delay time for an aquifer to recharge. In the case of 

this karst watershed, there are certain regions with very rapid groundwater recharge. 

These regions have a GW_DELAY of as low as one day while there are other regions 

where the response is slow enough that the value for GW_DELAY is of the order of 218 

days. The baseflow filter (Arnold et al., 1999) was run to partition the hydrograph into 

baseflow and streamflow components. From this, an alpha_bf value of 0.015 and 

GW_DELAY value of 218 days were obtained. SOL_K is also used in percolations 

calculations and an increase in SOL_K results in more percolation. ESCO is a measure 

of the fraction of soil water that evaporates and an increase in ESCO means higher 

evapotranspiration and lower flows out of the system. CH_K2 is a factor considered in 

arid and semi-arid watersheds where there are ephemeral streams and there are losses of 

water as the flood wave travels downstream.  An increase in transmission losses reduces 

the flow output of the model. GWQMN which is a measure of the water required in the 

aquifer before baseflow occurs should be increased if there is capacity in the aquifer to 

store water before it moves towards the streams as baseflow.  RCHRG_DP is a fraction 

of the water that percolates into the deep aquifer from the shallow aquifer. An increase  

in RCHRG_DP reduces the amount of water that goes to the stream and hence reduces 

flow volume.  

The above mentioned parameters were not uniformly changed over the subbasins 

because of the karst nature of the study area, which included some regions without flow 
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and some regions with springs. No flow reaches are reaches where the water from the 

stream disappears into karst limestone. Based on a gain loss study by Lambert et al. 

(2012), the subbasins with springs and those where no flow was observed were isolated. 

The coordinates of the sinkholes and springs were marked through GIS on the delineated 

watershed six subbasins were found to contain the areas of no flow and two were found 

to contain springs. There was no information available for the other subbasins. Figure 13 

shows the subbasins containing sinkholes and those containing springs. 

 

Figure 13. Subbasins with springs and subbasins with no flow reaches underlain by 

karst limestone. 
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For the subbasins with no streamflow, the fraction of recharge to a deep aquifer 

and the transmission losses were increased. The soil saturated hydraulic conductivity 

was increased, baseflow recession constant was increased and groundwater delay was 

decreased based on studies by Baffaut and Benson (2009) and Echegaray (2009). The 

ranges of adjustment for these parameters are shown in Table 7. For the subbasins where 

springs were found they could not be treated as point sources due to lack of information 

about flow from these springs. However, the groundwater delay in these subbasins was 

increased and transmission losses were decreased. 

 

Table 7. Values for parameters changed during calibration of the SWAT model. 

Parameter Range of  Default Values Range of Values After 

Calibration Subbasins with No Flow 

Alpha_bf 0.048 0.9 - 1 

GW_DELAY 31 days 1 day 

SOL_K Default  +15% 

CH_K2 0 250 mm/hr 

RCHRG_DP Default +.2 

GWQMN 0 5mm 

Subbasins with Springs 

Alpha_bf 0.048 .015 

GW_DELAY 31 days 218 days 

SOL_K Default -30% 
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Table 7. continued 

Parameter Range of  Default Values Range of Values After 

Calibration Subbasins with Neither Springs nor Sinkholes 

Alpha_bf .048 .015 

GW_DELAY 31 218 days 

SOL_K Default -20% 

CH_K2 0 50mm/hr 

Parameter Range of  Default Values Range of Values After 

Calibration  All Subbasins 

CN2 Default -15% 

ESCO Default -0.1 

SOL_AWC Default +0.1 
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Figure 14. The average annual water balance for the headwaters of the Nueces River 

watershed for the period 1950 to- 1994. All the values in the figure above are in units of 

mm. Average values of values infiltration, evapotranspiration, lateral flow, runoff, 

recharge to deep and shallow aquifers and return flow for the watershed are shown 

above. Approximately 77% of the precipitation (692 mm) is lost to evapotranspiration 

(531 mm), about 12% percolates (84 mm), 7% goes to recharge (51 mm) the deep 

aquifer and 13% contributes to the streamflow (90 mm). Baseflow (62 mm) contributes 

to 70% of the flow in the river while surface runoff (28 mm) contributes 30%. 

