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ABSTRACT 

 

Due to significant uncertainty in reservoir parameters, maximizing reservoir 

potential is an extremely difficult task. To be able to make decisions that maximize the 

reservoir potential, knowledge of possible ranges of reservoir parameters and production 

optimization are critical. The closed-loop reservoir management approach enables the 

petroleum industry to understand possible ranges of reservoir parameters and optimize 

production strategy accordingly. Closed-loop reservoir management can also be used to 

quantify uncertainty in reservoir parameters and take into account during reservoir 

management process accordingly. An ensemble of reservoir realizations can be 

incorporated in the workflow to probabilistically forecast production and an optimum 

production strategy for the overall ensemble can be obtained using robust optimization 

concepts,. However, robust optimization involves optimizing every realization which 

requires significant computational cost. Thus, careful consideration is required of the 

trade-off between the number of models optimized and the computational cost. 

This thesis aims to investigate the benefit of optimizing production strategy with 

different ensemble sizes. Two-phase reservoir modeling of waterflooding is used in this 

study. Markov Chain Monte Carlo (MCMC) is used in the history matching process to 

investigate probability distributions of uncertain reservoir parameters. The Minimax 

approach which aims to maximize spread in input uncertainty space will be used in 

selecting representative models for different ensemble sizes. Simultaneous Perturbation 

Stochastic Approximation (SPSA) is applied to each ensemble to optimize production 
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strategy. The study compared the resulting NPVs using optimized production strategies 

from different ensemble sizes.  

Results show that increasing ensemble size leads to a better development 

strategy. However, the incremental benefit decreases with increasing ensemble size. The 

study indicated that the development strategy that is based on multiple realizations is 

better than development strategy that was developed based on single realization even 

though the multiple realizations case did not include all possible realizations. The study 

also demonstrates a systematic methodology for investigating the benefit of using 

multiple models for optimization vs. a single realization. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

 In order to maximize reservoir potential, understanding the ranges of reservoir 

parameters and optimizing development plan are key components. In 2009, Jansen et al. 

illustrated the concept of the closed-loop reservoir management (CLRM). CLRM is a 

process that enables us to gain knowledge of reservoir parameters and optimizing 

development plan in a structured workflow. CLRM has gained growing attention from 

the petroleum industry recently.  

 In the conventional data assimilation process, the most probable reservoir 

realization is obtained during the history matching process. There are numerous studies 

of methods to determine the most probable reservoir realization, such as maximum-

likelihood estimation (MLE) or maximum-a-posterior estimation (MAP) (Rotondi et al. 

(2006) and Bi et al. (2000)). Since history matching is an ill-posed problem in which 

different sets of reservoir parameters can reproduce the same set of observed data, one 

single reservoir realization cannot quantify the reservoir uncertainty.  The complex 

nature of flow behavior inside the reservoir further complicates the history matching 

process. Brashear et al. (2001) have shown that failing to properly address reservoir 

uncertainty can lead to suboptimal development plans and inability to maximize 

reservoir potential. Thus, uncertainty quantification is necessary to enhance reservoir 

production and economic gain. 
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 Due to highly non-linear behavior of optimization problems in the petroleum 

industry, several optimization schemes have been investigated (Bieker and Johansen 

2007). Uncertainty in reservoir parameters increases complexity of the problem. In the 

area of optimization under uncertainty, robust optimization (optimizing all the possible 

realizations) has been identified as having potential to increase ultimate recovery (Van 

Essen et al. (2009)). However, optimizing a large number of realizations incurs 

significant computational cost. Thus, typically, only a limited number of reservoir 

realizations can be optimized. In order to effectively select a limited number of 

realizations, wise model selection and ranking processes are necessary. Even though 

estimating computational costs that result from selecting additional realizations for 

optimization is straightforward, the benefit of incorporating multiple realizations into 

optimization process is not clearly understood.  

1.2 Background 

1.2.1 Uncertainty Quantification 

The topic of uncertainty assessment has been investigated for decades. Capen 

(1976) found that people were commonly underestimating uncertainty and suggested 

that better understanding of uncertainties would have a significant impact on project 

success. Welsh et al. (2005) published results of a study based on a survey designed to 

address a number of well-known biases. The study concluded that risk training can offer 

some advantages in bias-prone situations. However, for oil and gas industry, the 

experience in the industry offered little to none reduction in bias susceptibility.  
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Several studies have identified that underestimation of uncertainty can be a 

source of lower-than-expected returns. Brashear et al. (2001) addressed the issue of low 

returns in the oil and gas industry during the 1990s with an example of seven simple 

projects. The study illustrated that the conventional deterministic project selection 

process caused the underestimation of risk, overestimation of expected value, and 

misallocation of capital by selecting projects with unnecessary uncompensated risk, 

which ultimately led to low industry returns.  Incorporating risk into the selection 

process by using full ranges of uncertain costs and reservoir properties, project risk 

analysis and the use of portfolio optimization can provide more realistic expected values, 

better understanding of risk and its mitigation, more optimal capital allocation and 

ultimately improved operational and financial performance.  

Even though the concept of uncertainty quantification has been addressed for 

decades, there is still room for improvement. Bickel and Bratvold (2007) presented the 

decision-focused uncertainty quantification framework along with results of a survey 

conducted to determine the status of uncertainty quantification and decision analysis. 

The response was that uncertainty quantification was limited by lack of time and 

indicated that the uncertainty quantification and decision analysis process needs to 

improve in terms of speed and consistency. Hdadou and McVay (2014) published the 

results of a study to quantify the value of assessing uncertainty and proposed a new 

framework for quantifying monetary impact due to overconfidence and optimism on 

portfolio performance. For high risk tolerance relative to portfolio values, moderate 

overconfidence and moderate optimism will result in an expected disappointment of 
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about 50% of estimated portfolio value. The study indicated that reducing 

overconfidence, which prevents consideration of all possible outcomes, will correct 

other bias, including directional bias. Gonzalez et al. (2013) developed a relational 

database utilizing the Brier score for tracking probabilistic assessments, applying 

calibration to improve the probabilistic forecast over time. The examples in their work 

consist of both petroleum industry and non-petroleum industry problems. 

1.2.2 History Matching 

Reservoir simulation has been proven to be a valuable tool in reservoir 

management.  History matching is needed to ensure reliable reservoir simulation models. 

History matching is an inverse problem where the observed data are used for estimating 

uncertain reservoir parameters.  

 During the past decades, there has been significant progress in generating 

reservoir realizations that can match observed production data. Oliver and Chen (2011) 

published a review on recent progress in history matching. They attributed the progress 

made in the last decades to increase in computational power and the adoption of 

geostatistics and Monte Carlo methods. The main components in the history matching 

process usually consist of (1) parameterization of the uncertain parameters (i.e., 

zonation), (2) production data and an objective function, (3) algorithms for history 

matching, and (4) uncertainty quantification methods. 

 Since a reservoir simulation model typically contains large amount of grid cells, 

the number of independent variables is significantly higher than the number of observed 

data points. Thus, it is advantageous to reparameterize the history matching problem to 



 

5 
 

 

be in a lower-dimensional space. One of the most widely-used parameterization methods 

is zonation. However, sub-optimal zonation can easily lead to discontinuous reservoir 

parameters and violation of reservoir geology. To avoid this problem, several authors 

have proposed reparameterization algorithms based on prior knowledge or based on data 

sensitivity (Jafarpour and McLaughlin 2007).   

 Two key features of production data that differentiate history matching from 

other inverse problems are observed data that are available at the well locations and non-

linear and non-local relationships between model variables and observed data. In 

general, history matching aims to find the model parameters that minimize the squared 

error of mismatch between observed data and simulation data. However, having only 

minimization of data mismatch in the objective function term may lead to reservoir 

realizations that are significantly different than prior knowledge. Several authors have 

introduced a Bayesian framework into the history matching process (Rotondi et al. 

(2006) and Bi et al. (2000)). The objective function in a Bayesian framework will 

penalize any deviation from prior knowledge of uncertain parameters, which will lead to 

reservoir realizations that take into account both prior information and observed data.  

 Even though the forms of objective functions in history matching are pretty 

harmonious, the algorithms used in history matching vary significantly. History 

matching can be considered as optimization problem. During the early days of history 

matching, the process was done manually. Manual history matching relies mainly on 

good engineering judgment and experience. Users typically implement local regional 

multipliers around certain wells that experience significant data mismatch. This leads to 
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loss of geological realism and limited prediction power. As geological realization 

become more complex, performing manual history matching become more subjective. 

Several types of algorithms are used in history matching process to automate the 

process. Some of the widely used methods are genetic algorithms (see Sec. 1.2.4.2) and 

Markov Chain Monte Carlo (see Sec. 1.2.2.2). Another key benefit of assisted history 

matching is the capability to generate multiple history-matched models. Since 

uncertainty in reservoir management is mainly due to limited knowledge in reservoir 

parameters, using multiple history-matched models can improve ability to explore the 

uncertainty space. Schaaf et al. (2008) proposed a workflow to reduce reservoir 

uncertainty using multiple history matched model that can be used to provide reasonably 

reliable production forecasts. There are three main steps in the proposed workflow: (1) 

perform experimental design to the whole range of uncertain parameters to identify 

heavy hitters, (2) generate multiple history matched models using assisted history 

matching within a Bayesian framework and (3) construct three proxy models of the 

production forecast through the use of experimental design technique: one for mean of 

the production forecast, the two others reflecting spread around the mean. Osterloh 

(2008) demonstrated a method for assisted probabilistic history matching and 

probabilistic forecast. The proposed method involved using experimental design, 

response surface modeling, and multiple response optimizations. The desirability 

function is used for multiple response optimizations. The cumulative production at every 

two-year interval becomes the target response for multiple response optimizations. The 

author explained that another useful application of multiple response optimizations is to 
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select the kth target percentile model that corresponds to the kth target percentile of all the 

responses.  

1.2.2.1 Bayesian Framework 

The Bayesian framework is a concept widely used in statistics and probability 

theory. It provides a way to systematically update the probability of an event with new 

information. The initial knowledge we have on the reservoir parameters, namely  ( ) is 

called prior knowledge. The probability of the observed data given reservoir parameters 

namely  (   ) is called the likelihood probability. The probability of the reservoir 

parameters given the observed data is called the posterior probability. The Bayes theory 

is shown in Eq. 1. 

                                          (1) 
 

 
where: 

 (   ) is posterior probability 

 (   ) is likelihood probability 

 ( ) is prior probability 

 ( ) is probability of observed data 

 The posterior probability namely  (   ) contains information on uncertain 

parameters that take into account both initial knowledge and observed information. The 

posterior distribution can be used for uncertainty quantification and reservoir 

management. 

  

 (   )  
 (   ) ( )

 ( )
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1.2.2.2 Markov Chain Monte Carlo (MCMC) 

MCMC is a class of algorithms which intend to sample from a target distribution. 

The algorithm is based on a Markov process that can be described as a system under 

transition such that the next state depends only on the current state. One of the widely 

used classes of MCMC is Metropolis-Hasting algorithms. The name originated from 

papers presented by Metropolis (1953) and Hastings (1970). The MCMC Metropolis-

Hasting algorithm is mainly used for obtaining a sequence of random samples from a 

probability distribution that is difficult to sample from directly. This method can be used 

for generating a histogram or calculating an expected value of the target distribution. 

The important advantage of MCMC is that it does not require knowledge of normalizing 

constant of target distribution. However, the choices of prior, initial guess, and proposal 

distribution have significant impacts on the burn-in period and the number of iterations 

required to reach stationarity. For high-dimensional problems, perturbing all parameters 

at the same time (global perturbation) will lead to low acceptance rates and cause the 

chain to progress very slowly (Liu and Oliver (2003)). 

