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ABSTRACT

The resolution of traditional optical microscope and optical lithography is limited

by about half wavelength of the light source, which is well known as the diffraction

limit or Abbe limit. The resolution limit is due to the missing of high spatial fre-

quency components in the far-field. One way to achieve high resolution is to move

the detector into the near-field region where the evanescent wave can be collected.

However, these methods are surface-bound and usually very slow which have limited

applications. It has long been an interesting and important question about how to

overcome the diffraction limit in the far-field.

For optical lithography, a number of methods have been proposed to overcome

the diffraction limit such as multi-photon scanning, quantum entanglement, quantum

inspired process (e.g., dopperlon), and quantum dark state. However, these methods

either require multi-photon absorber, quantum entanglement, or multi-energy levels,

which restrict them from extending to higher resolution in practice. In this thesis,

we showed that sub-diffraction-limited resolution can be generated by the coherent

Rabi gradient. This method does not require multi-photon absorber or quantum

entanglement but just quantum coherence of the medium. Extension from lower

resolution to higher resolution is very straightforward where we just need to increase

the pulse intensity or pulse duration. We also proposed two atom lithography ex-

periments based on the Rabi gradient. The first one uses Rubidium Rydberg atom

and microwave where we showed that sub-micrometer line spacing is possible. The

second one uses Chromium atom and optical field where we showed that sub-10nm

line spacing is possible while the wavelength of the light is about 400nm.

For optical imaging, a number of methods have also been proposed to achieve
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super-resolution such as multi-photon microscope, stimulated-emission-depletion, struc-

tured illumination microscopy, centroid-based techniques and metamaterial-based

lens. Here, we will show a new method to achieve resolution beyond the diffraction

limit which we called it resonance fluorescence microscopy. Resonance fluorescence

has been proposed to localize a single atom with resolution beyond the diffraction

limit. The separation between two atoms can also be extracted from the resonance

fluorescence spectrum. To develop it as microscopy, we need to evaluate the reso-

nance fluorescence spectrum of multiple-atom system. We analytically solved the

general feature of the spectrum when the Rabi frequency is much larger than the

dipole-dipole interaction and showed how to extract the spatial information of the

atoms with resolution far beyond the diffraction limit. This method is entirely based

on far-field techniques and it does not require point-by-point scanning.
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1. INTRODUCTION

Optical microscope is one of the most important inventions in the development

of the biology. It is widely used to study the micro-structures of the biological sys-

tems. The advantages of optical microscope are its highly parallel and low damaging.

However, according to the Abbe’s diffraction limit [1, 2], the resolution of optical mi-

croscope is limited by about half wavelength of the light source. For example, if the

light source has a wavelength of about 500nm, the lateral resolution is about 200nm.

The features below 200nm can not be resolved.

In the past few decades, a number of schemes have been developed to improve

the resolution of the microscopy. To get a better resolution, people have to switch to

shorter wavelength (e.g., electron microscope and X-ray lithography [3, 4, 5] which

is usually invasive to the system. While confocal microscopy introduced optical

sectioning and can get a better resolution than the conventional ones, it did not

overcome the diffraction limit [6]. Near-field scanning microscopy can obtain optical

imaging with subdiffraction resolution [7, 8, 9, 10, 11]. These techniques are however

surface bound and are thus limited in terms of applications. Two-photon fluorescence

microscopy was first developed to achieve a higher resolution than classical one-

photon fluorescence microscopy [12, 13, 14, 15, 16]. Stimulated-emission-depletion

fluorescence microscopy (STEP) was then developed by Stefan W. Hell and Jan

Wichmann in 1994 [14] and the related concepts such as ground-state depletion

(GSD) are then developed [17, 18]. A number of experiments have also been carried

out [19, 20, 21, 22]. Some other techniques such as Spatially Structured Illumination

Microscopy (SSIM) [23, 24], Photoactivated Localization Microscopy (PALM) [25],

and Stochastic Optical Reconstruction Microscopy (STORM) [26] are also invented
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to achieve super resolution. Matematerial-based lens can collect the high spatial

frequency information and obtain a super-resolution image in the far field [27, 28, 29].

Coherent population trapping or Dark state has also been proposed to achieve super-

resolution [30, 31, 32, 33]. Resonance fluorescence has been proposed to localize a

single atom with resolution far-beyond the diffraction limit [34], and it has been

proposed to measure the separation between two atoms [35, 36, 37, 38]. In 2012, we

calculated the resonance fluorescence spectrum of multiple atoms system ans showed

that the spatial information of the atoms can be extracted from the spectrum with

resolution far beyond the diffraction limit. This method can become a new type of

super-resolution microscopy which is entirely based on far-field and does not require

point-by-point scanning [39].

The diffraction limit not only affects the optical microscope, but also plays an

important role in the optical lithography system. Optical lithography has been one of

the most important driving forces for the development of computer chips [40, 41, 42,

43, 44]. The performance of the computer chips has increased dramatically over the

past few decades, and meanwhile the size of the integrated circuits reduced roughly

following the famous Moore’s law. In fact, almost any electronic equipment that

uses processors or memory to work, such as cellular phone, digital photo cameras or

automobiles, is the beneficiary of the optical lithography.

About 20 years ago, the smallest features printed with optical lithography were

twice the wavelength used to print them. Today the industry is pressing toward the

need for much smaller resolution. However, there is a diffraction limit that restricts

the smallest patterns we can print to about half of the wavelength of light source

[1, 2, 45]. Therefore, to make the chip smaller, we should switch to shorter working

wavelength [46]. Nowadays, the working laser can operate in deep ultra-violet (DUV

190-250nm) [47, 48, 49]. Using the immersion lithography technology, the half-pitch
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nodes currently obtained with 193nm light are 45nm and 32nm [50]. New tricks such

as double exposure lithography (DEL) or double patterning lithography (DPL) are

possible to extend the resolution by a factor of 2 [51]. However, these technologies

are not possible without the development of new material with nonlinear response

to the exposure dose. While we switch to shorter wavelength, two major problem

arise [52]: First, the traditional lens and the air absorb the light significantly. We

need to invent new materials for the lens which is hard to come, and the system

should work in a vacuum system that can be very expensive. Second, the bandgap

of SiO2 is about 9ev. When the wavelength of the light is close to or smaller than

138nm, it will cause adverse charging in the SiO2 layer and destroy the substrate.

This motivates us to go beyond the Rayleigh limit and study ways to overcome the

diffraction limit.

In the past two decades, a number of schemes have been proposed to overcome

the diffraction limit in optical lithography. Two-photon excitation in laser scanning

photolithography can allow exposure of patterns not possible with conventional one-

photon direct writing [53]. Unfortunately, this scheme is based on point-by-point

scanning which has limited applications. In fact the ordinary two-photon absorption

can only achieve a sharper peak but not improve the spatial resolution in terms of

line spacing. In 1999, E. Yablonovitch and R. B. Vrijen illustrated how to suppress

the normal resolution term and get a supper resolution image based on two-photon

absorption [54]. The visibility of this scheme is reduced due to a constant back-

ground. Quantum NOON state is then shown to be able to eliminate the normal

resolution term without a constant background [55]. After that several quantum

inspired techniques are shown to achieve super-resolution without quantum entan-

glement [56, 57, 58]. In 2008, M. Kiffner et al came out with a novel idea that

subwavelength resolution can be achieved by preparing the system in a position de-
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pendent trapping state [32]. In 2010, we proposed that coherent Rabi gradient can

lead to sub-wavelength resolution [59, 60], which does not require quantum entan-

glement or multi-photon absorber but just quantum coherence of the medium. We

also proposed two atom lithography experiments based on Rabi gradient. One is

using Rubidium Rydberg atoms and microwave where we numerically showed that

micrometer resolution is possible [61]. The other is using Chromium atoms and op-

tical field and we showed that sub-10nm may be achieved without significant optical

Stern-Gerlach effect [62].

This thesis is organized as follows. In Chapter 2, we begin by introducing the

diffraction limit in an optical system and briefly introduce some previous methods

to overcome the diffraction limit in both optical imaging and optical lithography. In

Chapter 3, we explain our method to overcome the diffraction limit via coherent Rabi

oscillations. In chapter 4, we illustrate two atom lithography schemes to achieve

sub-diffraction-limited resolution. One is using Rydberg Rubidium atom and the

microwave. The other is using Chromium atom and the optical field. In Chapter 5,

we calculated the resonance fluorescent spectrum of multiple atoms and showed that

spatial information of the atoms can be extracted from the resonance fluorescence

spectrum with resolution well below the diffraction limit. Finally we present the

summary and the outlook.
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2. DIFFRACTION LIMIT AND PREVIOUS METHODS TO OVERCOME THE

DIFFRACTION LIMIT

Optical imaging system is widely used in both the microscopy and the modern

optical lithography. However, there is a resolution limit for traditional optical imag-

ing system, which is well known as diffraction limit. In this chapter, I will first briefly

introduce the traditional optical imaging and optical lithography system. Then I will

explain why there is a resolution limit. In the last two sections I will briefly introduce

some previous methods to overcome the diffraction limit in the optical imaging and

the optical lithography system.

2.1 Optical imaging and optical lithography system

2.1.1 Optical imaging and the diffraction limit

A typical optical imaging system is shown in Fig. 2.1(a) [63]. The light source

is focused onto the sample by a condenser lens. The scattering light or fluorescence

from the sample is collected by an objective lens and observed either by the eye or

a detector in the far field. This kind of microscope has been widely used in many

areas such as the biological or medical imaging.

According to the Rayleigh criterion, the minimum feature size that an optical

imaging system can resolve is approximately given by [1, 2, 45]:

∆r =
λ

2n sin θ
(2.1)

where λ is the wavelength of the illumination light and n sin θ is the numerical aper-

ture of the lens as seen from the sample (n is the refractive index of the medium

between the sample and the objective lens, θ is the half-angle of the maximum cone
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of light that can enter the objective lens). Use oil as a medium with refractive index

about 1.5, the numerical aperture can be about 1.4. The focal spot of 550nm light is

shown in Fig. 2.1(b). We can see that the image is not a perfect point but blurred

into a finite-sized spot [64]. The lateral resolution is about 220nm while the vertical

resolution is about 520nm. The intensity distribution of the image of a point object

is called the point spread function (PSF). The size of PSF determines the resolution

of the microscope. Two points closer than the full width at half-maximum (FWHM)

of PSF is difficult to resolve because their images overlap substantially.

2.1.2 Optical lithography

Mask-based photolithography is commonly used to print the circuit image onto

the substrate in the industry nowadays [65, 66]. The typical setup is shown in

Fig. 2.2(a). The light projects the image of the pattern on the mask onto the

photoresist. Some places are bright while others are dark in the photoresist. The

photoresist changes its solubility at the place where it is shined by the light. There

are two types of photoresist: positive and negative (see Fig. 2.2(b)). In a positive-

tone photoresist, areas of the material that are exposed to light are removed after

development. While in a negative-tone photoresist, the areas exposed by the light

remain behind. After development, the pattern is printed onto the photoresist. The

SiO2 layer is then etched at the place without the protection of the photoresist. The

smallest feature we can print is also bounded by the diffraction limit.

2.2 Why diffraction limit

The diffraction limit can be explained as the generation of standing wave inter-

ference patterns by the nearly counter-propagating beams (Fig. 2.3) [67]. The lens

can be divided into many sub-apertures and each sub-aperture pair of the lens can

produce a standing wave pattern with different spatial frequencies. The interference
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Objective lens 
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(b) 

Figure 2.1: (a) Typical optical imaging system. (b) The PSF of a common oil
immersion objective with NA = 1.40, showing the focal spot of 550 nm light in
a medium with refractive index n = 1.515. By courtesy of (Huang et al., 2009).
Copyright 2009 by the Annual Reviews.
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(a) (b) 

Figure 2.2: (a) Typical setup for mask-based photolithography. (b) Etching on
positive and negative photoresist. Figure reprinted with permission from (Al-amri
et al., 2012). Copyright 2012 by the Elsevier.

pattern between these standing wave is the image. The image of a point source is

shown in Fig. 2.3(e) which is a Airy disk. The size of the Airy disk is determined

by the largest spatial frequency component which is the standing wave comes from

the outermost sub-aperture pair. The period of that standing wave intensity pattern

is λ0/2n sin θ which gives the diffraction limit.

The diffraction limit can also be explained by loss of the high spatial frequencies

which is the evanescent wave [68, 65, 69]. According to the Fourier optics, the electric

field on the imaging plane is the summation of varies frequencies components emitted

from the object plane:

ε(x, y, z) =
∑

σ

∫

kx

∫

ky

εσ(kx, ky)e
ikxx+ikyy+ikzzdkxdky (2.2)
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Figure 2.3: The origin of the optical diffraction limit can be viewed as the generation
of standing wave interference patterns by nearly counter-propagating beams. Figure
reprinted with permission from (Hemmer et al., 2012). Copyright 2012 by the IOP
Publishing. Reproduced by permission of IOP Publishing. All rights reserved.
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where σ is the polarization, z is the propagation direction and k2x + k2y + k2z =

n2ω2/c2 ( n is the refractive index of the medium, ω is the angular frequency of

the light and c is the speed of the light). For the high spatial frequency such that

k2x + k2y > n2ω2/c2, kz is pure imaginary which means that this component decays

in the propagation direction. This corresponds to the evanescent wave and such

waves can not reach the imaging plane in the far field. The highest spatial frequency

that can reach the imaging plane is k|| =
√

k2x + k2y = nω/c, which corresponds to a

resolution of 2π/k|| = 2πc/nω [70]. This corresponds to the maximal resolution for

the field to be equal to λ/n. The corresponding maximal resolution for the intensity is

therefore equal to λ/2n. Considering the aperture of the lens, the maximal transverse

wavevector that can reach the image plane is k‖ = k sin θ = nω sin θ/c, and thus the

maximum resolution is λ/2nsinθ which is the diffraction limit.

In the following two sections, I will introduce some proposed methods to overcome

the diffraction limit in the optical imaging system and the optical lithography system.

2.3 Sub-diffraction-limited optical imaging

In this section, I will briefly introduce two classes of methods to overcome the

diffraction limit in optical microscopy. The first class is trying to reduce the effective

PSF, while the other class is trying to recover the high spatial frequency evanescent

wave in the far field.

2.3.1 Reducing the effective PSF

The light intensity distribution I(x, y) in the image plane can be mathematically

described as the product of the light intensity distribution O(u, v) in the object plane

and the PSF [71]:

I(x, y) =

∫ ∫

O(u, v)PSF (u− x/M, v − y/M)dudv (2.3)
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whereM is the magnification. In diffraction-limited lens system, PSF is an Airy disk

function which can be well approximated by a Gaussian function. If we can somehow

reduce the effective PSF, we can in principle get an image with better resolution than

the diffraction-limited image. In the following, I will briefly introduce several popular

methods to reduce the effective PSF.

2.3.1.1 Two-photon and multi-photon microscopy

The fist method to reduce the effective PSF is using multi-photon excitation, e.g.,

two-photon excitation (Fig. 2.4(a)). The concept of two-photon excitation was first

described by Goeppert-Mayer in her doctoral dissertation [72], and first observed in

cesium vapor using laser excitation by Abella [73]. Two-photon excitation is found

to be able to improve the resolution in the fluorescence microscopy [12, 74] and

increase the data capacity of the storage [16]. Such a process depends quadratically

on the photon intensity I of the incident beam [72, 75], i.e., the excitation rate, or the

number of photon being absorbed per unit time, W = σI2, where σ is the absorption

cross section, typically of the order of 10−58m4s/photon. The quadratic dependence

of the intensity can reduce the effective PSF (Fig. 2.4(b)) and thus improves the

resolution.

However, the wavelength used for two-photon excitation is usually longer than

one-photon excitation. The resolution of two-photon microscope does not improve a

lot comparing with single-photon confocal microscope. One advantage of two-photon

microscopy is that it can achieve good vertical resolution without pinhole and it can

be used as optical sectioning as confocal microscope. The other advantage is that

two-photon excitation can penetrate deeper than single-photon excitation [15].
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Figure 2.4: (a) Two-photon excitation microscopy. (b) PSF of single-photon excita-
tion and two-photon excitation.

2.3.1.2 STED and related techniques

Stimulated emission depletion (STED) is proposed by Hell et. al to overcome

the diffraction limit [14]. The STED method is shown in Fig. 2.5[14, 64]. All the

molecules are first pumped into the excited state. Another laser beam with donut

shape is then applied to deplete all the molecule from the excited state to the ground

state except the molecules around the center where the laser intensity is very weak.

In this way, we can largely reduce the effective PSF (Fig. 2.5(c)) and achieve super-

resolution.

STED has been experimentally demonstrated to achieve super-resolution [21, 19,

22]. The resolution is given by [17]

∆r ≈ λ

2n sin θ
√

1 + Imax/Is
(2.4)

where Imax is the maximum intensity of the donut beam and Is is the saturation

intensity. We can see that the resolution is enhanced by a factor of
√

1 + Imax/Is. If

we increase the intensity of the depletion beam, we can get resolution much better
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Figure 2.5: The principle of STED microscopy. (a) The process of stimulated emis-
sion. (b) Schematic setup of a STED microscope. The excitation laser and STED
laser are combined and focused into the sample through the objective. A phase mask
is placed in the light path of the STED laser to create a donut pattern at the ob-
jective focal point. (c) A donut-shaped STED laser is applied with the zero point
overlapped with the maximum of the excitation laser focus. With saturated deple-
tion, fluorescence from regions except the region around the zero point is suppressed,
leading to a decreased size of the effective PSF. By courtesy of (Huang et al., 2009).
Copyright 2009 by the Annual Reviews.
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Figure 2.6: Principle of PALM and Storm.

than the diffraction limit. However, this method is based on point-by-point scanning

which is very slow.

2.3.1.3 Centroid-based techniques

The center of the PSF is the most probable position of the molecule and the

precision is given by [64]

∆r ≈ ∆√
N

(2.5)

where ∆ is the full width at half-maximum of the PSF andN is the number of photons

detected. The larger the number of photon we detect, the higher the precision of

the localization. However, if there are more than one molecule within a diffraction-

limited spot, their images merger together and we can not identify them individually.