 

 

After making the adjustments in the parameters stated in Table 7, a hydrograph 

was plotted to compare the flow values obtained from the SWAT simulation as against 
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flow values observed at the Laguna Gage. Figure 14 shows the average annual water 

balance for the watershed for the period 1950 to- 1994.  Figure 15 and Figure 16 show 

the hydrographs. As can be visually observed, most observed and simulated peaks match 

As can be visually observed, most observed and simulated peaks matched. The 

simulated values even out some of the peaks seen in the observed values. Also, majority 

of the precipitation events and the peaks of the simulated values matched while some of 

the observed value peaks did not match with precipitation. A reason for this was that 

data was available for only two weather stations for a 2,146 km
2
 watershed. Not only 

this, the weather stations were closely situated in the Southern region of the watershed 

and there were no representative weather stations for the entire Northern region. SWAT 

used triangulation method to distribute the data from these two weather stations to all the 

subbasins in the watershed. Rain events that might have occurred in regions that did not 

have weather stations could not be accounted for.  



 

52 

 

 

Figure 15. Measured and simulated monthly flow rates in the Nueces River during the 

calibration period along with monthly precipitation (1960-1977). 
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Figure 16. Measured and simulated monthly flow rates in the Nueces River during the 

validation period along with monthly precipitation (1978-1994). 

 

 

IV.4.1.4 Statistics 

A  Nash-Sutcliffe (NSE) of 0.79, a P-Bias of 15.5 % and an R-square value of 

0.76 were achieved for the calibration time period. For the validation time period, a 

Nash-Sutcliffe of 0.736, a P-Bias of 4.3 % and an R-square value of 0.64 were achieved. 

Table 8 shows the interpretation of these statistics based on Moriasi et al. (2007). For 

calibration period, the NSE fell in the range of very good, the PBIAS was satisfactory 

and the RSR was very good. For the validation period, the NSE was good, PBIAS was 
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very good and RSR was good. Afinowicz et al. (2005) used SWAT to simulate a karst 

watershed in the Edward’s aquifer region in Texas and got a value of 0.29 and 0.5 for 

NSE for monthly calibration and validation. Spruill et al. (2000) modeled a karst region 

in central Kentucky and got a month NSE of 0.89 and 0.58 for calibration and validation 

respectively. Considering the karst region modeled in this study, the achieved NSE of 

0.79 and 0.736 for calibration and validation periods can be considered as good.  

 

Table 8. Model performance statistics for SWAT calibration and validation periods in 

comparison to the guidelines of Moriasi et al. (2007). 

Statistical 

Parameter 

Period Value Range Evaluation (Moriasi et al., 

2007) Nash-Sutcliffe Calibration .79 0.75 < NSE < 

1.00 

Very Good 

 Validation .736 0.65 < NSE < 

0.75 

Good 

PBIAS Calibration 15.48% ±15 < PBIAS < 

±25 

Satisfactory 

 Validation 4.3% PBIAS < ±10 Very Good 

R-square Calibration .7647 0 to 1 Higher- better 

performance  Validation .6414 0 to 1 Higher- better 

performance  RSR Calibration .4537 0.00 < RSR < 

0.50 

Very Good 

 Validation .513 0.50 < RSR < 

0.60 

Good 

 

 

IV.4.1.5 Conclusion 

The SWAT model was set up for the study watershed, and calibrated and 

validated against observed data to ensure that the simulated hydrology of the watershed 
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was close to the real system before the impacts of Arundo were simulated. The 

calibration and validation durations covered a period of 34 years.  

 Arundo was first observed in the watershed in 1995. In the next section the 

approach to adding the Arundo to the SWAT database and studying its impact on the 

watershed hydrology using SWAT will be discussed. 