Burn-in period is the early period of the chain in which the chain is in transition 

from the initial point to stationarity. Several approaches have been developed to identify 

the burn-in period. The most widely-used approach is a time-series plot. Another widely 

used method proposed by Geweke (1992) to check the chain stationarity is to split the 

chain into two groups after discarding the burn-in period. If the chain reaches 

stationarity, the mean of the two groups should be the same. 
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MCMC has been used in conjunction with reservoir simulation for assisted 

history matching. In conventional MCMC operation, every iteration required a separate 

reservoir simulation. Thus, applying MCMC to quantify reservoir uncertainty is very 

computationally expensive. Several modifications were proposed to improve 

computational efficiency of the MCMC process. The improvements can be grouped into 

two main areas: (1) replacing the full-field reservoir model with another method; i.e., 

using experimental design to create a response surface and using it as a proxy for 

reservoir simulation, and (2) utilize better proposal distribution that is able to increase 

acceptance ratio. Holmes et al. (2007) proposed a continuous reservoir simulation 

process that runs through the life of the reservoir while incorporating real time 

production and pressure information. This method allowed for more runs which enable 

better uncertainty quantification in production forecasts. The concept was tested on one 

synthetic reservoir and one field case. The test indicated that this concept is feasible. Liu 

and McVay (2010) applied the concept proposed by Holmes et al. (2007) in conjunction 

with the concept of Markov Chain Monte Carlo (MCMC) for exploration of the 

parameter space to quantify uncertainty in production forecasts. The approach delivers 

probabilistic production forecasts that narrow with time and provides mechanisms for 

uncertainty estimation. Alpak et al. (2009) proposed a stochastic history-matching 

framework that combines the concept of Design of Experiments (DoE) and MCMC. The 

proposed framework provides ranges for high-impact parameters and multiple history-

matched models. However, the proposed framework did not incorporate the production 

optimization process. 
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1.2.3 Model Selection 

 With the improvement in geostatistics and history matching methodologies, 

hundreds or even thousands of reservoir realizations can easily be generated; thus, 

reservoir management is moving toward an ensemble-based approach. However, it is 

very expensive computationally to explore reservoir management strategies using all the 

realizations. Thus, there is a need to select only models that are statistically 

representative to be used during the decision making and planning process.   

The conventional model selection approach is to select a few representative 

models at certain percentiles (i.e., 10th, 50th, 90th percentile of original oil in place) of 

certain reservoir parameter (Deutsch and Srinivasan (1996) and Odai and Ogbe (2011)). 

The downside of this approach is that the selected models may not be able to capture the 

uncertainty of other reservoir parameters.  

1.2.3.1 Minimax Model-Selection Method 

Chen et al. (2013) proposed a new model-selection approach called the 

“Minimax approach” to select a few models from a large ensemble of models, while 

maximizing the difference of the models in the input uncertainty space. This approach 

can match target percentiles of multiple output responses. 

The goal of the Minimax model-selection approach is to select the ensemble in a 

way that not only matches desired target percentiles but also yields an ensemble of 

models that are maximally different in the input space. This approach requires to solve 

two combinatorial optimization problems simultaneously (Eq. (2) and Eq. (3)): 
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(2) 
 
  

 
(3) 

 
 

Subject to: 

           (4) 
 
 

where: 

  is number or output parameter. 

  is number of representative model 

  is vector of output parameter 

  is vector of input parameter 

          is set of large but finite model 

 ̂          is set of statistically representative model 

The objective of Eq. (2) is to minimize the distance of the selected model from 

the targeted percentile while Eq. (3) aims to find set of models that are maximally 

different in the input space. Constrain stated in Eq. (4) is that every selected model is 

unique to each other’s. 

1.2.4 Optimization Techniques 

 Multiple optimization techniques have been used in the petroleum industry to 

assist in the reservoir management process. Optimization algorithms typically start with 

some initial guess as a solution and the initial solution is then updated iteratively to 

improve the value of an objective function. Optimization techniques that are widely used 
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can be divided into two main groups: (1) gradient-based algorithms and (2) evolutionary 

algorithms. 

 Gradient-based optimization algorithms refer to a class of optimization that relies 

on the derivative of the objective function to move from an existing solution to the 

optimal solution. One of the gradient-based optimization methods that have been gaining 

industry attraction is the Simultaneous Perturbation Stochastic Approximation (SPSA) 

(Spall 1998). On the other hand, evolutionary algorithms are inspired by biological 

evolution. One of the most commonly used evolutionary algorithms is the genetic 

algorithm (GA) (Bieker and Johansen 2007). 

1.2.4.1 Simultaneous Perturbation Stochastic Approximation (SPSA) 

Because the gradient-based method uses gradient information to guide the 

movement from current solution to the next, obtaining gradient information of the 

objective function is the main step in gradient-based algorithms. The typical gradient-

based optimization method for minimization problems can be written in the following 

form: 

                                              (5) 
  

where: 

 ̂ ( ̂ )  is approximated gradient 

 ̂   is vector of solution at current iteration 

 ̂    is vector of solution at next iteration 

    is step size 

 ̂     ̂     ̂ ( ̂ ) 
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In some situations the gradient information is not available and can be obtained 

by perturbation. An early prototype gradient approximation is the Kiefer-Wolfowitz 

algorithm (FDSA). FDSA uses a finite-difference approximation to obtain the gradient 

of the objective function with respect to each individual element, which makes it easy to 

implement. However, the main drawback of FDSA is that the method is very 

computational expensive. For double-sided FDSA, the number of measurements (flow 

simulations) required for one iteration is twice the number of control variables. Thus, in 

large systems, FDSA becomes too hard to implement.  

   SPSA algorithm takes a slightly different approach in approximating gradients. 

Instead of perturbing one control variable at a time, SPSA randomly perturbs all 

parameters to obtain two measurements. Then, each component of the gradient is 

calculated based on the ratio of the individual components in the perturbation vector and 

the difference of the two measurements. The expected search direction generated from 

SPSA is the steepest descent generation. Chin (1997) conducted a comparative study of 

stochastic approximation algorithms, which showed the superiority of the SPSA 

algorithm. The SPSA algorithm can be expressed as the set of equations below:  

                                                          (6) 
 

 
(7) 

 

 
(8) 

 
(9) 

 

 ̂     ̂     ̂ ( ̂ ) 

 ̂ ( ̂ )  
 ( ̂      )   ( ̂      )

      
 

   
 

(   ) 
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Eq. (6) indicates how the solution moves from current iteration to the next 

iteration. Gradient is approximated by using Eq. (7). Eq. (8) and Eq. (9) are used for 

calculating the step size and perturbation size respectively. 

The steps for implementing SPSA are relatively easy to code. Spall (1998) 

summarized the key steps in his paper and included sample MATLAB codes. He also 

proposed guidance for choosing each of the coefficients effectively:     and   
 

 
 is 

asymptotically optimum but setting         and         is effective in practice. 

Coefficient     is suggested to be five to ten percent of the number of iterations. 

Coefficient     is recommended to be set equal to the standard deviation of noise in the 

objective function. Coefficient     is recommended to be set in a way that the product 

between    and    is equal to the smallest desired step size.    is user-specified random 

perturbation vector. The Bernoulli distribution with probability of ½ for    outcome is 

recommended for the perturbation vectors. The key benefits of SPSA are significant 

reduction in computation time required for approximating gradients, especially in high-

dimensional problems, and ease of implementation. Gao et al. (2007) implemented 

SPSA for automatic history matching. 

 1.2.4.2 Genetic Algorithm (GA) 

 The genetic algorithm (GA) can be considered as a search algorithm that is based 

on the process of natural genetics. Since GA is not a solver algorithm, there is no need 

for knowledge of the objective function shape.  The steps for GA can be summarized as 

follows: (1) create random initial population, (2) score each member of the current 

population and scale the values, (3) select member based on their fitness value to be 
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parents for next generation, (4) produce children from their parents by combining vector 

of parents (crossover) or randomly change part of parent vector (mutation), (5) carry 

individuals with the best fitness value in current generation to the next generation (elite 

children) (6) replace current population with the new population and (7) repeat from step 

(1) until optimal criteria are met. 

 The key advantage of GA is that the algorithm can explore a wide parameter 

space and not be easily trapped in local minima. However, as GA does not use any 

gradient information to guide to the optimum solution, GA is very computational 

expensive. In order to improve the slow rate of convergence, gradient-based search 

methods are used in conjunction with GA to improve the local convergence rate. 

1.2.5 Closed-Loop Reservoir Management (CLRM) 

 Closed-loop reservoir management is a combination of model-based optimization 

and assisted history matching. Recently, closed-loop reservoir management has gained 

growing attention from the petroleum industry and in the context of ‘i-fields’ or ‘smart 

fields.’ The key concept of CLRM is to maximize reservoir performance over the life of 

the reservoir by changing the reservoir management process from a periodic to near-

continuous process. Jansen et al. (2009) utilized closed-loop reservoir management as a 

continuous process for history matching, optimizing NPV as new information is 

obtained. Gildin et al. (2011) proposed a general workflow to utilize real-time optimal-

control strategies for large-scale reservoir models. Pajonk et al. (2011) investigated the 

potential of increasing oil recovery through the use of smart-well technologies. The 

ensemble-based hybrid optimization workflow comprising an ensemble Kalman filter 
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and the Covariance Matrix Adaptation Evolution Strategy was proposed. The ensemble 

Kalman filter was used for history matching and the Covariance Matrix Adaptation 

Evolution Strategy for production optimization to provide a production strategy that 

yields the highest expected NPV from the whole ensemble. 

1.2.5.1 Robust Optimization (RO) 

Dynamic optimization has been recognized by the petroleum industry as having 

potential to increase ultimate recovery and profitability. However, dynamic optimization 

often lacks flexibility to incorporate uncertainty in geological parameters. Robust 

optimization (RO) utilizes multiple sets of geological realizations in the optimization 

process, which leads to a development plan that is optimum for all realizations. Van 

Essen et al. (2009) compared robust optimization with nominal optimization and 

reactive-control strategies and found that robust optimization is superior to the other two 

strategies. However, the comparison is based on a situation in which no production data 

is available. Hence, each realization is assumed to have equal probability of being the 

true model. Alhuthali et al. (2008) proposed a practical approach to determine the 

optimum production and injection rates under geological uncertainty. Geological 

uncertainty is handled by using two optimization problems. Objective function of the 

first optimization relies on combination of expected value and standard deviation while 

the second objective function focuses on minimizing the worst case scenario.  

1.3 Research Objective 

This study is motivated primarily by the Van Essen et al. (2009) work on robust 

optimization. Due to advancements in data assimilation processes, multiple reservoir 
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realizations can be obtained (Oliver and Chen (2011)). Optimizing the production 

strategy for every realization is possible but with significant computational cost; thus, 

decision on how many models to be used during optimization process must be made 

carefully. 

The objective of this study is to investigate the benefit of optimizing production 

strategy with different ensemble size.  
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2. METHODOLOGY AND MODEL DESCRIPTION 

 

2.1 Research Workflow 

This study will utilize a Bayesian framework and MCMC to assist in data 

assimilation to investigate the range of each uncertain parameter. Knowledge from data 

assimilation will be used in model selection for further optimization. Flow simulation 

used in this study is ECLIPSE. The steps taken in this study are as follows:  

1. Generate production profile using a synthetic reservoir model. This model will be 

used as the “true” reservoir model. The production will be under waterflooding 

development. Additional noise will be incorporated into the generated production 

from the “true” reservoir model to mimic noise in field production. 

2. Perform data assimilation to obtain distributions of uncertain parameters.  

3. Select different ensembles of models with different ensemble sizes to optimize 

the production strategy. Parameters for the optimization process are production 

and injection rates. 