Several methods have been proposed to solve this problem such as PALM [25] and

STORM [26]. These methods separate the molecules within one diffraction-limited

spot in the time domain. They proposed to use some kind of photoactivable or

photoswitchable molecules to mark the target molecules. PALM and STORM share
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very similar principle and I will briefly explain how PALM achieves super-resolution

(Fig. 2.6) [25]. Initially all the molecules are in the inactive state. First, a weak

laser with special frequency is applied to randomly activate a subset of molecules

into the active state. Since the excitation laser is sparse and weak, the probability

that more than one molecule in a diffraction-limited spot are activated is very small.

We can safely assume that only one molecule within one diffraction-limited spot is

in the active state. Then another color of laser is applied to probe the molecules in

the active state through the fluorescence of these molecules. Since we have only one

molecule in one diffraction-limited spot, we can localize the position of the molecule

by fitting the center of the PSF and its precision depends on the number of photon we

detect. Usually, hundreds of photons are detected because the resolution increases

very slow when N is large. After localizing the activated molecules, we need to

bleach the molecules by continuously shine the excitation laser. Repeating the above

procedures and summing the images up we can obtain a whole super-resolution

image.

This kind of stochastic method does not require point-by-point scanning and the

intensity required is also not too strong. However, it does not speed up too much

comparing with point-by-point scanning because hundreds of photons needs to be

detected to determine the positions of the molecules and bleaching the molecule also

takes some times.

2.3.2 Recovering the evanescent wave

Another class of method to achieve super-resolution is to recover the evanescent

wave in the far field. In the following, I will briefly introduce two ways to rescue the

evanescent wave. One is called structured illumination microscopy (SIM) [23], the

other is called matematerial-based lens [27, 28, 29].
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Figure 2.7: Principle of SIM. (a-c) Moiré fringe. (d) The region within the circle is
observable in the far field. (e) The observable region can be extended by frequency
mixing. (f) Two dimensional imaging with resolution beyond the diffraction limit
can be achieved by repeating the same procedure in different direction. By courtesy
of (Gustafsson, 2005). Copyright(2005) National Academy of Science, U.S.A.

2.3.2.1 Structured illumination microscopy

The idea of SIM comes from the well-known Moiré fringe (Fig. 2.7 (a-c)). The

Moiré fringe are produced by frequency mixing whenever two signals are multiplied.

The coarser structure in the Moiré fringe which consists of the information of high

spatial frequency component can be detected in the far field. For example, Fig.

2.7(a) is the unknown structure we would like to image. We can illuminate a laser

standing wave with known spatial frequency to detect the structure. Due to the

frequency mixing, the observable spatial frequency in the far-field can be extended
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to k0 + ki where k0 is the largest wave vector observable in the diffraction-limited

system and ki is the wave vector corresponding to the illumination pattern (Fig.

2.7(d,e)). In principle, ki can reach k0 in the linear regime and the observable region

in the momentum space can be expanded by a factor of 2. In the real space, the

resolution can be half of the resolution limit. To reconstruct full two dimensional

pattern, we need to repeat this procedure from different directions Fig. 2.7(f).

To achieve better resolution, higher order harmonic frequencies should be excited.

One way to excite higher order harmonic frequency is to increase the illumination

intensity and saturate the excitation. When the excitation is saturated, the absorp-

tion rate nonlinearly depends on the illumination intensity and the observable region

in the momentum space can be extended beyond a factor of 2. This method is called

saturated structured illumination microscopy (SSIM) [24].

The advantage of this method is that it is essentially a parallel method and it

does not require point-by-point scanning. However, it also requires a larger number

of measurements to determine a two dimensional pattern and the intensity required

for SSIM is very high which is not suitable for living cells.

2.3.2.2 Matematerial-based lens

From the maxwell equations, we can see that if both the permittivity and the

permeability are negative, the refractive index of the material can be negative which

is called negative refractive material or matematerial [27]. For negative refractive

material, strange phenomena can happen. For example, the refracted beam is at the

same side of the normal plane as the incident beam and the evanescent wave can

propagate without decay in the matematerial. Due to the first property, a flat slab

of matematerial can become a lens which is called superlens [27, 70]. Comparing

with the traditional lens, the flat matematerial lens have not spherical aberration.
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Figure 2.8: (a) Hyperlens made by cylindrical multilayer matematerial. (b) Wave
propagation along the radial direction gradually compresses its tangential wave-
vectors, resulting in a magnified image at the outer boundary. The magnified image,
once larger than the diffraction limit, will be resolved in the far field.. (c) Ex-
perimental demonstration of hyperlens where sub-diffraction-limited pattern can be
magnified and detected in the far field. Figure (a) and (b) reprinted by permission
from Macmillan Publishers Ltd: [Nature Communications] ([29]), copyright (2012).
Figure (c) reprinted with permission from (Liu et al., 2007). Copyright 2007 by the
AAAS.

However, this kind of lens can only achieve high resolution in the near field and it

can not magnify the image which can be seen in the far field.

In 2003, Pendry proposed to use cylindrical multilayer matematerial as a lens

(Fig. 2.8(a)) [76]. For this geometry, the dispersion relation is Hyperbolic which is

given by

k2r
ǫθ

+
k2θ
ǫr

= k20 (2.6)

where ǫθ > 0 and ǫr < 0. This kind of lens is called hyperlens. In the hyperlens,

the evanescent wave can only propagate along the longitudinal direction but not in

the tangential direction. Thus the wave is compress in the tangential direction and
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we can separate the sub-diffraction-limited feature at the end of the hyperlens (Fig.

2.8(b)) [77]. The image at the end of the hyperlens has been magnified, which can

been seen in the far field. Experimental demonstration of the hyperlens is shown in

Fig. 2.8(c) [77, 28].

This method uses optical parallelism which is fast, but it is surface bounded and

the hyperlens need to contact the sample which may contaminate or damage the

sample.

2.4 Optical lithography beyond the diffraction limit

Optical lithography uses optical imaging system to print the circuit image. Some

methods in super-resolution imaging can also be modified to improve the pattern res-

olution in the optical lithography. However, there are also some differences between

them. I would like to briefly introduce several methods which have been proposed

to overcome the diffraction limit in the optical lithography.

2.4.1 Multi-photon lithography

Multi-photon has been shown to be able to overcome the diffraction limit in

the optical imaging. Similar idea has also been proposed to improve the resolution

in photolithography [53, 78]. By scanning the focal volume in a programmed 3D

pattern through a thick positive photoresist, it is possible to produce patterns with

high aspect ratio trenches and multilayered undercut. However, the point-by-point

scanning is time-consuming which limits its applications.

Can we print a super-resolution image by two-photon absorption in one step? To

see the answer, let us look at the two-photon process induced by a standing wave.

The excitation rate is proportional to square of the standing wave intensity which is

given by

(1 + cos 2κx)2 =
3

2
+ 2 cos 2κx+ cos 4κx (2.7)
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Figure 2.9: The fringe pattern produced by two-photon excitation of a photoresist,
in which the incident rays on opposite sides of the lens are separated into distinct
frequency grouping. Figure reprinted with permission from (Yablonovitch and Vrijen,
1999). Copyright 1999 by SPIE.

where κ = k cos θ (k is the wavevector and θ is the incident angle). Comparing the

fringe pattern with the one-photon process, we see that the pattern of the two-photon

absorption is a mixture of a normal-resolution image represented by cos 2κx term

and a supper-resolution image represented by cos 4κx. Indeed, cos 4κx, represents a

doubling of the spatial resolution over the one photon process. However, the cos 2κx

term erases this super-resolution.

The second term in Eq. 2.7 comes from the absorption of photons from different

paths, i.e, one photon from the left and the other photon from the right. If we can

eliminate this term, we can obtain a super-resolution pattern. Yablonovitch and

Vrijen (1999) showed that the normal resolution term can be suppressed, using a

20



classical frequency modulation scheme (Fig. 2.9), where simultaneous absorption of

a pair of photons is accompanied by a twofold spatial-resolution enhancement [54].

The incident rays on one edge of the lens have frequency ω0, while rays on the other

edge consist of two frequencies (i.e., ω1 = ω0 + δ, ω2 = ω0 − δ). Fringes resulting

from the interference of rays from opposite edges oscillate rapidly at the different

frequency δ and the normal-resolution image is washed away, forming a constant

background.

The constant background may be eliminated provided that the atomic transition

at 2h̄ω0 is sufficiently sharp. In this case, the background two-photon transitions of

the frequency combinations ω0 + ω1, ω0 + ω2, 2ω1 and 2ω2 do not occur. The back-

ground should vanish and leave only the double frequency component. However,

multi-photon absorption here requires very high laser intensity which may cause

sample damage and it is not easy to generalize to higher order multi-photon absorp-

tion.

2.4.2 Quantum NOON state

Quantum NOON state was proposed to effectively eliminate the normal resolution

term and achieve sub-diffraction-limited pattern [55]. The system is schematically

described in Fig. 2.10, where two photon beams are incident on a symmetric, loss-less

beam splitter BS at ports A and B. The output beams get reflected off by a mirror

pair into the substrate. The two beams get converged on the imaging plane. The

photoresist consists of two-photon absorber.

The basic principle of this scheme can be explained as follows. When the input

state is |Ψ11〉 = |1A1B〉, i.e., one photon from the upper arm and the other from

the lower arm (Fig. 2.10). Interference effect upon passage through a symmetric,

lossless beam splitter can cause the product state |1A1B〉 to become the quantum
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Figure 2.10: Interferometric lithography setup where two photon beams hitting a
beam splitter at ports A and B, and then get reflected by two mirrors. The two
photon beams get interfere on the substrate. Figure reprinted with permission from
(Boto et al., 2000). Copyright 2000 by American Physical Society.
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NOON state (|2C0D〉 + |0C2D〉)/
√
2. Hence, the two photons emerge either both in

the upper arm C or both in the lower arm D, but never one photon in each arm.

Absorption of one photon from upper path and one photon from lower path never

happens. The normal resolution term is therefore completely washed away and leaves

only the super-resolution term. The photoresist absorbed the two photon together

and the deposition rate is then proportional to

∣

∣e2ikx + e−2ikx
∣

∣

2
= 2(1 + cos 4kx) (2.8)

which gives rise to a λ/4 resolution

This result can be generalized if we can somehow prepare the light source in the

so-called NOON state, i.e., |Ψ(N)〉 = 1√
2
(|N〉C |0〉D + |0〉C |N〉D). The deposition

rate on an N -photon absorbing substrate is then prportional to ∆N = 1+cos 2Nkx,

with resolution λ0/2N .

However, the generation of pure NOON state is very challenging. In addition,

this method for subwavelength lithography suffers from some other serious problems

as well [30]. On the one hand, one needs to produce weak light field to contain

only two photons per mode, and at the same time, use this particular field to excite

two-photon absorption which requires a strong field. When one photon is localized,

the momentum of the other photon becomes completely delocalized, and thus this

photon can end up anywhere [79]. Hence, the general usefulness of this method is

quite limited.

2.4.3 Quantum inspired technique: dopperlon

While quantum entanglement can help to suppress the normal resolution term,

people showed that this quantum effect can also be mimicked by the classical light.

One example is Dopperlon which is proposed by Hemmer et al. [57]. The basic idea of
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this scheme is shown in Fig. 2.11(a). Two counter-propagating plane waves consisting

of signal frequencies ν± interfere on a photosensitive substrate. The driving fields

ω± assist a directional resonance for pairs of signal photons, i.e.,

ωab = 2ν± − ω±. (2.9)

If the atomic linewidth is narrow, the ± channels will realize distinct resonances

[80]. The atoms will either absorb two photons from the left beam or two photons

from the right beam, but never one photon from each beam, which is similar to the

path-number entanglement in the quantum field lithography. As a consequence, the

one-photon interference term will be suppressed and keep only the pure two-photon

interference term which has a resolution half of the diffraction limit.

This method can also be generalized to higher order multi-photon resonance.

The schematics for the system are given in Fig. 2.11(b). Two bunches of signal

fields counter-propagate along the substrate (θ = π/2) and a driving field is inci-

dent normally. Either bunch of fields together with the driving field can excite the

multiphoton transition from level |b〉 to |a〉. The photons from the signal fields of fre-

quencies νn± are absorbed and the photons of the driving field with frequency ω0 are

emitted. The N signal photons satisfy a frequency summation resonance condition

[57]
N
∑

n=1

νn± = ωab + (N − 1)ω0 = Nν0, (2.10)

such that the N -photon wavevector, Nν0/c = 2π/(λ0/N) is the same for both

bunches. We further require that any interchange of photons between bunches,

νn+ ↔ νn′−, results in a loss of resonance. Therefore only two resonant processes

make up the interference.
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(a) 

(b) 

Figure 2.11: (a) Subwavelength interference with classical light. Two counter-
propagating plane waves consisting of signal frequencies ν± interfere on a photo-
sensitive substrate. The drive fields ω± assist a directional resonance for pairs of
signal photons. (b) Left: The scheme of interferometric lithography. Two bunches
of signal fields counterpropagate (θ = π/2) and the drive field incidents normally.
Right: The level structure of the substrate atom. Either bunch of fields together
with the drive field satisfies the multiphoton resonance. ∆n± is the detuning of in-
termediate level cn. Figure reprinted with permission from (Hemmer et al., 2006 and
Sun et al., 2007). Copyright 2006, 2007 by the American Physical Society.
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Under the conditions of multiphoton resonance, the leading contribution to the

multiphoton excitation rate comes from the two resonant processes, i.e.,

R(2N−1)(x, t) ∝ d

dt

∣

∣

∣
ei

Nν0x

c r
(2N−1)
+ (t) + e−i

Nν0x

c r
(2N−1)
− (t)

∣

∣

∣

2

. (2.11)

If the one-photon detunings are large and ESn± are suitably chosen, the excitation

amplitudes r±(t) can be made approximately equal with a phase difference. Factoring

them out we find that the remaining expression looks like the interference of single

photon absorption with k = Nν0/c. So the exposure pattern are fringes with distance

λ0/2N .

This method can eliminate the normal resolution term without quantum entan-

glement. However, the visibility of this method is reduced and it is also not easy to

generalize to higher resolution in practice due to the complicated process.

2.4.4 Coherent population trapping

In 2008, Kiffner et al. presented an alternative scheme for resonant subwavelength

lithography without the requirement of an N -photon absorption process [32]. This

scheme relied on the phenomenon of coherent population trapping (CPT) [81, 82].

Atoms are prepared in a position dependent state and the sub-wavelength spatial

distribution comes from the phase shifted standing wave patterns in a multilevel

resonant atom-field system.

It is known that CPT occurs in a three-level Λ type system as shown in Fig. 2.12(a).

The two ground states are represented by |b1〉 and |b2〉, which are resonantly cou-

pled to the excited state |a1〉 by the laser fields with Rabi frequencies R1 and S1,

respectively. In such configuration, we can get the dark state once the system is

optically pumped into a coherent superposition of the two ground states which is

26



then decoupled from the applied light fields. The dark state is given by

|DΛ〉 = (S1|b1〉 − R1|b2〉)/
√

|S1|2 + |R1|2 . (2.12)

If the two laser fields are standing waves and they are phase shifted by π/2, i.e.,

R1 = Ω0 cos(k0z), S1 = Ω0 sin(k0z). (2.13)

The populations of |b1〉 and |b2〉 in |DΛ〉 are then given by

|〈b1|DΛ〉|2 = |S1|2
|R1|2+|S1|2 = [1− cos(2k0z)]/2, (2.14)

|〈b2|DΛ〉|2 = |R1|2
|R1|2+|S1|2 = [1 + cos(2k0z)]/2. (2.15)

The two ground states populations show the same spatial modulation as the inten-

sity profiles of the standing waves corresponding to S1 and R1, respectively. It is

important to note that the populations do not depend on the maximal Rabi fre-

quency |Ω0|, but rather on the ratio of the Rabi frequencies R1 and S1. Here the

atomic population in (say level |b1〉) is modulated with spatial frequency 2k0 giving

a resolution of λ0/2 which gives the same result as the Reyleigh limit.

The above result for a single Λ type three-level system can be generalized to 2×Λ

or so-called M system, see Fig. 2.12(b). The dark state of this system is given by

[83]

|D2×Λ〉 = (S1S2|b1〉 − R1S2|b2〉+R1R2|b3〉)/
√

C2 , (2.16)

where S1,2 and R1,2 are the driving fields, and C2 is the normalization constant. The

probability to find the system in state |b1〉 is proportional to |S1S2|2. This involves

the product of the fields S1 and S2. If both S1 and S2 have a sinusoidal oscillation
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Figure 2.12: Considered level schemes of the substrate. The ground states |bn〉 and
|bn+1〉 are resonantly coupled to the excited state |an〉 via Rabi frequencies ΩRn

and
ΩSn

, respectively. Each excited state |an〉 decays to the ground states |bn〉 and |bn+1〉
by spontaneous emission. (a) Single Λ system. In (b), a sequence of two Λ systems
is displayed. (c) General level scheme with N excited and N + 1 ground states as
a sequence of N Λ-type systems. Figure reprinted with permission from (Kiffner et
al., 2008). Copyright 2008 by the American Physical Society.
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behavior with respect to position, i.e. S1 ∼ sin(k0z) and S2 ∼ sin(k0z+φ), we obtain

|S1S2|2 ∼ [cos(φ)− cos(2k0z + φ)]2 (2.17)

If we choose the relative phase shift of the two standing waves as φ = π/2, we have:

|S1S2|2 ∼ [1− cos(4k0z)]/2. (2.18)

The population modulations with wave number 4k0 are obtained, while the contri-

bution with wave number 2k0 has been canceled. The spatial resolution is half of the

diffraction limit!

This scheme can be also generalized to an N × Λ structure (Fig. 2.12(c)), which

can in principle give N times better resolution than the diffraction limit. For details,

please refer to Ref. [32]. The advantage of this method is that it can work at

lower laser intensities. There is no need for nonlinear transition amplitudes between

different states but rather one exploits the nonlinear dependence of the ground state

population probabilities on the Rabi frequencies, which only depends on relative

field strengths. However, this scheme needs very complicated atomic structure and

multiple beams, which is not easy to be realized in practice.
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3. OPTICAL LITHOGRAPHY BEYOND THE DIFFRACTION LIMIT VIA

SPATIAL RABI OSCILLATIONS∗

In this chapter, I will present our method to achieve sub-diffraction-limited res-

olution in the optical lithography. Our method is close to the traditional optical

lithography but adding a critical step before dissociating the chemical bound of the

photoresist. The subwavelength pattern is achieved by inducing the coherent Rabi

oscillations between the ground state and one intermediate state. The proposed

method does not require multiphoton absorption and quantum entanglement of pho-

tons. Extension from lower resolution to higher resolution is very straightforward

where we just need to increase the laser intensity or the pulse duration.

