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ABSTRACT 

 

Fatty acids (FAs) play an important role in physiological functions. Hence, separation 

and isolation of FAs is of great industrial importance. Studies presented here were 

conducted with the intention of developing scalable and cheaper means of separating 

different forms of lipid constituents. In the first study, aqueous solutions of metallic 

salt(s) were brought in contact with mixtures of saturated (C16:0) and unsaturated 

(C16:1) fatty acid methyl esters (FAMEs). In the second study, select FA forms were 

used. The goal here was to investigate whether metal ions in their solvent state form 

strong enough complexes with either the saturated or unsaturated forms of FAMEs or 

FAs to selectively pull the ensembles out from a mixture. Results showed that although 

the FAME forms did not show a significant selectivity toward separation, saturated FA 

forms preferentially bound to select metal ions allowing separation of these from a 

mixture. 

 

The third study involved elucidating the effect of Zn
2+

 concentration on the separation 

behavior of mixtures of saturated and unsaturated FAs (in methanol).  Results showed 

that a concentration of 30 mg/ml of ZnSO4 could decrease the concentration of C16:0 

FAs in the solution by 58%. IR spectra of the precipitate obtained in the second study 

supported the fact that the precipitate obtained is due to a complex between zinc ion and 

the carboxylate group of the C16:0 FA. Computational chemistry calculations indicate 
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that the that specific complex formation with the saturated FA may be due to structural 

differences between C16:0 FA and C16:1 FA and their respective metal carboxylates.   
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1. INTRODUCTION AND LITERATURE REVIEW
*
 

 

This section starts with an introduction on physiological and health effects of fatty acids 

and the need for effective separation techniques for isolating fatty acids. In addition to 

that, current separation techniques that are used for fatty acid isolation such as gas 

chromatography, liquid chromatography, winterization, urea complexation and liquid-

liquid extraction are discussed.  The need for exploring new separation techniques is also 

discussed.  

 

1.1 Health Effects of Fatty Acids 

Fatty acids (FA) play an important role physiological functions of the human body and 

are significant part of lipids which are one of the three major components of biological 

matter (other two being proteins and carbohydrates)(Sheehy & Sharma, 2010) . FAs 

contribute to around 30% of the total energy intake for humans. The adipose tissue stores  

FA in excess, especially when there’s an increase of intake of fat in the diet, resulting in 

obesity (Tvrzicka, Kremmyda, Stankova, & Zak, 2011). Fatty acids are broadly 

categorized into saturated or unsaturated carboxylic acids. In the tissue of plants and 

animals, the most abundant FAs are those with chain lengths of 16 and 18 carbon atoms, 

while lengths longer than 22 and shorter than 14 occur in minor concentrations. 

                                                           
*
 Part of this chapter is reprinted with the permission from “Separation of Palmitic and 

Palmitoleic Acid and their FAMEs using Transition Metal Salts” by Sayali Kulkarni and 

Sandun Fernando,2014. International Research Journal of Pure and Applied Chemistry, 

4, 551-561, Copyright [2014] by ScienceDomain International 
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Unsaturated ones make up approximately half of the FAs in animals and plants and 

contain 1-6 double bonds(Tvrzicka et al., 2011).Long chain (saturated) fatty acids 

(LCFA) such was lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0) and 

stearic acid (C18:0) have significant thrombogenic and atherogenic potential. These fatty 

acids represent 80-90 % of dietary saturated fatty acid (SFA) intake.  

 

Consumption of saturated LCFA plays a role in increasing the levels of cholesterol, 

especially that of low density lipoprotein (LDL) cholesterol, which is in turn connected 

with coronary heart disease (CHD) (Astrup et al., 2011). Very long chain saturated fatty 

acids (VLCFA)  ( C20:0 – C30:0) contribute to metabolic diseases such as  Zellweger 

syndrome, X-linked adrenoleucodystrophy, Refsum’s disease and Menkes’ disease 

(McPhee, Papadakis, & Rabow, 2010).Monounsaturated fatty acids (MUFAs) have been 

known to reduce key risk factors in metabolic syndrome (MetS) (Garg, 1998; Kris-

Etherton, 1999; Ros, 2003). MUFAs help in promoting a healthy blood lipid profile, 

moderate insulin sensitivity and glycemic control and also play a role in mediate blood 

pressure (Gillingham, Harris-Janz, & Jones, 2011; Krauss et al., 2000). 

 

N-3 polyunsatuarted fatty acids such as ecosapentaenoic acid (EPA), alpha-linoleic acid 

(ALA) and docosahexaenoic acid (DHA) are ligands of peroxisome proliferator-

activated receptor (PPAR-α) thus have a significant number of pleiotropic effects on 

energy and lipid metabolism.  They can decrease lipogenesis and VLDL secretion by 

activating (PPAR-α) along with suppression of sterol response element binding protein 
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(SREBP-1).(Burdge et al., 2009) n-3 PUFA also increase activity of lipoprotein lipase, 

facilitate reverse cholesterol transport and decrease concentrations of apo C-III(P. Calder 

& P. Yaqoob, 2009; P. C. Calder & P. Yaqoob, 2009).   PUFA are involved in the carrier 

modulated transport of choline, glycine and taurine (Hyman & Spector, 1982; Yorek, 

Hyman, & Spector, 1983; Yorek, Strom, & Spector, 1984) and the function of delayed 

rectifier potassium channels (Poling, Karanian, Salem, & Vicini, 1995).  

 

Palmitic acid has been shown to mediate hypothalamic insulin resistance (Benoit et al., 

2009) while palmitoleic acid has been shown to increase insulin sensitivity thus 

improving hyperglycemia and hypertriglyceridemia (Yang, Miyahara, & Hatanaka, 

2011). Saturated FAs have been linked to adverse health effects. On the other hand, 

unsaturated FA are considered to be more beneficial for human health(Tvrzicka et al., 

2011).Hence, there’s a widespread industrial interest in the development of separation 

techniques and isolation of fatty acids – especially those that are beneficial to human 

health.  

 

1.2 Separation Techniques  

Various methods have been used for the separation of saturated and unsaturated fatty 

acids. One of the most effective techniques employed for fatty acid separation is silver 

ion chromatography (Morris, 1966). This technique is based on the property of olefinic 

compounds forming a complex with transition metals (especially silver ions) that helps 

in eventual separation of the complex from the bulk.  
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An accepted model predicts formation of a σ-type bond between occupied 2p orbital of 

an olefinic double bond and the free 5s and 5p orbitals of the silver ion. Also there is a π 

– acceptor  backbond between occupied 4d orbital of silver ion and the free antibonding 

2p π* orbital of the olefinic bond (Morris, 1966). This property to form charge-transfer 

type complexes with transition metal ions has been widely adapted in high-performance 

liquid chromatography (HPLC)  based olefin separation(Nikolova-Damyanova, 2009).  

Retention of lipids in Ag-HPLC (silver ion – HPLC) depends on (i) physiochemical 

properties of the mobile phase and the interaction of analytes with the stationary phase: 

like any other chromatographic system. (ii) the stability of complex formed between 

silver ions and olefinic double bond in the  lipid molecule (Nikolova-Damyanova, 2009). 

Some of the retention patterns(Nikolova-Damyanova, 2009) seen in the Ag-HPLC 

system are as follows: 

 Retention is proportional to the number of double bonds. 

 The stability is inversely proportional to the number of substituents of the double 

bond. 

 Trans isomers are weakly retained than cis isomers. The greater stability of the 

cis-isomer can be credited to either the release of strain when complex if formed 

or to the steric hindrance by the two alkyl moieties when they are in transposition 

to each other. 

 Compounds with methylene interrupted double bonds are retained more strongly 

than compounds with conjugated double bonds, and the greatest stability is when 
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two methylene groups separate double bonds, perhaps because a chelate complex 

can be formed. 