4. Input the optimum strategy from each ensemble size to all possible realizations to 

obtain the resulting NPV. The resulting NPV will be used to investigate the 

benefit from different ensemble size. The resulting production forecast from 

different ensemble size will also be compared with the true model to investigate 

the range of production forecast. 
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2.2 Model Description 

The model used in this study is based on the Brugge field case. The Brugge field 

case was a synthetic model developed as a realistic case study for benchmarking 

waterflooding history matching and optimization techniques (Peters et al. (2013)). The 

setup of the Brugge field case is similar to the PUNQ field case, which focuses on 

uncertainty quantification. The main difference between two cases is that the Brugge 

case was intended for participants to develop optimal waterflooding plans.  

The structure of Brugge field consists of an east to west elongated half-dome 

with a large boundary fault on the north side of the reservoir. There is one internal fault 

on the north side of the reservoir (Fig. 1). Field areal extent is roughly 10 3 km. 

Reservoir properties and thickness are typical of North Sea Brent-type fields. 

Brugge field contains ten years of production history with ten water injectors and 

twenty producers. All injectors were placed down dip of the reservoir in the peripheral 

manner. Table 1 summarizes general information on the Brugge simulation model. 
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Fig. 1—Brugge field model 
 
 
 

Table 1—General information on Brugge field 
Parameter Value Unit 
Number of grids (DX x DY x DZ) 139 x 48 x 9 cell 
Number of faults 1   
Initial pressure 2480 psi 
OWC 5505 ft. 
Relative permeability correlation Corey   
Rock compressibility 3.50E-06 psi-1

 

PVT Dead oil   
Fluid type Oil, Water   
Oil viscosity 1.294 cp 

Oil density 56 lbm/ft3
 

Oil compressibility 9.26E-06 psi-1
 

Water viscosity 0.32 cp 

Water density 62.6 lbm/ft3
 

Water compressibility 3.00E-06 psi-1
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2.3 Truth Case Definition and Parameterization 

 The truth case reservoir used in this study is based on the Brugge case with some 

modifications. The reservoir is arbitrary divided into three regions (Fig. 2). 

 
 
 

 
Fig. 2—Reservoir region 

 
 
 

Four uncertain reservoir parameters in each of the three regions are random to 

create the truth case. Uncertain parameters are ratio of horizontal permeability to vertical 

permeability, horizontal permeability multiplier, end-point water relative permeability at 

water saturation of 0.75, and porosity multiplier. Table 2 summarizes the reservoir 

parameters of the truth case.  
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Table 2—Truth case reservoir parameters 

Region kv/kh Ratio kh Multiplier krw end point  

Porosity 

Multiplier 

1 0.07 0.1 0.35 1.25 

2 0.13 5 0.54 0.78 

3 0.15 3 0.42 1.04 

 

 

 

2.4 Observed Data and Prior Distribution  

 The parameters in Table 2 were applied to the Brugge field case. Then, oil 

production rate and water injection rate were controlled according to Brugge historical 

data to obtain production profiles. Since field production data typically contains some 

noise due to measurement errors, additional noise was added to the profile obtained from 

flow simulation. Noise added to the observed data in this study had normal distributions 

with mean and standard deviations shown in Table 3. Frequencies of each of the 

parameters are also summarized in Table 3. Production profiles after incorporating noise 

will be used as observed data in history matching. 

  

mailto:Krw@end%20point
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Table 3—Observed data noise distributions 

Parameter Frequency 

Noise 

mean 

Noise standard 

deviation 

Oil production rate Monthly 0 1% of true value 

Well flowing bottomhole pressure Monthly 0 15 psi 

Water cut Monthly 0 3% of true value 

Water injection rate Monthly 0 3% of true value 

 
 
 
 Prior distributions in this study were of the truncated Gaussian distribution form. 

Information on parameter distributions is summarized in Table 4, Table 5 and Table 6. 

 
 
 

Table 4—Prior mean 

Region kv/kh ratio kh multiplier 
krw end 
point  

Porosity 
multiplier 

1 0.1 1.00 0.375 1.00 

2 0.1 1.00 0.375 1.00 

3 0.1 1.00 0.375 1.00 

 

 
 

Table 5—Prior standard deviation 

Region kv/kh ratio kh multiplier 
krw end 
point  

Porosity 
multiplier 

1 0.02 0.5 0.056 0.15 

2 0.02 0.5 0.056 0.15 

3 0.02 0.5 0.056 0.15 

 

 

 

  

mailto:Krw@end%20point
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Table 6—Prior: Parameter range 
Parameter Minimum Maximum 
kv/kh ratio 0.01 0.25 

kh multiplier 0.05 10.00 

krw end point  0.20 0.55 

Porosity multiplier 0.50 1.50 

mailto:Krw@end%20point


 

25 
 

 

3. HISTORY MATCHING 

 

3.1 Introduction 

 In this section, I will explain the MCMC process employed, a sensitivity study 

performed on the MCMC process, and the resulting posterior distribution that was used 

in model selection and production optimization. One of the main objectives of history 

matching is to obtain reliable reservoir models, with uncertainty, to be used in reservoir 

management. The main idea of uncertainty quantification is to gain an understanding of 

the distribution of each uncertain parameter. 

One of the widely used history matching techniques in uncertainty quantification 

is Markov Chain Monte Carlo (MCMC). The class of MCMC used in this study is 

MCMC Metropolis-Hasting algorithm with random walk. Steps for performing history 

matching in this study are:  

1. Generate an initial state of each uncertain parameter.  

2. Run a simulation model based on the initial state. 

3. Calculate the posterior probability of the initial state. 

4. Randomly select the next possible state based on the proposal distribution and 

current state. 

5. Run a simulation model based on the new state. 

6. Evaluate probability of the new state and calculate the acceptance probability. 

7. If the new state is accepted, the next state will be based on the new state, but if 

the new state is rejected, the next state will be based on the previous state. 
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8. Repeat from step 4 until a stationary chain is obtained or the chain reaches the 

maximum number of iterations. 

Choices of initial guesses and proposal distribution significantly impact the 

convergence rate of the chain. The common choice for initial guesses is based on prior 

knowledge of each uncertain parameter. Success of the Metropolis-Hasting algorithm 

depends on not having too low of an acceptance rate. Using small step size will lead to a 

higher acceptance rate. However, with small step sizes many iterations are needed to 

explore the whole parameter space in order to converge to a target distribution. Large 

step size can be used but the acceptance rate will be low, especially in the tail region. 

The important components of MCMC will be described in detail in the following 

section. 

3.1.1 Proposal Distribution 

Choice of proposal distribution plays an important role in the performance of 

MCMC in history matching problems. The proposal distribution is used for generating a 

proposed state based on the current state. The proposal distribution used in this study is 

the random walk scheme, which is the most common and practical option for proposal 

distributions. In the random walk scheme, the proposed state is based on the current state 

plus some random variable (Eq. 10). Distribution for    in this study is a normal 

distribution.  

 (10) 
 

where: 

   is uncertain parameter vector at current state  
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     is uncertain parameter vector at proposed state 

   is random variable with distribution independent of the chain 

3.1.2 Prior Distribution 

In this study the prior distribution is assumed to have a normal distribution, 

which can be written in the following form: 

                   
(11) 

 

where: 

  is normalizing constant  

   is uncertain parameter vector at current state 

   is uncertain parameter vector as per prior knowledge 

   is prior covariance matrix 

 Uncertain parameters in this study have no correlation between each parameter. 

The prior covariance matrix is a diagonal matrix with variance of the prior for each 

parameter. Values of prior standard deviation represent levels of uncertainty for 

uncertain parameters, and these standard deviations are typically large due to large 

uncertainty in the parameters. In this study, there are twelve uncertain parameters; thus, 

the uncertain vector dimension is     . 

3.1.3 Likelihood Function 

 The likelihood function represents the probability that the given state will 

produce the observed data ( (   )). As mentioned in section 2.4, the observed data in 

this study consists of four parameters. Oil production rate and water injection rate will be 

 ( )         
 

 
(     )

   
  (     )  
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used as control parameters for history matching. Well flowing bottomhole pressure and 

water-cut will be used for calculating the likelihood function. Because there are ten 

water injectors and twenty oil producers with monthly data frequency, the total data 

points for the likelihood calculation is 6,000 data points.  

The distribution of noise in this study is of the Gaussian distribution form with 

standard deviation as shown in section 2.4. The likelihood function can be written as: 

                   
(12) 

 
where: 

 (   ) is likelihood probability 

     is observed data 

 ( ) is production profile from flow simulation 

   is likelihood covariance matrix 

 The general practice for calculating likelihood probability is to assume that the 

data mismatch between each point is independent and not correlated to each other. Thus, 

the likelihood covariance matrix is a diagonal matrix with variance of measurement error 

for each parameter.  

3.1.4 Posterior Distribution 

 The posterior distribution ( (   )) is the probability that the state is true given 

the observed data. The relationship between prior distribution, likelihood function, and 

posterior distribution is given in section 1.2.2.1. Given the prior probability and 

likelihood function in Eq.(11) and Eq. (12), the posterior probability can be written as: 

 (   )         
 

 
(      ( ))   

  (      ( ))  
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(13) 

 

 
 Eq. (13) can also be written in the following form: 

             
(14) 

where 

(15) 
 

The term  ( ) is typically referred to as the objective function of the posterior 

distribution, which combines objective functions from the prior and likelihood. The 

posterior probability takes into account both deviation from prior knowledge and 

mismatch between observed data and simulation output.  

3.1.5 Acceptance Probability 

Acceptance probability ( ) is the probability that the chain will move from the 

current state to the proposed state. Hastings (1970) proposed to define acceptance 

probability in a way that when combined with a transitional kernel, the chain becomes 

reversible. The acceptance probability can be written as: 

 
(16) 

 

In summary, the acceptance probability is the ratio of posterior probability 

between the proposed state ( (         )) and the current state ( (       )). If the 

proposed state has higher probability than the current state, the proposed stated will be 

 (   )         
 

 
((    )   

  (    )

 (      ( ))
 
  

  (      ( )))  

 

 (   )          ( )  
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accepted. If the proposed state has lower probability than the current state, the proposed 

state may still be accepted. This allows the chain to explore the whole uncertainty space. 

3.2 Uncertainty Quantification and Sensitivity Study 

 In this section, we perform sensitivity experiments on several aspects of history 

matching using MCMC to understand the performance of the history matching process 

and to select proper parameters for history matching that will be used for further study. 

The observed data for history matching is shown in Fig. 3, Fig. 4 and Fig. 5. These data 

were generated as explained in Section 2.4.  
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Fig. 3—Producer water cut vs. time 
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Fig. 4—Injector bottomhole flowing pressure vs. time 
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Fig. 5—Producer bottomhole flowing pressure vs. time 
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3.2.1 Effect of Numbers of Perturbation Parameters and Proposal Step Size 

In this experiment, I compare the performance of global perturbation (perturbing 

all uncertain parameters) and local perturbation (perturbing only some uncertain 

parameters) at different proposal step sizes. Oliver (1997) explained the advantages of 

local perturbation, including high acceptance rate.  The purpose of this experiment is to 

understand the convergence rate of MCMC at different proposal step sizes and different 

numbers of variables perturbed. 

In local perturbation, four parameters are perturbed during each iteration. Each of 

the scenarios is run until the chain reaches one thousand iteration. In this study, the burn-

in period is approximated based on the iteration that value of objective function start to 

stabilize. Table 7 summarizes the scenarios and acceptance rates in this experiment. The 

relationships between objective function vs. number of iterations for each scenario are 

shown in Fig. 6 and Fig. 7.   