3.1 Coherent Rabi oscillations between two atomic levels

3.1.1 Rabi oscillations without dissipation

When a two-level atom or molecule interacts with a laser light, the Hamiltonian

can be written as [82]

H = H0 +HI = h̄∆|a〉〈a|+ h̄ΩR(t)

2
(|a〉〈b|+ |b〉〈a|) (3.1)

where ∆ is the detuning between the two energy levels and frequency of the light,

ΩR(t) = µE(t)/h̄ is the Rabi frequency.

According to the Schrödinger equation, the dynamics of the system are govern

∗Reprinted with permission from Quantum Lithography beyond the Diffraction Limit via Rabi
Oscillations by Z. Liao and M. Al-amri and M. S. Zubairy, 2010. Phys. Rev. Lett., vol. 105, pp.
183601, Copyright [2010] by the American Physical Society.

30



  

  
  

Figure 3.1: Rabi oscillations for (a) square pulse: Blue dashed line is the pulse shape,
red solid line is the probability in the excited state in the resonant case, while the
black dotted line is the probability in the excited state when ∆ = ΩR. (b) Gaussian
pulse: Blue dashed line is the pulse shape, red solid line is the probability in the
excited state in the resonant case.

by

i
d

dt







Ca(t)

Cb(t)






=







∆ ΩR(t)

ΩR(t) 0













Ca(t)

Cb(t)







where Ca(t)(Cb(t)) is the probability amplitude in the excited (ground) state.

For the most general situation, there is not known analytical solution for the

above coupled equations. However, there are special cases that we can analytical

solve the coupled equations, e.g.,the Rabi frequency ΩR is independent of time or

the resonant case ∆ = 0. For the first case, the solution is given by

Ca(t) = −iΩR

Ω
sin(

Ωt

2
) (3.2)

where Ω =
√

Ω2
R +∆2 is the effective Rabi frequency. One example is shown in

Fig. 3.1(a) where we can see the population in the excited state oscillates with time.

When there is detuning, the period of the oscillations becomes smaller while the

amplitude of the oscillations decreases. For the resonant case, the solution can be
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obtained according to the pulse area theorem (Appendix A)

Ca(t) =
1− cos θ(t)

2
(3.3)

where we assume that initially the atom is in the ground state and θ(t) =
∫ t

−∞ ΩR(t
′
)dt

′

is the pulse area. One example is shown in Fig. 3.1(b).

3.1.2 Rabi oscillations with dissipation

For real system, dissipation can not be avoided. Here I will mainly discuss the

effects of two kinds of dissipation, i.e., decay and dephasing. The dynamics of a

dissipation system can be described by the Liouville master equation

ρ̇ = − i

h̄
[H, ρ]− Lρ (3.4)

where Lρ is the relaxation of the system which is given by

Lρ =







1
T1

ρaa
1
T2

ρab

1
T2

ρba − 1
T1

ρaa







where T1 is the population decay time while T2 is the dephasing time.

To see the effects of the decay and dephasing process to the Rabi oscillations,

we can numerically solve the dynamics of the system. For simplicity, let us assume

that the driving field is continuous. The numerical results are shown in Fig. 3.2.

The amplitude of the population oscillation decreases when the system has decay or

dephasing (Fig. 3.2(a, b)). Thus, the decay time T1 and dephasing time T2 are both

important for the coherent Rabi oscillation process.
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Figure 3.2: Rabi oscillations with decay (a) and with pure dephasing (b).

(a) (b) 

  

Figure 3.3: Comparison between the traditional optical lithography (a) and our
lithography scheme (b).

3.2 Optical lithography beyond the diffraction limit via coherent Rabi gradient

In the traditional optical lithography, a laser beam is applied to dissociate the

photoresist molecules directly (Fig. 3.3(a)). In our scheme, we sequentially turn on

two laser pulse with two different frequencies instead of only one beam of laser and

three energy levels are involved in this process (Fig. 3.3(b)) [59]. The first laser pulse

with gradient field strength in the space is applied to induce multiple Rabi oscillations

between the ground state |b〉 and one intermediate excited state |a〉. After that,
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the second laser pulse is applied to dissociates the molecules in the excited states but

not those in the ground state. The dissociation of the molecules cuts the chemical

bond and changes the chemical properties of the photresist. We can then use pho-

toresist developer to wash out the dissociated molecules or undissociated molecules

[84, 85]. The resulting patterns of the photoresist should then depend on the spatial

distribution of the excited state induced by the first laser pulse. If the spatial mod-

ulation of the probability to find the molecules at excited state has subwavelength

pattern, then the resulting patterns of the photoresist is also subwavelength.

3.2.1 Achieving the sub-wavelength pattern

The first step is critical in order to achieve the sub-wavelength pattern. We illus-

trate it in more details and show how to prepare the molecules in a sub-wavelength

position dependent state. Two beams of light from opposite directions are incident

on the photoresist and they form a standing wave on the surface of the photoresist.

The standing light field interacts with the molecules in the photoresist, for which we

consider two kinds of light sources: Continuous wave and a Gaussian pulse.

3.2.1.1 Continuous wave analysis

For simplicity, we first consider the continuous wave with frequency resonant to

the two atomic levels. The standing electric field on the surface is

E(r, t) = E0 cos(ν1t)e
ik·r + E0 cos(ν1t)e

−i(k·r+2φ)

= 2E0e
−iφ cos(kx cos θ + φ) cos(ν1t) (3.5)

in which E0 is the field amplitude, ν1 is the frequency, θ is the angle between the

incident light and the surface, and 2φ is the phase difference of the two beams.

Considering the dipole interaction between the electric field and the atoms, and for
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Figure 3.4: Subwavelength patterns generated by fields of different ΩRT . (a) ΩRT =
π; (b) ΩRT = 2π; (c) ΩRT = 3π; (d) ΩRT = 4π. The solid line is when the decay is
not included whereas the blue dashed line shows the results with γ = ωab/1000.

the resonant case where ν1 = ω, the probability for the atoms to be in the excited

state |a〉 at time T is given by

Pa(x, T ) =
1− cos [ΩRT cos(kx cos θ + φ)]

2
, (3.6)

where we assume that the atoms are initially in the ground state, ΩR = (2|℘ba|E0)/h̄

is the Rabi frequency at the peak electric intensity, and |℘ba| is the amplitude of the

electric dipole moment. From this equation, we can see that the probability in the

excited state is spatially dependent and the shape depends on the field area ΩRT .

We now look at the spatial pattern in more details. For simplicity, we choose

θ = 0 and φ = 0 which does not change the overall properties. In this case, we have

Pa(x, T ) = (1 − cos[ΩRT cos(kx)])/2 which is a double cosine function and we can
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calculate the positions of the valleys and the peaks. First, we note that the usual

Rayleigh limit is obtained in the linear approximation corresponding to ΩRT << 1.

In this region Pa(x, T ) ≈ α(1+ cos(2kx)) with α = (ΩRT )
2/8 leading to a resolution

of λ/2. Next we look at the situation where we are not restricted by the linear

approximation and multiple Rabi oscillations are allowed during the interaction time

T .

When cos(kx) = 2mπ/ΩRT , the probability Pa(x, T ) is 0 which corresponds

to the valleys, and when cos(kx) = (2m + 1)π/ΩRT , the probability is 1 which

corresponds to the peaks, where m = 0,±1,±2, · · · . It is readily seen that when

ΩRT = π, there are two valleys (x = λ/4, 3λ/4) and three peaks (x = 0, λ/2, λ)

within one wavelength Fig. 3.4(a), which gives the same result as the classical in-

terference lithography. However, when ΩRT ≥ 2π, more valleys and peaks appear

and the classical limitation is broken. For example, when ΩRT = 2π, there are five

valleys (x = 0, λ/4, λ/2, 3λ/4, λ) and four peaks (x = λ/6, λ/3, 2λ/3, 5λ/6) within

one wavelength Fig. 3.4(b). When ΩRT becomes larger, the pattern becomes smaller

Fig. 3.4(c-d). Therefore, it is in principle possible to achieve arbitrarily smaller sub-

wavelength patterns by using stronger field or longer interaction time to induce more

Rabi oscillations.

The physics behind the sub-wavelength pattern is the nonlinearity associated

with the Rabi oscillations. For example, when ΩRT = π, one photon is absorbed

and we are about in the linear regime. The corresponding resolution is about the

same as that obtained in the classical lithography Fig. 3.4(a). When ΩRt = 2π,

one photon is absorbed and one photon is emitted, leading to a full Rabi cycle. It

is coherent two-photon process. The resulting resolution is half of the one-photon

process Fig. 3.4(b). When more and more photons are involved, we can get higher

and higher resolution.
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In order to see clearly the advantage of the present method over any previous

methods for super-resolution optical lithography, we refer to Eq. 3.6. In the case

when φ = π/2, and kx cos θ << 1, Eq. 3.6 reduces to

Pa =
1− cos(2keffx)

2
, (3.7)

where keff = ΩRTk cos θ and the effective period is given by

λeff = λ/(ΩRT cos θ). (3.8)

A large number of Rabi oscillations in the interaction time can lead to an arbitrarily

small effective wavelength. Therefore a novel feature of our scheme is that it should

be possible to generate a nano-scale pattern using a microwave field. For example, if

two sublevels of a system have energy difference of about 3 GHz and the coherence

time is of the order of 1 s, we can use a microwave pulse with wavelength 10 cm

and pulse duration 0.1 s to induce the Rabi oscillations between these two levels. If

ΩR = 0.1 GHz, the resolution could be of the order 10 nm.

3.2.1.2 Gaussian pulse analysis

So far we considered the light field to be a continuous wave. However, in practical

applications we usually use laser pulses instead. Our study shows that the result of

the laser pulses is similar to that of the continuous wave.

Two beams of Gaussian pulses with the same frequency ν1, same maximal am-

plitude E0 and same full width at half maximum of the intensity tFWHM = 2
√
ln2σ

are incident on the photoresist from opposite directions with angle θ, and σ is the

width of the pulse (Fig. 3.5(a)). They then form a standing electric field described
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by

E(x, t) = 2E0 exp(−
t2

2σ2
) cos(kx cos θ + φ) cos(ν1t) (3.9)

where φ is the phase difference between the two pulses. The electric field couples

to the molecules in the photoresist. If ν1 is resonant to the two atomic levels |a〉

and |b〉, the electric field drives Rabi oscillations between the two atomic levels. The

Rabi frequency is ΩR(x, t) = 2|℘ba|E0 exp(− t2

2σ2 ) cos(kx cos θ + φ)/h̄. According to

the Area theorem (Appendix A), the upper-level probability after the pulse is given

by

Pa(x) ≃
1− cos[

∫∞
−∞ΩR(x, t)dt]

2

=
1− cos[2

√
2πσ |℘ba|E0

h̄
cos(kx cos θ + φ)]

2

=
1− cos[Ω0t0 cos(kx cos θ + φ)]

2
(3.10)

where Ω0 = 2|℘ba|E0/h̄ is the maximal Rabi frequency and we define t0 =
√

π
2 ln 2

tFWHM .

From the equation, we see that the pattern generated by the Gaussian pulse is the

same as that of the continuous wave, but just replace T by t0. For example, when

Ω0t0 = 2π, one Rabi cycle is driven and the pattern has a resolution of λ/4 Fig. 3.5(b)

which is the same as Fig. 3.4(b). When Ω0t0 = 4π, two Rabi cycles are driven and

the resolution is λ/8 Fig. 3.5(b) which is the same as Fig. 3.4(d). Therefore, our

scheme also works for pulse excitation. The duration of the pulse should be less than

the population decay time.

3.2.2 Arbitrary sub-wavelength patterns in a macroscopic area

In the previous section we have shown how to achieve a simple sub-wavelength

pattern via coherent Rabi oscillations. For any practical applications we need to
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Figure 3.5: (a) The Gaussian pulse. The red dash line is the amplitude profile and
the thick dark line is the intensity profile; (b) The pattern produced by the Gaussian
pulse when

√

π
2 ln 2

Ω0tFWHM = 2π; (c) The pattern produced by the Gaussian pulse

when
√

π
2 ln 2

Ω0tFWHM = 4π. The solid line is the result without the decoherence
while the green dashed line shows the results with tFWHM = τ/2.
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produce more complicated patterns [86, 87, 88]. In the following, we will discuss how

to produce arbitrary sub-wavelength patterns in a macroscopic area [59, 60]. For one

dimensional case, any functions in the range L can be expanded as a Fourier series:

f(x) =
a0
2

+
∞
∑

n=1

[an cos(
2nπx

L
) + bn sin(

2nπx

L
)] (3.11)

For the components with periods L/n larger than optical wavelength λ, we just use

the traditional way, i.e, shine two dissociative lasers with frequency large enough to

dissociate the molecules directly and they form a standing wave correspond to the

component and with strength related to the Fourier coefficient. For the components

with L/n < λ, we need to apply our sub-wavelength scheme. We shine two phase

locked pulses with amplitude E0 from angle θ to form a standing wave and the third

one with amplitude E1 from the right angle to form a constant background. The

resulting electric field is E(x, t) = [2E0cos(kx cos θ + φ) + E1] exp(− t2

2σ2 ) cos(ν1t).

When nπ − ǫ ≤ kx cos θ ≤ nπ + ǫ (n is an integer and ǫ is a small number),

E(x, t) ≃ ±[2E0kx cos θ + E1] exp(−
t2

2σ2
) cos(ν1t) (3.12)

where φ is set to be 90 degree. Then the Rabi frequency is

ΩR(x) =
2|℘ab|
h̄

[E0 cos(kx cos θ + φ+ E0]

≈ 2|℘ab|E0k cos θ

h̄
x+

2|℘ab|E1

h̄
(3.13)

The Rabi frequency is approximately a linear function of the position, and the gra-

dient of the intensity is approximately a constant in the region (nπ − ǫ)/k cos θ ≤
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Figure 3.6: A proposed scheme to print a sine pattern in an arbitrary large region.

x ≤ (nπ + ǫ)/k cos θ. Then the pattern produced in this linear region is

Pa(x, T ) ≃
1− cos(Ax+B)

2
(3.14)

where A =
√

2π/ ln 2Ω0tFWHMk cos θ and B =
√

2π/ ln 2Ω1tFWHM . The coefficients

A and B can be controlled by the field strength and the pulse time. The effective

wavelength

λeff = λ/(
√

2π/ ln 2Ω0tFWHM cos θ) (3.15)

can be arbitrary small by using stronger field or longer pulse time. We note that

ignoring the constant background 1/2, when B = 0, the pattern is a cosine function;

when B = π/2, the pattern is a sine function.

For example, if we want to produce a sine pattern with λ/5 resolution in a large

region, we can do it in two steps (Fig. 3.6): First, we etch the pattern in the linear
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region as shown in Fig. 3.6(a). We then shift the standing wave by a phase π/2

such that the linear region shifts by a distance of λ/2. This allows us to write the

sine pattern in the remaining region Fig. 3.6(b) thus leading to the resulting sine

pattern in the entire region as shown in Fig. 3.6(c). The peak power for E0 is about

15MW/cm2 (cos(θ) = 1/4, |℘ab| = 10Debye , tFWHM = 1ps) (Becker et al., 1988)

and the peak power for E1 is about 0.37MW/cm2. For larger resolution, the peak

power should increase. For example, to reach λ/10 resolution, the peak power for

E0 is about 60MW/cm2 and the peak power for E1 is about 0.37MW/cm2. In

addition, for the Fourier coefficients an and bn, we can control the strength and the

time duration of the dissociation pulse to control the dissociation rate or we can use

different wavelengths with different absorption rates.

We can also generalize our method to two dimensional patterns. Arbitrary 2D

periodic function with f(x + λ, y + λ) = f(x, y) can be simulated by the truncated

Fourier series:

f(x, y) =

M
∑

m=0

N
∑

n=0

{amn cos[
2π(mx+ ny)

λ
] + bmn cos[

2π(mx− ny)

λ
]

+cmn sin[
2π(mx+ ny)

λ
] + dmn sin[

2π(mx− ny)

λ
]}

≈
M
∑

m=0

N
∑

n=0

{amn cos[

√
m2 + n2

cos(θ)
cos[

2π cos(θ)

λ

(mx+ ny)√
m2 + n2

+
π

2
]]

+bmn cos[

√
m2 + n2

cos(θ)
cos[

2π cos(θ)

λ

(mx− ny)√
m2 + n2

+
π

2
]]

+cmn sin[

√
m2 + n2

cos(θ)
cos[

2π cos(θ)

λ

(mx+ ny)√
m2 + n2

+
π

2
]]

+dmn sin[

√
m2 + n2

cos(θ)
cos[

2π cos(θ)

λ

(mx− ny)√
m2 + n2

+
π

2
]]} (3.16)

in which θ is near 90o. In the practical application, we should realize each Fourier

component one by one. For the first and third components in Eq. 3.16 we shine the
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pulses from directions (mx̂+ nŷ)/
√
m2 + n2 while for the other two components we

shine the pulses from directions (mx̂−nŷ)/
√
m2 + n2 and Ω0t0 =

√
m2 + n2/cos(θ).

Besides, due to the constant 1/2 appears in Eq. 3.14, there is an additional penalty

deposition Q which depends on the Fourier coefficients. For example, applying the

numerical simulation we print characters ”TAMU-KACST” within one wavelength

(Fig. 3.7). In the simulation, we take θ = 80o and M = N = 15. Q ∼ h where h

is the height of the pattern. We have a total of 15 × 15× 4 = 900 components and

each component needs 4 pulses (three for standing wave and one for dissociation).

Therefore we need 3600 pulses in total. Each component takes about 1ms and the

whole process takes about 1s. In our example with the region λ × λ, the required

maximal power is about 200MW/cm2 for a pulse duration of t0 = 5ps.

3.2.3 Potential realizations

The scheme shown in Fig. 3.5 is a simplified model. In the following we introduce

two possible realizations of our scheme in two different systems.