 Retention weakens with decreasing chain length.  

The early developing stage of HPLC of fatty acids was reported as isocratic reversed-

phase C18 HPLC of methyl esters using a refractive index detector or UV detector 

(Henke & Schubert, 1980; Pei, Henly, & Ramachandran, 1975; Scholfield, 1975). Till 

the present, the most commonly used stationary phase for separation of fatty acids by 

HPLC is the reversed-phase C18 column.  Nevertheless, gradient elution which offers a 

more dynamic range than that of isocratic elution has become popular for separating 

different classes of fatty acids (Lin, McKeon, & Stafford, 1995; Marcato & Cecchin, 

1996; Mehta, Oeser, & Carlson, 1998). 

 

In order to gain detection sensitivity or separation efficiency, pre-column derivatizations 

such as esterification or introduction of appropriate chromophores are usually performed 

in the case of HPLC for fatty acids, direct separation of free fatty acids has also been 

shown in several reports(Lin et al., 1995; Marcato & Cecchin, 1996; Mehta et al., 1998). 

Capillary GC coupled with flame ionization detector (FID) is the most convenient 

analytical tool for the determination of fatty acids. The fatty acids are determined as their 

methyl ester derivatives. For routine fat analysis, fatty acid methyl esters (FAMEs) can 

be easily prepared via transesterification. Currently, it is generally accepted that flexible 

fused silica capillary columns coated with highly polar cyanosiloxane stationary phases 

such as SP-2560 , SP- 2380 , CP-Sil 88 and BPX-70 are effective even in the analysis of 
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cis-trans isomers of FAs (Ratnayake, 2004).  Column lengths of about 100m length 

provide best resolution even for geometrical and positional isomers of FAMEs. Helium 

is usually used as a carrier gas (Ratnayake, 2004). 

 

A powerful alternative to GC-FID for fatty acid separation is gas-chromatography 

couple to mass spectrometry (GC-MS). GC-MS methods for separation of fatty acids 

usually suffer from long retention times (i.e. that is usually in excess of 30 minutes). A 

novel, fast GC-MS method based on a short, small diameter column characterized by a 

run time of 17.2 minute has been developed by Ecker et al. (Ecker, Scherer, Schmitz, & 

Liebisch, 2012), where FAMEs were separated by a highly polar BPX70 column ( 10 m 

length, 0.10 mm diameter, 0.20 um thickness, SGE) coated with 70% cyanopropyl 

polysilphenyl-siloxane using a GC-2010 coupled to a GCMS-QP2012 detector. A 

programmed temperature vaporizer (PVT) was used in the split mode 1:20 for 3 s, 

switched for 1.3 min to the split-less mode  and split ratio if 1:100 until the end of the 

run. By the use of a PVT, there was a gain in sensitivity as well as superior peak shapes 

compared to conventional split/split less operation. In contrast to the frequently used 

WAX columns, the selected cyano column showed a high temperature stability allowing 

separation of very long chained FAs (up to C:28). A three-stepped temperature program 

had been used to achieve clear separation geometric as well as positional isomers. 

 

Mass spectrometric analysis in the field desorption (FD) mode to characterize individual 

FAME from their molecular ion peaks was carried out by Chopra et al.(Chopra et al., 
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2011). They also carried out analysis by obtaining the 
1
H-NMR spectra of FAMEs.  The 

results obtained by ANOVA analysis showed that there was no significant difference 

between GC/GC-MS and 
1
H-NMR techniques. FAMEs can also be analysed by using 

gas chromatography/electron ionization –mass spectrometry (GC/EI-MS) in the selected 

ion monitoring (SIM) mode(Thurnhofer & Vetter, 2005). A similar method was used to 

determine FAMEs in food samples by use of  ethyl esters (FAEE) and trideuterium-

labelled methyl esters (d3-FAME) as internal standards(Thurnhofer & Vetter, 2006).  

 

About a decade ago, Armstrong et al. showed that room temperature ionic liquids 

(RTIL) possess the volatility, viscosity, solubility and polarity properties required for the 

use of stationary phases for capillary GC  (Armstrong, He, & Liu, 1999) . When used as 

stationary phases, they showed dual nature retention selectivity, separating polar 

molecules as a polar stationary phase and non-polar molecules as a non-polar stationary 

phase(Delmonte, Fardin-Kia, & Rader, 2013). Comprehensive two-dimensional (2-D) 

gas chromatography can provide more detailed separation of FAMEs by combining 

selectivity of two different gas chromatographic separations (Adahchour, Beens, Vreuls, 

& Brinkman, 2006). The orthogonality between two separations is commonly achieved 

by employing GC columns of two different polarities, different elution temperatures for
   

1
D and 

2
D or a combination of both. Non-polar capillary columns separate FAMEs 

primarily on their chain lengths and are often preferred for 
1
D separation. Highly polar 

columns provide selectivity based on number, geometric configuration and position of 

double bonds preferred for 
2
D separation. A study undertaken by Delmonte et al. , 
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describes a novel approach to the GC x GC separation of FAMEs in which analytes 

undergo chemical reduction between 
1
D and 

2
D and 

2
D separates the products of 

reaction.(Delmonte et al., 2013). Unsaturated FAMEs are reduced to their fully saturated 

forms by passing them through a capillary coated with Pd (reactor) in the presence of H2 

as the carried gas. This GC X GC separation is achieved by using the same highly polar 

(SLB-111) stationary column, and maintained at the same temperature. In thus method, 

the chemical structure of analytes is modified instead of applying different 

chromatographic conditions. 

 

Winterization has been utilized to fraction triglycerides (present in edible oils) with 

different melting points. It involves the cooling of oils to allow the solid portion to 

crystallize, which is followed by filtration of the two phases (López-Martínez, Campra-

Madrid, & Guil-Guerrero, 2004).  The melting point of fatty acids varies with the types 

and degree of unsaturation and hence separation of mixtures of saturated and unsaturated 

fatty acids becomes feasible. At lower temperatures, long chain SFA which have higher 

melting points crystallize out leaving the PUFA in the solution (Shahidi & Wanasundara, 

1998). There are two steps in the winterization process : (a)  Crystallization during 

which selective nucleation and crystal growth take place under controlled cooling  and 

slow agitation and (b) Filtration in which resultant slurry is filtered to separate solid and 

liquid portions(Gerpen, Knothe, & Krahl, 2005). For example, in the biodiesel industry, 

winterization has been used to decrease saturated fatty acid methyl ester (FAME) 

concentration from  86.9% to 73.4% while increasing unsaturated FAME concentration 
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from 12% to ~20% (Doğan & Temur, 2013). In a study to concentration PUFA from fish 

oil, bleached oil was cooled progressively from 30 
0
C to 5 

0
C. Compared to bleached 

fish oil, a 9.2 % increase of unsaturated fatty acids and a 13.3% decrease of saturated 

fatty acids was obtained(Cunha, Crexi, & Pinto, 2009). PUFAs present in peanut oil 

were concentrated and at the same time SFA in the oil were reduced by a three-step 

winterization process where the temperature was reduced from 15 
0
C to 0 

0
C (Pérez, 

Casas, Fernández, Ramos, & Rodríguez, 2010). Hence it can be seen that winterization 

is effective in removing saturated fatty acids by crystallizing them at low temperatures 

and in the process, increasing the overall concentration of the unsaturated fatty acids 

present in the solution.  

 

Another efficient method for large scale separation of fatty acids is urea complexation. 