IV.4.2 Hydrologic changes due to Arundo displacing switchgrass 

IV.4.2.1 Use of ALMANAC to establish crop parameters for Arundo 

 The ALMANAC model was run to establish the parameters for the crop growth 

of Arundo with the help of Dr. Kiniry at USDA- ARS. Sugarcane was the base crop that 

was taken for this simulation. Table 9 shows the parameters that were started with and 

the parameters that were found for Arundo. While the LAI for sugarcane in the SWAT 

crop database is 6 that for Arundo was found to be twelve. The radiation use efficiency 

was increased from 25 (kg/ha)(MJ/km 
2
) to 45(kg/ha)(MJ/km 

2
).  Other major changes 

were increasing the harvest index from 0.5 to 0.9 since Arundo is not harvested unlike 

Sugarcane which is harvested since it is grown as an agricultural crop. 

 

Table 9. Comparison of Arundo parameters determined using ALMANAC model with 

parameters of sugarcane present in the crop database in SWAT. The description of the 

parameters is in Appendix A. 

 Sugarcane Arundo Units 

BIO_E (RUE) 25 45 (kg/ha)/(MJ/m2) 

WAVP 10 10  

BIOEHI 33 52  

CO2HI 660 660.29 µL CO2/L air 

BLAI 6 12  

FRGRW1 0.15 0.1  

 



 

56 

 

Table 9. continued 

 Sugarcane Arundo Units 

LAIMX1 0.01 0.2  

FRGRW2 0.5 0.5  

LAIMX2 0.95 0.95  

DLAI 0.9 0.95  

CHTMX 3 3.6 m 

RDMX 2 2 m 

T_OPT 25 25 °C 

T_base 11 10 ° C 

PLTNFR1 0.01 0.01 kg N/kg biomass 

PLTNFR2 0.004 0.004 kg N/kg biomass 

PLTNFR3 0.0025 0.0025 kg N/kg biomass 

PLTPFR1 0.0075 0.0075 kg P/kg biomass 

PLTPFR2 0.003 0.003 kg P/kg biomass 

PLTPFR3 0.0019 0.0019 kg P/kg biomass 

HVSTI 0.5 0.9  

WSYF 0.01 0.15 (kg/ha)/(kg/ha) 

CNYLD 0 0.0069 kg N/kg yield 

CPYLD 0 0.0017 kg P/kg yield 

USLE_C 0.001 0.001  

GSI 0.0055 0.007 m/s 

VPDFR 4 4 kPa 

FRGMAX 0.75 0.75  

RSDCO_PL 0.05 0.05  

ALAI_MIN 0.75 0.75  

BIO_LEAF NA NA  

MAT_YRS NA NA  

BMX_TREES NA NA metric tons/ha 

EXT_COEF - 0.65  
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IV.4.2.2 Model simulations 

 The calibrated SWAT model was run for the period 1950 to 2010 wherein a 

landuse change was made for the period 1995 to 2010. The landuse change was the 

substitution of the switchgrass by Arundo. The 3.52 km 
2 

of the watershed that was 

covered by Arundo (Figure 4) in the riparian region of the Nueces River was represented 

by 7 HRUs in the SWAT model. Since the area covered by Arundo was a miniscule 

proportion of the watershed (0.16%), the growth of Arundo over time downstream of 

where it was initially found was not simulated. switchgrass which was the native species 

in the region before the invasion of Arundo, was completely substituted for Arundo in 

the 7 HRUs. The model was then run for two scenarios, (1) with switchgrass for the 

period 1950 to 2010, and (2) with switchgrass in the HRUs for 1950 to 1994 and Arundo 

substituting switchgrass for the period 1995 to 2010. The reason for this was that Arundo 

started growing in 1995. Then, for the period between 1995 and 2010, a comparison was 

made for the 7 HRUs between the evapotranspiration and water yield from the two 

model scenarios.  

 A comparison between the crop parameters of the invasive Arundo and the native 

switchgrass is made in Table 10. The parameters for switchgrass were already present in 

the SWAT crop database and were not modified. The maximum potential LAI for 

Arundo was taken to be 12 as compaired to 6 for switchgrass.The radiation use 

efficiency of the two crops was similar. The maximum canopy height for the invasive 

species was 3.6 m as compared to the native species while its maximum rooting depth 

was 2 m as compared to 2.2 m.  The maximum stomatal conductance for Arundo was 
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determined to be 0.007 m/s as compared to 0.0055 m/s for the switchgrass implying that 

transpiration for Arundo should be higher than that for switchgrass . The nitrogen uptake 

for Arundo was less while the phosphorus uptake was higher. Plant growth in SWAT 

depends on Potential Heat Units (PHUs) where the growth of a plant depends on the 

number of heat units accumulated. The number of heat units is proportional to the 

difference in temperature between the ambient and the optimum temperature required for 

plant growth. The PHUs for switchgrass were taken to be 2,300 (Kiniry et al.1996) while 

that for the Arundo were taken to be 3000 which was determined from the ALMANAC 

model. 