The first one is in the organic molecular photochemistry. The typical state energy

diagram for the chemical bound is shown in Fig. 3.8 [85]. Here S0 and S1 are the

ground singlet state and the first excited singlet state, respectively and T1 is the

first excited triplet state. KF is the fluorescence decay rate from S1 to S0; KP is

the phosphorescence decay rate from T1 to S0; while KST is the intersystem crossing

rate from S1 to T1. To induce Rabi oscillation, the system should be kept coherently.

Therefore, the decoherence time is an important parameter in our scheme. The

typical decoherence time τ is about 1 ∼ 5ps at room temperature [89]. To realize

our sub-wavelength scheme, the requirements for these parameters are tFWHM ≤ τ

and KST >> KF >> KP . For tFWHM ≤ τ , the system keeps coherent. For KST >>

KF , intersystem crossing from S1 to T1 dominates, which means that most of the
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Figure 3.7: A 2D pattern ”TAMU-KACST” printed within one wavelength using the
present method. Parameters are M = N = 15, θ = 80o.
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Figure 3.8: The schematics for the state energy diagram for molecular organic pho-
tochemistry.
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molecules at S1 will transfer to T1 instead of decaying to S0. As the transition from T1

to S0 is spin forbidden, the life time (or phosphorescence time) of T1 is long. Within

the phosphorescence time, we shine the second pulse to dissociate the molecules in

state T1. Indeed, the requirements can be satisfied in some real systems. Usually, the

time scale for KF : 10
5 ∼ 109 Hz; KST : 10

5 ∼ 1011 Hz; KP : 10
−2 ∼ 103 Hz. The Rabi

frequency can be chosen as 1012 to 1014 Hz. One example is 1-Bromonaphthalene

[85] for which KF ∼ 106 Hz, KST ∼ 109 Hz, KP ∼ 30 Hz. The life time of the

intermediate state T1 is about 30 ms which is long enough for us to shine the second

pulse.

It is worthwhile to mention that the dipole-dipole interaction or exchange inter-

action may induce energy transfer between neighboring molecules which limits the

resolution in our scheme [85]. However these effects can be ignored for the following

reasons. The dipole-dipole energy transfer rate is of the order of fluorescence rate

when the distance between two molecules is in the range of 1 − 5nm. However,

as we require KST to be much larger than KF , the intersystem crossing to T1 oc-

curs in times shorter than that required for the dipole-dipole energy transfer to the

neighboring molecules. Also when the molecules are in the triplet state the dipole-

dipole energy transfer between the two molecules is forbidden. Therefore the energy

transfer due to the dipole-dipole interaction can be ignored in our scheme. While

the triplet-triplet energy transfer is allowed by the electron exchange interaction, it

can only happen at a distance within 1nm which is about the size of the molecules.

Usually we cannot reach such small patterns in the photoresist lithography.

The second possible realization is to generate a nanopattern using a microwave.

For example, the solid state system such as the NV-diamond has a long decoherence

time. The ground triplet state is split into two sublevels (ms = 0 andms = ±1). The

energy difference between these two sublevels are about 2.9GHZ, which corresponds
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Figure 3.9: Typical energy potential surface of a molecule. The first pulse is used to
inducing coherent Rabi oscillations between two energy potential surfaces, while the
second pulse is used to dissociate the molecules in the excited state.

to a microwave with wavelength of about 0.1m. The decoherence time at room

temperature can reach 1.8ms [90]. Let tFWHM = 1ms and ΩR = 0.1GHZ, then we

can reach a resolution of about 300nm. At the low temperature, the decoherence

time can be even larger, and the pattern can be smaller.

3.3 Sub-diffraction-limit pattern generation in molecular system via coherent Rabi

oscillations

3.3.1 Theoretical model

In the Born-Oppenheimer approximation, the molecular energy level can be de-

scribed by the well-known Morse potential energy curve (Fig. 3.9). Here we only
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consider two energy levels: the ground state potential surface (Ug(R)) and excited

state potential surface (Ue(R)). We can neglect other potential surfaces if they are

far away from these two potential energy curves near the equilibrium position R0 of

the ground state, i.e., the energy gap at R0 is much larger than the bandwidth of

the ultrashort pulse and the Rabi frequency. The ground state potential function

around the equilibrium position can be well approximated by a harmonic potential

[91]:

Ug(R) =
1

2
mω2(R− R0)

2 (3.17)

where m is the reduced mass of the molecule, ω is the fundamental vibrational

frequency of the ground energy. We can simplify the excited state as a linear function

of R [91]:

Ue(R) = −α(R− R0) + β (3.18)

where α is the slope of the excited potential surface and β is the energy gap between

the excited state and ground state at R0.

The wave packet dynamics for the molecule at position x are described by the

coupled-channel Schrödinger equations [91]

ih̄
∂

∂t
Ψg(x,R, t) = [− h̄2

2m

∂2

∂R2
+ Ug(R)]Ψg(x,R, t) + V (x, t)Ψe(x,R, t), (3.19)

ih̄
∂

∂t
Ψe(x,R, t) = [− h̄2

2m

∂2

∂R2
+ Ue(R)]Ψe(x,R, t) + V (x, t)Ψg(x,R, t). (3.20)

where Ψ1(x,R, t) and Ψ2(x,R, t) are the corresponding wave packets in the ground

state and the excited state , V (x, t) = ~d · ~E(x, t) is the coupling strength at position

x where ~d is the transition dipole moment between the ground state and the excited

state.

At room temperature or below, most of the molecules are in the lowest vibrational
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state of the ground potential surface. Therefore we can write the initial (t → −∞)

wave packets in the ground state and the excited state as [91]

Ψ1(x,R,−∞) = (2πσ2)−1/4 exp[−(R− R0)
2

4σ2
] (3.21)

Ψ2(x,R,−∞) = 0 (3.22)

where σ =
√

h̄/2mω. From the initial wave-packets and the couple-channel Schrödinger

equations, we can solve the dynamics of the wave packets. Analytical solution for

the dynamics in Eq. (3.21) and Eq. (3.22) is not available. Numerical method

is usually applied to solve these coupled equations. Here we use the split-operator

Fourier transform technique to solve these equations [92, 91, 93]. For simplicity, the

scaling factors for the length and time are chosen as [91, 94]

Rc =

√

h̄√
2mω

, tc =

√
2

ω
. (3.23)

In this scaling, the constant h̄, h̄2/2m, and mω2 become unity. The initial wave

packet size is σ = 2−1/4. α and β in Eq. (3.18) are dimensionless (their scale are

h̄/tcRc and h̄/tc respectively). The unit for frequency or Rabi frequency is 1/tc.

3.3.2 Numerical simulation

3.3.2.1 Wave packet dynamics

In this section, we numerically solve the coupled-channel Schrödinger equations

for different parameter settings. For different potential slopes (α = 0, 1, 5), we cal-

culate the wave packet dynamics for different Rabi frequency and pulse time.

48



-40 -20 0 20 40
0.00

0.25

0.50

0.75

1.00

P e
(t)

t

 

 

a. b.

P e
(t)

-40 -20 0 20 40
0.00

0.25

0.50

0.75

1.00

 

 

 

t

c.

t
-40 -20 0 20 40

0.00

0.25

0.50

0.75

1.00
 

 

 

 P e
(t)

Figure 3.10: Dynamics of the population in the excited state as a function of time
when the molecule is excited by a ultrashort pulse. The solid line is the result when
Ω0 = 20, tp = 1. The dotted line is the result when Ω0 = 50, tp = 0.4. (a) α = 0; (b)
α = 1; (c) α = 5.
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Here we consider the pulse is Gaussian and it is given by

~E(t) = ~eE0 exp(−
t2

t2p
) cos(νt) (3.24)

where ~e is the polarization direction, ν is the center frequency which is chosen to be

resonant with the energy gap between the two potential surfaces at the equilibrium

position. The full width half maximum of field intensity is given by tFWHM =
√
2 ln 2tp. The Rabi frequency is then given by

ΩR(t) = Ω0 exp[−
t2

t2p
] (3.25)

where Ω0 = (~d · ~e)E0/h̄ is the Rabi frequency at the peak intensity. The integrated

pulse area is

θ =

∫ ∞

−∞
ΩR(t)dt =

√
πΩ0tp. (3.26)

The number of oscillations is given by θ/2π. We can see that larger Rabi frequency

or longer pulse time can induce more oscillations.

Figure 3.10(a) is the result for α = 0 which is the case that the equilibrium

position of the excited potential surface is the same as that of the ground potential

surface [95]. The solid line is the result for Ω0 = 20 and tp = 1, while the dotted

line is the result for Ω0 = 50 and tp = 0.4. The pulse area for both case is 20
√
π.

The number of oscillations is expected to be the same and it is given by 20
√
π/2π

which is about 5.6. The number of oscillations for the numerical result shown in Fig.

2(a) is consistent with the theoretical evaluation. The visibility of the oscillations is

almost 1 and the visibility for the shorter pulse time and higher Rabi frequency is

slightly higher.

Figure 3.10(b) is the result for α = 1 which is the case that the equilibrium
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position of the excited state deviates from R0 by a small amount. We can see that

the visibility decreases by some amounts as time goes for the case that Ω0 = 20 and

tp = 1. The reason is that the wave packet can slide down the potential hill and leave

the resonant region. If we use stronger and shorter pulse (Ω0 = 50 and tp = 0.4),

we can see that the visibility increase significantly because the wave packet has no

enough time to move away.

Figure 3.10(c) is the result for α = 5 which is the case that equilibrium position

of the excited state deviates from R0 by a larger amount. We can see that when

Ω0 = 20 and tp = 1 the amplitude of the oscillations decreases significantly and

curve is distorted at the end of the pulse which indicates that the wave packed is

significantly dispersed. We can recover the oscillation pattern by using stronger and

shorter pulse (Ω0 = 50 and tp = 0.4). However the visibility is still much less than 1.

From these three examples, we can clearly see that the smaller the α, the better

the oscillations. We also notice that number of oscillations is determined by the pulse

area but stronger and shorter pulse can increase the visibility of the oscillations.

3.3.2.2 Subdiffraction-limited pattern generation

In this subsection we study the spatial distribution of the population at the

excited state when the molecules interact coherently with a strong diffraction-limited

ultrashort pulse.

Here the pulse is assumed to be Gaussian in both the time domain and the space

domain:

~E(x, t) = ~E(t) exp[− x2

2σ2
x

] (3.27)

where ~E(t) the electric field profile in the time domain which is given by Eq. (3.24).

For a diffraction-limited beam, the full width half maximum of the spatial intensity

distribution is about λ/2 which corresponds to σx = λ/(4 ln 2). Supposing that the
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Figure 3.11: Subdiffraction-limited pattern generation when the molecule is ex-
cited by a diffraction-limited beam. The dashed line is the intensity profile of the
diffraction-limited excitation beam. The solid line is the pattern generated by the
pulse with Ω0 = 20, tp = 1. The dotted line is the result when Ω0 = 50, tp = 0.4. (a)
α = 0; (b) α = 1; (c) α = 5.
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molecules have identical transition dipole moments, the maximum Rabi frequencies

at different positions are given by

ΩR(x) = Ω0 exp[−
x2

2σ2
x

]. (3.28)

Different positions have different Rabi frequencies which leads to the spatial modu-

lations of the excited populations.

Similar to previous subsection, we numerically calculate the spatial patterns gen-

erated by the ultrashort Gaussian pulse for three potential surfaces: α = 0, α = 1,

and α = 5. Comparing these three figures, we find the following features: a)

subdiffraction-limited patterns are generated in all three potential surfaces. The

minimum spacing is about λ/11 which is much less than the diffraction limit. The

resolution of the pattern generated by α = 5,Ω0 = 20, and tp = 1 is lower than

others because the wave packet has been significantly dispersed. b) For the same

parameters, the smaller the α the better the visibility. This indicates that a good

candidate for the photoresist should have two potential surfaces with close equilib-

rium positions. c) For each α, visibility is higher when using larger Rabi frequency

and shorter pulse time. d) the pattern is narrower at the positions that the gradient

of the electric field is larger.

3.3.3 Pulse techniques to improve visibility

In the previous section we have shown that subdiffraction-limited pattern can

be generated in molecular system using ultrashort pulses. However, when potential

surface has a larger slope that the wave packet can be easily dispersed the visibility

is not good, e.g., when α = 5 (Fig. 3.10(c) and Fig. 3.11(c)). In this section we

discuss two possible techniques to improve the visibility. One is using multi-pulse

train instead of one Gaussian pulse to reduce the effective interaction time. The
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Figure 3.12: (a) Electric field envelopes for one, two, and four-pulse train. (b) Wave
packet dynamics excited by one, two, and four-pulse train. (c) Subdiffraction-limited
pattern generated by one, two, and four-pulse train excitation. The solid line is for
one pulse case with Ω0 = 50 and tp = 0.4. The dotted line is for two-pulse train
with Ω0 = 50, t

′

p = 0.2, and τ = 0.4. The dashed line is for four-pulse train with

Ω0 = 50, t
′

p = 0.1, τ1 = 0.2, τ2 = 0.4, and τ3 = 0.6.

other is using chirped pulse technique to compensate the wave packet dispersion.

3.3.3.1 Multi-pulse train technique

In practice we can engineer the pulse shape to increase the visibility of the Rabi

oscillations. For example, we can generate the following multi-pulse train

~E(t) = ~eE0
N
∑

n=1

exp[−(t− τn)
2

t′2p
] cos(νt). (3.29)

54



with t
′

p = tp/N (N is the number of pulses) and τn is the positions of the pulses. We

can readily verify that this pulse train has the same peak intensity and the integrated

pulse area as the one Gaussian pulse shown in Eq. (3.24). Therefore they should

generate patterns with similar resolution. However, the multi-pulse train is more

compact in time than one pulse case (Fig. 3.12(a)). Thus the wave packet has less

time to move away in the multi-pulse train case and it can in principle generate a

pattern with higher visibility.

In Figure 3.12(b), we compare the wave packet dynamics for one, two and four-

pulse cases when α = 5,Ω0 = 50, and tp = 0.4. We can see that they have similar

oscillation pattern but the amplitude of oscillations is largest in four-pulse train

excitation and is smallest in one pulse excitation. In Fig. 3.12(c) we also find that

the visibility of the subdiffraction-limited pattern increases as the number of the

pulse train increases, while the resolution does not change. These examples shows

that multi-pulse train works better than one-pulse case.

3.3.3.2 Chirped pulse technique

The wave packet can significantly move down the slope of the potential surface

when α is large. Thus the resonant frequency becomes smaller as time goes. One

possible way to compensate this effect is using chirped pulse. The linearly chirped

pulse is given by [96]

~E(t) = ~eE0 exp(−
t2

t2p
) cos(νt + a

t2

t2p
) (3.30)

where ν is the central frequency and a is dimensionless chirped parameter. We can

see that different frequency component comes at different time. One example is

shown in Fig. 3.13(a) where higher frequency comes earlier and lower frequency

comes latter which may compensate the wave packet dispersion effect.
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Figure 3.13: (a) Example of a linearly chirped pulse. (b) Dynamics of the population
in the excited state as a function of time when the molecule is excited by an unchirped
and chirped pulse. (b) Subdiffraction-limited pattern generated by an unchirped and
chirped pulse. The solid line is the result for unchirped pulse while the dotted line
is the result for chirped pulse. Parameters: α = 5,Ω0 = 50, tp = 0.4.
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The wave packet dynamics excited by a linearly chirped pulse is shown in Fig.

5b. Here we use the example that α = 5. The resonant frequency in the equilibrium

position is assumed to be ω0 = 500. The center frequency of the chirped pulse ν is

chosen to be 492 which is slightly less than ω0, the chirped parameter α = −1.6, and

tp = 0.4. The peak Rabi frequency is chosen to be 50. From the figure we see that

the amplitude of the Rabi oscillations at the end of the pulse increases comparing

with the unchirped case. Figure 5c is the spatial pattern generated by the chirped

and unchirped pulse. We can see that in the center region the visibility of the pattern

generated by the chirped pulse is higher, while it is lower at the edge of the field.

The reason is that the field strength is very small at the edge of the field and the

excitation is very small. The wave packet is mainly in the equilibrium positions of

the ground potential. The resonant frequency is about ω0 within the pulse time

while the excitation frequency is less than ω0 for most of the time. Thus the chirped

technique can help when the excitation is high.
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4. ATOM LITHOGRAPHY BEYOND THE DIFFRACTION LIMIT VIA

COHERENT RABI OSCILLATIONS∗

We propose two atom lithography experiments with sub-wavelength resolution

based on the method we proposed in the previous chapter. One is using Rubidium

Rydberg atoms and microwave with centimeter wavelength, where we numerically

showed that a line spacing of the order of micrometers is possible. The other is

using Chromium atom and visible light with wavelength about 400nm, where we

numerically showed that sub-10nm spacing in both one and two dimensional space

is possible.

4.1 Atom lithography

Atom lithography has been proposed to write lines with sub-100 nm width be-

cause the deBroglie wavelength of the atom is very small (usually less than 0.1nm)

[97, 98, 99, 100, 101]. The typical schematic setup of atom lithography is shown in

Fig. 4.1(a) [102]. The atoms ejected from an aperture are collimated by the laser

cooling. After passing through the beam mask the atoms interact with a standing

wave. The frequency of the standing wave is slightly detuned from the atomic transi-

tion frequency. When the atoms pass through the standing wave, they feel an optical

dipole potential which is given by

U(x) =
h̄∆

2
ln[1 +

I(x)

I0

Γ2

Γ2 + 4∆2
] (4.1)

∗Reprinted with permission from Atomic Lithography with Subwavelength Resolution via Rabi
Oscillations by Z. Liao and M. Al-Amri and T. Becker and W. P. Schleich and M. O. Scully and
M. S. Zubairy, 2013. Phys. Rev. A, vol. 87, pp. 023405, and from Coherent Atom Lithography
with Nanometer Spacing by Z. Liao and M. Al-Amri and M. S. Zubairy, 2013. Phys. Rev. A, vol.
88, pp. 053809, Copyright [2013] by the American Physical Society.
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Figure 4.1: (a) Typical setup of atom lithography. (b) Optical dipole potentials
for different laser intensity where η = Imax/I0. (c) A pattern written by the atom
lithography. Figure (a) reprinted with permission from (te Sligte et al., 20033).
Copyright 20033 by Elsevier. Figure (c) reprinted with permission from (McClelland
et al., 1993). Copyright 1993 by AAAS.
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where ∆ is the detuning, Γ is the atomic line width, I(x) is the laser intensity at

position x, and I0 is the saturation intensity. Since U(x) nonlinearly depends on

the laser intensity I(x), the atoms can be trapped into very narrow region if I(x)

is large compared to I0 (Fig. 4.1(b)). If I(x) increase, the dipole trap can becomes

narrower. However, the period of the dipole trap is still half wavelength of the

standing wave. This method does not overcome the diffraction limit in terms of line

spacing [97, 98, 99, 100, 101, 103]. One experimental demonstration is shown in

Fig. 4.1(c) where we can see that the width of a line is about 28nm, but the line

spacing is about 213nm [98].