This  process involves formation of a homogeneous solution of urea and free fatty acid 

(FFA) /SFA at 65°C  in an alcoholic solvent such as ethanol, followed by cooling and 

separation of the resultant urea complex  to room temperature (Hayes, Bengtsson, Van 

Alstine, & Setterwall, 1998). Optimization experiments indicate that when urea 

complexation is carried out for a mixture of fatty acids, the SFA concentration can be 

decreased to almost zero from an initial concentration of 4.5 % while the PUFA 

concentration can be increased from an initial concentration of  33.5 % to 53.87 % (Fei, 

Salimon, & Said, 2010). The process is considered uncomplicated, quick, cheap and 

environmental friendly (Hayes et al., 1998; Wanasundara & Shahidi, 1999). Enrichment 

of omega-3-fatty acids from hoka oil has been attempted by using urea 
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complexation(Tengku-Rozaina & Birch, 2013). In this particular study, by the use of 

urea complexation, the total SFA concentration was reduced to 1.6 % from an original 

concentration of 24 %, while the enrichments factor for various omega-3-fatty acids 

ranged from 2.83 to 3.88 (Tengku-Rozaina & Birch, 2013). The purity of  alpha-linoleic 

acid (ALA) present in desilked silkworm pupae oil was increased to 34.8% from an 

initial value of 15 % by the use of urea complexation (Wang, Zhang, & Wu, 2013). Urea 

complexation was also successful in concentrating DHA and EPA from fish oil to 60.6% 

from initial concentrations of 24.2% and 36.4% respectively(Chen, Zhang, Mao, & Zu, 

2012).  Hence it can be seen that urea complexation is successful in concentrating 

PUFAs from various oils.  

 

Apart from chromatographic separations, the property of silver ion complexation with 

olefinic double bonds  has been used to extract fatty acid ester derivatives from various 

organic solvents (Teramoto, Matsuyama, Ohnishi, Uwagawa, & Nakai, 1994). For 

example, supercritical extraction (SC) has been used to extract polyunsaturated fatty acid 

ethyl esters (PUFA-Et) from  aqueous silver nitrate (Suzuki, Tanaka, Kato, & 

Nagahama, 1994) while separation of ethyl esters of eicosapentaenoic acid and 

docosahexaenoic acid has been attempted via circulating liquid membranes using silver 

nitrate as a carrier (Teramoto, Matsuyama, & Nakai, 1996).  

 

Certain metallic ions demonstrate the ability to form precipitates with specific types of 

fatty acids and this property has been utilized to separate out one type of fatty acid from 
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a mixture. For example, alkali metal salts along with alkali metal hydroxides have been 

used to precipitate out free fatty acids via the formation of insoluble fatty acids salts 

(Awad & Gray, 2000). In a second example, saturated straight chain aliphatic 

monocarboxylates have been separated using the property of Cu, Fe, Zn, Pb and Mg 

forming complexes with the monocarboxylates (Daloz, Rapin, Steinmetz, & Michot, 

1998; Hefter, North, & Tan, 1997; Rocca & Steinmetz, 2001). 

 

1.2 Need for New Separation Methods 

Chromatographic techniques are selective, but expensive (in terms of energy 

requirements) and difficult to scale-up. On the other hand, currently used large-scale 

separation techniques such as urea complexation and winterization, are costly due to 

required temperature variations (E.G. in urea complexation, temperature of solution is 

increased to 65°C and then decreased to 4-24°C (Mendes, da Silva, & Reis, 2007) 

whereas during winterization with temperature is decreased to -18°C(Mendes et al., 

2007). They are also not quite selective. The essence of this study was to test methods 

that are scalable, energetically less costly, and selective for separation of FAs.  

 

In these set of experiments, two different mechanisms for separation of fatty acids or 

their ester derivatives were tested. In the first study, the property of free forms of 

transition metal ions to form a complex with unsaturated FAME was evaluated. In the 

second study, the property of fatty acids to form precipitates with metallic salts was 

evaluated. In both cases, it was checked whether that particular system was successful in 
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separating a comparatively higher fraction of an unsaturated form from a mixture 

containing both forms (i.e., saturated and unsaturated) or vice versa.  

 

The effect on increasing concentration of one of the metal salts (ZnSO4) on the 

precipitation of saturated (palmitic acid) and unsaturated (palmitoleic acid) in methanol 

is then evaluated. The next stage involves analyzing the IR spectra of the precipitate to 

characterize the nature of precipitate formed. The final stage utilizes computational 

chemistry tools to explain/verify experimental observations.  
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2. OBJECTIVES 

 

The essence of this set of experiments is to evaluate the effectives of transition metal 

salts in selectively separating saturated fatty acids (or saturated FAMEs) from a mixture 

containing both the unsaturated and unsaturated form(s).  The major specific objectives 

are as follows: 

 

Specific objective 1: To determine whether transition metal salts are effective in 

separating the unsaturated FAME from a mixture of saturated and unsaturated forms.The 

variables for this study are: 

1. Type of aqueous solution: Blank, CuSO4, AgNO3  

2. Type of FAME in hexane: Saturated (palmitic) acid and unsaturated (palmitoleic) 

acid 

3. Time of stirring: 0, 5, 15, 30 and 50 minutes. 

Response measurement: Difference in decrease of unsaturated FAME and saturated 

FAME in the organic layer. Working hypothesis: Metal ions in the aqueous solution will 

form a complex with the olefinic double bond of unsaturated FAME and lead to a 

decrease in Palmitoleic FAME concentration in the organic layer.  

 

Specific objective 2: To determine whether select transition metal salts show a selective 

binding behavior between saturated and unsaturated fatty acids.The variables in this 

study are: 
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1. Type of salts added in methanol: Blank, CuSO4, AgNO3, ZnSO4 

2. Type of fatty acid in methanol:  Saturated (palmitic) acid and unsaturated 

palmitoleic) acid 

Response measurement: Difference in the decrease of saturated fatty acid and 

unsaturated fatty acid concentrations in the methanol phase after the treatment.Working 

hypothesis: Select transition metal salts will bind differently to saturated and unsaturated 

fatty acids due to structural differences of the two fatty acid forms. From the findings of 

study 2, it could be identified: a) whether metal salts show selective precipitation with 

either the saturated or the unsaturated fatty acid form and b) if part (a) is true, the best 

performing metal salt will be selected for next study.  

 

Specific objective 3: To determine the optimum concentration of the transition metal salt 

at which the fatty acid separation is maximum.The variables in this experiment are: 

1.  Concentration of the transition metal salt. 

2. Type of fatty acid (saturated FA and unsaturated FA) 

Response measurement: (a) Difference in the decrease of saturated fatty acid and 

unsaturated fatty acid concentrations in the methanol phase; (b) Decrease in 

concentration of C16:0 FA and C16:1 FA with varying concentrations of the selected 

transition metal salt. Working hypothesis: Increasing concentration of metal ion will lead 

to an increase in precipitation of either the saturated fatty acid or the unsaturated fatty 

acid. 
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Any significant results obtained from part 1, 2 and 3 will be attempted to be explained 

via theoretical calculations by the use of computational chemistry software - GuassView 

and Gaussian. Thermochemistry calculations performed will include free energy, 

enthalpy and Gibbs free energy values. These data will be used to ascertain why certain 

reaction(s) are preferable over the other and/or why a particular metal preferentially 

binds on a specific fatty acid form.   

 

Note – A journal article(Sayali Kulkarni 2014) has been published which contains 

information on the first set (part 1 and 2) of experiments carried out  
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3. METHODS AND MATERIALS
*
 

 

3.1 Evaluation of Effectives of Free Forms of Transition Metal Ions to form 

Complexes with Olefinic Double Bond in an Organic-Aqueous Two-Phase System  

For this study, a procedure similar to that carried out by Teramoto et al. (1994) was 

adopted. The property of metal ions to form a complex with the olefinic double bond of 

the unsaturated fatty acid methyl esters (FAME) was tested for a liquid-liquid system. 