 

Table 10. Comparison of plant growth parameters used for Arundo and switchgrass. The 

descriptions of the parameters is in Appendix A. 

Parameter switchgrass Arundo Units 

BIO_E (RUE) 47 45 (kg/ha)/(MJ/m
2
) 

WAVP 8.5 10  

BIOEHI 54 52  

CO2HI 660 660.29 µL CO2/L air 

BLAI 6 12  

FRGRW1 0.1 0.1  

LAIMX1 0.2 0.2  

FRGRW2 0.2 0.5  

LAIMX2 0.95 0.95  

DLAI 0.8 0.95  

CHTMX 2.5 3.6 m 

RDMX 2.2 2 m 

T_OPT 25 25 °C 

T_base 12 10 ° C 

PLTNFR1 0.035 0.01 kg N/kg 

biomass 
PLTNFR2 0.015 0.004 kg N/kg 

biomass 
PLTNFR3 0.0038 0.0025 kg N/kg 

biomass 
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Table 10. continued 

PLTPFR1 0.0014 0.0075 kg P/kg 

biomass 
PLTPFR2 0.001 0.003 kg P/kg 

biomass 
Parameter switchgrass Arundo Units 

PLTPFR3 0.007 0.0019 kg P/kg 

biomass 
HVSTI 0.9 0.9  

WSYF 0.9 0.15 (kg/ha)/(kg/ha) 

CNYLD 0.016 0.0069 kg N/kg yield 

CPYLD 0.0022 0.0017 kg P/kg yield 

USLE_C 0.003 0.001  

GSI 0.0055 0.007 m/s 

VPDFR 4 4 kPa 

FRGMAX 0.75 0.75  

RSDCO_PL 0.75 0.05  

ALAI_MIN 0.75 0.75  

BIO_LEAF NA NA  

MAT_YRS NA NA  

BMX_TREES NA NA metric tons/ha 

EXT_COEF - 0.65  

 

 

Plant growth curves for the two plants were simulated using LAIs obtained from 

SWAT runs. These growth curves are a function of PHUs and LAI. The PHUs determine 

the period for which the plant will be active and LAI starts to decline when 70% of the 

heat units have been reached (Kiniry et al., 1996). Figure 17 shows the plant growth 

curves for Arundo and switchgrass for a sample year. As can be seen, since the PHUs for 

the switchgrass accumulate earlier, its LAI starts declining before that of Arundo. 

Although the potential LAIs for Arundo and switchgrass are 12 and 6, respectively, 

neither of the plants attained their peak LAIs due to water and nutrient stress. 
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Figure 17.  Plant growth curves for Arundo and switchgrass for an average year based 

on SWAT simulations of the two crops. 

  

 

The highest LAI changed every year based on the climatic conditions in that 

year. This can be observed in Figure 18 which compares the plant growth curve of 

Arundo over two different years- one with rainfall of 312 mm and one with a rainfall of 

980 mm. From the graphs, it can be seen that the plants are water stressed. Arundo is 

able to have a longer duration and higher extent of activity based on its LAI for a year 

when there is more rainfall. 
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Figure 18. Growth curves for Arundo over two years with different amounts of rain, 312 

mm and 980 mm. 