In the following, I will illustrate two atom lithography schemes based on our coher-

ent Rabi oscillations method, which can achieve line spacing beyond the diffraction

limit.

4.2 Atom lithography with sub-wavelength line spacing using microwave

In this section, we present a sub-wavelength atom lithography schemes to imple-

ment the method based on Rabi oscillations. Instead of shining spatially distributed

light on atoms, we propose to pass atoms through a standing wave. We discuss a

spatially uniform beam of Rydberg atoms moving with a constant velocity undergo-

ing spatially dependent Rabi oscillations. In our proposed implementation of sub-

wavelength lithography, we chose Rydberg atoms for three reasons [104, 105, 106].

(i) Our scheme requires the system to have a relatively long coherence time and Ryd-

berg atoms satisfy this requirement rather well. (ii) The transition dipole moment of

Rydberg atoms is extremely large which is conducive for inducing Rabi oscillations.

(iii) State-selective field ionization techniques can be applied to detect the popula-

tion in different states [107, 108]. One drawback of Rydberg atoms is its relatively

large size which can be of the order of hundreds of nanometers. and which would
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limit the resolution we can achieve in this scheme. Nevertheless it is still one of the

best testbeds for this proof-of-principle experiment.

4.2.1 Basic principle

In last Chapter we have presented a simple method to achieve sub-wavelength

patterns by inducing Rabi oscillations between two atomic levels. Here, we briefly

recall this scheme in order to lay the foundations for the next sections. When two-

level atoms interact with a laser light, or a microwave whose frequency is resonant

with that of the transition, the probabilities of the atom to be in the excited and the

ground states |a〉 and |b〉, respectively, are given by

Pb(x) =
1

2
{1 + cos[θ(x)]}, Pa(x) =

1

2
{1− cos[θ(x)]}. (4.2)

where θ(x) =
∫ T

0
Ω(x, t)dt is the pulse area. T is the interaction time which should

be less than the population decay time of the atoms and Ω(x, t) is the Rabi frequency

at the position x and the time t. The Rabi frequency is given by |~℘|E(x, t)/h̄, where

|~℘| is the transition dipole moment between the atomic levels, E(x, t) is the field

amplitude at the position x and the time t. Hence if the field is spatially dependent,

the probability in each state is also spatially dependent.

For the first example, let’s consider a simple case that the electric field is a linear

function of the coordinate x and constant in time such as E(x) = E0x/λ. The

position-dependent Rabi frequency reads Ω(x) = Ω0x/λ where Ω0 ≡ |~℘|E0/h̄. The

probability to be in the excited state is given by

Pe(x) =
1

2
(1− cos[Ω0Tx/λ]) (4.3)
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and the period λeff of the pattern is

λeff =
λ

Ω0T/2π
. (4.4)

If Ω0T > 2π, the resolution of the pattern is sub-wavelength. For a larger pulse area

Ω0T we obtain a smaller spacing of the features and we can increase the resolution

by just increasing the field strength or the interaction time.

The second example is related to this experimental setup where we consider

the electric field in the cavity is TM210 mode. The electric field of this mode has

polarization along z direction and is given by

Ez(x, y, z) = E0 sin(
2πx

a
) sin(

πy

b
) (4.5)

where a and b are the width and length of the cavity, respectively. The Rabi frequency

felt by the atoms is then given by

Ω(x, t) = Ω0 sin(
2πx

a
) sin(

πv||t

b
) (4.6)

where we have used the relation y(t) = v||t and v|| is the longitudinal velocity of the

atoms. Around the center of the cavity the electric field is approximately linear and

the integrated pulse area is given by

A(x) = Ω0
4bx

av||
. (4.7)

From this equation one can see that keff = 4bΩ0/av|| and the corresponding period

is

λeff =
πav||
2Ω0b

. (4.8)
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Figure 4.2: (a) Proposed experimental setup for the sub-wavelength atom lithography
using position-dependent Rabi oscillations of Rydberg atoms (unit for the dimension
is cm). P1 is photoresist used for neutral atom lithography while P2 is the photoresist
used for ionized atom lithography. (b) Energy diagram of the Rb-85 atom.

We can see that the larger the Rabi frequency, the smaller the effective period.

4.2.2 Proposed experimental setup

The proposed experimental setup and the relevant Rb-85 atomic levels are shown

in Fig. 4.2(a) and (b), respectively. Rubidium atoms are ejected from a small aper-

ture of 1mm size on the oven. At room temperature the root-mean-square velocity

is around 300m/s. Since atomic collimation is indispensable in this experiment we

propose to use optical molasses which will not reduce the atomic flux significantly.

The capture velocity for Rb atom is vc = γ/k ≈ 4.5m/s. Here γ = 2π × 6MHz is
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the natural width of 5P3/2 state and k is the wavevector of the cooling laser with a

wavelength of about 780nm [109]. The atoms are precollimated by a slit with 1mm

aperture located 10cm away from the oven. The root-mean-square transverse veloc-

ity after the slit is about 3m/s which is within the range of the capture velocity. A

standing wave of circularly polarized laser light where the frequency is red detuned

to the 5S1/2, F = 3 → 5P3/2, F = 4 transition is used to collimate the Rb atoms.

The optimal damping of the velocity occurs on a time scale τc = 2M/h̄k2(≈ 42µs

for Rb-85 atom, where M is the mass of the atom) [109]. Therefore, the longitudinal

extension of the optical molasses should be about 2cm to effectively collimate the

Rb atoms and the excited atoms can decay to the 5S1/2, F = 3 state. The Doppler

limit for the transverse velocity collimation is about 0.1m/s. However, a collimation

below the Doppler limit can be achieved by polarization gradients [110, 109].

The interaction time between the atoms and the microwave is required to be

identical for all atoms. To achieve this goal we propose to selectively excite them from

the state 5S1/2, F = 3 to the Rydberg state 63P3/2 with a small range of longitudinal

velocity by Doppler effect [108]. The angle θ between the 297nm pumping laser and

the atomic beam is set to be 80o. The pumping laser is a continuous laser which

can be produced by frequency doubling the light from a rhodamine 6G dye laser

(Coherent 899 ring laser) in a separate enhancement cavity with a beta-barium-

borate crystal [108]. We can use an acoustic optical modulator to slightly shift the

frequency of the pumping laser such that only the atoms with longitudinal velocity

around 300m/s can be excited according to the Doppler effect. The velocities of the

excited atoms have a small uncertainty ∆v‖ = (∆ν/ν)(c/cosθ) due to the bandwidth

of the pumping laser. In the neutral atom lithography the linewidth of the pumping

laser should be stabilized to be about 1MHz, then the uncertainty of the longitudinal

velocity ∆v‖ is about 1.48m/s. While in the ionized atom lithography, the linewidth
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of the pumping laser should be stabilized to be about 10KHz to achieve sub-micron

resolution. In this case the uncertainty of the longitudinal velocity is about 1.48cm/s.

The Rb atoms then fly through a microwave cavity with size a × b × c with

a = 1.05λ, b = 1.64λ, c = 0.4λ and λ = 1.4cm. The cavity can support many modes

but only the TM210 mode has frequency resonant with the transition frequency be-

tween 63P3/2 and 61D3/2 which is about 21.5GHz. The cavity can be driven by an

external synthesizer whose frequency is 21.5GHz and it can enhance the TM210 mode.

Only the atoms which are pumped to 63P3/2 will interact with the microwave field.

The atom-field coupling constant (one photon Rabi frequency) is Ω = 10kHz/photon

[104, 105]. The interaction time is b/v|| which is about 76.5µs. The decay time from

63P3/2 can be tens of milliseconds which is sufficient for this experiment. Because

the microwave field strength has a linear gradient around the center of the cavity,

the Rabi frequency felt by the Rb atom also has a linear gradient and the probabil-

ities to be in one of the two Rydberg states are spatially modulated. According to

the discussion in Sec. II, the spatial distribution of the atoms in the state 63P3/2

(or 61D3/2) can be sub-wavelength, which can be detected by a state-selective field

ionization technique [107, 108].

Two metallic plates are separated by about 1cm and the voltage between them

is 20V . The electric field strength is just enough to ionize the atoms in the state

63P3/2 but not those in 61D3/2. The atoms which are ionized by this field feel a

strong electromagnetic force and are deflected to one metallic plate and then hit a

photoresist on the substrate. The atoms in the state 61D3/2 and those atoms in the

ground state will not change their trajectories. They will also hit the photoresist on

another substrate. We can choose a photoresist which works in the ultraviolet region

such as diazonaphthoquinone (DNQ). The atoms in the state 61D3/2 will transfer

their internal energy (about 4ev) to the photoresist and change its chemical property.
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In contrast, the atoms in the ground state do not influence the photoresist. The

substrate is then etched by some chemical substances and a sub-wavelength pattern

will emerge which we can then verify in an optical microscope.

4.2.3 Numerical simulation

We now present a numerical simulation of our proposed experiment. Here, we

assume that 2×105 Rb atoms are randomly ejected from the aperture with positions

and transverse velocity in the range of −0.5mm ≤ x ≤ 0.5mm and −0.1m/s ≤ v⊥ ≤

0.1m/s, respectively. Moreover, the electric field strength inside the cavity is allowed

to fluctuate by ±1%. For different values of Ω0 we calculate the counts of atoms in

|a〉 state in the ionized atom lithography, while calculate the counts of atoms in |b〉

state in the neutral atom lithography. Because the size of the Rb ion is about 0.2nm

which is much smaller than the photoresist molecules (about 5nm), while the size

of Rydberg Rb atom at n = 61 is about 200nm, the pixel size for ion lithography is

chosen to be 5nm and the pixel size for neutral atom lithography is 200nm.

4.2.3.1 Neutral atom lithography

In the first simulation, the Rabi frequency Ω0 is set to be 2π×500KHz. According

to Eq. (4.9), the period of the pattern should be about 96µm. The numerical

simulation result shown in Fig. 4.3(a) displays a period of about 100µm which

matches the theoretical evaluation very well and demonstrates that we can use a

microwave of 1.4cm to print a pattern with 100µm resolution which is about 1/140

of the wavelength.

In the second simulation, we increase the Rabi frequency Ω0 to be about 2π ×

1MHz. The Rabi frequency here is 2 times of that of the first simulation. Hence,

the period in this case should be 2 times smaller. Indeed, the simulation shown in

Fig. 4.3(b) displays a period of about 50µm which is 1/2 of the resolution of the
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first case and about 1/280 of the wavelength.

Due to the divergence of the transverse velocity (0.1m/s), the resolution limit

in the previous parameter setting is about 20µm. To generate smaller patterns,

we need to collimate the atoms better. If the transverse velocity would be about

1cm/s, the resolution can reach several micrometers. Indeed, for the simulation with

Ω0 = 2π×5MHz shown in Fig. 4.3(c), the resolution is about 10µm. Figure 4.3(d)

is the result for a Rabi frequency Ω0 = 2π × 10MHz where the resolution is about

5µm (∼ λ/2800). Because of the limitation of the transverse velocity collimation

and the size of Rydberg atom, it is difficult to obtain a resolution better than 1µm

in this scheme.

Two advantages of this scheme stand out: (i) The energy of the neutral atoms

cannot ionize the resist material and the secondary electron scattering will not be a

problem. (ii) The neutral atoms do not interact with each other. The disadvantage

is that its resolution is limited due to the size of the Rydberg atom.

4.2.3.2 Ionized Atom Lithography

Our second method to do lithography with this experimental setup relies on the

ionized Rb atom. Because in this version we need to project the x-positions of the

atoms to y-positions, smaller longitudinal velocity uncertainties ∆v‖ are required.

To obtain a smaller ∆v‖, the pumping laser should be stabilized and have a smaller

bandwidth. For example, if ∆ν = 10KHz, then ∆v‖ = 1.48cm/s. For this small

longitudinal uncertainty we assume that all the atoms are ionized at the same point.

The acceleration of the Rb ion is a = eE/M . We calculate y-positions of the ions

based on classical trajectories which yields

y = v‖
−v⊥ +

√

v2⊥ + a(d− 2x)

a
(4.9)
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Figure 4.3: Simulation of neutral atom lithography with sub-wavelength resolution
due to a position-dependent Rabi frequency represented by the spatial distribution
of the 61D3/2 (|b〉) state for different Rabi frequencies Ω0. (a) Ω0 = 2π × 500KHz;
(b) Ω0 = 2π × 1.0MHz; (c) Ω0 = 2π × 5MHz; (d) Ω(x) = 2π × 10MHz. The
transverse velocity uncertainty is 0.1m/s for (a) and (b), while is 0.01m/s for (c)
and (d). The longitudinal uncertainty is fixed to be 1.48m/s.
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Figure 4.4: Simulation of ionized atom lithography with sub-wavelength resolution
due to a position-dependent Rabi frequency represented by the spatial distribution
of the 63P3/2 (|a〉) state for different Rabi frequencies Ω0. (a) Ω0 = 2π × 500KHz;
(b) Ω0 = 2π × 1.0MHz; (c) Ω0 = 2π × 5MHz; (d) Ω(x) = 2π × 10MHz. The
transverse velocity uncertainty is 0.1m/s for (a) and (b), while is 0.01m/s for (c)
and (d). The longitudinal uncertainty is fixed to be 1.48cm/s.

where d (= 1cm) is the distance between two metallic plates. Since the acceleration is

very large, we can estimate y ∼ − v‖√
ad
x+const. When E = 20V/cm, the acceleration

of the Rb ion is about 2.27 × 109m/s2and we find that the x-scale is shrunk by a

factor v‖/
√
ad which is about 1/16. Thus, for the same parameters as in neutral atom

lithography, the ionized atom lithography has a resolution about 16 times higher.

We have performed four simulations for this scheme and the parameters are chosen

to be identical to the ones of the neutral atom lithography except for the smaller
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longitudinal velocity uncertainty needed here. The resolution in Fig. 4.4(a) is about

6µm which is about 1/16 of the resolution of Fig. 4.3(a). Similarly, the resolution

in Figs. 4.4(b) , 4.4(c), and 4.4(d) are 3µm, 660nm, 330nm, respectively, which are

also about 1/16 of the corresponding resolution in Figs. 4.3(b), 4.3(c), and 4.3(d).

There are some issues that need to be clarified: (i) the energy of the ionized atom

may exceed the ionization energy of the resist material and secondary electrons may

be ejected from the photoresist thus limiting the resolution to about 30nm; (ii) the

Coulomb force between ionized atoms may disturb the spatial distributions of the

ionized atoms; and (iii) efficiency of this technique may be low because a low atomic

beam intensity is required to avoid interactions between the ionized atoms.

The first issue is not a serious one for this experiment because we have not

reached such a high resolution. For the second and the third one, we now perform

some estimates to see whether they are serious or not. Assume that the atomic

flux is about 1010cm−2s−1, the average distance between ions is about 0.1mm. At

this distance, the acceleration due to their coulomb force is of the order of 105m/s2.

However, the acceleration due to the static electric field is of the order of 109m/s2

which is much larger. The displacement due the Coulomb force is on the order of

100nm in this experimental setup which is still smaller than the resolution we have

generated. Therefore, all these concerns should not be problem at the proposed

experiment. For sub-100 nm resolution, we just need to lower the atomic flux to

about 108cm−2s−1.

Because the Rb ions are much smaller than the Rydberg Rb atoms and the pro-

jectile motion here has also shrinking effect, this scheme can have better resolution.

However, the ionization point and the trajectories of the ions should be much better

controlled in this scheme. The exact dynamics of the field ionization is very com-

plicated. Here we simply assume that all atoms have the same ionization point due
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to the fact that the electric field around the middle line of the two electric plates is

very uniform. Experimentally, the spatial dependence of the ionization field should

be controlled with a precision on the order of 1mv/cm.

4.3 Atom lithography with nanometer line spacing using visible light

In this section, I will show another atom lithography scheme where an optical field

interacts with a beam of atoms. Different from the microwave, the recoil momentum

of the photon in the optical regime can not be neglected. For our analysis, we

consider a beam of chromium atoms interacting with an optical standing wave with

λ = 425.6nm. We present a numerical analysis of the dynamics of the atomic

wavepacket including the momentum recoil effect and show that sub-10nm spacing

is possible.

4.3.1 Proposed experimental setup

The proposed experimental setup is shown in Fig. 4.5. We propose to use

chromium atom beam to do the lithography. The transition 7S3 →7 P4 at λ =

425.6nm is involved for the collimation and inducing Rabi oscillations. The chromium

atom beam is ejected from an oven and the mean longitudinal velocity is about

1000m/s. The transverse velocity of the atoms is first collimated to be about 5m/s

by a slit with 1mm width and 20cm apart from the oven. The longitudinal velocity

vz is selected to be within the range of 1000m/s±2.5m/s by a velocity selector. The

transverse velocity of the atoms are further collimated by an optical molasses with lin

⊥ lin configuration [110, 111]. To generate the optical molasses, we slightly red tune

the 425.6nm laser using an acoustic optical modulator. Then the width of the laser

is expanded by two lenses to be about 20mm [111]. We can use a linear polarizer

and a quarter wave plate to generate a lin ⊥ lin configuration optical molasses. This

setup allows the atom beam to be cooled below the Doppler limit.
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The collimated atomic beam is then passed through an optical standing wave

with the frequency tuned to be exactly resonant to the 7S3 →7 P4 transition. In

the longitudinal direction, we assume that the electric field is Gaussian and the field

strength is given by

~E(x, z, t) = ~eE0e−z2/w2

0 sin kx cos νt. (4.10)

where w0 is the beam waist and E0 is the electric field amplitude at the center

position. The laser intensity drops to about 1% of the peak intensity at ±3w0/2

from the Gaussian beam center. Therefore, we can define the interaction region to

be in the range of −3w0/2 to 3w0/2. In the interaction region, the atoms undergo

Rabi oscillations. The Rabi frequency can then be expressed as

ΩR(x, t) = Ω0 exp[−
(vzt)

2

w2
0

] sin kx (4.11)

where we use the relation between z position and time which is given by z = vzt

and Ω0 = µE0/h̄ is the peak Rabi frequency (µ is the transition dipole moment).