The unsaturated fatty acid, cis-C16:1 FAME and a saturated fatty acid, C16:0 FAME, 

were purchased from Sigma Aldrich. To 2.5 ml of hexane, 32 mg of both FAMEs were 

mixed, so that the concentration of each FAME was 0.05 mol/dm
3 

in the solution 

(Solution A). A 2.5 ml aqueous solution of 4 mol/dm
3
 of transition metal ion salt and 

was prepared by adding either 1.6 g of AgNO3 or 2.5 g of CuSO4.5H2O (Solution B).  

 

The transition metal ion salts used in this study were either AgNO3 or CuSO4. Solution 

A and B were put together in a reaction vial. Two distinct layers were observed – the 

heavier aqueous layer containing metal salts and an upper hexane layer consisting of the 

saturated FAME and the unsaturated FAME. Both layers were mixed together by the use 

of a magnetic stirrer at 800 rpm. This gave an opportunity for the metal ions in the 

aqueous layer to interact with FAMEs in the organic layer.  

                                                           
*
 Part of this chapter is reprinted with the permission from “Separation of Palmitic and 

Palmitoleic Acid and their FAMEs using Transition Metal Salts” by Sayali Kulkarni and 

Sandun Fernando, 2014. International Research Journal of Pure and Applied Chemistry, 

4, 551-561, Copyright [2014] by ScienceDomain International 
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So, if there were a complex formation between the olefinic bond of the unsaturated FA 

and the metal ions, the portion of unsaturated FAME which formed a complex with 

metal ions would migrate to the aqueous layer. After 0 (immediately after mixing), 5, 15, 

30 and 50 minutes of stirring, the concentration of FAMEs in the top (hexane) layer was 

measured using gas chromatography- flame ionization detector (GC-FID -Agilent 

Technologies 6850). The same procedure was also carried out using a blank aqueous 

layer i.e, water, with no metal ions.  

 

Using the aforementioned procedure, the percentage decrease in concentration of FAME 

after 0, 5, 15, 30 and 50 minutes of stirring, was calculated (Eq.1, Eq.2 and Eq.3). This 

decrease can be attributed either to: (i) complex formation of unsaturated FAME with 

metal ions and hence the transfer of FAMEs into the aqueous layer or (ii) transfer of 

both FAMEs to the aqueous solution due to mixing. The response was measured as the 

percentage difference in decrease of concentration of C16:1 FAME and C16:0 FAME 

from the hexane layer. The greater the difference, the more effective the aqueous 

solution is in selectively separating the unsaturated FAME from the mixture containing 

both (saturated and unsaturated FAMEs). The response was measured at 0, 5, 15, 30, and 

50 minutes of stirring. The response was measured at 5 different stirring times in order 

to check whether the time of stirring had any effect on the experimental model. Each 

experiment was carried out with three replicates. For each time response, the analysis of 

variance was calculated using Design Expert , which is a statistical tool for design of 

experiment (DOE) methods, to determine the significance of the model (at α = 0.05. α is 
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the “significance level” or the probability of rejecting the null hypothesis when the null 

hypothesis is true). 

 

3.2 Evaluate Formation of Precipitates of Metal Salts with Fatty Acids  

In the second study, the ability of fatty acids to form precipitates with metallic salts was 

investigated. The metal salts tested include AgNO3, CuSO4, ZnSO4, MnCl2, FeSO4, 

FeCl3 and CoCl2 (all metals salts were hydrated except for AgNO3). Hexadecanoic acid 

(C16:0) was obtained from Sigma Aldrich while 9-cis-hexadecanoic (C16:1) acid was 

purchased from Nu-Chek Prep. 100 mg each of C16:1 and C16:0 were thoroughly mixed 

in 10 ml of methanol .Preliminary studies included testing of a visible formation of 

precipitate after the addition of aforementioned metallic salts (~ 0.17 x 10
-3

 moles) to the 

fatty acid solution in methanol. Once individual metallic salts were added to the FA 

solution, they were left undisturbed for 24 hours to observe any form of precipitation. Of 

the tested transition metal salts, silver nitrate, copper sulphate and ZnSO4 showed 

formation of a precipitate (figure 1) while for others it was absent (figure 2). Transition 

metal salts showing distinct precipitation were selected for more in-depth quantitative 

studies.  
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Figure 1:. (Left to Right) a) AgNO3 b) CuSO4 c) ZnSO4 showing clear precipitation 

of saturated FA from a mixture containing both saturated and unsaturated FA 

 

 

 

 
Figure 2: (Left to Right) a) FeSO4 b) MnCl2 c) FeCl3 d) CoCl2 did not show any 

precipitation from a mixture containing both saturated and unsaturated FA 

 

(a) (b) (c) 

(a) (b) (d) (c) 
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For blank runs, FAs that were mixed in methanol were trans-esterified using an acidic 

medium of 4% H2SO4 in methanol. A known amount of C15:0 FA was added as the 

internal standard during transesterification in order to calculate the transesterification 

efficiency. The transesterification process was carried out for 1 hour at 120
o
C. Then, 

water and hexane were added to the solution which was followed by centrifugation of at 

1000 rpm for 6 minutes. FAME concentration was then measured using a GC-FID. 

 

To check the effect of silver ions on the mixture of saturated FA and unsaturated FA in 

methanol, about 30 mg (~ 0.17 x 10
-3

 moles) of AgNO3 was added to the solution and 

mixed thoroughly. Formation of a white precipitate was visible. The precipitate was 

allowed to form and settle for 24 hours after which the supernatant was filtered out using 

a 0.2 µm polytetrafluoroethylene (PTFE) filter to ensure that a clear solution is obtained 

for the next step. This sample was then transesterified following the same procedure as 

mentioned above. In order to evaluate the effect of copper ions, about 44 mg (~ 0.17 x 

10
-3

 moles) of CuSO4:5H2O was added to the C16:0/C16:1 solution in methanol and 

mixed thoroughly. Formation of a blue precipitate was observable. For quantification 

studies, the procedure carried out for silver ions was adopted for copper ions. In order to 

evaluate the effect of zinc ions, about 49 mg (~ 0.17 x 10
-3

 moles) of ZnSO4.7H2O was 

added to the C16:0/C16:1 solution in methanol and mixed thoroughly. Formation of a 

white precipitate was observable. Quantification was done similar to the procedure 

adopted for silver ions above.  
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The response was measured as the difference in percentage reduction of concentration of 

C16:0 FA from that of C16:1 FA and was calculated using Eq.1, Eq.2 and Eq. 4. Each 

experiment was carried out with three replicates. For each time response, the analysis of 

variance was calculated using Design Expert. Significance of the model was compared at 

α = 0.05 (α is the “significance level” or the probability of rejecting the null hypothesis 

when the null hypothesis is true). 
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…..Eq. 3 
                        (                              )                 {(    )   (    )}                        

…..Eq. 4 

 

3.3 GC-FID Analysis  

For estimating the amount of C16:0, C16:1 and C15:0 FAME in experimental samples, 

the response factor (RF) for every FAME was calculated with respect to C13:0/ C19:0 

FAME (using Equation 5). To calculate the response factors, known amounts of C13:0, 

C19:0, C16:0, C16:1, and C15:0 FAME were mixed in hexane and analyzed via GC-

FID. The response factors for C15:0 , C16:0 and C16:1 were obtained  to be 0.9325, 

0.8904 and 0.8973 respectively 
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          ⁄      ⁄   

 
(                  )   (                         ⁄      ⁄   )

(                     ⁄      ⁄   )  (                      )
                          

…..Eq. 5 

 

C13:0/C19:0 FAME was used as the internal standard and was added to every 

experimental sample. Fig. 3 is an example of the chromatogram obtained after analysis. 

Distinct peaks pertinent to C13:0, C15:0, C16:0, C16:1 and C19:0 FAMEs are 

observable in figure 3.  The amounts of C15:0, C16:0 and C16:1 FAME were calculated 

using equation 6.  