 

 

IV.4.2.3 Analysis 

Once the plant growth curves were found to be reasonable, the model was run for two 

scenarios- with native switchgrass and with Arundo during the 1995-2010 period. The 

water balance can be defined by the following equation (SWAT Manual, 2009 p.9): 

Equation 2 

 

where 

SWt = Final soil water content (mm H2O) 

SWo= Initial Soil Water Contect on day ‘i’ (mm H2O) 

t = the day for which the simulation is run 

SWt = SWo + 


t

i 1

(Rday – Qsurf – Ea – wsweep- Qgw)   
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Rday = Amount of Precipitation on day ‘i’ (mm H2O) 

Qsurf= Surface Runoff  on day ‘i’ (mm H2O) 

Ea= Evapotranspiration on day ‘i’ (mm H2O) 

wsweep= Amount of water entering the vadose zone on day ‘i’ (mm H2O) 

Qgw= Return flow on day ‘i’ (mm H2O) 

In Equation 2, the factor that would change due to a change of plant type would 

be evapotranspiration, which in turn would affect the soil water content, amount of water 

entering the vadose zone and return flows. 

An insignificant difference was found in the water yield and evapotranspiration 

when accumulated over the 16 year simulation period. The evapotranspiration was found 

to be higher for Arundo by 10. 35 mm over the period of 16 years. The difference in 

water yield was found to be higher for switchgrass by 0.676 mm over the period of 16 

years. Over 16 years, switchgrass had 1347 (23%) water stressed days while Arundo had 

2203 (37%) such days. Since water stress was faced by these plants which can be seen in 

the number of water stress days and the fact that they were unable to attain their 

maximum LAI, three instances of observing plant growth curves, evapotranspiration 

difference and precipitation have been shown in Figure 19 below, (a) a year with 

minimum precipitation, (b) a year with maximum precipitation, and (c) a year with 

medium precipitation. These instances were picked such that scenarios of extreme stress, 

medium stress and heavy rainfall for the region could be explained. There is a similar 

pattern that can be seen in all the three cases. There are positive differences as well as 

negative differences in evapotranspiration which can be explained by looking at the 



 

63 

 

growth curves. The LAI of Arundo increases rapidly in the initial part of the year and 

hence it evapotranspires more than switchgrass. Then there is a period where the 

difference in evapotranspiration is negative. This is because Arundo has absorbed all of 

the soil moisture while there is still water available in the soil for the switchgrass. This 

has been explained through Figure 20 for the year 1995 which is a year of medium 

rainfall since all the years follow a similar pattern. In this figure the soil moisture at the 

end of the month of April is more for switchgrass which translates to higher 

evapotranspiration of switchgrass in May as compared to Arundo. This difference in 

evapotranspiration can be seen both in Figure 19(c) and Figure 20.  By the time 

September begins, the leaves of switchgrass stop transpiring. The leaves of Arundo are 

still transpiring. The soil moisture is now taken up by the Arundo and there is still 

moisture in the soil for switchgrass. There is an evaporation component of the 

evapotranspiration which takes over as the year starts ending and the leaves senesce. 

This is the evaporation of water from the soil which is dependent on the amount of soil 

moisture and shading. Since there is still soil moisture in the soil for switchgrass, it has 

higher evaporation than the Arundo which has taken up all the moisture and so there is 

none to evaporate. Since the canopy height and LAI of the switchgrass are lower than 

that of Arundo, it provides less shade than Arundo. This is the reason there is a slight 

negative difference in the evapotranspiration between Arundo and switchgrass in the 

later part of the year. If there is a rain event in September, switchgrass has zero LAI 

while Arundo is still transpiring and Arundo evapotranspiration goes above that of the 



 

64 

 

switchgrass’s and there is a visible positive difference. If there is no precipitation event, 

the difference in evapotranspiration becomes slightly negative and evens out to zero. 

 

 

 

(a) 

Figure 19. These graphs show plant growth curves for Arundo and switchgrass through 

their LAIs, monthly cumulative evapotranspiration for both plants and monthly 

precipitation in the HRUs where(a) The year (2006) had minimum precipitation (b) Year 

(2007) had maximum precipitation (c) Year (1995) had medium precipitation. In all 

three instances the evapotranspiration shows a combination of positive and negative 

differences based on the plant growth curve and the available soil moisture. 
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(b) 

 

 

(c) 

Figure 19. continued 
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Figure 20. A plot comparing evapotranspiration (ET) by Arundo and switchgrass with 

soil moisture conditions for both types of vegetation for the year 1995. 