Because the Rabi oscillation frequency is spatially modulated, the population in the

excited state is also spatially modulated. After the standing wave, atoms impinge on

the photoresit. The atoms in the excited state can transfer their internal energy to

the photoresist molecules and change the chemical property of the photoresist. The

atoms in the ground state do not change the photoresist. In this way the pattern

generated in the photoresist depends on the spatial distribution of the atoms in the

excited state.

This analysis is valid only if there is no recoil. This is a good approximation in

the microwave region discussed in [61]. However, in the optical region, the atoms

interacting with the standing wave can experience significant transverse recoil effect,
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Figure 4.5: Proposed experimental setup for the sub-wavelength atom lithography
using position-dependent Rabi oscillations. BS: beam splitter; AOM: acoustic optical
modulator; LP: linear polarizer; λ/4: quarter wave plate.

thus adversely affecting the spatial distribution of the atoms on the photoresist.

In the following section, we calculate the spatial distribution of the atoms in

the excited state after including the transverse degree of freedom in our equation of

motion. Our goal is to see, under what conditions, nano-patterns can be written on

the photoresist.

4.3.2 Theory and numerical method

In this section, we consider the interaction of the beam of atoms propagating

in the z-direction with a standing field in the x-direction. The Hamiltonian of this

system in the rotating wave approximation is given by [112]

H(x, t) =
P 2
x

2M
+

1

2
h̄Ω(x, t)(σ̂+ + σ̂−) (4.12)

where Px = −ih̄ ∂
∂x

is the transverse momentum of the atom, h̄ is Plank constant, M

is the atomic mass, σ̂z is the z component of the Pauli operator and σ̂+(σ̂−) is the
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Figure 4.6: a) Sub-wavelength structure in the Raman-Nath approximation. Dashed
line is the normalized electric field strength of the standing wave, and the solid curve
is the probability of the atom in the excited state. b) Optical Stern-Gerlach effect.
The |+〉 state and |−〉 state see different optical potentials and an incoming atomic
wavepacket splits into two wavepackets.

raising (lowering) operator. The Rabi frequency Ω(x, t) is given by Eq. (4.12).

The longitudinal velocity vz is much larger than the recoil velocity of the photon.

It is almost unchanged in the whole process and therefore we can treat the motion

in the z direction classically. While the transverse velocity is collimated to be on the

order of recoil velocity, we treat the atom in transverse direction quantum mechan-

ically, i.e., the atomic wave function in this direction is written as a wave packet.

Therefore, the atomic state can be expressed as

Ψ(x, t) =







ψe(x, t)

ψg(x, t)






(4.13)

where ψg(x, t) and ψe(x, t) are the center-of-mass wavefunction when the atom is in

the ground and excited state, respectively. At room temperature, the population in

the excited state is negligible and we can assume that all the atoms are in the ground

state initially.

74



The dynamics of the atomic beam can be described by the coupled Schrödinger

equations

iψ̇g(x, t) = − h̄

2M
ψ

′′

g (x, t) +
Ω(x, t)

2
ψe(x, t) (4.14)

iψ̇e(x, t) = − h̄

2M
ψ

′′

e (x, t) +
Ω(x, t)

2
ψg(x, t) (4.15)

For general case, the exact solution of these equations is difficult to obtain. We

should either do some approximation or use numerical method to solve them.

4.3.2.1 Raman-Nath regime

If the transverse velocity of the atom is small and the kinetic energy acquired

by the atom during the interaction time is small, the Raman-Nath approximation

is valid where we can drop the kinetic energy term in the Hamiltonian [113]. For

zero-detuning, the simplified Hamiltonian becomes

H(x, t) =
h̄Ω(x, t)

2
(σ̂+ + σ̂−) (4.16)

Assuming that the atomic beam is spatially uniform and perfectly collimated, the

center-of-mass wave function can be written as a plane wave ψg(x, 0) ∼ exp(ik0x),

where h̄k0 is the initial transverse momentum of the atom. For simplicity, we assume

k0 = 0 and the mirrors for the standing wave have perfect reflectivity. We can

calculate the spatially distribution of the atoms in the excited state by the pulse

area theorem and it is given by

Pe(x, t) =
1− cos[

∫∞
−∞Ω(x, t)dt]

2

=
1− cos[

√
πΩ0 · (w0

vz
) · sin kx]

2
(4.17)
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Around the nodes of the standing wave, we have Pe(x) ∼ cos[
√
πΩ0(w0/vz)kx]. We

can see that the effective wavelength is given by

λeff =
λ√

πΩ0w0/vz
(4.18)

which can be much smaller than the diffraction limit when we increase the Rabi

frequency or the interaction time. This is the basic principle of our sub-wavelength

atom lithography scheme. One example is shown in Fig. 4.6(a) where Ω0 = 0.4GHz,

w0 = 20µm, and vz = 1000m/s. The spacing around the node is about λ/14. If we

increase the Rabi frequency to be about 2GHz, the spacing around the node would

be about λ/70.

4.3.2.2 Optical Stern-Gerlach effect

For the resonant case, the optical dipole force is zero. However, because the

wave nature of the atom may still see an optical potential which can be described

by optical Stern-Gerlach effect [114, 115]. To see this effect , let’s write the dynamic

equation in the dressed state picture, i.e.,

φ±(x, t) =
1√
2
[ψg(x, t)± ψe(x, t)]. (4.19)

For resonant case, the equations of motion for the dressed state are given by

iφ̇+(x, t) = − h̄

2M
φ

′′

+(x, t) + Ω(x, t)φ+(x, t) (4.20)

iφ̇−(x, t) = − h̄

2M
φ

′′

−(x, t)− Ω(x, t)φ−(x, t) (4.21)

where Ω(x, t) is given by Eq. (4.12). We can see that φ+ and φ− see opposite optical

potentials. An atomic wave packet in the nodes will split into two wave packets. The
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atom in |+〉 state is pulled to the field amplitude minimum while the atom in |−〉

state is pulled to the field amplitude maximum (see Fig. 4.6(b)).

The force felt by the atomic wave packet can be obtained from the derivative of

the optical potential and is given by

F (x, t) = h̄kΩ0 exp[−
(vzt)

2

w2
0

] cos(kx) (4.22)

The acceleration a(t) is then given by F (x, t)/M . Around the node, the velocity

acquired by the optical Stern-Gerlach effect is given by

vOSG ≈
√
πΩ0 · (

w0

vz
) · vr (4.23)

where vr =
h̄k
M

is the recoil velocity. The distance that separates the two wave packets

is about

dOSG ≈ 2
√
πΩ0(

w0

vz
)vr(

tin
4

+ tff ) (4.24)

where tin = 3w0/vz is the interaction time and tff is the free flying time after the

standing wave. For an incoming atomic beam, the optical Stern-Gerlach effect can

be neglected if dOSG ≪ λ. However, if dOSG approaches λ, the optical Stern-Gerlach

effect is significant where the atoms tend to accumulate around the electric field

minimum and maximum.

In our lithography scheme the optical Stern-Gerlach effect may destroy the sub-

wavelength features and needs to be suppressed. Therefore, the parameters need to

be chosen such that dOSG is much less than λ. From Eq. (4.19) and Eq. (4.25) we

can determine the smallest resolution without significant optical Stern-Gerlach effect

and it is given by

λeff ≫ 2vr(
tin
4

+ tff ). (4.25)
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For the parameters in our proposed experimental setup, λeff is much larger than

5nm without significant optical Stern-Gerlach effect. If we put the potoresit close to

the edge of the standing wave such that tff approaches zero, the resolution can be

less than 5nm without significant optical Stern-Gerlach effect.

4.3.2.3 Beyond the Raman-Nath regime: Numerical method

If the atoms are not perfectly collimated or the optical potential is deep, we

can not simply neglect the kinetic energy term, i.e., we need to consider the regime

beyond the Raman-Nath approximation. The analytical solution beyond the Raman-

Nath regime is difficult and usually the numerical method is used to calculate the

dynamics.

Let us assume that the transverse momentum distribution is Gaussian, and it is

given by

ψg(p) =
1

π1/4(δp)1/2
exp[− p2

(δp)2
]. (4.26)

where the full width at half maximum of the momentum is ∆p = 2
√
ln2δp. On taking

the Fourier transformation of ψg(p), we can obtain the corresponding wavepacket in

the coordinate space which is given by

ψg(x) =
1

π1/4(δx)1/2
exp[− x2

(δx)2
] (4.27)

where δx = h̄/δp. The full width at half maximum in the coordinate space is

∆x = 2
√
ln2δx. For example, if the atom is cooled to the recoil limit such that

∆p = h̄k, the width of the wavepacket is ∆x = 0.44λ.

The Hamiltonian in Eq. (4.13) can be decomposed into kinetic energy part T =

P 2
x/2M and the potential energy part V (x, t) = h̄δSZ + h̄Ω(x, t)(S+ + S−). We can

numerically solve this equation using the split-operator method [93]. For small time
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interval dt, we have

Ψ(x, t+ dt) ∼= e−
iV dt
2h̄ e−

iTdt
h̄ e−

iV dt
2h̄ Ψ(x, t) (4.28)

The error of this approximation is on the order of dt3 and this method is norm

preserving. For the potential term we can calculate the exponent by diagonalizing

the potential matrix. For the kinetic energy term we can transform the atomic

wave function in the coordinate space into the momentum space using fast Fourier

transformation algorithm. In the momentum space, the kinetic energy operator is

a number p2x/2M . After calculating the kinetic energy term we apply an inverse

Fourier transformation to convert the wave function in the momentum space into

the coordinate space. Repeating this procedure we can evolve the wave packet in

time.

4.3.3 Numerical results

In the numerical simulation we assume that multiple atomic wavepackets which

are uniformly distributed in the space fly through the standing wave and they impinge

on the photoresist independently. The beam waist of the standing wave in the z

direction is w0 = 20µm and the photoresist is placed about 60µm away from the

center of the standing wave. The interaction time is 3w0/vz which is about 60ns

while the free fly time is about 30ns. The life time of the excited state is about

200ns [116]. Therefore it is safe to neglect the decay of the atom in the simulation.

We first consider one dimensional case followed by the two dimensional case.

4.3.3.1 One dimensional pattern

If the standing wave is in x direction and the beam waist in the y direction is much

larger than one wavelength, we can simply treat this situation as one dimensional
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problem. We calculate the population distribution and the atom in the excited

state distribution along the x direction. We compare three different collimation:

∆v⊥ = 100vr,∆v⊥ = 10vr, and ∆v⊥ = vr.

Figures 4.7(a-c) are the results when the peak Rabi frequency is 0.4GHz. We can

see that the spatial distribution of the atom along the x direction is quite uniform for

all three cases (dotted lines). The optical Stern-Gerlach effect is not obvious because

λeff = 30nm for this Rabi frequency is much larger than 4nm. However, we can

clearly see the sub-wavelength structures in the spatial distribution of the atoms in

the excited state when ∆v⊥ = 10vr and ∆v⊥ = vr. The spacing between peaks near

the node for ∆v⊥ = vr is about 31nm (Fig. 4.7(c)) which is consistent with the

result (30nm) calculated by the Raman-Nath approximation. The smallest spacing

for ∆v⊥ = 10vr is about 32nm (Fig. 4.7b) which is also close but slightly larger

than 30nm in the Raman-Nath approximation. In these two cases, the Raman-Nath

approximation is still very good. However, for the bad collimation ∆v⊥ = 100vr,

the sub-wavelength structure for the spatial distribution of the atom in the excited

state is completely erased(Fig. 4.7a). Therefore, the collimation of the atoms is very

important for observing the sub-wavelength structures in our proposed experiment.

Figure 4.7(d-e) are the results when the peak Rabi frequency is 2GHz. As

λeff = 6nm is close to the limit resolution 4nm, new structures appear in the spatial

distribution of the atoms where we can see that there are two peaks within one

wavelength due to the optical Stern-Gerlach effect (dotted lines). The positions of

the peak are the minimum and the maximum of the electric field strength. The

period of these structures is still limited by half-wavelength. On the other hand,

let us look at the spatial distributions of the atoms in the excited state which are

shown as solid line. We can see that regular sub-half-wavelength structures survives

only when ∆v⊥ = vr (Fig. 4.7(f)). These structures are also affected by the optical
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Figure 4.7: Spatial distribution of the atom (dotted line) and the atom in the exited
state (solid line) after the standing wave for different peak rabi frequencies and
different transverse velocity collimation. Peak Rabi frequencies: (a-c) Ω0 = 0.4GHz
while Ω0 = 2GHz for (d-f). Transverse velocity collimation: (a,d) ∆v⊥ = 100vr;
(b,e) ∆v⊥ = 10vr; (c,f) ∆v⊥ = vr.
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Stern-Gerlach effect. The smallest spacing in Fig. 4.7(f) is about 6.8nm which is

close to the result (6nm) calculated by the Raman-Nath approximation. For the

other two cases the regular sub-half-wavelength structures disappear due to the bad

collimation (Fig. 4.7(d,e)).

4.3.3.2 Two dimensional pattern

In the previous section we discussed the one dimensional case when the variation

of the field in y direction within one wavelength is negligible. Here we discuss the

two dimensional case when both the fields in the x and y directions may significantly

change within one wavelength.

In the two dimensional case, we need to do the following change: P 2
x → P 2

x +

P 2
y ,Ω(x, t) → Ω(x, y, t), and Ψ(x, t) → Ψ(x, y, t). In the simulation, we should do

2D FFT instead of 1D FFT. The initial wavepacket is given by

ψg(x, y, t) =
1

(πδxδy)1/2
exp[− x2

(δx)2
] exp[− x2

(δy)2
] (4.29)

where δy = h̄/δpy and δpy is the uncertainty of the momentum in y direction. Here

we assume that the collimation in x and y directions are the same, and thus δx = δy.

The initial wavepackets are uniformly distributed in the xy plane. For the following

simulations, we assume the collimation in both direction is of the order of recoil limit.

In the first example, the standing wave is in the x direction while the electric fields

in the y and z direction are Gaussian distribution with beam waists wy = wz = 20µm.

As wy is much larger than λ, the electric field within one wavelength around the center

is about constant and the result would be similar to the one dimensional case. In

deed, the numerical results shown in Fig. 4.8(a) and Fig. 4.8(b) give similar features

as the one dimensional case (Fig. 4.7(f)). We see that the atom population around

the amplitude maximum and minimum is higher than other positions which is the
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evidence of the optical Stern-Gerlach effect. The spacing of the atom distribution

peak is λ/2 which is still diffraction-limited. However, we can clearly see that the

excited atom population distribution has much finer feature than the diffraction

limit. The closest line spacing is about 7nm.

In the second example, we add another standing wave in y direction in addition

to the standing wave in x direction. We assume both standing waves have the same

wavevector and amplitude. The peak Rabi frequency is Ω0 = 2GHz. The atom

population distribution is shown in Fig. 4.8(c) where we can see that there are four

peaks in λ× λ region due to the optical Stern-Gerlach effect. However, the spacing

between the peaks is still diffraction-limited. The peaks at the extreme points in the

anti-diagonal direction are higher than the peaks at the saddle points in the diagonal

direction. The excited atom population distribution is shown in Fig. 4.8(d) where

we can see nanometer ring fringe.

In practice, There are several parameters of the lasers that we can control to

generate more complicated patterns. The nodes of the standing wave can be changed

by tuning the phase of the standing wave. The period of the pattern can be controlled

by the power or the longitudinal width of the laser. We can also shine more than

two lasers from different directions to generate more complicated spatial distribution

of the electric field which can print more complicated patterns.
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Figure 4.8: Spatial distribution of the atom (a,c) and the atom in the exited state
(b,d). The brighter the higher probability. Peak Rabi frequencies: Ω0 = 2GHz.
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5. RESONANCE FLUORESCENCE LOCALIZATION MICROSCOPY

BEYOND THE DIFFRACTION LIMIT∗

Resonance fluorescence has been shown to be able to localize the position of a

single atom with resolution beyond the diffraction limit. It has also been shown

that the separation between two atoms, which is smaller than the diffraction limit,

can also be extracted from the resonance fluorescence spectrum. In this chapter,

we evaluate the resonance fluorescence spectrum of N two-level atoms driven by a

laser with gradient field strength and show that we can determine the positions of

the atoms from the spectrum even if there multiple atoms within one diffraction-

limited spot and the dipole-dipole interaction is significant. This far-field resonance

fluorescence localization microscopy method does not require point-by-point scanning

and it may be more time-efficient. We also give a possible scheme to extract the

position information in an extended region without requiring more peak power of

the laser. Finally we briefly discuss how to extend our scheme to do a 2D imaging.

5.1 Resonance fluorescence

Resonance fluorescence is the radiation reemitted by a two-level atom which is

resonantly driven by a monochromatic laser light. If the intensity of the driving field

is low, the reemitted light has the same frequency as that of the driving field. How-

ever, if the intensity of the driving field becomes comparable to, or larger than, the

atomic linewidth, the atoms can undergo several Rabi oscillations and the emission

spectrum has sidebands which is also called the dynamic Stark splitting.

∗Reprinted with permission from Resonance Fluorescence Localization Microscopy with Sub-
wavelength Resolution by Z. Liao and M. Al-Amri and M. S. Zubairy, 2012. Phys. Rev. A, vol.
85, pp. 023810, Copyright [2012] by the American Physical Society.
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Figure 5.1: (a) Pictorial presentation of resonant light scattering. (b) Mollow triplet
shown in resonance fluorescence spectrum.