 

                                        

 
(                                   )  (  )  (                                  ) 

(                              )
 

…..Eq. 6 

 

 

 

 
Figure 3 : Chromatogram showing distinct FAME peaks in a typical sample 
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3.4 Optimization of ZNSO4 Concentration 

Preliminary studies indicated that ZnSO4 preferentially precipitates palmitic acid from a 

mixture containing both palmitic and palmitoleic acids. Consequently, the present study 

was aimed at elucidating whether an increase in concentration of ZnSO4 leads to 

increase in the formation of precipitates and if so, to what extent.  

 

Hexadecanoic acid (C16:0) was obtained from Sigma Aldrich while 9-cis-hexadecanoic 

(C16:1) acid was purchased from Nu-Chek Prep. A 100 mg of each acid was added to 10 

ml of methanol and the solution was mixed using a vortex mixer until the FAs were 

completely dissolved and a clear solution was obtained. To this solution, 50 mg of 

ZnSO4 was added. Formation of an immediate precipitate was observed. The precipitate 

was allowed to form and settle for 24 hours.  The precipitate was filtered and the 

supernatant was then transesterified to convert the remaining fatty acids in the solution 

to FAMEs. For the transesterification process, the FA solution in methanol was mixed 

with 4% H2SO4 solution in methanol and heated at 120 
0
C for 1 hour. The concentration 

of FAMEs was estimated using a GC-FID. The same procedure was repeated for 

different ZnSO4 concentrations of 5, 10, 20, 30 and 40 mg/ml.  Experiments at each 

concentration were run in triplicates.  

 

3.5 FTIR-ATR Analysis of Precipitate 

The precipitate obtained after adding ZnSO4 to a mixture of C16:0 FA and C16:1 FA 

was filtered and dried at 70
0
C to evaporate methanol present in the sample. Then the 
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precipitate was analyzed in a FTIR-ATR (ATR-Attenuated Total Reflectance mode) 

spectrometer to obtain the spectra between 500-4000 cm
-1

. Pure samples of palmitic acid 

and palmitoleic acid were also analyzed using FTIR-ATR to compare their spectra to 

that of the precipitate.  

 

3.6 Computational Chemistry Calculations 

In order to explain the results that were obtained in the earlier experiments, theoretical 

chemistry calculations were undertaken. Computational chemistry software, GuassView 

5 and Gaussian 09 (M. J. Frisch, M. Ehara, & K. Raghavachari, 2009) were used to 

build, optimize and find the energies of molecules and potential structures formed.  

In the procedure it is mentioned that both fatty acids were completely mixed in methanol 

- which means that the fatty acid molecules were ionized in the solution, giving the 

carboxylate group of the FA a net negative charge. In the case of the metal salts in 

solution (in methanol) the metal ions possess a net positive charge(s). It was also 

observed from earlier studies that certain metal salts showed selective binding preference 

with the saturated fatty acid forms. Accordingly, in order ascertain why certain metals 

showed the tendency to form precipitates selectively with the saturated FA, 

computational chemistry calculations were undertaken as follows: 

a. Structures of  palmitic acid, palmitoleic acid, a few of the metal ions used in the 

experiment, and their corresponding  “metal carboxylates” were optimized using 

the method “Hartree-Fock” with basis set of “321-G” available in Gaussian 09. 
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b. Frequency calculations of the optimized structures were undertaken using the 

same method and basis set, from which the sum of electronic and thermal free 

energies (Standard Gibbs Free Energies) of ions and molecules were calculated. 

c. Assuming that positively charged metal ions formed a metal carboxylate by 

reacting with the negatively charged fatty acid ion in methanol, the Gibbs free 

energies of reactions of fatty acid ions with metals ions resulting in the formation 

of metal carboxylate was calculated. 
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4. RESULTS AND DISCUSSION
*
 

 

4.1 Evaluation of Effectives of Transition Metal Ions to form Complexes with 

Olefinic Double Bond in an Organic-Aqueous Two-Phase System  

The first experiment concentrated on evaluating whether the type of metal played a 

significant role in distinctive separation of the two FAMEs. A closer look at the figure 4 

- which is a plot of the mean (average of the three replicates) of the response along with 

error bars with standard deviation – it can be seen that there’s a specific pattern in the 

differences in the decrease of fatty acid concentrations, with the silver ion being the most 

effective in separating out the unsaturated fatty acid than the saturated one, followed by 

copper while blank solution is the least effective for the desired separation. A model is 

considered insignificant if the p-value for it is more than 0.05. We can see from Table 1 

that the model is not significant at any of the time response/interval. The reason for the 

model being insignificant at all time-responses can be explained by the large error 

margins, which are results of non-uniformity of data points between replicates.  

 

 

 

 

 

                                                           
*
 Part of this chapter is reprinted with the permission from “Separation of Palmitic and 

Palmitoleic Acid and their FAMEs using Transition Metal Salts” by Sayali Kulkarni and 

Sandun Fernando,2014. International Research Journal of Pure and Applied Chemistry, 

4, 551-561,Copyright [2014] by ScienceDomain International 
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Figure 4: Means of the replicates plotted against the time along with error 

margins with one standard deviation 

 

 

 

Table 1: Statistical output for study 4.1 

Time Interval (minutes) 0 5 15 30 45 

P-values 0.19 0.11 0.15 0.21 0.13 

 

 

 

Statistically speaking, the type of aqueous solution used doesn’t significantly affect the 

response (which is to selectively differentiate between the unsaturated and saturated 

FAME) nor does the time of stirring. While the transition metal ions do seem to show a 

trend in extracting more of the unsaturated FAME than the saturated FAME, there seems 

to be variation in the readings which likely affected the significance of the model. One 

of the reasons of this variation may be due to the fact that the complexes formed 
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between the FAME(s) and the metal ion(s) are not strong enough, i.e., the FAME not 

staying in the aqueous layer long enough to cause separation. Consequently, the second 

study was geared toward amplifying another property present in fatty acid derivatives 

that may cause crystal formation in the presence of metallic salts.  

 

4.2 Formation of Precipitates of Metal Salts with Fatty Acids  

For this second set of experiments, we chose fatty acids instead of fatty acid methyl 

esters. Figure 5 graphically represents the results. We can distinctly see the effectiveness 

of metal ions in separating out C16:0 FA more than C16:1 FA. While the difference is 

negligible in the case of blank solutions, that of the metal salts is around 8 – 10%- which 

means that the reduction in the concentration of the saturated FA is far more than that of 

the unsaturated FA. 

 

 

 

 
Figure 5: Plot of the means of replicates of different metal ions with that of the 

blank solution. Error margins are drawn with one standard deviation 

 

-5

0

5

10

15

20

25

30

35

Blank Copper Silver Zinc

% Reduction of C16:0 FA

% Reduction of C16:1 FA

(% Reduction of C16:1 )-

(% Reduction of C16:0)



 

 

29 
 

Significant responses (P <0.001) were obtained for samples where CuSO4, AgNO3 and 

ZnSO4 were added to the FAs mixture. ANOVA output from Design Expert is given in 

table 2, indicating the significance of the model. Figure 6 and 7 represent the normal and 

the box-cox plot for this experimental model respectively. It can be surmised from these 

results that the normality assumption is satisfied. All residuals’ plots seem to be 

compliant. Box-cox plot recommends no transformation of data. 