 

 

Table 7—Scenarios to investigate perturbation scheme and proposal step size 
Perturbation 

scheme 

Proposal step 

size 

Acceptance rate 

whole chain 

Acceptance rate 

after burn-in Period  

Global perturbation 0.05 *σprior 8.50% 3.60% 
Global perturbation 0.10 *σprior 4.80% 2.10% 
Global perturbation 0.25 *σprior 2.10% 0.90% 
Local perturbation 0.05 *σprior 30.10% 16.10% 
Local perturbation 0.10 *σprior 18.10% 11.90% 
Local perturbation 0.25 *σprior 9.00% 5.30% 
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Fig. 6—Effect of Numbers of Perturbation Parameters and Proposal Step Size 
 

 
 

 

Fig. 7—Effect of Numbers of Perturbation Parameters and Proposal Step Size (Semi-
log) 
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In all cases, global perturbation has significantly lower burn-in periods. This is 

because global perturbation changes a higher number of parameters between each 

iteration compared to local perturbation. However, the acceptance rate for global 

perturbation is significantly lower, especially with larger proposal step sizes. The local 

perturbation scheme has longer burn-in periods but higher acceptance rates, which lead 

to better performance when the whole chain is considered (see Fig. 7). 

3.2.2 Effect of Prior Choice 

In this experiment, we investigate the effect of prior standard deviation (       ) 

on MCMC performance. The value of        has a direct impact on the objective 

function in the prior term. The value of        relates to our understanding of each 

uncertain parameter. Prior standard deviations are shown in section 2.4. Table 8 

summarizes settings in this experiment. 

 

 

Table 8—Parameter setting for investigating effect of        
       Proposal Step Size Perturbation Scheme 

0.2*       Basecase 0.05∗SD Local perturbation (4 parameters) 
0.5*       Basecase 0.05∗SD Local perturbation (4 parameters) 
       Basecase 0.05∗SD Local perturbation (4 parameters) 
2*       Basecase 0.05∗SD Local perturbation (4 parameters) 
5*       Basecase 0.05∗SD Local perturbation (4 parameters) 
10*       Basecase 0.05∗SD Local perturbation (4 parameters) 
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Fig. 8—Prior objective function value vs iteration at different        

 
 
 
 Fig. 8 shows that the lower the        value the bigger the prior term.  This is 

because uncertain parameter that differ from prior knowledge get penalize more compare 

to case with higher       . However, due to significant amount of observed data, the 

posterior distribution is mostly the result of contribution from the likelihood function. As 

shown in Fig. 7, the magnitude of the posterior distribution is in the range of 105 while 

objective function of the prior term is only in the magnitude of 102. Thus, the knowledge 

of        value in this study does not have a significant impact on history matching.    

3.2.3 Effect of Likelihood Covariance 

The objective of this experiment is to investigate the effect of noise standard 

deviation (      )  on the progress of MCMC in this study. The base case of         is 

presented in section 2.4. Even though we know true        in this study, in some cases it 
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is difficult to obtain the true       . Thus, understanding the magnitude of impact from 

knowledge of        value to objective function value and chain acceptance rate is 

necessary. The value of        for each case and resulting acceptance rate is shown in 

Table 9. Results of this experiment are shown in Fig. 9. 

 
 
 
Table 9—       value for experiment 3.2.3 and resulting acceptance rate 

       Value 
Acceptance rate 

whole chain 

Acceptance rate after 

burn-in Period 

0.2*   Base case 28.00% 15.00% 
0.5*  Base case 28.00% 14.90% 

  Base case 30.10% 16.10% 
2*   Base case 29.00% 16.40% 
5*   Base case 36.10% 22.20% 

 

 

 

Fig. 9—Posterior objective function value vs iteration at different        (Semi-log) 
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The experiment shows that the knowledge of        value has a significant 

impact on objective function of the posterior distribution. This is due to the large amount 

of observed data in this study, because any change in        will be magnified by the 

number of available observed data.  

3.3 History Matching Case for Optimization 

3.3.1 History Matching Quality 

In order to understand the distribution of uncertain parameters, we need to obtain 

stationary MCMC chains. The MCMC local perturbation scheme with perturbation of 

four parameters was run to three thousand iterations. However, the acceptance rate drops 

significantly as the chain progresses. This leads to a very small number of accepted 

models after the burn-in period. Thus, the number of perturbed parameters was reduced 

to only one parameter at a time. Fig. 10 shows the value of objective function vs. 

iteration. The acceptance rate when perturb only one parameter is 31%. 

 By only perturbing one parameter at a time the acceptance rate is improved, 

which leads to a greater number of accepted realizations. Fig. 11, Fig. 12 and Fig. 13 

show plots of observed and simulated water cut and bottomhole flowing pressure at the 

start of the chain.  
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Fig. 10—Objective function vs iteration with one variable perturbed at a time 
 

 
 
 As shown in Fig. 11, Fig. 12 and Fig. 13, there is significant data mismatch at 

multiple wells in all three variables. The results of the match at the end of the chain are 

shown in Fig.14, Fig. 15 and Fig. 16. We observe significantly lower data mismatch. 
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Fig. 11—Observed and simulated bottomhole flowing pressure of water injectors vs. time with prior knowledge. 



 

42 
 

 

 
 

Fig. 12—Observed and simulated bottomhole flowing pressure of producers vs. time with prior knowledge. 
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Fig. 13—Observed and simulated water cut of producers vs. time with prior knowledge. 
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Fig.14—Bottomhole flowing pressure of water injector vs. time of observed data and simulation at end of MCMC chain. 



 

45 
 

 

 

Fig. 15—Bottomhole flowing pressure of producer vs. time of observed data and simulation with at end of MCMC chain. 
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Fig. 16—Water cut at producer vs. time of observed data and simulation at end of MCMC 
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3.3.2 Distribution of Uncertain Parameters 

 The objective value of the chain seems to level off after about five hundred 

iterations; thus, the realizations accepted before that is excluded as a burn-in period (see 

Fig. 10). The total number of accepted realization is 773 models. The distribution of 

each uncertain parameter can be obtained from the accepted realizations after five 

hundred iterations.  The cumulative distribution function of each uncertain parameter is 

shown in Fig. 17 and Fig. 18. 

 

 

 

Fig. 17—Cumulative distribution function of kh multiplier and kv/kh ratio for each zone. 
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Fig. 18—Cumulative distribution function of krwc end point and   multiplier for each 

zone. 
 
 
 
The distributions of field original oil in place and oil in place for each region are 

also obtained (Fig. 19). We observe strong negative correlations between OOIP of 

Region 1 and OOIP of Regions 2 and 3 (Fig. 20). This is because in order to provide 

adequate reservoir energy to maintain bottomhole flowing pressure as seen in the 

observed data, the total reservoir volume needs to be maintained. Thus, if original oil in 

place in Region 1 decreases the original oil in place in Regions 2 and 3 increases. The 

distributions of all uncertain parameters are used in the model selection process.  
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Fig. 19—Cumulative distribution functions of field OOIP and each region OOIP 
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Fig. 20—Relationships between field OOIP and each of the region’s OOIP. 
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4. MODEL SELECTION 

 

4.1 Minimax Model Selection Method Implementation 

Due to the large ensemble of models available (773), optimizing the development 

plan for all realizations is very computational expensive and impractical in this case. 

Thus, there is a need to select representative models to work with. The conventional 

model selection process relies on selecting target percentiles of some variables (Deutsch 

and Srinivasan (1996) and Odai and Ogbe (2011)). However, this can lead to sub-

optimal representative models for optimizing the development plan because the selected 

models cannot represent the entire uncertainty space. Chen et al. (2013) proposed the 

Minimax selection method, which can select representative models that are close to 

target percentile and are maximally different (see Section 1.2.3.1). Due to difficulties in 

solving two optimization problems simultaneously, Chen et al. (2013) proposed a 

simplified version as a one-objective combinatorial optimization problem as follows: 

                         (17) 
 

 
Subject to: 
 

(18) 
 

 
 

                      (19) 
 

 
 The simplified approach is suitable for small problems that have a few hundred 

models with fewer than ten input/output parameters and few target percentiles. The 
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simplified problem can be solved with exhaustive search. However, for larger problems 

the stochastic optimization algorithm can be utilized to speed up the calculation. In this 

study, the genetic algorithm is used in solving the simplified combinatorial optimization 

problem. The objective of Eqs. (17), (18) and (19) is to generate an ensemble of models 

that maximizes the minimum difference between any pair of input parameters and that 

matches the target percentiles within allowed tolerances. Steps to implement Minimax 

can be summarized as follows: 

1. Categorize uncertain variables into two groups, input and output variables. 

Output variables are the variables that we would like to match the target 

percentiles. As model selection process is performed prior to optimization 

process, thus the net present value for each realization is not known. Field 

original oil in place and original regional oil in place are selected as output 

variables. Horizontal permeability multiplier, vertical permeability to horizontal 

permeability ratio, and end point of relative permeability to water are selected 

as input variables. Porosity multiplier is excluded as original oil in place is used 

as output parameter. 

2. Select the number of representative models, target percentiles and tolerances. In 

this study, seven sets of ensemble are selected: (1) 3 models at percentiles 10th, 

50th and 90th, (2) 3 models at percentiles 25th, 50th and 75th, (3) 5 models at 

percentiles 10th, 30th, 50th, 70th and 90th, (4) 9 models at every 10th percentile, (5) 

19 models at every 5th percentile, (6) 33 models at every 3rd  percentile, and (7) 

49 models at every second percentile. 
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3. Apply the genetic algorithm to solve Eqs.(17), (18) and (19). 

4.2 Model Selection Result 

This section presents the results of using the Minimax model selection technique. 

As mentioned in Section 3.2, four sets of observed data are used in this study. The 

cumulative distribution function plots of input variables for the selected models in each 

ensemble are shown in Fig. 21 through Fig. 27 with the blue dot while other colors 

represent the selected realizations. The cumulative distribution function plots of output 

variables of the selected models in each ensemble are shown in Fig. 28 through Fig. 34 

with the blue dot while other colors represent the selected realizations. By using the 

Minimax algorithm, we select the models that match the target percentiles and that are 

maximally different from each other. 
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Fig. 21—Plot of selected models in Ensemble 1 
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Fig. 22—Plot of selected models in Ensemble 2 

 



 

56 
 

 

 
Fig. 23—Plot of selected models in Ensemble 3  
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Fig. 24—Plot of selected models in Ensemble 4  
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Fig. 25—Plot of selected models in Ensemble 5  
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Fig. 26—Plot of selected models in Ensemble 6 
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Fig. 27—Plot of selected models in Ensemble 7
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Fig. 28—Original oil in place of the selected models in Ensemble 1 
 
 
 

 
Fig. 29—Original oil in place of the selected models in Ensemble 2 
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Fig. 30—Original oil in place of the selected models in Ensemble 3 

 
 
 

 
Fig. 31—Original oil in place of the selected models in Ensemble 4 
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Fig. 32—Original oil in place of the selected models in Ensemble 5 

 
 
 

 
Fig. 33—Original oil in place of the selected models in Ensemble 6 
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Fig. 34—Original oil in place of the selected models in Ensemble 7 
  

 

4.3 Probability Weighting 

 Since each realization has a different probability of being true, each selected 

realization must be weighted differently during the optimization process. This study 

leverages the fact that we know the distribution of each uncertain parameter from the 

history matching process. Field original oil in place is chosen as the variable that will be 

used for calculating probabilities for selected realizations.  

The field original oil in place distribution from the ensemble of 773 models is 

divided into twenty bins and the probability density of each bin is calculated (Table 10). 

Histogram of field original oil in place is shown in Fig. 35. For each smaller ensemble, 
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the probability weighting of each model in the ensemble is calculated via a table look up 

from Table 10 and then the probability of the entire ensemble is normalized to one. 