5.1.1 Mollow triplet

According to the Wiener-Khintchine theorem, the power spectrum of the reso-

nance fluorescence in the steady state is given by [82]

S(~r, ω) =
1

π
Re[ lim

t→∞

∫ ∞

0

dτeiωτ 〈E−(~r, t)E+(~r, t+ τ)〉] (5.1)

The two-time field correlation function depends only on the time difference τ and it

is related to the atomic transition by

〈E−(~r, t)E+(~r, t+ τ)〉 = I0(~r)〈σ+(t)σ−(t + τ)〉 (5.2)

where

I0(~r) = (
ω2µ sin η

4πǫ0c2|~r − ~r0|
)2, (5.3)

σ+(σ−) is the atomic raising (lowering) operator, ω is the atomic transition frequency,

and η is the angle between the transition dipole moment and the observation direc-
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tion.

The two-time atomic correlation function 〈σ+(t)σ−(t+τ)〉 can be calculated from

the one-time correlation function 〈σ−(t)〉 by using the quantum regression theorem

(Appendix B). The quantum regression theorem says that: if operator Ô satisfies

〈Ô(t + τ)〉 =
∑

j

aj(τ)〈Ôj(t)〉, (5.4)

then we have the two-time correlation function given by

〈Ôi(t)Ô(t+ τ)Ôk(t)〉 =
∑

j

aj(τ)〈Ôi(t)Ôj(t)Ôk(t)〉. (5.5)

Since 〈σ−(t)〉 = Tr(σ−(t)ρ) = ρab(t), the one-time correlation function 〈σ−(t)〉

satisfies the same equation as ρab(t) which can be directly calculated from the master

equation. The master equation for a single atom is given by

ρ̇ = − i

h̄
[V, ρ]− Γ

2
(σ+σ−ρ+ ρσ+σ− − 2σ−ρσ+) (5.6)

where the interaction Hamiltonian V = h̄ΩR

2
(σ+ + σ−) and Γ is the spontaneous

emission rate. From Eq. (5.6), ρeg is given by [82]

ρab(t+ τ) = a1(τ) + a2(τ)〈σ−(t)〉+ a3(τ)〈σ+(t)〉+ a4(τ)(〈σz(t)〉+ 1)/2 (5.7)
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where

a1(τ) =
−iΩRΓ

2Ω2
R + Γ2

{1− e−3Γτ/4[cos(λτ)− (
4Ω2

R − Γ2

4λΓ
) sin(λτ)]}, (5.8)

a2(τ) =
1

2
e−Γτ/2 +

e−3Γτ/4

8λ
[Γ sin(λτ) + 4λ cos(λτ)], (5.9)

a3(τ) =
1

2
e−Γτ/2 − e−3Γτ/4

8λ
[Γ sin(λτ) + 4λ cos(λτ)], (5.10)

a4(τ) =
iΩR

λ
e−3Γτ/4 sin(λτ), (5.11)

and λ =
√

Ω2
R − (Γ/4)2.

Thus, the equation for the two-time correlation function is given by

〈σ+(t)σ−(t+ τ)〉 = a1(τ)〈σ+(t)〉+ a2(τ)〈σ+(t)σ−(t)〉+ a3(τ)〈σ+(t)σ+(t)〉

+a4(τ)〈σ+(t)[σz(t) + 1]/2〉

= a1(τ)〈σ+〉+ a2(τ)〈σ+(t)σ−(t)〉 (5.12)

where we have use the relations σ+(t)σ+(t) = 0 and σ+(t)[σz(t) + 1] = 0. In the

steady state, we have

lim
t→∞

〈σ+〉 =
−iΩRΓ

2Ω2
R + Γ2

, (5.13)

lim
t→∞

〈σ+(t)σ−(t)〉 =
Ω2

R

2Ω2
R + Γ2

(5.14)

In the strong field limit, i.e., ΩR ≫ Γ/4, we have

〈σ+(t)σ−(t + τ)〉 = 1

4
e−Γτ/2 +

1

8
e−3Γτ/4(e−iΩRτ + eiΩRτ ) (5.15)
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From Eq. (5.1), (5.2) and (5.15), we obtain

S(~r, ω) =
I0(~r)

8π
[

Γ

(ω − ω0)2 + (Γ/2)2
+

3Γ/4

(ω − ω0 − ΩR)2 + (3Γ/4)2
+

3Γ/4

(ω − ω0 + ΩR)2 + (3Γ/4)2
]

(5.16)

There are three peaks centered at ω0, ω0 ± ΩR in the spectrum which is well known

as the Mollow triplet. The width of the center peak is Γ/2 while the width of the

sidebands is 3Γ/4. The separation between the sideband and the central peak is

the Rabi frequency (Fig. 5.1(b)). Therefore, we can determine the Rabi frequency

felt by the atom from the resonance fluorescence spectrum. If the Rabi frequency

is spatial dependent, we can extract the position of the atom from the resonance

fluorescence spectrum.

However, if there are multiple atoms within one diffraction-limited spot, dipole-

dipole interaction between the atoms may be significant which may significantly shift

the spectrum. In the following, we would theoretically and numerically calculate the

resonance fluorescence spectrum of a multi-atom system and show how to extract

the spatial information of the atoms even if they are interacting with each other.

5.2 General feature of the N-atom resonance fluorescence

For simplicity, we first consider that some identical atoms are located in the 1D

space along the x axis. Our setup is shown in Fig. 5.2. We shine two strong linear

polarized laser fields with wavelength λ on these atoms from opposite directions and

they form a standing wave. Assume that the polarization orientation is in ŷ direction

and the frequency is resonant with the two-level atoms. We also assume that the

atoms do not move and they locates within one wavelength. This assumption is

valid for the following situations: atoms are trapped by optical lattice, quantum

dots, NV-centers in diamond and so on. We can stretch the standing wave where the
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Figure 5.2: Scheme for resonance fluorescence microscopy. xi is the position of the
ith atom.

sample is located within approximately linear region between node and anti-node

[59, 31]. In this region, we can write E(x) = E0x/λ. We monitor the resonance

fluorescence photons emitted by the system with a detector in ẑ direction. The

resonance fluorescence spectrum encodes the spatial information of the systems from

which we can determine the positions of each atom.

The Hamiltonian of the system and the field is [35, 117]

H = HA +HF +HAF +Hdd, (5.17)

where HA = h̄ω0

∑N
i=1 S

z
i is the energy of the atoms, with ω0 being the level sepa-

ration and Sz
i is the z component of the spin operator. HF = h̄ω0a

†a is the total

energy of the photons, where a(a†) is annihilation (creation) operator of the pho-

ton; HAF = (h̄/2)
∑N

i=1 gi(S
+
i a + S−

i a
†) is the interaction between the atoms and

the field, with S+
i (S

−
i ) being the raising (lowering) operator on the ith atom, and

coupling constant gi = gxi/λ and g = µ(2ω0/h̄ε0V )1/2 (µ is the transition dipole

moment between ground state and excited state); Hdd = h̄
∑

i 6=j Ωij(S
+
i S

−
j + S−

i S
+
j )
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is the dipole-dipole interaction energy. All transition dipole moments are polarized

in y direction and the dipole-dipole interaction energy Ωij is given by [35, 117, 38]

Ωij =
3Γ

4
{−(1− cos2 φ)

cos(kxij)

kxij
+ (1− 3 cos2 φ)[

sin(kxij)

(kxij)2
+
cos(kxij)

(kxij)3
]}, (5.18)

with 2Γ = 4ω3
0d

2
0/(3h̄c

3) being the single-atom spontaneous decay rate, φ is the angle

of the dipole with respect to atomic chain direction, k = ω0/c (c is speed of light)

and xij is the distance between atoms [117, 118]. The Rabi frequency for the ith

atom is given by Ωi = gi
√
n (or µE0xi/h̄λ) where n is the photon number.

The spectrum of resonance fluorescence can be evaluated by [119, 120]

S(ω) ∝ Re[

∫ ∞

0

dτeiωτ lim
t→∞

〈D+(t)D−(t + τ)〉], (5.19)

where D+ and D− are the raising and lowering parts of the total atomic dipole

operator. The lowering part can be written asD− =
∑

αβn d
−
αβ |β, n − 1〉〈α, n| =

∑

αβ D
−
αβ , where d

−
αβ is the dipole matrix element of the transition from |α, n〉 to

|β, n−1〉 and it is defined by d−αβ = 〈β, n−1|
∑N

i=1 S
−
i |α, n〉 and D−

αβ =
∑

n d
−
αβ|β, n−

1〉〈α, n|.

We can write the two-time correlation function in Eq. (5.19) as

〈D+(t)D−(t+ τ)〉 =
∑

α6=β

〈D+(t)D−
αβ(t+ τ)〉+

∑

α

〈D+(t)D−
αα(t+ τ)〉 (5.20)

where the first term corresponds to the sideband spectrum while the second term

corresponds to the central peak. According to the quantum regression theorem

[82], the two-time correlation function 〈D+(t)D−
αβ(t+ τ)〉 satisfies the same equation

of motion as the single time average 〈D−
αβ(t)〉. The dynamics of 〈D−

αβ(t)〉 can be
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calculated from the master equation:

d〈D−
αβ(t)〉
dt

= d−αβ
dρ−αβ
dt

= d−αβ{
−i
h̄
[H, ρ]αβ − (Lρ)αβ} (5.21)

where ρ−αβ = 〈α, n|ρ|β, n − 1〉, L =
∑N

i,j=1 Γij(S
+
i S

−
j ρ + ρS+

i S
−
j − 2S−

j ρS
+
i ) is the

relaxation operator with Γii being the decay rate of atom i and Γij being the cross

damping rate. For the sidebands, we can expand (Lρ)αβ = Γαβραβ + · · · and, from

Eq. (5.21), we have

d

dt
〈D−

αβ(t)〉 ≃ (iωαβ − Γαβ)〈D−
αβ(t)〉, (5.22)

where we have neglected the non-resonance terms on the right hand side in the

secular approximation. For the central peak, as all |α, n〉 → |α, n−1〉, α = 1, · · · , 2N

have the same transition frequency, they couple to each other and we can expand

(Lρ)αα =
∑

β Γ
′

αβρββ + · · · . From Eq. (5.21) we get

d

dt
〈D−

αα(t)〉 = iω0〈D−
αα(t)〉 − d−αα

∑

β

Γ
′

αβ

〈D−
ββ(t)〉
d−ββ

. (5.23)

According to the quantum regression theorem and Eq. (5.19), the spectrum is

given by

S(~R, ω) = S0(ω) + S±(ω)

∝ Re[

∫ ∞

0

dτei(ω−ω0)τ
∑

α,β

d−αα(e
−Γ

′
τ )αβd

+
ββ] +

∑

α6=β

|d−αβ|2Γαβ

(ω − ωαβ)2 + Γ2
αβ

,(5.24)

where the first term yields the central peak spectrum and the second term gives the

sideband spectrum.

In the general cases, the spectrum is very complicated. In the following, we
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would like to consider a special case that the dipole-dipole interaction is not too

strong where we can find the general feature of the spectrum.

5.2.0.1 Ωi ≫ Ωij

If the dipole-dipole interaction energy is not very strong, we can apply a strong

laser field such that Ωi ≫ Ωij . In this case, we can analytically evaluate the collec-

tive resonance fluorescence spectrum of multi-atom system based on a dressed state

picture [119, 120]. Let H0 = HA +HF +HAF and treat Hdd as a perturbation term.

The eigenvalues and eigenfunctions of H0 are given by [39]

E0
α,n = (n− N

2
)h̄ω0 +

h̄

2

N
∑

i=1

χα
i Ωi, (5.25)

|α, n〉 =
1√
2N

(|bN , n〉+
N
∑

i=1

χα
i |aibN−1, n− 1〉+

∑

i 6=j

χα
i χ

α
j |aiajbN−2, n− 2〉+ · · ·

+

N
∏

i=1

χα
i |aN , n−N〉),

(5.26)

where N is the number of atoms, α = 1, 2, · · · , 2N , |aibN−1〉 means that ith atom is

in the excited state |a〉 while other N − 1 atoms are in the ground state |b〉, and χα
i

is a constant which can be either +1 or −1. Counting the dipole-dipole interaction

term as a perturbation, the eigenenergy is shifted by

∆α,n =
h̄

2

∑

i 6=j

χα
i χ

α
jΩij (5.27)

and the correction to zeroth order eigenfunction is of the order of Ωij/Ωi which can

be neglected. The sublevel energy Eα,n = E0
α,n + ∆α,n. The pictorial energy level

for the dressed state picture is shown in Fig. 5.4. Coupling of the dressed states to
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the vacuum results in the system’s cascade down the ladder from the α state of one

multiplet to the β state of the adjacent multiplet [119]. The corresponding transition

frequency is ωαβ = (Eα,n − Eβ,n−1)/h̄, where α, β = 1, 2, · · · , 2N .

For the zeroth order wavefunction (Eq. (5.26)) , the transition dipole moment is

given by

d−αβ =
1

2N

N
∑

i=1

{χβ
i

∏

k 6=i

[1 + χα
k · χβ

k ]}. (5.28)

We have three cases:

1. β = α, d−αβ =
∑N

i=1 χ
α
i /2 which contributes to the central peak ω = ω0;

2. β = αp (αp is a state such that E0
α and E0

αp have different sign only in pth

term), d−αβ = χα
p/2 which contributes to the sidebands

ωααp = ω0 + χα
pΩp +

∑

k 6=p

χα
pχ

α
kΩpk; (5.29)

From this equation, we see that the positive sideband peaks can be divided into N

groups: Ωp+
∑

k 6=p±Ωpk, p = 1, · · · , N . Averaging over the frequencies of each group

we can get the Rabi frequencies Ωp from which we can determine the positions of

the atoms. The error is on the order of Ω2
ij/Ω

2
i ≪ 1. This is our method for optical

microscopy (Fig. 5.3). In the experiment, we may not know which peak belongs to

which group. However, if we change the gradient of the laser field by an amount, the

relative Rabi frequencies for different atoms change which will change the separations

of the spectrum belongs to different groups. Because the dipole-dipole interactions

do not change, the splitting between peaks belong to the same group will not change.

From this phenomena we can identify peaks belong to different groups.

3. α 6= β and more than one term of E0
α and E0

β have different signs, d−αβ = 0
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Atom localization 

The positive sideband spectrum: 

, with   

The average sideband frequency belongs to each  
 

 

Rabi frequency at the position of atom : 
 

  

From , we can determine the position  of the atom . 

Figure 5.3: Principle of atom localization from resonance fluorescence spectrum.

which corresponds to the forbidden transition.

The method described above is valid under the conditions: Ωi ≫ Ωij and |Ωi −

Ωj | − 2Ωij ≫ Γ. Assuming that Γ ∼ 108Hz and the maximum Rabi frequency is

1013Hz, then the smallest distance we can resolve in this method is about λ/50.

5.3 Three-atoms example

In the following, we study the resonance fluorescence spectrum of a three-atom

system to demonstrate how our localization microscopy works. The dressed state
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|1n>=|+ + + n>

|2n>=|- + + n>

|3n>=|+ - + n>

|4n>=|+ + - n>

|5n>=|- - + n>

|6n>=|- + - n>

|7n>=|+ - - n>

|8n>=|- - - n>

|1n-1>=|+ + + n-1>

|2n-1>=|- + + n-1>

|3n-1>=|+ - + n-1>

|4n-1>=|+ + - n-1>

|5n-1>=|- - + n-1>

|6n-1>=|- + - n-1>

|7n-1>=|+ - - n-1>

|8n-1>=|- - - n-1>

Figure 5.4: Dressed state picture for three interacting atoms. | ± ± ± n〉 = (|bn1〉 ±
|an1 − 1〉)⊗ (|bn2〉 ± |an2 − 1〉)⊗ (|bn3〉 ± |an3 − 1〉) where n1 + n2 + n3 = n.

picture is shown in Fig. 5.4. From Eq. (5.25), the eigenvalues of the system are

E1n = (n− 3

2
)h̄ω0 +

h̄

2
(Ω1 + Ω2 + Ω3 + Ω12 + Ω13 + Ω23)

E2n = (n− 3

2
)h̄ω0 +

h̄

2
(−Ω1 + Ω2 + Ω3 − Ω12 − Ω13 + Ω23)

E3n = (n− 3

2
)h̄ω0 +

h̄

2
(Ω1 − Ω2 + Ω3 − Ω12 + Ω13 − Ω23)

E4n = (n− 3

2
)h̄ω0 +

h̄

2
(Ω1 + Ω2 − Ω3 + Ω12 − Ω13 − Ω23)

E5n = (n− 3

2
)h̄ω0 +

h̄

2
(−Ω1 − Ω2 + Ω3 + Ω12 − Ω13 − Ω23)

E6n = (n− 3

2
)h̄ω0 +

h̄

2
(−Ω1 + Ω2 − Ω3 − Ω12 + Ω13 − Ω23)

E7n = (n− 3

2
)h̄ω0 +

h̄

2
(Ω1 − Ω2 − Ω3 − Ω12 − Ω13 + Ω23)

E8n = (n− 3

2
)h̄ω0 +

h̄

2
(−Ω1 − Ω2 − Ω3 + Ω12 + Ω13 + Ω23)

(5.30)

For weak dipole-dipole interactions, according to Eq. (5.28) the nonzero transi-
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tion dipole moments are

(1) Central peak: d±11 = 3/2, d±22 = d±33 = d±44 = 1/2, d±55 = d±66 = d±77 = −1/2, d±88 =

−3/2.

(2) Sideband peaks:d−12 = d−13 = d−14 = d−25 = d−26 = d−35 = d−37 = d−47 = d−58 = d−68 =

d−78 = 1/2; d−21 = d−31 = d−41 = d−52 = d−62 = d−53 = d−73 = d−74 = d−85 = d−86 = d−87 = −1/2.

For central peak, we can also calculate (Lρ)αα = (3Γ/2)ραα − (Γ/2)
∑

α′ ρα′α′

where α → α
′
is allowed sideband transition. For example, if α = 1, then α

′
= 2, 3, 4.