 

 

 

Table 2: ANOVA output for experimental model for evaluation of formation of 

precipitates of metal salts with fatty acids 

Response 1 

Difference in Reduction in Concentration of Fatty Acids (C16:0-

C16:1)  

        ANOVA for selected factorial model 

  

  

Analysis of variance table [Classical sum of squares - Type II]   

  Sum of   Mean F p-value   

Source Squares df Square Value Prob > F   

Model 236.1494 3 78.71645 25.39143 0.000193 significant 

  A-Aqueous 

Layer 236.1494 3 78.71645 25.39143 0.000193   

Pure Error 24.80095 8 3.100119       

Cor Total 260.9503 11         
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Figure 6: Normal plot for residuals for experimental model for formation of 

precipitates of metal salts with fatty acids 

 

 

 

Figure 7: Box-cox plot for residuals for experimental model for formation of 

precipitates of metal salts with fatty acids 
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The slight reduction in concentrations in blank solutions where no precipitate was seen 

can be attributed to two factors -  i) not all fatty acids getting transesterified at the same 

rate and/or ii) Not all FAMEs get transferred from methanol to the hexane layer. 

Reduction in concentration with metal ion salts can be attributed to the precipitate 

formation in addition to the above two factors.  It is possible that because of the presence 

of a ‘kink’ in the structure of the cis-unsaturated FA, the carboxyl group at the end of its 

structure will not be as easily available to the Ag
+ 

or Cu
2+

 or Zn
2+

 ions to latch onto and 

then crystallize forming a precipitate. Hence a positive value of response would indicate 

that there’s more reduction in C16:0 FA than C16:1 FA; and higher positive value of 

response the better the system is in selectively precipitating out the saturated FA more 

than the cis-unsaturated FA. 

 

We can see that AgNO3, CuSO4 and ZnSO4 interact with the saturated form of the FA 

and forming crystallites while preventing formation of the same with the unsaturated 

version. The precipitates are most likely carboxylates (of the saturated fatty acid and the 

metal ion) now crystallized with similar molecules. The unsaturated FAs, though still 

metal carboxylates, did not form the crystallites likely due to the absence of a condition 

that promotes intermolecular attractive forces. We conjecture that the preclusion of these 

interactions is as a result of the bend in the structure of the cis-unsaturated fatty acid that 

prevents molecules coming closer to generate such interactions.  



 

 

32 
 

4.3 Optimization of ZnSO4 Concentration 

This study was geared toward ascertaining whether the ZnSO4 concentration has any 

impact on the amount of FAs that can be selectively separated.  Figure 8 depicts how 

increased concentrations of ZnSO4 lead to enhancement of the selective precipitation of 

the saturated FA (in comparison to unsaturated FA). Precipitation of C16:0 FA goes on 

increasing to up to 58% while that of C16:1 FA remains at around 10% irrespective on 

the concentration of ZnSO4 added.  This phenomenon leads to greater difference 

between the saturated FA and unsaturated FA that is being precipitated.  

 

 

 

 
Figure 8: Fatty acid precipitation with increasing concentration of ZnSO4 

 

 

 

Analysis of variance (ANOVA) was conducted using Design-Expert (version 9.0.3.1) 

with concentration of ZnSO4 as a factor with 5, 10, 20, 30 and 40 mg/ml as levels. The 

ANOVA resulted in a p-value of 0.0002 - which is significant. The ANOVA table 
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generated from Design Expert for this model is given in table 3. The normality plot and 

box-cox plot for this experimental model are represented by figure 9 and 10 respectively. 

It can be surmised from these results that the normality assumption is satisfied. All 

residuals’ plots seem to be compliant. Box-cox plot recommends no transformation of 

data. 

 

 

 

Table 3: ANOVA for concentration of ZnSO4 as a factor with 5, 10, 20, 30 and 40 

mg/ml as levels 

Response 1 Difference in decrease of concentration (C16:0 -C16:1) 

Transform: Power Lambda: 1.28 Constant: 0   

        ANOVA for Response Surface Quadratic model 

 

  

Analysis of variance table [Partial sum of squares - Type III]   

  Sum of   Mean F p-value   

Source Squares df Square Value Prob > F   

Model 23675.69 2 11837.84 94.09809 4.64E-08 significant 

  A-Concentration of 

Zinc Sulphate 15962.04 1 15962.04 126.881 9.76E-08   

  A^2 6888.139 1 6888.139 54.75328 8.28E-06   

Residual 1509.639 12 125.8032       

Lack of Fit 324.1888 2 162.0944 1.367366 0.298573 

not 

significant 

Pure Error 1185.45 10 118.545       

Cor Total 25185.33 14         
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Figure 9: Normality plot for experimental model with concentration of ZnSO4 as a 

factor with 5, 10, 20, 30 and 40 mg/ml as it levels 
 
 
 

Figure 10: Box-cox plot for experimental model with concentration of ZnSO4 as a 

factor with 5, 10, 20, 30 and 40 mg/ml as it levels 
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increasing the ZnSO4 concentration up to about 30 mg/ml leads to an increase in the 

relative amount of C16:0  FA precipitated. However, beyond 30 mg/ml ZnSO4 

concentration, the separatory effect seems to taper off.  It can be clearly that the decrease 

in the concentration of C16:1 FA remains more or less constant at 10% whereas the 

reduction in concentration of C16:0 FA increases to a maximum of around 58%. 

Another experimental model was analyzed where there were two factors : (a) amount of 

ZnSO4 added and (b) type of fatty acid, which in turn has two levels : (i) C16:0 FA and 

(ii) C16:1 FA. The response of this model was measured as the decrease in concentration 

of fatty acid after the addition of ZnSO4. The ANOVA for this experimental model 

resulted in a p-value of < 0.0001. This means that the model is significant. The data for 

this experimental model is also represented in figure 6. ANOVA output from Design 

Expert is given in table 4, indicating the significance of the model. Figure 11 and 12 

represent the normal and the box-cox plot for this experimental model respectively. It 

can be surmised from these data that the normality assumption is satisfied. All residuals’ 

plots seem to be compliant. Box-cox plot recommends no transformation of data. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

36 
 

Table 4: ANOVA for experimental model with two factors : (a) amount of ZnSO4 

added and (b) type of fatty acid , which in turn has two levels : (i) C16:0 FA and (ii) 

C16:1 

Response 1 Decrease in Concentration of Fatty Acid   

Transform: 

Square 

Root 

Constan

t: 0.5 

  

  

        ANOVA for Response Surface Quadratic model 

 

  

Analysis of variance table [Partial sum of squares - Type III]     

  Sum of   Mean F p-value   

Source Squares df Square Value 

Prob > 

F   

Model 

105.04730

71 4 

26.2618

3 

54.0425

4 

6.05E-

12 significant 

  A-Concentration of 

Zinc Sulphate 

6.5125248

21 1 

6.51252

5 

13.4017

1 

0.00117

7   

  B-Fatty Acid 

87.821871

64 1 

87.8218

7 180.723 

6.06E-

13   

  AB 

5.4162835

32 1 

5.41628

4 

11.1458

2 

0.00264

1   

  A^2 

8.5749405

75 1 

8.57494

1 

17.6458

2 

0.00029

5   

Residual 

12.148683

01 25 

0.48594

7       

Lack of Fit 

3.6425849

48 5 

0.72851

7 

1.71292

9 

0.17765

3 

not 

significant 

Pure Error 

8.5060980

64 20 

0.42530

5       

Cor Total 

117.19599

01 29         
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Figure 11: Normality plot for experimental model with two factors : (a) amount of 

ZnSO4 added and (b) type of fatty acid, which in turn has two levels : (i) C16:0 FA 

and (ii) C16:1 
 
 
 

 
Figure 12: Box-cox plot for experimental model with two factors : (a) amount of 

ZnSO4 added and (b) type of fatty acid has two levels (i) C16:0 FA and (ii) C16:1 
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Hence it can be surmised that the amount of ZnSO4 added to the solution has a 

significant impact on (i) the type and (ii) the amount of FA precipitated. 

 

4.4 FTIR-ATR Analysis of Precipitate 

Figure 13 depicts the spectra for C16:0 FA, C16:1 FA precipitates with zinc. 