 

 

The limitations of the study were that the SWAT model could not incorporate the 

density of Arundo and a combination of mixed vegetation in the riparian region as is 

actually seen in the watershed. The model simulated a large number of water stressed 

days. Arundo which can be seen growing within the river would have access to water at 

all times but it could not be simulated in SWAT. This Arundo which is in water affects 

its geomorphology by changing the routes of water flow and causing sedimentation 

which could not be accounted for. Arundo has invaded only the riparian region of the 

watershed and was found in an area that covered only 0.16% of the entire watershed 

analyzed in this study. If it were like invasive species such as Tamarix and J. ashei 

which have covered upto 80% of some of the basins in Texas, the hydrology might have 

been better simulated since a larger area covered would translate to a higher contribution 
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to the water cycle in terms of leaves evapotranspiring and roots helping infiltration. The 

findings in this study support the study by Nagler et al. (2008) who found that there was 

no difference in evapotranspiration between the Tamarix and the native species on the 

Lower Colorado River. 

IV.4.2.4 Conclusions and future work 

 The hydrologic impacts of Arundo were studied as against the switchgrass which 

was the native species in the headwaters of the Nueces Headwaters using the SWAT 

model. It was found that there was no significant difference in water yield or 

evapotranspiration due to the invasion of Arundo. This is due to the fact that the area is 

water stressed for a long proportion of the year and although the plants have the potential 

to take up water, there is none in the soil to be absorbed. The SWAT model could not 

account for Arundo that is found within the water and should not face any water stress. 

 Future work would include running the SWAT simulations using autoirrigation 

for Arundo so that the model can draw water from the river and make sure there is no 

water stress for the plant. This would help better understand how Arundo is competing 

with the native vegetation when water is abundant. 
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 CHAPTER V

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

The overall goal of this research was to study the impacts of the Arundo invasion 

on the  headwaters of the Nueces River watershed. The study was divided into three 

parts – Streamflow Analysis, Arundo Propagation and SWAT Modeling. The streamflow 

analysis of data from the Laguna gage (USGS 08190000) showed a positive trend for the 

period before Arundo invasion and a negative trend for the period after. The limitations 

of this analysis were the presence of one one gage with longterm streamflow data, the 

absence of a methodology to separate baseflow from streamflow for a karst region and 

only two stations with precipitation data ranging the period of this study. As no specific 

trend for precipitation was found for the study period, it was hypothesised that the reason 

for this could be land use change, namely the invasion of Arundo. However, this 

hypothesis could not be proved by the SWAT model simulations of Arundo invasion in 

the watershed.  

 The SWAT model successfully simulated the karst watershed and the calibrated 

and validated model was evaluated by a set of statistical parameters with good results. 

Therefore the hydrology of the watershed was well simulated by the model as indicated 

by good statstical performance measures. Parameters of Arundo were established by 

running the ALMANAC model. Arundo was added as a new crop to the SWAT 

database. Although the plant growth curves between the Arundo and the native 

P.virgatum showed a significant difference, there was an insignificant difference in the 

cumulative simulated evapotranspiration among two plant types over a period of 16 
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years. This was explained by the fact that the Arundo  absorbs water faster than the 

P.virgatum in the initial parts of the year but the moisture in the soil is depleted in April. 

Due to lesser rates of evapotranspiration P.virgatum absorbs soil moisture through a 

longer period of time. As the growing seasoncomes to an end, leaves of both plants 

senesce and transpiration reduces. Evaporation takes over and P.virgatum aids more 

evaporation than Arundo because of it giving less shade. Finally the difference in 

evapotranspiration zeros out. The presence of Arundo  within the waters of the river and 

its effect on changes in the geomorphology could not be simulated well by the SWAT 

model. If this could be incorporated, there would not be a lesser proportion of water 

stress days for the species since the roots would have direct access to the water in the 

reach. In addition, changes in the geomorphology in the Nueces River could not be 

simulated by SWAT. Also the area occupied by the Arundo was only 0.16% of the entire 

watershed.  