 

 

Table 10—Field oil in place distribution 
Lower FOIP 
Range(STB) 

Upper FOIP 
Range(STB) Frequency 

Relative 
Frequency 

- 1.905E+06 1 0.001 

1.905E+06 1.912E+06 0 0.000 

1.912E+06 1.919E+06 5 0.006 

1.919E+06 1.926E+06 2 0.003 

1.926E+06 1.933E+06 2 0.003 

1.933E+06 1.940E+06 0 0.000 

1.940E+06 1.946E+06 7 0.009 

1.946E+06 1.953E+06 53 0.069 

1.953E+06 1.960E+06 42 0.054 

1.960E+06 1.967E+06 42 0.054 

1.967E+06 1.974E+06 16 0.021 

1.974E+06 1.981E+06 25 0.032 

1.981E+06 1.988E+06 16 0.021 

1.988E+06 1.995E+06 9 0.012 

1.995E+06 2.002E+06 49 0.063 

2.002E+06 2.009E+06 21 0.027 

2.009E+06 2.016E+06 80 0.103 

2.016E+06 2.023E+06 133 0.172 

2.023E+06 2.030E+06 236 0.305 

2.030E+06 2.037E+06 34 0.044 

 
Total 773 1 
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Fig. 35—Histogram of field oil in place 

 
 

 
In this study, we will investigate optimizing different ensemble size including 

single most likely realization and will compare the resulting NPV from each scenario. 

The most-likely model used in this study is based on the maximum-a-posteriori (MAP) 

probability distribution. The descriptions of all selected realizations are summarized in 

Table 11 and Table 12. Table 11 contains the probability weighting, horizontal 

permeability multiplier and vertical to horizontal permeability ratio for each of the 

regions for all selected realizations in each ensemble. Table 12 contains end point 
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relative permeability to water and porosity multiplier for each of the regions for all 

selected realizations in each ensemble.  
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Table 11—Description of all selected realizations 

Ensemble 
Target 

Percentile 
Realization 

Field oil 
in place 

(STB) 

Probability 
Weighting 

kh 
Multiplier 
region 1 

kh 
Multiplier 
region 2 

kh 
Multiplier 
region 3 

kv/ kh 
Ratio 

region 1 

kv/ kh 
Ratio 

region 2 

kv/ kh 
Ratio 

region 3 

MAP - 763 2.02E+06 - 0.099 4.894 3.010 0.073 0.187 0.143 

1 10 103 1.96E+06 0.102 0.125 2.862 1.983 0.134 0.103 0.117 

1 50 373 2.02E+06 0.324 0.101 4.063 2.584 0.065 0.139 0.116 

1 90 683 2.03E+06 0.574 0.099 4.811 2.949 0.072 0.181 0.128 

2 25 195 1.99E+06 0.042 0.114 3.371 2.102 0.111 0.118 0.125 

2 50 373 2.02E+06 0.345 0.101 4.063 2.584 0.065 0.139 0.116 

2 75 612 2.02E+06 0.613 0.099 4.692 2.971 0.071 0.183 0.119 

3 10 103 1.96E+06 0.060 0.125 2.862 1.983 0.134 0.103 0.117 

3 30 259 2.00E+06 0.070 0.105 3.550 2.298 0.090 0.122 0.121 

3 50 371 2.02E+06 0.191 0.101 4.063 2.584 0.065 0.137 0.118 

3 70 567 2.02E+06 0.339 0.099 4.642 2.890 0.069 0.175 0.117 

3 90 701 2.03E+06 0.339 0.099 4.858 2.949 0.073 0.186 0.140 

4 10 106 1.96E+06 0.038 0.125 2.862 1.983 0.134 0.103 0.117 

4 20 176 1.97E+06 0.014 0.114 3.346 2.113 0.119 0.113 0.125 

4 30 257 2.00E+06 0.044 0.105 3.550 2.218 0.090 0.122 0.126 

4 40 294 2.01E+06 0.072 0.105 3.701 2.359 0.076 0.124 0.123 

4 50 421 2.01E+06 0.072 0.101 4.342 2.658 0.062 0.147 0.114 

4 60 462 2.02E+06 0.120 0.099 4.422 2.688 0.061 0.157 0.116 

4 70 568 2.02E+06 0.213 0.099 4.642 2.890 0.069 0.175 0.117 

4 80 605 2.02E+06 0.213 0.099 4.694 2.971 0.071 0.184 0.117 

4 90 682 2.03E+06 0.213 0.099 4.811 2.942 0.072 0.181 0.128 

 
 



 

69 
 

 

Table 11—(Continued) 

Ensemble 
Target 

Percentile 
Realization 

Field oil 
in place 

(STB) 

Probability 
Weighting 

kh 
Multiplier 
region 1 

kh 
Multiplier 
region 2 

kh 
Multiplier 
region 3 

kv/ kh 
Ratio 

region 1 

kv/ kh 
Ratio 

region 2 

kv/ kh 
Ratio 

region 3 

5 5 17 1.95E+06 0.026 0.125 1.980 1.964 0.147 0.086 0.114 

5 10 94 1.95E+06 0.026 0.125 2.748 1.983 0.136 0.099 0.117 

5 15 144 1.96E+06 0.020 0.120 3.162 2.142 0.126 0.106 0.120 

5 20 98 1.97E+06 0.020 0.125 2.748 1.983 0.135 0.100 0.117 

5 25 197 1.99E+06 0.008 0.114 3.371 2.102 0.109 0.118 0.125 

5 30 257 2.00E+06 0.024 0.105 3.550 2.218 0.090 0.122 0.126 

5 35 278 2.00E+06 0.024 0.105 3.701 2.359 0.081 0.123 0.120 

5 40 293 2.01E+06 0.039 0.105 3.701 2.359 0.079 0.124 0.123 

5 45 337 2.02E+06 0.065 0.101 3.830 2.444 0.068 0.129 0.118 

5 50 369 2.02E+06 0.065 0.101 4.063 2.584 0.065 0.137 0.118 

5 55 410 2.02E+06 0.065 0.101 4.269 2.605 0.062 0.146 0.113 

5 60 463 2.02E+06 0.065 0.099 4.422 2.688 0.061 0.157 0.116 

5 65 517 2.02E+06 0.065 0.099 4.631 2.794 0.063 0.167 0.114 

5 70 567 2.02E+06 0.115 0.099 4.642 2.890 0.069 0.175 0.117 

5 75 614 2.02E+06 0.115 0.099 4.692 2.971 0.071 0.182 0.119 

5 80 615 2.02E+06 0.115 0.099 4.692 2.971 0.071 0.182 0.123 

5 85 637 2.03E+06 0.115 0.099 4.718 2.972 0.071 0.181 0.126 

5 90 660 2.03E+06 0.016 0.099 4.735 2.972 0.073 0.184 0.123 

5 95 668 2.03E+06 0.016 0.099 4.806 2.942 0.073 0.184 0.122 

6 2 9 1.93E+06 0.001 0.125 1.920 1.930 0.152 0.086 0.113 
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Table 11—(Continued) 

Ensemble 
Target 

Percentile 
Realization 

Field oil 
in place 

(STB) 

Probability 
Weighting 

kh 
Multiplier 
region 1 

kh 
Multiplier 
region 2 

kh 
Multiplier 
region 3 

kv/ kh 
Ratio 

region 1 

kv/ kh 
Ratio 

region 2 

kv/ kh 
Ratio 

region 3 

6 5 130 1.95E+06 0.014 0.120 2.965 2.142 0.130 0.106 0.120 

6 8 132 1.95E+06 0.014 0.120 2.965 2.142 0.129 0.106 0.120 

6 11 102 1.96E+06 0.011 0.125 2.849 1.983 0.134 0.103 0.117 

6 14 144 1.96E+06 0.011 0.120 3.162 2.142 0.126 0.106 0.120 

6 17 145 1.96E+06 0.011 0.120 3.162 2.142 0.126 0.103 0.120 

6 20 143 1.96E+06 0.011 0.120 3.162 2.142 0.126 0.106 0.120 

6 23 186 1.97E+06 0.004 0.114 3.363 2.113 0.117 0.119 0.125 

6 26 210 1.98E+06 0.004 0.112 3.371 2.102 0.103 0.119 0.125 

6 29 266 2.00E+06 0.013 0.105 3.588 2.312 0.083 0.122 0.120 

6 32 261 2.00E+06 0.013 0.105 3.550 2.298 0.084 0.122 0.121 

6 35 310 2.00E+06 0.013 0.102 3.727 2.406 0.075 0.127 0.122 

6 38 294 2.01E+06 0.021 0.105 3.701 2.359 0.076 0.124 0.123 

6 41 448 2.01E+06 0.021 0.101 4.325 2.692 0.061 0.157 0.116 

6 44 329 2.02E+06 0.034 0.101 3.823 2.444 0.068 0.127 0.122 

6 47 324 2.02E+06 0.034 0.101 3.823 2.444 0.070 0.127 0.124 

6 50 361 2.02E+06 0.034 0.101 4.035 2.584 0.066 0.137 0.118 

6 53 371 2.02E+06 0.034 0.101 4.063 2.584 0.065 0.137 0.118 

6 56 408 2.02E+06 0.034 0.101 4.269 2.626 0.062 0.145 0.113 

6 59 520 2.02E+06 0.034 0.099 4.645 2.794 0.063 0.167 0.112 

6 62 465 2.02E+06 0.034 0.099 4.480 2.688 0.061 0.157 0.116 

 



 

71 
 

 

Table 11—(Continued) 

Ensemble 
Target 

Percentile 
Realization 

Field oil 
in place 

(STB) 

Probability 
Weighting 

kh 
Multiplier 
region 1 

kh 
Multiplier 
region 2 

kh 
Multiplier 
region 3 

kv/ kh 
Ratio 

region 1 

kv/ kh 
Ratio 

region 2 

kv/ kh 
Ratio 

region 3 

6 65 595 2.02E+06 0.034 0.099 4.712 2.907 0.069 0.184 0.122 

6 68 580 2.02E+06 0.061 0.099 4.736 2.890 0.069 0.181 0.119 

6 71 567 2.02E+06 0.061 0.099 4.642 2.890 0.069 0.175 0.117 

6 74 621 2.02E+06 0.061 0.099 4.718 2.972 0.071 0.184 0.124 

6 77 618 2.02E+06 0.061 0.099 4.718 2.971 0.071 0.184 0.124 

6 80 627 2.02E+06 0.061 0.099 4.718 2.972 0.070 0.181 0.126 

6 83 556 2.03E+06 0.061 0.099 4.642 2.884 0.067 0.171 0.117 

6 86 730 2.03E+06 0.061 0.099 4.827 2.994 0.073 0.190 0.139 

6 89 678 2.03E+06 0.061 0.099 4.811 2.942 0.072 0.182 0.123 

6 92 679 2.03E+06 0.061 0.099 4.811 2.942 0.072 0.181 0.123 

6 95 675 2.03E+06 0.009 0.099 4.811 2.942 0.073 0.184 0.123 

6 98 653 2.03E+06 0.009 0.099 4.720 2.972 0.071 0.186 0.123 

7 2 85 1.95E+06 0.001 0.125 2.551 1.961 0.138 0.099 0.114 

7 4 88 1.95E+06 0.001 0.125 2.642 1.961 0.136 0.099 0.114 

7 6 6 1.92E+06 0.001 0.125 1.884 1.930 0.152 0.086 0.113 

7 8 113 1.95E+06 0.010 0.125 2.869 1.983 0.132 0.105 0.119 

7 10 82 1.96E+06 0.008 0.125 2.551 1.961 0.139 0.099 0.115 

7 12 101 1.96E+06 0.008 0.125 2.849 1.983 0.135 0.103 0.117 

7 14 157 1.96E+06 0.008 0.120 3.276 2.113 0.124 0.107 0.120 

7 16 161 1.96E+06 0.008 0.120 3.276 2.113 0.121 0.109 0.122 

7 18 191 1.98E+06 0.001 0.114 3.371 2.102 0.117 0.120 0.125 

7 20 98 1.97E+06 0.008 0.125 2.748 1.983 0.135 0.100 0.117 
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Table 11—(Continued) 