 

 

 

Figure 13: Spectra of C16:0 FA, C16:1 FA and zinc carboxylate precipitate 

 

 

 

A stretch band above  3000 cm
-1

 indicates the presence of a alkene or “=C-H” 

bond(Volland, 1999), which can also be verified by looking at the differences in the 

spectra of C16:0 FA and C16:1 FA in figure 13- where there’s a distinct stretch band at 

3003 cm
-1

.  The spectra for the zinc precipitate did not contain a stretch band above 3000 
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cm
-1

, indicating the absence of a carbon-carbon double bond in the precipitate.  One 

distinct stretch band to be noted in the case of the precipitate is the one just above 1500 

cm
-1

 -- which is indicative of the asymmetric carboxylate vibration in the IR spectra [ 

νas(COO−)] (Zeleňák, Vargová, & Györyová, 2007). It also confirms the presence of a 

zinc forming complex with the carboxylate group of the fatty acid  (Zeleňák et al., 2007) 

and this case, a complex with the C16:0 FA. 

 

4.5 Computational Chemistry Calculations 

The Gibbs free energies of reactions (generated from computational chemistry 

calculations) are given in Table 5-8. Table 9 gives information on the solubility of metal 

salts in methanol. The last column of each table gives the difference between the Gibbs 

free energy of the reaction of the metal ion with the with palmitoleic acid and with 

palmitic acid. If this value is negative, then it can be hypothesized that the reaction of the 

metal ion with palmitic acid is more favorable than that with palmitoleic acid.  

 

According to Table 5, negative Gibbs free energies for in column 6 indicate that Zn
2+

 has 

a tendency to complex with both C16:0 FA ion and C16:1 FA spontaneously. A more 

negative value with palmitic acid would indicate a preference for forming a complex 

with the metal ion when palmitic acid is mixed with palmitoleic acid.  But in this case, 

the difference of Gibbs free energies of both reactions is just 3.25 KJ/mol which is 

negligible. Hence, phenomenon of selective precipitation of saturated FA cannot be 

explained through theoretical calculations alone. 
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Table 5: Computational calculations of Zn
2+
– fatty acid chemistry 

  
Fatty acid 

ion (-1) (Ha) 
Zn

2+
 (Ha) 

Total 

Energy of 

Rectants 

(Ha) 

Zinc 

Carboxylate 

(Ha) 

Gibbs 

Free 

Energy 

(Ha) 

Difference 

of Gibbs 

Free 

Energies 

(C16:0 -

C16:1) 

(KJ/mol) 

Palmitic 

acid 
-807.778275 -1768.29 

-

3383.84747 

-

3384.88857 
-1.041103 

-

3.2577999

99 

Palmitole

ic acid 
-767.825167 -1768.29 

-

3303.94125 
-3304.9811 -1.03985   

 

 

 

In the case for Cu
2+

, as can be seen from table 6, Gibbs free energies for both reactions 

are negative - indicating that  Cu
2+

 also has the potential to spontaneously form 

complexes with both forms of FAs. A more negative value with palmitic acid would 

indicate a preference for forming a complex with the metal ion when palmitic acid is 

mixed with palmitoleic acid.  But in this case, the difference of Gibbs free energies of 

both reactions is just 2.76 KJ/mol which is negligible. Hence, phenomenon of selective 

precipitation of saturated FA by addition of Cu
2+

 cannot be explained through theoretical 

calculations alone. 
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.  Table 6: Computational calculations of Cu
2+
– fatty acid chemistry 

  

Fatty acid 

ion (-1) 

(Ha) 

Cu
2+

 

(Ha) 

Total 

Energy of 

Reactants 

(Ha) 

Copper 

Carboxylate 

(Ha) 

Gibbs 

Free 

Energy 

(Ha) 

Difference 

of Gibbs 

Free 

Energies 

(C16:0 -

C16:1) 

(KJ/mol) 

Palmitic 

acid 

-

807.778275 

-

1630.13 

-

3245.68509 

-

3246.72107 

-

1.035988 

-

2.761200001 

Palmitoleic 

acid 

-

767.825167 

-

1630.13 

-

3165.77887 
-3166.8138 

-

1.034926 
  

 

 

 

Fe
2+

 also behaved consistent to above cases: As can be seen from table 7, Gibbs free 

energies of Fe
2+

 complexing with both forms of FAs are negative indicating 

thermodynamic favorability. However, in this case, the reaction with palmitoleic acid is 

more favored. Nevertheless, experimentally, no precipitate was observed either with 

palmitic acid nor palmitoleic acid.  This can be attributed to the fact that the solubility of 

ferrous sulphate is negligible in alcohols (Oldberg & Long, 1891). For both reactions to 

proceed, the availability of Fe
2+

 ions is essential. 
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Table 7: Computational calculations of Fe
2+
– fatty acid chemistry 

  
Fatty acid 

ion (-1) 

(Ha) 

Fe
2+

 

(Ha) 

Total 

Energy of 

Reactants 

(Ha) 

Ferrous 

Carboxylate 

(Ha) 

Gibbs 

Free 

Energy 

(Ha) 

Difference of 

Gibbs Free 

Energies 

(C16:0 -

C16:1) 

(KJ/mol) 

Palmitic 

acid 
-

807.778275 

-

1255.39 

-

2870.94686 

-

2871.91519 

-

0.968329 
67.8834 

Palmitoleic 

acid 

-

767.825167 

-

1255.39 

-

2791.04064 

-

2792.03508 

-

0.994438 
  

 

 

 

To validate the results, a calculation was run with select metal ions that did not form any 

precipitates experimentally. In the case of Co
2+

, it can be seen from table 8 that Gibbs 

free energies for formation of complexes with both forms of FAs are positive and thus 

non-spontaneous (even though cobalt chloride is soluble in methanol indicating readily 

available Co
2+

 ions ("Cobaltous Chloride, Hexahydrate :Safety Data Sheet,") 

 

 

 

Table 8: Computational calculations of Co
2+
– fatty acid chemistry 

  

Fatty acid 

ion 

 (-1) 

 (Ha) 

Co
2+

 

(Ha) 

Total 

Energy of 

Reactants 

(Ha) 

Cobalt 

Carboxylate 

(Ha) 

Gibbs Free 

Energy 

(Ha) 

Difference 

of Gibbs 

Free 

Energies 

(C16:0 -

C16:1) 

(KJ/mol) 

Palmitic 

acid 

-

807.778275 

-

1373.78 

-

2989.33515 

-

2871.76541 
117.569746 78.1196 

Palmitoleic 

acid 

-

767.825167 

-

1373.78 

-

2909.42894 

-

2791.88924 
117.5397   
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Table 9: Solubility of metal ions in methanol 

ZnSO4(heptahydrate) Soluble ("DOSE/Dictionary of 

substances and their effects,") 

CuSO4 (pentahydrate) Soluble (Haynes, 2011) 

FeSO4 (heptahydrate) Insoluble / Sparingly Soluble 

(Oldberg & Long, 1891) 

CoCl2 ( hexahydrate) Soluble ("Cobaltous Chloride, 

Hexahydrate :Safety Data Sheet,") 

 

 

 

Theoretical calculations of Gibbs free energies for reactions of various metal ions were 

inconclusive. So, it can be said that, energetically, there isn’t much difference in how 

reaction of metal ions with either a saturated FA or unsaturated FA will proceed. 