As part of this study, a propagation algorithm was developed for the Arundo 

which can be used to study the propagation of various invasive species that might 

propagate due to flooding. A preliminary simulation was run that used a time step of 1 

month. The assumptions that the Arundo spreads exponentially where its stalk falls and 

downstream during flood events were successfully simulated. Factors such as transport 

of stalks due to wind or humans were not incorporated at this stagedue to lack in data 

and can be added to the algorithm using simple conditionals in the form of 

(if..then..else..). Real time wind movement and precipitation data can be incorporated to 

make a more accurate modek. Minimum distance between two generated points also 
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needs to be incorporated so that the density is not restricted to a very small radius around 

the transplanted stalks in flood events. These were beyond the scope of the study due to 

limitations in data in Arundo growth and propagation. Models like LANDIS II (Scheller 

et al., 2007) could be integrated with the present algorithm to add the factors that could 

not be incorporated due to lack of data about the propagation of Arundo. 
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APPENDIX A 

Table 11. Crop growth parameters. 

 Parameter Description 

BIOMASS 

PRODUCTION 

BIO_E (RUE) Radiation-use efficiency or biomass-energy 

ratio  

WAVP Rate of decline in radiation use efficiency per 

unit increase in vapor pressure deficit 

BIOEHI Biomass-energy ratio corresponding to the 2
nd

 

point on the radiation use efficiency curve 

CO2HI Elevated CO2 atmospheric concentration (μL 

CO2/L air) corresponding the 2
nd

 point on the 

radiation use efficiency curve 

LEAF AREA 

DEVELOPMENT 

BLAI Maximum potential leaf area index 

FRGRW1 Fraction of the plant growing season or 

fraction of total potential heat units 

corresponding to the 1
st
 point on the optimal 

leaf area development curve 

LAIMX1 Fraction of the maximum leaf area index 

corresponding to the 1
st
 point on the optimal 

leaf area development curve 

FRGRW2 Fraction of the plant growing season or 

fraction of total potential heat units 

corresponding to the 2
nd

 point on the optimal 

leaf area development curve 

LAIMX2 Fraction of the maximum leaf area index 

corresponding to the 2
nd

 point on the optimal 

leaf area development curve 

DLAI Fraction of growing season when leaf area 

begins to decline 

 CHTMX Maximum canopy height  

 RDMX Maximum root depth  

TEMPERATURE 

T_OPT Optimal temperature for plant growth  

T_base Minimum (base) temperature for plant growth  

NUTRIENTS 

PLTNFR1 Nitrogen uptake parameter #1: normal fraction 

of nitrogen in plant biomass at emergence  

PLTNFR2 Nitrogen uptake parameter #2: normal fraction 

of nitrogen in plant biomass at 50% maturity 
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Table 11. continued 

 Parameter Description 

 PLTNFR3 Nitrogen uptake parameter #3: normal fraction 

of nitrogen in plant biomass at maturity  

PLTPFR1 Phosphorus uptake parameter #1: normal 

fraction of phosphorus in plant biomass at 

emergence  

PLTPFR2 Phosphorus uptake parameter #2: normal 

fraction of phosphorus in plant biomass at 

50% maturity  

PLTPFR3 Phosphorus uptake parameter #3: normal 

fraction of phosphorus in plant biomass at 

maturity  

HARVEST 
HVSTI Harvest index for optimal growing conditions 

WSYF Lower limit of harvest index  

 CNYLD Normal fraction of nitrogen in yield  

 CPYLD Normal fraction of phosphorus in yield  

 USLE_C Minimum value of USLE C factor for water 

erosion applicable to the land cover/plant 

 GSI Maximum stomatal conductance at high solar 

radiation and low vapor pressure deficit  

 VPDFR Vapor pressure deficit (kPa) corresponding to 

the second point on the stomatal conductance 

curve 

 FRGMAX Fraction of maximum stomatal conductance 

corresponding to the second point on the 

stomatal conductance curve 

 RSDCO_PL Plant residue decomposition coefficient 

 ALAI_MIN Minimum leaf area index for plant during 

dormant period  

 BIO_LEAF Fraction of tree biomass accumulated each 

year that is converted to residue during 

dormancy 

 MAT_YRS Number of years required for tree species to 

reach full development (years) 

 BMX_TREES Maximum biomass for a forest  

 EXT_COEF Light extinction coefficient 

 

 

 

 