Ensemble 
Target 

Percentile 
Realization 

Field oil 
in place 

(STB) 

Probability 
Weighting 

kh 
Multiplier 
region 1 

kh 
Multiplier 
region 2 

kh 
Multiplier 
region 3 

kv/ kh 
Ratio 

region 1 

kv/ kh 
Ratio 

region 2 

kv/ kh 
Ratio 

region 3 

7 22 187 1.97E+06 0.003 0.114 3.363 2.102 0.117 0.119 0.125 

7 24 190 1.98E+06 0.001 0.114 3.371 2.102 0.117 0.119 0.125 

7 26 211 1.98E+06 0.003 0.112 3.371 2.102 0.103 0.119 0.125 

7 28 263 2.00E+06 0.009 0.105 3.550 2.298 0.083 0.122 0.120 

7 30 222 2.00E+06 0.009 0.105 3.371 2.120 0.099 0.121 0.131 

7 32 264 2.00E+06 0.009 0.105 3.550 2.298 0.083 0.122 0.120 

7 34 255 2.00E+06 0.009 0.105 3.480 2.218 0.090 0.122 0.126 

7 36 241 2.01E+06 0.004 0.105 3.404 2.160 0.092 0.122 0.126 

7 38 444 2.01E+06 0.014 0.101 4.348 2.658 0.061 0.155 0.116 

7 40 441 2.01E+06 0.014 0.101 4.348 2.658 0.061 0.154 0.116 

7 42 294 2.01E+06 0.014 0.105 3.701 2.359 0.076 0.124 0.123 

7 44 340 2.02E+06 0.024 0.101 3.911 2.444 0.068 0.131 0.118 

7 46 318 2.02E+06 0.024 0.102 3.764 2.411 0.075 0.127 0.124 

7 48 362 2.02E+06 0.024 0.101 4.035 2.584 0.066 0.137 0.118 

7 50 370 2.02E+06 0.024 0.101 4.063 2.584 0.065 0.137 0.118 

7 52 416 2.01E+06 0.014 0.101 4.269 2.654 0.062 0.147 0.114 

7 54 516 2.02E+06 0.024 0.099 4.631 2.794 0.062 0.167 0.114 

7 56 354 2.02E+06 0.024 0.101 4.035 2.474 0.067 0.133 0.118 

7 58 467 2.02E+06 0.024 0.099 4.480 2.690 0.061 0.157 0.116 

7 60 465 2.02E+06 0.024 0.099 4.480 2.688 0.061 0.157 0.116 

7 62 514 2.02E+06 0.024 0.099 4.631 2.794 0.062 0.169 0.113 

7 64 407 2.02E+06 0.024 0.101 4.269 2.626 0.062 0.145 0.113 
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Table 11—(Continued) 

Ensemble 
Target 

Percentile 
Realization 

Field oil 
in place 

(STB) 

Probability 
Weighting 

kh 
Multiplier 
region 1 

kh 
Multiplier 
region 2 

kh 
Multiplier 
region 3 

kv/ kh 
Ratio 

region 1 

kv/ kh 
Ratio 

region 2 

kv/ kh 
Ratio 

region 3 

7 66 520 2.02E+06 0.024 0.099 4.645 2.794 0.063 0.167 0.112 

7 68 524 2.02E+06 0.024 0.099 4.645 2.794 0.065 0.168 0.113 

7 70 575 2.02E+06 0.043 0.099 4.753 2.890 0.069 0.181 0.119 

7 72 618 2.02E+06 0.043 0.099 4.718 2.971 0.071 0.184 0.124 

7 74 511 2.02E+06 0.024 0.099 4.583 2.794 0.062 0.170 0.114 

7 76 603 2.02E+06 0.043 0.099 4.694 2.971 0.069 0.184 0.118 

7 78 625 2.02E+06 0.043 0.099 4.718 2.972 0.070 0.183 0.126 

7 80 620 2.02E+06 0.043 0.099 4.718 2.971 0.071 0.184 0.124 

7 82 615 2.02E+06 0.043 0.099 4.692 2.971 0.071 0.182 0.123 

7 84 637 2.03E+06 0.043 0.099 4.718 2.972 0.071 0.181 0.126 

7 86 726 2.03E+06 0.043 0.099 4.841 2.994 0.073 0.189 0.139 

7 88 676 2.03E+06 0.043 0.099 4.811 2.942 0.073 0.184 0.123 

7 90 654 2.03E+06 0.006 0.099 4.720 2.972 0.071 0.184 0.123 

7 92 686 2.03E+06 0.043 0.099 4.848 2.949 0.072 0.181 0.132 

7 94 733 2.03E+06 0.043 0.099 4.842 2.994 0.073 0.190 0.139 

7 96 549 2.03E+06 0.043 0.099 4.645 2.884 0.067 0.173 0.112 

7 98 667 2.03E+06 0.006 0.099 4.806 2.942 0.073 0.184 0.122 
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Table 12—Additional description of all selected realizations  

Ensemble 
Target 

Percentile 
Realization 

krw end point 
region 1 

krw end point 
region 2 

krw end point 
region 3 

Porosity  
Multiplier 
region 1 

Porosity  
Multiplier 
region 2 

Porosity  
Multiplier 
region 3 

MAP - 763 0.360 0.392 0.372 1.341 0.738 1.004 

1 10 103 0.363 0.386 0.374 0.919 0.897 1.142 

1 50 373 0.363 0.386 0.378 1.243 0.771 1.057 

1 90 683 0.363 0.392 0.368 1.346 0.741 1.006 

2 25 195 0.363 0.386 0.382 1.047 0.838 1.124 

2 50 373 0.363 0.386 0.378 1.243 0.771 1.057 

2 75 612 0.363 0.392 0.367 1.332 0.745 1.009 

3 10 103 0.363 0.386 0.374 0.919 0.897 1.142 

3 30 259 0.363 0.386 0.368 1.119 0.795 1.122 

3 50 371 0.363 0.386 0.378 1.243 0.771 1.057 

3 70 567 0.363 0.389 0.372 1.327 0.746 1.011 

3 90 701 0.363 0.392 0.371 1.342 0.741 1.006 

4 10 106 0.363 0.386 0.374 0.934 0.885 1.142 

4 20 176 0.363 0.386 0.376 1.005 0.838 1.142 

4 30 257 0.363 0.386 0.368 1.119 0.795 1.122 

4 40 294 0.363 0.386 0.376 1.176 0.781 1.098 

4 50 421 0.363 0.386 0.378 1.265 0.769 1.032 

4 60 462 0.363 0.386 0.366 1.289 0.758 1.030 

4 70 568 0.363 0.389 0.372 1.327 0.746 1.011 

4 80 605 0.363 0.392 0.367 1.332 0.745 1.009 

4 90 682 0.363 0.392 0.368 1.346 0.741 1.006 
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Table 12—(Continued)  

Ensemble 
Target 

Percentile 
Realization 

krw end point 
region 1 

krw end point 
region 2 

krw end point 
region 3 

Porosity  
Multiplier 
region 1 

Porosity  
Multiplier 
region 2 

Porosity  
Multiplier 
region 3 

5 5 17 0.363 0.386 0.364 0.834 0.984 1.115 

5 10 94 0.363 0.386 0.370 0.894 0.908 1.142 

5 15 144 0.363 0.386 0.364 0.966 0.862 1.142 

5 20 98 0.363 0.386 0.374 0.919 0.908 1.142 

5 25 197 0.363 0.386 0.382 1.047 0.837 1.124 

5 30 257 0.363 0.386 0.368 1.119 0.795 1.122 

5 35 278 0.363 0.386 0.373 1.133 0.790 1.115 

5 40 293 0.363 0.386 0.376 1.176 0.781 1.098 

5 45 337 0.363 0.386 0.366 1.219 0.781 1.066 

5 50 369 0.363 0.386 0.379 1.243 0.771 1.057 

5 55 410 0.363 0.386 0.379 1.265 0.769 1.041 

5 60 463 0.363 0.386 0.366 1.290 0.758 1.030 

5 65 517 0.363 0.386 0.373 1.307 0.749 1.026 

5 70 567 0.363 0.389 0.372 1.327 0.746 1.011 

5 75 614 0.363 0.392 0.369 1.332 0.745 1.009 

5 80 615 0.363 0.392 0.369 1.332 0.745 1.009 

5 85 637 0.363 0.392 0.373 1.334 0.745 1.009 

5 90 660 0.363 0.392 0.368 1.346 0.741 1.009 

5 95 668 0.363 0.392 0.368 1.346 0.741 1.009 
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Table 12—(Continued)  

Ensemble 
Target 

Percentile 
Realization 

krw end point 
region 1 

krw end point 
region 2 

krw end point 
region 3 

Porosity  
Multiplier 
region 1 

Porosity  
Multiplier 
region 2 

Porosity  
Multiplier 
region 3 

6 2 9 0.365 0.386 0.364 0.834 0.958 1.115 

6 5 130 0.363 0.386 0.367 0.934 0.870 1.142 

6 8 132 0.363 0.386 0.367 0.934 0.869 1.142 

6 11 102 0.363 0.386 0.374 0.919 0.897 1.142 

6 14 144 0.363 0.386 0.364 0.966 0.862 1.142 

6 17 145 0.363 0.386 0.364 0.966 0.862 1.142 

6 20 143 0.363 0.386 0.364 0.966 0.862 1.142 

6 23 186 0.363 0.386 0.382 1.017 0.838 1.132 

6 26 210 0.363 0.386 0.382 1.078 0.804 1.124 

6 29 266 0.363 0.386 0.379 1.119 0.795 1.122 

6 32 261 0.363 0.386 0.368 1.119 0.795 1.122 

6 35 310 0.363 0.375 0.376 1.192 0.781 1.066 

6 38 294 0.363 0.386 0.376 1.176 0.781 1.098 

6 41 448 0.363 0.386 0.377 1.263 0.769 1.030 

6 44 329 0.363 0.386 0.374 1.219 0.781 1.066 

6 47 324 0.363 0.386 0.374 1.219 0.781 1.066 

6 50 361 0.363 0.386 0.375 1.233 0.771 1.066 

6 53 371 0.363 0.386 0.378 1.243 0.771 1.057 

6 56 408 0.363 0.386 0.379 1.265 0.769 1.041 

6 59 520 0.363 0.386 0.373 1.307 0.749 1.026 
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Table 12—(Continued)  