Although, experimental results have shown that saturated FA forms a precipitate with 

certain metal salts in the solution. Hence, structural differences of palmitic acid and 

palmitoleic acid as well as those between the complex formation of metal and fatty acids 

have to be taken into account. As seen in figure 14 and 15, because of the presence of a 

double bond, there’s a bend in the carbon backbone of  palmitoleic acid, while palmitic 

acid is straight-chained. This difference in spatial arrangements of both the molecules 

makes the carbolylic group of the straight-chained saturated FA more easily available for 

metal ions to form a complex with. 
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Figure 14: Optimized structure of palmitoleic acid 

 
 
 

 
Figure 15: Optimized structure of palmitic acid 

 
 
 

Optimized structures of zinc pamitate and zinc palmitoleate are given in figure 16 and 

17. The energy for an optimized molecule of zinc palmitate is -3385.811 Hatrees while 

that of zinc palmitoleate is -3305.797 Hatrees. Hence the complex between zinc and 

C16:0 is much more energetically stable that that with C16:1 FA. In figure 12 and 13, it 

is visible that the structure of zinc palmitate is linear when compared to that of zinc 

palmitoleate. Hence zinc palmitoleate molecules can stack themselves in a closely 

packed arrangement, promoting in precipitation and crystallization of the compound. 

These structural and energetic differences between the molecules of zinc pamitoleate and 
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zinc palmitate could be the reason why zinc ions (and other metal ions) can easily form 

precipitates with palmitic acid than with palmitoleic acid.  

 

 

 

 
Figure 16: Optimized structure of zinc palmitate 

 
 
 

 
Figure 17: Optimized structure of zinc palmitoleate 
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5. CONCLUSIONS
*
 

 

Conclusions for specific objectives listed in chapter 2 are as follows: 

 

Conclusion for specific objective 1: Free forms of metal ions (in solvent medium), when 

mixed with a mixture containing saturated and unsaturated forms of a FAME, were not 

quite effective in separating the unsaturated form from the other.  

 

Conclusion for specific objective 2: Transition metal salts such as AgNO3, CuSO4 and 

ZnSO4 were able to effectively separate the unsaturated FA form from the mixture of 

saturated and unsaturated FA. Transition metal salts such as AgNO3, ZnSO4 and CuSO4 

form complexes preferentially with palmitic acid precipitating it out from a mixture 

containing both saturated palmitic (C16:0) and unsaturated palmitoleic (C16:1) acid 

forms in methanol. 

 

Conclusion for specific objective 3: A concentration of 30 mg/ml of ZnSO4 can 

precipitate about 58 % of C16:0 FA, leaving about 90% of C16:1 FA still in the solution.  

Conclusion for specific objective 4: Theoretical calculations of the differences in Gibbs 

free energies of the saturated FA and unsaturated FA with metal ions were inconclusive. 

                                                           
*
 Part of this chapter is reprinted with the permission from “Separation of Palmitic and 

Palmitoleic Acid and their FAMEs using Transition Metal Salts” by Sayali Kulkarni and 

Sandun Fernando, 2014. International Research Journal of Pure and Applied Chemistry, 

4, 551-561, Copyright [2014] by ScienceDomain International 
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 The free energy values, though showing a more favorable tendency for the saturated 

fatty acid to form complexation with the select metal ions, do not indicate conclusive 

evidence due to the relatively small numerical differences. However, differences in the 

optimized structure of palmitic acid and palmitoleic acid and their respective 

carboxylates with metals indicate that complex formation and precipitation is enhanced in 

the case of the saturated FA due to its more stable straight-chained structure that in turn 

favors stacking. 

 

All experiments were carried out at room temperature and atmospheric pressure; 

therefore, the ability of such metal ions to form complexes with select forms of fatty 

acids needs to be explored further for the potential use for energy efficient and less costly 

large scale separation of fatty acids. Since these experiments were carried out at room 

temperature and pressure, this technique is worth further exploration for low-cost 

separation of high-value fatty acids such as DHA, EPA, and ALA. Future studies also 

should be aimed at removal of metal ions from the solution and further purification of 

fatty acids. 

 

Computational chemistry tools such as Gaussian made it possible to some extent to 

explain the selective precipitation of metal ions with saturated FA. Future computational 

studies should involve the study of interaction of solvent molecules with metal salts as 

well as that with fatty acids so that computational tools can be used to make reasonable 

predictions before experimentation in the laboratory. 
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APPENDIX 

 

Table 10: Data for results for study where interaction of metal ions in aqueous 

solution with organic solution of C16:0 FAME and C16:1 FAME was checked 
Type of 

Aqueous 

Solution 

Difference in 

Decrease of 

Concentration 

(C16:1-C16:0) 

at 0 minutes (%) 

Difference in 

Decrease of 

Concentration 

(C16:1-C16:0) 

at 5 minutes 

(%) 

Difference in 

Decrease of 

Concentration 

(C16:1-C16:0) 

at 15 minutes 

(%) 

Difference in 

Decrease of 

Concentration 

(C16:1-

C16:0) at 30 

minutes (%) 

Difference in 

Decrease of 

Concentration 

(C16:1-C16:0) 

at 50 minutes 

(%) 

Blank 4.272915999 2.66670097 2.313154178 2.549300979 2.677097792 

Blank -2.205506427 -2.30354 -2.083383148 -1.964142171 -1.967350129 

Blank -0.166879734 -1.704576501 -0.166137639 -0.204185884 -0.130924539 

Silver 4.439483293 3.265841523 3.704114892 3.113549098 5.673063881 

Silver 16.92450961 14.55603627 17.11406347 19.22501415 19.50036326 

Silver 4.493506393 5.547146496 4.832551337 4.803240451 5.176993529 

Copper 2.645212149 2.685654003 2.733591194 3.018724783 2.747488003 

Copper 2.739419771 1.90406698 2.235742799 2.508458623 2.080063951 

Copper 5.657228085 5.344065858 5.129080968 6.292722576 6.142151747 

 
 
 

Table 11: Data for interaction metal ions with a solution of C16:0 FA and C16:1 FA 

in methanol 

Type of 

Aqueous 

Solution 

 

C16:0 FA 

Reduction in 

Concentration 

(%) 

C16:1 FA 

Reduction in 

Concentration 

(%) 

Difference in 

Reduction of 

Concentration 

(C16:0 FA - C16:1 

FA) % 

Blank 9.197795796 7.389985464 1.807810332 

Blank 13.43742672 15.39109371 -1.953666991 

Blank 4.817985773 6.690132309 -1.872146536 

Copper 33.40369512 23.58206862 9.821626497 

Copper 23.41892433 16.88187857 6.537045758 

Copper 23.7690661 15.69493718 8.074128914 

Silver 21.54745096 11.16895186 10.3784991 

Silver 11.37048703 2.135585922 9.234901107 

Silver 11.22795022 0.173993838 11.05395638 

Zinc 11.38661284 0.224986146 11.1616267 

Zinc 15.94358188 8.453321004 7.490260881 

Zinc 21.21465733 10.27484304 10.93981429 
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Table 12: Data for varying concentration of ZnSO4 and its effect on a mixture of 

C16:0 FA and C16:1 FA in methanol 

ZnSO4.7H2O (mg/ml) 

Reduction in 

concentration of C16:0 

FA (%) 

Reduction in 

concentration of 

C16:0 FA (%) 

Difference in 

reduction of 

Concentration 

(C16:0- 

C16:1) (%) 

5 11.38661 0.224986 11.16163 

5 15.94358 8.453321 7.490261 

5 21.21466 10.27484 10.93981 

10 39.60462 15.31672 24.28789 

10 36.02163 11.92388 24.09776 

10 37.95178 5.431238 32.52055 

20 42.97652 5.329255 37.64726 

20 49.50966 9.53268 39.97698 

20 50.39416 13.05956 37.33459 

30 61.19902 17.9022 43.29683 

30 54.40789 9.643262 44.76462 

30 56.05664 7.898705 48.15793 

40 42.23549197 7.045284951 35.19020702 

40 46.89498509 3.71679037 43.17819472 

40 49.78859984 9.424123288 40.36447655 

 