Thus, we have

Γ
′

=
Γ

2
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From Eq. (5.24), we get the central peak spectrum

S0(~R, ω) ∝ 3Γ

2
[

1

(ω − ω0)2 + Γ2
+

18

(ω − ω0)2 + 4Γ2
+

9

(ω − ω0)2 + 9Γ2
]. (5.31)

The sideband spectrum is given by

S±(ω) ∝ 1

4

∑

α6=β

Γαβ

(ω − ωαβ)2 + Γ2
αβ

(5.32)

where Γαβ is the transition linewidth. When the atoms are not too close such that the
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The positive sideband peaks for three-atom example 

Figure 5.5: Example for three-atom resonance fluorescence microscopy.

dipole-dipole interaction energy is smaller than the single atom transition linewidth,

they can be treated as independent atoms. For independent atoms the linewidth

of the sideband spectrum is 3γ/2 [120, 82], i.e., Γαβ = 3γ/2 in Eq. (5.32). Second,

when all the atoms are very close to each others such that all dipole-dipole interaction

energies are larger than the single atom transition linewidth, Γαβ ≈ (N/2+ 1)γ [39].

The spectrum width is about (N/2+1)γ which is similar to superradiance [121]. For

general cases we need to resort to numerical calculations.

Having the spectrum, we can determine the positions of the atoms (Fig. 5.5). For

three-atom system, there are three groups of positive sideband spectrum. Averaging

each group of spectrum, we can determine the Rabi frequency felt by each atom. We

can then determine the position of the three atoms.
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5.4 Numerical calculation of the N-atom resonance fluorescence

For multiple-atom system, we can numerically solve the resonance fluorescence

spectrum using the master equation approach. The dynamics of the system is given

by

∂ρ

∂t
= − i

h̄
[H, ρ]− L(ρ) (5.33)

where H is the Hamiltonian of the system which is given by Eq. (5.17) and L(ρ)

describes the relaxation of the system which is given by

L(ρ) = 1

2

N
∑

i,j=1

Γij(ρS
+
i S

−
j + S+

i S
−
j ρ− 2S+

j ρS
−
i ) (5.34)

where Γij is the correlated decay rate which is

Γij =
3Γ

2
{[1− cos2 φ]

sin(kxij)

kxij
+ [1− 3 cos2 φ][

cos(kxij)

(kxij)2
− sin(kxij)

(kxij)3
]}. (5.35)

For N atoms, the resonance fluorescence spectrum can be calculated by

S(~r, ω) = I0(~r)Re[

∫ ∞

0

dτ < S+(t)S−(t+ τ) >] (5.36)

where I0(~r) is given by Eq. (5.3) and S± =
∑N

i=1 S
±
i . The two time correlation

function can be calculated by using the quantum regression theorem. We can expand

S− as S− =
∑

i,j αijXij where Xij = |i〉〈j| and |i〉(|j〉) is the basis of the bare atomic

system. Then the two-time correlation function can be written as

< S+(t)S−(t+ τ) >=
∑

i,j

αijCi,j(t, τ) (5.37)

where Ci,j(t, τ) =< S+(t)Xi,j(t+ τ) >.
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Since < Xij >= ρji, the one-time averages can be calculated from the master

equations. Assuming that

d〈Xij(t)〉
dt

=
∑

kl

Lijkl〈Xkl(t)〉, (5.38)

we have from quantum regression theorem

∂Cij(t, τ)

∂τ
=

∑

kl

Lijkl〈Ckl(t, τ)〉 (5.39)

where the coefficients Lijkl include the effects of the system Hamiltonian as well as the

relaxation process. After calculating Cij(t, τ), we can then calculate the resonance

fluorescence from Eq. (5.36) and Eq. (5.37).

The numerical examples for three-atom example are shown in Fig. 5.6. In the first

example, the separation between the atoms is about λ/5 which is not very small but

still less than the diffraction limit. We apply a laser light with gradient field strength

such that Ω(x) = 100Γx/λ. The resonance fluorescence is shown in Fig. 5.6(a) where

we can see that three sidebands on each side of the center peak appear. From these

three sidebands, we can read out the Rabi frequencies felt by the three atoms which

are given by Ω1 = 29.91± 1.75(Γ),Ω2 = 50.05± 1.80(Γ), and Ω3 = 69.80± 1.73(Γ).

Plugging these values into the expression of Rabi frequency, we can determine that

the positions of the three atoms are x1 = 0.299 ± 0.002(λ), x2 = 0.501 ± 0.002(λ),

and x3 = 0.698 ± 0.002(λ) which match the real positions of the three atoms very

well.

If the distance between the atoms are smaller, for example, x1 = 0.45λ, x2 = 0.5λ,

and x1 = 0.6λ where the distance between the first two atoms is λ/20 which is much

smaller than the diffraction limit. If we apply the same laser gradient as the first
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Figure 5.6: Numerical examples of three-atom resonance fluorescence spectrum. (a)
x1 = 0.3λ, x2 = 0.5λ, x1 = 0.7λ,Ω(x) = 100Γx/λ. (b) x1 = 0.45λ, x2 = 0.5λ, x1 =
0.6λ,Ω(x) = 100Γx/λ. (c-d) Same as (b) but Ω(x) = 2000Γx/λ. (e) Spectrum shifts
when Rabi frequency changes (Red: Ω(x) = 1500Γx/λ; Blue: Ω(x) = 2000Γx/λ).
(f) The result when θ = cos−1(1/

√
3) and Ω(x) = 200Γx/λ.
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example, the resonance fluorescence spectrum is shown in Fig. 5.6(b). This spectrum

is complicated where the peaks merger and shift. It is very difficult to extract the

position information of the first and the second atoms. The reason is that the dipole-

dipole interaction between the first two atoms is larger than the atomic transition

linewidth. It significantly change the eigen-spectrum of the Hamiltonian and thus

change the resonance fluorescence spectrum.

According to our previous theoretical prediction, the resonance fluorescence spec-

trum can become more regular if we increase the Rabi gradient. For example, we

increase the Rabi gradient such that Ω(x) = 2000Γx/λ and the resonance fluores-

cence spectrum is shown in Fig. 5.6(c,d). We can see that the spectrum appears

to be more regular where the spectrum belongs to each atom splits. However, we

do not know which peaks belong to which atom. One way to solve this problem is

that we change the Rabi gradient by an amount such that Ω(x) = 1500Γx/λ and

the spectrum is shown as red curve in Fig. 5.6(e). From the figure we see that

the spectrum shifts to the left. According to our analytical calculation, the spec-

trum belongs to each atom moves as a whole group while the separation between

the spectrum belongs to different groups changes. Comparing the spectrum for two

different Rabi frequency, we can determine that there are three groups of spectrum

and the peaks for each group are given by (from blue curves): (1) 875.3Γ, 921.3Γ;

(2) 976.0Γ, 980.8Γ, 1022.0Γ, 1026.8Γ; (3) 1197.5Γ, 1203.2Γ. The average Rabi fre-

quency for each group reads: Ω1 = 898.3Γ,Ω2 = 1001.4Γ, and Ω3 = 1200.3Γ.

From these Rabi frequencies, we can determine the positions of the atoms to be

x1 = 0.449λ, x2 = 0.501λ, and x1 = 0.560λ which match the real positions very well.

It is also possible to reduce the power needed for RFM if we can control the

direction of the transition dipole moment. Since the direction of the transition dipole

moment depends on the polarization of the excitation beam, we can control the
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dipole-dipole interaction energy according to Eq. (5.18). For example, if the direction

of the transition dipole moment is tuned such that θ = cos−1(1/
√
3), the 1/r2 and

1/r3 terms can be eliminated leaving only the long-range interaction term. The

dipole-dipole interaction energy can be largely suppressed in the near field. In this

way we can significantly reduce the power needed for our scheme. For the same

atomic system used in Fig. rfm-example(c), the new spectrum is shown in Fig. rfm-

example(f) where θ = cos−1(1/
√
3) and Ω(x) = 200Γx/λ. We can see that there

are three groups of spectrum: (1) 88.20Γ, 91.27Γ; (2) 98.56Γ, 101.63Γ; (3) 120.23Γ.

Averaging over each group, we get Ω1 = 89.7Γ,Ω2 = 100.1Γ, and Ω3 = 120.2Γ, from

which we can determine the positions of the atoms to be x1 = 0.449λ, x2 = 0.501λ,

and x1 = 0.601λ which also match the real positions very well.

5.5 Extension to larger area and higher dimensions

In the previous section, we discuss how to resolve the atoms located within one

wavelength. For a region larger than one wavelength, one simple way is to stretch

the standing wave with larger periods to cover the whole region. This method is

easy to operate but one disadvantage is that the field intensity increases as the

working region increases. If the region is too large, the filed will be incredible large.

Therefore, for a working region beyond several wavelengths extension, a new way

may be needed. Here we propose a possible way trying to extend this limitation via

divide-and-conquer method. The scheme is shown in Fig. 5.7(a). The sample is first

shined by a standing wave denoted by a solid and red curve. The red-marked regions

on the object plane locate in a approximately linear field region while the blue-marked

regions do not. The resonance fluorescences are collected by a lens. The fluorescence

emitted by the red-marked regions are focused to the red-marked detector pixels on

the imaging plane, while the fluorescence emitted by the blue-marked regions are
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Figure 5.7: (a) Schematic setup for imaging atoms in an extended region based on
our resonance fluorescence localization microscopy. (b) 2D resonance fluorescence
localization microscopy.

focused to the blue-marked detector pixels. At this step only the spectrum of the

fluorescence collected by the red-marked detector pixels are analyzed and we can

determine the positions of the atoms in the red-marked regions on the object plane

based on the method we illustrate in the previous sections. Then we shift our standing

wave by a phase π/2. At this time the blue-marked regions locate in a approximately

linear field while the red-marked regions do not. Applying similar process we can

determine the positions of the atoms in the blue-marked regions. Because the image

of a point in the object plane is not a point but a small disk which usually describes

by point spread function of the lens, there is a gap between neighboring detector

pixels to make sure that the fluorescence from the red-marked regions do not shine

on the blue-marked detector pixels and vise versa. If we have an optical detecting

array for each working on a region on the order of several wavelengths this method

would be possible.

We can also apply our method to 2D image. The scheme is shown in Fig. 5.7(b).
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Three steps are needed to obtain the two dimensional spatial information. In the

first two steps, we shine a gradient laser field along x(y) direction, from the resonance

fluorescence spectrum we can obtain a discrete set of x(y) position information of the

atoms. After that, we still can not determine the positions of the atoms because all

combinations of x values and y values are possible. We should shine a third gradient

field from a direction which avoids any two pairs of (x, y). From the third resonance

fluorescence spectrum we can pin down the positions of the atoms.
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6. SUMMARY AND OUTLOOK

Optical imaging and optical lithography have very important applications in

many areas such as biological imaging, medical imaging, and semiconductor indus-

try. The optical photon provides non-ionizing and safe radiation for biomedical

applications. It has big advantages over the near-field contacted techniques such

as STM or AFM. However, diffraction limit becomes a critical bottle neck for the

super-resolution imaging and lithography when it comes to the nanometer regime.

If we can somehow overcome the diffraction limit in the optical imaging and optical

lithography, they can become major tools for the nano science and technology due

to their unbeatable properties.

In this thesis work, I have proposed a novel method to overcome the diffraction

limit in the optical lithography via coherent Rabi gradient. This method relies on

the nonlinearity of the atom-field interaction but does not require multiphoton ab-

sorption and/or photon entanglement. The extension to higher order resolution is

straightforward where we just need to increase the laser intensity or pulse duration.

We also proposed two atom lithography schemes based on coherent Rabi gradient.

The first scheme using the Rubidium Rydberg atom and the microwave. Rydberg

atom has a long coherence time and large transition dipole moment which are good

for our scheme. Our numerical simulations show that sub-micrometer resolution is

possible even the wavelength of the microwave is of the order of centimeter. The

second scheme uses the Chromium atom and the visible light. Our numerical sim-

ulations show that sub-10nm resolution is possible even if the optical Stern-Gerlach

effect is included.

In addition to optical lithography, we also proposed a method to achieve super-

106



resolution in optical imaging. We calculated the resonance fluorescence spectrum of

multiple atom system and showed that the spatial information of the atoms can be

extracted from the spectrum even if the dipole-dipole interaction is present. The

resolution can be about 1/50 of the wavelength. This methods is entirely based on

far-field technique and it does not require point-by-point scanning, which indicates

that our method may be more time-efficient.

Although our methods have a lot of advantages over other methods, there are

still a lot of space that need to be improved. For example, in the optical lithography

the method we proposed to write an arbitrary 2D pattern has a relatively large

background which is not perfect for the practical applications. In the future, we

need to study how to write an arbitrary pattern which can eliminate the background.

One possible way to do this is engineering the spatial distribution and frequency

components of the pulse which can print the pattern in a few cycles. Second, although

the atom lithography provide a good testbed for our scheme, it is not a very good

candidate for the practical lithography due to its relatively low throughput. We need

to look for a suitable medium for our original scheme. We may mix some kinds of

nanoparticles, which have a relatively longer coherence time and larger transition

dipole moment, inside the photoresist. Coherent Rabi oscillations can be induced

inside the nanoparticles and then the internal energy of the nanoparticles can be

transfered to the photoresist through Föster energy transfer (FRET) for example.

Last but not the least, a suitable photoresist for this scheme need to be studied.

In the optical imaging part, there are several questions need to be studied in the

future. First, if the distance between the atoms is too small (e. g., less than λ/50),

the dipole-dipole interaction energy is very large. In this case our method does not

work well. We need to study how to solve this problem in the future. Second, to

observe the sidebands in the resonance fluorescence spectrum, Rabi frequency need
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to be larger than the transition linewidth. If the transition linewidth is large, the

power required should also be very large. How can we improve our method and

decrease the power needed? Third, there are vibrational and rotational sidebands

for molecules. Could we apply our method in the molecular system? And so on.
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M. Flaspöhler, and K. Buse. Atom lithography with a holographic light mask.

Phys. Rev. Lett., 88:083601, 2002.

[102] E. te Sligte, B. Smeets, R.C.M. Bosch, K.M.R. van der Stam, L.P. Maguire,

R.E. Scholten, H.C.W. Beijerinck, and K.A.H. van Leeuwen. Progress towards

117



atom lithography on iron. Micr. Eng., 67-68:664, 2003.

[103] C. S. Allred, J. Reeves, C. Corder, and H. Metcalf. Atom lithography with

metastable helium. J. Appl. Phys., 107:033116, 2010.

[104] G. Rempe, H. Walther, and N. Klein. Observation of quantum collapse and

revival in a one-atom maser. Phys. Rev. Lett., 58:353, 1987.

[105] G. Rempe, F. Schmidt-Kaler, and H. Walther. Observation of sub-poissonian

photon statistics in a micromaser. Phys. Rev. Lett., 64:2783, 1990.

[106] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond,

and S. Haroche. Quantum rabi oscillation: A direct test of field quantization

in a cavity. Phys. Rev. Lett., 76:1800, 1996.

[107] G. M. Lankhuijzen and L. D. Noordam. Rydberg ionization: From field to

photon. Adv. At., Mol., Opt. Phys., 38:121, 1998.
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APPENDIX A

PULSE AREA THEOREM

In the rotating wave approximation, the Hamiltonian of the light-interacting two-

level system is given by [122]

H = h̄







0 ΩR(t)e
i∆t

ΩR(t)e
−i∆t 0






. (A.1)

The dynamics equations for the amplitudes are

iĊa(t) = Ωtei∆tCb(t), (A.2)

iĊb(t) = Ωte−i∆tCa(t). (A.3)

Let f(t) = Ca(t)/Cb(t), we have

ḟ(t) = iΩ(t)e−i∆tf 2 − iΩ(t)ei∆t. (A.4)

In general cases, no analytical solution has been found yet. However, for resonant

excitation such that ∆ = 0, there is analytical solution. Assuming Cb(t) = 1, the

solution is

f(t) = −i tan θ(t) (A.5)

where θ(t) is the pulse area which is given by

θ(t) =

∫ t

−∞
Ω(t

′

)dt
′

. (A.6)
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From normalization condition |Ca|2 + |Cb|2 = 1 and Eq. (A.5), we have |Ca|2 =

|f |2
1+|f |2 . Thus, the excitation probability is given by

|Ca(t)|2 =
1

2
[1− cos θ(t)]. (A.7)
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APPENDIX B

QUANTUM REGRESSION THEOREM

The quantum regression theorem says that if the single time correlation function

is governed by

〈Ô(t+ τ)〉 =
∑

j

aj〈Ôj(t)〉, (B.1)

then we have two-time correlation function given by

〈Ôi(t)Ô(t+ τ)Ôk(t)〉 =
∑

j

aj〈Ôi(t)Ôj(t)Ôk(t)〉. (B.2)

Assume that the interaction between the system and the reservoir is “switched”

on at time t, the initial state of the whole system can be written as

ρSR(t) = ρS(t)⊗ ρR(t). (B.3)

Let U(τ) be a unitary evolution of the system and reservoir, we have

〈Ô(t+ τ)〉 = TrSR[O(t+ τ)ρSR(t)]

= TrSR[U
+(τ)O(t)U(τ)ρSR(t)]

= TrSR[O(t)U(τ)ρSR(t)U
+(τ)]

= TrSR[O(t)U(τ)ρS(t)⊗ ρR(t)U
+(τ)]. (B.4)
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and

〈Ôi(t)Ô(t+ τ)Ôk(t)〉 = TrSR[Ôi(t)O(t+ τ)Ôk(t)ρSR(t)]

= TrSR[Ôi(t)U
+(τ)O(t)U(τ)Ôk(t)ρSR(t)]

= TrSR[O(t)U(τ)Ôk(t)ρS(t)⊗ ρR(t)Ôi(t)U
+(τ)]

= TrSR[O(t)U(τ)Ôk(t)ρS(t)Ôi(t)⊗ ρR(t)U
+(τ)]. (B.5)

Comparing Eq. (B.4) with (B.5), we see that the difference between the two-time

average and the one-time average is that ρS(t) is replaced by Ok(t)ρS(t)Ôi(t).

If we have

〈Ô(t+ τ)〉 =
∑

j

aj〈Ôj(t)〉 =
∑

j

ajTrSR[Ôj(t)ρS(t)⊗ ρR(t)], (B.6)

then we have

〈Ôi(t)Ô(t+ τ)Ôk(t)〉 =
∑

j

ajTrSR[Ôj(t)Ok(t)ρS(t)Ôi(t)⊗ ρR(t)]

=
∑

j

ajTrSR[Ôi(t)Ôj(t)Ok(t)ρS(t)⊗ ρR(t)]

=
∑

j

aj〈Ôi(t)Ôj(t)Ok(t)〉 (B.7)

which is the quantum regression theorem.
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