Ensemble 
Target 

Percentile 
Realization 

krw end point 
region 1 

krw end point 
region 2 

krw end point 
region 3 

Porosity  
Multiplier 
region 1 

Porosity  
Multiplier 
region 2 

Porosity  
Multiplier 
region 3 

6 62 465 0.363 0.386 0.366 1.290 0.758 1.030 

6 65 595 0.363 0.392 0.367 1.327 0.745 1.009 

6 68 580 0.363 0.389 0.373 1.327 0.746 1.011 

6 71 567 0.363 0.389 0.372 1.327 0.746 1.011 

6 74 621 0.363 0.392 0.373 1.332 0.745 1.009 

6 77 618 0.363 0.392 0.369 1.332 0.745 1.009 

6 80 627 0.363 0.392 0.374 1.332 0.745 1.009 

6 83 556 0.363 0.389 0.367 1.328 0.749 1.011 

6 86 730 0.362 0.392 0.366 1.344 0.738 1.006 

6 89 678 0.363 0.392 0.368 1.346 0.741 1.006 

6 92 679 0.363 0.392 0.368 1.346 0.741 1.006 

6 95 675 0.363 0.392 0.368 1.346 0.741 1.009 

6 98 653 0.363 0.392 0.368 1.346 0.741 1.009 

7 2 85 0.363 0.386 0.370 0.887 0.908 1.142 

7 4 88 0.363 0.386 0.370 0.887 0.908 1.142 

7 6 6 0.365 0.386 0.364 0.823 0.958 1.101 

7 8 113 0.363 0.386 0.368 0.934 0.871 1.142 

7 10 82 0.363 0.386 0.370 0.887 0.928 1.142 

7 12 101 0.363 0.386 0.374 0.919 0.897 1.142 

7 14 157 0.363 0.386 0.374 0.982 0.840 1.142 

 



 

78 
 

 

Table 12—(Continued) 

Ensemble 
Target 

Percentile 
Realization 

krw end point 
region 1 

krw end point 
region 2 

krw end point 
region 3 

Porosity  
Multiplier 
region 1 

Porosity  
Multiplier 
region 2 

Porosity  
Multiplier 
region 3 

7 16 161 0.363 0.386 0.374 0.982 0.839 1.142 

7 18 191 0.363 0.386 0.382 1.032 0.838 1.124 

7 20 98 0.363 0.386 0.374 0.919 0.908 1.142 

7 22 187 0.363 0.386 0.382 1.017 0.838 1.132 

7 24 190 0.363 0.386 0.382 1.032 0.838 1.124 

7 26 211 0.363 0.386 0.382 1.078 0.804 1.125 

7 28 263 0.363 0.386 0.368 1.119 0.795 1.122 

7 30 222 0.363 0.386 0.382 1.100 0.804 1.125 

7 32 264 0.363 0.386 0.379 1.119 0.795 1.122 

7 34 255 0.363 0.386 0.368 1.119 0.795 1.125 

7 36 241 0.363 0.386 0.379 1.110 0.811 1.125 

7 38 444 0.363 0.386 0.377 1.263 0.769 1.031 

7 40 441 0.363 0.386 0.377 1.263 0.769 1.031 

7 42 294 0.363 0.386 0.376 1.176 0.781 1.098 

7 44 340 0.363 0.386 0.375 1.219 0.781 1.066 

7 46 318 0.363 0.386 0.374 1.219 0.781 1.066 

7 48 362 0.363 0.386 0.375 1.233 0.771 1.064 

7 50 370 0.363 0.386 0.379 1.243 0.771 1.057 

7 52 416 0.363 0.386 0.378 1.265 0.769 1.032 

7 54 516 0.363 0.386 0.373 1.307 0.749 1.026 

7 56 354 0.363 0.386 0.375 1.233 0.777 1.066 

7 58 467 0.363 0.386 0.366 1.290 0.758 1.030 
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Table 12—(Continued) 

Ensemble 
Target 

Percentile 
Realization 

krw end point 
region 1 

krw end point 
region 2 

krw end point 
region 3 

Porosity  
Multiplier 
region 1 

Porosity  
Multiplier 
region 2 

Porosity  
Multiplier 
region 3 

7 60 465 0.363 0.386 0.366 1.290 0.758 1.030 

7 62 514 0.363 0.386 0.373 1.307 0.749 1.026 

7 64 407 0.363 0.386 0.379 1.265 0.769 1.043 

7 66 520 0.363 0.386 0.373 1.307 0.749 1.026 

7 68 524 0.363 0.386 0.371 1.307 0.749 1.026 

7 70 575 0.363 0.389 0.372 1.327 0.746 1.011 

7 72 618 0.363 0.392 0.369 1.332 0.745 1.009 

7 74 511 0.363 0.386 0.373 1.307 0.749 1.026 

7 76 603 0.363 0.392 0.367 1.332 0.745 1.009 

7 78 625 0.363 0.392 0.374 1.332 0.745 1.009 

7 80 620 0.363 0.392 0.373 1.332 0.745 1.009 

7 82 615 0.363 0.392 0.369 1.332 0.745 1.009 

7 84 637 0.363 0.392 0.373 1.334 0.745 1.009 

7 86 726 0.362 0.392 0.366 1.344 0.738 1.006 

7 88 676 0.363 0.392 0.368 1.346 0.741 1.006 

7 90 654 0.363 0.392 0.368 1.346 0.741 1.009 

7 92 686 0.363 0.392 0.368 1.346 0.741 1.006 

7 94 733 0.360 0.392 0.368 1.344 0.738 1.006 

7 96 549 0.363 0.389 0.367 1.328 0.749 1.013 

7 98 667 0.363 0.392 0.368 1.346 0.741 1.009 
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5. PRODUCTION OPTIMIZATION 

 

5.1 Introduction 

In this chapter, we investigate the production optimization strategies to be 

applied to the set of selected models in the previous chapter. Here, the optimized 

controls are yearly production and injection rate for each well during the next ten years. 

Controls for each ensemble are optimized to maximize expected net present value. Due 

to the significant number of control variables, direct perturbation is not practical because 

it requires a significant number of runs. Simultaneous perturbation stochastic 

approximation (SPSA) is used in this study because the number of runs per iteration in 

SPSA is not dependent on the number of control variables.  

5.2 Assumptions and Constrains 

The following assumptions and constraints are made in this study. The value of 

assumptions and constraint used in this study are commonly used in oil and gas industry: 

 Oil price: 85$/STB 

 Water processing cost: 15$/STB 

 Water injection cost:15$/STB 

 Discount rate: 10% yearly 

 Total injection and production at every time step are equal 

 Maximum water injection rate/well: 5000 BBL/D 

 Maximum liquid production rate/well: 5000 BBL/D 
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5.3 Objective Function 

 The objective function for this optimization study is the expected NPV of the 

ensemble. The objective function used in this study is based on the objective function 

given by Brouwer and Jansen (2004), which can be written as: 

 
 
 
 
 

(20) 
 

 

where: 

 (    ) is net present value 

   is vector of all phases flow rate 

     is vector of oil production rate  

      is vector of water production rate 

      is vector of water injection rate  

   is oil price 

    is water processing cost 

    is water injection cost 

   is discount rate 

    is time step size 

  is total number of time step 

   is cumulative time until k 

 (    )  ∑   (    )

 

   

 ∑
   [  ∗     (    )     ∗      (    )     ∗      ]

(    )
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 The objective function in Eq. (20) accounts for only a single model. Here the 

interest is in optimizing for the entire ensemble. Thus, Eq. (20) can be rewritten to 

account for all models in the ensemble which is the robust objective function: 

 
                 (21) 

 
where: 

     is robust objective function 

  is number of model in ensemble 

   is weighting factor for each realization 

 Since each model in the ensemble is independent, the gradient of the objective 

function in Eq. (21) is simply the weighted summation of each model’s gradient in the 

ensemble. 

 
         (22) 

 
 

 
The gradient of each model is approximated using SPSA (see Section 1.2.4.1). 

Once optimization process is completed, the optimum control for each ensemble is 

obtained. Then, each control path is applied back to the whole set of possible realizations 

(773 models) to obtain the distribution of NPV based on each control strategy.  

5.4 Optimization Result 

5.4.1 NPV and Optimum Control Path 

After implementing SPSA to each ensemble and the MAP model (see Section 

3.3), the optimum control path for each ensemble can be obtained. The resulting NPV 

    (    )  ∑  ∗   (    )

 

   

 

     (    )

   
 ∑  ∗

   (    )
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distributions are shown in Fig. 36. The average and standard deviation from each case 

are shown in Table 13. The plot of average NPV vs. number of models is shown in Fig. 

37. The production and injection rate for each well for every ensemble is shown in Fig. 

38, Fig. 39 and Fig. 40.  The description for each ensemble is as explained in Section 

3.3. Each optimum control path is then input back into all accepted realizations from the 

original ensemble (773 models).  

The result shows below illustrated the incremental NPV from using multiple 

models. The resulting NPV increased with number of models used during optimization 

process. 80% of the maximum incremental NPV can be achieved by using only 9 

models. However, the incremental NPV diminish with increasing number of model in 

the ensemble. This is because as number of model in ensemble increase the remaining 

uncertainty space that has not been taking into account for optimization become less and 

less. Thus, the additional uncertainty space that each additional model is exploring 

becomes less significant. We do not observe any significant improvement in term of 

reducing risk of the net present value as there is no significant difference in standard 

deviation between each case. 
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Fig. 36—Cumulative distribution functions of NPV of all realizations based on optimum 
control paths 

 
 
 

Table 13—Summary of cumulative distributions of NPV based on control paths from 
different ensembles 

Scenario 
Number 

of models 
Average 
NPV ($) 

NPV Standard 
deviation ($) 

MAP 1 4.42E+09 4.59E+07 

Ensemble 1 3 4.49E+09 4.08E+07 

Ensemble 2 3 4.46E+09 4.46E+07 

Ensemble 3 5 4.50E+09 4.39E+07 

Ensemble 4 9 4.56E+09 4.39E+07 

Ensemble 5 19 4.58E+09 4.41E+07 

Ensemble 6 33 4.59E+09 3.53E+07 

Ensemble 7 49 4.59E+09 4.28E+07 
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Fig. 37—Plot of average NPV using optimum control strategies from different ensemble 

sizes
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Fig. 38—Optimal control strategies for wells P-1 through P-10
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Fig. 39—Optimal control strategies for wells P-11 through P-20
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Fig. 40—Optimal control strategies for wells I-1 through I-10
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5.4.2 Net Present Value of True Case 

 The optimum control strategies from each scenario are applied to true case 

(actual reservoir model) to determine the resulting NPV for each case (Table 14). We 

observed increasing trend of true case NPV vs. number of model used in optimization 

process. We believed this is because the higher the numbers of model used in 

optimization process, the more uncertainty is taken into account during optimization 

process. 

 

 
 

Table 14—True case NPV based on control strategy 
Control Scenario  NPV True case ($) 

MAP 4.30E+09 

Ensemble 1 4.34E+09 

Ensemble 2 4.31E+09 

Ensemble 3 4.34E+09 

Ensemble 4 4.38E+09 

Ensemble 5 4.40E+09 

Ensemble 6 4.43E+09 

Ensemble 7 4.41E+09 
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5.4.3 Production Forecasts from each Ensemble 

 Other benefit of using multiple models for optimization is improvement in the 

quality of the production forecast. With multiple realizations, distributions of production 

forecasts can be obtained. The water cut of the true case and the minimum, average and 

maximum water cut from each scenario are shown in Fig. 41 and Fig. 42. The minimum 

and maximum water cut are based on the overall water cut of the profile. 

We observed that increasing number of realizations provide wider range of water 

cut forecast which can bracket the true case better.  

 

 

 
Fig. 41—Water cut forecast of MAP model and ensemble one through three compared 

to true case. 
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Fig. 42—Water cut forecast of MAP model and ensemble four through seven compared 
to true case. 

 
 
 
5.5 Computational Cost 

 The results shown in Section 5.4.1 showed incremental NPV when additional 

realizations are used in the optimization process. However, including additional 

realizations into the optimization problem leads to significantly higher computational 

cost. The time required to run one flow simulation in this study is 45 seconds. Three runs 

per model are required for each iteration. Thus, the time required for one model in each 

of the iteration is approximately 2.5 minutes. Fig. 43 shows the computation time for 

different ensemble sizes for one thousand iterations. We observed that computation time 

increased linearly with numbers of models used in the optimization process as shown in 

Fig. 43. Fig. 37 indicated that there is no incremental benefit to increase number of 
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model more than 33 models as doing so will only increase computation cost without 

additional NPV. 

 

 

 

Fig. 43—Computation time for different ensemble sizes 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

This study shows that there is benefit in using multiple models in the 

optimization process to account for uncertainty in reservoir parameters. The incremental 

NPV using multiple models observed in this study is up to 3.8% compared to using a 

single most-likely realization for optimization. However, the incremental NPV from 

additional models used in the optimization process diminishes with increasing numbers 

of model realizations. By using nine models, we can achieved 82% of the maximum 

benefit. I did not observe additional benefit to increasing the number of models to more 

than about 33 models.  However, the computation cost increase linearly with increasing 

number of models use in optimization process. Thus, increasing number of model to be 

more than 33 models will only leads to additional computation cost without increasing 

NPV.   

6.2 Assumptions, Limitations and Recommendations for Future Work 

This study is based on the assumption that our history matching workflow is 

consistent to producing an ensemble of possible realizations that represent reservoir 

uncertainty reliably. If the ensemble of models does not represent well the level of 

uncertainty that exists in the reservoir, the optimum control path from any ensemble size 

may not be able to maximize NPV, because the basis for optimization is not correct.   

There are several areas that require further study to improve the concept of using 

multiple realizations for optimization: 
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1. Incorporate the concept of hierarchical optimization by adding a second 

objective function to minimize the standard deviation within the 

ensemble. This should lead to optimum control paths that not only 

maximize the expected NPV but also minimize the risk.  

2. Apply different rankings parameter during model selection, e.g., time of 

flight. In this study, field and region OOIP are used as ranking 

parameters. However, in some cases OOIP may not have direct 

correlation with NPV, which will lead to ensembles that cannot fully 

explore the uncertainty space. 

3. Combine the concept of optimizing with multiple models with real-time 

reservoir simulation to investigate the improvement in production 

forecast accuracy in real time. 

4. Implement different zonation strategies between true case and during 

history matching process to mimic case that we cannot correctly perform 

reservoir parameterization. Then, compare multiple-models optimization 

between cases with incorrect zonation of uncertain parameters (high 

spread in uncertain parameters) and the case with correct zonation. 
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NOMENCLATURE 

 

 (   ) posterior probability 

 (   )  likelihood probability 

 ( )   prior probability 

 ( )   probability of observed data 

 ̂ ( ̂ )  approximated gradient 

 ̂    vector of solution at current iteration 

 ̂      vector of solution at next iteration 

     step size 

GA  genetic algorithm 

MAP  maximum a posteriori estimation 

SPSA  simultaneous perturbation stochastic approximation 

    number of iteration 

   positive coefficient 

    positive coefficient 

    positive coefficient 

    positive coefficient 

     positive coefficient 

     vector of perturbation size 

     user-specified random perturbation vector  

 ( ̂      ) measurement value at  ̂       
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 ( ̂      ) measurement value at  ̂       

kv  vertical permeability 

kh  horizontal permeability 

krw  relative permeability to water 

      uncertain parameter vector at current state  

        uncertain parameter vector at  proposed state 

      random variable with distribution independent of the chain 

OOIP  original oil in place  

      uncertain parameter vector as per prior knowledge 

      prior covariance matrix 

     normalizing constant 

        observed data 

 ( )    production profile from flow simulation  

      likelihood covariance matrix 

    acceptance probability 

        prior standard deviation 

        prior noise 

     tolerance from target percentile. 

M    number or output parameter. 

P    number of representative model. 

   vector of output parameter 

   vector of input parameter 
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   set of large but finite model 

 ̂    set of statistically representative model 

      vector of all phases flow rate 

        vector of oil production rate  

         vector of water production rate 

         vector of water injection rate  

     oil price 

       water processing cost 

       water injection cost 

      discount rate 

       time step size 

     total number of time step 

      cumulative time until k 

       robust objective function 

    number of model in ensemble 

      weighting factor for each realization 

NPV  net present value 

  



 

98 
 

 

REFERENCES 

 

Alhuthali, A. H. H., Datta-Gupta, A., Yuen, B. B. W. & Fontanilla, J. P. 2008. Optimal 
Rate Control Under Geologic Uncertainty.SPE-113628-MS. SPE/DOE 

Symposium on Improved Oil Recovery.Tulsa, Oklahoma, USA,20-23 April 2008 
 
Alpak, F. O. & Kats, F. V. 2009. Stochastic History Matching of a Deepwater Turbidite 

Reservoir.SPE-119030-MS. SPE Reservoir Simulation Symposium. The 
Woodlands, Texas,2-4 February 2009 

 
Bi, Z., Oliver, D.S., Reynolds, A.C. 2000. Conditioning 3D Stochastic Channels to 

Pressure Data. SPE Journal. 5(4), 474–484. DOI: 10.2118/67954-PA 
 
Bieker, H. P., Slupphaug, O., & Johansen, T. A. 2007. Real-Time Production 

Optimization of Oil and Gas Production Systems: A Technology Survey. Society 

of Petroleum Engineers. 22(4), 382-391. DOI: 10.2118/99446-PA 
 
Brashear, J. P., Becker, A. B. & Faulder, D. D. 2001. Where Have All the Profits Gone? 

Journal of Petroleum Technology, 53 (6), 20-23, 70-73. DOI: 10.2118/73141-ms 
 
Capen, E. C. 1976. The Difficulty of Assessing Uncertainty (includes associated papers 

6422 and 6423 and 6424 and 6425). Journal of Petroleum Technology, 28, 843-
850. 

 
Chen, W., Xie, J. & Sarma, P. 2013. Selecting Representative Models From a Large Set 

of Models.SPE-163671-MS. 2013 SPE Reservoir Simulation Symposium. The 
Woodlands, TX, USA, 18 – 20 Feb 2013  

 
Deutsch, C. V., & Srinivasan, S. 1996. Improved Reservoir Management Through 

Ranking Stochastic Reservoir Models. Society of Petroleum Engineers. DOI: 
10.2118/35411-MS  

 
Dossary, M. & Mcvay, D. A. 2012. The Value of Assessing Uncertainty.SPE-160189-

MS. SPE Annual Technical Conference and Exhibition. San Antonio, Texas, 
USA, 8-10 October 2012 

 
Essen, G. V., Zandvliet, M., Hof, P. V. D., Bosgra, O. & Jansen, J.-D. 2009. Robust 

Waterflooding Optimization of Multiple Geological Scenarios. SPE Journal, 14, 
202-210. 

 



 

99 
 

 

Gao, G., Li, G., & Reynolds, A. C. 2007. A Stochastic Optimization Algorithm for 
Automatic History Matching. Society of Petroleum Engineers. DOI: 
10.2118/90065-PA 

 
Gildin, E., & Lopez, T. 2011. Closed-Loop Reservoir Management: Do we Need 

Complex Models? Society of Petroleum Engineers. DOI: 10.2118/144336-MS 
 
Geweke, J. 1992. Evaluating the Accuracy of Sampling-Based Approaches to the 

Calculation of Posterior Moments. Bayesian Statistics 4, ed. Bernardo, 
J.M.Berger, J.O.Dawid, A.P.et al.: Oxford University Press, Oxford, United 
Kingdom.  

 
Gonzalez, R., Mcvay, D. & Fondren, M. 2013. Applying Calibration to Improve 

Uncertainty Assessment.SPE-166422-MS. SPE Annual Technical Conference 

and Exhibition.New Orleans, Louisiana, USA, 30 September- 2 October 2013 
 
Hastings, W.K. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their 

Applications. Biometrika, 57, 97-109. 
 
Holmes, J., McVay, D. A. & Senel, O. 2007. A System for Continuous Reservoir 

Simulation Model Updating and Forecasting.SPE-107566-MS. Digital Energy 

Conference and Exhibition.Houston, Texas, U.S.A.,11-12 April 2007 
 
Hdadou, H., & McVay, D. A. 2014. The Value of Assessing Uncertainty in Oil and Gas 

Portfolio Optimization. Society of Petroleum Engineers. DOI: 10.2118/169836-
MS 

 
Jansen, J.-D., Brouwer, R. & Douma, S. G. 2009. Closed Loop Reservoir 

Management.SPE-119098-MS. SPE Reservoir Simulation Symposium.The 
Woodlands, Texas,2-4 February 2009 

 
Liu, C. & McVay, D. A. 2010. Continuous Reservoir-Simulation-Model Updating and 

Forecasting Improves Uncertainty Quantification. SPE Reservoir Evaluation & 

Engineering, 13, 626-637. 
 
Liu, N. and Oliver, D.S. 2003. Evaluation of Monte Carlo Methods for Assessing 

Uncertainty. SPE Journal 8 (2): 188-195. DOI: 10.2118/84936-pa 
 
Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. 1953. 

"Equations of State Calculations by Fast Computing Machines". Journal of 

Chemical Physics 21 (6): 1087–1092.  
 
Mohamed, L., Christie, M. A. & Demyanov, V. 2010. Comparison of Stochastic 

Sampling Algorithms for Uncertainty Quantification. SPE Journal, 15, 31-38. 



 

100 
 

 

 
Odai, L., & Ogbe, D. O. 2011. An Approach for Ranking Realizations to Characterize 

Reservoirs for Fluid Flow Simulation. Society of Petroleum Engineers. DOI: 
10.2118/150738-MS  

 
Oliver, D.S., Chuna, L.B., and Reynolds, A.C. 1997. Markov Chain Monte Carlo 

Methods for Conditioning a Permeability Field to Pressure Data. Mathematical 

Geology, 29 (1): 61-91. 
 
Oliver, D. & Chen, Y. 2011. Recent Progress on Reservoir History Matching: a Review. 

Computational Geosciences, 15, 185-221. 
 
Osterloh, W. T. 2008. Use of Multiple-Response Optimization to Assist Reservoir 

Simulation Probabilistic Forecasting and History Matching.SPE-116196-MS. 
SPE Annual Technical Conference and Exhibition.Denver, Colorado, USA, 21-
24 September 2008 

 
Pajonk, O., Schulze-Riegert, R., Krosche, M., Hassan, M. & Nwakile, M. M. 2011. 

Ensemble-Based Water Flooding Optimization Applied to Mature Fields.SPE-
142621-MS. SPE Middle East Oil and Gas Show and Conference. Manama, 
Bahrain, 25-28 September 2011 

 
Peters, E., Chen, Y., Leeuwenburgh, O. & Oliver, D. S. 2013. Extended Brugge 

Benchmark Case for History Matching and Water Flooding Optimization. 
Computers & Geosciences, 50, 16-24.  

 
Rotondi, M., Nicotra, G., Godi, A., Contento, F.M., Blunt, M., Christie, M.: 

Hydrocarbon Production Forecast and Uncertainty Quantification: a Field 
Application. SPE-102135. SPE Annual Technical Conference and Exhibition, 
San Antonio, Texas, USA, 24-27 September 2006 

 
Schaaf, T., Coureaud, B. & Labat, N. 2008. Using Experimental Designs, Assisted 

History Matching Tools and Bayesian Framework to get Probabilistic Production 
Forecasts.SPE-113498-MS. Europec/EAGE Conference and Exhibition. Rome, 
Italy, 9-12 June 2008 

 
Spall, J.C. (1998),Implementation of the Simultaneous Perturbation Algorithm for 

Stochastic Optimization, IEEE Transactions on Aerospace and Electronic 

Systems, 34, 817-823  
 
Welsh, M. B., Bratvold, R. B. & Begg, S. H. 2005. Cognitive Biases in the Petroleum 

Industry: Impact and Remediation.SPE-96423-MS. SPE Annual Technical 

Conference and Exhibition. Dallas, Texas, 9-12 October 2005 




